Correct the x86-64 CRC32 instruction definition.
[sbcl.git] / src / compiler / x86-64 / insts.lisp
bloba1d9f86aa1a7a630c3bc2a2a643ce55b1fe17b86
1 ;;;; that part of the description of the x86-64 instruction set
2 ;;;; which can live on the cross-compilation host
4 ;;;; This software is part of the SBCL system. See the README file for
5 ;;;; more information.
6 ;;;;
7 ;;;; This software is derived from the CMU CL system, which was
8 ;;;; written at Carnegie Mellon University and released into the
9 ;;;; public domain. The software is in the public domain and is
10 ;;;; provided with absolutely no warranty. See the COPYING and CREDITS
11 ;;;; files for more information.
13 (in-package "SB!X86-64-ASM")
15 (eval-when (:compile-toplevel :load-toplevel :execute)
16 ;; Imports from this package into SB-VM
17 (import '(*condition-name-vec* conditional-opcode
18 register-p xmm-register-p ; FIXME: rename REGISTER-P to GPR-P
19 make-ea ea-disp) 'sb!vm)
20 ;; Imports from SB-VM into this package
21 (import '(sb!vm::*byte-sc-names* sb!vm::*word-sc-names*
22 sb!vm::*dword-sc-names* sb!vm::*qword-sc-names*
23 sb!vm::frame-byte-offset
24 sb!vm::registers sb!vm::float-registers sb!vm::stack))) ; SB names
26 (!begin-instruction-definitions)
28 ;;; Note: In CMU CL, this used to be a call to SET-DISASSEM-PARAMS.
29 (setf *disassem-inst-alignment-bytes* 1)
31 ;;; This type is used mostly in disassembly and represents legacy
32 ;;; registers only. R8-R15 are handled separately.
33 (deftype reg () '(unsigned-byte 3))
35 ;;; This includes legacy registers and R8-R15.
36 (deftype full-reg () '(unsigned-byte 4))
38 ;;; The XMM registers XMM0 - XMM15.
39 (deftype xmmreg () '(unsigned-byte 4))
41 ;;; Default word size for the chip: if the operand size /= :dword
42 ;;; we need to output #x66 (or REX) prefix
43 (def!constant +default-operand-size+ :dword)
45 ;;; The default address size for the chip. It could be overwritten
46 ;;; to :dword with a #x67 prefix, but this is never needed by SBCL
47 ;;; and thus not supported by this assembler/disassembler.
48 (def!constant +default-address-size+ :qword)
50 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
52 (defun offset-next (value dstate)
53 (declare (type integer value)
54 (type disassem-state dstate))
55 (+ (dstate-next-addr dstate) value))
57 (defparameter *byte-reg-names*
58 #(al cl dl bl spl bpl sil dil r8b r9b r10b r11b r12b r13b r14b r15b))
59 (defparameter *high-byte-reg-names*
60 #(ah ch dh bh))
61 (defparameter *word-reg-names*
62 #(ax cx dx bx sp bp si di r8w r9w r10w r11w r12w r13w r14w r15w))
63 (defparameter *dword-reg-names*
64 #(eax ecx edx ebx esp ebp esi edi r8d r9d r10d r11d r12d r13d r14d r15d))
65 (defparameter *qword-reg-names*
66 #(rax rcx rdx rbx rsp rbp rsi rdi r8 r9 r10 r11 r12 r13 r14 r15))
68 ;;; The printers for registers, memory references and immediates need to
69 ;;; take into account the width bit in the instruction, whether a #x66
70 ;;; or a REX prefix was issued, and the contents of the REX prefix.
71 ;;; This is implemented using prefilters to put flags into the slot
72 ;;; INST-PROPERTIES of the DSTATE. These flags are the following
73 ;;; symbols:
74 ;;;
75 ;;; OPERAND-SIZE-8 The width bit was zero
76 ;;; OPERAND-SIZE-16 The "operand size override" prefix (#x66) was found
77 ;;; REX A REX prefix was found
78 ;;; REX-W A REX prefix with the "operand width" bit set was
79 ;;; found
80 ;;; REX-R A REX prefix with the "register" bit set was found
81 ;;; REX-X A REX prefix with the "index" bit set was found
82 ;;; REX-B A REX prefix with the "base" bit set was found
84 ;;; Return the operand size depending on the prefixes and width bit as
85 ;;; stored in DSTATE.
86 (defun inst-operand-size (dstate)
87 (declare (type disassem-state dstate))
88 (cond ((dstate-get-inst-prop dstate 'operand-size-8) :byte)
89 ((dstate-get-inst-prop dstate 'rex-w) :qword)
90 ((dstate-get-inst-prop dstate 'operand-size-16) :word)
91 (t +default-operand-size+)))
93 ;;; The same as INST-OPERAND-SIZE, but for those instructions (e.g.
94 ;;; PUSH, JMP) that have a default operand size of :qword. It can only
95 ;;; be overwritten to :word.
96 (defun inst-operand-size-default-qword (dstate)
97 (declare (type disassem-state dstate))
98 (if (dstate-get-inst-prop dstate 'operand-size-16) :word :qword))
100 ;;; Print to STREAM the name of the general-purpose register encoded by
101 ;;; VALUE and of size WIDTH. For robustness, the high byte registers
102 ;;; (AH, BH, CH, DH) are correctly detected, too, although the compiler
103 ;;; does not use them.
104 (defun print-reg-with-width (value width stream dstate)
105 (declare (type full-reg value)
106 (type stream stream)
107 (type disassem-state dstate))
108 (princ (if (and (eq width :byte)
109 (<= 4 value 7)
110 (not (dstate-get-inst-prop dstate 'rex)))
111 (aref *high-byte-reg-names* (- value 4))
112 (aref (ecase width
113 (:byte *byte-reg-names*)
114 (:word *word-reg-names*)
115 (:dword *dword-reg-names*)
116 (:qword *qword-reg-names*))
117 value))
118 stream)
119 ;; XXX plus should do some source-var notes
122 (defun print-reg (value stream dstate)
123 (declare (type full-reg value)
124 (type stream stream)
125 (type disassem-state dstate))
126 (print-reg-with-width value
127 (inst-operand-size dstate)
128 stream
129 dstate))
131 (defun print-reg-default-qword (value stream dstate)
132 (declare (type full-reg value)
133 (type stream stream)
134 (type disassem-state dstate))
135 (print-reg-with-width value
136 (inst-operand-size-default-qword dstate)
137 stream
138 dstate))
140 ;; Print a reg that can only be a :DWORD or :QWORD.
141 ;; Avoid use of INST-OPERAND-SIZE because it's wrong for this type of operand.
142 (defun print-d/q-word-reg (value stream dstate)
143 (declare (type full-reg value)
144 (type stream stream)
145 (type disassem-state dstate))
146 (print-reg-with-width value
147 (if (dstate-get-inst-prop dstate 'rex-w) :qword :dword)
148 stream
149 dstate))
151 (defun print-byte-reg (value stream dstate)
152 (declare (type full-reg value)
153 (type stream stream)
154 (type disassem-state dstate))
155 (print-reg-with-width value :byte stream dstate))
157 (defun print-addr-reg (value stream dstate)
158 (declare (type full-reg value)
159 (type stream stream)
160 (type disassem-state dstate))
161 (print-reg-with-width value +default-address-size+ stream dstate))
163 ;;; Print a register or a memory reference of the given WIDTH.
164 ;;; If SIZED-P is true, add an explicit size indicator for memory
165 ;;; references.
166 (defun print-reg/mem-with-width (value width sized-p stream dstate)
167 (declare (type (or list full-reg) value)
168 (type (member :byte :word :dword :qword) width)
169 (type boolean sized-p)
170 (type stream stream)
171 (type disassem-state dstate))
172 (if (typep value 'full-reg)
173 (print-reg-with-width value width stream dstate)
174 (print-mem-ref (if sized-p :sized-ref :ref) value width stream dstate)))
176 ;;; Print a register or a memory reference. The width is determined by
177 ;;; calling INST-OPERAND-SIZE.
178 (defun print-reg/mem (value stream dstate)
179 (declare (type (or list full-reg) value)
180 (type stream stream)
181 (type disassem-state dstate))
182 (print-reg/mem-with-width
183 value (inst-operand-size dstate) nil stream dstate))
185 ;; Same as print-reg/mem, but prints an explicit size indicator for
186 ;; memory references.
187 (defun print-sized-reg/mem (value stream dstate)
188 (declare (type (or list full-reg) value)
189 (type stream stream)
190 (type disassem-state dstate))
191 (print-reg/mem-with-width
192 value (inst-operand-size dstate) t stream dstate))
194 ;;; Same as print-sized-reg/mem, but with a default operand size of
195 ;;; :qword.
196 (defun print-sized-reg/mem-default-qword (value stream dstate)
197 (declare (type (or list full-reg) value)
198 (type stream stream)
199 (type disassem-state dstate))
200 (print-reg/mem-with-width
201 value (inst-operand-size-default-qword dstate) t stream dstate))
203 (defun print-sized-byte-reg/mem (value stream dstate)
204 (declare (type (or list full-reg) value)
205 (type stream stream)
206 (type disassem-state dstate))
207 (print-reg/mem-with-width value :byte t stream dstate))
209 (defun print-sized-word-reg/mem (value stream dstate)
210 (declare (type (or list full-reg) value)
211 (type stream stream)
212 (type disassem-state dstate))
213 (print-reg/mem-with-width value :word t stream dstate))
215 (defun print-sized-dword-reg/mem (value stream dstate)
216 (declare (type (or list full-reg) value)
217 (type stream stream)
218 (type disassem-state dstate))
219 (print-reg/mem-with-width value :dword t stream dstate))
221 (defun print-label (value stream dstate)
222 (declare (ignore dstate))
223 (princ16 value stream))
225 (defun print-xmmreg (value stream dstate)
226 (declare (type xmmreg value) (type stream stream) (ignore dstate))
227 (format stream "XMM~d" value))
229 (defun print-xmmreg/mem (value stream dstate)
230 (declare (type (or list xmmreg) value)
231 (type stream stream)
232 (type disassem-state dstate))
233 (if (typep value 'xmmreg)
234 (print-xmmreg value stream dstate)
235 (print-mem-ref :ref value nil stream dstate)))
237 ;;; This prefilter is used solely for its side effects, namely to put
238 ;;; the bits found in the REX prefix into the DSTATE for use by other
239 ;;; prefilters and by printers.
240 (defun prefilter-wrxb (value dstate)
241 (declare (type (unsigned-byte 4) value)
242 (type disassem-state dstate))
243 (dstate-put-inst-prop dstate 'rex)
244 (when (plusp (logand value #b1000))
245 (dstate-put-inst-prop dstate 'rex-w))
246 (when (plusp (logand value #b0100))
247 (dstate-put-inst-prop dstate 'rex-r))
248 (when (plusp (logand value #b0010))
249 (dstate-put-inst-prop dstate 'rex-x))
250 (when (plusp (logand value #b0001))
251 (dstate-put-inst-prop dstate 'rex-b))
252 value)
254 ;;; The two following prefilters are used instead of prefilter-wrxb when
255 ;;; the bits of the REX prefix need to be treated individually. They are
256 ;;; always used together, so only the first one sets the REX property.
257 (defun prefilter-rex-w (value dstate)
258 (declare (type bit value) (type disassem-state dstate))
259 (dstate-put-inst-prop dstate 'rex)
260 (when (plusp value)
261 (dstate-put-inst-prop dstate 'rex-w)))
263 (defun prefilter-rex-b (value dstate)
264 (declare (type bit value) (type disassem-state dstate))
265 (when (plusp value)
266 (dstate-put-inst-prop dstate 'rex-b)))
268 ;;; This prefilter is used solely for its side effect, namely to put
269 ;;; the property OPERAND-SIZE-8 into the DSTATE if VALUE is 0.
270 (defun prefilter-width (value dstate)
271 (declare (type bit value) (type disassem-state dstate))
272 (when (zerop value)
273 (dstate-put-inst-prop dstate 'operand-size-8))
274 value)
276 ;;; This prefilter is used solely for its side effect, namely to put
277 ;;; the property OPERAND-SIZE-16 into the DSTATE.
278 (defun prefilter-x66 (value dstate)
279 (declare (type (eql #x66) value)
280 (ignore value)
281 (type disassem-state dstate))
282 (dstate-put-inst-prop dstate 'operand-size-16))
284 ;;; A register field that can be extended by REX.R.
285 (defun prefilter-reg-r (value dstate)
286 (declare (type reg value) (type disassem-state dstate))
287 (if (dstate-get-inst-prop dstate 'rex-r) (+ value 8) value))
289 ;;; A register field that can be extended by REX.B.
290 (defun prefilter-reg-b (value dstate)
291 (declare (type reg value) (type disassem-state dstate))
292 (if (dstate-get-inst-prop dstate 'rex-b) (+ value 8) value))
294 ;;; Returns either an integer, meaning a register, or a list of
295 ;;; (BASE-REG OFFSET INDEX-REG INDEX-SCALE), where any component
296 ;;; may be missing or nil to indicate that it's not used or has the
297 ;;; obvious default value (e.g., 1 for the index-scale). VALUE is a list
298 ;;; of the mod and r/m field of the ModRM byte of the instruction.
299 ;;; Depending on VALUE a SIB byte and/or an offset may be read. The
300 ;;; REX.B bit from DSTATE is used to extend the sole register or the
301 ;;; BASE-REG to a full register, the REX.X bit does the same for the
302 ;;; INDEX-REG.
303 (defun prefilter-reg/mem (value dstate)
304 (declare (type list value)
305 (type disassem-state dstate))
306 (flet ((extend (bit-name reg)
307 (logior (if (dstate-get-inst-prop dstate bit-name) 8 0)
308 reg)))
309 (declare (inline extend))
310 (let* ((mod (the (unsigned-byte 2) (first value)))
311 (r/m (the (unsigned-byte 3) (second value)))
312 (full-reg (extend 'rex-b r/m)))
313 (cond ((= mod #b11)
314 ;; registers
315 full-reg)
316 ((= r/m #b100) ; SIB byte - rex.b is "don't care"
317 (let* ((sib (the (unsigned-byte 8)
318 (read-suffix 8 dstate)))
319 (base-reg (ldb (byte 3 0) sib))
320 (index-reg (extend 'rex-x (ldb (byte 3 3) sib)))
321 (offset
322 (case mod
323 (#b00
324 (if (= base-reg #b101)
325 (read-signed-suffix 32 dstate)
326 nil))
327 (#b01
328 (read-signed-suffix 8 dstate))
329 (#b10
330 (read-signed-suffix 32 dstate)))))
331 (list (unless (and (= mod #b00) (= base-reg #b101))
332 (extend 'rex-b base-reg))
333 offset
334 (unless (= index-reg #b100) index-reg) ; index can't be RSP
335 (ash 1 (ldb (byte 2 6) sib)))))
336 ;; rex.b is not decoded in determining RIP-relative mode
337 ((and (= mod #b00) (= r/m #b101))
338 (list 'rip (read-signed-suffix 32 dstate)))
339 ((= mod #b00)
340 (list full-reg))
341 ((= mod #b01)
342 (list full-reg (read-signed-suffix 8 dstate)))
343 (t ; (= mod #b10)
344 (list full-reg (read-signed-suffix 32 dstate)))))))
346 (defun read-address (value dstate)
347 (declare (ignore value)) ; always nil anyway
348 (read-suffix (width-bits (inst-operand-size dstate)) dstate))
350 (defun width-bits (width)
351 (ecase width
352 (:byte 8)
353 (:word 16)
354 (:dword 32)
355 (:qword 64)))
357 (defun print-imm/asm-routine (value stream dstate)
358 (maybe-note-assembler-routine value nil dstate)
359 (maybe-note-static-symbol value dstate)
360 (princ value stream))
361 ) ; EVAL-WHEN
363 ;;;; disassembler argument types
365 ;;; Used to capture the lower four bits of the REX prefix all at once ...
366 (define-arg-type wrxb :prefilter #'prefilter-wrxb)
367 ;;; ... or individually (not needed for REX.R and REX.X).
368 (define-arg-type rex-w :prefilter #'prefilter-rex-w)
369 (define-arg-type rex-b :prefilter #'prefilter-rex-b)
371 (define-arg-type width
372 :prefilter #'prefilter-width
373 :printer (lambda (value stream dstate)
374 (declare (ignore value))
375 (princ (schar (symbol-name (inst-operand-size dstate)) 0)
376 stream)))
378 ;;; Used to capture the effect of the #x66 operand size override prefix.
379 (define-arg-type x66 :prefilter #'prefilter-x66)
381 (define-arg-type displacement
382 :sign-extend t
383 :use-label #'offset-next
384 :printer (lambda (value stream dstate)
385 (maybe-note-assembler-routine value nil dstate)
386 (print-label value stream dstate)))
388 (define-arg-type accum
389 :printer (lambda (value stream dstate)
390 (declare (ignore value)
391 (type stream stream)
392 (type disassem-state dstate))
393 (print-reg 0 stream dstate)))
395 (define-arg-type reg
396 :prefilter #'prefilter-reg-r
397 :printer #'print-reg)
399 (define-arg-type reg-b
400 :prefilter #'prefilter-reg-b
401 :printer #'print-reg)
403 (define-arg-type reg-b-default-qword
404 :prefilter #'prefilter-reg-b
405 :printer #'print-reg-default-qword)
407 (define-arg-type imm-addr
408 :prefilter #'read-address
409 :printer #'print-label)
411 ;;; Normally, immediate values for an operand size of :qword are of size
412 ;;; :dword and are sign-extended to 64 bits. For an exception, see the
413 ;;; argument type definition of SIGNED-IMM-DATA-UPTO-QWORD below.
414 (define-arg-type signed-imm-data
415 :prefilter (lambda (value dstate)
416 (declare (ignore value)) ; always nil anyway
417 (let ((width (width-bits (inst-operand-size dstate))))
418 (when (= width 64)
419 (setf width 32))
420 (read-signed-suffix width dstate))))
422 (define-arg-type signed-imm-data/asm-routine
423 :type 'signed-imm-data
424 :printer #'print-imm/asm-routine)
426 ;;; Used by the variant of the MOV instruction with opcode B8 which can
427 ;;; move immediates of all sizes (i.e. including :qword) into a
428 ;;; register.
429 (define-arg-type signed-imm-data-upto-qword
430 :prefilter (lambda (value dstate)
431 (declare (ignore value)) ; always nil anyway
432 (read-signed-suffix
433 (width-bits (inst-operand-size dstate))
434 dstate)))
436 (define-arg-type signed-imm-data-upto-qword/asm-routine
437 :type 'signed-imm-data-upto-qword
438 :printer #'print-imm/asm-routine)
441 ;;; Used by those instructions that have a default operand size of
442 ;;; :qword. Nevertheless the immediate is at most of size :dword.
443 ;;; The only instruction of this kind having a variant with an immediate
444 ;;; argument is PUSH.
445 (define-arg-type signed-imm-data-default-qword
446 :prefilter (lambda (value dstate)
447 (declare (ignore value)) ; always nil anyway
448 (let ((width (width-bits
449 (inst-operand-size-default-qword dstate))))
450 (when (= width 64)
451 (setf width 32))
452 (read-signed-suffix width dstate))))
454 (define-arg-type signed-imm-byte
455 :prefilter (lambda (value dstate)
456 (declare (ignore value)) ; always nil anyway
457 (read-signed-suffix 8 dstate)))
459 (define-arg-type imm-byte
460 :prefilter (lambda (value dstate)
461 (declare (ignore value)) ; always nil anyway
462 (read-suffix 8 dstate)))
464 ;;; needed for the ret imm16 instruction
465 (define-arg-type imm-word-16
466 :prefilter (lambda (value dstate)
467 (declare (ignore value)) ; always nil anyway
468 (read-suffix 16 dstate)))
470 (define-arg-type reg/mem
471 :prefilter #'prefilter-reg/mem
472 :printer #'print-reg/mem)
473 (define-arg-type sized-reg/mem
474 ;; Same as reg/mem, but prints an explicit size indicator for
475 ;; memory references.
476 :prefilter #'prefilter-reg/mem
477 :printer #'print-sized-reg/mem)
479 ;;; Arguments of type reg/mem with a fixed size.
480 (define-arg-type sized-byte-reg/mem
481 :prefilter #'prefilter-reg/mem
482 :printer #'print-sized-byte-reg/mem)
483 (define-arg-type sized-word-reg/mem
484 :prefilter #'prefilter-reg/mem
485 :printer #'print-sized-word-reg/mem)
486 (define-arg-type sized-dword-reg/mem
487 :prefilter #'prefilter-reg/mem
488 :printer #'print-sized-dword-reg/mem)
490 ;;; Same as sized-reg/mem, but with a default operand size of :qword.
491 (define-arg-type sized-reg/mem-default-qword
492 :prefilter #'prefilter-reg/mem
493 :printer #'print-sized-reg/mem-default-qword)
495 ;;; XMM registers
496 (define-arg-type xmmreg
497 :prefilter #'prefilter-reg-r
498 :printer #'print-xmmreg)
500 (define-arg-type xmmreg-b
501 :prefilter #'prefilter-reg-b
502 :printer #'print-xmmreg)
504 (define-arg-type xmmreg/mem
505 :prefilter #'prefilter-reg/mem
506 :printer #'print-xmmreg/mem)
509 (eval-when (:compile-toplevel :load-toplevel :execute)
510 (defparameter *conditions*
511 '((:o . 0)
512 (:no . 1)
513 (:b . 2) (:nae . 2) (:c . 2)
514 (:nb . 3) (:ae . 3) (:nc . 3)
515 (:eq . 4) (:e . 4) (:z . 4)
516 (:ne . 5) (:nz . 5)
517 (:be . 6) (:na . 6)
518 (:nbe . 7) (:a . 7)
519 (:s . 8)
520 (:ns . 9)
521 (:p . 10) (:pe . 10)
522 (:np . 11) (:po . 11)
523 (:l . 12) (:nge . 12)
524 (:nl . 13) (:ge . 13)
525 (:le . 14) (:ng . 14)
526 (:nle . 15) (:g . 15)))
527 (defparameter *condition-name-vec*
528 (let ((vec (make-array 16 :initial-element nil)))
529 (dolist (cond *conditions*)
530 (when (null (aref vec (cdr cond)))
531 (setf (aref vec (cdr cond)) (car cond))))
532 vec))
533 ) ; EVAL-WHEN
535 ;;; SSE shuffle patterns. The names end in the number of bits of the
536 ;;; immediate byte that are used to encode the pattern and the radix
537 ;;; in which to print the value.
538 (macrolet ((define-sse-shuffle-arg-type (name format-string)
539 `(define-arg-type ,name
540 :type 'imm-byte
541 :printer (lambda (value stream dstate)
542 (declare (type (unsigned-byte 8) value)
543 (type stream stream)
544 (ignore dstate))
545 (format stream ,format-string value)))))
546 (define-sse-shuffle-arg-type sse-shuffle-pattern-2-2 "#b~2,'0B")
547 (define-sse-shuffle-arg-type sse-shuffle-pattern-8-4 "#4r~4,4,'0R"))
549 ;;; Set assembler parameters. (In CMU CL, this was done with
550 ;;; a call to a macro DEF-ASSEMBLER-PARAMS.)
551 (eval-when (:compile-toplevel :load-toplevel :execute)
552 (setf sb!assem:*assem-scheduler-p* nil))
554 (define-arg-type condition-code
555 :printer *condition-name-vec*)
557 (defun conditional-opcode (condition)
558 (cdr (assoc condition *conditions* :test #'eq)))
560 ;;;; disassembler instruction formats
562 (eval-when (:compile-toplevel :execute)
563 (defun swap-if (direction field1 separator field2)
564 `(:if (,direction :constant 0)
565 (,field1 ,separator ,field2)
566 (,field2 ,separator ,field1))))
568 (define-instruction-format (byte 8 :default-printer '(:name))
569 (op :field (byte 8 0))
570 ;; optional fields
571 (accum :type 'accum)
572 (imm))
574 (define-instruction-format (two-bytes 16
575 :default-printer '(:name))
576 (op :fields (list (byte 8 0) (byte 8 8))))
578 (define-instruction-format (three-bytes 24
579 :default-printer '(:name))
580 (op :fields (list (byte 8 0) (byte 8 8) (byte 8 16))))
582 ;;; Prefix instructions
584 (define-instruction-format (rex 8)
585 (rex :field (byte 4 4) :value #b0100)
586 (wrxb :field (byte 4 0) :type 'wrxb))
588 (define-instruction-format (x66 8)
589 (x66 :field (byte 8 0) :type 'x66 :value #x66))
591 ;;; A one-byte instruction with a #x66 prefix, used to indicate an
592 ;;; operand size of :word.
593 (define-instruction-format (x66-byte 16
594 :default-printer '(:name))
595 (x66 :field (byte 8 0) :value #x66)
596 (op :field (byte 8 8)))
598 ;;; A one-byte instruction with a REX prefix, used to indicate an
599 ;;; operand size of :qword. REX.W must be 1, the other three bits are
600 ;;; ignored.
601 (define-instruction-format (rex-byte 16
602 :default-printer '(:name))
603 (rex :field (byte 5 3) :value #b01001)
604 (op :field (byte 8 8)))
606 (define-instruction-format (simple 8)
607 (op :field (byte 7 1))
608 (width :field (byte 1 0) :type 'width)
609 ;; optional fields
610 (accum :type 'accum)
611 (imm))
613 ;;; Same as simple, but with direction bit
614 (define-instruction-format (simple-dir 8 :include simple)
615 (op :field (byte 6 2))
616 (dir :field (byte 1 1)))
618 ;;; Same as simple, but with the immediate value occurring by default,
619 ;;; and with an appropiate printer.
620 (define-instruction-format (accum-imm 8
621 :include simple
622 :default-printer '(:name
623 :tab accum ", " imm))
624 (imm :type 'signed-imm-data))
626 (define-instruction-format (reg-no-width 8
627 :default-printer '(:name :tab reg))
628 (op :field (byte 5 3))
629 (reg :field (byte 3 0) :type 'reg-b)
630 ;; optional fields
631 (accum :type 'accum)
632 (imm))
634 ;;; This is reg-no-width with a mandatory REX prefix and accum field,
635 ;;; with the ability to match against REX.W and REX.B individually.
636 ;;; REX.R and REX.X are ignored.
637 (define-instruction-format (rex-accum-reg 16
638 :default-printer
639 '(:name :tab accum ", " reg))
640 (rex :field (byte 4 4) :value #b0100)
641 (rex-w :field (byte 1 3) :type 'rex-w)
642 (rex-b :field (byte 1 0) :type 'rex-b)
643 (op :field (byte 5 11))
644 (reg :field (byte 3 8) :type 'reg-b)
645 (accum :type 'accum))
647 ;;; Same as reg-no-width, but with a default operand size of :qword.
648 (define-instruction-format (reg-no-width-default-qword 8
649 :include reg-no-width
650 :default-printer '(:name :tab reg))
651 (reg :type 'reg-b-default-qword))
653 ;;; Adds a width field to reg-no-width. Note that we can't use
654 ;;; :INCLUDE REG-NO-WIDTH here to save typing because that would put
655 ;;; the WIDTH field last, but the prefilter for WIDTH must run before
656 ;;; the one for IMM to be able to determine the correct size of IMM.
657 (define-instruction-format (reg 8
658 :default-printer '(:name :tab reg))
659 (op :field (byte 4 4))
660 (width :field (byte 1 3) :type 'width)
661 (reg :field (byte 3 0) :type 'reg-b)
662 ;; optional fields
663 (accum :type 'accum)
664 (imm))
666 (define-instruction-format (rex-reg 16
667 :default-printer '(:name :tab reg))
668 (rex :field (byte 4 4) :value #b0100)
669 (wrxb :field (byte 4 0) :type 'wrxb)
670 (width :field (byte 1 11) :type 'width)
671 (op :field (byte 4 12))
672 (reg :field (byte 3 8) :type 'reg-b)
673 ;; optional fields
674 (accum :type 'accum)
675 (imm))
677 (define-instruction-format (reg-reg/mem 16
678 :default-printer
679 `(:name :tab reg ", " reg/mem))
680 (op :field (byte 7 1))
681 (width :field (byte 1 0) :type 'width)
682 (reg/mem :fields (list (byte 2 14) (byte 3 8))
683 :type 'reg/mem :reader reg-r/m-inst-r/m-arg)
684 (reg :field (byte 3 11) :type 'reg)
685 ;; optional fields
686 (imm))
688 ;;; same as reg-reg/mem, but with direction bit
689 (define-instruction-format (reg-reg/mem-dir 16
690 :include reg-reg/mem
691 :default-printer
692 `(:name
693 :tab
694 ,(swap-if 'dir 'reg/mem ", " 'reg)))
695 (op :field (byte 6 2))
696 (dir :field (byte 1 1)))
698 ;;; Same as reg-reg/mem, but uses the reg field as a second op code.
699 (define-instruction-format (reg/mem 16
700 :default-printer '(:name :tab reg/mem))
701 (op :fields (list (byte 7 1) (byte 3 11)))
702 (width :field (byte 1 0) :type 'width)
703 (reg/mem :fields (list (byte 2 14) (byte 3 8))
704 :type 'sized-reg/mem)
705 ;; optional fields
706 (imm))
708 ;;; Same as reg/mem, but without a width field and with a default
709 ;;; operand size of :qword.
710 (define-instruction-format (reg/mem-default-qword 16
711 :default-printer '(:name :tab reg/mem))
712 (op :fields (list (byte 8 0) (byte 3 11)))
713 (reg/mem :fields (list (byte 2 14) (byte 3 8))
714 :type 'sized-reg/mem-default-qword))
716 ;;; Same as reg/mem, but with the immediate value occurring by default,
717 ;;; and with an appropiate printer.
718 (define-instruction-format (reg/mem-imm 16
719 :include reg/mem
720 :default-printer
721 '(:name :tab reg/mem ", " imm))
722 (reg/mem :type 'sized-reg/mem)
723 (imm :type 'signed-imm-data))
725 (define-instruction-format (reg/mem-imm/asm-routine 16
726 :include reg/mem-imm
727 :default-printer
728 '(:name :tab reg/mem ", " imm))
729 (reg/mem :type 'sized-reg/mem)
730 (imm :type 'signed-imm-data/asm-routine))
732 ;;; Same as reg/mem, but with using the accumulator in the default printer
733 (define-instruction-format
734 (accum-reg/mem 16
735 :include reg/mem :default-printer '(:name :tab accum ", " reg/mem))
736 (reg/mem :type 'reg/mem) ; don't need a size
737 (accum :type 'accum))
739 ;;; Same as reg-reg/mem, but with a prefix of #b00001111
740 (define-instruction-format (ext-reg-reg/mem 24
741 :default-printer
742 `(:name :tab reg ", " reg/mem))
743 (prefix :field (byte 8 0) :value #b00001111)
744 (op :field (byte 7 9))
745 (width :field (byte 1 8) :type 'width)
746 (reg/mem :fields (list (byte 2 22) (byte 3 16))
747 :type 'reg/mem)
748 (reg :field (byte 3 19) :type 'reg)
749 ;; optional fields
750 (imm))
752 (define-instruction-format (ext-reg-reg/mem-no-width 24
753 :default-printer
754 `(:name :tab reg ", " reg/mem))
755 (prefix :field (byte 8 0) :value #b00001111)
756 (op :field (byte 8 8))
757 (reg/mem :fields (list (byte 2 22) (byte 3 16))
758 :type 'reg/mem)
759 (reg :field (byte 3 19) :type 'reg)
760 ;; optional fields
761 (imm))
763 (define-instruction-format (ext-reg/mem-no-width 24
764 :default-printer
765 `(:name :tab reg/mem))
766 (prefix :field (byte 8 0) :value #b00001111)
767 (op :fields (list (byte 8 8) (byte 3 19)))
768 (reg/mem :fields (list (byte 2 22) (byte 3 16))
769 :type 'reg/mem))
771 ;;; reg-no-width with #x0f prefix
772 (define-instruction-format (ext-reg-no-width 16
773 :default-printer '(:name :tab reg))
774 (prefix :field (byte 8 0) :value #b00001111)
775 (op :field (byte 5 11))
776 (reg :field (byte 3 8) :type 'reg-b))
778 ;;; Same as reg/mem, but with a prefix of #b00001111
779 (define-instruction-format (ext-reg/mem 24
780 :default-printer '(:name :tab reg/mem))
781 (prefix :field (byte 8 0) :value #b00001111)
782 (op :fields (list (byte 7 9) (byte 3 19)))
783 (width :field (byte 1 8) :type 'width)
784 (reg/mem :fields (list (byte 2 22) (byte 3 16))
785 :type 'sized-reg/mem)
786 ;; optional fields
787 (imm))
789 (define-instruction-format (ext-reg/mem-imm 24
790 :include ext-reg/mem
791 :default-printer
792 '(:name :tab reg/mem ", " imm))
793 (imm :type 'signed-imm-data))
795 (define-instruction-format (ext-reg/mem-no-width+imm8 24
796 :include ext-reg/mem-no-width
797 :default-printer
798 '(:name :tab reg/mem ", " imm))
799 (imm :type 'imm-byte))
801 ;;;; XMM instructions
803 ;;; All XMM instructions use an extended opcode (#x0F as the first
804 ;;; opcode byte). Therefore in the following "EXT" in the name of the
805 ;;; instruction formats refers to the formats that have an additional
806 ;;; prefix (#x66, #xF2 or #xF3).
808 ;;; Instructions having an XMM register as the destination operand
809 ;;; and an XMM register or a memory location as the source operand.
810 ;;; The size of the operands is implicitly given by the instruction.
811 (define-instruction-format (xmm-xmm/mem 24
812 :default-printer
813 '(:name :tab reg ", " reg/mem))
814 (x0f :field (byte 8 0) :value #x0f)
815 (op :field (byte 8 8))
816 (reg/mem :fields (list (byte 2 22) (byte 3 16))
817 :type 'xmmreg/mem)
818 (reg :field (byte 3 19) :type 'xmmreg)
819 ;; optional fields
820 (imm))
822 (define-instruction-format (ext-xmm-xmm/mem 32
823 :default-printer
824 '(:name :tab reg ", " reg/mem))
825 (prefix :field (byte 8 0))
826 (x0f :field (byte 8 8) :value #x0f)
827 (op :field (byte 8 16))
828 (reg/mem :fields (list (byte 2 30) (byte 3 24))
829 :type 'xmmreg/mem)
830 (reg :field (byte 3 27) :type 'xmmreg)
831 (imm))
833 (define-instruction-format (ext-rex-xmm-xmm/mem 40
834 :default-printer
835 '(:name :tab reg ", " reg/mem))
836 (prefix :field (byte 8 0))
837 (rex :field (byte 4 12) :value #b0100)
838 (wrxb :field (byte 4 8) :type 'wrxb)
839 (x0f :field (byte 8 16) :value #x0f)
840 (op :field (byte 8 24))
841 (reg/mem :fields (list (byte 2 38) (byte 3 32))
842 :type 'xmmreg/mem)
843 (reg :field (byte 3 35) :type 'xmmreg)
844 (imm))
846 (define-instruction-format (ext-2byte-xmm-xmm/mem 40
847 :default-printer
848 '(:name :tab reg ", " reg/mem))
849 (prefix :field (byte 8 0))
850 (x0f :field (byte 8 8) :value #x0f)
851 (op1 :field (byte 8 16)) ; #x38 or #x3a
852 (op2 :field (byte 8 24))
853 (reg/mem :fields (list (byte 2 38) (byte 3 32))
854 :type 'xmmreg/mem)
855 (reg :field (byte 3 35) :type 'xmmreg))
857 (define-instruction-format (ext-rex-2byte-xmm-xmm/mem 48
858 :default-printer
859 '(:name :tab reg ", " reg/mem))
860 (prefix :field (byte 8 0))
861 (rex :field (byte 4 12) :value #b0100)
862 (wrxb :field (byte 4 8) :type 'wrxb)
863 (x0f :field (byte 8 16) :value #x0f)
864 (op1 :field (byte 8 24)) ; #x38 or #x3a
865 (op2 :field (byte 8 32))
866 (reg/mem :fields (list (byte 2 46) (byte 3 40))
867 :type 'xmmreg/mem)
868 (reg :field (byte 3 43) :type 'xmmreg))
870 ;;; Same as xmm-xmm/mem etc., but with direction bit.
872 (define-instruction-format (ext-xmm-xmm/mem-dir 32
873 :include ext-xmm-xmm/mem
874 :default-printer
875 `(:name
876 :tab
877 ,(swap-if 'dir 'reg ", " 'reg/mem)))
878 (op :field (byte 7 17))
879 (dir :field (byte 1 16)))
881 (define-instruction-format (ext-rex-xmm-xmm/mem-dir 40
882 :include ext-rex-xmm-xmm/mem
883 :default-printer
884 `(:name
885 :tab
886 ,(swap-if 'dir 'reg ", " 'reg/mem)))
887 (op :field (byte 7 25))
888 (dir :field (byte 1 24)))
890 ;;; Instructions having an XMM register as one operand
891 ;;; and a constant (unsigned) byte as the other.
893 (define-instruction-format (ext-xmm-imm 32
894 :default-printer
895 '(:name :tab reg/mem ", " imm))
896 (prefix :field (byte 8 0))
897 (x0f :field (byte 8 8) :value #x0f)
898 (op :field (byte 8 16))
899 (/i :field (byte 3 27))
900 (b11 :field (byte 2 30) :value #b11)
901 (reg/mem :field (byte 3 24)
902 :type 'xmmreg-b)
903 (imm :type 'imm-byte))
905 (define-instruction-format (ext-rex-xmm-imm 40
906 :default-printer
907 '(:name :tab reg/mem ", " imm))
908 (prefix :field (byte 8 0))
909 (rex :field (byte 4 12) :value #b0100)
910 (wrxb :field (byte 4 8) :type 'wrxb)
911 (x0f :field (byte 8 16) :value #x0f)
912 (op :field (byte 8 24))
913 (/i :field (byte 3 35))
914 (b11 :field (byte 2 38) :value #b11)
915 (reg/mem :field (byte 3 32)
916 :type 'xmmreg-b)
917 (imm :type 'imm-byte))
919 ;;; Instructions having an XMM register as one operand and a general-
920 ;;; -purpose register or a memory location as the other operand.
922 (define-instruction-format (xmm-reg/mem 24
923 :default-printer
924 '(:name :tab reg ", " reg/mem))
925 (x0f :field (byte 8 0) :value #x0f)
926 (op :field (byte 8 8))
927 (reg/mem :fields (list (byte 2 22) (byte 3 16))
928 :type 'sized-reg/mem)
929 (reg :field (byte 3 19) :type 'xmmreg)
930 (imm))
932 (define-instruction-format (ext-xmm-reg/mem 32
933 :default-printer
934 '(:name :tab reg ", " reg/mem))
935 (prefix :field (byte 8 0))
936 (x0f :field (byte 8 8) :value #x0f)
937 (op :field (byte 8 16))
938 (reg/mem :fields (list (byte 2 30) (byte 3 24))
939 :type 'sized-reg/mem)
940 (reg :field (byte 3 27) :type 'xmmreg)
941 (imm))
943 (define-instruction-format (ext-rex-xmm-reg/mem 40
944 :default-printer
945 '(:name :tab reg ", " reg/mem))
946 (prefix :field (byte 8 0))
947 (rex :field (byte 4 12) :value #b0100)
948 (wrxb :field (byte 4 8) :type 'wrxb)
949 (x0f :field (byte 8 16) :value #x0f)
950 (op :field (byte 8 24))
951 (reg/mem :fields (list (byte 2 38) (byte 3 32))
952 :type 'sized-reg/mem)
953 (reg :field (byte 3 35) :type 'xmmreg)
954 (imm))
956 (define-instruction-format (ext-2byte-xmm-reg/mem 40
957 :default-printer
958 '(:name :tab reg ", " reg/mem))
959 (prefix :field (byte 8 0))
960 (x0f :field (byte 8 8) :value #x0f)
961 (op1 :field (byte 8 16))
962 (op2 :field (byte 8 24))
963 (reg/mem :fields (list (byte 2 38) (byte 3 32)) :type 'sized-reg/mem)
964 (reg :field (byte 3 35) :type 'xmmreg)
965 (imm))
967 ;;; Instructions having a general-purpose register as one operand and an
968 ;;; XMM register or a memory location as the other operand.
970 (define-instruction-format (reg-xmm/mem 24
971 :default-printer
972 '(:name :tab reg ", " reg/mem))
973 (x0f :field (byte 8 0) :value #x0f)
974 (op :field (byte 8 8))
975 (reg/mem :fields (list (byte 2 22) (byte 3 16))
976 :type 'xmmreg/mem)
977 (reg :field (byte 3 19) :type 'reg))
979 (define-instruction-format (ext-reg-xmm/mem 32
980 :default-printer
981 '(:name :tab reg ", " reg/mem))
982 (prefix :field (byte 8 0))
983 (x0f :field (byte 8 8) :value #x0f)
984 (op :field (byte 8 16))
985 (reg/mem :fields (list (byte 2 30) (byte 3 24))
986 :type 'xmmreg/mem)
987 (reg :field (byte 3 27) :type 'reg))
989 (define-instruction-format (ext-rex-reg-xmm/mem 40
990 :default-printer
991 '(:name :tab reg ", " reg/mem))
992 (prefix :field (byte 8 0))
993 (rex :field (byte 4 12) :value #b0100)
994 (wrxb :field (byte 4 8) :type 'wrxb)
995 (x0f :field (byte 8 16) :value #x0f)
996 (op :field (byte 8 24))
997 (reg/mem :fields (list (byte 2 38) (byte 3 32))
998 :type 'xmmreg/mem)
999 (reg :field (byte 3 35) :type 'reg))
1001 ;;; Instructions having a general-purpose register or a memory location
1002 ;;; as one operand and an a XMM register as the other operand.
1004 (define-instruction-format (ext-reg/mem-xmm 32
1005 :default-printer
1006 '(:name :tab reg/mem ", " reg))
1007 (prefix :field (byte 8 0))
1008 (x0f :field (byte 8 8) :value #x0f)
1009 (op :field (byte 8 16))
1010 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1011 :type 'reg/mem)
1012 (reg :field (byte 3 27) :type 'xmmreg)
1013 (imm))
1015 (define-instruction-format (ext-rex-reg/mem-xmm 40
1016 :default-printer
1017 '(:name :tab reg/mem ", " reg))
1018 (prefix :field (byte 8 0))
1019 (rex :field (byte 4 12) :value #b0100)
1020 (wrxb :field (byte 4 8) :type 'wrxb)
1021 (x0f :field (byte 8 16) :value #x0f)
1022 (op :field (byte 8 24))
1023 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1024 :type 'reg/mem)
1025 (reg :field (byte 3 35) :type 'xmmreg)
1026 (imm))
1028 (define-instruction-format (ext-2byte-reg/mem-xmm 40
1029 :default-printer
1030 '(:name :tab reg/mem ", " reg))
1031 (prefix :field (byte 8 0))
1032 (x0f :field (byte 8 8) :value #x0f)
1033 (op1 :field (byte 8 16))
1034 (op2 :field (byte 8 24))
1035 (reg/mem :fields (list (byte 2 38) (byte 3 32)) :type 'reg/mem)
1036 (reg :field (byte 3 35) :type 'xmmreg)
1037 (imm))
1039 (define-instruction-format (ext-rex-2byte-reg/mem-xmm 48
1040 :default-printer
1041 '(:name :tab reg/mem ", " reg))
1042 (prefix :field (byte 8 0))
1043 (rex :field (byte 4 12) :value #b0100)
1044 (wrxb :field (byte 4 8) :type 'wrxb)
1045 (x0f :field (byte 8 16) :value #x0f)
1046 (op1 :field (byte 8 24))
1047 (op2 :field (byte 8 32))
1048 (reg/mem :fields (list (byte 2 46) (byte 3 40)) :type 'reg/mem)
1049 (reg :field (byte 3 43) :type 'xmmreg)
1050 (imm))
1052 ;;; Instructions having a general-purpose register as one operand and an a
1053 ;;; general-purpose register or a memory location as the other operand,
1054 ;;; and using a prefix byte.
1056 (define-instruction-format (ext-prefix-reg-reg/mem 32
1057 :default-printer
1058 '(:name :tab reg ", " reg/mem))
1059 (prefix :field (byte 8 0))
1060 (x0f :field (byte 8 8) :value #x0f)
1061 (op :field (byte 8 16))
1062 (reg/mem :fields (list (byte 2 30) (byte 3 24))
1063 :type 'sized-reg/mem)
1064 (reg :field (byte 3 27) :type 'reg))
1066 (define-instruction-format (ext-rex-prefix-reg-reg/mem 40
1067 :default-printer
1068 '(:name :tab reg ", " reg/mem))
1069 (prefix :field (byte 8 0))
1070 (rex :field (byte 4 12) :value #b0100)
1071 (wrxb :field (byte 4 8) :type 'wrxb)
1072 (x0f :field (byte 8 16) :value #x0f)
1073 (op :field (byte 8 24))
1074 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1075 :type 'sized-reg/mem)
1076 (reg :field (byte 3 35) :type 'reg))
1078 (define-instruction-format (ext-2byte-prefix-reg-reg/mem 40
1079 :default-printer
1080 '(:name :tab reg ", " reg/mem))
1081 (prefix :field (byte 8 0))
1082 (x0f :field (byte 8 8) :value #x0f)
1083 (op1 :field (byte 8 16)) ; #x38 or #x3a
1084 (op2 :field (byte 8 24))
1085 (reg/mem :fields (list (byte 2 38) (byte 3 32))
1086 :type 'sized-reg/mem)
1087 (reg :field (byte 3 35) :type 'reg))
1089 (define-instruction-format (ext-rex-2byte-prefix-reg-reg/mem 48
1090 :default-printer
1091 '(:name :tab reg ", " reg/mem))
1092 (prefix :field (byte 8 0))
1093 (rex :field (byte 4 12) :value #b0100)
1094 (wrxb :field (byte 4 8) :type 'wrxb)
1095 (x0f :field (byte 8 16) :value #x0f)
1096 (op1 :field (byte 8 24)) ; #x38 or #x3a
1097 (op2 :field (byte 8 32))
1098 (reg/mem :fields (list (byte 2 46) (byte 3 40))
1099 :type 'sized-reg/mem)
1100 (reg :field (byte 3 43) :type 'reg))
1102 ;; XMM comparison instruction
1104 (eval-when (:compile-toplevel :load-toplevel :execute)
1105 (defparameter *sse-conditions* #(:eq :lt :le :unord :neq :nlt :nle :ord)))
1107 (define-arg-type sse-condition-code
1108 ;; Inherit the prefilter from IMM-BYTE to READ-SUFFIX the byte.
1109 :type 'imm-byte
1110 :printer *sse-conditions*)
1112 (define-instruction-format (string-op 8
1113 :include simple
1114 :default-printer '(:name width)))
1116 (define-instruction-format (short-cond-jump 16)
1117 (op :field (byte 4 4))
1118 (cc :field (byte 4 0) :type 'condition-code)
1119 (label :field (byte 8 8) :type 'displacement))
1121 (define-instruction-format (short-jump 16 :default-printer '(:name :tab label))
1122 (const :field (byte 4 4) :value #b1110)
1123 (op :field (byte 4 0))
1124 (label :field (byte 8 8) :type 'displacement))
1126 (define-instruction-format (near-cond-jump 48)
1127 (op :fields (list (byte 8 0) (byte 4 12)) :value '(#b00001111 #b1000))
1128 (cc :field (byte 4 8) :type 'condition-code)
1129 (label :field (byte 32 16) :type 'displacement))
1131 (define-instruction-format (near-jump 40 :default-printer '(:name :tab label))
1132 (op :field (byte 8 0))
1133 (label :field (byte 32 8) :type 'displacement))
1135 (define-instruction-format (cond-set 24 :default-printer '('set cc :tab reg/mem))
1136 (prefix :field (byte 8 0) :value #b00001111)
1137 (op :field (byte 4 12) :value #b1001)
1138 (cc :field (byte 4 8) :type 'condition-code)
1139 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1140 :type 'sized-byte-reg/mem)
1141 (reg :field (byte 3 19) :value #b000))
1143 (define-instruction-format (cond-move 24
1144 :default-printer
1145 '('cmov cc :tab reg ", " reg/mem))
1146 (prefix :field (byte 8 0) :value #b00001111)
1147 (op :field (byte 4 12) :value #b0100)
1148 (cc :field (byte 4 8) :type 'condition-code)
1149 (reg/mem :fields (list (byte 2 22) (byte 3 16))
1150 :type 'reg/mem)
1151 (reg :field (byte 3 19) :type 'reg))
1153 (define-instruction-format (enter-format 32
1154 :default-printer '(:name
1155 :tab disp
1156 (:unless (:constant 0)
1157 ", " level)))
1158 (op :field (byte 8 0))
1159 (disp :field (byte 16 8))
1160 (level :field (byte 8 24)))
1162 ;;; Single byte instruction with an immediate byte argument.
1163 (define-instruction-format (byte-imm 16 :default-printer '(:name :tab code))
1164 (op :field (byte 8 0))
1165 (code :field (byte 8 8) :reader byte-imm-code))
1167 ;;; Two byte instruction with an immediate byte argument.
1169 (define-instruction-format (word-imm 24 :default-printer '(:name :tab code))
1170 (op :field (byte 16 0))
1171 (code :field (byte 8 16) :reader word-imm-code))
1173 ;;; F3 escape map - Needs a ton more work.
1175 (define-instruction-format (F3-escape 24)
1176 (prefix1 :field (byte 8 0) :value #xF3)
1177 (prefix2 :field (byte 8 8) :value #x0F)
1178 (op :field (byte 8 16)))
1180 (define-instruction-format (rex-F3-escape 32)
1181 ;; F3 is a legacy prefix which was generalized to select an alternate opcode
1182 ;; map. Legacy prefixes are encoded in the instruction before a REX prefix.
1183 (prefix1 :field (byte 8 0) :value #xF3)
1184 (rex :field (byte 4 12) :value 4) ; "prefix2"
1185 (wrxb :field (byte 4 8) :type 'wrxb)
1186 (prefix3 :field (byte 8 16) :value #x0F)
1187 (op :field (byte 8 24)))
1189 (define-instruction-format (F3-escape-reg-reg/mem 32
1190 :include F3-escape
1191 :default-printer
1192 '(:name :tab reg ", " reg/mem))
1193 (reg/mem :fields (list (byte 2 30) (byte 3 24)) :type 'sized-reg/mem)
1194 (reg :field (byte 3 27) :type 'reg))
1196 (define-instruction-format (rex-F3-escape-reg-reg/mem 40
1197 :include rex-F3-escape
1198 :default-printer
1199 '(:name :tab reg ", " reg/mem))
1200 (reg/mem :fields (list (byte 2 38) (byte 3 32)) :type 'sized-reg/mem)
1201 (reg :field (byte 3 35) :type 'reg))
1204 ;;;; primitive emitters
1206 (define-bitfield-emitter emit-word 16
1207 (byte 16 0))
1209 ;; FIXME: a nice enhancement would be to save all sexprs of small functions
1210 ;; within the same file, and drop them at the end.
1211 ;; Expressly declaimed inline definitions would be saved as usual though.
1212 (declaim (inline emit-dword))
1213 (define-bitfield-emitter emit-dword 32
1214 (byte 32 0))
1215 (declaim (notinline emit-dword))
1217 ;;; Most uses of dwords are as displacements or as immediate values in
1218 ;;; 64-bit operations. In these cases they are sign-extended to 64 bits.
1219 ;;; EMIT-DWORD is unsuitable there because it accepts values of type
1220 ;;; (OR (SIGNED-BYTE 32) (UNSIGNED-BYTE 32)), so we provide a more
1221 ;;; restricted emitter here.
1222 (defun emit-signed-dword (segment value)
1223 (declare (type sb!assem:segment segment)
1224 (type (signed-byte 32) value))
1225 (declare (inline emit-dword))
1226 (emit-dword segment value))
1228 (define-bitfield-emitter emit-qword 64
1229 (byte 64 0))
1231 (define-bitfield-emitter emit-byte-with-reg 8
1232 (byte 5 3) (byte 3 0))
1234 (define-bitfield-emitter emit-mod-reg-r/m-byte 8
1235 (byte 2 6) (byte 3 3) (byte 3 0))
1237 (define-bitfield-emitter emit-sib-byte 8
1238 (byte 2 6) (byte 3 3) (byte 3 0))
1240 (define-bitfield-emitter emit-rex-byte 8
1241 (byte 4 4) (byte 1 3) (byte 1 2) (byte 1 1) (byte 1 0))
1245 ;;;; fixup emitters
1247 (defun emit-absolute-fixup (segment fixup &optional quad-p)
1248 (note-fixup segment (if quad-p :absolute64 :absolute) fixup)
1249 (let ((offset (fixup-offset fixup)))
1250 (if (label-p offset)
1251 (emit-back-patch segment
1252 (if quad-p 8 4)
1253 (lambda (segment posn)
1254 (declare (ignore posn))
1255 (let ((val (- (+ (component-header-length)
1256 (or (label-position offset)
1258 other-pointer-lowtag)))
1259 (if quad-p
1260 (emit-qword segment val)
1261 (emit-signed-dword segment val)))))
1262 (if quad-p
1263 (emit-qword segment (or offset 0))
1264 (emit-signed-dword segment (or offset 0))))))
1266 (defun emit-relative-fixup (segment fixup)
1267 (note-fixup segment :relative fixup)
1268 (emit-signed-dword segment (or (fixup-offset fixup) 0)))
1271 ;;;; the effective-address (ea) structure
1273 (defun reg-tn-encoding (tn)
1274 (declare (type tn tn))
1275 ;; ea only has space for three bits of register number: regs r8
1276 ;; and up are selected by a REX prefix byte which caller is responsible
1277 ;; for having emitted where necessary already
1278 (ecase (sb-name (sc-sb (tn-sc tn)))
1279 (registers
1280 (let ((offset (mod (tn-offset tn) 16)))
1281 (logior (ash (logand offset 1) 2)
1282 (ash offset -1))))
1283 (float-registers
1284 (mod (tn-offset tn) 8))))
1286 (defstruct (ea (:constructor make-ea (size &key base index scale disp))
1287 (:copier nil))
1288 ;; note that we can represent an EA with a QWORD size, but EMIT-EA
1289 ;; can't actually emit it on its own: caller also needs to emit REX
1290 ;; prefix
1291 (size nil :type (member :byte :word :dword :qword))
1292 (base nil :type (or tn null))
1293 (index nil :type (or tn null))
1294 (scale 1 :type (member 1 2 4 8))
1295 (disp 0 :type (or (unsigned-byte 32) (signed-byte 32) fixup)))
1296 (def!method print-object ((ea ea) stream)
1297 (cond ((or *print-escape* *print-readably*)
1298 (print-unreadable-object (ea stream :type t)
1299 (format stream
1300 "~S~@[ base=~S~]~@[ index=~S~]~@[ scale=~S~]~@[ disp=~S~]"
1301 (ea-size ea)
1302 (ea-base ea)
1303 (ea-index ea)
1304 (let ((scale (ea-scale ea)))
1305 (if (= scale 1) nil scale))
1306 (ea-disp ea))))
1308 (format stream "~A PTR [" (symbol-name (ea-size ea)))
1309 (when (ea-base ea)
1310 (write-string (sb!c:location-print-name (ea-base ea)) stream)
1311 (when (ea-index ea)
1312 (write-string "+" stream)))
1313 (when (ea-index ea)
1314 (write-string (sb!c:location-print-name (ea-index ea)) stream))
1315 (unless (= (ea-scale ea) 1)
1316 (format stream "*~A" (ea-scale ea)))
1317 (typecase (ea-disp ea)
1318 (null)
1319 (integer
1320 (format stream "~@D" (ea-disp ea)))
1322 (format stream "+~A" (ea-disp ea))))
1323 (write-char #\] stream))))
1325 (defun emit-constant-tn-rip (segment constant-tn reg remaining-bytes)
1326 ;; AMD64 doesn't currently have a code object register to use as a
1327 ;; base register for constant access. Instead we use RIP-relative
1328 ;; addressing. The offset from the SIMPLE-FUN-HEADER to the instruction
1329 ;; is passed to the backpatch callback. In addition we need the offset
1330 ;; from the start of the function header to the slot in the CODE-HEADER
1331 ;; that stores the constant. Since we don't know where the code header
1332 ;; starts, instead count backwards from the function header.
1333 (let* ((2comp (component-info *component-being-compiled*))
1334 (constants (ir2-component-constants 2comp))
1335 (len (length constants))
1336 ;; Both CODE-HEADER and SIMPLE-FUN-HEADER are 16-byte aligned.
1337 ;; If there are an even amount of constants, there will be
1338 ;; an extra qword of padding before the function header, which
1339 ;; needs to be adjusted for. XXX: This will break if new slots
1340 ;; are added to the code header.
1341 (offset (* (- (+ len (if (evenp len)
1344 (tn-offset constant-tn))
1345 n-word-bytes)))
1346 ;; RIP-relative addressing
1347 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1348 (emit-back-patch segment
1350 (lambda (segment posn)
1351 ;; The addressing is relative to end of instruction,
1352 ;; i.e. the end of this dword. Hence the + 4.
1353 (emit-signed-dword segment
1354 (+ 4 remaining-bytes
1355 (- (+ offset posn)))))))
1356 (values))
1358 (defun emit-label-rip (segment fixup reg remaining-bytes)
1359 (let ((label (fixup-offset fixup)))
1360 ;; RIP-relative addressing
1361 (emit-mod-reg-r/m-byte segment #b00 reg #b101)
1362 (emit-back-patch segment
1364 (lambda (segment posn)
1365 (emit-signed-dword segment
1366 (- (label-position label)
1367 (+ posn 4 remaining-bytes))))))
1368 (values))
1370 (defun emit-ea (segment thing reg &key allow-constants (remaining-bytes 0))
1371 (etypecase thing
1373 ;; this would be eleganter if we had a function that would create
1374 ;; an ea given a tn
1375 (ecase (sb-name (sc-sb (tn-sc thing)))
1376 ((registers float-registers)
1377 (emit-mod-reg-r/m-byte segment #b11 reg (reg-tn-encoding thing)))
1378 (stack
1379 ;; Convert stack tns into an index off RBP.
1380 (let ((disp (frame-byte-offset (tn-offset thing))))
1381 (cond ((<= -128 disp 127)
1382 (emit-mod-reg-r/m-byte segment #b01 reg #b101)
1383 (emit-byte segment disp))
1385 (emit-mod-reg-r/m-byte segment #b10 reg #b101)
1386 (emit-signed-dword segment disp)))))
1387 (constant
1388 (unless allow-constants
1389 ;; Why?
1390 (error
1391 "Constant TNs can only be directly used in MOV, PUSH, and CMP."))
1392 (emit-constant-tn-rip segment thing reg remaining-bytes))))
1394 (let* ((base (ea-base thing))
1395 (index (ea-index thing))
1396 (scale (ea-scale thing))
1397 (disp (ea-disp thing))
1398 (mod (cond ((or (null base)
1399 (and (eql disp 0)
1400 (not (= (reg-tn-encoding base) #b101))))
1401 #b00)
1402 ((and (fixnump disp) (<= -128 disp 127))
1403 #b01)
1405 #b10)))
1406 (r/m (cond (index #b100)
1407 ((null base) #b101)
1408 (t (reg-tn-encoding base)))))
1409 (when (and (fixup-p disp)
1410 (label-p (fixup-offset disp)))
1411 (aver (null base))
1412 (aver (null index))
1413 (return-from emit-ea (emit-ea segment disp reg
1414 :allow-constants allow-constants
1415 :remaining-bytes remaining-bytes)))
1416 (when (and (= mod 0) (= r/m #b101))
1417 ;; this is rip-relative in amd64, so we'll use a sib instead
1418 (setf r/m #b100 scale 1))
1419 (emit-mod-reg-r/m-byte segment mod reg r/m)
1420 (when (= r/m #b100)
1421 (let ((ss (1- (integer-length scale)))
1422 (index (if (null index)
1423 #b100
1424 (if (location= index sb!vm::rsp-tn)
1425 (error "can't index off of RSP")
1426 (reg-tn-encoding index))))
1427 (base (if (null base)
1428 #b101
1429 (reg-tn-encoding base))))
1430 (emit-sib-byte segment ss index base)))
1431 (cond ((= mod #b01)
1432 (emit-byte segment disp))
1433 ((or (= mod #b10) (null base))
1434 (if (fixup-p disp)
1435 (emit-absolute-fixup segment disp)
1436 (emit-signed-dword segment disp))))))
1437 (fixup
1438 (typecase (fixup-offset thing)
1439 (label
1440 (emit-label-rip segment thing reg remaining-bytes))
1442 (emit-mod-reg-r/m-byte segment #b00 reg #b100)
1443 (emit-sib-byte segment 0 #b100 #b101)
1444 (emit-absolute-fixup segment thing))))))
1446 (defun byte-reg-p (thing)
1447 (and (tn-p thing)
1448 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1449 (member (sc-name (tn-sc thing)) *byte-sc-names*)
1452 (defun byte-ea-p (thing)
1453 (typecase thing
1454 (ea (eq (ea-size thing) :byte))
1456 (and (member (sc-name (tn-sc thing)) *byte-sc-names*) t))
1457 (t nil)))
1459 (defun word-reg-p (thing)
1460 (and (tn-p thing)
1461 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1462 (member (sc-name (tn-sc thing)) *word-sc-names*)
1465 (defun word-ea-p (thing)
1466 (typecase thing
1467 (ea (eq (ea-size thing) :word))
1468 (tn (and (member (sc-name (tn-sc thing)) *word-sc-names*) t))
1469 (t nil)))
1471 (defun dword-reg-p (thing)
1472 (and (tn-p thing)
1473 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1474 (member (sc-name (tn-sc thing)) *dword-sc-names*)
1477 (defun dword-ea-p (thing)
1478 (typecase thing
1479 (ea (eq (ea-size thing) :dword))
1481 (and (member (sc-name (tn-sc thing)) *dword-sc-names*) t))
1482 (t nil)))
1484 (defun qword-reg-p (thing)
1485 (and (tn-p thing)
1486 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)
1487 (member (sc-name (tn-sc thing)) *qword-sc-names*)
1490 (defun qword-ea-p (thing)
1491 (typecase thing
1492 (ea (eq (ea-size thing) :qword))
1494 (and (member (sc-name (tn-sc thing)) *qword-sc-names*) t))
1495 (t nil)))
1497 ;;; Return true if THING is a general-purpose register TN.
1498 (defun register-p (thing)
1499 (and (tn-p thing)
1500 (eq (sb-name (sc-sb (tn-sc thing))) 'registers)))
1502 (defun accumulator-p (thing)
1503 (and (register-p thing)
1504 (= (tn-offset thing) 0)))
1506 ;;; Return true if THING is an XMM register TN.
1507 (defun xmm-register-p (thing)
1508 (and (tn-p thing)
1509 (eq (sb-name (sc-sb (tn-sc thing))) 'float-registers)))
1512 ;;;; utilities
1514 (def!constant +operand-size-prefix-byte+ #b01100110)
1516 (defun maybe-emit-operand-size-prefix (segment size)
1517 (unless (or (eq size :byte)
1518 (eq size :qword) ; REX prefix handles this
1519 (eq size +default-operand-size+))
1520 (emit-byte segment +operand-size-prefix-byte+)))
1522 ;;; A REX prefix must be emitted if at least one of the following
1523 ;;; conditions is true:
1524 ;; 1. The operand size is :QWORD and the default operand size of the
1525 ;; instruction is not :QWORD.
1526 ;;; 2. The instruction references an extended register.
1527 ;;; 3. The instruction references one of the byte registers SIL, DIL,
1528 ;;; SPL or BPL.
1530 ;;; Emit a REX prefix if necessary. OPERAND-SIZE is used to determine
1531 ;;; whether to set REX.W. Callers pass it explicitly as :DO-NOT-SET if
1532 ;;; this should not happen, for example because the instruction's
1533 ;;; default operand size is qword. R, X and B are NIL or TNs specifying
1534 ;;; registers the encodings of which are extended with the REX.R, REX.X
1535 ;;; and REX.B bit, respectively. To determine whether one of the byte
1536 ;;; registers is used that can only be accessed using a REX prefix, we
1537 ;;; need only to test R and B, because X is only used for the index
1538 ;;; register of an effective address and therefore never byte-sized.
1539 ;;; For R we can avoid to calculate the size of the TN because it is
1540 ;;; always OPERAND-SIZE. The size of B must be calculated here because
1541 ;;; B can be address-sized (if it is the base register of an effective
1542 ;;; address), of OPERAND-SIZE (if the instruction operates on two
1543 ;;; registers) or of some different size (in the instructions that
1544 ;;; combine arguments of different sizes: MOVZX, MOVSX, MOVSXD and
1545 ;;; several SSE instructions, e.g. CVTSD2SI). We don't distinguish
1546 ;;; between general-purpose and floating point registers for this cause
1547 ;;; because only general-purpose registers can be byte-sized at all.
1548 (defun maybe-emit-rex-prefix (segment operand-size r x b)
1549 (declare (type (member nil :byte :word :dword :qword :do-not-set)
1550 operand-size)
1551 (type (or null tn) r x b))
1552 (labels ((if-hi (r)
1553 (if (and r (> (tn-offset r)
1554 ;; offset of r8 is 16, offset of xmm8 is 8
1555 (if (eq (sb-name (sc-sb (tn-sc r)))
1556 'float-registers)
1558 15)))
1561 (reg-4-7-p (r)
1562 ;; Assuming R is a TN describing a general-purpose
1563 ;; register, return true if it references register
1564 ;; 4 upto 7.
1565 (<= 8 (tn-offset r) 15)))
1566 (let ((rex-w (if (eq operand-size :qword) 1 0))
1567 (rex-r (if-hi r))
1568 (rex-x (if-hi x))
1569 (rex-b (if-hi b)))
1570 (when (or (not (zerop (logior rex-w rex-r rex-x rex-b)))
1571 (and r
1572 (eq operand-size :byte)
1573 (reg-4-7-p r))
1574 (and b
1575 (eq (operand-size b) :byte)
1576 (reg-4-7-p b)))
1577 (emit-rex-byte segment #b0100 rex-w rex-r rex-x rex-b)))))
1579 ;;; Emit a REX prefix if necessary. The operand size is determined from
1580 ;;; THING or can be overwritten by OPERAND-SIZE. This and REG are always
1581 ;;; passed to MAYBE-EMIT-REX-PREFIX. Additionally, if THING is an EA we
1582 ;;; pass its index and base registers, if it is a register TN, we pass
1583 ;;; only itself.
1584 ;;; In contrast to EMIT-EA above, neither stack TNs nor fixups need to
1585 ;;; be treated specially here: If THING is a stack TN, neither it nor
1586 ;;; any of its components are passed to MAYBE-EMIT-REX-PREFIX which
1587 ;;; works correctly because stack references always use RBP as the base
1588 ;;; register and never use an index register so no extended registers
1589 ;;; need to be accessed. Fixups are assembled using an addressing mode
1590 ;;; of displacement-only or RIP-plus-displacement (see EMIT-EA), so may
1591 ;;; not reference an extended register. The displacement-only addressing
1592 ;;; mode requires that REX.X is 0, which is ensured here.
1593 (defun maybe-emit-rex-for-ea (segment thing reg &key operand-size)
1594 (declare (type (or ea tn fixup) thing)
1595 (type (or null tn) reg)
1596 (type (member nil :byte :word :dword :qword :do-not-set)
1597 operand-size))
1598 (let ((ea-p (ea-p thing)))
1599 (maybe-emit-rex-prefix segment
1600 (or operand-size (operand-size thing))
1602 (and ea-p (ea-index thing))
1603 (cond (ea-p (ea-base thing))
1604 ((and (tn-p thing)
1605 (member (sb-name (sc-sb (tn-sc thing)))
1606 '(float-registers registers)))
1607 thing)
1608 (t nil)))))
1610 (defun operand-size (thing)
1611 (typecase thing
1613 ;; FIXME: might as well be COND instead of having to use #. readmacro
1614 ;; to hack up the code
1615 (case (sc-name (tn-sc thing))
1616 #!+sb-simd-pack
1617 (#.sb!vm::*oword-sc-names*
1618 :oword)
1619 (#.*qword-sc-names*
1620 :qword)
1621 (#.*dword-sc-names*
1622 :dword)
1623 (#.*word-sc-names*
1624 :word)
1625 (#.*byte-sc-names*
1626 :byte)
1627 ;; added by jrd: float-registers is a separate size (?)
1628 ;; The only place in the code where we are called with THING
1629 ;; being a float-register is in MAYBE-EMIT-REX-PREFIX when it
1630 ;; checks whether THING is a byte register. Thus our result in
1631 ;; these cases could as well be :dword and :qword. I leave it as
1632 ;; :float and :double which is more likely to trigger an aver
1633 ;; instead of silently doing the wrong thing in case this
1634 ;; situation should change. Lutz Euler, 2005-10-23.
1635 (#.sb!vm::*float-sc-names*
1636 :float)
1637 (#.sb!vm::*double-sc-names*
1638 :double)
1639 (#.sb!vm::*complex-sc-names*
1640 :complex)
1642 (error "can't tell the size of ~S ~S" thing (sc-name (tn-sc thing))))))
1644 (ea-size thing))
1645 (fixup
1646 ;; GNA. Guess who spelt "flavor" correctly first time round?
1647 ;; There's a strong argument in my mind to change all uses of
1648 ;; "flavor" to "kind": and similarly with some misguided uses of
1649 ;; "type" here and there. -- CSR, 2005-01-06.
1650 (case (fixup-flavor thing)
1651 ((:foreign-dataref) :qword)))
1653 nil)))
1655 (defun matching-operand-size (dst src)
1656 (let ((dst-size (operand-size dst))
1657 (src-size (operand-size src)))
1658 (if dst-size
1659 (if src-size
1660 (if (eq dst-size src-size)
1661 dst-size
1662 (error "size mismatch: ~S is a ~S and ~S is a ~S."
1663 dst dst-size src src-size))
1664 dst-size)
1665 (if src-size
1666 src-size
1667 (error "can't tell the size of either ~S or ~S" dst src)))))
1669 ;;; Except in a very few cases (MOV instructions A1, A3 and B8 - BF)
1670 ;;; we expect dword data bytes even when 64 bit work is being done.
1671 ;;; But A1 and A3 are currently unused and B8 - BF use EMIT-QWORD
1672 ;;; directly, so we emit all quad constants as dwords, additionally
1673 ;;; making sure that they survive the sign-extension to 64 bits
1674 ;;; unchanged.
1675 (defun emit-sized-immediate (segment size value)
1676 (ecase size
1677 (:byte
1678 (emit-byte segment value))
1679 (:word
1680 (emit-word segment value))
1681 (:dword
1682 (emit-dword segment value))
1683 (:qword
1684 (emit-signed-dword segment value))))
1686 ;;;; prefixes
1688 (define-instruction rex (segment)
1689 (:printer rex () nil :print-name nil)
1690 (:emitter
1691 (bug "REX prefix used as a standalone instruction")))
1693 (define-instruction x66 (segment)
1694 (:printer x66 () nil :print-name nil)
1695 (:emitter
1696 (bug "#X66 prefix used as a standalone instruction")))
1698 (defun emit-prefix (segment name)
1699 (declare (ignorable segment))
1700 (ecase name
1701 ((nil))
1702 (:lock
1703 #!+sb-thread
1704 (emit-byte segment #xf0))))
1706 (define-instruction lock (segment)
1707 (:printer byte ((op #b11110000)) nil)
1708 (:emitter
1709 (bug "LOCK prefix used as a standalone instruction")))
1711 (define-instruction rep (segment)
1712 (:emitter
1713 (emit-byte segment #b11110011)))
1715 (define-instruction repe (segment)
1716 (:printer byte ((op #b11110011)) nil)
1717 (:emitter
1718 (emit-byte segment #b11110011)))
1720 (define-instruction repne (segment)
1721 (:printer byte ((op #b11110010)) nil)
1722 (:emitter
1723 (emit-byte segment #b11110010)))
1725 ;;;; general data transfer
1727 ;;; This is the part of the MOV instruction emitter that does moving
1728 ;;; of an immediate value into a qword register. We go to some length
1729 ;;; to achieve the shortest possible encoding.
1730 (defun emit-immediate-move-to-qword-register (segment dst src)
1731 (declare (type integer src))
1732 (cond ((typep src '(unsigned-byte 32))
1733 ;; We use the B8 - BF encoding with an operand size of 32 bits
1734 ;; here and let the implicit zero-extension fill the upper half
1735 ;; of the 64-bit destination register. Instruction size: five
1736 ;; or six bytes. (A REX prefix will be emitted only if the
1737 ;; destination is an extended register.)
1738 (maybe-emit-rex-prefix segment :dword nil nil dst)
1739 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1740 (emit-dword segment src))
1742 (maybe-emit-rex-prefix segment :qword nil nil dst)
1743 (cond ((typep src '(signed-byte 32))
1744 ;; Use the C7 encoding that takes a 32-bit immediate and
1745 ;; sign-extends it to 64 bits. Instruction size: seven
1746 ;; bytes.
1747 (emit-byte segment #b11000111)
1748 (emit-mod-reg-r/m-byte segment #b11 #b000
1749 (reg-tn-encoding dst))
1750 (emit-signed-dword segment src))
1751 ((<= (- (expt 2 64) (expt 2 31))
1753 (1- (expt 2 64)))
1754 ;; This triggers on positive integers of 64 bits length
1755 ;; with the most significant 33 bits being 1. We use the
1756 ;; same encoding as in the previous clause.
1757 (emit-byte segment #b11000111)
1758 (emit-mod-reg-r/m-byte segment #b11 #b000
1759 (reg-tn-encoding dst))
1760 (emit-signed-dword segment (- src (expt 2 64))))
1762 ;; We need a full 64-bit immediate. Instruction size:
1763 ;; ten bytes.
1764 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1765 (emit-qword segment src))))))
1767 (define-instruction mov (segment dst src)
1768 ;; immediate to register
1769 (:printer reg ((op #b1011) (imm nil :type 'signed-imm-data/asm-routine))
1770 '(:name :tab reg ", " imm))
1771 (:printer rex-reg ((op #b1011)
1772 (imm nil :type 'signed-imm-data-upto-qword/asm-routine))
1773 '(:name :tab reg ", " imm))
1774 ;; absolute mem to/from accumulator
1775 (:printer simple-dir ((op #b101000) (imm nil :type 'imm-addr))
1776 `(:name :tab ,(swap-if 'dir 'accum ", " '("[" imm "]"))))
1777 ;; register to/from register/memory
1778 (:printer reg-reg/mem-dir ((op #b100010)))
1779 ;; immediate to register/memory
1780 (:printer reg/mem-imm/asm-routine ((op '(#b1100011 #b000))))
1782 (:emitter
1783 (let ((size (matching-operand-size dst src)))
1784 (maybe-emit-operand-size-prefix segment size)
1785 (cond ((register-p dst)
1786 (cond ((integerp src)
1787 (cond ((eq size :qword)
1788 (emit-immediate-move-to-qword-register segment
1789 dst src))
1791 (maybe-emit-rex-prefix segment size nil nil dst)
1792 (emit-byte-with-reg segment
1793 (if (eq size :byte)
1794 #b10110
1795 #b10111)
1796 (reg-tn-encoding dst))
1797 (emit-sized-immediate segment size src))))
1798 ((and (fixup-p src)
1799 (or (eq (fixup-flavor src) :foreign)
1800 (eq (fixup-flavor src) :assembly-routine)))
1801 (maybe-emit-rex-prefix segment :dword nil nil dst)
1802 (emit-byte-with-reg segment #b10111 (reg-tn-encoding dst))
1803 (emit-absolute-fixup segment src))
1805 (maybe-emit-rex-for-ea segment src dst)
1806 (emit-byte segment
1807 (if (eq size :byte)
1808 #b10001010
1809 #b10001011))
1810 (emit-ea segment src (reg-tn-encoding dst)
1811 :allow-constants t))))
1812 ((integerp src)
1813 ;; C7 only deals with 32 bit immediates even if the
1814 ;; destination is a 64-bit location. The value is
1815 ;; sign-extended in this case.
1816 (maybe-emit-rex-for-ea segment dst nil)
1817 (emit-byte segment (if (eq size :byte) #b11000110 #b11000111))
1818 (emit-ea segment dst #b000)
1819 (emit-sized-immediate segment size src))
1820 ((register-p src)
1821 (maybe-emit-rex-for-ea segment dst src)
1822 (emit-byte segment (if (eq size :byte) #b10001000 #b10001001))
1823 (emit-ea segment dst (reg-tn-encoding src)))
1824 ((fixup-p src)
1825 ;; Generally we can't MOV a fixupped value into an EA, since
1826 ;; MOV on non-registers can only take a 32-bit immediate arg.
1827 ;; Make an exception for :FOREIGN fixups (pretty much just
1828 ;; the runtime asm, since other foreign calls go through the
1829 ;; the linkage table) and for linkage table references, since
1830 ;; these should always end up in low memory.
1831 (aver (or (member (fixup-flavor src)
1832 '(:foreign :foreign-dataref :symbol-tls-index))
1833 (eq (ea-size dst) :dword)))
1834 (maybe-emit-rex-for-ea segment dst nil)
1835 (emit-byte segment #b11000111)
1836 (emit-ea segment dst #b000)
1837 (emit-absolute-fixup segment src))
1839 (error "bogus arguments to MOV: ~S ~S" dst src))))))
1841 ;;; Emit a sign-extending (if SIGNED-P is true) or zero-extending move.
1842 ;;; To achieve the shortest possible encoding zero extensions into a
1843 ;;; 64-bit destination are assembled as a straight 32-bit MOV (if the
1844 ;;; source size is 32 bits) or as MOVZX with a 32-bit destination (if
1845 ;;; the source size is 8 or 16 bits). Due to the implicit zero extension
1846 ;;; to 64 bits this has the same effect as a MOVZX with 64-bit
1847 ;;; destination but often needs no REX prefix.
1848 (defun emit-move-with-extension (segment dst src signed-p)
1849 (aver (register-p dst))
1850 (let ((dst-size (operand-size dst))
1851 (src-size (operand-size src))
1852 (opcode (if signed-p #b10111110 #b10110110)))
1853 (macrolet ((emitter (operand-size &rest bytes)
1854 `(progn
1855 (maybe-emit-rex-for-ea segment src dst
1856 :operand-size ,operand-size)
1857 ,@(mapcar (lambda (byte)
1858 `(emit-byte segment ,byte))
1859 bytes)
1860 (emit-ea segment src (reg-tn-encoding dst)))))
1861 (ecase dst-size
1862 (:word
1863 (aver (eq src-size :byte))
1864 (maybe-emit-operand-size-prefix segment :word)
1865 (emitter :word #b00001111 opcode))
1866 ((:dword :qword)
1867 (unless signed-p
1868 (setf dst-size :dword))
1869 (ecase src-size
1870 (:byte
1871 (emitter dst-size #b00001111 opcode))
1872 (:word
1873 (emitter dst-size #b00001111 (logior opcode 1)))
1874 (:dword
1875 (aver (or (not signed-p) (eq dst-size :qword)))
1876 (emitter dst-size
1877 (if signed-p #x63 #x8b))))))))) ; movsxd or straight mov
1879 ;; MOV[SZ]X - #x66 or REX selects the destination REG size, wherein :byte isn't
1880 ;; a possibility. The 'width' bit selects a source r/m size of :byte or :word.
1881 (define-instruction-format
1882 (move-with-extension 24 :include ext-reg-reg/mem
1883 :default-printer
1884 '(:name :tab reg ", "
1885 (:cond ((width :constant 0) (:using #'print-sized-byte-reg/mem reg/mem))
1886 (t (:using #'print-sized-word-reg/mem reg/mem)))))
1887 (width :prefilter nil)) ; doesn't affect DSTATE
1889 (define-instruction movsx (segment dst src)
1890 (:printer move-with-extension ((op #b1011111)))
1891 (:emitter (emit-move-with-extension segment dst src :signed)))
1893 (define-instruction movzx (segment dst src)
1894 (:printer move-with-extension ((op #b1011011)))
1895 (:emitter (emit-move-with-extension segment dst src nil)))
1897 ;;; The regular use of MOVSXD is with an operand size of :qword. This
1898 ;;; sign-extends the dword source into the qword destination register.
1899 ;;; If the operand size is :dword the instruction zero-extends the dword
1900 ;;; source into the qword destination register, i.e. it does the same as
1901 ;;; a dword MOV into a register.
1902 (define-instruction movsxd (segment dst src)
1903 (:printer reg-reg/mem ((op #b0110001) (width 1)
1904 (reg/mem nil :type 'sized-dword-reg/mem)))
1905 (:emitter (emit-move-with-extension segment dst src :signed)))
1907 ;;; this is not a real amd64 instruction, of course
1908 (define-instruction movzxd (segment dst src)
1909 ; (:printer reg-reg/mem ((op #x63) (reg nil :type 'reg)))
1910 (:emitter (emit-move-with-extension segment dst src nil)))
1912 (define-instruction push (segment src)
1913 ;; register
1914 (:printer reg-no-width-default-qword ((op #b01010)))
1915 ;; register/memory
1916 (:printer reg/mem-default-qword ((op '(#b11111111 #b110))))
1917 ;; immediate
1918 (:printer byte ((op #b01101010) (imm nil :type 'signed-imm-byte))
1919 '(:name :tab imm))
1920 (:printer byte ((op #b01101000)
1921 (imm nil :type 'signed-imm-data-default-qword))
1922 '(:name :tab imm))
1923 ;; ### segment registers?
1925 (:emitter
1926 (cond ((integerp src)
1927 (cond ((<= -128 src 127)
1928 (emit-byte segment #b01101010)
1929 (emit-byte segment src))
1931 ;; A REX-prefix is not needed because the operand size
1932 ;; defaults to 64 bits. The size of the immediate is 32
1933 ;; bits and it is sign-extended.
1934 (emit-byte segment #b01101000)
1935 (emit-signed-dword segment src))))
1937 (let ((size (operand-size src)))
1938 (aver (or (eq size :qword) (eq size :word)))
1939 (maybe-emit-operand-size-prefix segment size)
1940 (maybe-emit-rex-for-ea segment src nil :operand-size :do-not-set)
1941 (cond ((register-p src)
1942 (emit-byte-with-reg segment #b01010 (reg-tn-encoding src)))
1944 (emit-byte segment #b11111111)
1945 (emit-ea segment src #b110 :allow-constants t))))))))
1947 (define-instruction pop (segment dst)
1948 (:printer reg-no-width-default-qword ((op #b01011)))
1949 (:printer reg/mem-default-qword ((op '(#b10001111 #b000))))
1950 (:emitter
1951 (let ((size (operand-size dst)))
1952 (aver (or (eq size :qword) (eq size :word)))
1953 (maybe-emit-operand-size-prefix segment size)
1954 (maybe-emit-rex-for-ea segment dst nil :operand-size :do-not-set)
1955 (cond ((register-p dst)
1956 (emit-byte-with-reg segment #b01011 (reg-tn-encoding dst)))
1958 (emit-byte segment #b10001111)
1959 (emit-ea segment dst #b000))))))
1961 ;;; Compared to x86 we need to take two particularities into account
1962 ;;; here:
1963 ;;; * XCHG EAX, EAX can't be encoded as #x90 as the processor interprets
1964 ;;; that opcode as NOP while XCHG EAX, EAX is specified to clear the
1965 ;;; upper half of RAX. We need to use the long form #x87 #xC0 instead.
1966 ;;; * The opcode #x90 is not only used for NOP and XCHG RAX, RAX and
1967 ;;; XCHG AX, AX, but also for XCHG RAX, R8 (and the corresponding 32-
1968 ;;; and 16-bit versions). The printer for the NOP instruction (further
1969 ;;; below) matches all these encodings so needs to be overridden here
1970 ;;; for the cases that need to print as XCHG.
1971 ;;; Assembler and disassembler chained then map these special cases as
1972 ;;; follows:
1973 ;;; (INST NOP) -> 90 -> NOP
1974 ;;; (INST XCHG RAX-TN RAX-TN) -> 4890 -> NOP
1975 ;;; (INST XCHG EAX-TN EAX-TN) -> 87C0 -> XCHG EAX, EAX
1976 ;;; (INST XCHG AX-TN AX-TN) -> 6690 -> NOP
1977 ;;; (INST XCHG RAX-TN R8-TN) -> 4990 -> XCHG RAX, R8
1978 ;;; (INST XCHG EAX-TN R8D-TN) -> 4190 -> XCHG EAX, R8D
1979 ;;; (INST XCHG AX-TN R8W-TN) -> 664190 -> XCHG AX, R8W
1980 ;;; The disassembler additionally correctly matches encoding variants
1981 ;;; that the assembler doesn't generate, for example 4E90 prints as NOP
1982 ;;; and 4F90 as XCHG RAX, R8 (both because REX.R and REX.X are ignored).
1983 (define-instruction xchg (segment operand1 operand2)
1984 ;; This printer matches all patterns that encode exchanging RAX with
1985 ;; R8, EAX with R8D, or AX with R8W. These consist of the opcode #x90
1986 ;; with a REX prefix with REX.B = 1, and possibly the #x66 prefix.
1987 ;; We rely on the prefix automatism for the #x66 prefix, but
1988 ;; explicitly match the REX prefix as we need to provide a value for
1989 ;; REX.B, and to override the NOP printer by virtue of a longer match.
1990 (:printer rex-accum-reg ((rex-b 1) (op #b10010) (reg #b000)))
1991 ;; Register with accumulator.
1992 (:printer reg-no-width ((op #b10010)) '(:name :tab accum ", " reg))
1993 ;; Register/Memory with Register.
1994 (:printer reg-reg/mem ((op #b1000011)))
1995 (:emitter
1996 (let ((size (matching-operand-size operand1 operand2)))
1997 (maybe-emit-operand-size-prefix segment size)
1998 (labels ((xchg-acc-with-something (acc something)
1999 (if (and (not (eq size :byte))
2000 (register-p something)
2001 ;; Don't use the short encoding for XCHG EAX, EAX:
2002 (not (and (= (tn-offset something) sb!vm::eax-offset)
2003 (eq size :dword))))
2004 (progn
2005 (maybe-emit-rex-for-ea segment something acc)
2006 (emit-byte-with-reg segment
2007 #b10010
2008 (reg-tn-encoding something)))
2009 (xchg-reg-with-something acc something)))
2010 (xchg-reg-with-something (reg something)
2011 (maybe-emit-rex-for-ea segment something reg)
2012 (emit-byte segment (if (eq size :byte) #b10000110 #b10000111))
2013 (emit-ea segment something (reg-tn-encoding reg))))
2014 (cond ((accumulator-p operand1)
2015 (xchg-acc-with-something operand1 operand2))
2016 ((accumulator-p operand2)
2017 (xchg-acc-with-something operand2 operand1))
2018 ((register-p operand1)
2019 (xchg-reg-with-something operand1 operand2))
2020 ((register-p operand2)
2021 (xchg-reg-with-something operand2 operand1))
2023 (error "bogus args to XCHG: ~S ~S" operand1 operand2)))))))
2025 ;; It's an error to compile instructions without their labeler and printer defined
2026 ;; in the compiler, even though they aren't called.
2027 ;; This stems from compile-time use of (MAKE-VALSRC #'f '#'f)
2028 (eval-when (#-sb-xc :compile-toplevel :load-toplevel :execute)
2030 ;; If the filtered VALUE (R/M field of LEA) should be treated as a label,
2031 ;; return the virtual address, otherwise the value unchanged.
2032 (defun lea-compute-label (value dstate)
2033 (if (and (listp value) (eq (first value) 'rip))
2034 (+ (dstate-next-addr dstate) (second value))
2035 value))
2037 ;; Figure out whether LEA should print its EA with just the stuff in brackets,
2038 ;; or additionally show the EA as either a label or a hex literal.
2039 (defun lea-print-ea (value stream dstate)
2040 (let ((width (inst-operand-size dstate)))
2041 (etypecase value
2042 (list
2043 ;; Indicate to PRINT-MEM-REF that this is not a memory access.
2044 (print-mem-ref :compute value width stream dstate)
2045 (when (eq (first value) 'rip)
2046 (let ((addr (+ (dstate-next-addr dstate) (second value))))
2047 (note (lambda (s) (format s "= #x~x" addr)) dstate))))
2049 (string
2050 ;; A label for the EA should not print as itself, but as the decomposed
2051 ;; addressing mode so that [ADDR] and [RIP+disp] are unmistakable.
2052 (print-mem-ref :compute (reg-r/m-inst-r/m-arg dchunk-zero dstate)
2053 width stream dstate)
2054 (note (lambda (s) (format s "= ~A" value)) dstate))
2056 ;; We're robust in allowing VALUE to be an integer (a register),
2057 ;; though LEA Rx,Ry is an illegal instruction.
2058 (full-reg
2059 (print-reg-with-width value width stream dstate)))))
2061 ) ; EVAL-WHEN
2063 (define-instruction lea (segment dst src)
2064 (:printer
2065 reg-reg/mem
2066 ((op #b1000110) (width 1)
2067 (reg/mem nil :use-label #'lea-compute-label :printer #'lea-print-ea)))
2068 (:emitter
2069 (aver (or (dword-reg-p dst) (qword-reg-p dst)))
2070 (maybe-emit-rex-for-ea segment src dst
2071 :operand-size (if (dword-reg-p dst) :dword :qword))
2072 (emit-byte segment #b10001101)
2073 (emit-ea segment src (reg-tn-encoding dst))))
2075 (define-instruction cmpxchg (segment dst src &optional prefix)
2076 ;; Register/Memory with Register.
2077 (:printer ext-reg-reg/mem ((op #b1011000)) '(:name :tab reg/mem ", " reg))
2078 (:emitter
2079 (aver (register-p src))
2080 (emit-prefix segment prefix)
2081 (let ((size (matching-operand-size src dst)))
2082 (maybe-emit-operand-size-prefix segment size)
2083 (maybe-emit-rex-for-ea segment dst src)
2084 (emit-byte segment #b00001111)
2085 (emit-byte segment (if (eq size :byte) #b10110000 #b10110001))
2086 (emit-ea segment dst (reg-tn-encoding src)))))
2088 (define-instruction cmpxchg16b (segment mem &optional prefix)
2089 (:printer ext-reg/mem-no-width
2090 ((op '(#xC7 1))))
2091 (:emitter
2092 (aver (not (register-p mem)))
2093 (emit-prefix segment prefix)
2094 (maybe-emit-rex-for-ea segment mem nil :operand-size :qword)
2095 (emit-byte segment #x0F)
2096 (emit-byte segment #xC7)
2097 (emit-ea segment mem 1))) ; operand extension
2099 (define-instruction rdrand (segment dst)
2100 (:printer ext-reg/mem-no-width
2101 ((op '(#xC7 6))))
2102 (:emitter
2103 (aver (register-p dst))
2104 (maybe-emit-operand-size-prefix segment (operand-size dst))
2105 (maybe-emit-rex-for-ea segment dst nil)
2106 (emit-byte segment #x0F)
2107 (emit-byte segment #xC7)
2108 (emit-ea segment dst 6)))
2110 ;;;; flag control instructions
2112 ;;; CLC -- Clear Carry Flag.
2113 (define-instruction clc (segment)
2114 (:printer byte ((op #b11111000)))
2115 (:emitter
2116 (emit-byte segment #b11111000)))
2118 ;;; CLD -- Clear Direction Flag.
2119 (define-instruction cld (segment)
2120 (:printer byte ((op #b11111100)))
2121 (:emitter
2122 (emit-byte segment #b11111100)))
2124 ;;; CLI -- Clear Iterrupt Enable Flag.
2125 (define-instruction cli (segment)
2126 (:printer byte ((op #b11111010)))
2127 (:emitter
2128 (emit-byte segment #b11111010)))
2130 ;;; CMC -- Complement Carry Flag.
2131 (define-instruction cmc (segment)
2132 (:printer byte ((op #b11110101)))
2133 (:emitter
2134 (emit-byte segment #b11110101)))
2136 ;;; LAHF -- Load AH into flags.
2137 (define-instruction lahf (segment)
2138 (:printer byte ((op #b10011111)))
2139 (:emitter
2140 (emit-byte segment #b10011111)))
2142 ;;; POPF -- Pop flags.
2143 (define-instruction popf (segment)
2144 (:printer byte ((op #b10011101)))
2145 (:emitter
2146 (emit-byte segment #b10011101)))
2148 ;;; PUSHF -- push flags.
2149 (define-instruction pushf (segment)
2150 (:printer byte ((op #b10011100)))
2151 (:emitter
2152 (emit-byte segment #b10011100)))
2154 ;;; SAHF -- Store AH into flags.
2155 (define-instruction sahf (segment)
2156 (:printer byte ((op #b10011110)))
2157 (:emitter
2158 (emit-byte segment #b10011110)))
2160 ;;; STC -- Set Carry Flag.
2161 (define-instruction stc (segment)
2162 (:printer byte ((op #b11111001)))
2163 (:emitter
2164 (emit-byte segment #b11111001)))
2166 ;;; STD -- Set Direction Flag.
2167 (define-instruction std (segment)
2168 (:printer byte ((op #b11111101)))
2169 (:emitter
2170 (emit-byte segment #b11111101)))
2172 ;;; STI -- Set Interrupt Enable Flag.
2173 (define-instruction sti (segment)
2174 (:printer byte ((op #b11111011)))
2175 (:emitter
2176 (emit-byte segment #b11111011)))
2178 ;;;; arithmetic
2180 (defun emit-random-arith-inst (name segment dst src opcode
2181 &optional allow-constants)
2182 (let ((size (matching-operand-size dst src)))
2183 (maybe-emit-operand-size-prefix segment size)
2184 (cond
2185 ((integerp src)
2186 (cond ((and (not (eq size :byte)) (<= -128 src 127))
2187 (maybe-emit-rex-for-ea segment dst nil)
2188 (emit-byte segment #b10000011)
2189 (emit-ea segment dst opcode :allow-constants allow-constants)
2190 (emit-byte segment src))
2191 ((accumulator-p dst)
2192 (maybe-emit-rex-for-ea segment dst nil)
2193 (emit-byte segment
2194 (dpb opcode
2195 (byte 3 3)
2196 (if (eq size :byte)
2197 #b00000100
2198 #b00000101)))
2199 (emit-sized-immediate segment size src))
2201 (maybe-emit-rex-for-ea segment dst nil)
2202 (emit-byte segment (if (eq size :byte) #b10000000 #b10000001))
2203 (emit-ea segment dst opcode :allow-constants allow-constants)
2204 (emit-sized-immediate segment size src))))
2205 ((register-p src)
2206 (maybe-emit-rex-for-ea segment dst src)
2207 (emit-byte segment
2208 (dpb opcode
2209 (byte 3 3)
2210 (if (eq size :byte) #b00000000 #b00000001)))
2211 (emit-ea segment dst (reg-tn-encoding src)
2212 :allow-constants allow-constants))
2213 ((register-p dst)
2214 (maybe-emit-rex-for-ea segment src dst)
2215 (emit-byte segment
2216 (dpb opcode
2217 (byte 3 3)
2218 (if (eq size :byte) #b00000010 #b00000011)))
2219 (emit-ea segment src (reg-tn-encoding dst)
2220 :allow-constants allow-constants))
2222 (error "bogus operands to ~A" name)))))
2224 (macrolet ((define (name subop &optional allow-constants)
2225 `(define-instruction ,name (segment dst src &optional prefix)
2226 (:printer accum-imm ((op ,(dpb subop (byte 3 2) #b0000010))))
2227 (:printer reg/mem-imm ((op '(#b1000000 ,subop))))
2228 ;; The redundant encoding #x82 is invalid in 64-bit mode,
2229 ;; therefore we force WIDTH to 1.
2230 (:printer reg/mem-imm ((op '(#b1000001 ,subop)) (width 1)
2231 (imm nil :type 'signed-imm-byte)))
2232 (:printer reg-reg/mem-dir ((op ,(dpb subop (byte 3 1) #b000000))))
2233 (:emitter
2234 (emit-prefix segment prefix)
2235 (emit-random-arith-inst ,(string name) segment dst src ,subop
2236 ,allow-constants)))))
2237 (define add #b000)
2238 (define adc #b010)
2239 (define sub #b101)
2240 (define sbb #b011)
2241 (define cmp #b111 t)
2242 (define and #b100)
2243 (define or #b001)
2244 (define xor #b110))
2246 ;;; The one-byte encodings for INC and DEC are used as REX prefixes
2247 ;;; in 64-bit mode so we always use the two-byte form.
2248 (define-instruction inc (segment dst &optional prefix)
2249 (:printer reg/mem ((op '(#b1111111 #b000))))
2250 (:emitter
2251 (emit-prefix segment prefix)
2252 (let ((size (operand-size dst)))
2253 (maybe-emit-operand-size-prefix segment size)
2254 (maybe-emit-rex-for-ea segment dst nil)
2255 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
2256 (emit-ea segment dst #b000))))
2258 (define-instruction dec (segment dst &optional prefix)
2259 (:printer reg/mem ((op '(#b1111111 #b001))))
2260 (:emitter
2261 (emit-prefix segment prefix)
2262 (let ((size (operand-size dst)))
2263 (maybe-emit-operand-size-prefix segment size)
2264 (maybe-emit-rex-for-ea segment dst nil)
2265 (emit-byte segment (if (eq size :byte) #b11111110 #b11111111))
2266 (emit-ea segment dst #b001))))
2268 (define-instruction neg (segment dst)
2269 (:printer reg/mem ((op '(#b1111011 #b011))))
2270 (:emitter
2271 (let ((size (operand-size dst)))
2272 (maybe-emit-operand-size-prefix segment size)
2273 (maybe-emit-rex-for-ea segment dst nil)
2274 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2275 (emit-ea segment dst #b011))))
2277 (define-instruction mul (segment dst src)
2278 (:printer accum-reg/mem ((op '(#b1111011 #b100))))
2279 (:emitter
2280 (let ((size (matching-operand-size dst src)))
2281 (aver (accumulator-p dst))
2282 (maybe-emit-operand-size-prefix segment size)
2283 (maybe-emit-rex-for-ea segment src nil)
2284 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2285 (emit-ea segment src #b100))))
2287 (define-instruction imul (segment dst &optional src1 src2)
2288 (:printer accum-reg/mem ((op '(#b1111011 #b101))))
2289 (:printer ext-reg-reg/mem-no-width ((op #b10101111)))
2290 ;; These next two are like a single format where one bit in the opcode byte
2291 ;; determines the size of the immediate datum. A REG-REG/MEM-IMM format
2292 ;; would save one entry in the decoding table, since that bit would become
2293 ;; "don't care" from a decoding perspective, but we don't have (many) other
2294 ;; 3-operand opcodes in the general purpose (non-SSE) opcode space.
2295 (:printer reg-reg/mem ((op #b0110100) (width 1)
2296 (imm nil :type 'signed-imm-data))
2297 '(:name :tab reg ", " reg/mem ", " imm))
2298 (:printer reg-reg/mem ((op #b0110101) (width 1)
2299 (imm nil :type 'signed-imm-byte))
2300 '(:name :tab reg ", " reg/mem ", " imm))
2301 (:emitter
2302 (flet ((r/m-with-immed-to-reg (reg r/m immed)
2303 (let* ((size (matching-operand-size reg r/m))
2304 (sx (and (not (eq size :byte)) (<= -128 immed 127))))
2305 (maybe-emit-operand-size-prefix segment size)
2306 (maybe-emit-rex-for-ea segment r/m reg)
2307 (emit-byte segment (if sx #b01101011 #b01101001))
2308 (emit-ea segment r/m (reg-tn-encoding reg))
2309 (if sx
2310 (emit-byte segment immed)
2311 (emit-sized-immediate segment size immed)))))
2312 (cond (src2
2313 (r/m-with-immed-to-reg dst src1 src2))
2314 (src1
2315 (if (integerp src1)
2316 (r/m-with-immed-to-reg dst dst src1)
2317 (let ((size (matching-operand-size dst src1)))
2318 (maybe-emit-operand-size-prefix segment size)
2319 (maybe-emit-rex-for-ea segment src1 dst)
2320 (emit-byte segment #b00001111)
2321 (emit-byte segment #b10101111)
2322 (emit-ea segment src1 (reg-tn-encoding dst)))))
2324 (let ((size (operand-size dst)))
2325 (maybe-emit-operand-size-prefix segment size)
2326 (maybe-emit-rex-for-ea segment dst nil)
2327 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2328 (emit-ea segment dst #b101)))))))
2330 (define-instruction div (segment dst src)
2331 (:printer accum-reg/mem ((op '(#b1111011 #b110))))
2332 (:emitter
2333 (let ((size (matching-operand-size dst src)))
2334 (aver (accumulator-p dst))
2335 (maybe-emit-operand-size-prefix segment size)
2336 (maybe-emit-rex-for-ea segment src nil)
2337 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2338 (emit-ea segment src #b110))))
2340 (define-instruction idiv (segment dst src)
2341 (:printer accum-reg/mem ((op '(#b1111011 #b111))))
2342 (:emitter
2343 (let ((size (matching-operand-size dst src)))
2344 (aver (accumulator-p dst))
2345 (maybe-emit-operand-size-prefix segment size)
2346 (maybe-emit-rex-for-ea segment src nil)
2347 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2348 (emit-ea segment src #b111))))
2350 (define-instruction bswap (segment dst)
2351 (:printer ext-reg-no-width ((op #b11001)))
2352 (:emitter
2353 (let ((size (operand-size dst)))
2354 (maybe-emit-rex-prefix segment size nil nil dst)
2355 (emit-byte segment #x0f)
2356 (emit-byte-with-reg segment #b11001 (reg-tn-encoding dst)))))
2358 ;;; CBW -- Convert Byte to Word. AX <- sign_xtnd(AL)
2359 (define-instruction cbw (segment)
2360 (:printer x66-byte ((op #b10011000)))
2361 (:emitter
2362 (maybe-emit-operand-size-prefix segment :word)
2363 (emit-byte segment #b10011000)))
2365 ;;; CWDE -- Convert Word To Double Word Extended. EAX <- sign_xtnd(AX)
2366 (define-instruction cwde (segment)
2367 (:printer byte ((op #b10011000)))
2368 (:emitter
2369 (maybe-emit-operand-size-prefix segment :dword)
2370 (emit-byte segment #b10011000)))
2372 ;;; CDQE -- Convert Double Word To Quad Word Extended. RAX <- sign_xtnd(EAX)
2373 (define-instruction cdqe (segment)
2374 (:printer rex-byte ((op #b10011000)))
2375 (:emitter
2376 (maybe-emit-rex-prefix segment :qword nil nil nil)
2377 (emit-byte segment #b10011000)))
2379 ;;; CWD -- Convert Word to Double Word. DX:AX <- sign_xtnd(AX)
2380 (define-instruction cwd (segment)
2381 (:printer x66-byte ((op #b10011001)))
2382 (:emitter
2383 (maybe-emit-operand-size-prefix segment :word)
2384 (emit-byte segment #b10011001)))
2386 ;;; CDQ -- Convert Double Word to Quad Word. EDX:EAX <- sign_xtnd(EAX)
2387 (define-instruction cdq (segment)
2388 (:printer byte ((op #b10011001)))
2389 (:emitter
2390 (maybe-emit-operand-size-prefix segment :dword)
2391 (emit-byte segment #b10011001)))
2393 ;;; CQO -- Convert Quad Word to Octaword. RDX:RAX <- sign_xtnd(RAX)
2394 (define-instruction cqo (segment)
2395 (:printer rex-byte ((op #b10011001)))
2396 (:emitter
2397 (maybe-emit-rex-prefix segment :qword nil nil nil)
2398 (emit-byte segment #b10011001)))
2400 (define-instruction xadd (segment dst src &optional prefix)
2401 ;; Register/Memory with Register.
2402 (:printer ext-reg-reg/mem ((op #b1100000)) '(:name :tab reg/mem ", " reg))
2403 (:emitter
2404 (aver (register-p src))
2405 (emit-prefix segment prefix)
2406 (let ((size (matching-operand-size src dst)))
2407 (maybe-emit-operand-size-prefix segment size)
2408 (maybe-emit-rex-for-ea segment dst src)
2409 (emit-byte segment #b00001111)
2410 (emit-byte segment (if (eq size :byte) #b11000000 #b11000001))
2411 (emit-ea segment dst (reg-tn-encoding src)))))
2414 ;;;; logic
2416 (defun emit-shift-inst (segment dst amount opcode)
2417 (let ((size (operand-size dst)))
2418 (maybe-emit-operand-size-prefix segment size)
2419 (multiple-value-bind (major-opcode immed)
2420 (case amount
2421 (:cl (values #b11010010 nil))
2422 (1 (values #b11010000 nil))
2423 (t (values #b11000000 t)))
2424 (maybe-emit-rex-for-ea segment dst nil)
2425 (emit-byte segment
2426 (if (eq size :byte) major-opcode (logior major-opcode 1)))
2427 (emit-ea segment dst opcode)
2428 (when immed
2429 (emit-byte segment amount)))))
2431 (define-instruction-format
2432 (shift-inst 16 :include reg/mem
2433 :default-printer '(:name :tab reg/mem ", " (:if (varying :positive) 'cl 1)))
2434 (op :fields (list (byte 6 2) (byte 3 11)))
2435 (varying :field (byte 1 1)))
2437 (macrolet ((define (name subop)
2438 `(define-instruction ,name (segment dst amount)
2439 (:printer shift-inst ((op '(#b110100 ,subop)))) ; shift by CL or 1
2440 (:printer reg/mem-imm ((op '(#b1100000 ,subop))
2441 (imm nil :type 'imm-byte)))
2442 (:emitter (emit-shift-inst segment dst amount ,subop)))))
2443 (define rol #b000)
2444 (define ror #b001)
2445 (define rcl #b010)
2446 (define rcr #b011)
2447 (define shl #b100)
2448 (define shr #b101)
2449 (define sar #b111))
2451 (defun emit-double-shift (segment opcode dst src amt)
2452 (let ((size (matching-operand-size dst src)))
2453 (when (eq size :byte)
2454 (error "Double shifts can only be used with words."))
2455 (maybe-emit-operand-size-prefix segment size)
2456 (maybe-emit-rex-for-ea segment dst src)
2457 (emit-byte segment #b00001111)
2458 (emit-byte segment (dpb opcode (byte 1 3)
2459 (if (eq amt :cl) #b10100101 #b10100100)))
2460 (emit-ea segment dst (reg-tn-encoding src))
2461 (unless (eq amt :cl)
2462 (emit-byte segment amt))))
2464 (macrolet ((define (name direction-bit op)
2465 `(define-instruction ,name (segment dst src amt)
2466 (:declare (type (or (member :cl) (mod 32)) amt))
2467 (:printer ext-reg-reg/mem-no-width ((op ,(logior op #b100))
2468 (imm nil :type 'imm-byte))
2469 '(:name :tab reg/mem ", " reg ", " imm))
2470 (:printer ext-reg-reg/mem ((op ,(logior op #b10)))
2471 '(:name :tab reg/mem ", " reg ", " 'cl))
2472 (:emitter
2473 (emit-double-shift segment ,direction-bit dst src amt)))))
2474 (define shld 0 #b10100000)
2475 (define shrd 1 #b10101000))
2477 (define-instruction test (segment this that)
2478 (:printer accum-imm ((op #b1010100)))
2479 (:printer reg/mem-imm ((op '(#b1111011 #b000))))
2480 (:printer reg-reg/mem ((op #b1000010)))
2481 (:emitter
2482 (let ((size (matching-operand-size this that)))
2483 (maybe-emit-operand-size-prefix segment size)
2484 (flet ((test-immed-and-something (immed something)
2485 (cond ((accumulator-p something)
2486 (maybe-emit-rex-for-ea segment something nil)
2487 (emit-byte segment
2488 (if (eq size :byte) #b10101000 #b10101001))
2489 (emit-sized-immediate segment size immed))
2491 (maybe-emit-rex-for-ea segment something nil)
2492 (emit-byte segment
2493 (if (eq size :byte) #b11110110 #b11110111))
2494 (emit-ea segment something #b000)
2495 (emit-sized-immediate segment size immed))))
2496 (test-reg-and-something (reg something)
2497 (maybe-emit-rex-for-ea segment something reg)
2498 (emit-byte segment (if (eq size :byte) #b10000100 #b10000101))
2499 (emit-ea segment something (reg-tn-encoding reg))))
2500 (cond ((integerp that)
2501 (test-immed-and-something that this))
2502 ((integerp this)
2503 (test-immed-and-something this that))
2504 ((register-p this)
2505 (test-reg-and-something this that))
2506 ((register-p that)
2507 (test-reg-and-something that this))
2509 (error "bogus operands for TEST: ~S and ~S" this that)))))))
2511 (define-instruction not (segment dst)
2512 (:printer reg/mem ((op '(#b1111011 #b010))))
2513 (:emitter
2514 (let ((size (operand-size dst)))
2515 (maybe-emit-operand-size-prefix segment size)
2516 (maybe-emit-rex-for-ea segment dst nil)
2517 (emit-byte segment (if (eq size :byte) #b11110110 #b11110111))
2518 (emit-ea segment dst #b010))))
2520 ;;;; string manipulation
2522 (define-instruction cmps (segment size)
2523 (:printer string-op ((op #b1010011)))
2524 (:emitter
2525 (maybe-emit-operand-size-prefix segment size)
2526 (maybe-emit-rex-prefix segment size nil nil nil)
2527 (emit-byte segment (if (eq size :byte) #b10100110 #b10100111))))
2529 (define-instruction ins (segment acc)
2530 (:printer string-op ((op #b0110110)))
2531 (:emitter
2532 (let ((size (operand-size acc)))
2533 (aver (accumulator-p acc))
2534 (maybe-emit-operand-size-prefix segment size)
2535 (maybe-emit-rex-prefix segment size nil nil nil)
2536 (emit-byte segment (if (eq size :byte) #b01101100 #b01101101)))))
2538 (define-instruction lods (segment acc)
2539 (:printer string-op ((op #b1010110)))
2540 (:emitter
2541 (let ((size (operand-size acc)))
2542 (aver (accumulator-p acc))
2543 (maybe-emit-operand-size-prefix segment size)
2544 (maybe-emit-rex-prefix segment size nil nil nil)
2545 (emit-byte segment (if (eq size :byte) #b10101100 #b10101101)))))
2547 (define-instruction movs (segment size)
2548 (:printer string-op ((op #b1010010)))
2549 (:emitter
2550 (maybe-emit-operand-size-prefix segment size)
2551 (maybe-emit-rex-prefix segment size nil nil nil)
2552 (emit-byte segment (if (eq size :byte) #b10100100 #b10100101))))
2554 (define-instruction outs (segment acc)
2555 (:printer string-op ((op #b0110111)))
2556 (:emitter
2557 (let ((size (operand-size acc)))
2558 (aver (accumulator-p acc))
2559 (maybe-emit-operand-size-prefix segment size)
2560 (maybe-emit-rex-prefix segment size nil nil nil)
2561 (emit-byte segment (if (eq size :byte) #b01101110 #b01101111)))))
2563 (define-instruction scas (segment acc)
2564 (:printer string-op ((op #b1010111)))
2565 (:emitter
2566 (let ((size (operand-size acc)))
2567 (aver (accumulator-p acc))
2568 (maybe-emit-operand-size-prefix segment size)
2569 (maybe-emit-rex-prefix segment size nil nil nil)
2570 (emit-byte segment (if (eq size :byte) #b10101110 #b10101111)))))
2572 (define-instruction stos (segment acc)
2573 (:printer string-op ((op #b1010101)))
2574 (:emitter
2575 (let ((size (operand-size acc)))
2576 (aver (accumulator-p acc))
2577 (maybe-emit-operand-size-prefix segment size)
2578 (maybe-emit-rex-prefix segment size nil nil nil)
2579 (emit-byte segment (if (eq size :byte) #b10101010 #b10101011)))))
2581 (define-instruction xlat (segment)
2582 (:printer byte ((op #b11010111)))
2583 (:emitter
2584 (emit-byte segment #b11010111)))
2587 ;;;; bit manipulation
2589 (define-instruction bsf (segment dst src)
2590 (:printer ext-reg-reg/mem-no-width ((op #b10111100)))
2591 (:emitter
2592 (let ((size (matching-operand-size dst src)))
2593 (when (eq size :byte)
2594 (error "can't scan bytes: ~S" src))
2595 (maybe-emit-operand-size-prefix segment size)
2596 (maybe-emit-rex-for-ea segment src dst)
2597 (emit-byte segment #b00001111)
2598 (emit-byte segment #b10111100)
2599 (emit-ea segment src (reg-tn-encoding dst)))))
2601 (define-instruction bsr (segment dst src)
2602 (:printer ext-reg-reg/mem-no-width ((op #b10111101)))
2603 (:emitter
2604 (let ((size (matching-operand-size dst src)))
2605 (when (eq size :byte)
2606 (error "can't scan bytes: ~S" src))
2607 (maybe-emit-operand-size-prefix segment size)
2608 (maybe-emit-rex-for-ea segment src dst)
2609 (emit-byte segment #b00001111)
2610 (emit-byte segment #b10111101)
2611 (emit-ea segment src (reg-tn-encoding dst)))))
2613 (defun emit-bit-test-and-mumble (segment src index opcode)
2614 (let ((size (operand-size src)))
2615 (when (eq size :byte)
2616 (error "can't scan bytes: ~S" src))
2617 (maybe-emit-operand-size-prefix segment size)
2618 (cond ((integerp index)
2619 (maybe-emit-rex-for-ea segment src nil)
2620 (emit-byte segment #b00001111)
2621 (emit-byte segment #b10111010)
2622 (emit-ea segment src opcode)
2623 (emit-byte segment index))
2625 (maybe-emit-rex-for-ea segment src index)
2626 (emit-byte segment #b00001111)
2627 (emit-byte segment (dpb opcode (byte 3 3) #b10000011))
2628 (emit-ea segment src (reg-tn-encoding index))))))
2630 (macrolet ((define (inst opcode-extension)
2631 `(define-instruction ,inst (segment src index)
2632 (:printer ext-reg/mem-no-width+imm8
2633 ((op '(#xBA ,opcode-extension))
2634 (reg/mem nil :type 'sized-reg/mem)))
2635 (:printer ext-reg-reg/mem-no-width
2636 ((op ,(dpb opcode-extension (byte 3 3) #b10000011))
2637 (reg/mem nil :type 'sized-reg/mem))
2638 '(:name :tab reg/mem ", " reg))
2639 (:emitter (emit-bit-test-and-mumble segment src index
2640 ,opcode-extension)))))
2641 (define bt 4)
2642 (define bts 5)
2643 (define btr 6)
2644 (define btc 7))
2647 ;;;; control transfer
2649 (define-instruction call (segment where)
2650 (:printer near-jump ((op #b11101000)))
2651 (:printer reg/mem-default-qword ((op '(#b11111111 #b010))))
2652 (:emitter
2653 (typecase where
2654 (label
2655 (emit-byte segment #b11101000) ; 32 bit relative
2656 (emit-back-patch segment
2658 (lambda (segment posn)
2659 (emit-signed-dword segment
2660 (- (label-position where)
2661 (+ posn 4))))))
2662 (fixup
2663 ;; There is no CALL rel64...
2664 (error "Cannot CALL a fixup: ~S" where))
2666 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2667 (emit-byte segment #b11111111)
2668 (emit-ea segment where #b010)))))
2670 (defun emit-byte-displacement-backpatch (segment target)
2671 (emit-back-patch segment
2673 (lambda (segment posn)
2674 (let ((disp (- (label-position target) (1+ posn))))
2675 (aver (<= -128 disp 127))
2676 (emit-byte segment disp)))))
2678 (define-instruction jmp (segment cond &optional where)
2679 ;; conditional jumps
2680 (:printer short-cond-jump ((op #b0111)) '('j cc :tab label))
2681 (:printer near-cond-jump () '('j cc :tab label))
2682 ;; unconditional jumps
2683 (:printer short-jump ((op #b1011)))
2684 (:printer near-jump ((op #b11101001)))
2685 (:printer reg/mem-default-qword ((op '(#b11111111 #b100))))
2686 (:emitter
2687 (cond (where
2688 (emit-chooser
2689 segment 6 2
2690 (lambda (segment posn delta-if-after)
2691 (let ((disp (- (label-position where posn delta-if-after)
2692 (+ posn 2))))
2693 (when (<= -128 disp 127)
2694 (emit-byte segment
2695 (dpb (conditional-opcode cond)
2696 (byte 4 0)
2697 #b01110000))
2698 (emit-byte-displacement-backpatch segment where)
2699 t)))
2700 (lambda (segment posn)
2701 (let ((disp (- (label-position where) (+ posn 6))))
2702 (emit-byte segment #b00001111)
2703 (emit-byte segment
2704 (dpb (conditional-opcode cond)
2705 (byte 4 0)
2706 #b10000000))
2707 (emit-signed-dword segment disp)))))
2708 ((label-p (setq where cond))
2709 (emit-chooser
2710 segment 5 0
2711 (lambda (segment posn delta-if-after)
2712 (let ((disp (- (label-position where posn delta-if-after)
2713 (+ posn 2))))
2714 (when (<= -128 disp 127)
2715 (emit-byte segment #b11101011)
2716 (emit-byte-displacement-backpatch segment where)
2717 t)))
2718 (lambda (segment posn)
2719 (let ((disp (- (label-position where) (+ posn 5))))
2720 (emit-byte segment #b11101001)
2721 (emit-signed-dword segment disp)))))
2722 ((fixup-p where)
2723 (emit-byte segment #b11101001)
2724 (emit-relative-fixup segment where))
2726 (unless (or (ea-p where) (tn-p where))
2727 (error "don't know what to do with ~A" where))
2728 ;; near jump defaults to 64 bit
2729 ;; w-bit in rex prefix is unnecessary
2730 (maybe-emit-rex-for-ea segment where nil :operand-size :do-not-set)
2731 (emit-byte segment #b11111111)
2732 (emit-ea segment where #b100)))))
2734 (define-instruction ret (segment &optional stack-delta)
2735 (:printer byte ((op #b11000011)))
2736 (:printer byte ((op #b11000010) (imm nil :type 'imm-word-16))
2737 '(:name :tab imm))
2738 (:emitter
2739 (cond ((and stack-delta (not (zerop stack-delta)))
2740 (emit-byte segment #b11000010)
2741 (emit-word segment stack-delta))
2743 (emit-byte segment #b11000011)))))
2745 (define-instruction jrcxz (segment target)
2746 (:printer short-jump ((op #b0011)))
2747 (:emitter
2748 (emit-byte segment #b11100011)
2749 (emit-byte-displacement-backpatch segment target)))
2751 (define-instruction loop (segment target)
2752 (:printer short-jump ((op #b0010)))
2753 (:emitter
2754 (emit-byte segment #b11100010) ; pfw this was 11100011, or jecxz!!!!
2755 (emit-byte-displacement-backpatch segment target)))
2757 (define-instruction loopz (segment target)
2758 (:printer short-jump ((op #b0001)))
2759 (:emitter
2760 (emit-byte segment #b11100001)
2761 (emit-byte-displacement-backpatch segment target)))
2763 (define-instruction loopnz (segment target)
2764 (:printer short-jump ((op #b0000)))
2765 (:emitter
2766 (emit-byte segment #b11100000)
2767 (emit-byte-displacement-backpatch segment target)))
2769 ;;;; conditional move
2770 (define-instruction cmov (segment cond dst src)
2771 (:printer cond-move ())
2772 (:emitter
2773 (aver (register-p dst))
2774 (let ((size (matching-operand-size dst src)))
2775 (aver (or (eq size :word) (eq size :dword) (eq size :qword)))
2776 (maybe-emit-operand-size-prefix segment size))
2777 (maybe-emit-rex-for-ea segment src dst)
2778 (emit-byte segment #b00001111)
2779 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b01000000))
2780 (emit-ea segment src (reg-tn-encoding dst) :allow-constants t)))
2782 ;;;; conditional byte set
2784 (define-instruction set (segment dst cond)
2785 (:printer cond-set ())
2786 (:emitter
2787 (maybe-emit-rex-for-ea segment dst nil :operand-size :byte)
2788 (emit-byte segment #b00001111)
2789 (emit-byte segment (dpb (conditional-opcode cond) (byte 4 0) #b10010000))
2790 (emit-ea segment dst #b000)))
2792 ;;;; enter/leave
2794 (define-instruction enter (segment disp &optional (level 0))
2795 (:declare (type (unsigned-byte 16) disp)
2796 (type (unsigned-byte 8) level))
2797 (:printer enter-format ((op #b11001000)))
2798 (:emitter
2799 (emit-byte segment #b11001000)
2800 (emit-word segment disp)
2801 (emit-byte segment level)))
2803 (define-instruction leave (segment)
2804 (:printer byte ((op #b11001001)))
2805 (:emitter
2806 (emit-byte segment #b11001001)))
2808 ;;;; interrupt instructions
2810 (defun snarf-error-junk (sap offset &optional length-only)
2811 (let* ((length (sap-ref-8 sap offset))
2812 (vector (make-array length :element-type '(unsigned-byte 8))))
2813 (declare (type system-area-pointer sap)
2814 (type (unsigned-byte 8) length)
2815 (type (simple-array (unsigned-byte 8) (*)) vector))
2816 (cond (length-only
2817 (values 0 (1+ length) nil nil))
2819 (copy-ub8-from-system-area sap (1+ offset) vector 0 length)
2820 (collect ((sc-offsets)
2821 (lengths))
2822 (lengths 1) ; the length byte
2823 (let* ((index 0)
2824 (error-number (read-var-integer vector index)))
2825 (lengths index)
2826 (loop
2827 (when (>= index length)
2828 (return))
2829 (let ((old-index index))
2830 (sc-offsets (read-var-integer vector index))
2831 (lengths (- index old-index))))
2832 (values error-number
2833 (1+ length)
2834 (sc-offsets)
2835 (lengths))))))))
2838 (defmacro break-cases (breaknum &body cases)
2839 (let ((bn-temp (gensym)))
2840 (collect ((clauses))
2841 (dolist (case cases)
2842 (clauses `((= ,bn-temp ,(car case)) ,@(cdr case))))
2843 `(let ((,bn-temp ,breaknum))
2844 (cond ,@(clauses))))))
2847 (defun break-control (chunk inst stream dstate)
2848 (declare (ignore inst))
2849 (flet ((nt (x) (if stream (note x dstate))))
2850 (case #!-ud2-breakpoints (byte-imm-code chunk dstate)
2851 #!+ud2-breakpoints (word-imm-code chunk dstate)
2852 (#.error-trap
2853 (nt "error trap")
2854 (handle-break-args #'snarf-error-junk stream dstate))
2855 (#.cerror-trap
2856 (nt "cerror trap")
2857 (handle-break-args #'snarf-error-junk stream dstate))
2858 (#.breakpoint-trap
2859 (nt "breakpoint trap"))
2860 (#.pending-interrupt-trap
2861 (nt "pending interrupt trap"))
2862 (#.halt-trap
2863 (nt "halt trap"))
2864 (#.fun-end-breakpoint-trap
2865 (nt "function end breakpoint trap"))
2866 (#.single-step-around-trap
2867 (nt "single-step trap (around)"))
2868 (#.single-step-before-trap
2869 (nt "single-step trap (before)"))
2870 (#.invalid-arg-count-trap
2871 (nt "Invalid argument count trap")))))
2873 (define-instruction break (segment code)
2874 (:declare (type (unsigned-byte 8) code))
2875 #!-ud2-breakpoints (:printer byte-imm ((op #b11001100))
2876 '(:name :tab code) :control #'break-control)
2877 #!+ud2-breakpoints (:printer word-imm ((op #b0000101100001111))
2878 '(:name :tab code) :control #'break-control)
2879 (:emitter
2880 #!-ud2-breakpoints (emit-byte segment #b11001100)
2881 ;; On darwin, trap handling via SIGTRAP is unreliable, therefore we
2882 ;; throw a sigill with 0x0b0f instead and check for this in the
2883 ;; SIGILL handler and pass it on to the sigtrap handler if
2884 ;; appropriate
2885 #!+ud2-breakpoints (emit-word segment #b0000101100001111)
2886 (emit-byte segment code)))
2888 (define-instruction int (segment number)
2889 (:declare (type (unsigned-byte 8) number))
2890 (:printer byte-imm ((op #b11001101)))
2891 (:emitter
2892 (etypecase number
2893 ((member 3)
2894 (emit-byte segment #b11001100))
2895 ((unsigned-byte 8)
2896 (emit-byte segment #b11001101)
2897 (emit-byte segment number)))))
2899 (define-instruction iret (segment)
2900 (:printer byte ((op #b11001111)))
2901 (:emitter
2902 (emit-byte segment #b11001111)))
2904 ;;;; processor control
2906 (define-instruction hlt (segment)
2907 (:printer byte ((op #b11110100)))
2908 (:emitter
2909 (emit-byte segment #b11110100)))
2911 (define-instruction nop (segment)
2912 (:printer byte ((op #b10010000)))
2913 ;; multi-byte NOP
2914 (:printer ext-reg/mem-no-width ((op '(#x1f 0))) '(:name))
2915 (:emitter
2916 (emit-byte segment #b10010000)))
2918 ;;; Emit a sequence of single- or multi-byte NOPs to fill AMOUNT many
2919 ;;; bytes with the smallest possible number of such instructions.
2920 (defun emit-long-nop (segment amount)
2921 (declare (type sb!assem:segment segment)
2922 (type index amount))
2923 ;; Pack all instructions into one byte vector to save space.
2924 (let* ((bytes #.(!coerce-to-specialized
2925 #(#x90
2926 #x66 #x90
2927 #x0f #x1f #x00
2928 #x0f #x1f #x40 #x00
2929 #x0f #x1f #x44 #x00 #x00
2930 #x66 #x0f #x1f #x44 #x00 #x00
2931 #x0f #x1f #x80 #x00 #x00 #x00 #x00
2932 #x0f #x1f #x84 #x00 #x00 #x00 #x00 #x00
2933 #x66 #x0f #x1f #x84 #x00 #x00 #x00 #x00 #x00)
2934 '(unsigned-byte 8)))
2935 (max-length (isqrt (* 2 (length bytes)))))
2936 (loop
2937 (let* ((count (min amount max-length))
2938 (start (ash (* count (1- count)) -1)))
2939 (dotimes (i count)
2940 (emit-byte segment (aref bytes (+ start i)))))
2941 (if (> amount max-length)
2942 (decf amount max-length)
2943 (return)))))
2945 (define-instruction wait (segment)
2946 (:printer byte ((op #b10011011)))
2947 (:emitter
2948 (emit-byte segment #b10011011)))
2951 ;;;; miscellaneous hackery
2953 (define-instruction byte (segment byte)
2954 (:emitter
2955 (emit-byte segment byte)))
2957 (define-instruction word (segment word)
2958 (:emitter
2959 (emit-word segment word)))
2961 (define-instruction dword (segment dword)
2962 (:emitter
2963 (emit-dword segment dword)))
2965 (defun emit-header-data (segment type)
2966 (emit-back-patch segment
2967 n-word-bytes
2968 (lambda (segment posn)
2969 (emit-qword segment
2970 (logior type
2971 (ash (+ posn
2972 (component-header-length))
2973 (- n-widetag-bits
2974 word-shift)))))))
2976 (define-instruction simple-fun-header-word (segment)
2977 (:emitter
2978 (emit-header-data segment simple-fun-header-widetag)))
2980 (define-instruction lra-header-word (segment)
2981 (:emitter
2982 (emit-header-data segment return-pc-header-widetag)))
2984 ;;;; Instructions required to do floating point operations using SSE
2986 ;; Return a one- or two-element list of printers for SSE instructions.
2987 ;; The one-element list is used in the cases where the REX prefix is
2988 ;; really a prefix and thus automatically supported, the two-element
2989 ;; list is used when the REX prefix is used in an infix position.
2990 (eval-when (:compile-toplevel :execute)
2991 (defun sse-inst-printer-list (inst-format-stem prefix opcode
2992 &key more-fields printer)
2993 (let ((fields `(,@(when prefix
2994 `((prefix ,prefix)))
2995 (op ,opcode)
2996 ,@more-fields))
2997 (inst-formats (if prefix
2998 (list (symbolicate "EXT-" inst-format-stem)
2999 (symbolicate "EXT-REX-" inst-format-stem))
3000 (list inst-format-stem))))
3001 (mapcar (lambda (inst-format)
3002 `(,inst-format ,fields ,@(when printer
3003 (list printer))))
3004 inst-formats)))
3005 (defun 2byte-sse-inst-printer-list (inst-format-stem prefix op1 op2
3006 &key more-fields printer)
3007 (let ((fields `(,@(when prefix
3008 `((prefix, prefix)))
3009 (op1 ,op1)
3010 (op2 ,op2)
3011 ,@more-fields))
3012 (inst-formats (if prefix
3013 (list (symbolicate "EXT-" inst-format-stem)
3014 (symbolicate "EXT-REX-" inst-format-stem))
3015 (list inst-format-stem))))
3016 (mapcar (lambda (inst-format)
3017 `(,inst-format ,fields ,@(when printer
3018 (list printer))))
3019 inst-formats))))
3021 (defun emit-sse-inst (segment dst src prefix opcode
3022 &key operand-size (remaining-bytes 0))
3023 (when prefix
3024 (emit-byte segment prefix))
3025 (if operand-size
3026 (maybe-emit-rex-for-ea segment src dst :operand-size operand-size)
3027 (maybe-emit-rex-for-ea segment src dst))
3028 (emit-byte segment #x0f)
3029 (emit-byte segment opcode)
3030 (emit-ea segment src (reg-tn-encoding dst) :remaining-bytes remaining-bytes))
3032 ;; 0110 0110:0000 1111:0111 00gg: 11 010 xmmreg:imm8
3034 (defun emit-sse-inst-with-imm (segment dst/src imm
3035 prefix opcode /i
3036 &key operand-size)
3037 (aver (<= 0 /i 7))
3038 (when prefix
3039 (emit-byte segment prefix))
3040 ;; dst/src is encoded in the r/m field, not r; REX.B must be
3041 ;; set to use extended XMM registers
3042 (maybe-emit-rex-prefix segment operand-size nil nil dst/src)
3043 (emit-byte segment #x0F)
3044 (emit-byte segment opcode)
3045 (emit-byte segment (logior (ash (logior #b11000 /i) 3)
3046 (reg-tn-encoding dst/src)))
3047 (emit-byte segment imm))
3049 (defun emit-sse-inst-2byte (segment dst src prefix op1 op2
3050 &key operand-size (remaining-bytes 0))
3051 (when prefix
3052 (emit-byte segment prefix))
3053 (if operand-size
3054 (maybe-emit-rex-for-ea segment src dst :operand-size operand-size)
3055 (maybe-emit-rex-for-ea segment src dst))
3056 (emit-byte segment #x0f)
3057 (emit-byte segment op1)
3058 (emit-byte segment op2)
3059 (emit-ea segment src (reg-tn-encoding dst) :remaining-bytes remaining-bytes))
3061 (macrolet
3062 ((define-imm-sse-instruction (name opcode /i)
3063 `(define-instruction ,name (segment dst/src imm)
3064 (:printer-list
3065 ',(sse-inst-printer-list 'xmm-imm #x66 opcode
3066 :more-fields `((/i ,/i))))
3067 (:emitter
3068 (emit-sse-inst-with-imm segment dst/src imm
3069 #x66 ,opcode ,/i
3070 :operand-size :do-not-set)))))
3071 (define-imm-sse-instruction pslldq #x73 7)
3072 (define-imm-sse-instruction psllw-imm #x71 6)
3073 (define-imm-sse-instruction pslld-imm #x72 6)
3074 (define-imm-sse-instruction psllq-imm #x73 6)
3076 (define-imm-sse-instruction psraw-imm #x71 4)
3077 (define-imm-sse-instruction psrad-imm #x72 4)
3079 (define-imm-sse-instruction psrldq #x73 3)
3080 (define-imm-sse-instruction psrlw-imm #x71 2)
3081 (define-imm-sse-instruction psrld-imm #x72 2)
3082 (define-imm-sse-instruction psrlq-imm #x73 2))
3084 ;;; Emit an SSE instruction that has an XMM register as the destination
3085 ;;; operand and for which the size of the operands is implicitly given
3086 ;;; by the instruction.
3087 (defun emit-regular-sse-inst (segment dst src prefix opcode
3088 &key (remaining-bytes 0))
3089 (aver (xmm-register-p dst))
3090 (emit-sse-inst segment dst src prefix opcode
3091 :operand-size :do-not-set
3092 :remaining-bytes remaining-bytes))
3094 (defun emit-regular-2byte-sse-inst (segment dst src prefix op1 op2
3095 &key (remaining-bytes 0))
3096 (aver (xmm-register-p dst))
3097 (emit-sse-inst-2byte segment dst src prefix op1 op2
3098 :operand-size :do-not-set
3099 :remaining-bytes remaining-bytes))
3101 ;;; Instructions having an XMM register as the destination operand
3102 ;;; and an XMM register or a memory location as the source operand.
3103 ;;; The operand size is implicitly given by the instruction.
3105 (macrolet ((define-regular-sse-inst (name prefix opcode)
3106 `(define-instruction ,name (segment dst src)
3107 (:printer-list
3108 ',(sse-inst-printer-list 'xmm-xmm/mem prefix opcode))
3109 (:emitter
3110 (emit-regular-sse-inst segment dst src ,prefix ,opcode)))))
3111 ;; moves
3112 (define-regular-sse-inst movshdup #xf3 #x16)
3113 (define-regular-sse-inst movsldup #xf3 #x12)
3114 (define-regular-sse-inst movddup #xf2 #x12)
3115 ;; logical
3116 (define-regular-sse-inst andpd #x66 #x54)
3117 (define-regular-sse-inst andps nil #x54)
3118 (define-regular-sse-inst andnpd #x66 #x55)
3119 (define-regular-sse-inst andnps nil #x55)
3120 (define-regular-sse-inst orpd #x66 #x56)
3121 (define-regular-sse-inst orps nil #x56)
3122 (define-regular-sse-inst pand #x66 #xdb)
3123 (define-regular-sse-inst pandn #x66 #xdf)
3124 (define-regular-sse-inst por #x66 #xeb)
3125 (define-regular-sse-inst pxor #x66 #xef)
3126 (define-regular-sse-inst xorpd #x66 #x57)
3127 (define-regular-sse-inst xorps nil #x57)
3128 ;; comparison
3129 (define-regular-sse-inst comisd #x66 #x2f)
3130 (define-regular-sse-inst comiss nil #x2f)
3131 (define-regular-sse-inst ucomisd #x66 #x2e)
3132 (define-regular-sse-inst ucomiss nil #x2e)
3133 ;; integer comparison
3134 (define-regular-sse-inst pcmpeqb #x66 #x74)
3135 (define-regular-sse-inst pcmpeqw #x66 #x75)
3136 (define-regular-sse-inst pcmpeqd #x66 #x76)
3137 (define-regular-sse-inst pcmpgtb #x66 #x64)
3138 (define-regular-sse-inst pcmpgtw #x66 #x65)
3139 (define-regular-sse-inst pcmpgtd #x66 #x66)
3140 ;; max/min
3141 (define-regular-sse-inst maxpd #x66 #x5f)
3142 (define-regular-sse-inst maxps nil #x5f)
3143 (define-regular-sse-inst maxsd #xf2 #x5f)
3144 (define-regular-sse-inst maxss #xf3 #x5f)
3145 (define-regular-sse-inst minpd #x66 #x5d)
3146 (define-regular-sse-inst minps nil #x5d)
3147 (define-regular-sse-inst minsd #xf2 #x5d)
3148 (define-regular-sse-inst minss #xf3 #x5d)
3149 ;; integer max/min
3150 (define-regular-sse-inst pmaxsw #x66 #xee)
3151 (define-regular-sse-inst pmaxub #x66 #xde)
3152 (define-regular-sse-inst pminsw #x66 #xea)
3153 (define-regular-sse-inst pminub #x66 #xda)
3154 ;; arithmetic
3155 (define-regular-sse-inst addpd #x66 #x58)
3156 (define-regular-sse-inst addps nil #x58)
3157 (define-regular-sse-inst addsd #xf2 #x58)
3158 (define-regular-sse-inst addss #xf3 #x58)
3159 (define-regular-sse-inst addsubpd #x66 #xd0)
3160 (define-regular-sse-inst addsubps #xf2 #xd0)
3161 (define-regular-sse-inst divpd #x66 #x5e)
3162 (define-regular-sse-inst divps nil #x5e)
3163 (define-regular-sse-inst divsd #xf2 #x5e)
3164 (define-regular-sse-inst divss #xf3 #x5e)
3165 (define-regular-sse-inst haddpd #x66 #x7c)
3166 (define-regular-sse-inst haddps #xf2 #x7c)
3167 (define-regular-sse-inst hsubpd #x66 #x7d)
3168 (define-regular-sse-inst hsubps #xf2 #x7d)
3169 (define-regular-sse-inst mulpd #x66 #x59)
3170 (define-regular-sse-inst mulps nil #x59)
3171 (define-regular-sse-inst mulsd #xf2 #x59)
3172 (define-regular-sse-inst mulss #xf3 #x59)
3173 (define-regular-sse-inst rcpps nil #x53)
3174 (define-regular-sse-inst rcpss #xf3 #x53)
3175 (define-regular-sse-inst rsqrtps nil #x52)
3176 (define-regular-sse-inst rsqrtss #xf3 #x52)
3177 (define-regular-sse-inst sqrtpd #x66 #x51)
3178 (define-regular-sse-inst sqrtps nil #x51)
3179 (define-regular-sse-inst sqrtsd #xf2 #x51)
3180 (define-regular-sse-inst sqrtss #xf3 #x51)
3181 (define-regular-sse-inst subpd #x66 #x5c)
3182 (define-regular-sse-inst subps nil #x5c)
3183 (define-regular-sse-inst subsd #xf2 #x5c)
3184 (define-regular-sse-inst subss #xf3 #x5c)
3185 (define-regular-sse-inst unpckhpd #x66 #x15)
3186 (define-regular-sse-inst unpckhps nil #x15)
3187 (define-regular-sse-inst unpcklpd #x66 #x14)
3188 (define-regular-sse-inst unpcklps nil #x14)
3189 ;; integer arithmetic
3190 (define-regular-sse-inst paddb #x66 #xfc)
3191 (define-regular-sse-inst paddw #x66 #xfd)
3192 (define-regular-sse-inst paddd #x66 #xfe)
3193 (define-regular-sse-inst paddq #x66 #xd4)
3194 (define-regular-sse-inst paddsb #x66 #xec)
3195 (define-regular-sse-inst paddsw #x66 #xed)
3196 (define-regular-sse-inst paddusb #x66 #xdc)
3197 (define-regular-sse-inst paddusw #x66 #xdd)
3198 (define-regular-sse-inst pavgb #x66 #xe0)
3199 (define-regular-sse-inst pavgw #x66 #xe3)
3200 (define-regular-sse-inst pmaddwd #x66 #xf5)
3201 (define-regular-sse-inst pmulhuw #x66 #xe4)
3202 (define-regular-sse-inst pmulhw #x66 #xe5)
3203 (define-regular-sse-inst pmullw #x66 #xd5)
3204 (define-regular-sse-inst pmuludq #x66 #xf4)
3205 (define-regular-sse-inst psadbw #x66 #xf6)
3206 (define-regular-sse-inst psllw #x66 #xf1)
3207 (define-regular-sse-inst pslld #x66 #xf2)
3208 (define-regular-sse-inst psllq #x66 #xf3)
3209 (define-regular-sse-inst psraw #x66 #xe1)
3210 (define-regular-sse-inst psrad #x66 #xe2)
3211 (define-regular-sse-inst psrlw #x66 #xd1)
3212 (define-regular-sse-inst psrld #x66 #xd2)
3213 (define-regular-sse-inst psrlq #x66 #xd3)
3214 (define-regular-sse-inst psubb #x66 #xf8)
3215 (define-regular-sse-inst psubw #x66 #xf9)
3216 (define-regular-sse-inst psubd #x66 #xfa)
3217 (define-regular-sse-inst psubq #x66 #xfb)
3218 (define-regular-sse-inst psubsb #x66 #xe8)
3219 (define-regular-sse-inst psubsw #x66 #xe9)
3220 (define-regular-sse-inst psubusb #x66 #xd8)
3221 (define-regular-sse-inst psubusw #x66 #xd9)
3222 ;; conversion
3223 (define-regular-sse-inst cvtdq2pd #xf3 #xe6)
3224 (define-regular-sse-inst cvtdq2ps nil #x5b)
3225 (define-regular-sse-inst cvtpd2dq #xf2 #xe6)
3226 (define-regular-sse-inst cvtpd2ps #x66 #x5a)
3227 (define-regular-sse-inst cvtps2dq #x66 #x5b)
3228 (define-regular-sse-inst cvtps2pd nil #x5a)
3229 (define-regular-sse-inst cvtsd2ss #xf2 #x5a)
3230 (define-regular-sse-inst cvtss2sd #xf3 #x5a)
3231 (define-regular-sse-inst cvttpd2dq #x66 #xe6)
3232 (define-regular-sse-inst cvttps2dq #xf3 #x5b)
3233 ;; integer
3234 (define-regular-sse-inst packsswb #x66 #x63)
3235 (define-regular-sse-inst packssdw #x66 #x6b)
3236 (define-regular-sse-inst packuswb #x66 #x67)
3237 (define-regular-sse-inst punpckhbw #x66 #x68)
3238 (define-regular-sse-inst punpckhwd #x66 #x69)
3239 (define-regular-sse-inst punpckhdq #x66 #x6a)
3240 (define-regular-sse-inst punpckhqdq #x66 #x6d)
3241 (define-regular-sse-inst punpcklbw #x66 #x60)
3242 (define-regular-sse-inst punpcklwd #x66 #x61)
3243 (define-regular-sse-inst punpckldq #x66 #x62)
3244 (define-regular-sse-inst punpcklqdq #x66 #x6c))
3246 (macrolet ((define-xmm-shuffle-sse-inst (name prefix opcode n-bits radix)
3247 (let ((shuffle-pattern
3248 (intern (format nil "SSE-SHUFFLE-PATTERN-~D-~D"
3249 n-bits radix))))
3250 `(define-instruction ,name (segment dst src pattern)
3251 (:printer-list
3252 ',(sse-inst-printer-list
3253 'xmm-xmm/mem prefix opcode
3254 :more-fields `((imm nil :type ,shuffle-pattern))
3255 :printer '(:name :tab reg ", " reg/mem ", " imm)))
3257 (:emitter
3258 (aver (typep pattern '(unsigned-byte ,n-bits)))
3259 (emit-regular-sse-inst segment dst src ,prefix ,opcode
3260 :remaining-bytes 1)
3261 (emit-byte segment pattern))))))
3262 (define-xmm-shuffle-sse-inst pshufd #x66 #x70 8 4)
3263 (define-xmm-shuffle-sse-inst pshufhw #xf3 #x70 8 4)
3264 (define-xmm-shuffle-sse-inst pshuflw #xf2 #x70 8 4)
3265 (define-xmm-shuffle-sse-inst shufpd #x66 #xc6 2 2)
3266 (define-xmm-shuffle-sse-inst shufps nil #xc6 8 4))
3268 ;; MASKMOVDQU (dst is DS:RDI)
3269 (define-instruction maskmovdqu (segment src mask)
3270 (:printer-list
3271 (sse-inst-printer-list 'xmm-xmm/mem #x66 #xf7))
3272 (:emitter
3273 (aver (xmm-register-p src))
3274 (aver (xmm-register-p mask))
3275 (emit-regular-sse-inst segment src mask #x66 #xf7)))
3277 (macrolet ((define-comparison-sse-inst (name prefix opcode
3278 name-prefix name-suffix)
3279 `(define-instruction ,name (segment op x y)
3280 (:printer-list
3281 ',(sse-inst-printer-list
3282 'xmm-xmm/mem prefix opcode
3283 :more-fields '((imm nil :type sse-condition-code))
3284 :printer `(,name-prefix imm ,name-suffix
3285 :tab reg ", " reg/mem)))
3286 (:emitter
3287 (let ((code (position op *sse-conditions*)))
3288 (aver code)
3289 (emit-regular-sse-inst segment x y ,prefix ,opcode
3290 :remaining-bytes 1)
3291 (emit-byte segment code))))))
3292 (define-comparison-sse-inst cmppd #x66 #xc2 "CMP" "PD")
3293 (define-comparison-sse-inst cmpps nil #xc2 "CMP" "PS")
3294 (define-comparison-sse-inst cmpsd #xf2 #xc2 "CMP" "SD")
3295 (define-comparison-sse-inst cmpss #xf3 #xc2 "CMP" "SS"))
3297 ;;; MOVSD, MOVSS
3298 (macrolet ((define-movsd/ss-sse-inst (name prefix)
3299 `(define-instruction ,name (segment dst src)
3300 (:printer-list
3301 ',(sse-inst-printer-list 'xmm-xmm/mem-dir
3302 prefix #b0001000))
3303 (:emitter
3304 (cond ((xmm-register-p dst)
3305 (emit-sse-inst segment dst src ,prefix #x10
3306 :operand-size :do-not-set))
3308 (aver (xmm-register-p src))
3309 (emit-sse-inst segment src dst ,prefix #x11
3310 :operand-size :do-not-set)))))))
3311 (define-movsd/ss-sse-inst movsd #xf2)
3312 (define-movsd/ss-sse-inst movss #xf3))
3314 ;;; Packed MOVs
3315 (macrolet ((define-mov-sse-inst (name prefix opcode-from opcode-to
3316 &key force-to-mem reg-reg-name)
3317 `(progn
3318 ,(when reg-reg-name
3319 `(define-instruction ,reg-reg-name (segment dst src)
3320 (:emitter
3321 (aver (xmm-register-p dst))
3322 (aver (xmm-register-p src))
3323 (emit-regular-sse-inst segment dst src
3324 ,prefix ,opcode-from))))
3325 (define-instruction ,name (segment dst src)
3326 (:printer-list
3327 '(,@(when opcode-from
3328 (sse-inst-printer-list
3329 'xmm-xmm/mem prefix opcode-from))
3330 ,@(sse-inst-printer-list
3331 'xmm-xmm/mem prefix opcode-to
3332 :printer '(:name :tab reg/mem ", " reg))))
3333 (:emitter
3334 (cond ,@(when opcode-from
3335 `(((xmm-register-p dst)
3336 ,(when force-to-mem
3337 `(aver (not (or (register-p src)
3338 (xmm-register-p src)))))
3339 (emit-regular-sse-inst
3340 segment dst src ,prefix ,opcode-from))))
3342 (aver (xmm-register-p src))
3343 ,(when force-to-mem
3344 `(aver (not (or (register-p dst)
3345 (xmm-register-p dst)))))
3346 (emit-regular-sse-inst segment src dst
3347 ,prefix ,opcode-to))))))))
3348 ;; direction bit?
3349 (define-mov-sse-inst movapd #x66 #x28 #x29)
3350 (define-mov-sse-inst movaps nil #x28 #x29)
3351 (define-mov-sse-inst movdqa #x66 #x6f #x7f)
3352 (define-mov-sse-inst movdqu #xf3 #x6f #x7f)
3354 ;; streaming
3355 (define-mov-sse-inst movntdq #x66 nil #xe7 :force-to-mem t)
3356 (define-mov-sse-inst movntpd #x66 nil #x2b :force-to-mem t)
3357 (define-mov-sse-inst movntps nil nil #x2b :force-to-mem t)
3359 ;; use movhps for movlhps and movlps for movhlps
3360 (define-mov-sse-inst movhpd #x66 #x16 #x17 :force-to-mem t)
3361 (define-mov-sse-inst movhps nil #x16 #x17 :reg-reg-name movlhps)
3362 (define-mov-sse-inst movlpd #x66 #x12 #x13 :force-to-mem t)
3363 (define-mov-sse-inst movlps nil #x12 #x13 :reg-reg-name movhlps)
3364 (define-mov-sse-inst movupd #x66 #x10 #x11)
3365 (define-mov-sse-inst movups nil #x10 #x11))
3367 ;;; MOVNTDQA
3368 (define-instruction movntdqa (segment dst src)
3369 (:printer-list
3370 (2byte-sse-inst-printer-list '2byte-xmm-xmm/mem #x66 #x38 #x2a))
3371 (:emitter
3372 (aver (and (xmm-register-p dst)
3373 (not (xmm-register-p src))))
3374 (emit-regular-2byte-sse-inst segment dst src #x66 #x38 #x2a)))
3376 ;;; MOVQ
3377 (define-instruction movq (segment dst src)
3378 (:printer-list
3379 (append
3380 (sse-inst-printer-list 'xmm-xmm/mem #xf3 #x7e)
3381 (sse-inst-printer-list 'xmm-xmm/mem #x66 #xd6
3382 :printer '(:name :tab reg/mem ", " reg))))
3383 (:emitter
3384 (cond ((xmm-register-p dst)
3385 (emit-sse-inst segment dst src #xf3 #x7e
3386 :operand-size :do-not-set))
3388 (aver (xmm-register-p src))
3389 (emit-sse-inst segment src dst #x66 #xd6
3390 :operand-size :do-not-set)))))
3392 ;;; Instructions having an XMM register as the destination operand
3393 ;;; and a general-purpose register or a memory location as the source
3394 ;;; operand. The operand size is calculated from the source operand.
3396 ;;; MOVD - Move a 32- or 64-bit value from a general-purpose register or
3397 ;;; a memory location to the low order 32 or 64 bits of an XMM register
3398 ;;; with zero extension or vice versa.
3399 ;;; We do not support the MMX version of this instruction.
3400 (define-instruction movd (segment dst src)
3401 (:printer-list
3402 (append
3403 (sse-inst-printer-list 'xmm-reg/mem #x66 #x6e)
3404 (sse-inst-printer-list 'xmm-reg/mem #x66 #x7e
3405 :printer '(:name :tab reg/mem ", " reg))))
3406 (:emitter
3407 (cond ((xmm-register-p dst)
3408 (emit-sse-inst segment dst src #x66 #x6e))
3410 (aver (xmm-register-p src))
3411 (emit-sse-inst segment src dst #x66 #x7e)))))
3413 (macrolet ((define-extract-sse-instruction (name prefix op1 op2
3414 &key explicit-qword)
3415 `(define-instruction ,name (segment dst src imm)
3416 (:printer
3417 ,(if op2 (if explicit-qword
3418 'ext-rex-2byte-reg/mem-xmm
3419 'ext-2byte-reg/mem-xmm)
3420 'ext-reg/mem-xmm)
3421 ((prefix '(,prefix))
3422 ,@(if op2
3423 `((op1 '(,op1)) (op2 '(,op2)))
3424 `((op '(,op1))))
3425 (imm nil :type 'imm-byte))
3426 '(:name :tab reg/mem ", " reg ", " imm))
3427 (:emitter
3428 (aver (and (xmm-register-p src) (not (xmm-register-p dst))))
3429 ,(if op2
3430 `(emit-sse-inst-2byte segment dst src ,prefix ,op1 ,op2
3431 :operand-size ,(if explicit-qword
3432 :qword
3433 :do-not-set)
3434 :remaining-bytes 1)
3435 `(emit-sse-inst segment dst src ,prefix ,op1
3436 :operand-size ,(if explicit-qword
3437 :qword
3438 :do-not-set)
3439 :remaining-bytes 1))
3440 (emit-byte segment imm))))
3442 (define-insert-sse-instruction (name prefix op1 op2)
3443 `(define-instruction ,name (segment dst src imm)
3444 (:printer
3445 ,(if op2 'ext-2byte-xmm-reg/mem 'ext-xmm-reg/mem)
3446 ((prefix '(,prefix))
3447 ,@(if op2
3448 `((op1 '(,op1)) (op2 '(,op2)))
3449 `((op '(,op1))))
3450 (imm nil :type 'imm-byte))
3451 '(:name :tab reg ", " reg/mem ", " imm))
3452 (:emitter
3453 (aver (and (xmm-register-p dst) (not (xmm-register-p src))))
3454 ,(if op2
3455 `(emit-sse-inst-2byte segment dst src ,prefix ,op1 ,op2
3456 :operand-size :do-not-set
3457 :remaining-bytes 1)
3458 `(emit-sse-inst segment dst src ,prefix ,op1
3459 :operand-size :do-not-set
3460 :remaining-bytes 1))
3461 (emit-byte segment imm)))))
3464 ;; pinsrq not encodable in 64-bit mode
3465 (define-insert-sse-instruction pinsrb #x66 #x3a #x20)
3466 (define-insert-sse-instruction pinsrw #x66 #xc4 nil)
3467 (define-insert-sse-instruction pinsrd #x66 #x3a #x22)
3468 (define-insert-sse-instruction insertps #x66 #x3a #x21)
3470 (define-extract-sse-instruction pextrb #x66 #x3a #x14)
3471 (define-extract-sse-instruction pextrd #x66 #x3a #x16)
3472 (define-extract-sse-instruction pextrq #x66 #x3a #x16 :explicit-qword t)
3473 (define-extract-sse-instruction extractps #x66 #x3a #x17))
3475 ;; PEXTRW has a new 2-byte encoding in SSE4.1 to allow dst to be
3476 ;; a memory address.
3477 (define-instruction pextrw (segment dst src imm)
3478 (:printer-list
3479 (append
3480 (2byte-sse-inst-printer-list '2byte-reg/mem-xmm #x66 #x3a #x15
3481 :more-fields '((imm nil :type imm-byte))
3482 :printer
3483 '(:name :tab reg/mem ", " reg ", " imm))
3484 (sse-inst-printer-list 'reg/mem-xmm #x66 #xc5
3485 :more-fields '((imm nil :type imm-byte))
3486 :printer
3487 '(:name :tab reg/mem ", " reg ", " imm))))
3488 (:emitter
3489 (aver (xmm-register-p src))
3490 (if (not (register-p dst))
3491 (emit-sse-inst-2byte segment dst src #x66 #x3a #x15
3492 :operand-size :do-not-set :remaining-bytes 1)
3493 (emit-sse-inst segment dst src #x66 #xc5
3494 :operand-size :do-not-set :remaining-bytes 1))
3495 (emit-byte segment imm)))
3497 (macrolet ((define-integer-source-sse-inst (name prefix opcode &key mem-only)
3498 `(define-instruction ,name (segment dst src)
3499 (:printer-list
3500 ',(sse-inst-printer-list 'xmm-reg/mem prefix opcode))
3501 (:emitter
3502 (aver (xmm-register-p dst))
3503 ,(when mem-only
3504 `(aver (not (or (register-p src)
3505 (xmm-register-p src)))))
3506 (let ((src-size (operand-size src)))
3507 (aver (or (eq src-size :qword) (eq src-size :dword))))
3508 (emit-sse-inst segment dst src ,prefix ,opcode)))))
3509 (define-integer-source-sse-inst cvtsi2sd #xf2 #x2a)
3510 (define-integer-source-sse-inst cvtsi2ss #xf3 #x2a)
3511 ;; FIXME: memory operand is always a QWORD
3512 (define-integer-source-sse-inst cvtpi2pd #x66 #x2a :mem-only t)
3513 (define-integer-source-sse-inst cvtpi2ps nil #x2a :mem-only t))
3515 ;;; Instructions having a general-purpose register as the destination
3516 ;;; operand and an XMM register or a memory location as the source
3517 ;;; operand. The operand size is calculated from the destination
3518 ;;; operand.
3520 (macrolet ((define-gpr-destination-sse-inst (name prefix opcode &key reg-only)
3521 `(define-instruction ,name (segment dst src)
3522 (:printer-list
3523 ',(sse-inst-printer-list 'reg-xmm/mem prefix opcode))
3524 (:emitter
3525 (aver (register-p dst))
3526 ,(when reg-only
3527 `(aver (xmm-register-p src)))
3528 (let ((dst-size (operand-size dst)))
3529 (aver (or (eq dst-size :qword) (eq dst-size :dword)))
3530 (emit-sse-inst segment dst src ,prefix ,opcode
3531 :operand-size dst-size))))))
3532 (define-gpr-destination-sse-inst cvtsd2si #xf2 #x2d)
3533 (define-gpr-destination-sse-inst cvtss2si #xf3 #x2d)
3534 (define-gpr-destination-sse-inst cvttsd2si #xf2 #x2c)
3535 (define-gpr-destination-sse-inst cvttss2si #xf3 #x2c)
3536 (define-gpr-destination-sse-inst movmskpd #x66 #x50 :reg-only t)
3537 (define-gpr-destination-sse-inst movmskps nil #x50 :reg-only t)
3538 (define-gpr-destination-sse-inst pmovmskb #x66 #xd7 :reg-only t))
3540 ;;;; We call these "2byte" instructions due to their two opcode bytes.
3541 ;;;; Intel and AMD call them three-byte instructions, as they count the
3542 ;;;; 0x0f byte for determining the number of opcode bytes.
3544 ;;; Instructions that take XMM-XMM/MEM and XMM-XMM/MEM-IMM arguments.
3546 (macrolet ((regular-2byte-sse-inst (name prefix op1 op2)
3547 `(define-instruction ,name (segment dst src)
3548 (:printer-list
3549 ',(2byte-sse-inst-printer-list '2byte-xmm-xmm/mem prefix
3550 op1 op2))
3551 (:emitter
3552 (emit-regular-2byte-sse-inst segment dst src ,prefix
3553 ,op1 ,op2))))
3554 (regular-2byte-sse-inst-imm (name prefix op1 op2)
3555 `(define-instruction ,name (segment dst src imm)
3556 (:printer-list
3557 ',(2byte-sse-inst-printer-list
3558 '2byte-xmm-xmm/mem prefix op1 op2
3559 :more-fields '((imm nil :type imm-byte))
3560 :printer `(:name :tab reg ", " reg/mem ", " imm)))
3561 (:emitter
3562 (aver (typep imm '(unsigned-byte 8)))
3563 (emit-regular-2byte-sse-inst segment dst src ,prefix ,op1 ,op2
3564 :remaining-bytes 1)
3565 (emit-byte segment imm)))))
3566 (regular-2byte-sse-inst pshufb #x66 #x38 #x00)
3567 (regular-2byte-sse-inst phaddw #x66 #x38 #x01)
3568 (regular-2byte-sse-inst phaddd #x66 #x38 #x02)
3569 (regular-2byte-sse-inst phaddsw #x66 #x38 #x03)
3570 (regular-2byte-sse-inst pmaddubsw #x66 #x38 #x04)
3571 (regular-2byte-sse-inst phsubw #x66 #x38 #x05)
3572 (regular-2byte-sse-inst phsubd #x66 #x38 #x06)
3573 (regular-2byte-sse-inst phsubsw #x66 #x38 #x07)
3574 (regular-2byte-sse-inst psignb #x66 #x38 #x08)
3575 (regular-2byte-sse-inst psignw #x66 #x38 #x09)
3576 (regular-2byte-sse-inst psignd #x66 #x38 #x0a)
3577 (regular-2byte-sse-inst pmulhrsw #x66 #x38 #x0b)
3579 (regular-2byte-sse-inst ptest #x66 #x38 #x17)
3580 (regular-2byte-sse-inst pabsb #x66 #x38 #x1c)
3581 (regular-2byte-sse-inst pabsw #x66 #x38 #x1d)
3582 (regular-2byte-sse-inst pabsd #x66 #x38 #x1e)
3584 (regular-2byte-sse-inst pmuldq #x66 #x38 #x28)
3585 (regular-2byte-sse-inst pcmpeqq #x66 #x38 #x29)
3586 (regular-2byte-sse-inst packusdw #x66 #x38 #x2b)
3588 (regular-2byte-sse-inst pcmpgtq #x66 #x38 #x37)
3589 (regular-2byte-sse-inst pminsb #x66 #x38 #x38)
3590 (regular-2byte-sse-inst pminsd #x66 #x38 #x39)
3591 (regular-2byte-sse-inst pminuw #x66 #x38 #x3a)
3592 (regular-2byte-sse-inst pminud #x66 #x38 #x3b)
3593 (regular-2byte-sse-inst pmaxsb #x66 #x38 #x3c)
3594 (regular-2byte-sse-inst pmaxsd #x66 #x38 #x3d)
3595 (regular-2byte-sse-inst pmaxuw #x66 #x38 #x3e)
3596 (regular-2byte-sse-inst pmaxud #x66 #x38 #x3f)
3598 (regular-2byte-sse-inst pmulld #x66 #x38 #x40)
3599 (regular-2byte-sse-inst phminposuw #x66 #x38 #x41)
3601 (regular-2byte-sse-inst aesimc #x66 #x38 #xdb)
3602 (regular-2byte-sse-inst aesenc #x66 #x38 #xdc)
3603 (regular-2byte-sse-inst aesenclast #x66 #x38 #xdd)
3604 (regular-2byte-sse-inst aesdec #x66 #x38 #xde)
3605 (regular-2byte-sse-inst aesdeclast #x66 #x38 #xdf)
3607 (regular-2byte-sse-inst pmovsxbw #x66 #x38 #x20)
3608 (regular-2byte-sse-inst pmovsxbd #x66 #x38 #x21)
3609 (regular-2byte-sse-inst pmovsxbq #x66 #x38 #x22)
3610 (regular-2byte-sse-inst pmovsxwd #x66 #x38 #x23)
3611 (regular-2byte-sse-inst pmovsxwq #x66 #x38 #x24)
3612 (regular-2byte-sse-inst pmovsxdq #x66 #x38 #x25)
3614 (regular-2byte-sse-inst pmovzxbw #x66 #x38 #x30)
3615 (regular-2byte-sse-inst pmovzxbd #x66 #x38 #x31)
3616 (regular-2byte-sse-inst pmovzxbq #x66 #x38 #x32)
3617 (regular-2byte-sse-inst pmovzxwd #x66 #x38 #x33)
3618 (regular-2byte-sse-inst pmovzxwq #x66 #x38 #x34)
3619 (regular-2byte-sse-inst pmovzxdq #x66 #x38 #x35)
3621 (regular-2byte-sse-inst-imm roundps #x66 #x3a #x08)
3622 (regular-2byte-sse-inst-imm roundpd #x66 #x3a #x09)
3623 (regular-2byte-sse-inst-imm roundss #x66 #x3a #x0a)
3624 (regular-2byte-sse-inst-imm roundsd #x66 #x3a #x0b)
3625 (regular-2byte-sse-inst-imm blendps #x66 #x3a #x0c)
3626 (regular-2byte-sse-inst-imm blendpd #x66 #x3a #x0d)
3627 (regular-2byte-sse-inst-imm pblendw #x66 #x3a #x0e)
3628 (regular-2byte-sse-inst-imm palignr #x66 #x3a #x0f)
3629 (regular-2byte-sse-inst-imm dpps #x66 #x3a #x40)
3630 (regular-2byte-sse-inst-imm dppd #x66 #x3a #x41)
3632 (regular-2byte-sse-inst-imm mpsadbw #x66 #x3a #x42)
3633 (regular-2byte-sse-inst-imm pclmulqdq #x66 #x3a #x44)
3635 (regular-2byte-sse-inst-imm pcmpestrm #x66 #x3a #x60)
3636 (regular-2byte-sse-inst-imm pcmpestri #x66 #x3a #x61)
3637 (regular-2byte-sse-inst-imm pcmpistrm #x66 #x3a #x62)
3638 (regular-2byte-sse-inst-imm pcmpistri #x66 #x3a #x63)
3640 (regular-2byte-sse-inst-imm aeskeygenassist #x66 #x3a #xdf))
3642 ;;; Other SSE instructions
3644 ;; Instructions implicitly using XMM0 as a mask
3645 (macrolet ((define-sse-inst-implicit-mask (name prefix op1 op2)
3646 `(define-instruction ,name (segment dst src mask)
3647 (:printer-list
3648 ',(2byte-sse-inst-printer-list
3649 '2byte-xmm-xmm/mem prefix op1 op2
3650 :printer '(:name :tab reg ", " reg/mem ", XMM0")))
3651 (:emitter
3652 (aver (xmm-register-p dst))
3653 (aver (and (xmm-register-p mask) (= (tn-offset mask) 0)))
3654 (emit-regular-2byte-sse-inst segment dst src ,prefix
3655 ,op1 ,op2)))))
3657 (define-sse-inst-implicit-mask pblendvb #x66 #x38 #x10)
3658 (define-sse-inst-implicit-mask blendvps #x66 #x38 #x14)
3659 (define-sse-inst-implicit-mask blendvpd #x66 #x38 #x15))
3661 (define-instruction movnti (segment dst src)
3662 (:printer ext-reg-reg/mem-no-width ((op #xc3)) '(:name :tab reg/mem ", " reg))
3663 (:emitter
3664 (aver (not (or (register-p dst)
3665 (xmm-register-p dst))))
3666 (aver (register-p src))
3667 (maybe-emit-rex-for-ea segment dst src)
3668 (emit-byte segment #x0f)
3669 (emit-byte segment #xc3)
3670 (emit-ea segment dst (reg-tn-encoding src))))
3672 (define-instruction prefetch (segment type src)
3673 (:printer ext-reg/mem-no-width ((op '(#x18 0)))
3674 '("PREFETCHNTA" :tab reg/mem))
3675 (:printer ext-reg/mem-no-width ((op '(#x18 1)))
3676 '("PREFETCHT0" :tab reg/mem))
3677 (:printer ext-reg/mem-no-width ((op '(#x18 2)))
3678 '("PREFETCHT1" :tab reg/mem))
3679 (:printer ext-reg/mem-no-width ((op '(#x18 3)))
3680 '("PREFETCHT2" :tab reg/mem))
3681 (:emitter
3682 (aver (not (or (register-p src)
3683 (xmm-register-p src))))
3684 (aver (eq (operand-size src) :byte))
3685 (let ((type (position type #(:nta :t0 :t1 :t2))))
3686 (aver type)
3687 (maybe-emit-rex-for-ea segment src nil)
3688 (emit-byte segment #x0f)
3689 (emit-byte segment #x18)
3690 (emit-ea segment src type))))
3692 (define-instruction clflush (segment src)
3693 (:printer ext-reg/mem-no-width ((op '(#xae 7))))
3694 (:emitter
3695 (aver (not (or (register-p src)
3696 (xmm-register-p src))))
3697 (aver (eq (operand-size src) :byte))
3698 (maybe-emit-rex-for-ea segment src nil)
3699 (emit-byte segment #x0f)
3700 (emit-byte segment #xae)
3701 (emit-ea segment src 7)))
3703 (macrolet ((define-fence-instruction (name last-byte)
3704 `(define-instruction ,name (segment)
3705 (:printer three-bytes ((op '(#x0f #xae ,last-byte))))
3706 (:emitter
3707 (emit-byte segment #x0f)
3708 (emit-byte segment #xae)
3709 (emit-byte segment ,last-byte)))))
3710 (define-fence-instruction lfence #b11101000)
3711 (define-fence-instruction mfence #b11110000)
3712 (define-fence-instruction sfence #b11111000))
3714 (define-instruction pause (segment)
3715 (:printer two-bytes ((op '(#xf3 #x90))))
3716 (:emitter
3717 (emit-byte segment #xf3)
3718 (emit-byte segment #x90)))
3720 (define-instruction ldmxcsr (segment src)
3721 (:printer ext-reg/mem-no-width ((op '(#xae 2))))
3722 (:emitter
3723 (aver (not (or (register-p src)
3724 (xmm-register-p src))))
3725 (aver (eq (operand-size src) :dword))
3726 (maybe-emit-rex-for-ea segment src nil)
3727 (emit-byte segment #x0f)
3728 (emit-byte segment #xae)
3729 (emit-ea segment src 2)))
3731 (define-instruction stmxcsr (segment dst)
3732 (:printer ext-reg/mem-no-width ((op '(#xae 3))))
3733 (:emitter
3734 (aver (not (or (register-p dst)
3735 (xmm-register-p dst))))
3736 (aver (eq (operand-size dst) :dword))
3737 (maybe-emit-rex-for-ea segment dst nil)
3738 (emit-byte segment #x0f)
3739 (emit-byte segment #xae)
3740 (emit-ea segment dst 3)))
3742 (define-instruction popcnt (segment dst src)
3743 (:printer f3-escape-reg-reg/mem ((op #xB8)))
3744 (:printer rex-f3-escape-reg-reg/mem ((op #xB8)))
3745 (:emitter
3746 (aver (register-p dst))
3747 (aver (and (register-p dst) (not (eq (operand-size dst) :byte))))
3748 (aver (not (eq (operand-size src) :byte)))
3749 (emit-sse-inst segment dst src #xf3 #xb8)))
3751 (define-instruction crc32 (segment dst src)
3752 ;; The low bit of the final opcode byte sets the source size.
3753 ;; REX.W bit sets the destination size. can't have #x66 prefix and REX.W = 1.
3754 (:printer ext-2byte-prefix-reg-reg/mem
3755 ((prefix #xf2) (op1 #x38)
3756 (op2 #b1111000 :field (byte 7 25)) ; #xF0 ignoring the low bit
3757 (src-width nil :field (byte 1 24) :prefilter #'prefilter-width)
3758 (reg nil :printer #'print-d/q-word-reg)))
3759 (:printer ext-rex-2byte-prefix-reg-reg/mem
3760 ((prefix #xf2) (op1 #x38)
3761 (op2 #b1111000 :field (byte 7 33)) ; ditto
3762 (src-width nil :field (byte 1 32) :prefilter #'prefilter-width)
3763 (reg nil :printer #'print-d/q-word-reg)))
3764 (:emitter
3765 (let ((dst-size (operand-size dst))
3766 (src-size (operand-size src)))
3767 ;; The following operand size combinations are possible:
3768 ;; dst = r32, src = r/m{8, 16, 32}
3769 ;; dst = r64, src = r/m{8, 64}
3770 (aver (and (register-p dst)
3771 (memq src-size (case dst-size
3772 (:dword '(:byte :word :dword))
3773 (:qword '(:byte :qword))))))
3774 (maybe-emit-operand-size-prefix segment src-size)
3775 (emit-sse-inst-2byte segment dst src #xf2 #x38
3776 (if (eq src-size :byte) #xf0 #xf1)
3777 ;; :OPERAND-SIZE is ordinarily determined
3778 ;; from 'src', so override it to use 'dst'.
3779 :operand-size dst-size))))
3781 ;;;; Miscellany
3783 (define-instruction cpuid (segment)
3784 (:printer two-bytes ((op '(#b00001111 #b10100010))))
3785 (:emitter
3786 (emit-byte segment #b00001111)
3787 (emit-byte segment #b10100010)))
3789 (define-instruction rdtsc (segment)
3790 (:printer two-bytes ((op '(#b00001111 #b00110001))))
3791 (:emitter
3792 (emit-byte segment #b00001111)
3793 (emit-byte segment #b00110001)))
3795 ;;;; Late VM definitions
3797 (defun canonicalize-inline-constant (constant &aux (alignedp nil))
3798 (let ((first (car constant)))
3799 (when (eql first :aligned)
3800 (setf alignedp t)
3801 (pop constant)
3802 (setf first (car constant)))
3803 (typecase first
3804 (single-float (setf constant (list :single-float first)))
3805 (double-float (setf constant (list :double-float first)))
3807 #+sb-xc-host
3808 ((complex
3809 ;; It's an error (perhaps) on the host to use simd-pack type.
3810 ;; [and btw it's disconcerting that this isn't an ETYPECASE.]
3811 (error "xc-host can't reference complex float")))
3812 #-sb-xc-host
3813 (((complex single-float)
3814 (setf constant (list :complex-single-float first)))
3815 ((complex double-float)
3816 (setf constant (list :complex-double-float first)))
3817 #!+sb-simd-pack
3818 (simd-pack
3819 (setq constant
3820 (list :sse (logior (%simd-pack-low first)
3821 (ash (%simd-pack-high first) 64))))))))
3822 (destructuring-bind (type value) constant
3823 (ecase type
3824 ((:byte :word :dword :qword)
3825 (aver (integerp value))
3826 (cons type value))
3827 ((:base-char)
3828 #!+sb-unicode (aver (typep value 'base-char))
3829 (cons :byte (char-code value)))
3830 ((:character)
3831 (aver (characterp value))
3832 (cons :dword (char-code value)))
3833 ((:single-float)
3834 (aver (typep value 'single-float))
3835 (cons (if alignedp :oword :dword)
3836 (ldb (byte 32 0) (single-float-bits value))))
3837 ((:double-float)
3838 (aver (typep value 'double-float))
3839 (cons (if alignedp :oword :qword)
3840 (ldb (byte 64 0) (logior (ash (double-float-high-bits value) 32)
3841 (double-float-low-bits value)))))
3842 ((:complex-single-float)
3843 (aver (typep value '(complex single-float)))
3844 (cons (if alignedp :oword :qword)
3845 (ldb (byte 64 0)
3846 (logior (ash (single-float-bits (imagpart value)) 32)
3847 (ldb (byte 32 0)
3848 (single-float-bits (realpart value)))))))
3849 ((:oword :sse)
3850 (aver (integerp value))
3851 (cons :oword value))
3852 ((:complex-double-float)
3853 (aver (typep value '(complex double-float)))
3854 (cons :oword
3855 (logior (ash (double-float-high-bits (imagpart value)) 96)
3856 (ash (double-float-low-bits (imagpart value)) 64)
3857 (ash (ldb (byte 32 0)
3858 (double-float-high-bits (realpart value)))
3860 (double-float-low-bits (realpart value))))))))
3862 (defun inline-constant-value (constant)
3863 (let ((label (gen-label))
3864 (size (ecase (car constant)
3865 ((:byte :word :dword :qword) (car constant))
3866 ((:oword) :qword))))
3867 (values label (make-ea size
3868 :disp (make-fixup nil :code-object label)))))
3870 (defun emit-constant-segment-header (segment constants optimize)
3871 (declare (ignore constants))
3872 (emit-long-nop segment (if optimize 64 16)))
3874 (defun size-nbyte (size)
3875 (ecase size
3876 (:byte 1)
3877 (:word 2)
3878 (:dword 4)
3879 (:qword 8)
3880 (:oword 16)))
3882 (defun sort-inline-constants (constants)
3883 (stable-sort constants #'> :key (lambda (constant)
3884 (size-nbyte (caar constant)))))
3886 (defun emit-inline-constant (constant label)
3887 (let ((size (size-nbyte (car constant))))
3888 (emit-alignment (integer-length (1- size)))
3889 (emit-label label)
3890 (let ((val (cdr constant)))
3891 (loop repeat size
3892 do (inst byte (ldb (byte 8 0) val))
3893 (setf val (ash val -8))))))