docs/qapi-code-gen: update to cover trace events code generation
[qemu/rayw.git] / hw / ppc / spapr_numa.c
blobe9ef7e76469600669d5241773c2f7f81c8b2773c
1 /*
2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
4 * Copyright IBM Corp. 2020
6 * Authors:
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
23 * Retrieves max_dist_ref_points of the current NUMA affinity.
25 static int get_max_dist_ref_points(SpaprMachineState *spapr)
27 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
28 return FORM2_DIST_REF_POINTS;
31 return FORM1_DIST_REF_POINTS;
35 * Retrieves numa_assoc_size of the current NUMA affinity.
37 static int get_numa_assoc_size(SpaprMachineState *spapr)
39 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
40 return FORM2_NUMA_ASSOC_SIZE;
43 return FORM1_NUMA_ASSOC_SIZE;
47 * Retrieves vcpu_assoc_size of the current NUMA affinity.
49 * vcpu_assoc_size is the size of ibm,associativity array
50 * for CPUs, which has an extra element (vcpu_id) in the end.
52 static int get_vcpu_assoc_size(SpaprMachineState *spapr)
54 return get_numa_assoc_size(spapr) + 1;
58 * Retrieves the ibm,associativity array of NUMA node 'node_id'
59 * for the current NUMA affinity.
61 static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
63 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
64 return spapr->FORM2_assoc_array[node_id];
66 return spapr->FORM1_assoc_array[node_id];
70 * Wrapper that returns node distance from ms->numa_state->nodes
71 * after handling edge cases where the distance might be absent.
73 static int get_numa_distance(MachineState *ms, int src, int dst)
75 NodeInfo *numa_info = ms->numa_state->nodes;
76 int ret = numa_info[src].distance[dst];
78 if (ret != 0) {
79 return ret;
83 * In case QEMU adds a default NUMA single node when the user
84 * did not add any, or where the user did not supply distances,
85 * the distance will be absent (zero). Return local/remote
86 * distance in this case.
88 if (src == dst) {
89 return NUMA_DISTANCE_MIN;
92 return NUMA_DISTANCE_DEFAULT;
95 static bool spapr_numa_is_symmetrical(MachineState *ms)
97 int nb_numa_nodes = ms->numa_state->num_nodes;
98 int src, dst;
100 for (src = 0; src < nb_numa_nodes; src++) {
101 for (dst = src; dst < nb_numa_nodes; dst++) {
102 if (get_numa_distance(ms, src, dst) !=
103 get_numa_distance(ms, dst, src)) {
104 return false;
109 return true;
113 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
114 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
115 * called from vPHB reset handler so we initialize the counter here.
116 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
117 * must be equally distant from any other node.
118 * The final value of spapr->gpu_numa_id is going to be written to
119 * max-associativity-domains in spapr_build_fdt().
121 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
123 return MAX(1, machine->numa_state->num_nodes);
127 * This function will translate the user distances into
128 * what the kernel understand as possible values: 10
129 * (local distance), 20, 40, 80 and 160, and return the equivalent
130 * NUMA level for each. Current heuristic is:
131 * - local distance (10) returns numa_level = 0x4, meaning there is
132 * no rounding for local distance
133 * - distances between 11 and 30 inclusive -> rounded to 20,
134 * numa_level = 0x3
135 * - distances between 31 and 60 inclusive -> rounded to 40,
136 * numa_level = 0x2
137 * - distances between 61 and 120 inclusive -> rounded to 80,
138 * numa_level = 0x1
139 * - everything above 120 returns numa_level = 0 to indicate that
140 * there is no match. This will be calculated as disntace = 160
141 * by the kernel (as of v5.9)
143 static uint8_t spapr_numa_get_numa_level(uint8_t distance)
145 if (distance == 10) {
146 return 0x4;
147 } else if (distance > 11 && distance <= 30) {
148 return 0x3;
149 } else if (distance > 31 && distance <= 60) {
150 return 0x2;
151 } else if (distance > 61 && distance <= 120) {
152 return 0x1;
155 return 0;
158 static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
160 MachineState *ms = MACHINE(spapr);
161 int nb_numa_nodes = ms->numa_state->num_nodes;
162 int src, dst, i, j;
165 * Fill all associativity domains of non-zero NUMA nodes with
166 * node_id. This is required because the default value (0) is
167 * considered a match with associativity domains of node 0.
169 for (i = 1; i < nb_numa_nodes; i++) {
170 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
171 spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
175 for (src = 0; src < nb_numa_nodes; src++) {
176 for (dst = src; dst < nb_numa_nodes; dst++) {
178 * This is how the associativity domain between A and B
179 * is calculated:
181 * - get the distance D between them
182 * - get the correspondent NUMA level 'n_level' for D
183 * - all associativity arrays were initialized with their own
184 * numa_ids, and we're calculating the distance in node_id
185 * ascending order, starting from node id 0 (the first node
186 * retrieved by numa_state). This will have a cascade effect in
187 * the algorithm because the associativity domains that node 0
188 * defines will be carried over to other nodes, and node 1
189 * associativities will be carried over after taking node 0
190 * associativities into account, and so on. This happens because
191 * we'll assign assoc_src as the associativity domain of dst
192 * as well, for all NUMA levels beyond and including n_level.
194 * The PPC kernel expects the associativity domains of node 0 to
195 * be always 0, and this algorithm will grant that by default.
197 uint8_t distance = get_numa_distance(ms, src, dst);
198 uint8_t n_level = spapr_numa_get_numa_level(distance);
199 uint32_t assoc_src;
202 * n_level = 0 means that the distance is greater than our last
203 * rounded value (120). In this case there is no NUMA level match
204 * between src and dst and we can skip the remaining of the loop.
206 * The Linux kernel will assume that the distance between src and
207 * dst, in this case of no match, is 10 (local distance) doubled
208 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
209 * levels (4), so this gives us 10*2*2*2*2 = 160.
211 * This logic can be seen in the Linux kernel source code, as of
212 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
214 if (n_level == 0) {
215 continue;
219 * We must assign all assoc_src to dst, starting from n_level
220 * and going up to 0x1.
222 for (i = n_level; i > 0; i--) {
223 assoc_src = spapr->FORM1_assoc_array[src][i];
224 spapr->FORM1_assoc_array[dst][i] = assoc_src;
231 static void spapr_numa_FORM1_affinity_check(MachineState *machine)
233 int i;
236 * Check we don't have a memory-less/cpu-less NUMA node
237 * Firmware relies on the existing memory/cpu topology to provide the
238 * NUMA topology to the kernel.
239 * And the linux kernel needs to know the NUMA topology at start
240 * to be able to hotplug CPUs later.
242 if (machine->numa_state->num_nodes) {
243 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
244 /* check for memory-less node */
245 if (machine->numa_state->nodes[i].node_mem == 0) {
246 CPUState *cs;
247 int found = 0;
248 /* check for cpu-less node */
249 CPU_FOREACH(cs) {
250 PowerPCCPU *cpu = POWERPC_CPU(cs);
251 if (cpu->node_id == i) {
252 found = 1;
253 break;
256 /* memory-less and cpu-less node */
257 if (!found) {
258 error_report(
259 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
260 exit(EXIT_FAILURE);
266 if (!spapr_numa_is_symmetrical(machine)) {
267 error_report(
268 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
269 exit(EXIT_FAILURE);
274 * Set NUMA machine state data based on FORM1 affinity semantics.
276 static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
277 MachineState *machine)
279 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
280 int nb_numa_nodes = machine->numa_state->num_nodes;
281 int i, j, max_nodes_with_gpus;
284 * For all associativity arrays: first position is the size,
285 * position FORM1_DIST_REF_POINTS is always the numa_id,
286 * represented by the index 'i'.
288 * This will break on sparse NUMA setups, when/if QEMU starts
289 * to support it, because there will be no more guarantee that
290 * 'i' will be a valid node_id set by the user.
292 for (i = 0; i < nb_numa_nodes; i++) {
293 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
294 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
298 * Initialize NVLink GPU associativity arrays. We know that
299 * the first GPU will take the first available NUMA id, and
300 * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
301 * At this point we're not sure if there are GPUs or not, but
302 * let's initialize the associativity arrays and allow NVLink
303 * GPUs to be handled like regular NUMA nodes later on.
305 max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
307 for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
308 spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
310 for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
311 uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
312 SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
313 spapr->FORM1_assoc_array[i][j] = gpu_assoc;
316 spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
320 * Guests pseries-5.1 and older uses zeroed associativity domains,
321 * i.e. no domain definition based on NUMA distance input.
323 * Same thing with guests that have only one NUMA node.
325 if (smc->pre_5_2_numa_associativity ||
326 machine->numa_state->num_nodes <= 1) {
327 return;
330 spapr_numa_define_FORM1_domains(spapr);
334 * Init NUMA FORM2 machine state data
336 static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
338 int i;
341 * For all resources but CPUs, FORM2 associativity arrays will
342 * be a size 2 array with the following format:
344 * ibm,associativity = {1, numa_id}
346 * CPUs will write an additional 'vcpu_id' on top of the arrays
347 * being initialized here. 'numa_id' is represented by the
348 * index 'i' of the loop.
350 * Given that this initialization is also valid for GPU associativity
351 * arrays, handle everything in one single step by populating the
352 * arrays up to NUMA_NODES_MAX_NUM.
354 for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
355 spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
356 spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
360 void spapr_numa_associativity_init(SpaprMachineState *spapr,
361 MachineState *machine)
363 spapr_numa_FORM1_affinity_init(spapr, machine);
364 spapr_numa_FORM2_affinity_init(spapr);
367 void spapr_numa_associativity_check(SpaprMachineState *spapr)
370 * FORM2 does not have any restrictions we need to handle
371 * at CAS time, for now.
373 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
374 return;
377 spapr_numa_FORM1_affinity_check(MACHINE(spapr));
380 void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
381 int offset, int nodeid)
383 const uint32_t *associativity = get_associativity(spapr, nodeid);
385 _FDT((fdt_setprop(fdt, offset, "ibm,associativity",
386 associativity,
387 get_numa_assoc_size(spapr) * sizeof(uint32_t))));
390 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
391 PowerPCCPU *cpu)
393 const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
394 int max_distance_ref_points = get_max_dist_ref_points(spapr);
395 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
396 uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
397 int index = spapr_get_vcpu_id(cpu);
400 * VCPUs have an extra 'cpu_id' value in ibm,associativity
401 * compared to other resources. Increment the size at index
402 * 0, put cpu_id last, then copy the remaining associativity
403 * domains.
405 vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
406 vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
407 memcpy(vcpu_assoc + 1, associativity + 1,
408 (vcpu_assoc_size - 2) * sizeof(uint32_t));
410 return vcpu_assoc;
413 int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
414 int offset, PowerPCCPU *cpu)
416 g_autofree uint32_t *vcpu_assoc = NULL;
417 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
419 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
421 /* Advertise NUMA via ibm,associativity */
422 return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
423 vcpu_assoc_size * sizeof(uint32_t));
427 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
428 int offset)
430 MachineState *machine = MACHINE(spapr);
431 int max_distance_ref_points = get_max_dist_ref_points(spapr);
432 int nb_numa_nodes = machine->numa_state->num_nodes;
433 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
434 uint32_t *int_buf, *cur_index, buf_len;
435 int ret, i;
437 /* ibm,associativity-lookup-arrays */
438 buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
439 cur_index = int_buf = g_malloc0(buf_len);
440 int_buf[0] = cpu_to_be32(nr_nodes);
441 /* Number of entries per associativity list */
442 int_buf[1] = cpu_to_be32(max_distance_ref_points);
443 cur_index += 2;
444 for (i = 0; i < nr_nodes; i++) {
446 * For the lookup-array we use the ibm,associativity array of the
447 * current NUMA affinity, without the first element (size).
449 const uint32_t *associativity = get_associativity(spapr, i);
450 memcpy(cur_index, ++associativity,
451 sizeof(uint32_t) * max_distance_ref_points);
452 cur_index += max_distance_ref_points;
454 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
455 (cur_index - int_buf) * sizeof(uint32_t));
456 g_free(int_buf);
458 return ret;
461 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
462 void *fdt, int rtas)
464 MachineState *ms = MACHINE(spapr);
465 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
466 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
467 spapr_numa_initial_nvgpu_numa_id(ms);
468 uint32_t refpoints[] = {
469 cpu_to_be32(0x4),
470 cpu_to_be32(0x3),
471 cpu_to_be32(0x2),
472 cpu_to_be32(0x1),
474 uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
475 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
476 uint32_t maxdomains[] = {
477 cpu_to_be32(4),
478 cpu_to_be32(maxdomain),
479 cpu_to_be32(maxdomain),
480 cpu_to_be32(maxdomain),
481 cpu_to_be32(maxdomain)
484 if (smc->pre_5_2_numa_associativity ||
485 ms->numa_state->num_nodes <= 1) {
486 uint32_t legacy_refpoints[] = {
487 cpu_to_be32(0x4),
488 cpu_to_be32(0x4),
489 cpu_to_be32(0x2),
491 uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
492 uint32_t legacy_maxdomains[] = {
493 cpu_to_be32(4),
494 cpu_to_be32(legacy_maxdomain),
495 cpu_to_be32(legacy_maxdomain),
496 cpu_to_be32(legacy_maxdomain),
497 cpu_to_be32(spapr->gpu_numa_id),
500 G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
501 G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
503 nr_refpoints = 3;
505 memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
506 memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
508 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
509 if (smc->pre_5_1_assoc_refpoints) {
510 nr_refpoints = 2;
514 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
515 refpoints, nr_refpoints * sizeof(refpoints[0])));
517 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
518 maxdomains, sizeof(maxdomains)));
521 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
522 void *fdt, int rtas)
524 MachineState *ms = MACHINE(spapr);
525 int nb_numa_nodes = ms->numa_state->num_nodes;
526 int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
527 g_autofree uint32_t *lookup_index_table = NULL;
528 g_autofree uint8_t *distance_table = NULL;
529 int src, dst, i, distance_table_size;
532 * ibm,numa-lookup-index-table: array with length and a
533 * list of NUMA ids present in the guest.
535 lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
536 lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
538 for (i = 0; i < nb_numa_nodes; i++) {
539 lookup_index_table[i + 1] = cpu_to_be32(i);
542 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
543 lookup_index_table,
544 (nb_numa_nodes + 1) * sizeof(uint32_t)));
547 * ibm,numa-distance-table: contains all node distances. First
548 * element is the size of the table as uint32, followed up
549 * by all the uint8 distances from the first NUMA node, then all
550 * distances from the second NUMA node and so on.
552 * ibm,numa-lookup-index-table is used by guest to navigate this
553 * array because NUMA ids can be sparse (node 0 is the first,
554 * node 8 is the second ...).
556 distance_table_size = distance_table_entries * sizeof(uint8_t) +
557 sizeof(uint32_t);
558 distance_table = g_new0(uint8_t, distance_table_size);
559 stl_be_p(distance_table, distance_table_entries);
561 /* Skip the uint32_t array length at the start */
562 i = sizeof(uint32_t);
564 for (src = 0; src < nb_numa_nodes; src++) {
565 for (dst = 0; dst < nb_numa_nodes; dst++) {
566 distance_table[i++] = get_numa_distance(ms, src, dst);
570 _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
571 distance_table, distance_table_size));
575 * This helper could be compressed in a single function with
576 * FORM1 logic since we're setting the same DT values, with the
577 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
578 * in the end. The separation was made to avoid clogging FORM1 code
579 * which already has to deal with compat modes from previous
580 * QEMU machine types.
582 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
583 void *fdt, int rtas)
585 MachineState *ms = MACHINE(spapr);
586 uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
587 spapr_numa_initial_nvgpu_numa_id(ms);
590 * In FORM2, ibm,associativity-reference-points will point to
591 * the element in the ibm,associativity array that contains the
592 * primary domain index (for FORM2, the first element).
594 * This value (in our case, the numa-id) is then used as an index
595 * to retrieve all other attributes of the node (distance,
596 * bandwidth, latency) via ibm,numa-lookup-index-table and other
597 * ibm,numa-*-table properties.
599 uint32_t refpoints[] = { cpu_to_be32(1) };
601 uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
602 uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
604 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
605 refpoints, sizeof(refpoints)));
607 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
608 maxdomains, sizeof(maxdomains)));
610 spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
614 * Helper that writes ibm,associativity-reference-points and
615 * max-associativity-domains in the RTAS pointed by @rtas
616 * in the DT @fdt.
618 void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
620 if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
621 spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
622 return;
625 spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
628 static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
629 SpaprMachineState *spapr,
630 target_ulong opcode,
631 target_ulong *args)
633 g_autofree uint32_t *vcpu_assoc = NULL;
634 target_ulong flags = args[0];
635 target_ulong procno = args[1];
636 PowerPCCPU *tcpu;
637 int idx, assoc_idx;
638 int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
640 /* only support procno from H_REGISTER_VPA */
641 if (flags != 0x1) {
642 return H_FUNCTION;
645 tcpu = spapr_find_cpu(procno);
646 if (tcpu == NULL) {
647 return H_P2;
651 * Given that we want to be flexible with the sizes and indexes,
652 * we must consider that there is a hard limit of how many
653 * associativities domain we can fit in R4 up to R9, which would be
654 * 12 associativity domains for vcpus. Assert and bail if that's
655 * not the case.
657 g_assert((vcpu_assoc_size - 1) <= 12);
659 vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
660 /* assoc_idx starts at 1 to skip associativity size */
661 assoc_idx = 1;
663 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
664 ((uint64_t)(b) & 0xffffffff))
666 for (idx = 0; idx < 6; idx++) {
667 int32_t a, b;
670 * vcpu_assoc[] will contain the associativity domains for tcpu,
671 * including tcpu->node_id and procno, meaning that we don't
672 * need to use these variables here.
674 * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
675 * macro. The ternary will fill the remaining registers with -1
676 * after we went through vcpu_assoc[].
678 a = assoc_idx < vcpu_assoc_size ?
679 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
680 b = assoc_idx < vcpu_assoc_size ?
681 be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
683 args[idx] = ASSOCIATIVITY(a, b);
685 #undef ASSOCIATIVITY
687 return H_SUCCESS;
690 static void spapr_numa_register_types(void)
692 /* Virtual Processor Home Node */
693 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
694 h_home_node_associativity);
697 type_init(spapr_numa_register_types)