target/arm: Move get_phys_addr_v6 to ptw.c
[qemu/rayw.git] / target / arm / helper.c
blob4a588220250a286320b160b4650c99add783e18e
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 #include "cpregs.h"
40 #include "ptw.h"
42 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
44 static void switch_mode(CPUARMState *env, int mode);
46 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
48 assert(ri->fieldoffset);
49 if (cpreg_field_is_64bit(ri)) {
50 return CPREG_FIELD64(env, ri);
51 } else {
52 return CPREG_FIELD32(env, ri);
56 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
57 uint64_t value)
59 assert(ri->fieldoffset);
60 if (cpreg_field_is_64bit(ri)) {
61 CPREG_FIELD64(env, ri) = value;
62 } else {
63 CPREG_FIELD32(env, ri) = value;
67 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
69 return (char *)env + ri->fieldoffset;
72 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
74 /* Raw read of a coprocessor register (as needed for migration, etc). */
75 if (ri->type & ARM_CP_CONST) {
76 return ri->resetvalue;
77 } else if (ri->raw_readfn) {
78 return ri->raw_readfn(env, ri);
79 } else if (ri->readfn) {
80 return ri->readfn(env, ri);
81 } else {
82 return raw_read(env, ri);
86 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
87 uint64_t v)
89 /* Raw write of a coprocessor register (as needed for migration, etc).
90 * Note that constant registers are treated as write-ignored; the
91 * caller should check for success by whether a readback gives the
92 * value written.
94 if (ri->type & ARM_CP_CONST) {
95 return;
96 } else if (ri->raw_writefn) {
97 ri->raw_writefn(env, ri, v);
98 } else if (ri->writefn) {
99 ri->writefn(env, ri, v);
100 } else {
101 raw_write(env, ri, v);
105 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
107 /* Return true if the regdef would cause an assertion if you called
108 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
109 * program bug for it not to have the NO_RAW flag).
110 * NB that returning false here doesn't necessarily mean that calling
111 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
112 * read/write access functions which are safe for raw use" from "has
113 * read/write access functions which have side effects but has forgotten
114 * to provide raw access functions".
115 * The tests here line up with the conditions in read/write_raw_cp_reg()
116 * and assertions in raw_read()/raw_write().
118 if ((ri->type & ARM_CP_CONST) ||
119 ri->fieldoffset ||
120 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
121 return false;
123 return true;
126 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
128 /* Write the coprocessor state from cpu->env to the (index,value) list. */
129 int i;
130 bool ok = true;
132 for (i = 0; i < cpu->cpreg_array_len; i++) {
133 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
134 const ARMCPRegInfo *ri;
135 uint64_t newval;
137 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
138 if (!ri) {
139 ok = false;
140 continue;
142 if (ri->type & ARM_CP_NO_RAW) {
143 continue;
146 newval = read_raw_cp_reg(&cpu->env, ri);
147 if (kvm_sync) {
149 * Only sync if the previous list->cpustate sync succeeded.
150 * Rather than tracking the success/failure state for every
151 * item in the list, we just recheck "does the raw write we must
152 * have made in write_list_to_cpustate() read back OK" here.
154 uint64_t oldval = cpu->cpreg_values[i];
156 if (oldval == newval) {
157 continue;
160 write_raw_cp_reg(&cpu->env, ri, oldval);
161 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
162 continue;
165 write_raw_cp_reg(&cpu->env, ri, newval);
167 cpu->cpreg_values[i] = newval;
169 return ok;
172 bool write_list_to_cpustate(ARMCPU *cpu)
174 int i;
175 bool ok = true;
177 for (i = 0; i < cpu->cpreg_array_len; i++) {
178 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
179 uint64_t v = cpu->cpreg_values[i];
180 const ARMCPRegInfo *ri;
182 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
183 if (!ri) {
184 ok = false;
185 continue;
187 if (ri->type & ARM_CP_NO_RAW) {
188 continue;
190 /* Write value and confirm it reads back as written
191 * (to catch read-only registers and partially read-only
192 * registers where the incoming migration value doesn't match)
194 write_raw_cp_reg(&cpu->env, ri, v);
195 if (read_raw_cp_reg(&cpu->env, ri) != v) {
196 ok = false;
199 return ok;
202 static void add_cpreg_to_list(gpointer key, gpointer opaque)
204 ARMCPU *cpu = opaque;
205 uint32_t regidx = (uintptr_t)key;
206 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
208 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
209 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
210 /* The value array need not be initialized at this point */
211 cpu->cpreg_array_len++;
215 static void count_cpreg(gpointer key, gpointer opaque)
217 ARMCPU *cpu = opaque;
218 const ARMCPRegInfo *ri;
220 ri = g_hash_table_lookup(cpu->cp_regs, key);
222 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
223 cpu->cpreg_array_len++;
227 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
229 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
230 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
232 if (aidx > bidx) {
233 return 1;
235 if (aidx < bidx) {
236 return -1;
238 return 0;
241 void init_cpreg_list(ARMCPU *cpu)
243 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
244 * Note that we require cpreg_tuples[] to be sorted by key ID.
246 GList *keys;
247 int arraylen;
249 keys = g_hash_table_get_keys(cpu->cp_regs);
250 keys = g_list_sort(keys, cpreg_key_compare);
252 cpu->cpreg_array_len = 0;
254 g_list_foreach(keys, count_cpreg, cpu);
256 arraylen = cpu->cpreg_array_len;
257 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
258 cpu->cpreg_values = g_new(uint64_t, arraylen);
259 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
260 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
261 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
262 cpu->cpreg_array_len = 0;
264 g_list_foreach(keys, add_cpreg_to_list, cpu);
266 assert(cpu->cpreg_array_len == arraylen);
268 g_list_free(keys);
272 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
274 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
275 const ARMCPRegInfo *ri,
276 bool isread)
278 if (!is_a64(env) && arm_current_el(env) == 3 &&
279 arm_is_secure_below_el3(env)) {
280 return CP_ACCESS_TRAP_UNCATEGORIZED;
282 return CP_ACCESS_OK;
285 /* Some secure-only AArch32 registers trap to EL3 if used from
286 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
287 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
288 * We assume that the .access field is set to PL1_RW.
290 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
291 const ARMCPRegInfo *ri,
292 bool isread)
294 if (arm_current_el(env) == 3) {
295 return CP_ACCESS_OK;
297 if (arm_is_secure_below_el3(env)) {
298 if (env->cp15.scr_el3 & SCR_EEL2) {
299 return CP_ACCESS_TRAP_EL2;
301 return CP_ACCESS_TRAP_EL3;
303 /* This will be EL1 NS and EL2 NS, which just UNDEF */
304 return CP_ACCESS_TRAP_UNCATEGORIZED;
307 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
309 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
312 /* Check for traps to "powerdown debug" registers, which are controlled
313 * by MDCR.TDOSA
315 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
316 bool isread)
318 int el = arm_current_el(env);
319 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
320 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
321 (arm_hcr_el2_eff(env) & HCR_TGE);
323 if (el < 2 && mdcr_el2_tdosa) {
324 return CP_ACCESS_TRAP_EL2;
326 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
327 return CP_ACCESS_TRAP_EL3;
329 return CP_ACCESS_OK;
332 /* Check for traps to "debug ROM" registers, which are controlled
333 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
335 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
336 bool isread)
338 int el = arm_current_el(env);
339 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
340 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
341 (arm_hcr_el2_eff(env) & HCR_TGE);
343 if (el < 2 && mdcr_el2_tdra) {
344 return CP_ACCESS_TRAP_EL2;
346 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
347 return CP_ACCESS_TRAP_EL3;
349 return CP_ACCESS_OK;
352 /* Check for traps to general debug registers, which are controlled
353 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
355 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
356 bool isread)
358 int el = arm_current_el(env);
359 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
360 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
361 (arm_hcr_el2_eff(env) & HCR_TGE);
363 if (el < 2 && mdcr_el2_tda) {
364 return CP_ACCESS_TRAP_EL2;
366 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
367 return CP_ACCESS_TRAP_EL3;
369 return CP_ACCESS_OK;
372 /* Check for traps to performance monitor registers, which are controlled
373 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
375 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
376 bool isread)
378 int el = arm_current_el(env);
379 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
381 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
382 return CP_ACCESS_TRAP_EL2;
384 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
385 return CP_ACCESS_TRAP_EL3;
387 return CP_ACCESS_OK;
390 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
391 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
392 bool isread)
394 if (arm_current_el(env) == 1) {
395 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
396 if (arm_hcr_el2_eff(env) & trap) {
397 return CP_ACCESS_TRAP_EL2;
400 return CP_ACCESS_OK;
403 /* Check for traps from EL1 due to HCR_EL2.TSW. */
404 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
405 bool isread)
407 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
408 return CP_ACCESS_TRAP_EL2;
410 return CP_ACCESS_OK;
413 /* Check for traps from EL1 due to HCR_EL2.TACR. */
414 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
415 bool isread)
417 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
418 return CP_ACCESS_TRAP_EL2;
420 return CP_ACCESS_OK;
423 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
424 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
425 bool isread)
427 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
428 return CP_ACCESS_TRAP_EL2;
430 return CP_ACCESS_OK;
433 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
435 ARMCPU *cpu = env_archcpu(env);
437 raw_write(env, ri, value);
438 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
441 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
443 ARMCPU *cpu = env_archcpu(env);
445 if (raw_read(env, ri) != value) {
446 /* Unlike real hardware the qemu TLB uses virtual addresses,
447 * not modified virtual addresses, so this causes a TLB flush.
449 tlb_flush(CPU(cpu));
450 raw_write(env, ri, value);
454 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
455 uint64_t value)
457 ARMCPU *cpu = env_archcpu(env);
459 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
460 && !extended_addresses_enabled(env)) {
461 /* For VMSA (when not using the LPAE long descriptor page table
462 * format) this register includes the ASID, so do a TLB flush.
463 * For PMSA it is purely a process ID and no action is needed.
465 tlb_flush(CPU(cpu));
467 raw_write(env, ri, value);
470 /* IS variants of TLB operations must affect all cores */
471 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
472 uint64_t value)
474 CPUState *cs = env_cpu(env);
476 tlb_flush_all_cpus_synced(cs);
479 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
480 uint64_t value)
482 CPUState *cs = env_cpu(env);
484 tlb_flush_all_cpus_synced(cs);
487 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
488 uint64_t value)
490 CPUState *cs = env_cpu(env);
492 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
495 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
496 uint64_t value)
498 CPUState *cs = env_cpu(env);
500 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
504 * Non-IS variants of TLB operations are upgraded to
505 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
506 * force broadcast of these operations.
508 static bool tlb_force_broadcast(CPUARMState *env)
510 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
513 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
514 uint64_t value)
516 /* Invalidate all (TLBIALL) */
517 CPUState *cs = env_cpu(env);
519 if (tlb_force_broadcast(env)) {
520 tlb_flush_all_cpus_synced(cs);
521 } else {
522 tlb_flush(cs);
526 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
527 uint64_t value)
529 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
530 CPUState *cs = env_cpu(env);
532 value &= TARGET_PAGE_MASK;
533 if (tlb_force_broadcast(env)) {
534 tlb_flush_page_all_cpus_synced(cs, value);
535 } else {
536 tlb_flush_page(cs, value);
540 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
541 uint64_t value)
543 /* Invalidate by ASID (TLBIASID) */
544 CPUState *cs = env_cpu(env);
546 if (tlb_force_broadcast(env)) {
547 tlb_flush_all_cpus_synced(cs);
548 } else {
549 tlb_flush(cs);
553 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
554 uint64_t value)
556 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
557 CPUState *cs = env_cpu(env);
559 value &= TARGET_PAGE_MASK;
560 if (tlb_force_broadcast(env)) {
561 tlb_flush_page_all_cpus_synced(cs, value);
562 } else {
563 tlb_flush_page(cs, value);
567 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
568 uint64_t value)
570 CPUState *cs = env_cpu(env);
572 tlb_flush_by_mmuidx(cs,
573 ARMMMUIdxBit_E10_1 |
574 ARMMMUIdxBit_E10_1_PAN |
575 ARMMMUIdxBit_E10_0);
578 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579 uint64_t value)
581 CPUState *cs = env_cpu(env);
583 tlb_flush_by_mmuidx_all_cpus_synced(cs,
584 ARMMMUIdxBit_E10_1 |
585 ARMMMUIdxBit_E10_1_PAN |
586 ARMMMUIdxBit_E10_0);
590 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 uint64_t value)
593 CPUState *cs = env_cpu(env);
595 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
598 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
599 uint64_t value)
601 CPUState *cs = env_cpu(env);
603 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
606 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
609 CPUState *cs = env_cpu(env);
610 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
612 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
615 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
616 uint64_t value)
618 CPUState *cs = env_cpu(env);
619 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
621 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
622 ARMMMUIdxBit_E2);
625 static const ARMCPRegInfo cp_reginfo[] = {
626 /* Define the secure and non-secure FCSE identifier CP registers
627 * separately because there is no secure bank in V8 (no _EL3). This allows
628 * the secure register to be properly reset and migrated. There is also no
629 * v8 EL1 version of the register so the non-secure instance stands alone.
631 { .name = "FCSEIDR",
632 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
633 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
634 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
635 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
636 { .name = "FCSEIDR_S",
637 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
638 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
639 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
640 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
641 /* Define the secure and non-secure context identifier CP registers
642 * separately because there is no secure bank in V8 (no _EL3). This allows
643 * the secure register to be properly reset and migrated. In the
644 * non-secure case, the 32-bit register will have reset and migration
645 * disabled during registration as it is handled by the 64-bit instance.
647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
649 .access = PL1_RW, .accessfn = access_tvm_trvm,
650 .secure = ARM_CP_SECSTATE_NS,
651 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
652 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
653 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
655 .access = PL1_RW, .accessfn = access_tvm_trvm,
656 .secure = ARM_CP_SECSTATE_S,
657 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
658 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
661 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
662 /* NB: Some of these registers exist in v8 but with more precise
663 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
665 /* MMU Domain access control / MPU write buffer control */
666 { .name = "DACR",
667 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
668 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
669 .writefn = dacr_write, .raw_writefn = raw_write,
670 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
671 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
672 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
673 * For v6 and v5, these mappings are overly broad.
675 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
676 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
677 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
678 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
683 /* Cache maintenance ops; some of this space may be overridden later. */
684 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
685 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
686 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
689 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
690 /* Not all pre-v6 cores implemented this WFI, so this is slightly
691 * over-broad.
693 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
694 .access = PL1_W, .type = ARM_CP_WFI },
697 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
698 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
699 * is UNPREDICTABLE; we choose to NOP as most implementations do).
701 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
702 .access = PL1_W, .type = ARM_CP_WFI },
703 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
704 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
705 * OMAPCP will override this space.
707 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
708 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
709 .resetvalue = 0 },
710 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
711 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
712 .resetvalue = 0 },
713 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
714 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
715 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
716 .resetvalue = 0 },
717 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
718 * implementing it as RAZ means the "debug architecture version" bits
719 * will read as a reserved value, which should cause Linux to not try
720 * to use the debug hardware.
722 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
723 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
724 /* MMU TLB control. Note that the wildcarding means we cover not just
725 * the unified TLB ops but also the dside/iside/inner-shareable variants.
727 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
728 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
729 .type = ARM_CP_NO_RAW },
730 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
731 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
732 .type = ARM_CP_NO_RAW },
733 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
734 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
735 .type = ARM_CP_NO_RAW },
736 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
737 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
738 .type = ARM_CP_NO_RAW },
739 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
740 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
741 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
742 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
745 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
746 uint64_t value)
748 uint32_t mask = 0;
750 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
751 if (!arm_feature(env, ARM_FEATURE_V8)) {
752 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
753 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
754 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
756 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
757 /* VFP coprocessor: cp10 & cp11 [23:20] */
758 mask |= R_CPACR_ASEDIS_MASK |
759 R_CPACR_D32DIS_MASK |
760 R_CPACR_CP11_MASK |
761 R_CPACR_CP10_MASK;
763 if (!arm_feature(env, ARM_FEATURE_NEON)) {
764 /* ASEDIS [31] bit is RAO/WI */
765 value |= R_CPACR_ASEDIS_MASK;
768 /* VFPv3 and upwards with NEON implement 32 double precision
769 * registers (D0-D31).
771 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
772 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
773 value |= R_CPACR_D32DIS_MASK;
776 value &= mask;
780 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
781 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
783 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
784 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
785 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
786 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
789 env->cp15.cpacr_el1 = value;
792 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
795 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
796 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
798 uint64_t value = env->cp15.cpacr_el1;
800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
801 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
802 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
804 return value;
808 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
810 /* Call cpacr_write() so that we reset with the correct RAO bits set
811 * for our CPU features.
813 cpacr_write(env, ri, 0);
816 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
817 bool isread)
819 if (arm_feature(env, ARM_FEATURE_V8)) {
820 /* Check if CPACR accesses are to be trapped to EL2 */
821 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
822 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
823 return CP_ACCESS_TRAP_EL2;
824 /* Check if CPACR accesses are to be trapped to EL3 */
825 } else if (arm_current_el(env) < 3 &&
826 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
827 return CP_ACCESS_TRAP_EL3;
831 return CP_ACCESS_OK;
834 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
835 bool isread)
837 /* Check if CPTR accesses are set to trap to EL3 */
838 if (arm_current_el(env) == 2 &&
839 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
840 return CP_ACCESS_TRAP_EL3;
843 return CP_ACCESS_OK;
846 static const ARMCPRegInfo v6_cp_reginfo[] = {
847 /* prefetch by MVA in v6, NOP in v7 */
848 { .name = "MVA_prefetch",
849 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
850 .access = PL1_W, .type = ARM_CP_NOP },
851 /* We need to break the TB after ISB to execute self-modifying code
852 * correctly and also to take any pending interrupts immediately.
853 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
856 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
857 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
858 .access = PL0_W, .type = ARM_CP_NOP },
859 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
860 .access = PL0_W, .type = ARM_CP_NOP },
861 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
862 .access = PL1_RW, .accessfn = access_tvm_trvm,
863 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
864 offsetof(CPUARMState, cp15.ifar_ns) },
865 .resetvalue = 0, },
866 /* Watchpoint Fault Address Register : should actually only be present
867 * for 1136, 1176, 11MPCore.
869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
877 typedef struct pm_event {
878 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880 bool (*supported)(CPUARMState *);
882 * Retrieve the current count of the underlying event. The programmed
883 * counters hold a difference from the return value from this function
885 uint64_t (*get_count)(CPUARMState *);
887 * Return how many nanoseconds it will take (at a minimum) for count events
888 * to occur. A negative value indicates the counter will never overflow, or
889 * that the counter has otherwise arranged for the overflow bit to be set
890 * and the PMU interrupt to be raised on overflow.
892 int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
895 static bool event_always_supported(CPUARMState *env)
897 return true;
900 static uint64_t swinc_get_count(CPUARMState *env)
903 * SW_INCR events are written directly to the pmevcntr's by writes to
904 * PMSWINC, so there is no underlying count maintained by the PMU itself
906 return 0;
909 static int64_t swinc_ns_per(uint64_t ignored)
911 return -1;
915 * Return the underlying cycle count for the PMU cycle counters. If we're in
916 * usermode, simply return 0.
918 static uint64_t cycles_get_count(CPUARMState *env)
920 #ifndef CONFIG_USER_ONLY
921 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924 return cpu_get_host_ticks();
925 #endif
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
931 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
934 static bool instructions_supported(CPUARMState *env)
936 return icount_enabled() == 1; /* Precise instruction counting */
939 static uint64_t instructions_get_count(CPUARMState *env)
941 return (uint64_t)icount_get_raw();
944 static int64_t instructions_ns_per(uint64_t icount)
946 return icount_to_ns((int64_t)icount);
948 #endif
950 static bool pmu_8_1_events_supported(CPUARMState *env)
952 /* For events which are supported in any v8.1 PMU */
953 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
956 static bool pmu_8_4_events_supported(CPUARMState *env)
958 /* For events which are supported in any v8.1 PMU */
959 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
962 static uint64_t zero_event_get_count(CPUARMState *env)
964 /* For events which on QEMU never fire, so their count is always zero */
965 return 0;
968 static int64_t zero_event_ns_per(uint64_t cycles)
970 /* An event which never fires can never overflow */
971 return -1;
974 static const pm_event pm_events[] = {
975 { .number = 0x000, /* SW_INCR */
976 .supported = event_always_supported,
977 .get_count = swinc_get_count,
978 .ns_per_count = swinc_ns_per,
980 #ifndef CONFIG_USER_ONLY
981 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982 .supported = instructions_supported,
983 .get_count = instructions_get_count,
984 .ns_per_count = instructions_ns_per,
986 { .number = 0x011, /* CPU_CYCLES, Cycle */
987 .supported = event_always_supported,
988 .get_count = cycles_get_count,
989 .ns_per_count = cycles_ns_per,
991 #endif
992 { .number = 0x023, /* STALL_FRONTEND */
993 .supported = pmu_8_1_events_supported,
994 .get_count = zero_event_get_count,
995 .ns_per_count = zero_event_ns_per,
997 { .number = 0x024, /* STALL_BACKEND */
998 .supported = pmu_8_1_events_supported,
999 .get_count = zero_event_get_count,
1000 .ns_per_count = zero_event_ns_per,
1002 { .number = 0x03c, /* STALL */
1003 .supported = pmu_8_4_events_supported,
1004 .get_count = zero_event_get_count,
1005 .ns_per_count = zero_event_ns_per,
1010 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011 * events (i.e. the statistical profiling extension), this implementation
1012 * should first be updated to something sparse instead of the current
1013 * supported_event_map[] array.
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1020 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021 * of ARM event numbers to indices in our pm_events array.
1023 * Note: Events in the 0x40XX range are not currently supported.
1025 void pmu_init(ARMCPU *cpu)
1027 unsigned int i;
1030 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031 * events to them
1033 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034 supported_event_map[i] = UNSUPPORTED_EVENT;
1036 cpu->pmceid0 = 0;
1037 cpu->pmceid1 = 0;
1039 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040 const pm_event *cnt = &pm_events[i];
1041 assert(cnt->number <= MAX_EVENT_ID);
1042 /* We do not currently support events in the 0x40xx range */
1043 assert(cnt->number <= 0x3f);
1045 if (cnt->supported(&cpu->env)) {
1046 supported_event_map[cnt->number] = i;
1047 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048 if (cnt->number & 0x20) {
1049 cpu->pmceid1 |= event_mask;
1050 } else {
1051 cpu->pmceid0 |= event_mask;
1058 * Check at runtime whether a PMU event is supported for the current machine
1060 static bool event_supported(uint16_t number)
1062 if (number > MAX_EVENT_ID) {
1063 return false;
1065 return supported_event_map[number] != UNSUPPORTED_EVENT;
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069 bool isread)
1071 /* Performance monitor registers user accessibility is controlled
1072 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1073 * trapping to EL2 or EL3 for other accesses.
1075 int el = arm_current_el(env);
1076 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1079 return CP_ACCESS_TRAP;
1081 if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1082 return CP_ACCESS_TRAP_EL2;
1084 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1085 return CP_ACCESS_TRAP_EL3;
1088 return CP_ACCESS_OK;
1091 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1092 const ARMCPRegInfo *ri,
1093 bool isread)
1095 /* ER: event counter read trap control */
1096 if (arm_feature(env, ARM_FEATURE_V8)
1097 && arm_current_el(env) == 0
1098 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1099 && isread) {
1100 return CP_ACCESS_OK;
1103 return pmreg_access(env, ri, isread);
1106 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1107 const ARMCPRegInfo *ri,
1108 bool isread)
1110 /* SW: software increment write trap control */
1111 if (arm_feature(env, ARM_FEATURE_V8)
1112 && arm_current_el(env) == 0
1113 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1114 && !isread) {
1115 return CP_ACCESS_OK;
1118 return pmreg_access(env, ri, isread);
1121 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1122 const ARMCPRegInfo *ri,
1123 bool isread)
1125 /* ER: event counter read trap control */
1126 if (arm_feature(env, ARM_FEATURE_V8)
1127 && arm_current_el(env) == 0
1128 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1129 return CP_ACCESS_OK;
1132 return pmreg_access(env, ri, isread);
1135 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1136 const ARMCPRegInfo *ri,
1137 bool isread)
1139 /* CR: cycle counter read trap control */
1140 if (arm_feature(env, ARM_FEATURE_V8)
1141 && arm_current_el(env) == 0
1142 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1143 && isread) {
1144 return CP_ACCESS_OK;
1147 return pmreg_access(env, ri, isread);
1150 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1151 * the current EL, security state, and register configuration.
1153 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1155 uint64_t filter;
1156 bool e, p, u, nsk, nsu, nsh, m;
1157 bool enabled, prohibited, filtered;
1158 bool secure = arm_is_secure(env);
1159 int el = arm_current_el(env);
1160 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1161 uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1163 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1164 return false;
1167 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1168 (counter < hpmn || counter == 31)) {
1169 e = env->cp15.c9_pmcr & PMCRE;
1170 } else {
1171 e = mdcr_el2 & MDCR_HPME;
1173 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1175 if (!secure) {
1176 if (el == 2 && (counter < hpmn || counter == 31)) {
1177 prohibited = mdcr_el2 & MDCR_HPMD;
1178 } else {
1179 prohibited = false;
1181 } else {
1182 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1183 !(env->cp15.mdcr_el3 & MDCR_SPME);
1186 if (prohibited && counter == 31) {
1187 prohibited = env->cp15.c9_pmcr & PMCRDP;
1190 if (counter == 31) {
1191 filter = env->cp15.pmccfiltr_el0;
1192 } else {
1193 filter = env->cp15.c14_pmevtyper[counter];
1196 p = filter & PMXEVTYPER_P;
1197 u = filter & PMXEVTYPER_U;
1198 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1199 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1200 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1201 m = arm_el_is_aa64(env, 1) &&
1202 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1204 if (el == 0) {
1205 filtered = secure ? u : u != nsu;
1206 } else if (el == 1) {
1207 filtered = secure ? p : p != nsk;
1208 } else if (el == 2) {
1209 filtered = !nsh;
1210 } else { /* EL3 */
1211 filtered = m != p;
1214 if (counter != 31) {
1216 * If not checking PMCCNTR, ensure the counter is setup to an event we
1217 * support
1219 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1220 if (!event_supported(event)) {
1221 return false;
1225 return enabled && !prohibited && !filtered;
1228 static void pmu_update_irq(CPUARMState *env)
1230 ARMCPU *cpu = env_archcpu(env);
1231 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1232 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1236 * Ensure c15_ccnt is the guest-visible count so that operations such as
1237 * enabling/disabling the counter or filtering, modifying the count itself,
1238 * etc. can be done logically. This is essentially a no-op if the counter is
1239 * not enabled at the time of the call.
1241 static void pmccntr_op_start(CPUARMState *env)
1243 uint64_t cycles = cycles_get_count(env);
1245 if (pmu_counter_enabled(env, 31)) {
1246 uint64_t eff_cycles = cycles;
1247 if (env->cp15.c9_pmcr & PMCRD) {
1248 /* Increment once every 64 processor clock cycles */
1249 eff_cycles /= 64;
1252 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1254 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1255 1ull << 63 : 1ull << 31;
1256 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1257 env->cp15.c9_pmovsr |= (1 << 31);
1258 pmu_update_irq(env);
1261 env->cp15.c15_ccnt = new_pmccntr;
1263 env->cp15.c15_ccnt_delta = cycles;
1267 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1268 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1269 * pmccntr_op_start.
1271 static void pmccntr_op_finish(CPUARMState *env)
1273 if (pmu_counter_enabled(env, 31)) {
1274 #ifndef CONFIG_USER_ONLY
1275 /* Calculate when the counter will next overflow */
1276 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1277 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1278 remaining_cycles = (uint32_t)remaining_cycles;
1280 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1282 if (overflow_in > 0) {
1283 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1284 overflow_in;
1285 ARMCPU *cpu = env_archcpu(env);
1286 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1288 #endif
1290 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1291 if (env->cp15.c9_pmcr & PMCRD) {
1292 /* Increment once every 64 processor clock cycles */
1293 prev_cycles /= 64;
1295 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1299 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1302 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1303 uint64_t count = 0;
1304 if (event_supported(event)) {
1305 uint16_t event_idx = supported_event_map[event];
1306 count = pm_events[event_idx].get_count(env);
1309 if (pmu_counter_enabled(env, counter)) {
1310 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1312 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1313 env->cp15.c9_pmovsr |= (1 << counter);
1314 pmu_update_irq(env);
1316 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1318 env->cp15.c14_pmevcntr_delta[counter] = count;
1321 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1323 if (pmu_counter_enabled(env, counter)) {
1324 #ifndef CONFIG_USER_ONLY
1325 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1326 uint16_t event_idx = supported_event_map[event];
1327 uint64_t delta = UINT32_MAX -
1328 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1329 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1331 if (overflow_in > 0) {
1332 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1333 overflow_in;
1334 ARMCPU *cpu = env_archcpu(env);
1335 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1337 #endif
1339 env->cp15.c14_pmevcntr_delta[counter] -=
1340 env->cp15.c14_pmevcntr[counter];
1344 void pmu_op_start(CPUARMState *env)
1346 unsigned int i;
1347 pmccntr_op_start(env);
1348 for (i = 0; i < pmu_num_counters(env); i++) {
1349 pmevcntr_op_start(env, i);
1353 void pmu_op_finish(CPUARMState *env)
1355 unsigned int i;
1356 pmccntr_op_finish(env);
1357 for (i = 0; i < pmu_num_counters(env); i++) {
1358 pmevcntr_op_finish(env, i);
1362 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1364 pmu_op_start(&cpu->env);
1367 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1369 pmu_op_finish(&cpu->env);
1372 void arm_pmu_timer_cb(void *opaque)
1374 ARMCPU *cpu = opaque;
1377 * Update all the counter values based on the current underlying counts,
1378 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1379 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1380 * counter may expire.
1382 pmu_op_start(&cpu->env);
1383 pmu_op_finish(&cpu->env);
1386 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1387 uint64_t value)
1389 pmu_op_start(env);
1391 if (value & PMCRC) {
1392 /* The counter has been reset */
1393 env->cp15.c15_ccnt = 0;
1396 if (value & PMCRP) {
1397 unsigned int i;
1398 for (i = 0; i < pmu_num_counters(env); i++) {
1399 env->cp15.c14_pmevcntr[i] = 0;
1403 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1404 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1406 pmu_op_finish(env);
1409 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1410 uint64_t value)
1412 unsigned int i;
1413 for (i = 0; i < pmu_num_counters(env); i++) {
1414 /* Increment a counter's count iff: */
1415 if ((value & (1 << i)) && /* counter's bit is set */
1416 /* counter is enabled and not filtered */
1417 pmu_counter_enabled(env, i) &&
1418 /* counter is SW_INCR */
1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1420 pmevcntr_op_start(env, i);
1423 * Detect if this write causes an overflow since we can't predict
1424 * PMSWINC overflows like we can for other events
1426 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1428 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1429 env->cp15.c9_pmovsr |= (1 << i);
1430 pmu_update_irq(env);
1433 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1435 pmevcntr_op_finish(env, i);
1440 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1442 uint64_t ret;
1443 pmccntr_op_start(env);
1444 ret = env->cp15.c15_ccnt;
1445 pmccntr_op_finish(env);
1446 return ret;
1449 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 uint64_t value)
1452 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1453 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1454 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1455 * accessed.
1457 env->cp15.c9_pmselr = value & 0x1f;
1460 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461 uint64_t value)
1463 pmccntr_op_start(env);
1464 env->cp15.c15_ccnt = value;
1465 pmccntr_op_finish(env);
1468 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1469 uint64_t value)
1471 uint64_t cur_val = pmccntr_read(env, NULL);
1473 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1476 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477 uint64_t value)
1479 pmccntr_op_start(env);
1480 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1481 pmccntr_op_finish(env);
1484 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1485 uint64_t value)
1487 pmccntr_op_start(env);
1488 /* M is not accessible from AArch32 */
1489 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1490 (value & PMCCFILTR);
1491 pmccntr_op_finish(env);
1494 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1496 /* M is not visible in AArch32 */
1497 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1500 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1501 uint64_t value)
1503 value &= pmu_counter_mask(env);
1504 env->cp15.c9_pmcnten |= value;
1507 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1508 uint64_t value)
1510 value &= pmu_counter_mask(env);
1511 env->cp15.c9_pmcnten &= ~value;
1514 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1515 uint64_t value)
1517 value &= pmu_counter_mask(env);
1518 env->cp15.c9_pmovsr &= ~value;
1519 pmu_update_irq(env);
1522 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523 uint64_t value)
1525 value &= pmu_counter_mask(env);
1526 env->cp15.c9_pmovsr |= value;
1527 pmu_update_irq(env);
1530 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531 uint64_t value, const uint8_t counter)
1533 if (counter == 31) {
1534 pmccfiltr_write(env, ri, value);
1535 } else if (counter < pmu_num_counters(env)) {
1536 pmevcntr_op_start(env, counter);
1539 * If this counter's event type is changing, store the current
1540 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1541 * pmevcntr_op_finish has the correct baseline when it converts back to
1542 * a delta.
1544 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1545 PMXEVTYPER_EVTCOUNT;
1546 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1547 if (old_event != new_event) {
1548 uint64_t count = 0;
1549 if (event_supported(new_event)) {
1550 uint16_t event_idx = supported_event_map[new_event];
1551 count = pm_events[event_idx].get_count(env);
1553 env->cp15.c14_pmevcntr_delta[counter] = count;
1556 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1557 pmevcntr_op_finish(env, counter);
1559 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1560 * PMSELR value is equal to or greater than the number of implemented
1561 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1565 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1566 const uint8_t counter)
1568 if (counter == 31) {
1569 return env->cp15.pmccfiltr_el0;
1570 } else if (counter < pmu_num_counters(env)) {
1571 return env->cp15.c14_pmevtyper[counter];
1572 } else {
1574 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1575 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1577 return 0;
1581 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1582 uint64_t value)
1584 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1585 pmevtyper_write(env, ri, value, counter);
1588 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1589 uint64_t value)
1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1592 env->cp15.c14_pmevtyper[counter] = value;
1595 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1596 * pmu_op_finish calls when loading saved state for a migration. Because
1597 * we're potentially updating the type of event here, the value written to
1598 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1599 * different counter type. Therefore, we need to set this value to the
1600 * current count for the counter type we're writing so that pmu_op_finish
1601 * has the correct count for its calculation.
1603 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1604 if (event_supported(event)) {
1605 uint16_t event_idx = supported_event_map[event];
1606 env->cp15.c14_pmevcntr_delta[counter] =
1607 pm_events[event_idx].get_count(env);
1611 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1613 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1614 return pmevtyper_read(env, ri, counter);
1617 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1618 uint64_t value)
1620 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1623 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1625 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1628 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1629 uint64_t value, uint8_t counter)
1631 if (counter < pmu_num_counters(env)) {
1632 pmevcntr_op_start(env, counter);
1633 env->cp15.c14_pmevcntr[counter] = value;
1634 pmevcntr_op_finish(env, counter);
1637 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1638 * are CONSTRAINED UNPREDICTABLE.
1642 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1643 uint8_t counter)
1645 if (counter < pmu_num_counters(env)) {
1646 uint64_t ret;
1647 pmevcntr_op_start(env, counter);
1648 ret = env->cp15.c14_pmevcntr[counter];
1649 pmevcntr_op_finish(env, counter);
1650 return ret;
1651 } else {
1652 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1653 * are CONSTRAINED UNPREDICTABLE. */
1654 return 0;
1658 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1659 uint64_t value)
1661 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1662 pmevcntr_write(env, ri, value, counter);
1665 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1667 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1668 return pmevcntr_read(env, ri, counter);
1671 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1672 uint64_t value)
1674 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1675 assert(counter < pmu_num_counters(env));
1676 env->cp15.c14_pmevcntr[counter] = value;
1677 pmevcntr_write(env, ri, value, counter);
1680 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1683 assert(counter < pmu_num_counters(env));
1684 return env->cp15.c14_pmevcntr[counter];
1687 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1688 uint64_t value)
1690 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1693 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1695 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1698 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1699 uint64_t value)
1701 if (arm_feature(env, ARM_FEATURE_V8)) {
1702 env->cp15.c9_pmuserenr = value & 0xf;
1703 } else {
1704 env->cp15.c9_pmuserenr = value & 1;
1708 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 uint64_t value)
1711 /* We have no event counters so only the C bit can be changed */
1712 value &= pmu_counter_mask(env);
1713 env->cp15.c9_pminten |= value;
1714 pmu_update_irq(env);
1717 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1718 uint64_t value)
1720 value &= pmu_counter_mask(env);
1721 env->cp15.c9_pminten &= ~value;
1722 pmu_update_irq(env);
1725 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726 uint64_t value)
1728 /* Note that even though the AArch64 view of this register has bits
1729 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1730 * architectural requirements for bits which are RES0 only in some
1731 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1732 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1734 raw_write(env, ri, value & ~0x1FULL);
1737 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1739 /* Begin with base v8.0 state. */
1740 uint32_t valid_mask = 0x3fff;
1741 ARMCPU *cpu = env_archcpu(env);
1743 if (ri->state == ARM_CP_STATE_AA64) {
1744 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1745 !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1746 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
1748 valid_mask &= ~SCR_NET;
1750 if (cpu_isar_feature(aa64_ras, cpu)) {
1751 valid_mask |= SCR_TERR;
1753 if (cpu_isar_feature(aa64_lor, cpu)) {
1754 valid_mask |= SCR_TLOR;
1756 if (cpu_isar_feature(aa64_pauth, cpu)) {
1757 valid_mask |= SCR_API | SCR_APK;
1759 if (cpu_isar_feature(aa64_sel2, cpu)) {
1760 valid_mask |= SCR_EEL2;
1762 if (cpu_isar_feature(aa64_mte, cpu)) {
1763 valid_mask |= SCR_ATA;
1765 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1766 valid_mask |= SCR_ENSCXT;
1768 if (cpu_isar_feature(aa64_doublefault, cpu)) {
1769 valid_mask |= SCR_EASE | SCR_NMEA;
1771 } else {
1772 valid_mask &= ~(SCR_RW | SCR_ST);
1773 if (cpu_isar_feature(aa32_ras, cpu)) {
1774 valid_mask |= SCR_TERR;
1778 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1779 valid_mask &= ~SCR_HCE;
1781 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1782 * supported if EL2 exists. The bit is UNK/SBZP when
1783 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1784 * when EL2 is unavailable.
1785 * On ARMv8, this bit is always available.
1787 if (arm_feature(env, ARM_FEATURE_V7) &&
1788 !arm_feature(env, ARM_FEATURE_V8)) {
1789 valid_mask &= ~SCR_SMD;
1793 /* Clear all-context RES0 bits. */
1794 value &= valid_mask;
1795 raw_write(env, ri, value);
1798 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1801 * scr_write will set the RES1 bits on an AArch64-only CPU.
1802 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1804 scr_write(env, ri, 0);
1807 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1808 const ARMCPRegInfo *ri,
1809 bool isread)
1811 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1812 return CP_ACCESS_TRAP_EL2;
1815 return CP_ACCESS_OK;
1818 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1820 ARMCPU *cpu = env_archcpu(env);
1822 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1823 * bank
1825 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1826 ri->secure & ARM_CP_SECSTATE_S);
1828 return cpu->ccsidr[index];
1831 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1832 uint64_t value)
1834 raw_write(env, ri, value & 0xf);
1837 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1839 CPUState *cs = env_cpu(env);
1840 bool el1 = arm_current_el(env) == 1;
1841 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1842 uint64_t ret = 0;
1844 if (hcr_el2 & HCR_IMO) {
1845 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1846 ret |= CPSR_I;
1848 } else {
1849 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1850 ret |= CPSR_I;
1854 if (hcr_el2 & HCR_FMO) {
1855 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1856 ret |= CPSR_F;
1858 } else {
1859 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1860 ret |= CPSR_F;
1864 if (hcr_el2 & HCR_AMO) {
1865 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1866 ret |= CPSR_A;
1870 return ret;
1873 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1874 bool isread)
1876 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1877 return CP_ACCESS_TRAP_EL2;
1880 return CP_ACCESS_OK;
1883 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1884 bool isread)
1886 if (arm_feature(env, ARM_FEATURE_V8)) {
1887 return access_aa64_tid1(env, ri, isread);
1890 return CP_ACCESS_OK;
1893 static const ARMCPRegInfo v7_cp_reginfo[] = {
1894 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1895 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1896 .access = PL1_W, .type = ARM_CP_NOP },
1897 /* Performance monitors are implementation defined in v7,
1898 * but with an ARM recommended set of registers, which we
1899 * follow.
1901 * Performance registers fall into three categories:
1902 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1903 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1904 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1905 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1906 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1908 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1909 .access = PL0_RW, .type = ARM_CP_ALIAS,
1910 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1911 .writefn = pmcntenset_write,
1912 .accessfn = pmreg_access,
1913 .raw_writefn = raw_write },
1914 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1915 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1916 .access = PL0_RW, .accessfn = pmreg_access,
1917 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1918 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1919 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1920 .access = PL0_RW,
1921 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1922 .accessfn = pmreg_access,
1923 .writefn = pmcntenclr_write,
1924 .type = ARM_CP_ALIAS },
1925 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1926 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1927 .access = PL0_RW, .accessfn = pmreg_access,
1928 .type = ARM_CP_ALIAS,
1929 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1930 .writefn = pmcntenclr_write },
1931 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1932 .access = PL0_RW, .type = ARM_CP_IO,
1933 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1934 .accessfn = pmreg_access,
1935 .writefn = pmovsr_write,
1936 .raw_writefn = raw_write },
1937 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1938 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1939 .access = PL0_RW, .accessfn = pmreg_access,
1940 .type = ARM_CP_ALIAS | ARM_CP_IO,
1941 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1942 .writefn = pmovsr_write,
1943 .raw_writefn = raw_write },
1944 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1945 .access = PL0_W, .accessfn = pmreg_access_swinc,
1946 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1947 .writefn = pmswinc_write },
1948 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1950 .access = PL0_W, .accessfn = pmreg_access_swinc,
1951 .type = ARM_CP_NO_RAW | ARM_CP_IO,
1952 .writefn = pmswinc_write },
1953 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1954 .access = PL0_RW, .type = ARM_CP_ALIAS,
1955 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1956 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1957 .raw_writefn = raw_write},
1958 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1960 .access = PL0_RW, .accessfn = pmreg_access_selr,
1961 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1962 .writefn = pmselr_write, .raw_writefn = raw_write, },
1963 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1964 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1965 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1966 .accessfn = pmreg_access_ccntr },
1967 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1968 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1969 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1970 .type = ARM_CP_IO,
1971 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1972 .readfn = pmccntr_read, .writefn = pmccntr_write,
1973 .raw_readfn = raw_read, .raw_writefn = raw_write, },
1974 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1975 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1976 .access = PL0_RW, .accessfn = pmreg_access,
1977 .type = ARM_CP_ALIAS | ARM_CP_IO,
1978 .resetvalue = 0, },
1979 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1980 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1981 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1982 .access = PL0_RW, .accessfn = pmreg_access,
1983 .type = ARM_CP_IO,
1984 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1985 .resetvalue = 0, },
1986 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1988 .accessfn = pmreg_access,
1989 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1990 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1991 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1992 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1993 .accessfn = pmreg_access,
1994 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1995 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1996 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1997 .accessfn = pmreg_access_xevcntr,
1998 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1999 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2000 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2001 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2002 .accessfn = pmreg_access_xevcntr,
2003 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2004 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2006 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2007 .resetvalue = 0,
2008 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2009 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2010 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2011 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2012 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2013 .resetvalue = 0,
2014 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2015 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2016 .access = PL1_RW, .accessfn = access_tpm,
2017 .type = ARM_CP_ALIAS | ARM_CP_IO,
2018 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2019 .resetvalue = 0,
2020 .writefn = pmintenset_write, .raw_writefn = raw_write },
2021 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2022 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2023 .access = PL1_RW, .accessfn = access_tpm,
2024 .type = ARM_CP_IO,
2025 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2026 .writefn = pmintenset_write, .raw_writefn = raw_write,
2027 .resetvalue = 0x0 },
2028 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2029 .access = PL1_RW, .accessfn = access_tpm,
2030 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2031 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2032 .writefn = pmintenclr_write, },
2033 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2034 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2035 .access = PL1_RW, .accessfn = access_tpm,
2036 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2037 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2038 .writefn = pmintenclr_write },
2039 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2040 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2041 .access = PL1_R,
2042 .accessfn = access_aa64_tid2,
2043 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2044 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2045 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2046 .access = PL1_RW,
2047 .accessfn = access_aa64_tid2,
2048 .writefn = csselr_write, .resetvalue = 0,
2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2050 offsetof(CPUARMState, cp15.csselr_ns) } },
2051 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2052 * just RAZ for all cores:
2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2056 .access = PL1_R, .type = ARM_CP_CONST,
2057 .accessfn = access_aa64_tid1,
2058 .resetvalue = 0 },
2059 /* Auxiliary fault status registers: these also are IMPDEF, and we
2060 * choose to RAZ/WI for all cores.
2062 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2063 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2064 .access = PL1_RW, .accessfn = access_tvm_trvm,
2065 .type = ARM_CP_CONST, .resetvalue = 0 },
2066 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2067 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2068 .access = PL1_RW, .accessfn = access_tvm_trvm,
2069 .type = ARM_CP_CONST, .resetvalue = 0 },
2070 /* MAIR can just read-as-written because we don't implement caches
2071 * and so don't need to care about memory attributes.
2073 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2074 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2075 .access = PL1_RW, .accessfn = access_tvm_trvm,
2076 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2077 .resetvalue = 0 },
2078 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2079 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2080 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2081 .resetvalue = 0 },
2082 /* For non-long-descriptor page tables these are PRRR and NMRR;
2083 * regardless they still act as reads-as-written for QEMU.
2085 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2086 * allows them to assign the correct fieldoffset based on the endianness
2087 * handled in the field definitions.
2089 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2090 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2091 .access = PL1_RW, .accessfn = access_tvm_trvm,
2092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2093 offsetof(CPUARMState, cp15.mair0_ns) },
2094 .resetfn = arm_cp_reset_ignore },
2095 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2096 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2097 .access = PL1_RW, .accessfn = access_tvm_trvm,
2098 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2099 offsetof(CPUARMState, cp15.mair1_ns) },
2100 .resetfn = arm_cp_reset_ignore },
2101 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2103 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2104 /* 32 bit ITLB invalidates */
2105 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2106 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2107 .writefn = tlbiall_write },
2108 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2109 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2110 .writefn = tlbimva_write },
2111 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2112 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2113 .writefn = tlbiasid_write },
2114 /* 32 bit DTLB invalidates */
2115 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2116 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2117 .writefn = tlbiall_write },
2118 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2119 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2120 .writefn = tlbimva_write },
2121 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2122 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2123 .writefn = tlbiasid_write },
2124 /* 32 bit TLB invalidates */
2125 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2126 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2127 .writefn = tlbiall_write },
2128 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2129 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2130 .writefn = tlbimva_write },
2131 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2132 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2133 .writefn = tlbiasid_write },
2134 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2135 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2136 .writefn = tlbimvaa_write },
2139 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2140 /* 32 bit TLB invalidates, Inner Shareable */
2141 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2142 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2143 .writefn = tlbiall_is_write },
2144 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2145 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2146 .writefn = tlbimva_is_write },
2147 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2148 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2149 .writefn = tlbiasid_is_write },
2150 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2151 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2152 .writefn = tlbimvaa_is_write },
2155 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2156 /* PMOVSSET is not implemented in v7 before v7ve */
2157 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2158 .access = PL0_RW, .accessfn = pmreg_access,
2159 .type = ARM_CP_ALIAS | ARM_CP_IO,
2160 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2161 .writefn = pmovsset_write,
2162 .raw_writefn = raw_write },
2163 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2164 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2165 .access = PL0_RW, .accessfn = pmreg_access,
2166 .type = ARM_CP_ALIAS | ARM_CP_IO,
2167 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2168 .writefn = pmovsset_write,
2169 .raw_writefn = raw_write },
2172 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2173 uint64_t value)
2175 value &= 1;
2176 env->teecr = value;
2179 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2180 bool isread)
2183 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2184 * at all, so we don't need to check whether we're v8A.
2186 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2187 (env->cp15.hstr_el2 & HSTR_TTEE)) {
2188 return CP_ACCESS_TRAP_EL2;
2190 return CP_ACCESS_OK;
2193 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2194 bool isread)
2196 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2197 return CP_ACCESS_TRAP;
2199 return teecr_access(env, ri, isread);
2202 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2203 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2204 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2205 .resetvalue = 0,
2206 .writefn = teecr_write, .accessfn = teecr_access },
2207 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2208 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2209 .accessfn = teehbr_access, .resetvalue = 0 },
2212 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2213 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2214 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2215 .access = PL0_RW,
2216 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2217 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2218 .access = PL0_RW,
2219 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2220 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2221 .resetfn = arm_cp_reset_ignore },
2222 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2223 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2224 .access = PL0_R|PL1_W,
2225 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2226 .resetvalue = 0},
2227 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2228 .access = PL0_R|PL1_W,
2229 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2230 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2231 .resetfn = arm_cp_reset_ignore },
2232 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2233 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2234 .access = PL1_RW,
2235 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2236 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2237 .access = PL1_RW,
2238 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2239 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2240 .resetvalue = 0 },
2243 #ifndef CONFIG_USER_ONLY
2245 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2246 bool isread)
2248 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2249 * Writable only at the highest implemented exception level.
2251 int el = arm_current_el(env);
2252 uint64_t hcr;
2253 uint32_t cntkctl;
2255 switch (el) {
2256 case 0:
2257 hcr = arm_hcr_el2_eff(env);
2258 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2259 cntkctl = env->cp15.cnthctl_el2;
2260 } else {
2261 cntkctl = env->cp15.c14_cntkctl;
2263 if (!extract32(cntkctl, 0, 2)) {
2264 return CP_ACCESS_TRAP;
2266 break;
2267 case 1:
2268 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2269 arm_is_secure_below_el3(env)) {
2270 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2271 return CP_ACCESS_TRAP_UNCATEGORIZED;
2273 break;
2274 case 2:
2275 case 3:
2276 break;
2279 if (!isread && el < arm_highest_el(env)) {
2280 return CP_ACCESS_TRAP_UNCATEGORIZED;
2283 return CP_ACCESS_OK;
2286 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2287 bool isread)
2289 unsigned int cur_el = arm_current_el(env);
2290 bool has_el2 = arm_is_el2_enabled(env);
2291 uint64_t hcr = arm_hcr_el2_eff(env);
2293 switch (cur_el) {
2294 case 0:
2295 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2296 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2297 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2298 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2301 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2302 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2303 return CP_ACCESS_TRAP;
2306 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2307 if (hcr & HCR_E2H) {
2308 if (timeridx == GTIMER_PHYS &&
2309 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2310 return CP_ACCESS_TRAP_EL2;
2312 } else {
2313 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2314 if (has_el2 && timeridx == GTIMER_PHYS &&
2315 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2316 return CP_ACCESS_TRAP_EL2;
2319 break;
2321 case 1:
2322 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2323 if (has_el2 && timeridx == GTIMER_PHYS &&
2324 (hcr & HCR_E2H
2325 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2326 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2327 return CP_ACCESS_TRAP_EL2;
2329 break;
2331 return CP_ACCESS_OK;
2334 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2335 bool isread)
2337 unsigned int cur_el = arm_current_el(env);
2338 bool has_el2 = arm_is_el2_enabled(env);
2339 uint64_t hcr = arm_hcr_el2_eff(env);
2341 switch (cur_el) {
2342 case 0:
2343 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2344 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2345 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2346 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2350 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2351 * EL0 if EL0[PV]TEN is zero.
2353 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2354 return CP_ACCESS_TRAP;
2356 /* fall through */
2358 case 1:
2359 if (has_el2 && timeridx == GTIMER_PHYS) {
2360 if (hcr & HCR_E2H) {
2361 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2362 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2363 return CP_ACCESS_TRAP_EL2;
2365 } else {
2366 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2367 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2368 return CP_ACCESS_TRAP_EL2;
2372 break;
2374 return CP_ACCESS_OK;
2377 static CPAccessResult gt_pct_access(CPUARMState *env,
2378 const ARMCPRegInfo *ri,
2379 bool isread)
2381 return gt_counter_access(env, GTIMER_PHYS, isread);
2384 static CPAccessResult gt_vct_access(CPUARMState *env,
2385 const ARMCPRegInfo *ri,
2386 bool isread)
2388 return gt_counter_access(env, GTIMER_VIRT, isread);
2391 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2392 bool isread)
2394 return gt_timer_access(env, GTIMER_PHYS, isread);
2397 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2398 bool isread)
2400 return gt_timer_access(env, GTIMER_VIRT, isread);
2403 static CPAccessResult gt_stimer_access(CPUARMState *env,
2404 const ARMCPRegInfo *ri,
2405 bool isread)
2407 /* The AArch64 register view of the secure physical timer is
2408 * always accessible from EL3, and configurably accessible from
2409 * Secure EL1.
2411 switch (arm_current_el(env)) {
2412 case 1:
2413 if (!arm_is_secure(env)) {
2414 return CP_ACCESS_TRAP;
2416 if (!(env->cp15.scr_el3 & SCR_ST)) {
2417 return CP_ACCESS_TRAP_EL3;
2419 return CP_ACCESS_OK;
2420 case 0:
2421 case 2:
2422 return CP_ACCESS_TRAP;
2423 case 3:
2424 return CP_ACCESS_OK;
2425 default:
2426 g_assert_not_reached();
2430 static uint64_t gt_get_countervalue(CPUARMState *env)
2432 ARMCPU *cpu = env_archcpu(env);
2434 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2437 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2439 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2441 if (gt->ctl & 1) {
2442 /* Timer enabled: calculate and set current ISTATUS, irq, and
2443 * reset timer to when ISTATUS next has to change
2445 uint64_t offset = timeridx == GTIMER_VIRT ?
2446 cpu->env.cp15.cntvoff_el2 : 0;
2447 uint64_t count = gt_get_countervalue(&cpu->env);
2448 /* Note that this must be unsigned 64 bit arithmetic: */
2449 int istatus = count - offset >= gt->cval;
2450 uint64_t nexttick;
2451 int irqstate;
2453 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2455 irqstate = (istatus && !(gt->ctl & 2));
2456 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2458 if (istatus) {
2459 /* Next transition is when count rolls back over to zero */
2460 nexttick = UINT64_MAX;
2461 } else {
2462 /* Next transition is when we hit cval */
2463 nexttick = gt->cval + offset;
2465 /* Note that the desired next expiry time might be beyond the
2466 * signed-64-bit range of a QEMUTimer -- in this case we just
2467 * set the timer for as far in the future as possible. When the
2468 * timer expires we will reset the timer for any remaining period.
2470 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2471 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2472 } else {
2473 timer_mod(cpu->gt_timer[timeridx], nexttick);
2475 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2476 } else {
2477 /* Timer disabled: ISTATUS and timer output always clear */
2478 gt->ctl &= ~4;
2479 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2480 timer_del(cpu->gt_timer[timeridx]);
2481 trace_arm_gt_recalc_disabled(timeridx);
2485 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2486 int timeridx)
2488 ARMCPU *cpu = env_archcpu(env);
2490 timer_del(cpu->gt_timer[timeridx]);
2493 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2495 return gt_get_countervalue(env);
2498 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2500 uint64_t hcr;
2502 switch (arm_current_el(env)) {
2503 case 2:
2504 hcr = arm_hcr_el2_eff(env);
2505 if (hcr & HCR_E2H) {
2506 return 0;
2508 break;
2509 case 0:
2510 hcr = arm_hcr_el2_eff(env);
2511 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2512 return 0;
2514 break;
2517 return env->cp15.cntvoff_el2;
2520 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2522 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2525 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 int timeridx,
2527 uint64_t value)
2529 trace_arm_gt_cval_write(timeridx, value);
2530 env->cp15.c14_timer[timeridx].cval = value;
2531 gt_recalc_timer(env_archcpu(env), timeridx);
2534 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2535 int timeridx)
2537 uint64_t offset = 0;
2539 switch (timeridx) {
2540 case GTIMER_VIRT:
2541 case GTIMER_HYPVIRT:
2542 offset = gt_virt_cnt_offset(env);
2543 break;
2546 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2547 (gt_get_countervalue(env) - offset));
2550 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2551 int timeridx,
2552 uint64_t value)
2554 uint64_t offset = 0;
2556 switch (timeridx) {
2557 case GTIMER_VIRT:
2558 case GTIMER_HYPVIRT:
2559 offset = gt_virt_cnt_offset(env);
2560 break;
2563 trace_arm_gt_tval_write(timeridx, value);
2564 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2565 sextract64(value, 0, 32);
2566 gt_recalc_timer(env_archcpu(env), timeridx);
2569 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2570 int timeridx,
2571 uint64_t value)
2573 ARMCPU *cpu = env_archcpu(env);
2574 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2576 trace_arm_gt_ctl_write(timeridx, value);
2577 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2578 if ((oldval ^ value) & 1) {
2579 /* Enable toggled */
2580 gt_recalc_timer(cpu, timeridx);
2581 } else if ((oldval ^ value) & 2) {
2582 /* IMASK toggled: don't need to recalculate,
2583 * just set the interrupt line based on ISTATUS
2585 int irqstate = (oldval & 4) && !(value & 2);
2587 trace_arm_gt_imask_toggle(timeridx, irqstate);
2588 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2592 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2594 gt_timer_reset(env, ri, GTIMER_PHYS);
2597 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2598 uint64_t value)
2600 gt_cval_write(env, ri, GTIMER_PHYS, value);
2603 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2605 return gt_tval_read(env, ri, GTIMER_PHYS);
2608 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609 uint64_t value)
2611 gt_tval_write(env, ri, GTIMER_PHYS, value);
2614 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615 uint64_t value)
2617 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2620 static int gt_phys_redir_timeridx(CPUARMState *env)
2622 switch (arm_mmu_idx(env)) {
2623 case ARMMMUIdx_E20_0:
2624 case ARMMMUIdx_E20_2:
2625 case ARMMMUIdx_E20_2_PAN:
2626 case ARMMMUIdx_SE20_0:
2627 case ARMMMUIdx_SE20_2:
2628 case ARMMMUIdx_SE20_2_PAN:
2629 return GTIMER_HYP;
2630 default:
2631 return GTIMER_PHYS;
2635 static int gt_virt_redir_timeridx(CPUARMState *env)
2637 switch (arm_mmu_idx(env)) {
2638 case ARMMMUIdx_E20_0:
2639 case ARMMMUIdx_E20_2:
2640 case ARMMMUIdx_E20_2_PAN:
2641 case ARMMMUIdx_SE20_0:
2642 case ARMMMUIdx_SE20_2:
2643 case ARMMMUIdx_SE20_2_PAN:
2644 return GTIMER_HYPVIRT;
2645 default:
2646 return GTIMER_VIRT;
2650 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2651 const ARMCPRegInfo *ri)
2653 int timeridx = gt_phys_redir_timeridx(env);
2654 return env->cp15.c14_timer[timeridx].cval;
2657 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2658 uint64_t value)
2660 int timeridx = gt_phys_redir_timeridx(env);
2661 gt_cval_write(env, ri, timeridx, value);
2664 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2665 const ARMCPRegInfo *ri)
2667 int timeridx = gt_phys_redir_timeridx(env);
2668 return gt_tval_read(env, ri, timeridx);
2671 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2672 uint64_t value)
2674 int timeridx = gt_phys_redir_timeridx(env);
2675 gt_tval_write(env, ri, timeridx, value);
2678 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2679 const ARMCPRegInfo *ri)
2681 int timeridx = gt_phys_redir_timeridx(env);
2682 return env->cp15.c14_timer[timeridx].ctl;
2685 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2686 uint64_t value)
2688 int timeridx = gt_phys_redir_timeridx(env);
2689 gt_ctl_write(env, ri, timeridx, value);
2692 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2694 gt_timer_reset(env, ri, GTIMER_VIRT);
2697 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2698 uint64_t value)
2700 gt_cval_write(env, ri, GTIMER_VIRT, value);
2703 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2705 return gt_tval_read(env, ri, GTIMER_VIRT);
2708 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2709 uint64_t value)
2711 gt_tval_write(env, ri, GTIMER_VIRT, value);
2714 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 uint64_t value)
2717 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2720 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721 uint64_t value)
2723 ARMCPU *cpu = env_archcpu(env);
2725 trace_arm_gt_cntvoff_write(value);
2726 raw_write(env, ri, value);
2727 gt_recalc_timer(cpu, GTIMER_VIRT);
2730 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2731 const ARMCPRegInfo *ri)
2733 int timeridx = gt_virt_redir_timeridx(env);
2734 return env->cp15.c14_timer[timeridx].cval;
2737 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2738 uint64_t value)
2740 int timeridx = gt_virt_redir_timeridx(env);
2741 gt_cval_write(env, ri, timeridx, value);
2744 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2745 const ARMCPRegInfo *ri)
2747 int timeridx = gt_virt_redir_timeridx(env);
2748 return gt_tval_read(env, ri, timeridx);
2751 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2752 uint64_t value)
2754 int timeridx = gt_virt_redir_timeridx(env);
2755 gt_tval_write(env, ri, timeridx, value);
2758 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2759 const ARMCPRegInfo *ri)
2761 int timeridx = gt_virt_redir_timeridx(env);
2762 return env->cp15.c14_timer[timeridx].ctl;
2765 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2766 uint64_t value)
2768 int timeridx = gt_virt_redir_timeridx(env);
2769 gt_ctl_write(env, ri, timeridx, value);
2772 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2774 gt_timer_reset(env, ri, GTIMER_HYP);
2777 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2778 uint64_t value)
2780 gt_cval_write(env, ri, GTIMER_HYP, value);
2783 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2785 return gt_tval_read(env, ri, GTIMER_HYP);
2788 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2789 uint64_t value)
2791 gt_tval_write(env, ri, GTIMER_HYP, value);
2794 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795 uint64_t value)
2797 gt_ctl_write(env, ri, GTIMER_HYP, value);
2800 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2802 gt_timer_reset(env, ri, GTIMER_SEC);
2805 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2806 uint64_t value)
2808 gt_cval_write(env, ri, GTIMER_SEC, value);
2811 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2813 return gt_tval_read(env, ri, GTIMER_SEC);
2816 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2817 uint64_t value)
2819 gt_tval_write(env, ri, GTIMER_SEC, value);
2822 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823 uint64_t value)
2825 gt_ctl_write(env, ri, GTIMER_SEC, value);
2828 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2830 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2833 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834 uint64_t value)
2836 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2839 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2841 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2844 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2845 uint64_t value)
2847 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2850 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851 uint64_t value)
2853 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2856 void arm_gt_ptimer_cb(void *opaque)
2858 ARMCPU *cpu = opaque;
2860 gt_recalc_timer(cpu, GTIMER_PHYS);
2863 void arm_gt_vtimer_cb(void *opaque)
2865 ARMCPU *cpu = opaque;
2867 gt_recalc_timer(cpu, GTIMER_VIRT);
2870 void arm_gt_htimer_cb(void *opaque)
2872 ARMCPU *cpu = opaque;
2874 gt_recalc_timer(cpu, GTIMER_HYP);
2877 void arm_gt_stimer_cb(void *opaque)
2879 ARMCPU *cpu = opaque;
2881 gt_recalc_timer(cpu, GTIMER_SEC);
2884 void arm_gt_hvtimer_cb(void *opaque)
2886 ARMCPU *cpu = opaque;
2888 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2891 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2893 ARMCPU *cpu = env_archcpu(env);
2895 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2898 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2899 /* Note that CNTFRQ is purely reads-as-written for the benefit
2900 * of software; writing it doesn't actually change the timer frequency.
2901 * Our reset value matches the fixed frequency we implement the timer at.
2903 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2904 .type = ARM_CP_ALIAS,
2905 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2906 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2908 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2909 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2910 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2911 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2912 .resetfn = arm_gt_cntfrq_reset,
2914 /* overall control: mostly access permissions */
2915 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2916 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2917 .access = PL1_RW,
2918 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2919 .resetvalue = 0,
2921 /* per-timer control */
2922 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2923 .secure = ARM_CP_SECSTATE_NS,
2924 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2925 .accessfn = gt_ptimer_access,
2926 .fieldoffset = offsetoflow32(CPUARMState,
2927 cp15.c14_timer[GTIMER_PHYS].ctl),
2928 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2929 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2931 { .name = "CNTP_CTL_S",
2932 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2933 .secure = ARM_CP_SECSTATE_S,
2934 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2935 .accessfn = gt_ptimer_access,
2936 .fieldoffset = offsetoflow32(CPUARMState,
2937 cp15.c14_timer[GTIMER_SEC].ctl),
2938 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2940 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2941 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2942 .type = ARM_CP_IO, .access = PL0_RW,
2943 .accessfn = gt_ptimer_access,
2944 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2945 .resetvalue = 0,
2946 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2947 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2949 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2950 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2951 .accessfn = gt_vtimer_access,
2952 .fieldoffset = offsetoflow32(CPUARMState,
2953 cp15.c14_timer[GTIMER_VIRT].ctl),
2954 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2955 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2957 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2958 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2959 .type = ARM_CP_IO, .access = PL0_RW,
2960 .accessfn = gt_vtimer_access,
2961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2962 .resetvalue = 0,
2963 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2964 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2966 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2967 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2968 .secure = ARM_CP_SECSTATE_NS,
2969 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2970 .accessfn = gt_ptimer_access,
2971 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2973 { .name = "CNTP_TVAL_S",
2974 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2975 .secure = ARM_CP_SECSTATE_S,
2976 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2977 .accessfn = gt_ptimer_access,
2978 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2980 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2983 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2984 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2986 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2987 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2988 .accessfn = gt_vtimer_access,
2989 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2991 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2992 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2997 /* The counter itself */
2998 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2999 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3000 .accessfn = gt_pct_access,
3001 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3003 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3004 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3005 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3006 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3008 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3009 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3010 .accessfn = gt_vct_access,
3011 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3013 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3014 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3015 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3016 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3018 /* Comparison value, indicating when the timer goes off */
3019 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3020 .secure = ARM_CP_SECSTATE_NS,
3021 .access = PL0_RW,
3022 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3023 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3024 .accessfn = gt_ptimer_access,
3025 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3026 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3028 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3029 .secure = ARM_CP_SECSTATE_S,
3030 .access = PL0_RW,
3031 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3032 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3033 .accessfn = gt_ptimer_access,
3034 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3036 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3037 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3038 .access = PL0_RW,
3039 .type = ARM_CP_IO,
3040 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3041 .resetvalue = 0, .accessfn = gt_ptimer_access,
3042 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3043 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3045 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3046 .access = PL0_RW,
3047 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3048 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3049 .accessfn = gt_vtimer_access,
3050 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3051 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3053 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3054 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3055 .access = PL0_RW,
3056 .type = ARM_CP_IO,
3057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3058 .resetvalue = 0, .accessfn = gt_vtimer_access,
3059 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3060 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3062 /* Secure timer -- this is actually restricted to only EL3
3063 * and configurably Secure-EL1 via the accessfn.
3065 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3066 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3067 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3068 .accessfn = gt_stimer_access,
3069 .readfn = gt_sec_tval_read,
3070 .writefn = gt_sec_tval_write,
3071 .resetfn = gt_sec_timer_reset,
3073 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3074 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3075 .type = ARM_CP_IO, .access = PL1_RW,
3076 .accessfn = gt_stimer_access,
3077 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3078 .resetvalue = 0,
3079 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3081 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3082 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3083 .type = ARM_CP_IO, .access = PL1_RW,
3084 .accessfn = gt_stimer_access,
3085 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3086 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3090 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3091 bool isread)
3093 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3094 return CP_ACCESS_TRAP;
3096 return CP_ACCESS_OK;
3099 #else
3101 /* In user-mode most of the generic timer registers are inaccessible
3102 * however modern kernels (4.12+) allow access to cntvct_el0
3105 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3107 ARMCPU *cpu = env_archcpu(env);
3109 /* Currently we have no support for QEMUTimer in linux-user so we
3110 * can't call gt_get_countervalue(env), instead we directly
3111 * call the lower level functions.
3113 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3116 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3117 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3118 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3119 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3120 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3121 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3123 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3125 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3126 .readfn = gt_virt_cnt_read,
3130 #endif
3132 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3134 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3135 raw_write(env, ri, value);
3136 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3137 raw_write(env, ri, value & 0xfffff6ff);
3138 } else {
3139 raw_write(env, ri, value & 0xfffff1ff);
3143 #ifndef CONFIG_USER_ONLY
3144 /* get_phys_addr() isn't present for user-mode-only targets */
3146 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3147 bool isread)
3149 if (ri->opc2 & 4) {
3150 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3151 * Secure EL1 (which can only happen if EL3 is AArch64).
3152 * They are simply UNDEF if executed from NS EL1.
3153 * They function normally from EL2 or EL3.
3155 if (arm_current_el(env) == 1) {
3156 if (arm_is_secure_below_el3(env)) {
3157 if (env->cp15.scr_el3 & SCR_EEL2) {
3158 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3160 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3162 return CP_ACCESS_TRAP_UNCATEGORIZED;
3165 return CP_ACCESS_OK;
3168 #ifdef CONFIG_TCG
3169 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3170 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3172 hwaddr phys_addr;
3173 target_ulong page_size;
3174 int prot;
3175 bool ret;
3176 uint64_t par64;
3177 bool format64 = false;
3178 MemTxAttrs attrs = {};
3179 ARMMMUFaultInfo fi = {};
3180 ARMCacheAttrs cacheattrs = {};
3182 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3183 &prot, &page_size, &fi, &cacheattrs);
3186 * ATS operations only do S1 or S1+S2 translations, so we never
3187 * have to deal with the ARMCacheAttrs format for S2 only.
3189 assert(!cacheattrs.is_s2_format);
3191 if (ret) {
3193 * Some kinds of translation fault must cause exceptions rather
3194 * than being reported in the PAR.
3196 int current_el = arm_current_el(env);
3197 int target_el;
3198 uint32_t syn, fsr, fsc;
3199 bool take_exc = false;
3201 if (fi.s1ptw && current_el == 1
3202 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3204 * Synchronous stage 2 fault on an access made as part of the
3205 * translation table walk for AT S1E0* or AT S1E1* insn
3206 * executed from NS EL1. If this is a synchronous external abort
3207 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3208 * to EL3. Otherwise the fault is taken as an exception to EL2,
3209 * and HPFAR_EL2 holds the faulting IPA.
3211 if (fi.type == ARMFault_SyncExternalOnWalk &&
3212 (env->cp15.scr_el3 & SCR_EA)) {
3213 target_el = 3;
3214 } else {
3215 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3216 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3217 env->cp15.hpfar_el2 |= HPFAR_NS;
3219 target_el = 2;
3221 take_exc = true;
3222 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3224 * Synchronous external aborts during a translation table walk
3225 * are taken as Data Abort exceptions.
3227 if (fi.stage2) {
3228 if (current_el == 3) {
3229 target_el = 3;
3230 } else {
3231 target_el = 2;
3233 } else {
3234 target_el = exception_target_el(env);
3236 take_exc = true;
3239 if (take_exc) {
3240 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3241 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3242 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3243 fsr = arm_fi_to_lfsc(&fi);
3244 fsc = extract32(fsr, 0, 6);
3245 } else {
3246 fsr = arm_fi_to_sfsc(&fi);
3247 fsc = 0x3f;
3250 * Report exception with ESR indicating a fault due to a
3251 * translation table walk for a cache maintenance instruction.
3253 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3254 fi.ea, 1, fi.s1ptw, 1, fsc);
3255 env->exception.vaddress = value;
3256 env->exception.fsr = fsr;
3257 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3261 if (is_a64(env)) {
3262 format64 = true;
3263 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3265 * ATS1Cxx:
3266 * * TTBCR.EAE determines whether the result is returned using the
3267 * 32-bit or the 64-bit PAR format
3268 * * Instructions executed in Hyp mode always use the 64bit format
3270 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3271 * * The Non-secure TTBCR.EAE bit is set to 1
3272 * * The implementation includes EL2, and the value of HCR.VM is 1
3274 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3276 * ATS1Hx always uses the 64bit format.
3278 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3280 if (arm_feature(env, ARM_FEATURE_EL2)) {
3281 if (mmu_idx == ARMMMUIdx_E10_0 ||
3282 mmu_idx == ARMMMUIdx_E10_1 ||
3283 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3284 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3285 } else {
3286 format64 |= arm_current_el(env) == 2;
3291 if (format64) {
3292 /* Create a 64-bit PAR */
3293 par64 = (1 << 11); /* LPAE bit always set */
3294 if (!ret) {
3295 par64 |= phys_addr & ~0xfffULL;
3296 if (!attrs.secure) {
3297 par64 |= (1 << 9); /* NS */
3299 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3300 par64 |= cacheattrs.shareability << 7; /* SH */
3301 } else {
3302 uint32_t fsr = arm_fi_to_lfsc(&fi);
3304 par64 |= 1; /* F */
3305 par64 |= (fsr & 0x3f) << 1; /* FS */
3306 if (fi.stage2) {
3307 par64 |= (1 << 9); /* S */
3309 if (fi.s1ptw) {
3310 par64 |= (1 << 8); /* PTW */
3313 } else {
3314 /* fsr is a DFSR/IFSR value for the short descriptor
3315 * translation table format (with WnR always clear).
3316 * Convert it to a 32-bit PAR.
3318 if (!ret) {
3319 /* We do not set any attribute bits in the PAR */
3320 if (page_size == (1 << 24)
3321 && arm_feature(env, ARM_FEATURE_V7)) {
3322 par64 = (phys_addr & 0xff000000) | (1 << 1);
3323 } else {
3324 par64 = phys_addr & 0xfffff000;
3326 if (!attrs.secure) {
3327 par64 |= (1 << 9); /* NS */
3329 } else {
3330 uint32_t fsr = arm_fi_to_sfsc(&fi);
3332 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3333 ((fsr & 0xf) << 1) | 1;
3336 return par64;
3338 #endif /* CONFIG_TCG */
3340 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3342 #ifdef CONFIG_TCG
3343 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3344 uint64_t par64;
3345 ARMMMUIdx mmu_idx;
3346 int el = arm_current_el(env);
3347 bool secure = arm_is_secure_below_el3(env);
3349 switch (ri->opc2 & 6) {
3350 case 0:
3351 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3352 switch (el) {
3353 case 3:
3354 mmu_idx = ARMMMUIdx_SE3;
3355 break;
3356 case 2:
3357 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3358 /* fall through */
3359 case 1:
3360 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3361 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3362 : ARMMMUIdx_Stage1_E1_PAN);
3363 } else {
3364 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3366 break;
3367 default:
3368 g_assert_not_reached();
3370 break;
3371 case 2:
3372 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3373 switch (el) {
3374 case 3:
3375 mmu_idx = ARMMMUIdx_SE10_0;
3376 break;
3377 case 2:
3378 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */
3379 mmu_idx = ARMMMUIdx_Stage1_E0;
3380 break;
3381 case 1:
3382 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3383 break;
3384 default:
3385 g_assert_not_reached();
3387 break;
3388 case 4:
3389 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3390 mmu_idx = ARMMMUIdx_E10_1;
3391 break;
3392 case 6:
3393 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3394 mmu_idx = ARMMMUIdx_E10_0;
3395 break;
3396 default:
3397 g_assert_not_reached();
3400 par64 = do_ats_write(env, value, access_type, mmu_idx);
3402 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3403 #else
3404 /* Handled by hardware accelerator. */
3405 g_assert_not_reached();
3406 #endif /* CONFIG_TCG */
3409 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3410 uint64_t value)
3412 #ifdef CONFIG_TCG
3413 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3414 uint64_t par64;
3416 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3418 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3419 #else
3420 /* Handled by hardware accelerator. */
3421 g_assert_not_reached();
3422 #endif /* CONFIG_TCG */
3425 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3426 bool isread)
3428 if (arm_current_el(env) == 3 &&
3429 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3430 return CP_ACCESS_TRAP;
3432 return CP_ACCESS_OK;
3435 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3436 uint64_t value)
3438 #ifdef CONFIG_TCG
3439 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3440 ARMMMUIdx mmu_idx;
3441 int secure = arm_is_secure_below_el3(env);
3443 switch (ri->opc2 & 6) {
3444 case 0:
3445 switch (ri->opc1) {
3446 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3447 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3448 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3449 : ARMMMUIdx_Stage1_E1_PAN);
3450 } else {
3451 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3453 break;
3454 case 4: /* AT S1E2R, AT S1E2W */
3455 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3456 break;
3457 case 6: /* AT S1E3R, AT S1E3W */
3458 mmu_idx = ARMMMUIdx_SE3;
3459 break;
3460 default:
3461 g_assert_not_reached();
3463 break;
3464 case 2: /* AT S1E0R, AT S1E0W */
3465 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3466 break;
3467 case 4: /* AT S12E1R, AT S12E1W */
3468 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3469 break;
3470 case 6: /* AT S12E0R, AT S12E0W */
3471 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3472 break;
3473 default:
3474 g_assert_not_reached();
3477 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3478 #else
3479 /* Handled by hardware accelerator. */
3480 g_assert_not_reached();
3481 #endif /* CONFIG_TCG */
3483 #endif
3485 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3486 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3487 .access = PL1_RW, .resetvalue = 0,
3488 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3489 offsetoflow32(CPUARMState, cp15.par_ns) },
3490 .writefn = par_write },
3491 #ifndef CONFIG_USER_ONLY
3492 /* This underdecoding is safe because the reginfo is NO_RAW. */
3493 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3494 .access = PL1_W, .accessfn = ats_access,
3495 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3496 #endif
3499 /* Return basic MPU access permission bits. */
3500 static uint32_t simple_mpu_ap_bits(uint32_t val)
3502 uint32_t ret;
3503 uint32_t mask;
3504 int i;
3505 ret = 0;
3506 mask = 3;
3507 for (i = 0; i < 16; i += 2) {
3508 ret |= (val >> i) & mask;
3509 mask <<= 2;
3511 return ret;
3514 /* Pad basic MPU access permission bits to extended format. */
3515 static uint32_t extended_mpu_ap_bits(uint32_t val)
3517 uint32_t ret;
3518 uint32_t mask;
3519 int i;
3520 ret = 0;
3521 mask = 3;
3522 for (i = 0; i < 16; i += 2) {
3523 ret |= (val & mask) << i;
3524 mask <<= 2;
3526 return ret;
3529 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3530 uint64_t value)
3532 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3535 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3537 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3540 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3541 uint64_t value)
3543 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3546 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3548 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3551 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3553 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3555 if (!u32p) {
3556 return 0;
3559 u32p += env->pmsav7.rnr[M_REG_NS];
3560 return *u32p;
3563 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3564 uint64_t value)
3566 ARMCPU *cpu = env_archcpu(env);
3567 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3569 if (!u32p) {
3570 return;
3573 u32p += env->pmsav7.rnr[M_REG_NS];
3574 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3575 *u32p = value;
3578 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3579 uint64_t value)
3581 ARMCPU *cpu = env_archcpu(env);
3582 uint32_t nrgs = cpu->pmsav7_dregion;
3584 if (value >= nrgs) {
3585 qemu_log_mask(LOG_GUEST_ERROR,
3586 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3587 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3588 return;
3591 raw_write(env, ri, value);
3594 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3595 /* Reset for all these registers is handled in arm_cpu_reset(),
3596 * because the PMSAv7 is also used by M-profile CPUs, which do
3597 * not register cpregs but still need the state to be reset.
3599 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3600 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3601 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3602 .readfn = pmsav7_read, .writefn = pmsav7_write,
3603 .resetfn = arm_cp_reset_ignore },
3604 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3605 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3606 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3607 .readfn = pmsav7_read, .writefn = pmsav7_write,
3608 .resetfn = arm_cp_reset_ignore },
3609 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3610 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3611 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3612 .readfn = pmsav7_read, .writefn = pmsav7_write,
3613 .resetfn = arm_cp_reset_ignore },
3614 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3615 .access = PL1_RW,
3616 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3617 .writefn = pmsav7_rgnr_write,
3618 .resetfn = arm_cp_reset_ignore },
3621 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3622 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3623 .access = PL1_RW, .type = ARM_CP_ALIAS,
3624 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3625 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3626 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3627 .access = PL1_RW, .type = ARM_CP_ALIAS,
3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3629 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3630 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3631 .access = PL1_RW,
3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3633 .resetvalue = 0, },
3634 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3635 .access = PL1_RW,
3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3637 .resetvalue = 0, },
3638 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3639 .access = PL1_RW,
3640 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3641 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3642 .access = PL1_RW,
3643 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3644 /* Protection region base and size registers */
3645 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3646 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3647 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3648 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3649 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3650 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3651 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3652 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3653 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3654 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3655 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3656 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3657 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3658 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3659 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3660 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3661 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3662 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3663 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3664 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3665 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3666 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3667 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3668 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3671 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3672 uint64_t value)
3674 TCR *tcr = raw_ptr(env, ri);
3675 int maskshift = extract32(value, 0, 3);
3677 if (!arm_feature(env, ARM_FEATURE_V8)) {
3678 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3679 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3680 * using Long-desciptor translation table format */
3681 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3682 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3683 /* In an implementation that includes the Security Extensions
3684 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3685 * Short-descriptor translation table format.
3687 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3688 } else {
3689 value &= TTBCR_N;
3693 /* Update the masks corresponding to the TCR bank being written
3694 * Note that we always calculate mask and base_mask, but
3695 * they are only used for short-descriptor tables (ie if EAE is 0);
3696 * for long-descriptor tables the TCR fields are used differently
3697 * and the mask and base_mask values are meaningless.
3699 tcr->raw_tcr = value;
3700 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3701 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3704 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3705 uint64_t value)
3707 ARMCPU *cpu = env_archcpu(env);
3708 TCR *tcr = raw_ptr(env, ri);
3710 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3711 /* With LPAE the TTBCR could result in a change of ASID
3712 * via the TTBCR.A1 bit, so do a TLB flush.
3714 tlb_flush(CPU(cpu));
3716 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3717 value = deposit64(tcr->raw_tcr, 0, 32, value);
3718 vmsa_ttbcr_raw_write(env, ri, value);
3721 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3723 TCR *tcr = raw_ptr(env, ri);
3725 /* Reset both the TCR as well as the masks corresponding to the bank of
3726 * the TCR being reset.
3728 tcr->raw_tcr = 0;
3729 tcr->mask = 0;
3730 tcr->base_mask = 0xffffc000u;
3733 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3734 uint64_t value)
3736 ARMCPU *cpu = env_archcpu(env);
3737 TCR *tcr = raw_ptr(env, ri);
3739 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3740 tlb_flush(CPU(cpu));
3741 tcr->raw_tcr = value;
3744 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3745 uint64_t value)
3747 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3748 if (cpreg_field_is_64bit(ri) &&
3749 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3750 ARMCPU *cpu = env_archcpu(env);
3751 tlb_flush(CPU(cpu));
3753 raw_write(env, ri, value);
3756 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3757 uint64_t value)
3760 * If we are running with E2&0 regime, then an ASID is active.
3761 * Flush if that might be changing. Note we're not checking
3762 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3763 * holds the active ASID, only checking the field that might.
3765 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3766 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3767 uint16_t mask = ARMMMUIdxBit_E20_2 |
3768 ARMMMUIdxBit_E20_2_PAN |
3769 ARMMMUIdxBit_E20_0;
3771 if (arm_is_secure_below_el3(env)) {
3772 mask >>= ARM_MMU_IDX_A_NS;
3775 tlb_flush_by_mmuidx(env_cpu(env), mask);
3777 raw_write(env, ri, value);
3780 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3781 uint64_t value)
3783 ARMCPU *cpu = env_archcpu(env);
3784 CPUState *cs = CPU(cpu);
3787 * A change in VMID to the stage2 page table (Stage2) invalidates
3788 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3790 if (raw_read(env, ri) != value) {
3791 uint16_t mask = ARMMMUIdxBit_E10_1 |
3792 ARMMMUIdxBit_E10_1_PAN |
3793 ARMMMUIdxBit_E10_0;
3795 if (arm_is_secure_below_el3(env)) {
3796 mask >>= ARM_MMU_IDX_A_NS;
3799 tlb_flush_by_mmuidx(cs, mask);
3800 raw_write(env, ri, value);
3804 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3805 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3806 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3808 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3809 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3810 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3811 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3812 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3813 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3814 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3815 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3816 offsetof(CPUARMState, cp15.dfar_ns) } },
3817 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3818 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3819 .access = PL1_RW, .accessfn = access_tvm_trvm,
3820 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3821 .resetvalue = 0, },
3824 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3825 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3826 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3827 .access = PL1_RW, .accessfn = access_tvm_trvm,
3828 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3829 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3831 .access = PL1_RW, .accessfn = access_tvm_trvm,
3832 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3834 offsetof(CPUARMState, cp15.ttbr0_ns) } },
3835 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3837 .access = PL1_RW, .accessfn = access_tvm_trvm,
3838 .writefn = vmsa_ttbr_write, .resetvalue = 0,
3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3840 offsetof(CPUARMState, cp15.ttbr1_ns) } },
3841 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3842 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3843 .access = PL1_RW, .accessfn = access_tvm_trvm,
3844 .writefn = vmsa_tcr_el12_write,
3845 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3846 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3847 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3848 .access = PL1_RW, .accessfn = access_tvm_trvm,
3849 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3850 .raw_writefn = vmsa_ttbcr_raw_write,
3851 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3852 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3853 offsetof(CPUARMState, cp15.tcr_el[1])} },
3856 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3857 * qemu tlbs nor adjusting cached masks.
3859 static const ARMCPRegInfo ttbcr2_reginfo = {
3860 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3861 .access = PL1_RW, .accessfn = access_tvm_trvm,
3862 .type = ARM_CP_ALIAS,
3863 .bank_fieldoffsets = {
3864 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3865 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3869 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3870 uint64_t value)
3872 env->cp15.c15_ticonfig = value & 0xe7;
3873 /* The OS_TYPE bit in this register changes the reported CPUID! */
3874 env->cp15.c0_cpuid = (value & (1 << 5)) ?
3875 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3878 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879 uint64_t value)
3881 env->cp15.c15_threadid = value & 0xffff;
3884 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885 uint64_t value)
3887 /* Wait-for-interrupt (deprecated) */
3888 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3891 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892 uint64_t value)
3894 /* On OMAP there are registers indicating the max/min index of dcache lines
3895 * containing a dirty line; cache flush operations have to reset these.
3897 env->cp15.c15_i_max = 0x000;
3898 env->cp15.c15_i_min = 0xff0;
3901 static const ARMCPRegInfo omap_cp_reginfo[] = {
3902 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3903 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3904 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3905 .resetvalue = 0, },
3906 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3907 .access = PL1_RW, .type = ARM_CP_NOP },
3908 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3909 .access = PL1_RW,
3910 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3911 .writefn = omap_ticonfig_write },
3912 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3913 .access = PL1_RW,
3914 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3915 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3916 .access = PL1_RW, .resetvalue = 0xff0,
3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3918 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3919 .access = PL1_RW,
3920 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3921 .writefn = omap_threadid_write },
3922 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3923 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3924 .type = ARM_CP_NO_RAW,
3925 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3926 /* TODO: Peripheral port remap register:
3927 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3928 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3929 * when MMU is off.
3931 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3932 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3933 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3934 .writefn = omap_cachemaint_write },
3935 { .name = "C9", .cp = 15, .crn = 9,
3936 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3937 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3940 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3941 uint64_t value)
3943 env->cp15.c15_cpar = value & 0x3fff;
3946 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3947 { .name = "XSCALE_CPAR",
3948 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3949 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3950 .writefn = xscale_cpar_write, },
3951 { .name = "XSCALE_AUXCR",
3952 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3953 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3954 .resetvalue = 0, },
3955 /* XScale specific cache-lockdown: since we have no cache we NOP these
3956 * and hope the guest does not really rely on cache behaviour.
3958 { .name = "XSCALE_LOCK_ICACHE_LINE",
3959 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3960 .access = PL1_W, .type = ARM_CP_NOP },
3961 { .name = "XSCALE_UNLOCK_ICACHE",
3962 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3963 .access = PL1_W, .type = ARM_CP_NOP },
3964 { .name = "XSCALE_DCACHE_LOCK",
3965 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3966 .access = PL1_RW, .type = ARM_CP_NOP },
3967 { .name = "XSCALE_UNLOCK_DCACHE",
3968 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3969 .access = PL1_W, .type = ARM_CP_NOP },
3972 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3973 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3974 * implementation of this implementation-defined space.
3975 * Ideally this should eventually disappear in favour of actually
3976 * implementing the correct behaviour for all cores.
3978 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3979 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3980 .access = PL1_RW,
3981 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3982 .resetvalue = 0 },
3985 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3986 /* Cache status: RAZ because we have no cache so it's always clean */
3987 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3988 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3989 .resetvalue = 0 },
3992 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3993 /* We never have a a block transfer operation in progress */
3994 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3995 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3996 .resetvalue = 0 },
3997 /* The cache ops themselves: these all NOP for QEMU */
3998 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3999 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4000 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4001 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4002 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4003 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4004 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4005 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4006 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4007 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4008 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4009 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4012 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4013 /* The cache test-and-clean instructions always return (1 << 30)
4014 * to indicate that there are no dirty cache lines.
4016 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4017 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4018 .resetvalue = (1 << 30) },
4019 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4020 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4021 .resetvalue = (1 << 30) },
4024 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4025 /* Ignore ReadBuffer accesses */
4026 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4027 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4028 .access = PL1_RW, .resetvalue = 0,
4029 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4032 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4034 unsigned int cur_el = arm_current_el(env);
4036 if (arm_is_el2_enabled(env) && cur_el == 1) {
4037 return env->cp15.vpidr_el2;
4039 return raw_read(env, ri);
4042 static uint64_t mpidr_read_val(CPUARMState *env)
4044 ARMCPU *cpu = env_archcpu(env);
4045 uint64_t mpidr = cpu->mp_affinity;
4047 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4048 mpidr |= (1U << 31);
4049 /* Cores which are uniprocessor (non-coherent)
4050 * but still implement the MP extensions set
4051 * bit 30. (For instance, Cortex-R5).
4053 if (cpu->mp_is_up) {
4054 mpidr |= (1u << 30);
4057 return mpidr;
4060 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4062 unsigned int cur_el = arm_current_el(env);
4064 if (arm_is_el2_enabled(env) && cur_el == 1) {
4065 return env->cp15.vmpidr_el2;
4067 return mpidr_read_val(env);
4070 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4071 /* NOP AMAIR0/1 */
4072 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4073 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4074 .access = PL1_RW, .accessfn = access_tvm_trvm,
4075 .type = ARM_CP_CONST, .resetvalue = 0 },
4076 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4077 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4078 .access = PL1_RW, .accessfn = access_tvm_trvm,
4079 .type = ARM_CP_CONST, .resetvalue = 0 },
4080 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4081 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4082 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4083 offsetof(CPUARMState, cp15.par_ns)} },
4084 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4085 .access = PL1_RW, .accessfn = access_tvm_trvm,
4086 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4087 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4088 offsetof(CPUARMState, cp15.ttbr0_ns) },
4089 .writefn = vmsa_ttbr_write, },
4090 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4091 .access = PL1_RW, .accessfn = access_tvm_trvm,
4092 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4094 offsetof(CPUARMState, cp15.ttbr1_ns) },
4095 .writefn = vmsa_ttbr_write, },
4098 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4100 return vfp_get_fpcr(env);
4103 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4104 uint64_t value)
4106 vfp_set_fpcr(env, value);
4109 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4111 return vfp_get_fpsr(env);
4114 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115 uint64_t value)
4117 vfp_set_fpsr(env, value);
4120 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4121 bool isread)
4123 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4124 return CP_ACCESS_TRAP;
4126 return CP_ACCESS_OK;
4129 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4130 uint64_t value)
4132 env->daif = value & PSTATE_DAIF;
4135 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4137 return env->pstate & PSTATE_PAN;
4140 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141 uint64_t value)
4143 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4146 static const ARMCPRegInfo pan_reginfo = {
4147 .name = "PAN", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4149 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4150 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4153 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4155 return env->pstate & PSTATE_UAO;
4158 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4159 uint64_t value)
4161 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4164 static const ARMCPRegInfo uao_reginfo = {
4165 .name = "UAO", .state = ARM_CP_STATE_AA64,
4166 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4167 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4168 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4171 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4173 return env->pstate & PSTATE_DIT;
4176 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4177 uint64_t value)
4179 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4182 static const ARMCPRegInfo dit_reginfo = {
4183 .name = "DIT", .state = ARM_CP_STATE_AA64,
4184 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4185 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4186 .readfn = aa64_dit_read, .writefn = aa64_dit_write
4189 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4191 return env->pstate & PSTATE_SSBS;
4194 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4195 uint64_t value)
4197 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4200 static const ARMCPRegInfo ssbs_reginfo = {
4201 .name = "SSBS", .state = ARM_CP_STATE_AA64,
4202 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4203 .type = ARM_CP_NO_RAW, .access = PL0_RW,
4204 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4207 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4208 const ARMCPRegInfo *ri,
4209 bool isread)
4211 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4212 switch (arm_current_el(env)) {
4213 case 0:
4214 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4215 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4216 return CP_ACCESS_TRAP;
4218 /* fall through */
4219 case 1:
4220 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4221 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4222 return CP_ACCESS_TRAP_EL2;
4224 break;
4226 return CP_ACCESS_OK;
4229 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4230 const ARMCPRegInfo *ri,
4231 bool isread)
4233 /* Cache invalidate/clean to Point of Unification... */
4234 switch (arm_current_el(env)) {
4235 case 0:
4236 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4237 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4238 return CP_ACCESS_TRAP;
4240 /* fall through */
4241 case 1:
4242 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4243 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4244 return CP_ACCESS_TRAP_EL2;
4246 break;
4248 return CP_ACCESS_OK;
4251 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4252 * Page D4-1736 (DDI0487A.b)
4255 static int vae1_tlbmask(CPUARMState *env)
4257 uint64_t hcr = arm_hcr_el2_eff(env);
4258 uint16_t mask;
4260 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4261 mask = ARMMMUIdxBit_E20_2 |
4262 ARMMMUIdxBit_E20_2_PAN |
4263 ARMMMUIdxBit_E20_0;
4264 } else {
4265 mask = ARMMMUIdxBit_E10_1 |
4266 ARMMMUIdxBit_E10_1_PAN |
4267 ARMMMUIdxBit_E10_0;
4270 if (arm_is_secure_below_el3(env)) {
4271 mask >>= ARM_MMU_IDX_A_NS;
4274 return mask;
4277 /* Return 56 if TBI is enabled, 64 otherwise. */
4278 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4279 uint64_t addr)
4281 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4282 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4283 int select = extract64(addr, 55, 1);
4285 return (tbi >> select) & 1 ? 56 : 64;
4288 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4290 uint64_t hcr = arm_hcr_el2_eff(env);
4291 ARMMMUIdx mmu_idx;
4293 /* Only the regime of the mmu_idx below is significant. */
4294 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4295 mmu_idx = ARMMMUIdx_E20_0;
4296 } else {
4297 mmu_idx = ARMMMUIdx_E10_0;
4300 if (arm_is_secure_below_el3(env)) {
4301 mmu_idx &= ~ARM_MMU_IDX_A_NS;
4304 return tlbbits_for_regime(env, mmu_idx, addr);
4307 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4308 uint64_t value)
4310 CPUState *cs = env_cpu(env);
4311 int mask = vae1_tlbmask(env);
4313 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4316 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4317 uint64_t value)
4319 CPUState *cs = env_cpu(env);
4320 int mask = vae1_tlbmask(env);
4322 if (tlb_force_broadcast(env)) {
4323 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4324 } else {
4325 tlb_flush_by_mmuidx(cs, mask);
4329 static int alle1_tlbmask(CPUARMState *env)
4332 * Note that the 'ALL' scope must invalidate both stage 1 and
4333 * stage 2 translations, whereas most other scopes only invalidate
4334 * stage 1 translations.
4336 if (arm_is_secure_below_el3(env)) {
4337 return ARMMMUIdxBit_SE10_1 |
4338 ARMMMUIdxBit_SE10_1_PAN |
4339 ARMMMUIdxBit_SE10_0;
4340 } else {
4341 return ARMMMUIdxBit_E10_1 |
4342 ARMMMUIdxBit_E10_1_PAN |
4343 ARMMMUIdxBit_E10_0;
4347 static int e2_tlbmask(CPUARMState *env)
4349 if (arm_is_secure_below_el3(env)) {
4350 return ARMMMUIdxBit_SE20_0 |
4351 ARMMMUIdxBit_SE20_2 |
4352 ARMMMUIdxBit_SE20_2_PAN |
4353 ARMMMUIdxBit_SE2;
4354 } else {
4355 return ARMMMUIdxBit_E20_0 |
4356 ARMMMUIdxBit_E20_2 |
4357 ARMMMUIdxBit_E20_2_PAN |
4358 ARMMMUIdxBit_E2;
4362 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 uint64_t value)
4365 CPUState *cs = env_cpu(env);
4366 int mask = alle1_tlbmask(env);
4368 tlb_flush_by_mmuidx(cs, mask);
4371 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4372 uint64_t value)
4374 CPUState *cs = env_cpu(env);
4375 int mask = e2_tlbmask(env);
4377 tlb_flush_by_mmuidx(cs, mask);
4380 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381 uint64_t value)
4383 ARMCPU *cpu = env_archcpu(env);
4384 CPUState *cs = CPU(cpu);
4386 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4389 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4390 uint64_t value)
4392 CPUState *cs = env_cpu(env);
4393 int mask = alle1_tlbmask(env);
4395 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4398 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4399 uint64_t value)
4401 CPUState *cs = env_cpu(env);
4402 int mask = e2_tlbmask(env);
4404 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4407 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4408 uint64_t value)
4410 CPUState *cs = env_cpu(env);
4412 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4415 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4416 uint64_t value)
4418 /* Invalidate by VA, EL2
4419 * Currently handles both VAE2 and VALE2, since we don't support
4420 * flush-last-level-only.
4422 CPUState *cs = env_cpu(env);
4423 int mask = e2_tlbmask(env);
4424 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4426 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4429 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4430 uint64_t value)
4432 /* Invalidate by VA, EL3
4433 * Currently handles both VAE3 and VALE3, since we don't support
4434 * flush-last-level-only.
4436 ARMCPU *cpu = env_archcpu(env);
4437 CPUState *cs = CPU(cpu);
4438 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4440 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4443 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444 uint64_t value)
4446 CPUState *cs = env_cpu(env);
4447 int mask = vae1_tlbmask(env);
4448 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4449 int bits = vae1_tlbbits(env, pageaddr);
4451 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4454 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4455 uint64_t value)
4457 /* Invalidate by VA, EL1&0 (AArch64 version).
4458 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4459 * since we don't support flush-for-specific-ASID-only or
4460 * flush-last-level-only.
4462 CPUState *cs = env_cpu(env);
4463 int mask = vae1_tlbmask(env);
4464 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4465 int bits = vae1_tlbbits(env, pageaddr);
4467 if (tlb_force_broadcast(env)) {
4468 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4469 } else {
4470 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4474 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4475 uint64_t value)
4477 CPUState *cs = env_cpu(env);
4478 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4479 bool secure = arm_is_secure_below_el3(env);
4480 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4481 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4482 pageaddr);
4484 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4487 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488 uint64_t value)
4490 CPUState *cs = env_cpu(env);
4491 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4492 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4494 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4495 ARMMMUIdxBit_SE3, bits);
4498 #ifdef TARGET_AARCH64
4499 typedef struct {
4500 uint64_t base;
4501 uint64_t length;
4502 } TLBIRange;
4504 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4505 uint64_t value)
4507 unsigned int page_size_granule, page_shift, num, scale, exponent;
4508 /* Extract one bit to represent the va selector in use. */
4509 uint64_t select = sextract64(value, 36, 1);
4510 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4511 TLBIRange ret = { };
4513 page_size_granule = extract64(value, 46, 2);
4515 /* The granule encoded in value must match the granule in use. */
4516 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4517 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4518 page_size_granule);
4519 return ret;
4522 page_shift = (page_size_granule - 1) * 2 + 12;
4523 num = extract64(value, 39, 5);
4524 scale = extract64(value, 44, 2);
4525 exponent = (5 * scale) + 1;
4527 ret.length = (num + 1) << (exponent + page_shift);
4529 if (param.select) {
4530 ret.base = sextract64(value, 0, 37);
4531 } else {
4532 ret.base = extract64(value, 0, 37);
4534 if (param.ds) {
4536 * With DS=1, BaseADDR is always shifted 16 so that it is able
4537 * to address all 52 va bits. The input address is perforce
4538 * aligned on a 64k boundary regardless of translation granule.
4540 page_shift = 16;
4542 ret.base <<= page_shift;
4544 return ret;
4547 static void do_rvae_write(CPUARMState *env, uint64_t value,
4548 int idxmap, bool synced)
4550 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4551 TLBIRange range;
4552 int bits;
4554 range = tlbi_aa64_get_range(env, one_idx, value);
4555 bits = tlbbits_for_regime(env, one_idx, range.base);
4557 if (synced) {
4558 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4559 range.base,
4560 range.length,
4561 idxmap,
4562 bits);
4563 } else {
4564 tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4565 range.length, idxmap, bits);
4569 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4570 const ARMCPRegInfo *ri,
4571 uint64_t value)
4574 * Invalidate by VA range, EL1&0.
4575 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4576 * since we don't support flush-for-specific-ASID-only or
4577 * flush-last-level-only.
4580 do_rvae_write(env, value, vae1_tlbmask(env),
4581 tlb_force_broadcast(env));
4584 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4585 const ARMCPRegInfo *ri,
4586 uint64_t value)
4589 * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4590 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4591 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4592 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4593 * shareable specific flushes.
4596 do_rvae_write(env, value, vae1_tlbmask(env), true);
4599 static int vae2_tlbmask(CPUARMState *env)
4601 return (arm_is_secure_below_el3(env)
4602 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4605 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4606 const ARMCPRegInfo *ri,
4607 uint64_t value)
4610 * Invalidate by VA range, EL2.
4611 * Currently handles all of RVAE2 and RVALE2,
4612 * since we don't support flush-for-specific-ASID-only or
4613 * flush-last-level-only.
4616 do_rvae_write(env, value, vae2_tlbmask(env),
4617 tlb_force_broadcast(env));
4622 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4623 const ARMCPRegInfo *ri,
4624 uint64_t value)
4627 * Invalidate by VA range, Inner/Outer Shareable, EL2.
4628 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4629 * since we don't support flush-for-specific-ASID-only,
4630 * flush-last-level-only or inner/outer shareable specific flushes.
4633 do_rvae_write(env, value, vae2_tlbmask(env), true);
4637 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4638 const ARMCPRegInfo *ri,
4639 uint64_t value)
4642 * Invalidate by VA range, EL3.
4643 * Currently handles all of RVAE3 and RVALE3,
4644 * since we don't support flush-for-specific-ASID-only or
4645 * flush-last-level-only.
4648 do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4649 tlb_force_broadcast(env));
4652 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4653 const ARMCPRegInfo *ri,
4654 uint64_t value)
4657 * Invalidate by VA range, EL3, Inner/Outer Shareable.
4658 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4659 * since we don't support flush-for-specific-ASID-only,
4660 * flush-last-level-only or inner/outer specific flushes.
4663 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4665 #endif
4667 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4668 bool isread)
4670 int cur_el = arm_current_el(env);
4672 if (cur_el < 2) {
4673 uint64_t hcr = arm_hcr_el2_eff(env);
4675 if (cur_el == 0) {
4676 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4677 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4678 return CP_ACCESS_TRAP_EL2;
4680 } else {
4681 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4682 return CP_ACCESS_TRAP;
4684 if (hcr & HCR_TDZ) {
4685 return CP_ACCESS_TRAP_EL2;
4688 } else if (hcr & HCR_TDZ) {
4689 return CP_ACCESS_TRAP_EL2;
4692 return CP_ACCESS_OK;
4695 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4697 ARMCPU *cpu = env_archcpu(env);
4698 int dzp_bit = 1 << 4;
4700 /* DZP indicates whether DC ZVA access is allowed */
4701 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4702 dzp_bit = 0;
4704 return cpu->dcz_blocksize | dzp_bit;
4707 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4708 bool isread)
4710 if (!(env->pstate & PSTATE_SP)) {
4711 /* Access to SP_EL0 is undefined if it's being used as
4712 * the stack pointer.
4714 return CP_ACCESS_TRAP_UNCATEGORIZED;
4716 return CP_ACCESS_OK;
4719 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4721 return env->pstate & PSTATE_SP;
4724 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4726 update_spsel(env, val);
4729 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4730 uint64_t value)
4732 ARMCPU *cpu = env_archcpu(env);
4734 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4735 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4736 value &= ~SCTLR_M;
4739 /* ??? Lots of these bits are not implemented. */
4741 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4742 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4743 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4744 } else {
4745 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4746 SCTLR_ATA0 | SCTLR_ATA);
4750 if (raw_read(env, ri) == value) {
4751 /* Skip the TLB flush if nothing actually changed; Linux likes
4752 * to do a lot of pointless SCTLR writes.
4754 return;
4757 raw_write(env, ri, value);
4759 /* This may enable/disable the MMU, so do a TLB flush. */
4760 tlb_flush(CPU(cpu));
4762 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4764 * Normally we would always end the TB on an SCTLR write; see the
4765 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4766 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4767 * of hflags from the translator, so do it here.
4769 arm_rebuild_hflags(env);
4773 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4774 uint64_t value)
4776 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4779 static const ARMCPRegInfo v8_cp_reginfo[] = {
4780 /* Minimal set of EL0-visible registers. This will need to be expanded
4781 * significantly for system emulation of AArch64 CPUs.
4783 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4785 .access = PL0_RW, .type = ARM_CP_NZCV },
4786 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4788 .type = ARM_CP_NO_RAW,
4789 .access = PL0_RW, .accessfn = aa64_daif_access,
4790 .fieldoffset = offsetof(CPUARMState, daif),
4791 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4792 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4793 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4794 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4795 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4796 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4798 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4799 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4800 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4802 .access = PL0_R, .type = ARM_CP_NO_RAW,
4803 .readfn = aa64_dczid_read },
4804 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4806 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4807 #ifndef CONFIG_USER_ONLY
4808 /* Avoid overhead of an access check that always passes in user-mode */
4809 .accessfn = aa64_zva_access,
4810 #endif
4812 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4814 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4815 /* Cache ops: all NOPs since we don't emulate caches */
4816 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4818 .access = PL1_W, .type = ARM_CP_NOP,
4819 .accessfn = aa64_cacheop_pou_access },
4820 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4821 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4822 .access = PL1_W, .type = ARM_CP_NOP,
4823 .accessfn = aa64_cacheop_pou_access },
4824 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4826 .access = PL0_W, .type = ARM_CP_NOP,
4827 .accessfn = aa64_cacheop_pou_access },
4828 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4830 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4831 .type = ARM_CP_NOP },
4832 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4833 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4834 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4835 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4836 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4837 .access = PL0_W, .type = ARM_CP_NOP,
4838 .accessfn = aa64_cacheop_poc_access },
4839 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4840 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4841 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4842 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4844 .access = PL0_W, .type = ARM_CP_NOP,
4845 .accessfn = aa64_cacheop_pou_access },
4846 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4848 .access = PL0_W, .type = ARM_CP_NOP,
4849 .accessfn = aa64_cacheop_poc_access },
4850 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4852 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4853 /* TLBI operations */
4854 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4855 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4856 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4857 .writefn = tlbi_aa64_vmalle1is_write },
4858 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4860 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4861 .writefn = tlbi_aa64_vae1is_write },
4862 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4865 .writefn = tlbi_aa64_vmalle1is_write },
4866 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4869 .writefn = tlbi_aa64_vae1is_write },
4870 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4873 .writefn = tlbi_aa64_vae1is_write },
4874 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4877 .writefn = tlbi_aa64_vae1is_write },
4878 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4881 .writefn = tlbi_aa64_vmalle1_write },
4882 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vae1_write },
4886 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4889 .writefn = tlbi_aa64_vmalle1_write },
4890 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4892 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4893 .writefn = tlbi_aa64_vae1_write },
4894 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4896 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4897 .writefn = tlbi_aa64_vae1_write },
4898 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4900 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4901 .writefn = tlbi_aa64_vae1_write },
4902 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4904 .access = PL2_W, .type = ARM_CP_NOP },
4905 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4907 .access = PL2_W, .type = ARM_CP_NOP },
4908 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4910 .access = PL2_W, .type = ARM_CP_NO_RAW,
4911 .writefn = tlbi_aa64_alle1is_write },
4912 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4913 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4914 .access = PL2_W, .type = ARM_CP_NO_RAW,
4915 .writefn = tlbi_aa64_alle1is_write },
4916 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4918 .access = PL2_W, .type = ARM_CP_NOP },
4919 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4921 .access = PL2_W, .type = ARM_CP_NOP },
4922 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4924 .access = PL2_W, .type = ARM_CP_NO_RAW,
4925 .writefn = tlbi_aa64_alle1_write },
4926 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4928 .access = PL2_W, .type = ARM_CP_NO_RAW,
4929 .writefn = tlbi_aa64_alle1is_write },
4930 #ifndef CONFIG_USER_ONLY
4931 /* 64 bit address translation operations */
4932 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4933 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4934 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4935 .writefn = ats_write64 },
4936 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4938 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4939 .writefn = ats_write64 },
4940 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4943 .writefn = ats_write64 },
4944 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4946 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4947 .writefn = ats_write64 },
4948 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4950 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951 .writefn = ats_write64 },
4952 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4953 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4954 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955 .writefn = ats_write64 },
4956 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4957 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4958 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4959 .writefn = ats_write64 },
4960 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4961 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4962 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4963 .writefn = ats_write64 },
4964 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4965 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4967 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4968 .writefn = ats_write64 },
4969 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4970 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4971 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4972 .writefn = ats_write64 },
4973 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4974 .type = ARM_CP_ALIAS,
4975 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4976 .access = PL1_RW, .resetvalue = 0,
4977 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4978 .writefn = par_write },
4979 #endif
4980 /* TLB invalidate last level of translation table walk */
4981 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4982 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4983 .writefn = tlbimva_is_write },
4984 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4985 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4986 .writefn = tlbimvaa_is_write },
4987 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4988 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4989 .writefn = tlbimva_write },
4990 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4991 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4992 .writefn = tlbimvaa_write },
4993 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4994 .type = ARM_CP_NO_RAW, .access = PL2_W,
4995 .writefn = tlbimva_hyp_write },
4996 { .name = "TLBIMVALHIS",
4997 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4998 .type = ARM_CP_NO_RAW, .access = PL2_W,
4999 .writefn = tlbimva_hyp_is_write },
5000 { .name = "TLBIIPAS2",
5001 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5002 .type = ARM_CP_NOP, .access = PL2_W },
5003 { .name = "TLBIIPAS2IS",
5004 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5005 .type = ARM_CP_NOP, .access = PL2_W },
5006 { .name = "TLBIIPAS2L",
5007 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5008 .type = ARM_CP_NOP, .access = PL2_W },
5009 { .name = "TLBIIPAS2LIS",
5010 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5011 .type = ARM_CP_NOP, .access = PL2_W },
5012 /* 32 bit cache operations */
5013 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5015 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5016 .type = ARM_CP_NOP, .access = PL1_W },
5017 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5019 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5021 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5022 .type = ARM_CP_NOP, .access = PL1_W },
5023 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5024 .type = ARM_CP_NOP, .access = PL1_W },
5025 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5026 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5027 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5028 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5029 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5030 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5031 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5033 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5034 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5035 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5037 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5039 /* MMU Domain access control / MPU write buffer control */
5040 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5041 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5042 .writefn = dacr_write, .raw_writefn = raw_write,
5043 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5044 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5045 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5046 .type = ARM_CP_ALIAS,
5047 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5048 .access = PL1_RW,
5049 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5050 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5051 .type = ARM_CP_ALIAS,
5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5053 .access = PL1_RW,
5054 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5055 /* We rely on the access checks not allowing the guest to write to the
5056 * state field when SPSel indicates that it's being used as the stack
5057 * pointer.
5059 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5061 .access = PL1_RW, .accessfn = sp_el0_access,
5062 .type = ARM_CP_ALIAS,
5063 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5064 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5065 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5066 .access = PL2_RW, .type = ARM_CP_ALIAS,
5067 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5068 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5069 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5070 .type = ARM_CP_NO_RAW,
5071 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5072 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5073 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5074 .access = PL2_RW,
5075 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5076 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5077 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5079 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5080 .writefn = dacr_write, .raw_writefn = raw_write,
5081 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5082 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5083 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5084 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5085 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5086 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5087 .type = ARM_CP_ALIAS,
5088 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5089 .access = PL2_RW,
5090 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5091 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5092 .type = ARM_CP_ALIAS,
5093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5094 .access = PL2_RW,
5095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5096 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5097 .type = ARM_CP_ALIAS,
5098 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5099 .access = PL2_RW,
5100 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5101 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5102 .type = ARM_CP_ALIAS,
5103 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5104 .access = PL2_RW,
5105 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5106 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5107 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5108 .resetvalue = 0,
5109 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5110 { .name = "SDCR", .type = ARM_CP_ALIAS,
5111 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5112 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5113 .writefn = sdcr_write,
5114 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5117 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5119 ARMCPU *cpu = env_archcpu(env);
5121 if (arm_feature(env, ARM_FEATURE_V8)) {
5122 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5123 } else {
5124 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5127 if (arm_feature(env, ARM_FEATURE_EL3)) {
5128 valid_mask &= ~HCR_HCD;
5129 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5130 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5131 * However, if we're using the SMC PSCI conduit then QEMU is
5132 * effectively acting like EL3 firmware and so the guest at
5133 * EL2 should retain the ability to prevent EL1 from being
5134 * able to make SMC calls into the ersatz firmware, so in
5135 * that case HCR.TSC should be read/write.
5137 valid_mask &= ~HCR_TSC;
5140 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5141 if (cpu_isar_feature(aa64_vh, cpu)) {
5142 valid_mask |= HCR_E2H;
5144 if (cpu_isar_feature(aa64_ras, cpu)) {
5145 valid_mask |= HCR_TERR | HCR_TEA;
5147 if (cpu_isar_feature(aa64_lor, cpu)) {
5148 valid_mask |= HCR_TLOR;
5150 if (cpu_isar_feature(aa64_pauth, cpu)) {
5151 valid_mask |= HCR_API | HCR_APK;
5153 if (cpu_isar_feature(aa64_mte, cpu)) {
5154 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5156 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5157 valid_mask |= HCR_ENSCXT;
5159 if (cpu_isar_feature(aa64_fwb, cpu)) {
5160 valid_mask |= HCR_FWB;
5164 /* Clear RES0 bits. */
5165 value &= valid_mask;
5168 * These bits change the MMU setup:
5169 * HCR_VM enables stage 2 translation
5170 * HCR_PTW forbids certain page-table setups
5171 * HCR_DC disables stage1 and enables stage2 translation
5172 * HCR_DCT enables tagging on (disabled) stage1 translation
5173 * HCR_FWB changes the interpretation of stage2 descriptor bits
5175 if ((env->cp15.hcr_el2 ^ value) &
5176 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5177 tlb_flush(CPU(cpu));
5179 env->cp15.hcr_el2 = value;
5182 * Updates to VI and VF require us to update the status of
5183 * virtual interrupts, which are the logical OR of these bits
5184 * and the state of the input lines from the GIC. (This requires
5185 * that we have the iothread lock, which is done by marking the
5186 * reginfo structs as ARM_CP_IO.)
5187 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5188 * possible for it to be taken immediately, because VIRQ and
5189 * VFIQ are masked unless running at EL0 or EL1, and HCR
5190 * can only be written at EL2.
5192 g_assert(qemu_mutex_iothread_locked());
5193 arm_cpu_update_virq(cpu);
5194 arm_cpu_update_vfiq(cpu);
5195 arm_cpu_update_vserr(cpu);
5198 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5200 do_hcr_write(env, value, 0);
5203 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5204 uint64_t value)
5206 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5207 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5208 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5211 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5212 uint64_t value)
5214 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5215 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5216 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5220 * Return the effective value of HCR_EL2.
5221 * Bits that are not included here:
5222 * RW (read from SCR_EL3.RW as needed)
5224 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5226 uint64_t ret = env->cp15.hcr_el2;
5228 if (!arm_is_el2_enabled(env)) {
5230 * "This register has no effect if EL2 is not enabled in the
5231 * current Security state". This is ARMv8.4-SecEL2 speak for
5232 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5234 * Prior to that, the language was "In an implementation that
5235 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5236 * as if this field is 0 for all purposes other than a direct
5237 * read or write access of HCR_EL2". With lots of enumeration
5238 * on a per-field basis. In current QEMU, this is condition
5239 * is arm_is_secure_below_el3.
5241 * Since the v8.4 language applies to the entire register, and
5242 * appears to be backward compatible, use that.
5244 return 0;
5248 * For a cpu that supports both aarch64 and aarch32, we can set bits
5249 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5250 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5252 if (!arm_el_is_aa64(env, 2)) {
5253 uint64_t aa32_valid;
5256 * These bits are up-to-date as of ARMv8.6.
5257 * For HCR, it's easiest to list just the 2 bits that are invalid.
5258 * For HCR2, list those that are valid.
5260 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5261 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5262 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5263 ret &= aa32_valid;
5266 if (ret & HCR_TGE) {
5267 /* These bits are up-to-date as of ARMv8.6. */
5268 if (ret & HCR_E2H) {
5269 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5270 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5271 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5272 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5273 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5274 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5275 } else {
5276 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5278 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5279 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5280 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5281 HCR_TLOR);
5284 return ret;
5287 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5288 uint64_t value)
5290 uint64_t valid_mask = 0;
5292 /* No features adding bits to HCRX are implemented. */
5294 /* Clear RES0 bits. */
5295 env->cp15.hcrx_el2 = value & valid_mask;
5298 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5299 bool isread)
5301 if (arm_current_el(env) < 3
5302 && arm_feature(env, ARM_FEATURE_EL3)
5303 && !(env->cp15.scr_el3 & SCR_HXEN)) {
5304 return CP_ACCESS_TRAP_EL3;
5306 return CP_ACCESS_OK;
5309 static const ARMCPRegInfo hcrx_el2_reginfo = {
5310 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5311 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5312 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5313 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5316 /* Return the effective value of HCRX_EL2. */
5317 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5320 * The bits in this register behave as 0 for all purposes other than
5321 * direct reads of the register if:
5322 * - EL2 is not enabled in the current security state,
5323 * - SCR_EL3.HXEn is 0.
5325 if (!arm_is_el2_enabled(env)
5326 || (arm_feature(env, ARM_FEATURE_EL3)
5327 && !(env->cp15.scr_el3 & SCR_HXEN))) {
5328 return 0;
5330 return env->cp15.hcrx_el2;
5333 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5334 uint64_t value)
5337 * For A-profile AArch32 EL3, if NSACR.CP10
5338 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5340 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5341 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5342 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5343 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5345 env->cp15.cptr_el[2] = value;
5348 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5351 * For A-profile AArch32 EL3, if NSACR.CP10
5352 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5354 uint64_t value = env->cp15.cptr_el[2];
5356 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5357 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5358 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5360 return value;
5363 static const ARMCPRegInfo el2_cp_reginfo[] = {
5364 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5365 .type = ARM_CP_IO,
5366 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5367 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5368 .writefn = hcr_write },
5369 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5370 .type = ARM_CP_ALIAS | ARM_CP_IO,
5371 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5372 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5373 .writefn = hcr_writelow },
5374 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5375 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5376 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5377 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5378 .type = ARM_CP_ALIAS,
5379 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5380 .access = PL2_RW,
5381 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5382 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5383 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5384 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5385 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5386 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5387 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5388 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5389 .type = ARM_CP_ALIAS,
5390 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5391 .access = PL2_RW,
5392 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5393 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5394 .type = ARM_CP_ALIAS,
5395 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5396 .access = PL2_RW,
5397 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5398 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5399 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5400 .access = PL2_RW, .writefn = vbar_write,
5401 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5402 .resetvalue = 0 },
5403 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5404 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5405 .access = PL3_RW, .type = ARM_CP_ALIAS,
5406 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5407 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5408 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5409 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5410 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5411 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5412 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5413 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5414 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5415 .resetvalue = 0 },
5416 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5417 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5418 .access = PL2_RW, .type = ARM_CP_ALIAS,
5419 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5420 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5421 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5422 .access = PL2_RW, .type = ARM_CP_CONST,
5423 .resetvalue = 0 },
5424 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5425 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5426 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5427 .access = PL2_RW, .type = ARM_CP_CONST,
5428 .resetvalue = 0 },
5429 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5431 .access = PL2_RW, .type = ARM_CP_CONST,
5432 .resetvalue = 0 },
5433 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5434 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5435 .access = PL2_RW, .type = ARM_CP_CONST,
5436 .resetvalue = 0 },
5437 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5438 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5439 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5440 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5441 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5442 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5443 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5444 .type = ARM_CP_ALIAS,
5445 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5446 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5447 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5448 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5449 .access = PL2_RW,
5450 /* no .writefn needed as this can't cause an ASID change;
5451 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5453 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5454 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5455 .cp = 15, .opc1 = 6, .crm = 2,
5456 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5457 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5458 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5459 .writefn = vttbr_write },
5460 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5461 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5462 .access = PL2_RW, .writefn = vttbr_write,
5463 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5464 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5465 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5466 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5467 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5468 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5469 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5470 .access = PL2_RW, .resetvalue = 0,
5471 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5472 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5473 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5474 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5475 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5476 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5477 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5478 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5479 { .name = "TLBIALLNSNH",
5480 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5481 .type = ARM_CP_NO_RAW, .access = PL2_W,
5482 .writefn = tlbiall_nsnh_write },
5483 { .name = "TLBIALLNSNHIS",
5484 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5485 .type = ARM_CP_NO_RAW, .access = PL2_W,
5486 .writefn = tlbiall_nsnh_is_write },
5487 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5488 .type = ARM_CP_NO_RAW, .access = PL2_W,
5489 .writefn = tlbiall_hyp_write },
5490 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5491 .type = ARM_CP_NO_RAW, .access = PL2_W,
5492 .writefn = tlbiall_hyp_is_write },
5493 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5494 .type = ARM_CP_NO_RAW, .access = PL2_W,
5495 .writefn = tlbimva_hyp_write },
5496 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5497 .type = ARM_CP_NO_RAW, .access = PL2_W,
5498 .writefn = tlbimva_hyp_is_write },
5499 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5500 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5501 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5502 .writefn = tlbi_aa64_alle2_write },
5503 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5504 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5505 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5506 .writefn = tlbi_aa64_vae2_write },
5507 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5509 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5510 .writefn = tlbi_aa64_vae2_write },
5511 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5512 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5513 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5514 .writefn = tlbi_aa64_alle2is_write },
5515 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5516 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5517 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5518 .writefn = tlbi_aa64_vae2is_write },
5519 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5520 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5521 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5522 .writefn = tlbi_aa64_vae2is_write },
5523 #ifndef CONFIG_USER_ONLY
5524 /* Unlike the other EL2-related AT operations, these must
5525 * UNDEF from EL3 if EL2 is not implemented, which is why we
5526 * define them here rather than with the rest of the AT ops.
5528 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5529 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5530 .access = PL2_W, .accessfn = at_s1e2_access,
5531 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5532 .writefn = ats_write64 },
5533 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5534 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5535 .access = PL2_W, .accessfn = at_s1e2_access,
5536 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5537 .writefn = ats_write64 },
5538 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5539 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5540 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5541 * to behave as if SCR.NS was 1.
5543 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5544 .access = PL2_W,
5545 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5546 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5547 .access = PL2_W,
5548 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5549 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5550 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5551 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5552 * reset values as IMPDEF. We choose to reset to 3 to comply with
5553 * both ARMv7 and ARMv8.
5555 .access = PL2_RW, .resetvalue = 3,
5556 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5557 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5559 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5560 .writefn = gt_cntvoff_write,
5561 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5562 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5563 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5564 .writefn = gt_cntvoff_write,
5565 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5566 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5568 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5569 .type = ARM_CP_IO, .access = PL2_RW,
5570 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5571 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5572 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5573 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5574 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5575 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5576 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5577 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5578 .resetfn = gt_hyp_timer_reset,
5579 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5580 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5581 .type = ARM_CP_IO,
5582 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5583 .access = PL2_RW,
5584 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5585 .resetvalue = 0,
5586 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5587 #endif
5588 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5589 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5590 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5591 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5592 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5593 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5594 .access = PL2_RW,
5595 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5596 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5597 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5598 .access = PL2_RW,
5599 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5602 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5603 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5604 .type = ARM_CP_ALIAS | ARM_CP_IO,
5605 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5606 .access = PL2_RW,
5607 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5608 .writefn = hcr_writehigh },
5611 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5612 bool isread)
5614 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5615 return CP_ACCESS_OK;
5617 return CP_ACCESS_TRAP_UNCATEGORIZED;
5620 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5621 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5622 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5623 .access = PL2_RW, .accessfn = sel2_access,
5624 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5625 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5626 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5627 .access = PL2_RW, .accessfn = sel2_access,
5628 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5631 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5632 bool isread)
5634 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5635 * At Secure EL1 it traps to EL3 or EL2.
5637 if (arm_current_el(env) == 3) {
5638 return CP_ACCESS_OK;
5640 if (arm_is_secure_below_el3(env)) {
5641 if (env->cp15.scr_el3 & SCR_EEL2) {
5642 return CP_ACCESS_TRAP_EL2;
5644 return CP_ACCESS_TRAP_EL3;
5646 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5647 if (isread) {
5648 return CP_ACCESS_OK;
5650 return CP_ACCESS_TRAP_UNCATEGORIZED;
5653 static const ARMCPRegInfo el3_cp_reginfo[] = {
5654 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5655 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5656 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5657 .resetfn = scr_reset, .writefn = scr_write },
5658 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5659 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5660 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5661 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5662 .writefn = scr_write },
5663 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5664 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5665 .access = PL3_RW, .resetvalue = 0,
5666 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5667 { .name = "SDER",
5668 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5669 .access = PL3_RW, .resetvalue = 0,
5670 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5671 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5672 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5673 .writefn = vbar_write, .resetvalue = 0,
5674 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5675 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5676 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5677 .access = PL3_RW, .resetvalue = 0,
5678 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5679 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5680 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5681 .access = PL3_RW,
5682 /* no .writefn needed as this can't cause an ASID change;
5683 * we must provide a .raw_writefn and .resetfn because we handle
5684 * reset and migration for the AArch32 TTBCR(S), which might be
5685 * using mask and base_mask.
5687 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5688 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5689 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5690 .type = ARM_CP_ALIAS,
5691 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5692 .access = PL3_RW,
5693 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5694 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5695 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5696 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5697 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5698 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5699 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5700 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5701 .type = ARM_CP_ALIAS,
5702 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5703 .access = PL3_RW,
5704 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5705 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5706 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5707 .access = PL3_RW, .writefn = vbar_write,
5708 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5709 .resetvalue = 0 },
5710 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5711 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5712 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5713 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5714 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5715 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5716 .access = PL3_RW, .resetvalue = 0,
5717 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5718 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5719 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5720 .access = PL3_RW, .type = ARM_CP_CONST,
5721 .resetvalue = 0 },
5722 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5723 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5724 .access = PL3_RW, .type = ARM_CP_CONST,
5725 .resetvalue = 0 },
5726 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5727 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5728 .access = PL3_RW, .type = ARM_CP_CONST,
5729 .resetvalue = 0 },
5730 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5731 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5732 .access = PL3_W, .type = ARM_CP_NO_RAW,
5733 .writefn = tlbi_aa64_alle3is_write },
5734 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5735 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5736 .access = PL3_W, .type = ARM_CP_NO_RAW,
5737 .writefn = tlbi_aa64_vae3is_write },
5738 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5739 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5740 .access = PL3_W, .type = ARM_CP_NO_RAW,
5741 .writefn = tlbi_aa64_vae3is_write },
5742 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5744 .access = PL3_W, .type = ARM_CP_NO_RAW,
5745 .writefn = tlbi_aa64_alle3_write },
5746 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5748 .access = PL3_W, .type = ARM_CP_NO_RAW,
5749 .writefn = tlbi_aa64_vae3_write },
5750 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5752 .access = PL3_W, .type = ARM_CP_NO_RAW,
5753 .writefn = tlbi_aa64_vae3_write },
5756 #ifndef CONFIG_USER_ONLY
5757 /* Test if system register redirection is to occur in the current state. */
5758 static bool redirect_for_e2h(CPUARMState *env)
5760 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5763 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5765 CPReadFn *readfn;
5767 if (redirect_for_e2h(env)) {
5768 /* Switch to the saved EL2 version of the register. */
5769 ri = ri->opaque;
5770 readfn = ri->readfn;
5771 } else {
5772 readfn = ri->orig_readfn;
5774 if (readfn == NULL) {
5775 readfn = raw_read;
5777 return readfn(env, ri);
5780 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5781 uint64_t value)
5783 CPWriteFn *writefn;
5785 if (redirect_for_e2h(env)) {
5786 /* Switch to the saved EL2 version of the register. */
5787 ri = ri->opaque;
5788 writefn = ri->writefn;
5789 } else {
5790 writefn = ri->orig_writefn;
5792 if (writefn == NULL) {
5793 writefn = raw_write;
5795 writefn(env, ri, value);
5798 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5800 struct E2HAlias {
5801 uint32_t src_key, dst_key, new_key;
5802 const char *src_name, *dst_name, *new_name;
5803 bool (*feature)(const ARMISARegisters *id);
5806 #define K(op0, op1, crn, crm, op2) \
5807 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5809 static const struct E2HAlias aliases[] = {
5810 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5811 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5812 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5813 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5814 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5815 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5816 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5817 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5818 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5819 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5820 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5821 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5822 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5823 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5824 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5825 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5826 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5827 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5828 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5829 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5830 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5831 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5832 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5833 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5834 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5835 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5836 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5837 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5838 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5839 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5840 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5841 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5844 * Note that redirection of ZCR is mentioned in the description
5845 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5846 * not in the summary table.
5848 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5849 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5851 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5852 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5854 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5855 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5856 isar_feature_aa64_scxtnum },
5858 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5859 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5861 #undef K
5863 size_t i;
5865 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5866 const struct E2HAlias *a = &aliases[i];
5867 ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5868 bool ok;
5870 if (a->feature && !a->feature(&cpu->isar)) {
5871 continue;
5874 src_reg = g_hash_table_lookup(cpu->cp_regs,
5875 (gpointer)(uintptr_t)a->src_key);
5876 dst_reg = g_hash_table_lookup(cpu->cp_regs,
5877 (gpointer)(uintptr_t)a->dst_key);
5878 g_assert(src_reg != NULL);
5879 g_assert(dst_reg != NULL);
5881 /* Cross-compare names to detect typos in the keys. */
5882 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5883 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5885 /* None of the core system registers use opaque; we will. */
5886 g_assert(src_reg->opaque == NULL);
5888 /* Create alias before redirection so we dup the right data. */
5889 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5891 new_reg->name = a->new_name;
5892 new_reg->type |= ARM_CP_ALIAS;
5893 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5894 new_reg->access &= PL2_RW | PL3_RW;
5896 ok = g_hash_table_insert(cpu->cp_regs,
5897 (gpointer)(uintptr_t)a->new_key, new_reg);
5898 g_assert(ok);
5900 src_reg->opaque = dst_reg;
5901 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5902 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5903 if (!src_reg->raw_readfn) {
5904 src_reg->raw_readfn = raw_read;
5906 if (!src_reg->raw_writefn) {
5907 src_reg->raw_writefn = raw_write;
5909 src_reg->readfn = el2_e2h_read;
5910 src_reg->writefn = el2_e2h_write;
5913 #endif
5915 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5916 bool isread)
5918 int cur_el = arm_current_el(env);
5920 if (cur_el < 2) {
5921 uint64_t hcr = arm_hcr_el2_eff(env);
5923 if (cur_el == 0) {
5924 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5925 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5926 return CP_ACCESS_TRAP_EL2;
5928 } else {
5929 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5930 return CP_ACCESS_TRAP;
5932 if (hcr & HCR_TID2) {
5933 return CP_ACCESS_TRAP_EL2;
5936 } else if (hcr & HCR_TID2) {
5937 return CP_ACCESS_TRAP_EL2;
5941 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5942 return CP_ACCESS_TRAP_EL2;
5945 return CP_ACCESS_OK;
5948 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5949 uint64_t value)
5951 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5952 * read via a bit in OSLSR_EL1.
5954 int oslock;
5956 if (ri->state == ARM_CP_STATE_AA32) {
5957 oslock = (value == 0xC5ACCE55);
5958 } else {
5959 oslock = value & 1;
5962 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5965 static const ARMCPRegInfo debug_cp_reginfo[] = {
5966 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5967 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5968 * unlike DBGDRAR it is never accessible from EL0.
5969 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5970 * accessor.
5972 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5973 .access = PL0_R, .accessfn = access_tdra,
5974 .type = ARM_CP_CONST, .resetvalue = 0 },
5975 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5976 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5977 .access = PL1_R, .accessfn = access_tdra,
5978 .type = ARM_CP_CONST, .resetvalue = 0 },
5979 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5980 .access = PL0_R, .accessfn = access_tdra,
5981 .type = ARM_CP_CONST, .resetvalue = 0 },
5982 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5983 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5985 .access = PL1_RW, .accessfn = access_tda,
5986 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5987 .resetvalue = 0 },
5989 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external
5990 * Debug Communication Channel is not implemented.
5992 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
5993 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
5994 .access = PL0_R, .accessfn = access_tda,
5995 .type = ARM_CP_CONST, .resetvalue = 0 },
5997 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as
5998 * it is unlikely a guest will care.
5999 * We don't implement the configurable EL0 access.
6001 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6002 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6003 .type = ARM_CP_ALIAS,
6004 .access = PL1_R, .accessfn = access_tda,
6005 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6006 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6007 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6008 .access = PL1_W, .type = ARM_CP_NO_RAW,
6009 .accessfn = access_tdosa,
6010 .writefn = oslar_write },
6011 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6012 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6013 .access = PL1_R, .resetvalue = 10,
6014 .accessfn = access_tdosa,
6015 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6016 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6017 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6018 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6019 .access = PL1_RW, .accessfn = access_tdosa,
6020 .type = ARM_CP_NOP },
6021 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6022 * implement vector catch debug events yet.
6024 { .name = "DBGVCR",
6025 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6026 .access = PL1_RW, .accessfn = access_tda,
6027 .type = ARM_CP_NOP },
6028 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6029 * to save and restore a 32-bit guest's DBGVCR)
6031 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6032 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6033 .access = PL2_RW, .accessfn = access_tda,
6034 .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
6035 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6036 * Channel but Linux may try to access this register. The 32-bit
6037 * alias is DBGDCCINT.
6039 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6040 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6041 .access = PL1_RW, .accessfn = access_tda,
6042 .type = ARM_CP_NOP },
6045 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6046 /* 64 bit access versions of the (dummy) debug registers */
6047 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6048 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6049 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6050 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6054 * Check for traps to RAS registers, which are controlled
6055 * by HCR_EL2.TERR and SCR_EL3.TERR.
6057 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6058 bool isread)
6060 int el = arm_current_el(env);
6062 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6063 return CP_ACCESS_TRAP_EL2;
6065 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6066 return CP_ACCESS_TRAP_EL3;
6068 return CP_ACCESS_OK;
6071 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6073 int el = arm_current_el(env);
6075 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6076 return env->cp15.vdisr_el2;
6078 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6079 return 0; /* RAZ/WI */
6081 return env->cp15.disr_el1;
6084 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6086 int el = arm_current_el(env);
6088 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6089 env->cp15.vdisr_el2 = val;
6090 return;
6092 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6093 return; /* RAZ/WI */
6095 env->cp15.disr_el1 = val;
6099 * Minimal RAS implementation with no Error Records.
6100 * Which means that all of the Error Record registers:
6101 * ERXADDR_EL1
6102 * ERXCTLR_EL1
6103 * ERXFR_EL1
6104 * ERXMISC0_EL1
6105 * ERXMISC1_EL1
6106 * ERXMISC2_EL1
6107 * ERXMISC3_EL1
6108 * ERXPFGCDN_EL1 (RASv1p1)
6109 * ERXPFGCTL_EL1 (RASv1p1)
6110 * ERXPFGF_EL1 (RASv1p1)
6111 * ERXSTATUS_EL1
6112 * and
6113 * ERRSELR_EL1
6114 * may generate UNDEFINED, which is the effect we get by not
6115 * listing them at all.
6117 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6118 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6120 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6121 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6122 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6123 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6124 .access = PL1_R, .accessfn = access_terr,
6125 .type = ARM_CP_CONST, .resetvalue = 0 },
6126 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6127 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6128 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6129 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6130 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6131 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6134 /* Return the exception level to which exceptions should be taken
6135 * via SVEAccessTrap. If an exception should be routed through
6136 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6137 * take care of raising that exception.
6138 * C.f. the ARM pseudocode function CheckSVEEnabled.
6140 int sve_exception_el(CPUARMState *env, int el)
6142 #ifndef CONFIG_USER_ONLY
6143 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6145 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6146 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6147 case 1:
6148 if (el != 0) {
6149 break;
6151 /* fall through */
6152 case 0:
6153 case 2:
6154 /* route_to_el2 */
6155 return hcr_el2 & HCR_TGE ? 2 : 1;
6158 /* Check CPACR.FPEN. */
6159 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN)) {
6160 case 1:
6161 if (el != 0) {
6162 break;
6164 /* fall through */
6165 case 0:
6166 case 2:
6167 return 0;
6172 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6174 if (el <= 2) {
6175 if (hcr_el2 & HCR_E2H) {
6176 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6177 case 1:
6178 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6179 break;
6181 /* fall through */
6182 case 0:
6183 case 2:
6184 return 2;
6187 switch (FIELD_EX32(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
6188 case 1:
6189 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6190 break;
6192 /* fall through */
6193 case 0:
6194 case 2:
6195 return 0;
6197 } else if (arm_is_el2_enabled(env)) {
6198 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6199 return 2;
6201 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
6202 return 0;
6207 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6208 if (arm_feature(env, ARM_FEATURE_EL3)
6209 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6210 return 3;
6212 #endif
6213 return 0;
6216 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6218 uint32_t end_len;
6220 start_len = MIN(start_len, ARM_MAX_VQ - 1);
6221 end_len = start_len;
6223 if (!test_bit(start_len, cpu->sve_vq_map)) {
6224 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6225 assert(end_len < start_len);
6227 return end_len;
6231 * Given that SVE is enabled, return the vector length for EL.
6233 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6235 ARMCPU *cpu = env_archcpu(env);
6236 uint32_t zcr_len = cpu->sve_max_vq - 1;
6238 if (el <= 1 &&
6239 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6240 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6242 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6243 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6245 if (arm_feature(env, ARM_FEATURE_EL3)) {
6246 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6249 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6252 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6253 uint64_t value)
6255 int cur_el = arm_current_el(env);
6256 int old_len = sve_zcr_len_for_el(env, cur_el);
6257 int new_len;
6259 /* Bits other than [3:0] are RAZ/WI. */
6260 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6261 raw_write(env, ri, value & 0xf);
6264 * Because we arrived here, we know both FP and SVE are enabled;
6265 * otherwise we would have trapped access to the ZCR_ELn register.
6267 new_len = sve_zcr_len_for_el(env, cur_el);
6268 if (new_len < old_len) {
6269 aarch64_sve_narrow_vq(env, new_len + 1);
6273 static const ARMCPRegInfo zcr_reginfo[] = {
6274 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6275 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6276 .access = PL1_RW, .type = ARM_CP_SVE,
6277 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6278 .writefn = zcr_write, .raw_writefn = raw_write },
6279 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6280 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6281 .access = PL2_RW, .type = ARM_CP_SVE,
6282 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6283 .writefn = zcr_write, .raw_writefn = raw_write },
6284 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6285 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6286 .access = PL3_RW, .type = ARM_CP_SVE,
6287 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6288 .writefn = zcr_write, .raw_writefn = raw_write },
6291 void hw_watchpoint_update(ARMCPU *cpu, int n)
6293 CPUARMState *env = &cpu->env;
6294 vaddr len = 0;
6295 vaddr wvr = env->cp15.dbgwvr[n];
6296 uint64_t wcr = env->cp15.dbgwcr[n];
6297 int mask;
6298 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6300 if (env->cpu_watchpoint[n]) {
6301 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6302 env->cpu_watchpoint[n] = NULL;
6305 if (!FIELD_EX64(wcr, DBGWCR, E)) {
6306 /* E bit clear : watchpoint disabled */
6307 return;
6310 switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
6311 case 0:
6312 /* LSC 00 is reserved and must behave as if the wp is disabled */
6313 return;
6314 case 1:
6315 flags |= BP_MEM_READ;
6316 break;
6317 case 2:
6318 flags |= BP_MEM_WRITE;
6319 break;
6320 case 3:
6321 flags |= BP_MEM_ACCESS;
6322 break;
6325 /* Attempts to use both MASK and BAS fields simultaneously are
6326 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6327 * thus generating a watchpoint for every byte in the masked region.
6329 mask = FIELD_EX64(wcr, DBGWCR, MASK);
6330 if (mask == 1 || mask == 2) {
6331 /* Reserved values of MASK; we must act as if the mask value was
6332 * some non-reserved value, or as if the watchpoint were disabled.
6333 * We choose the latter.
6335 return;
6336 } else if (mask) {
6337 /* Watchpoint covers an aligned area up to 2GB in size */
6338 len = 1ULL << mask;
6339 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6340 * whether the watchpoint fires when the unmasked bits match; we opt
6341 * to generate the exceptions.
6343 wvr &= ~(len - 1);
6344 } else {
6345 /* Watchpoint covers bytes defined by the byte address select bits */
6346 int bas = FIELD_EX64(wcr, DBGWCR, BAS);
6347 int basstart;
6349 if (extract64(wvr, 2, 1)) {
6350 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6351 * ignored, and BAS[3:0] define which bytes to watch.
6353 bas &= 0xf;
6356 if (bas == 0) {
6357 /* This must act as if the watchpoint is disabled */
6358 return;
6361 /* The BAS bits are supposed to be programmed to indicate a contiguous
6362 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6363 * we fire for each byte in the word/doubleword addressed by the WVR.
6364 * We choose to ignore any non-zero bits after the first range of 1s.
6366 basstart = ctz32(bas);
6367 len = cto32(bas >> basstart);
6368 wvr += basstart;
6371 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6372 &env->cpu_watchpoint[n]);
6375 void hw_watchpoint_update_all(ARMCPU *cpu)
6377 int i;
6378 CPUARMState *env = &cpu->env;
6380 /* Completely clear out existing QEMU watchpoints and our array, to
6381 * avoid possible stale entries following migration load.
6383 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6384 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6386 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6387 hw_watchpoint_update(cpu, i);
6391 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6392 uint64_t value)
6394 ARMCPU *cpu = env_archcpu(env);
6395 int i = ri->crm;
6398 * Bits [1:0] are RES0.
6400 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6401 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6402 * they contain the value written. It is CONSTRAINED UNPREDICTABLE
6403 * whether the RESS bits are ignored when comparing an address.
6405 * Therefore we are allowed to compare the entire register, which lets
6406 * us avoid considering whether or not FEAT_LVA is actually enabled.
6408 value &= ~3ULL;
6410 raw_write(env, ri, value);
6411 hw_watchpoint_update(cpu, i);
6414 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6415 uint64_t value)
6417 ARMCPU *cpu = env_archcpu(env);
6418 int i = ri->crm;
6420 raw_write(env, ri, value);
6421 hw_watchpoint_update(cpu, i);
6424 void hw_breakpoint_update(ARMCPU *cpu, int n)
6426 CPUARMState *env = &cpu->env;
6427 uint64_t bvr = env->cp15.dbgbvr[n];
6428 uint64_t bcr = env->cp15.dbgbcr[n];
6429 vaddr addr;
6430 int bt;
6431 int flags = BP_CPU;
6433 if (env->cpu_breakpoint[n]) {
6434 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6435 env->cpu_breakpoint[n] = NULL;
6438 if (!extract64(bcr, 0, 1)) {
6439 /* E bit clear : watchpoint disabled */
6440 return;
6443 bt = extract64(bcr, 20, 4);
6445 switch (bt) {
6446 case 4: /* unlinked address mismatch (reserved if AArch64) */
6447 case 5: /* linked address mismatch (reserved if AArch64) */
6448 qemu_log_mask(LOG_UNIMP,
6449 "arm: address mismatch breakpoint types not implemented\n");
6450 return;
6451 case 0: /* unlinked address match */
6452 case 1: /* linked address match */
6455 * Bits [1:0] are RES0.
6457 * It is IMPLEMENTATION DEFINED whether bits [63:49]
6458 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6459 * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6460 * value is read as written. It is CONSTRAINED UNPREDICTABLE
6461 * whether the RESS bits are ignored when comparing an address.
6462 * Therefore we are allowed to compare the entire register, which
6463 * lets us avoid considering whether FEAT_LVA is actually enabled.
6465 * The BAS field is used to allow setting breakpoints on 16-bit
6466 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6467 * a bp will fire if the addresses covered by the bp and the addresses
6468 * covered by the insn overlap but the insn doesn't start at the
6469 * start of the bp address range. We choose to require the insn and
6470 * the bp to have the same address. The constraints on writing to
6471 * BAS enforced in dbgbcr_write mean we have only four cases:
6472 * 0b0000 => no breakpoint
6473 * 0b0011 => breakpoint on addr
6474 * 0b1100 => breakpoint on addr + 2
6475 * 0b1111 => breakpoint on addr
6476 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6478 int bas = extract64(bcr, 5, 4);
6479 addr = bvr & ~3ULL;
6480 if (bas == 0) {
6481 return;
6483 if (bas == 0xc) {
6484 addr += 2;
6486 break;
6488 case 2: /* unlinked context ID match */
6489 case 8: /* unlinked VMID match (reserved if no EL2) */
6490 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6491 qemu_log_mask(LOG_UNIMP,
6492 "arm: unlinked context breakpoint types not implemented\n");
6493 return;
6494 case 9: /* linked VMID match (reserved if no EL2) */
6495 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6496 case 3: /* linked context ID match */
6497 default:
6498 /* We must generate no events for Linked context matches (unless
6499 * they are linked to by some other bp/wp, which is handled in
6500 * updates for the linking bp/wp). We choose to also generate no events
6501 * for reserved values.
6503 return;
6506 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6509 void hw_breakpoint_update_all(ARMCPU *cpu)
6511 int i;
6512 CPUARMState *env = &cpu->env;
6514 /* Completely clear out existing QEMU breakpoints and our array, to
6515 * avoid possible stale entries following migration load.
6517 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6518 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6520 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6521 hw_breakpoint_update(cpu, i);
6525 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6526 uint64_t value)
6528 ARMCPU *cpu = env_archcpu(env);
6529 int i = ri->crm;
6531 raw_write(env, ri, value);
6532 hw_breakpoint_update(cpu, i);
6535 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6536 uint64_t value)
6538 ARMCPU *cpu = env_archcpu(env);
6539 int i = ri->crm;
6541 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6542 * copy of BAS[0].
6544 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6545 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6547 raw_write(env, ri, value);
6548 hw_breakpoint_update(cpu, i);
6551 static void define_debug_regs(ARMCPU *cpu)
6553 /* Define v7 and v8 architectural debug registers.
6554 * These are just dummy implementations for now.
6556 int i;
6557 int wrps, brps, ctx_cmps;
6560 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6561 * use AArch32. Given that bit 15 is RES1, if the value is 0 then
6562 * the register must not exist for this cpu.
6564 if (cpu->isar.dbgdidr != 0) {
6565 ARMCPRegInfo dbgdidr = {
6566 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6567 .opc1 = 0, .opc2 = 0,
6568 .access = PL0_R, .accessfn = access_tda,
6569 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6571 define_one_arm_cp_reg(cpu, &dbgdidr);
6574 brps = arm_num_brps(cpu);
6575 wrps = arm_num_wrps(cpu);
6576 ctx_cmps = arm_num_ctx_cmps(cpu);
6578 assert(ctx_cmps <= brps);
6580 define_arm_cp_regs(cpu, debug_cp_reginfo);
6582 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6583 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6586 for (i = 0; i < brps; i++) {
6587 char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
6588 char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
6589 ARMCPRegInfo dbgregs[] = {
6590 { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
6591 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6592 .access = PL1_RW, .accessfn = access_tda,
6593 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6594 .writefn = dbgbvr_write, .raw_writefn = raw_write
6596 { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
6597 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6598 .access = PL1_RW, .accessfn = access_tda,
6599 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6600 .writefn = dbgbcr_write, .raw_writefn = raw_write
6603 define_arm_cp_regs(cpu, dbgregs);
6604 g_free(dbgbvr_el1_name);
6605 g_free(dbgbcr_el1_name);
6608 for (i = 0; i < wrps; i++) {
6609 char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
6610 char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
6611 ARMCPRegInfo dbgregs[] = {
6612 { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
6613 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6614 .access = PL1_RW, .accessfn = access_tda,
6615 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6616 .writefn = dbgwvr_write, .raw_writefn = raw_write
6618 { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
6619 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6620 .access = PL1_RW, .accessfn = access_tda,
6621 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6622 .writefn = dbgwcr_write, .raw_writefn = raw_write
6625 define_arm_cp_regs(cpu, dbgregs);
6626 g_free(dbgwvr_el1_name);
6627 g_free(dbgwcr_el1_name);
6631 static void define_pmu_regs(ARMCPU *cpu)
6634 * v7 performance monitor control register: same implementor
6635 * field as main ID register, and we implement four counters in
6636 * addition to the cycle count register.
6638 unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6639 ARMCPRegInfo pmcr = {
6640 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6641 .access = PL0_RW,
6642 .type = ARM_CP_IO | ARM_CP_ALIAS,
6643 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6644 .accessfn = pmreg_access, .writefn = pmcr_write,
6645 .raw_writefn = raw_write,
6647 ARMCPRegInfo pmcr64 = {
6648 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6649 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6650 .access = PL0_RW, .accessfn = pmreg_access,
6651 .type = ARM_CP_IO,
6652 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6653 .resetvalue = cpu->isar.reset_pmcr_el0,
6654 .writefn = pmcr_write, .raw_writefn = raw_write,
6657 define_one_arm_cp_reg(cpu, &pmcr);
6658 define_one_arm_cp_reg(cpu, &pmcr64);
6659 for (i = 0; i < pmcrn; i++) {
6660 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6661 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6662 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6663 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6664 ARMCPRegInfo pmev_regs[] = {
6665 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6666 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6667 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6668 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6669 .accessfn = pmreg_access_xevcntr },
6670 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6671 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6672 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6673 .type = ARM_CP_IO,
6674 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6675 .raw_readfn = pmevcntr_rawread,
6676 .raw_writefn = pmevcntr_rawwrite },
6677 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6678 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6679 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6680 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6681 .accessfn = pmreg_access },
6682 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6683 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6684 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6685 .type = ARM_CP_IO,
6686 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6687 .raw_writefn = pmevtyper_rawwrite },
6689 define_arm_cp_regs(cpu, pmev_regs);
6690 g_free(pmevcntr_name);
6691 g_free(pmevcntr_el0_name);
6692 g_free(pmevtyper_name);
6693 g_free(pmevtyper_el0_name);
6695 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6696 ARMCPRegInfo v81_pmu_regs[] = {
6697 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6698 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6699 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6700 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6701 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6702 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6703 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6704 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6706 define_arm_cp_regs(cpu, v81_pmu_regs);
6708 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6709 static const ARMCPRegInfo v84_pmmir = {
6710 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6711 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6712 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6713 .resetvalue = 0
6715 define_one_arm_cp_reg(cpu, &v84_pmmir);
6719 /* We don't know until after realize whether there's a GICv3
6720 * attached, and that is what registers the gicv3 sysregs.
6721 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6722 * at runtime.
6724 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6726 ARMCPU *cpu = env_archcpu(env);
6727 uint64_t pfr1 = cpu->isar.id_pfr1;
6729 if (env->gicv3state) {
6730 pfr1 |= 1 << 28;
6732 return pfr1;
6735 #ifndef CONFIG_USER_ONLY
6736 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6738 ARMCPU *cpu = env_archcpu(env);
6739 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6741 if (env->gicv3state) {
6742 pfr0 |= 1 << 24;
6744 return pfr0;
6746 #endif
6748 /* Shared logic between LORID and the rest of the LOR* registers.
6749 * Secure state exclusion has already been dealt with.
6751 static CPAccessResult access_lor_ns(CPUARMState *env,
6752 const ARMCPRegInfo *ri, bool isread)
6754 int el = arm_current_el(env);
6756 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6757 return CP_ACCESS_TRAP_EL2;
6759 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6760 return CP_ACCESS_TRAP_EL3;
6762 return CP_ACCESS_OK;
6765 static CPAccessResult access_lor_other(CPUARMState *env,
6766 const ARMCPRegInfo *ri, bool isread)
6768 if (arm_is_secure_below_el3(env)) {
6769 /* Access denied in secure mode. */
6770 return CP_ACCESS_TRAP;
6772 return access_lor_ns(env, ri, isread);
6776 * A trivial implementation of ARMv8.1-LOR leaves all of these
6777 * registers fixed at 0, which indicates that there are zero
6778 * supported Limited Ordering regions.
6780 static const ARMCPRegInfo lor_reginfo[] = {
6781 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6782 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6783 .access = PL1_RW, .accessfn = access_lor_other,
6784 .type = ARM_CP_CONST, .resetvalue = 0 },
6785 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6786 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6787 .access = PL1_RW, .accessfn = access_lor_other,
6788 .type = ARM_CP_CONST, .resetvalue = 0 },
6789 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6790 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6791 .access = PL1_RW, .accessfn = access_lor_other,
6792 .type = ARM_CP_CONST, .resetvalue = 0 },
6793 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6794 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6795 .access = PL1_RW, .accessfn = access_lor_other,
6796 .type = ARM_CP_CONST, .resetvalue = 0 },
6797 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6798 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6799 .access = PL1_R, .accessfn = access_lor_ns,
6800 .type = ARM_CP_CONST, .resetvalue = 0 },
6803 #ifdef TARGET_AARCH64
6804 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6805 bool isread)
6807 int el = arm_current_el(env);
6809 if (el < 2 &&
6810 arm_is_el2_enabled(env) &&
6811 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6812 return CP_ACCESS_TRAP_EL2;
6814 if (el < 3 &&
6815 arm_feature(env, ARM_FEATURE_EL3) &&
6816 !(env->cp15.scr_el3 & SCR_APK)) {
6817 return CP_ACCESS_TRAP_EL3;
6819 return CP_ACCESS_OK;
6822 static const ARMCPRegInfo pauth_reginfo[] = {
6823 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6824 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6825 .access = PL1_RW, .accessfn = access_pauth,
6826 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6827 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6828 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6829 .access = PL1_RW, .accessfn = access_pauth,
6830 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6831 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6832 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6833 .access = PL1_RW, .accessfn = access_pauth,
6834 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6835 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6837 .access = PL1_RW, .accessfn = access_pauth,
6838 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6839 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6840 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6841 .access = PL1_RW, .accessfn = access_pauth,
6842 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6843 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6844 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6845 .access = PL1_RW, .accessfn = access_pauth,
6846 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6847 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6848 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6849 .access = PL1_RW, .accessfn = access_pauth,
6850 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6851 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6852 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6853 .access = PL1_RW, .accessfn = access_pauth,
6854 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6855 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6856 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6857 .access = PL1_RW, .accessfn = access_pauth,
6858 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6859 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6860 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6861 .access = PL1_RW, .accessfn = access_pauth,
6862 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6865 static const ARMCPRegInfo tlbirange_reginfo[] = {
6866 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6868 .access = PL1_W, .type = ARM_CP_NO_RAW,
6869 .writefn = tlbi_aa64_rvae1is_write },
6870 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6872 .access = PL1_W, .type = ARM_CP_NO_RAW,
6873 .writefn = tlbi_aa64_rvae1is_write },
6874 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6876 .access = PL1_W, .type = ARM_CP_NO_RAW,
6877 .writefn = tlbi_aa64_rvae1is_write },
6878 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6880 .access = PL1_W, .type = ARM_CP_NO_RAW,
6881 .writefn = tlbi_aa64_rvae1is_write },
6882 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6884 .access = PL1_W, .type = ARM_CP_NO_RAW,
6885 .writefn = tlbi_aa64_rvae1is_write },
6886 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6888 .access = PL1_W, .type = ARM_CP_NO_RAW,
6889 .writefn = tlbi_aa64_rvae1is_write },
6890 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6891 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6892 .access = PL1_W, .type = ARM_CP_NO_RAW,
6893 .writefn = tlbi_aa64_rvae1is_write },
6894 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6896 .access = PL1_W, .type = ARM_CP_NO_RAW,
6897 .writefn = tlbi_aa64_rvae1is_write },
6898 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6899 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6900 .access = PL1_W, .type = ARM_CP_NO_RAW,
6901 .writefn = tlbi_aa64_rvae1_write },
6902 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6903 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6904 .access = PL1_W, .type = ARM_CP_NO_RAW,
6905 .writefn = tlbi_aa64_rvae1_write },
6906 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6907 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6908 .access = PL1_W, .type = ARM_CP_NO_RAW,
6909 .writefn = tlbi_aa64_rvae1_write },
6910 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6911 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6912 .access = PL1_W, .type = ARM_CP_NO_RAW,
6913 .writefn = tlbi_aa64_rvae1_write },
6914 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6915 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6916 .access = PL2_W, .type = ARM_CP_NOP },
6917 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6919 .access = PL2_W, .type = ARM_CP_NOP },
6920 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6922 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6923 .writefn = tlbi_aa64_rvae2is_write },
6924 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6925 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6926 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6927 .writefn = tlbi_aa64_rvae2is_write },
6928 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6930 .access = PL2_W, .type = ARM_CP_NOP },
6931 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6933 .access = PL2_W, .type = ARM_CP_NOP },
6934 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6936 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6937 .writefn = tlbi_aa64_rvae2is_write },
6938 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6940 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6941 .writefn = tlbi_aa64_rvae2is_write },
6942 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6945 .writefn = tlbi_aa64_rvae2_write },
6946 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6948 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6949 .writefn = tlbi_aa64_rvae2_write },
6950 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6952 .access = PL3_W, .type = ARM_CP_NO_RAW,
6953 .writefn = tlbi_aa64_rvae3is_write },
6954 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6955 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6956 .access = PL3_W, .type = ARM_CP_NO_RAW,
6957 .writefn = tlbi_aa64_rvae3is_write },
6958 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6960 .access = PL3_W, .type = ARM_CP_NO_RAW,
6961 .writefn = tlbi_aa64_rvae3is_write },
6962 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6964 .access = PL3_W, .type = ARM_CP_NO_RAW,
6965 .writefn = tlbi_aa64_rvae3is_write },
6966 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6968 .access = PL3_W, .type = ARM_CP_NO_RAW,
6969 .writefn = tlbi_aa64_rvae3_write },
6970 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6972 .access = PL3_W, .type = ARM_CP_NO_RAW,
6973 .writefn = tlbi_aa64_rvae3_write },
6976 static const ARMCPRegInfo tlbios_reginfo[] = {
6977 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6978 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6979 .access = PL1_W, .type = ARM_CP_NO_RAW,
6980 .writefn = tlbi_aa64_vmalle1is_write },
6981 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6982 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6983 .access = PL1_W, .type = ARM_CP_NO_RAW,
6984 .writefn = tlbi_aa64_vae1is_write },
6985 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6987 .access = PL1_W, .type = ARM_CP_NO_RAW,
6988 .writefn = tlbi_aa64_vmalle1is_write },
6989 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6991 .access = PL1_W, .type = ARM_CP_NO_RAW,
6992 .writefn = tlbi_aa64_vae1is_write },
6993 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6995 .access = PL1_W, .type = ARM_CP_NO_RAW,
6996 .writefn = tlbi_aa64_vae1is_write },
6997 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6998 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6999 .access = PL1_W, .type = ARM_CP_NO_RAW,
7000 .writefn = tlbi_aa64_vae1is_write },
7001 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7002 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7003 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7004 .writefn = tlbi_aa64_alle2is_write },
7005 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7006 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7007 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7008 .writefn = tlbi_aa64_vae2is_write },
7009 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7011 .access = PL2_W, .type = ARM_CP_NO_RAW,
7012 .writefn = tlbi_aa64_alle1is_write },
7013 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7015 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7016 .writefn = tlbi_aa64_vae2is_write },
7017 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7018 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7019 .access = PL2_W, .type = ARM_CP_NO_RAW,
7020 .writefn = tlbi_aa64_alle1is_write },
7021 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7022 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7023 .access = PL2_W, .type = ARM_CP_NOP },
7024 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7026 .access = PL2_W, .type = ARM_CP_NOP },
7027 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7028 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7029 .access = PL2_W, .type = ARM_CP_NOP },
7030 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7032 .access = PL2_W, .type = ARM_CP_NOP },
7033 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7034 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7035 .access = PL3_W, .type = ARM_CP_NO_RAW,
7036 .writefn = tlbi_aa64_alle3is_write },
7037 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7038 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7039 .access = PL3_W, .type = ARM_CP_NO_RAW,
7040 .writefn = tlbi_aa64_vae3is_write },
7041 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7042 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7043 .access = PL3_W, .type = ARM_CP_NO_RAW,
7044 .writefn = tlbi_aa64_vae3is_write },
7047 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7049 Error *err = NULL;
7050 uint64_t ret;
7052 /* Success sets NZCV = 0000. */
7053 env->NF = env->CF = env->VF = 0, env->ZF = 1;
7055 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7057 * ??? Failed, for unknown reasons in the crypto subsystem.
7058 * The best we can do is log the reason and return the
7059 * timed-out indication to the guest. There is no reason
7060 * we know to expect this failure to be transitory, so the
7061 * guest may well hang retrying the operation.
7063 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7064 ri->name, error_get_pretty(err));
7065 error_free(err);
7067 env->ZF = 0; /* NZCF = 0100 */
7068 return 0;
7070 return ret;
7073 /* We do not support re-seeding, so the two registers operate the same. */
7074 static const ARMCPRegInfo rndr_reginfo[] = {
7075 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7076 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7077 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7078 .access = PL0_R, .readfn = rndr_readfn },
7079 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7080 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7081 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7082 .access = PL0_R, .readfn = rndr_readfn },
7085 #ifndef CONFIG_USER_ONLY
7086 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7087 uint64_t value)
7089 ARMCPU *cpu = env_archcpu(env);
7090 /* CTR_EL0 System register -> DminLine, bits [19:16] */
7091 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7092 uint64_t vaddr_in = (uint64_t) value;
7093 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7094 void *haddr;
7095 int mem_idx = cpu_mmu_index(env, false);
7097 /* This won't be crossing page boundaries */
7098 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7099 if (haddr) {
7101 ram_addr_t offset;
7102 MemoryRegion *mr;
7104 /* RCU lock is already being held */
7105 mr = memory_region_from_host(haddr, &offset);
7107 if (mr) {
7108 memory_region_writeback(mr, offset, dline_size);
7113 static const ARMCPRegInfo dcpop_reg[] = {
7114 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7116 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7117 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7120 static const ARMCPRegInfo dcpodp_reg[] = {
7121 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7122 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7123 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7124 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7126 #endif /*CONFIG_USER_ONLY*/
7128 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7129 bool isread)
7131 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7132 return CP_ACCESS_TRAP_EL2;
7135 return CP_ACCESS_OK;
7138 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7139 bool isread)
7141 int el = arm_current_el(env);
7143 if (el < 2 && arm_is_el2_enabled(env)) {
7144 uint64_t hcr = arm_hcr_el2_eff(env);
7145 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7146 return CP_ACCESS_TRAP_EL2;
7149 if (el < 3 &&
7150 arm_feature(env, ARM_FEATURE_EL3) &&
7151 !(env->cp15.scr_el3 & SCR_ATA)) {
7152 return CP_ACCESS_TRAP_EL3;
7154 return CP_ACCESS_OK;
7157 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7159 return env->pstate & PSTATE_TCO;
7162 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7164 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7167 static const ARMCPRegInfo mte_reginfo[] = {
7168 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7170 .access = PL1_RW, .accessfn = access_mte,
7171 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7172 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7173 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7174 .access = PL1_RW, .accessfn = access_mte,
7175 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7176 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7177 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7178 .access = PL2_RW, .accessfn = access_mte,
7179 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7180 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7181 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7182 .access = PL3_RW,
7183 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7184 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7185 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7186 .access = PL1_RW, .accessfn = access_mte,
7187 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7188 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7189 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7190 .access = PL1_RW, .accessfn = access_mte,
7191 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7192 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7193 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7194 .access = PL1_R, .accessfn = access_aa64_tid5,
7195 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7196 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7197 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7198 .type = ARM_CP_NO_RAW,
7199 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7200 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7201 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7202 .type = ARM_CP_NOP, .access = PL1_W,
7203 .accessfn = aa64_cacheop_poc_access },
7204 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7205 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7206 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7207 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7208 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7209 .type = ARM_CP_NOP, .access = PL1_W,
7210 .accessfn = aa64_cacheop_poc_access },
7211 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7212 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7213 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7214 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7215 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7216 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7217 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7218 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7219 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7220 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7222 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7223 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7225 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7228 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7229 { .name = "TCO", .state = ARM_CP_STATE_AA64,
7230 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7231 .type = ARM_CP_CONST, .access = PL0_RW, },
7234 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7235 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7237 .type = ARM_CP_NOP, .access = PL0_W,
7238 .accessfn = aa64_cacheop_poc_access },
7239 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7240 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7241 .type = ARM_CP_NOP, .access = PL0_W,
7242 .accessfn = aa64_cacheop_poc_access },
7243 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7244 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7245 .type = ARM_CP_NOP, .access = PL0_W,
7246 .accessfn = aa64_cacheop_poc_access },
7247 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7248 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7249 .type = ARM_CP_NOP, .access = PL0_W,
7250 .accessfn = aa64_cacheop_poc_access },
7251 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7252 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7253 .type = ARM_CP_NOP, .access = PL0_W,
7254 .accessfn = aa64_cacheop_poc_access },
7255 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7256 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7257 .type = ARM_CP_NOP, .access = PL0_W,
7258 .accessfn = aa64_cacheop_poc_access },
7259 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7260 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7261 .type = ARM_CP_NOP, .access = PL0_W,
7262 .accessfn = aa64_cacheop_poc_access },
7263 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7264 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7265 .type = ARM_CP_NOP, .access = PL0_W,
7266 .accessfn = aa64_cacheop_poc_access },
7267 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7268 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7269 .access = PL0_W, .type = ARM_CP_DC_GVA,
7270 #ifndef CONFIG_USER_ONLY
7271 /* Avoid overhead of an access check that always passes in user-mode */
7272 .accessfn = aa64_zva_access,
7273 #endif
7275 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7276 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7277 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7278 #ifndef CONFIG_USER_ONLY
7279 /* Avoid overhead of an access check that always passes in user-mode */
7280 .accessfn = aa64_zva_access,
7281 #endif
7285 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7286 bool isread)
7288 uint64_t hcr = arm_hcr_el2_eff(env);
7289 int el = arm_current_el(env);
7291 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7292 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7293 if (hcr & HCR_TGE) {
7294 return CP_ACCESS_TRAP_EL2;
7296 return CP_ACCESS_TRAP;
7298 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7299 return CP_ACCESS_TRAP_EL2;
7301 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7302 return CP_ACCESS_TRAP_EL2;
7304 if (el < 3
7305 && arm_feature(env, ARM_FEATURE_EL3)
7306 && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7307 return CP_ACCESS_TRAP_EL3;
7309 return CP_ACCESS_OK;
7312 static const ARMCPRegInfo scxtnum_reginfo[] = {
7313 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7314 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7315 .access = PL0_RW, .accessfn = access_scxtnum,
7316 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7317 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7319 .access = PL1_RW, .accessfn = access_scxtnum,
7320 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7321 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7322 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7323 .access = PL2_RW, .accessfn = access_scxtnum,
7324 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7325 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7326 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7327 .access = PL3_RW,
7328 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7330 #endif /* TARGET_AARCH64 */
7332 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7333 bool isread)
7335 int el = arm_current_el(env);
7337 if (el == 0) {
7338 uint64_t sctlr = arm_sctlr(env, el);
7339 if (!(sctlr & SCTLR_EnRCTX)) {
7340 return CP_ACCESS_TRAP;
7342 } else if (el == 1) {
7343 uint64_t hcr = arm_hcr_el2_eff(env);
7344 if (hcr & HCR_NV) {
7345 return CP_ACCESS_TRAP_EL2;
7348 return CP_ACCESS_OK;
7351 static const ARMCPRegInfo predinv_reginfo[] = {
7352 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7354 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7355 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7356 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7357 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7358 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7359 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7360 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7362 * Note the AArch32 opcodes have a different OPC1.
7364 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7365 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7366 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7367 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7368 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7369 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7370 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7371 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7372 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7375 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7377 /* Read the high 32 bits of the current CCSIDR */
7378 return extract64(ccsidr_read(env, ri), 32, 32);
7381 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7382 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7384 .access = PL1_R,
7385 .accessfn = access_aa64_tid2,
7386 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7389 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7390 bool isread)
7392 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7393 return CP_ACCESS_TRAP_EL2;
7396 return CP_ACCESS_OK;
7399 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7400 bool isread)
7402 if (arm_feature(env, ARM_FEATURE_V8)) {
7403 return access_aa64_tid3(env, ri, isread);
7406 return CP_ACCESS_OK;
7409 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7410 bool isread)
7412 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7413 return CP_ACCESS_TRAP_EL2;
7416 return CP_ACCESS_OK;
7419 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7420 const ARMCPRegInfo *ri, bool isread)
7423 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7424 * in v7A, not in v8A.
7426 if (!arm_feature(env, ARM_FEATURE_V8) &&
7427 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7428 (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7429 return CP_ACCESS_TRAP_EL2;
7431 return CP_ACCESS_OK;
7434 static const ARMCPRegInfo jazelle_regs[] = {
7435 { .name = "JIDR",
7436 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7437 .access = PL1_R, .accessfn = access_jazelle,
7438 .type = ARM_CP_CONST, .resetvalue = 0 },
7439 { .name = "JOSCR",
7440 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7441 .accessfn = access_joscr_jmcr,
7442 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7443 { .name = "JMCR",
7444 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7445 .accessfn = access_joscr_jmcr,
7446 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7449 static const ARMCPRegInfo contextidr_el2 = {
7450 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7452 .access = PL2_RW,
7453 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7456 static const ARMCPRegInfo vhe_reginfo[] = {
7457 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7458 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7459 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7460 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7461 #ifndef CONFIG_USER_ONLY
7462 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7464 .fieldoffset =
7465 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7466 .type = ARM_CP_IO, .access = PL2_RW,
7467 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7468 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7469 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7470 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7471 .resetfn = gt_hv_timer_reset,
7472 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7473 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7474 .type = ARM_CP_IO,
7475 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7476 .access = PL2_RW,
7477 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7478 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7479 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7481 .type = ARM_CP_IO | ARM_CP_ALIAS,
7482 .access = PL2_RW, .accessfn = e2h_access,
7483 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7484 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7485 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7486 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7487 .type = ARM_CP_IO | ARM_CP_ALIAS,
7488 .access = PL2_RW, .accessfn = e2h_access,
7489 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7490 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7491 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7492 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7493 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7494 .access = PL2_RW, .accessfn = e2h_access,
7495 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7496 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7497 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7498 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7499 .access = PL2_RW, .accessfn = e2h_access,
7500 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7501 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7502 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7503 .type = ARM_CP_IO | ARM_CP_ALIAS,
7504 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7505 .access = PL2_RW, .accessfn = e2h_access,
7506 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7507 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7508 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7509 .type = ARM_CP_IO | ARM_CP_ALIAS,
7510 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7511 .access = PL2_RW, .accessfn = e2h_access,
7512 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7513 #endif
7516 #ifndef CONFIG_USER_ONLY
7517 static const ARMCPRegInfo ats1e1_reginfo[] = {
7518 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7519 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7520 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7521 .writefn = ats_write64 },
7522 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7523 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7524 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7525 .writefn = ats_write64 },
7528 static const ARMCPRegInfo ats1cp_reginfo[] = {
7529 { .name = "ATS1CPRP",
7530 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7531 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7532 .writefn = ats_write },
7533 { .name = "ATS1CPWP",
7534 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7535 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7536 .writefn = ats_write },
7538 #endif
7541 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7542 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7543 * is non-zero, which is never for ARMv7, optionally in ARMv8
7544 * and mandatorily for ARMv8.2 and up.
7545 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7546 * implementation is RAZ/WI we can ignore this detail, as we
7547 * do for ACTLR.
7549 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7550 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7551 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7552 .access = PL1_RW, .accessfn = access_tacr,
7553 .type = ARM_CP_CONST, .resetvalue = 0 },
7554 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7555 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7556 .access = PL2_RW, .type = ARM_CP_CONST,
7557 .resetvalue = 0 },
7560 void register_cp_regs_for_features(ARMCPU *cpu)
7562 /* Register all the coprocessor registers based on feature bits */
7563 CPUARMState *env = &cpu->env;
7564 if (arm_feature(env, ARM_FEATURE_M)) {
7565 /* M profile has no coprocessor registers */
7566 return;
7569 define_arm_cp_regs(cpu, cp_reginfo);
7570 if (!arm_feature(env, ARM_FEATURE_V8)) {
7571 /* Must go early as it is full of wildcards that may be
7572 * overridden by later definitions.
7574 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7577 if (arm_feature(env, ARM_FEATURE_V6)) {
7578 /* The ID registers all have impdef reset values */
7579 ARMCPRegInfo v6_idregs[] = {
7580 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7582 .access = PL1_R, .type = ARM_CP_CONST,
7583 .accessfn = access_aa32_tid3,
7584 .resetvalue = cpu->isar.id_pfr0 },
7585 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7586 * the value of the GIC field until after we define these regs.
7588 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7589 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7590 .access = PL1_R, .type = ARM_CP_NO_RAW,
7591 .accessfn = access_aa32_tid3,
7592 .readfn = id_pfr1_read,
7593 .writefn = arm_cp_write_ignore },
7594 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7596 .access = PL1_R, .type = ARM_CP_CONST,
7597 .accessfn = access_aa32_tid3,
7598 .resetvalue = cpu->isar.id_dfr0 },
7599 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7601 .access = PL1_R, .type = ARM_CP_CONST,
7602 .accessfn = access_aa32_tid3,
7603 .resetvalue = cpu->id_afr0 },
7604 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7606 .access = PL1_R, .type = ARM_CP_CONST,
7607 .accessfn = access_aa32_tid3,
7608 .resetvalue = cpu->isar.id_mmfr0 },
7609 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7611 .access = PL1_R, .type = ARM_CP_CONST,
7612 .accessfn = access_aa32_tid3,
7613 .resetvalue = cpu->isar.id_mmfr1 },
7614 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7616 .access = PL1_R, .type = ARM_CP_CONST,
7617 .accessfn = access_aa32_tid3,
7618 .resetvalue = cpu->isar.id_mmfr2 },
7619 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7621 .access = PL1_R, .type = ARM_CP_CONST,
7622 .accessfn = access_aa32_tid3,
7623 .resetvalue = cpu->isar.id_mmfr3 },
7624 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7626 .access = PL1_R, .type = ARM_CP_CONST,
7627 .accessfn = access_aa32_tid3,
7628 .resetvalue = cpu->isar.id_isar0 },
7629 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7631 .access = PL1_R, .type = ARM_CP_CONST,
7632 .accessfn = access_aa32_tid3,
7633 .resetvalue = cpu->isar.id_isar1 },
7634 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7636 .access = PL1_R, .type = ARM_CP_CONST,
7637 .accessfn = access_aa32_tid3,
7638 .resetvalue = cpu->isar.id_isar2 },
7639 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7641 .access = PL1_R, .type = ARM_CP_CONST,
7642 .accessfn = access_aa32_tid3,
7643 .resetvalue = cpu->isar.id_isar3 },
7644 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7645 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7646 .access = PL1_R, .type = ARM_CP_CONST,
7647 .accessfn = access_aa32_tid3,
7648 .resetvalue = cpu->isar.id_isar4 },
7649 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7650 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7651 .access = PL1_R, .type = ARM_CP_CONST,
7652 .accessfn = access_aa32_tid3,
7653 .resetvalue = cpu->isar.id_isar5 },
7654 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7656 .access = PL1_R, .type = ARM_CP_CONST,
7657 .accessfn = access_aa32_tid3,
7658 .resetvalue = cpu->isar.id_mmfr4 },
7659 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7661 .access = PL1_R, .type = ARM_CP_CONST,
7662 .accessfn = access_aa32_tid3,
7663 .resetvalue = cpu->isar.id_isar6 },
7665 define_arm_cp_regs(cpu, v6_idregs);
7666 define_arm_cp_regs(cpu, v6_cp_reginfo);
7667 } else {
7668 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7670 if (arm_feature(env, ARM_FEATURE_V6K)) {
7671 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7673 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7674 !arm_feature(env, ARM_FEATURE_PMSA)) {
7675 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7677 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7678 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7680 if (arm_feature(env, ARM_FEATURE_V7)) {
7681 ARMCPRegInfo clidr = {
7682 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7683 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7684 .access = PL1_R, .type = ARM_CP_CONST,
7685 .accessfn = access_aa64_tid2,
7686 .resetvalue = cpu->clidr
7688 define_one_arm_cp_reg(cpu, &clidr);
7689 define_arm_cp_regs(cpu, v7_cp_reginfo);
7690 define_debug_regs(cpu);
7691 define_pmu_regs(cpu);
7692 } else {
7693 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7695 if (arm_feature(env, ARM_FEATURE_V8)) {
7696 /* AArch64 ID registers, which all have impdef reset values.
7697 * Note that within the ID register ranges the unused slots
7698 * must all RAZ, not UNDEF; future architecture versions may
7699 * define new registers here.
7701 ARMCPRegInfo v8_idregs[] = {
7703 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7704 * emulation because we don't know the right value for the
7705 * GIC field until after we define these regs.
7707 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7709 .access = PL1_R,
7710 #ifdef CONFIG_USER_ONLY
7711 .type = ARM_CP_CONST,
7712 .resetvalue = cpu->isar.id_aa64pfr0
7713 #else
7714 .type = ARM_CP_NO_RAW,
7715 .accessfn = access_aa64_tid3,
7716 .readfn = id_aa64pfr0_read,
7717 .writefn = arm_cp_write_ignore
7718 #endif
7720 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7721 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7722 .access = PL1_R, .type = ARM_CP_CONST,
7723 .accessfn = access_aa64_tid3,
7724 .resetvalue = cpu->isar.id_aa64pfr1},
7725 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7726 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7727 .access = PL1_R, .type = ARM_CP_CONST,
7728 .accessfn = access_aa64_tid3,
7729 .resetvalue = 0 },
7730 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7732 .access = PL1_R, .type = ARM_CP_CONST,
7733 .accessfn = access_aa64_tid3,
7734 .resetvalue = 0 },
7735 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7737 .access = PL1_R, .type = ARM_CP_CONST,
7738 .accessfn = access_aa64_tid3,
7739 .resetvalue = cpu->isar.id_aa64zfr0 },
7740 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7741 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7742 .access = PL1_R, .type = ARM_CP_CONST,
7743 .accessfn = access_aa64_tid3,
7744 .resetvalue = 0 },
7745 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7746 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7747 .access = PL1_R, .type = ARM_CP_CONST,
7748 .accessfn = access_aa64_tid3,
7749 .resetvalue = 0 },
7750 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7752 .access = PL1_R, .type = ARM_CP_CONST,
7753 .accessfn = access_aa64_tid3,
7754 .resetvalue = 0 },
7755 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7757 .access = PL1_R, .type = ARM_CP_CONST,
7758 .accessfn = access_aa64_tid3,
7759 .resetvalue = cpu->isar.id_aa64dfr0 },
7760 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7762 .access = PL1_R, .type = ARM_CP_CONST,
7763 .accessfn = access_aa64_tid3,
7764 .resetvalue = cpu->isar.id_aa64dfr1 },
7765 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7767 .access = PL1_R, .type = ARM_CP_CONST,
7768 .accessfn = access_aa64_tid3,
7769 .resetvalue = 0 },
7770 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7772 .access = PL1_R, .type = ARM_CP_CONST,
7773 .accessfn = access_aa64_tid3,
7774 .resetvalue = 0 },
7775 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7777 .access = PL1_R, .type = ARM_CP_CONST,
7778 .accessfn = access_aa64_tid3,
7779 .resetvalue = cpu->id_aa64afr0 },
7780 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7781 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7782 .access = PL1_R, .type = ARM_CP_CONST,
7783 .accessfn = access_aa64_tid3,
7784 .resetvalue = cpu->id_aa64afr1 },
7785 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7786 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7787 .access = PL1_R, .type = ARM_CP_CONST,
7788 .accessfn = access_aa64_tid3,
7789 .resetvalue = 0 },
7790 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7792 .access = PL1_R, .type = ARM_CP_CONST,
7793 .accessfn = access_aa64_tid3,
7794 .resetvalue = 0 },
7795 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7797 .access = PL1_R, .type = ARM_CP_CONST,
7798 .accessfn = access_aa64_tid3,
7799 .resetvalue = cpu->isar.id_aa64isar0 },
7800 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7801 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7802 .access = PL1_R, .type = ARM_CP_CONST,
7803 .accessfn = access_aa64_tid3,
7804 .resetvalue = cpu->isar.id_aa64isar1 },
7805 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7807 .access = PL1_R, .type = ARM_CP_CONST,
7808 .accessfn = access_aa64_tid3,
7809 .resetvalue = 0 },
7810 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7812 .access = PL1_R, .type = ARM_CP_CONST,
7813 .accessfn = access_aa64_tid3,
7814 .resetvalue = 0 },
7815 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7817 .access = PL1_R, .type = ARM_CP_CONST,
7818 .accessfn = access_aa64_tid3,
7819 .resetvalue = 0 },
7820 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7822 .access = PL1_R, .type = ARM_CP_CONST,
7823 .accessfn = access_aa64_tid3,
7824 .resetvalue = 0 },
7825 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7827 .access = PL1_R, .type = ARM_CP_CONST,
7828 .accessfn = access_aa64_tid3,
7829 .resetvalue = 0 },
7830 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7832 .access = PL1_R, .type = ARM_CP_CONST,
7833 .accessfn = access_aa64_tid3,
7834 .resetvalue = 0 },
7835 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7837 .access = PL1_R, .type = ARM_CP_CONST,
7838 .accessfn = access_aa64_tid3,
7839 .resetvalue = cpu->isar.id_aa64mmfr0 },
7840 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7842 .access = PL1_R, .type = ARM_CP_CONST,
7843 .accessfn = access_aa64_tid3,
7844 .resetvalue = cpu->isar.id_aa64mmfr1 },
7845 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7847 .access = PL1_R, .type = ARM_CP_CONST,
7848 .accessfn = access_aa64_tid3,
7849 .resetvalue = cpu->isar.id_aa64mmfr2 },
7850 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7852 .access = PL1_R, .type = ARM_CP_CONST,
7853 .accessfn = access_aa64_tid3,
7854 .resetvalue = 0 },
7855 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7857 .access = PL1_R, .type = ARM_CP_CONST,
7858 .accessfn = access_aa64_tid3,
7859 .resetvalue = 0 },
7860 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7862 .access = PL1_R, .type = ARM_CP_CONST,
7863 .accessfn = access_aa64_tid3,
7864 .resetvalue = 0 },
7865 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7867 .access = PL1_R, .type = ARM_CP_CONST,
7868 .accessfn = access_aa64_tid3,
7869 .resetvalue = 0 },
7870 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7872 .access = PL1_R, .type = ARM_CP_CONST,
7873 .accessfn = access_aa64_tid3,
7874 .resetvalue = 0 },
7875 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7877 .access = PL1_R, .type = ARM_CP_CONST,
7878 .accessfn = access_aa64_tid3,
7879 .resetvalue = cpu->isar.mvfr0 },
7880 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7882 .access = PL1_R, .type = ARM_CP_CONST,
7883 .accessfn = access_aa64_tid3,
7884 .resetvalue = cpu->isar.mvfr1 },
7885 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7887 .access = PL1_R, .type = ARM_CP_CONST,
7888 .accessfn = access_aa64_tid3,
7889 .resetvalue = cpu->isar.mvfr2 },
7890 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7892 .access = PL1_R, .type = ARM_CP_CONST,
7893 .accessfn = access_aa64_tid3,
7894 .resetvalue = 0 },
7895 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7897 .access = PL1_R, .type = ARM_CP_CONST,
7898 .accessfn = access_aa64_tid3,
7899 .resetvalue = cpu->isar.id_pfr2 },
7900 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7902 .access = PL1_R, .type = ARM_CP_CONST,
7903 .accessfn = access_aa64_tid3,
7904 .resetvalue = 0 },
7905 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7907 .access = PL1_R, .type = ARM_CP_CONST,
7908 .accessfn = access_aa64_tid3,
7909 .resetvalue = 0 },
7910 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7912 .access = PL1_R, .type = ARM_CP_CONST,
7913 .accessfn = access_aa64_tid3,
7914 .resetvalue = 0 },
7915 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7916 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7917 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7918 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7919 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7920 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7921 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7922 .resetvalue = cpu->pmceid0 },
7923 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7924 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7925 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7926 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7927 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7928 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7929 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7930 .resetvalue = cpu->pmceid1 },
7932 #ifdef CONFIG_USER_ONLY
7933 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7934 { .name = "ID_AA64PFR0_EL1",
7935 .exported_bits = 0x000f000f00ff0000,
7936 .fixed_bits = 0x0000000000000011 },
7937 { .name = "ID_AA64PFR1_EL1",
7938 .exported_bits = 0x00000000000000f0 },
7939 { .name = "ID_AA64PFR*_EL1_RESERVED",
7940 .is_glob = true },
7941 { .name = "ID_AA64ZFR0_EL1" },
7942 { .name = "ID_AA64MMFR0_EL1",
7943 .fixed_bits = 0x00000000ff000000 },
7944 { .name = "ID_AA64MMFR1_EL1" },
7945 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7946 .is_glob = true },
7947 { .name = "ID_AA64DFR0_EL1",
7948 .fixed_bits = 0x0000000000000006 },
7949 { .name = "ID_AA64DFR1_EL1" },
7950 { .name = "ID_AA64DFR*_EL1_RESERVED",
7951 .is_glob = true },
7952 { .name = "ID_AA64AFR*",
7953 .is_glob = true },
7954 { .name = "ID_AA64ISAR0_EL1",
7955 .exported_bits = 0x00fffffff0fffff0 },
7956 { .name = "ID_AA64ISAR1_EL1",
7957 .exported_bits = 0x000000f0ffffffff },
7958 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7959 .is_glob = true },
7961 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7962 #endif
7963 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7964 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7965 !arm_feature(env, ARM_FEATURE_EL2)) {
7966 ARMCPRegInfo rvbar = {
7967 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7968 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7969 .access = PL1_R,
7970 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7972 define_one_arm_cp_reg(cpu, &rvbar);
7974 define_arm_cp_regs(cpu, v8_idregs);
7975 define_arm_cp_regs(cpu, v8_cp_reginfo);
7979 * Register the base EL2 cpregs.
7980 * Pre v8, these registers are implemented only as part of the
7981 * Virtualization Extensions (EL2 present). Beginning with v8,
7982 * if EL2 is missing but EL3 is enabled, mostly these become
7983 * RES0 from EL3, with some specific exceptions.
7985 if (arm_feature(env, ARM_FEATURE_EL2)
7986 || (arm_feature(env, ARM_FEATURE_EL3)
7987 && arm_feature(env, ARM_FEATURE_V8))) {
7988 uint64_t vmpidr_def = mpidr_read_val(env);
7989 ARMCPRegInfo vpidr_regs[] = {
7990 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7991 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7992 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7993 .resetvalue = cpu->midr,
7994 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7995 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7996 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7997 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7998 .access = PL2_RW, .resetvalue = cpu->midr,
7999 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8000 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8001 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8002 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8003 .access = PL2_RW, .accessfn = access_el3_aa32ns,
8004 .resetvalue = vmpidr_def,
8005 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8006 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8007 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8008 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8009 .access = PL2_RW, .resetvalue = vmpidr_def,
8010 .type = ARM_CP_EL3_NO_EL2_C_NZ,
8011 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8014 * The only field of MDCR_EL2 that has a defined architectural reset
8015 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8017 ARMCPRegInfo mdcr_el2 = {
8018 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
8019 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8020 .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8021 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8023 define_one_arm_cp_reg(cpu, &mdcr_el2);
8024 define_arm_cp_regs(cpu, vpidr_regs);
8025 define_arm_cp_regs(cpu, el2_cp_reginfo);
8026 if (arm_feature(env, ARM_FEATURE_V8)) {
8027 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8029 if (cpu_isar_feature(aa64_sel2, cpu)) {
8030 define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8032 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8033 if (!arm_feature(env, ARM_FEATURE_EL3)) {
8034 ARMCPRegInfo rvbar = {
8035 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8036 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8037 .access = PL2_R,
8038 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8040 define_one_arm_cp_reg(cpu, &rvbar);
8044 /* Register the base EL3 cpregs. */
8045 if (arm_feature(env, ARM_FEATURE_EL3)) {
8046 define_arm_cp_regs(cpu, el3_cp_reginfo);
8047 ARMCPRegInfo el3_regs[] = {
8048 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8049 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8050 .access = PL3_R,
8051 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8053 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8054 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8055 .access = PL3_RW,
8056 .raw_writefn = raw_write, .writefn = sctlr_write,
8057 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8058 .resetvalue = cpu->reset_sctlr },
8061 define_arm_cp_regs(cpu, el3_regs);
8063 /* The behaviour of NSACR is sufficiently various that we don't
8064 * try to describe it in a single reginfo:
8065 * if EL3 is 64 bit, then trap to EL3 from S EL1,
8066 * reads as constant 0xc00 from NS EL1 and NS EL2
8067 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8068 * if v7 without EL3, register doesn't exist
8069 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8071 if (arm_feature(env, ARM_FEATURE_EL3)) {
8072 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8073 static const ARMCPRegInfo nsacr = {
8074 .name = "NSACR", .type = ARM_CP_CONST,
8075 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8076 .access = PL1_RW, .accessfn = nsacr_access,
8077 .resetvalue = 0xc00
8079 define_one_arm_cp_reg(cpu, &nsacr);
8080 } else {
8081 static const ARMCPRegInfo nsacr = {
8082 .name = "NSACR",
8083 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8084 .access = PL3_RW | PL1_R,
8085 .resetvalue = 0,
8086 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8088 define_one_arm_cp_reg(cpu, &nsacr);
8090 } else {
8091 if (arm_feature(env, ARM_FEATURE_V8)) {
8092 static const ARMCPRegInfo nsacr = {
8093 .name = "NSACR", .type = ARM_CP_CONST,
8094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8095 .access = PL1_R,
8096 .resetvalue = 0xc00
8098 define_one_arm_cp_reg(cpu, &nsacr);
8102 if (arm_feature(env, ARM_FEATURE_PMSA)) {
8103 if (arm_feature(env, ARM_FEATURE_V6)) {
8104 /* PMSAv6 not implemented */
8105 assert(arm_feature(env, ARM_FEATURE_V7));
8106 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8107 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8108 } else {
8109 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8111 } else {
8112 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8113 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8114 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
8115 if (cpu_isar_feature(aa32_hpd, cpu)) {
8116 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8119 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8120 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8122 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8123 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8125 if (arm_feature(env, ARM_FEATURE_VAPA)) {
8126 define_arm_cp_regs(cpu, vapa_cp_reginfo);
8128 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8129 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8131 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8132 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8134 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8135 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8137 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8138 define_arm_cp_regs(cpu, omap_cp_reginfo);
8140 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8141 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8143 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8144 define_arm_cp_regs(cpu, xscale_cp_reginfo);
8146 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8147 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8149 if (arm_feature(env, ARM_FEATURE_LPAE)) {
8150 define_arm_cp_regs(cpu, lpae_cp_reginfo);
8152 if (cpu_isar_feature(aa32_jazelle, cpu)) {
8153 define_arm_cp_regs(cpu, jazelle_regs);
8155 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8156 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8157 * be read-only (ie write causes UNDEF exception).
8160 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8161 /* Pre-v8 MIDR space.
8162 * Note that the MIDR isn't a simple constant register because
8163 * of the TI925 behaviour where writes to another register can
8164 * cause the MIDR value to change.
8166 * Unimplemented registers in the c15 0 0 0 space default to
8167 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8168 * and friends override accordingly.
8170 { .name = "MIDR",
8171 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8172 .access = PL1_R, .resetvalue = cpu->midr,
8173 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8174 .readfn = midr_read,
8175 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8176 .type = ARM_CP_OVERRIDE },
8177 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8178 { .name = "DUMMY",
8179 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8180 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8181 { .name = "DUMMY",
8182 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8184 { .name = "DUMMY",
8185 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8187 { .name = "DUMMY",
8188 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8190 { .name = "DUMMY",
8191 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8192 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8194 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8195 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8196 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8197 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8198 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8199 .readfn = midr_read },
8200 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8201 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8202 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8203 .access = PL1_R, .resetvalue = cpu->midr },
8204 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8205 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8206 .access = PL1_R, .resetvalue = cpu->midr },
8207 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8208 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8209 .access = PL1_R,
8210 .accessfn = access_aa64_tid1,
8211 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8213 ARMCPRegInfo id_cp_reginfo[] = {
8214 /* These are common to v8 and pre-v8 */
8215 { .name = "CTR",
8216 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8217 .access = PL1_R, .accessfn = ctr_el0_access,
8218 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8219 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8220 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8221 .access = PL0_R, .accessfn = ctr_el0_access,
8222 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8223 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8224 { .name = "TCMTR",
8225 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8226 .access = PL1_R,
8227 .accessfn = access_aa32_tid1,
8228 .type = ARM_CP_CONST, .resetvalue = 0 },
8230 /* TLBTR is specific to VMSA */
8231 ARMCPRegInfo id_tlbtr_reginfo = {
8232 .name = "TLBTR",
8233 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8234 .access = PL1_R,
8235 .accessfn = access_aa32_tid1,
8236 .type = ARM_CP_CONST, .resetvalue = 0,
8238 /* MPUIR is specific to PMSA V6+ */
8239 ARMCPRegInfo id_mpuir_reginfo = {
8240 .name = "MPUIR",
8241 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8242 .access = PL1_R, .type = ARM_CP_CONST,
8243 .resetvalue = cpu->pmsav7_dregion << 8
8245 static const ARMCPRegInfo crn0_wi_reginfo = {
8246 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8247 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8248 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8250 #ifdef CONFIG_USER_ONLY
8251 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8252 { .name = "MIDR_EL1",
8253 .exported_bits = 0x00000000ffffffff },
8254 { .name = "REVIDR_EL1" },
8256 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8257 #endif
8258 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8259 arm_feature(env, ARM_FEATURE_STRONGARM)) {
8260 size_t i;
8261 /* Register the blanket "writes ignored" value first to cover the
8262 * whole space. Then update the specific ID registers to allow write
8263 * access, so that they ignore writes rather than causing them to
8264 * UNDEF.
8266 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8267 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8268 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8270 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8271 id_cp_reginfo[i].access = PL1_RW;
8273 id_mpuir_reginfo.access = PL1_RW;
8274 id_tlbtr_reginfo.access = PL1_RW;
8276 if (arm_feature(env, ARM_FEATURE_V8)) {
8277 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8278 } else {
8279 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8281 define_arm_cp_regs(cpu, id_cp_reginfo);
8282 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8283 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8284 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8285 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8289 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8290 ARMCPRegInfo mpidr_cp_reginfo[] = {
8291 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8292 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8293 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8295 #ifdef CONFIG_USER_ONLY
8296 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8297 { .name = "MPIDR_EL1",
8298 .fixed_bits = 0x0000000080000000 },
8300 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8301 #endif
8302 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8305 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8306 ARMCPRegInfo auxcr_reginfo[] = {
8307 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8308 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8309 .access = PL1_RW, .accessfn = access_tacr,
8310 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8311 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8312 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8313 .access = PL2_RW, .type = ARM_CP_CONST,
8314 .resetvalue = 0 },
8315 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8316 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8317 .access = PL3_RW, .type = ARM_CP_CONST,
8318 .resetvalue = 0 },
8320 define_arm_cp_regs(cpu, auxcr_reginfo);
8321 if (cpu_isar_feature(aa32_ac2, cpu)) {
8322 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8326 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8328 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8329 * There are two flavours:
8330 * (1) older 32-bit only cores have a simple 32-bit CBAR
8331 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8332 * 32-bit register visible to AArch32 at a different encoding
8333 * to the "flavour 1" register and with the bits rearranged to
8334 * be able to squash a 64-bit address into the 32-bit view.
8335 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8336 * in future if we support AArch32-only configs of some of the
8337 * AArch64 cores we might need to add a specific feature flag
8338 * to indicate cores with "flavour 2" CBAR.
8340 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8341 /* 32 bit view is [31:18] 0...0 [43:32]. */
8342 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8343 | extract64(cpu->reset_cbar, 32, 12);
8344 ARMCPRegInfo cbar_reginfo[] = {
8345 { .name = "CBAR",
8346 .type = ARM_CP_CONST,
8347 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8348 .access = PL1_R, .resetvalue = cbar32 },
8349 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8350 .type = ARM_CP_CONST,
8351 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8352 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8354 /* We don't implement a r/w 64 bit CBAR currently */
8355 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8356 define_arm_cp_regs(cpu, cbar_reginfo);
8357 } else {
8358 ARMCPRegInfo cbar = {
8359 .name = "CBAR",
8360 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8361 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8362 .fieldoffset = offsetof(CPUARMState,
8363 cp15.c15_config_base_address)
8365 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8366 cbar.access = PL1_R;
8367 cbar.fieldoffset = 0;
8368 cbar.type = ARM_CP_CONST;
8370 define_one_arm_cp_reg(cpu, &cbar);
8374 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8375 static const ARMCPRegInfo vbar_cp_reginfo[] = {
8376 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8377 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8378 .access = PL1_RW, .writefn = vbar_write,
8379 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8380 offsetof(CPUARMState, cp15.vbar_ns) },
8381 .resetvalue = 0 },
8383 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8386 /* Generic registers whose values depend on the implementation */
8388 ARMCPRegInfo sctlr = {
8389 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8390 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8391 .access = PL1_RW, .accessfn = access_tvm_trvm,
8392 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8393 offsetof(CPUARMState, cp15.sctlr_ns) },
8394 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8395 .raw_writefn = raw_write,
8397 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8398 /* Normally we would always end the TB on an SCTLR write, but Linux
8399 * arch/arm/mach-pxa/sleep.S expects two instructions following
8400 * an MMU enable to execute from cache. Imitate this behaviour.
8402 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8404 define_one_arm_cp_reg(cpu, &sctlr);
8407 if (cpu_isar_feature(aa64_lor, cpu)) {
8408 define_arm_cp_regs(cpu, lor_reginfo);
8410 if (cpu_isar_feature(aa64_pan, cpu)) {
8411 define_one_arm_cp_reg(cpu, &pan_reginfo);
8413 #ifndef CONFIG_USER_ONLY
8414 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8415 define_arm_cp_regs(cpu, ats1e1_reginfo);
8417 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8418 define_arm_cp_regs(cpu, ats1cp_reginfo);
8420 #endif
8421 if (cpu_isar_feature(aa64_uao, cpu)) {
8422 define_one_arm_cp_reg(cpu, &uao_reginfo);
8425 if (cpu_isar_feature(aa64_dit, cpu)) {
8426 define_one_arm_cp_reg(cpu, &dit_reginfo);
8428 if (cpu_isar_feature(aa64_ssbs, cpu)) {
8429 define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8431 if (cpu_isar_feature(any_ras, cpu)) {
8432 define_arm_cp_regs(cpu, minimal_ras_reginfo);
8435 if (cpu_isar_feature(aa64_vh, cpu) ||
8436 cpu_isar_feature(aa64_debugv8p2, cpu)) {
8437 define_one_arm_cp_reg(cpu, &contextidr_el2);
8439 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8440 define_arm_cp_regs(cpu, vhe_reginfo);
8443 if (cpu_isar_feature(aa64_sve, cpu)) {
8444 define_arm_cp_regs(cpu, zcr_reginfo);
8447 if (cpu_isar_feature(aa64_hcx, cpu)) {
8448 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
8451 #ifdef TARGET_AARCH64
8452 if (cpu_isar_feature(aa64_pauth, cpu)) {
8453 define_arm_cp_regs(cpu, pauth_reginfo);
8455 if (cpu_isar_feature(aa64_rndr, cpu)) {
8456 define_arm_cp_regs(cpu, rndr_reginfo);
8458 if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8459 define_arm_cp_regs(cpu, tlbirange_reginfo);
8461 if (cpu_isar_feature(aa64_tlbios, cpu)) {
8462 define_arm_cp_regs(cpu, tlbios_reginfo);
8464 #ifndef CONFIG_USER_ONLY
8465 /* Data Cache clean instructions up to PoP */
8466 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8467 define_one_arm_cp_reg(cpu, dcpop_reg);
8469 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8470 define_one_arm_cp_reg(cpu, dcpodp_reg);
8473 #endif /*CONFIG_USER_ONLY*/
8476 * If full MTE is enabled, add all of the system registers.
8477 * If only "instructions available at EL0" are enabled,
8478 * then define only a RAZ/WI version of PSTATE.TCO.
8480 if (cpu_isar_feature(aa64_mte, cpu)) {
8481 define_arm_cp_regs(cpu, mte_reginfo);
8482 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8483 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8484 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8485 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8488 if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8489 define_arm_cp_regs(cpu, scxtnum_reginfo);
8491 #endif
8493 if (cpu_isar_feature(any_predinv, cpu)) {
8494 define_arm_cp_regs(cpu, predinv_reginfo);
8497 if (cpu_isar_feature(any_ccidx, cpu)) {
8498 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8501 #ifndef CONFIG_USER_ONLY
8503 * Register redirections and aliases must be done last,
8504 * after the registers from the other extensions have been defined.
8506 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8507 define_arm_vh_e2h_redirects_aliases(cpu);
8509 #endif
8512 /* Sort alphabetically by type name, except for "any". */
8513 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8515 ObjectClass *class_a = (ObjectClass *)a;
8516 ObjectClass *class_b = (ObjectClass *)b;
8517 const char *name_a, *name_b;
8519 name_a = object_class_get_name(class_a);
8520 name_b = object_class_get_name(class_b);
8521 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8522 return 1;
8523 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8524 return -1;
8525 } else {
8526 return strcmp(name_a, name_b);
8530 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8532 ObjectClass *oc = data;
8533 const char *typename;
8534 char *name;
8536 typename = object_class_get_name(oc);
8537 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8538 qemu_printf(" %s\n", name);
8539 g_free(name);
8542 void arm_cpu_list(void)
8544 GSList *list;
8546 list = object_class_get_list(TYPE_ARM_CPU, false);
8547 list = g_slist_sort(list, arm_cpu_list_compare);
8548 qemu_printf("Available CPUs:\n");
8549 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8550 g_slist_free(list);
8553 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8555 ObjectClass *oc = data;
8556 CpuDefinitionInfoList **cpu_list = user_data;
8557 CpuDefinitionInfo *info;
8558 const char *typename;
8560 typename = object_class_get_name(oc);
8561 info = g_malloc0(sizeof(*info));
8562 info->name = g_strndup(typename,
8563 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8564 info->q_typename = g_strdup(typename);
8566 QAPI_LIST_PREPEND(*cpu_list, info);
8569 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8571 CpuDefinitionInfoList *cpu_list = NULL;
8572 GSList *list;
8574 list = object_class_get_list(TYPE_ARM_CPU, false);
8575 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8576 g_slist_free(list);
8578 return cpu_list;
8582 * Private utility function for define_one_arm_cp_reg_with_opaque():
8583 * add a single reginfo struct to the hash table.
8585 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8586 void *opaque, CPState state,
8587 CPSecureState secstate,
8588 int crm, int opc1, int opc2,
8589 const char *name)
8591 CPUARMState *env = &cpu->env;
8592 uint32_t key;
8593 ARMCPRegInfo *r2;
8594 bool is64 = r->type & ARM_CP_64BIT;
8595 bool ns = secstate & ARM_CP_SECSTATE_NS;
8596 int cp = r->cp;
8597 size_t name_len;
8598 bool make_const;
8600 switch (state) {
8601 case ARM_CP_STATE_AA32:
8602 /* We assume it is a cp15 register if the .cp field is left unset. */
8603 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8604 cp = 15;
8606 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8607 break;
8608 case ARM_CP_STATE_AA64:
8610 * To allow abbreviation of ARMCPRegInfo definitions, we treat
8611 * cp == 0 as equivalent to the value for "standard guest-visible
8612 * sysreg". STATE_BOTH definitions are also always "standard sysreg"
8613 * in their AArch64 view (the .cp value may be non-zero for the
8614 * benefit of the AArch32 view).
8616 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8617 cp = CP_REG_ARM64_SYSREG_CP;
8619 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8620 break;
8621 default:
8622 g_assert_not_reached();
8625 /* Overriding of an existing definition must be explicitly requested. */
8626 if (!(r->type & ARM_CP_OVERRIDE)) {
8627 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8628 if (oldreg) {
8629 assert(oldreg->type & ARM_CP_OVERRIDE);
8634 * Eliminate registers that are not present because the EL is missing.
8635 * Doing this here makes it easier to put all registers for a given
8636 * feature into the same ARMCPRegInfo array and define them all at once.
8638 make_const = false;
8639 if (arm_feature(env, ARM_FEATURE_EL3)) {
8641 * An EL2 register without EL2 but with EL3 is (usually) RES0.
8642 * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8644 int min_el = ctz32(r->access) / 2;
8645 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8646 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8647 return;
8649 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8651 } else {
8652 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8653 ? PL2_RW : PL1_RW);
8654 if ((r->access & max_el) == 0) {
8655 return;
8659 /* Combine cpreg and name into one allocation. */
8660 name_len = strlen(name) + 1;
8661 r2 = g_malloc(sizeof(*r2) + name_len);
8662 *r2 = *r;
8663 r2->name = memcpy(r2 + 1, name, name_len);
8666 * Update fields to match the instantiation, overwiting wildcards
8667 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8669 r2->cp = cp;
8670 r2->crm = crm;
8671 r2->opc1 = opc1;
8672 r2->opc2 = opc2;
8673 r2->state = state;
8674 r2->secure = secstate;
8675 if (opaque) {
8676 r2->opaque = opaque;
8679 if (make_const) {
8680 /* This should not have been a very special register to begin. */
8681 int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8682 assert(old_special == 0 || old_special == ARM_CP_NOP);
8684 * Set the special function to CONST, retaining the other flags.
8685 * This is important for e.g. ARM_CP_SVE so that we still
8686 * take the SVE trap if CPTR_EL3.EZ == 0.
8688 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8690 * Usually, these registers become RES0, but there are a few
8691 * special cases like VPIDR_EL2 which have a constant non-zero
8692 * value with writes ignored.
8694 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8695 r2->resetvalue = 0;
8698 * ARM_CP_CONST has precedence, so removing the callbacks and
8699 * offsets are not strictly necessary, but it is potentially
8700 * less confusing to debug later.
8702 r2->readfn = NULL;
8703 r2->writefn = NULL;
8704 r2->raw_readfn = NULL;
8705 r2->raw_writefn = NULL;
8706 r2->resetfn = NULL;
8707 r2->fieldoffset = 0;
8708 r2->bank_fieldoffsets[0] = 0;
8709 r2->bank_fieldoffsets[1] = 0;
8710 } else {
8711 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8713 if (isbanked) {
8715 * Register is banked (using both entries in array).
8716 * Overwriting fieldoffset as the array is only used to define
8717 * banked registers but later only fieldoffset is used.
8719 r2->fieldoffset = r->bank_fieldoffsets[ns];
8721 if (state == ARM_CP_STATE_AA32) {
8722 if (isbanked) {
8724 * If the register is banked then we don't need to migrate or
8725 * reset the 32-bit instance in certain cases:
8727 * 1) If the register has both 32-bit and 64-bit instances
8728 * then we can count on the 64-bit instance taking care
8729 * of the non-secure bank.
8730 * 2) If ARMv8 is enabled then we can count on a 64-bit
8731 * version taking care of the secure bank. This requires
8732 * that separate 32 and 64-bit definitions are provided.
8734 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8735 (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8736 r2->type |= ARM_CP_ALIAS;
8738 } else if ((secstate != r->secure) && !ns) {
8740 * The register is not banked so we only want to allow
8741 * migration of the non-secure instance.
8743 r2->type |= ARM_CP_ALIAS;
8746 if (HOST_BIG_ENDIAN &&
8747 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8748 r2->fieldoffset += sizeof(uint32_t);
8754 * By convention, for wildcarded registers only the first
8755 * entry is used for migration; the others are marked as
8756 * ALIAS so we don't try to transfer the register
8757 * multiple times. Special registers (ie NOP/WFI) are
8758 * never migratable and not even raw-accessible.
8760 if (r2->type & ARM_CP_SPECIAL_MASK) {
8761 r2->type |= ARM_CP_NO_RAW;
8763 if (((r->crm == CP_ANY) && crm != 0) ||
8764 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8765 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8766 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8770 * Check that raw accesses are either forbidden or handled. Note that
8771 * we can't assert this earlier because the setup of fieldoffset for
8772 * banked registers has to be done first.
8774 if (!(r2->type & ARM_CP_NO_RAW)) {
8775 assert(!raw_accessors_invalid(r2));
8778 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8782 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8783 const ARMCPRegInfo *r, void *opaque)
8785 /* Define implementations of coprocessor registers.
8786 * We store these in a hashtable because typically
8787 * there are less than 150 registers in a space which
8788 * is 16*16*16*8*8 = 262144 in size.
8789 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8790 * If a register is defined twice then the second definition is
8791 * used, so this can be used to define some generic registers and
8792 * then override them with implementation specific variations.
8793 * At least one of the original and the second definition should
8794 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8795 * against accidental use.
8797 * The state field defines whether the register is to be
8798 * visible in the AArch32 or AArch64 execution state. If the
8799 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8800 * reginfo structure for the AArch32 view, which sees the lower
8801 * 32 bits of the 64 bit register.
8803 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8804 * be wildcarded. AArch64 registers are always considered to be 64
8805 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8806 * the register, if any.
8808 int crm, opc1, opc2;
8809 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8810 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8811 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8812 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8813 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8814 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8815 CPState state;
8817 /* 64 bit registers have only CRm and Opc1 fields */
8818 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8819 /* op0 only exists in the AArch64 encodings */
8820 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8821 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8822 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8824 * This API is only for Arm's system coprocessors (14 and 15) or
8825 * (M-profile or v7A-and-earlier only) for implementation defined
8826 * coprocessors in the range 0..7. Our decode assumes this, since
8827 * 8..13 can be used for other insns including VFP and Neon. See
8828 * valid_cp() in translate.c. Assert here that we haven't tried
8829 * to use an invalid coprocessor number.
8831 switch (r->state) {
8832 case ARM_CP_STATE_BOTH:
8833 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8834 if (r->cp == 0) {
8835 break;
8837 /* fall through */
8838 case ARM_CP_STATE_AA32:
8839 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8840 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8841 assert(r->cp >= 14 && r->cp <= 15);
8842 } else {
8843 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8845 break;
8846 case ARM_CP_STATE_AA64:
8847 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8848 break;
8849 default:
8850 g_assert_not_reached();
8852 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8853 * encodes a minimum access level for the register. We roll this
8854 * runtime check into our general permission check code, so check
8855 * here that the reginfo's specified permissions are strict enough
8856 * to encompass the generic architectural permission check.
8858 if (r->state != ARM_CP_STATE_AA32) {
8859 CPAccessRights mask;
8860 switch (r->opc1) {
8861 case 0:
8862 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8863 mask = PL0U_R | PL1_RW;
8864 break;
8865 case 1: case 2:
8866 /* min_EL EL1 */
8867 mask = PL1_RW;
8868 break;
8869 case 3:
8870 /* min_EL EL0 */
8871 mask = PL0_RW;
8872 break;
8873 case 4:
8874 case 5:
8875 /* min_EL EL2 */
8876 mask = PL2_RW;
8877 break;
8878 case 6:
8879 /* min_EL EL3 */
8880 mask = PL3_RW;
8881 break;
8882 case 7:
8883 /* min_EL EL1, secure mode only (we don't check the latter) */
8884 mask = PL1_RW;
8885 break;
8886 default:
8887 /* broken reginfo with out-of-range opc1 */
8888 g_assert_not_reached();
8890 /* assert our permissions are not too lax (stricter is fine) */
8891 assert((r->access & ~mask) == 0);
8894 /* Check that the register definition has enough info to handle
8895 * reads and writes if they are permitted.
8897 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8898 if (r->access & PL3_R) {
8899 assert((r->fieldoffset ||
8900 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8901 r->readfn);
8903 if (r->access & PL3_W) {
8904 assert((r->fieldoffset ||
8905 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8906 r->writefn);
8910 for (crm = crmmin; crm <= crmmax; crm++) {
8911 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8912 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8913 for (state = ARM_CP_STATE_AA32;
8914 state <= ARM_CP_STATE_AA64; state++) {
8915 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8916 continue;
8918 if (state == ARM_CP_STATE_AA32) {
8919 /* Under AArch32 CP registers can be common
8920 * (same for secure and non-secure world) or banked.
8922 char *name;
8924 switch (r->secure) {
8925 case ARM_CP_SECSTATE_S:
8926 case ARM_CP_SECSTATE_NS:
8927 add_cpreg_to_hashtable(cpu, r, opaque, state,
8928 r->secure, crm, opc1, opc2,
8929 r->name);
8930 break;
8931 case ARM_CP_SECSTATE_BOTH:
8932 name = g_strdup_printf("%s_S", r->name);
8933 add_cpreg_to_hashtable(cpu, r, opaque, state,
8934 ARM_CP_SECSTATE_S,
8935 crm, opc1, opc2, name);
8936 g_free(name);
8937 add_cpreg_to_hashtable(cpu, r, opaque, state,
8938 ARM_CP_SECSTATE_NS,
8939 crm, opc1, opc2, r->name);
8940 break;
8941 default:
8942 g_assert_not_reached();
8944 } else {
8945 /* AArch64 registers get mapped to non-secure instance
8946 * of AArch32 */
8947 add_cpreg_to_hashtable(cpu, r, opaque, state,
8948 ARM_CP_SECSTATE_NS,
8949 crm, opc1, opc2, r->name);
8957 /* Define a whole list of registers */
8958 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8959 void *opaque, size_t len)
8961 size_t i;
8962 for (i = 0; i < len; ++i) {
8963 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8968 * Modify ARMCPRegInfo for access from userspace.
8970 * This is a data driven modification directed by
8971 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8972 * user-space cannot alter any values and dynamic values pertaining to
8973 * execution state are hidden from user space view anyway.
8975 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8976 const ARMCPRegUserSpaceInfo *mods,
8977 size_t mods_len)
8979 for (size_t mi = 0; mi < mods_len; ++mi) {
8980 const ARMCPRegUserSpaceInfo *m = mods + mi;
8981 GPatternSpec *pat = NULL;
8983 if (m->is_glob) {
8984 pat = g_pattern_spec_new(m->name);
8986 for (size_t ri = 0; ri < regs_len; ++ri) {
8987 ARMCPRegInfo *r = regs + ri;
8989 if (pat && g_pattern_match_string(pat, r->name)) {
8990 r->type = ARM_CP_CONST;
8991 r->access = PL0U_R;
8992 r->resetvalue = 0;
8993 /* continue */
8994 } else if (strcmp(r->name, m->name) == 0) {
8995 r->type = ARM_CP_CONST;
8996 r->access = PL0U_R;
8997 r->resetvalue &= m->exported_bits;
8998 r->resetvalue |= m->fixed_bits;
8999 break;
9002 if (pat) {
9003 g_pattern_spec_free(pat);
9008 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9010 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9013 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9014 uint64_t value)
9016 /* Helper coprocessor write function for write-ignore registers */
9019 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9021 /* Helper coprocessor write function for read-as-zero registers */
9022 return 0;
9025 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9027 /* Helper coprocessor reset function for do-nothing-on-reset registers */
9030 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9032 /* Return true if it is not valid for us to switch to
9033 * this CPU mode (ie all the UNPREDICTABLE cases in
9034 * the ARM ARM CPSRWriteByInstr pseudocode).
9037 /* Changes to or from Hyp via MSR and CPS are illegal. */
9038 if (write_type == CPSRWriteByInstr &&
9039 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9040 mode == ARM_CPU_MODE_HYP)) {
9041 return 1;
9044 switch (mode) {
9045 case ARM_CPU_MODE_USR:
9046 return 0;
9047 case ARM_CPU_MODE_SYS:
9048 case ARM_CPU_MODE_SVC:
9049 case ARM_CPU_MODE_ABT:
9050 case ARM_CPU_MODE_UND:
9051 case ARM_CPU_MODE_IRQ:
9052 case ARM_CPU_MODE_FIQ:
9053 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9054 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9056 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9057 * and CPS are treated as illegal mode changes.
9059 if (write_type == CPSRWriteByInstr &&
9060 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9061 (arm_hcr_el2_eff(env) & HCR_TGE)) {
9062 return 1;
9064 return 0;
9065 case ARM_CPU_MODE_HYP:
9066 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9067 case ARM_CPU_MODE_MON:
9068 return arm_current_el(env) < 3;
9069 default:
9070 return 1;
9074 uint32_t cpsr_read(CPUARMState *env)
9076 int ZF;
9077 ZF = (env->ZF == 0);
9078 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9079 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9080 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9081 | ((env->condexec_bits & 0xfc) << 8)
9082 | (env->GE << 16) | (env->daif & CPSR_AIF);
9085 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9086 CPSRWriteType write_type)
9088 uint32_t changed_daif;
9089 bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9090 (mask & (CPSR_M | CPSR_E | CPSR_IL));
9092 if (mask & CPSR_NZCV) {
9093 env->ZF = (~val) & CPSR_Z;
9094 env->NF = val;
9095 env->CF = (val >> 29) & 1;
9096 env->VF = (val << 3) & 0x80000000;
9098 if (mask & CPSR_Q)
9099 env->QF = ((val & CPSR_Q) != 0);
9100 if (mask & CPSR_T)
9101 env->thumb = ((val & CPSR_T) != 0);
9102 if (mask & CPSR_IT_0_1) {
9103 env->condexec_bits &= ~3;
9104 env->condexec_bits |= (val >> 25) & 3;
9106 if (mask & CPSR_IT_2_7) {
9107 env->condexec_bits &= 3;
9108 env->condexec_bits |= (val >> 8) & 0xfc;
9110 if (mask & CPSR_GE) {
9111 env->GE = (val >> 16) & 0xf;
9114 /* In a V7 implementation that includes the security extensions but does
9115 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9116 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9117 * bits respectively.
9119 * In a V8 implementation, it is permitted for privileged software to
9120 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9122 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9123 arm_feature(env, ARM_FEATURE_EL3) &&
9124 !arm_feature(env, ARM_FEATURE_EL2) &&
9125 !arm_is_secure(env)) {
9127 changed_daif = (env->daif ^ val) & mask;
9129 if (changed_daif & CPSR_A) {
9130 /* Check to see if we are allowed to change the masking of async
9131 * abort exceptions from a non-secure state.
9133 if (!(env->cp15.scr_el3 & SCR_AW)) {
9134 qemu_log_mask(LOG_GUEST_ERROR,
9135 "Ignoring attempt to switch CPSR_A flag from "
9136 "non-secure world with SCR.AW bit clear\n");
9137 mask &= ~CPSR_A;
9141 if (changed_daif & CPSR_F) {
9142 /* Check to see if we are allowed to change the masking of FIQ
9143 * exceptions from a non-secure state.
9145 if (!(env->cp15.scr_el3 & SCR_FW)) {
9146 qemu_log_mask(LOG_GUEST_ERROR,
9147 "Ignoring attempt to switch CPSR_F flag from "
9148 "non-secure world with SCR.FW bit clear\n");
9149 mask &= ~CPSR_F;
9152 /* Check whether non-maskable FIQ (NMFI) support is enabled.
9153 * If this bit is set software is not allowed to mask
9154 * FIQs, but is allowed to set CPSR_F to 0.
9156 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9157 (val & CPSR_F)) {
9158 qemu_log_mask(LOG_GUEST_ERROR,
9159 "Ignoring attempt to enable CPSR_F flag "
9160 "(non-maskable FIQ [NMFI] support enabled)\n");
9161 mask &= ~CPSR_F;
9166 env->daif &= ~(CPSR_AIF & mask);
9167 env->daif |= val & CPSR_AIF & mask;
9169 if (write_type != CPSRWriteRaw &&
9170 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9171 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9172 /* Note that we can only get here in USR mode if this is a
9173 * gdb stub write; for this case we follow the architectural
9174 * behaviour for guest writes in USR mode of ignoring an attempt
9175 * to switch mode. (Those are caught by translate.c for writes
9176 * triggered by guest instructions.)
9178 mask &= ~CPSR_M;
9179 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9180 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9181 * v7, and has defined behaviour in v8:
9182 * + leave CPSR.M untouched
9183 * + allow changes to the other CPSR fields
9184 * + set PSTATE.IL
9185 * For user changes via the GDB stub, we don't set PSTATE.IL,
9186 * as this would be unnecessarily harsh for a user error.
9188 mask &= ~CPSR_M;
9189 if (write_type != CPSRWriteByGDBStub &&
9190 arm_feature(env, ARM_FEATURE_V8)) {
9191 mask |= CPSR_IL;
9192 val |= CPSR_IL;
9194 qemu_log_mask(LOG_GUEST_ERROR,
9195 "Illegal AArch32 mode switch attempt from %s to %s\n",
9196 aarch32_mode_name(env->uncached_cpsr),
9197 aarch32_mode_name(val));
9198 } else {
9199 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9200 write_type == CPSRWriteExceptionReturn ?
9201 "Exception return from AArch32" :
9202 "AArch32 mode switch from",
9203 aarch32_mode_name(env->uncached_cpsr),
9204 aarch32_mode_name(val), env->regs[15]);
9205 switch_mode(env, val & CPSR_M);
9208 mask &= ~CACHED_CPSR_BITS;
9209 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9210 if (rebuild_hflags) {
9211 arm_rebuild_hflags(env);
9215 /* Sign/zero extend */
9216 uint32_t HELPER(sxtb16)(uint32_t x)
9218 uint32_t res;
9219 res = (uint16_t)(int8_t)x;
9220 res |= (uint32_t)(int8_t)(x >> 16) << 16;
9221 return res;
9224 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9227 * Take a division-by-zero exception if necessary; otherwise return
9228 * to get the usual non-trapping division behaviour (result of 0)
9230 if (arm_feature(env, ARM_FEATURE_M)
9231 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9232 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9236 uint32_t HELPER(uxtb16)(uint32_t x)
9238 uint32_t res;
9239 res = (uint16_t)(uint8_t)x;
9240 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9241 return res;
9244 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9246 if (den == 0) {
9247 handle_possible_div0_trap(env, GETPC());
9248 return 0;
9250 if (num == INT_MIN && den == -1) {
9251 return INT_MIN;
9253 return num / den;
9256 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9258 if (den == 0) {
9259 handle_possible_div0_trap(env, GETPC());
9260 return 0;
9262 return num / den;
9265 uint32_t HELPER(rbit)(uint32_t x)
9267 return revbit32(x);
9270 #ifdef CONFIG_USER_ONLY
9272 static void switch_mode(CPUARMState *env, int mode)
9274 ARMCPU *cpu = env_archcpu(env);
9276 if (mode != ARM_CPU_MODE_USR) {
9277 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9281 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9282 uint32_t cur_el, bool secure)
9284 return 1;
9287 void aarch64_sync_64_to_32(CPUARMState *env)
9289 g_assert_not_reached();
9292 #else
9294 static void switch_mode(CPUARMState *env, int mode)
9296 int old_mode;
9297 int i;
9299 old_mode = env->uncached_cpsr & CPSR_M;
9300 if (mode == old_mode)
9301 return;
9303 if (old_mode == ARM_CPU_MODE_FIQ) {
9304 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9305 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9306 } else if (mode == ARM_CPU_MODE_FIQ) {
9307 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9308 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9311 i = bank_number(old_mode);
9312 env->banked_r13[i] = env->regs[13];
9313 env->banked_spsr[i] = env->spsr;
9315 i = bank_number(mode);
9316 env->regs[13] = env->banked_r13[i];
9317 env->spsr = env->banked_spsr[i];
9319 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9320 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9323 /* Physical Interrupt Target EL Lookup Table
9325 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9327 * The below multi-dimensional table is used for looking up the target
9328 * exception level given numerous condition criteria. Specifically, the
9329 * target EL is based on SCR and HCR routing controls as well as the
9330 * currently executing EL and secure state.
9332 * Dimensions:
9333 * target_el_table[2][2][2][2][2][4]
9334 * | | | | | +--- Current EL
9335 * | | | | +------ Non-secure(0)/Secure(1)
9336 * | | | +--------- HCR mask override
9337 * | | +------------ SCR exec state control
9338 * | +--------------- SCR mask override
9339 * +------------------ 32-bit(0)/64-bit(1) EL3
9341 * The table values are as such:
9342 * 0-3 = EL0-EL3
9343 * -1 = Cannot occur
9345 * The ARM ARM target EL table includes entries indicating that an "exception
9346 * is not taken". The two cases where this is applicable are:
9347 * 1) An exception is taken from EL3 but the SCR does not have the exception
9348 * routed to EL3.
9349 * 2) An exception is taken from EL2 but the HCR does not have the exception
9350 * routed to EL2.
9351 * In these two cases, the below table contain a target of EL1. This value is
9352 * returned as it is expected that the consumer of the table data will check
9353 * for "target EL >= current EL" to ensure the exception is not taken.
9355 * SCR HCR
9356 * 64 EA AMO From
9357 * BIT IRQ IMO Non-secure Secure
9358 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
9360 static const int8_t target_el_table[2][2][2][2][2][4] = {
9361 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9362 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
9363 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
9364 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
9365 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9366 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
9367 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
9368 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
9369 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
9370 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
9371 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
9372 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
9373 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
9374 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
9375 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
9376 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
9380 * Determine the target EL for physical exceptions
9382 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9383 uint32_t cur_el, bool secure)
9385 CPUARMState *env = cs->env_ptr;
9386 bool rw;
9387 bool scr;
9388 bool hcr;
9389 int target_el;
9390 /* Is the highest EL AArch64? */
9391 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9392 uint64_t hcr_el2;
9394 if (arm_feature(env, ARM_FEATURE_EL3)) {
9395 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9396 } else {
9397 /* Either EL2 is the highest EL (and so the EL2 register width
9398 * is given by is64); or there is no EL2 or EL3, in which case
9399 * the value of 'rw' does not affect the table lookup anyway.
9401 rw = is64;
9404 hcr_el2 = arm_hcr_el2_eff(env);
9405 switch (excp_idx) {
9406 case EXCP_IRQ:
9407 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9408 hcr = hcr_el2 & HCR_IMO;
9409 break;
9410 case EXCP_FIQ:
9411 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9412 hcr = hcr_el2 & HCR_FMO;
9413 break;
9414 default:
9415 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9416 hcr = hcr_el2 & HCR_AMO;
9417 break;
9421 * For these purposes, TGE and AMO/IMO/FMO both force the
9422 * interrupt to EL2. Fold TGE into the bit extracted above.
9424 hcr |= (hcr_el2 & HCR_TGE) != 0;
9426 /* Perform a table-lookup for the target EL given the current state */
9427 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9429 assert(target_el > 0);
9431 return target_el;
9434 void arm_log_exception(CPUState *cs)
9436 int idx = cs->exception_index;
9438 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9439 const char *exc = NULL;
9440 static const char * const excnames[] = {
9441 [EXCP_UDEF] = "Undefined Instruction",
9442 [EXCP_SWI] = "SVC",
9443 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9444 [EXCP_DATA_ABORT] = "Data Abort",
9445 [EXCP_IRQ] = "IRQ",
9446 [EXCP_FIQ] = "FIQ",
9447 [EXCP_BKPT] = "Breakpoint",
9448 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9449 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9450 [EXCP_HVC] = "Hypervisor Call",
9451 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9452 [EXCP_SMC] = "Secure Monitor Call",
9453 [EXCP_VIRQ] = "Virtual IRQ",
9454 [EXCP_VFIQ] = "Virtual FIQ",
9455 [EXCP_SEMIHOST] = "Semihosting call",
9456 [EXCP_NOCP] = "v7M NOCP UsageFault",
9457 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9458 [EXCP_STKOF] = "v8M STKOF UsageFault",
9459 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9460 [EXCP_LSERR] = "v8M LSERR UsageFault",
9461 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9462 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9463 [EXCP_VSERR] = "Virtual SERR",
9466 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9467 exc = excnames[idx];
9469 if (!exc) {
9470 exc = "unknown";
9472 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9473 idx, exc, cs->cpu_index);
9478 * Function used to synchronize QEMU's AArch64 register set with AArch32
9479 * register set. This is necessary when switching between AArch32 and AArch64
9480 * execution state.
9482 void aarch64_sync_32_to_64(CPUARMState *env)
9484 int i;
9485 uint32_t mode = env->uncached_cpsr & CPSR_M;
9487 /* We can blanket copy R[0:7] to X[0:7] */
9488 for (i = 0; i < 8; i++) {
9489 env->xregs[i] = env->regs[i];
9493 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9494 * Otherwise, they come from the banked user regs.
9496 if (mode == ARM_CPU_MODE_FIQ) {
9497 for (i = 8; i < 13; i++) {
9498 env->xregs[i] = env->usr_regs[i - 8];
9500 } else {
9501 for (i = 8; i < 13; i++) {
9502 env->xregs[i] = env->regs[i];
9507 * Registers x13-x23 are the various mode SP and FP registers. Registers
9508 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9509 * from the mode banked register.
9511 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9512 env->xregs[13] = env->regs[13];
9513 env->xregs[14] = env->regs[14];
9514 } else {
9515 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9516 /* HYP is an exception in that it is copied from r14 */
9517 if (mode == ARM_CPU_MODE_HYP) {
9518 env->xregs[14] = env->regs[14];
9519 } else {
9520 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9524 if (mode == ARM_CPU_MODE_HYP) {
9525 env->xregs[15] = env->regs[13];
9526 } else {
9527 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9530 if (mode == ARM_CPU_MODE_IRQ) {
9531 env->xregs[16] = env->regs[14];
9532 env->xregs[17] = env->regs[13];
9533 } else {
9534 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9535 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9538 if (mode == ARM_CPU_MODE_SVC) {
9539 env->xregs[18] = env->regs[14];
9540 env->xregs[19] = env->regs[13];
9541 } else {
9542 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9543 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9546 if (mode == ARM_CPU_MODE_ABT) {
9547 env->xregs[20] = env->regs[14];
9548 env->xregs[21] = env->regs[13];
9549 } else {
9550 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9551 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9554 if (mode == ARM_CPU_MODE_UND) {
9555 env->xregs[22] = env->regs[14];
9556 env->xregs[23] = env->regs[13];
9557 } else {
9558 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9559 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9563 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9564 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9565 * FIQ bank for r8-r14.
9567 if (mode == ARM_CPU_MODE_FIQ) {
9568 for (i = 24; i < 31; i++) {
9569 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9571 } else {
9572 for (i = 24; i < 29; i++) {
9573 env->xregs[i] = env->fiq_regs[i - 24];
9575 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9576 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9579 env->pc = env->regs[15];
9583 * Function used to synchronize QEMU's AArch32 register set with AArch64
9584 * register set. This is necessary when switching between AArch32 and AArch64
9585 * execution state.
9587 void aarch64_sync_64_to_32(CPUARMState *env)
9589 int i;
9590 uint32_t mode = env->uncached_cpsr & CPSR_M;
9592 /* We can blanket copy X[0:7] to R[0:7] */
9593 for (i = 0; i < 8; i++) {
9594 env->regs[i] = env->xregs[i];
9598 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9599 * Otherwise, we copy x8-x12 into the banked user regs.
9601 if (mode == ARM_CPU_MODE_FIQ) {
9602 for (i = 8; i < 13; i++) {
9603 env->usr_regs[i - 8] = env->xregs[i];
9605 } else {
9606 for (i = 8; i < 13; i++) {
9607 env->regs[i] = env->xregs[i];
9612 * Registers r13 & r14 depend on the current mode.
9613 * If we are in a given mode, we copy the corresponding x registers to r13
9614 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9615 * for the mode.
9617 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9618 env->regs[13] = env->xregs[13];
9619 env->regs[14] = env->xregs[14];
9620 } else {
9621 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9624 * HYP is an exception in that it does not have its own banked r14 but
9625 * shares the USR r14
9627 if (mode == ARM_CPU_MODE_HYP) {
9628 env->regs[14] = env->xregs[14];
9629 } else {
9630 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9634 if (mode == ARM_CPU_MODE_HYP) {
9635 env->regs[13] = env->xregs[15];
9636 } else {
9637 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9640 if (mode == ARM_CPU_MODE_IRQ) {
9641 env->regs[14] = env->xregs[16];
9642 env->regs[13] = env->xregs[17];
9643 } else {
9644 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9645 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9648 if (mode == ARM_CPU_MODE_SVC) {
9649 env->regs[14] = env->xregs[18];
9650 env->regs[13] = env->xregs[19];
9651 } else {
9652 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9653 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9656 if (mode == ARM_CPU_MODE_ABT) {
9657 env->regs[14] = env->xregs[20];
9658 env->regs[13] = env->xregs[21];
9659 } else {
9660 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9661 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9664 if (mode == ARM_CPU_MODE_UND) {
9665 env->regs[14] = env->xregs[22];
9666 env->regs[13] = env->xregs[23];
9667 } else {
9668 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9669 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9672 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9673 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9674 * FIQ bank for r8-r14.
9676 if (mode == ARM_CPU_MODE_FIQ) {
9677 for (i = 24; i < 31; i++) {
9678 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9680 } else {
9681 for (i = 24; i < 29; i++) {
9682 env->fiq_regs[i - 24] = env->xregs[i];
9684 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9685 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9688 env->regs[15] = env->pc;
9691 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9692 uint32_t mask, uint32_t offset,
9693 uint32_t newpc)
9695 int new_el;
9697 /* Change the CPU state so as to actually take the exception. */
9698 switch_mode(env, new_mode);
9701 * For exceptions taken to AArch32 we must clear the SS bit in both
9702 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9704 env->pstate &= ~PSTATE_SS;
9705 env->spsr = cpsr_read(env);
9706 /* Clear IT bits. */
9707 env->condexec_bits = 0;
9708 /* Switch to the new mode, and to the correct instruction set. */
9709 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9711 /* This must be after mode switching. */
9712 new_el = arm_current_el(env);
9714 /* Set new mode endianness */
9715 env->uncached_cpsr &= ~CPSR_E;
9716 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9717 env->uncached_cpsr |= CPSR_E;
9719 /* J and IL must always be cleared for exception entry */
9720 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9721 env->daif |= mask;
9723 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9724 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9725 env->uncached_cpsr |= CPSR_SSBS;
9726 } else {
9727 env->uncached_cpsr &= ~CPSR_SSBS;
9731 if (new_mode == ARM_CPU_MODE_HYP) {
9732 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9733 env->elr_el[2] = env->regs[15];
9734 } else {
9735 /* CPSR.PAN is normally preserved preserved unless... */
9736 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9737 switch (new_el) {
9738 case 3:
9739 if (!arm_is_secure_below_el3(env)) {
9740 /* ... the target is EL3, from non-secure state. */
9741 env->uncached_cpsr &= ~CPSR_PAN;
9742 break;
9744 /* ... the target is EL3, from secure state ... */
9745 /* fall through */
9746 case 1:
9747 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9748 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9749 env->uncached_cpsr |= CPSR_PAN;
9751 break;
9755 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9756 * and we should just guard the thumb mode on V4
9758 if (arm_feature(env, ARM_FEATURE_V4T)) {
9759 env->thumb =
9760 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9762 env->regs[14] = env->regs[15] + offset;
9764 env->regs[15] = newpc;
9765 arm_rebuild_hflags(env);
9768 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9771 * Handle exception entry to Hyp mode; this is sufficiently
9772 * different to entry to other AArch32 modes that we handle it
9773 * separately here.
9775 * The vector table entry used is always the 0x14 Hyp mode entry point,
9776 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9777 * The offset applied to the preferred return address is always zero
9778 * (see DDI0487C.a section G1.12.3).
9779 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9781 uint32_t addr, mask;
9782 ARMCPU *cpu = ARM_CPU(cs);
9783 CPUARMState *env = &cpu->env;
9785 switch (cs->exception_index) {
9786 case EXCP_UDEF:
9787 addr = 0x04;
9788 break;
9789 case EXCP_SWI:
9790 addr = 0x08;
9791 break;
9792 case EXCP_BKPT:
9793 /* Fall through to prefetch abort. */
9794 case EXCP_PREFETCH_ABORT:
9795 env->cp15.ifar_s = env->exception.vaddress;
9796 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9797 (uint32_t)env->exception.vaddress);
9798 addr = 0x0c;
9799 break;
9800 case EXCP_DATA_ABORT:
9801 env->cp15.dfar_s = env->exception.vaddress;
9802 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9803 (uint32_t)env->exception.vaddress);
9804 addr = 0x10;
9805 break;
9806 case EXCP_IRQ:
9807 addr = 0x18;
9808 break;
9809 case EXCP_FIQ:
9810 addr = 0x1c;
9811 break;
9812 case EXCP_HVC:
9813 addr = 0x08;
9814 break;
9815 case EXCP_HYP_TRAP:
9816 addr = 0x14;
9817 break;
9818 default:
9819 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9822 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9823 if (!arm_feature(env, ARM_FEATURE_V8)) {
9825 * QEMU syndrome values are v8-style. v7 has the IL bit
9826 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9827 * If this is a v7 CPU, squash the IL bit in those cases.
9829 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9830 (cs->exception_index == EXCP_DATA_ABORT &&
9831 !(env->exception.syndrome & ARM_EL_ISV)) ||
9832 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9833 env->exception.syndrome &= ~ARM_EL_IL;
9836 env->cp15.esr_el[2] = env->exception.syndrome;
9839 if (arm_current_el(env) != 2 && addr < 0x14) {
9840 addr = 0x14;
9843 mask = 0;
9844 if (!(env->cp15.scr_el3 & SCR_EA)) {
9845 mask |= CPSR_A;
9847 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9848 mask |= CPSR_I;
9850 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9851 mask |= CPSR_F;
9854 addr += env->cp15.hvbar;
9856 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9859 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9861 ARMCPU *cpu = ARM_CPU(cs);
9862 CPUARMState *env = &cpu->env;
9863 uint32_t addr;
9864 uint32_t mask;
9865 int new_mode;
9866 uint32_t offset;
9867 uint32_t moe;
9869 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9870 switch (syn_get_ec(env->exception.syndrome)) {
9871 case EC_BREAKPOINT:
9872 case EC_BREAKPOINT_SAME_EL:
9873 moe = 1;
9874 break;
9875 case EC_WATCHPOINT:
9876 case EC_WATCHPOINT_SAME_EL:
9877 moe = 10;
9878 break;
9879 case EC_AA32_BKPT:
9880 moe = 3;
9881 break;
9882 case EC_VECTORCATCH:
9883 moe = 5;
9884 break;
9885 default:
9886 moe = 0;
9887 break;
9890 if (moe) {
9891 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9894 if (env->exception.target_el == 2) {
9895 arm_cpu_do_interrupt_aarch32_hyp(cs);
9896 return;
9899 switch (cs->exception_index) {
9900 case EXCP_UDEF:
9901 new_mode = ARM_CPU_MODE_UND;
9902 addr = 0x04;
9903 mask = CPSR_I;
9904 if (env->thumb)
9905 offset = 2;
9906 else
9907 offset = 4;
9908 break;
9909 case EXCP_SWI:
9910 new_mode = ARM_CPU_MODE_SVC;
9911 addr = 0x08;
9912 mask = CPSR_I;
9913 /* The PC already points to the next instruction. */
9914 offset = 0;
9915 break;
9916 case EXCP_BKPT:
9917 /* Fall through to prefetch abort. */
9918 case EXCP_PREFETCH_ABORT:
9919 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9920 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9921 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9922 env->exception.fsr, (uint32_t)env->exception.vaddress);
9923 new_mode = ARM_CPU_MODE_ABT;
9924 addr = 0x0c;
9925 mask = CPSR_A | CPSR_I;
9926 offset = 4;
9927 break;
9928 case EXCP_DATA_ABORT:
9929 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9930 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9931 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9932 env->exception.fsr,
9933 (uint32_t)env->exception.vaddress);
9934 new_mode = ARM_CPU_MODE_ABT;
9935 addr = 0x10;
9936 mask = CPSR_A | CPSR_I;
9937 offset = 8;
9938 break;
9939 case EXCP_IRQ:
9940 new_mode = ARM_CPU_MODE_IRQ;
9941 addr = 0x18;
9942 /* Disable IRQ and imprecise data aborts. */
9943 mask = CPSR_A | CPSR_I;
9944 offset = 4;
9945 if (env->cp15.scr_el3 & SCR_IRQ) {
9946 /* IRQ routed to monitor mode */
9947 new_mode = ARM_CPU_MODE_MON;
9948 mask |= CPSR_F;
9950 break;
9951 case EXCP_FIQ:
9952 new_mode = ARM_CPU_MODE_FIQ;
9953 addr = 0x1c;
9954 /* Disable FIQ, IRQ and imprecise data aborts. */
9955 mask = CPSR_A | CPSR_I | CPSR_F;
9956 if (env->cp15.scr_el3 & SCR_FIQ) {
9957 /* FIQ routed to monitor mode */
9958 new_mode = ARM_CPU_MODE_MON;
9960 offset = 4;
9961 break;
9962 case EXCP_VIRQ:
9963 new_mode = ARM_CPU_MODE_IRQ;
9964 addr = 0x18;
9965 /* Disable IRQ and imprecise data aborts. */
9966 mask = CPSR_A | CPSR_I;
9967 offset = 4;
9968 break;
9969 case EXCP_VFIQ:
9970 new_mode = ARM_CPU_MODE_FIQ;
9971 addr = 0x1c;
9972 /* Disable FIQ, IRQ and imprecise data aborts. */
9973 mask = CPSR_A | CPSR_I | CPSR_F;
9974 offset = 4;
9975 break;
9976 case EXCP_VSERR:
9979 * Note that this is reported as a data abort, but the DFAR
9980 * has an UNKNOWN value. Construct the SError syndrome from
9981 * AET and ExT fields.
9983 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9985 if (extended_addresses_enabled(env)) {
9986 env->exception.fsr = arm_fi_to_lfsc(&fi);
9987 } else {
9988 env->exception.fsr = arm_fi_to_sfsc(&fi);
9990 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9991 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9992 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9993 env->exception.fsr);
9995 new_mode = ARM_CPU_MODE_ABT;
9996 addr = 0x10;
9997 mask = CPSR_A | CPSR_I;
9998 offset = 8;
10000 break;
10001 case EXCP_SMC:
10002 new_mode = ARM_CPU_MODE_MON;
10003 addr = 0x08;
10004 mask = CPSR_A | CPSR_I | CPSR_F;
10005 offset = 0;
10006 break;
10007 default:
10008 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10009 return; /* Never happens. Keep compiler happy. */
10012 if (new_mode == ARM_CPU_MODE_MON) {
10013 addr += env->cp15.mvbar;
10014 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10015 /* High vectors. When enabled, base address cannot be remapped. */
10016 addr += 0xffff0000;
10017 } else {
10018 /* ARM v7 architectures provide a vector base address register to remap
10019 * the interrupt vector table.
10020 * This register is only followed in non-monitor mode, and is banked.
10021 * Note: only bits 31:5 are valid.
10023 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10026 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10027 env->cp15.scr_el3 &= ~SCR_NS;
10030 take_aarch32_exception(env, new_mode, mask, offset, addr);
10033 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10036 * Return the register number of the AArch64 view of the AArch32
10037 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10038 * be that of the AArch32 mode the exception came from.
10040 int mode = env->uncached_cpsr & CPSR_M;
10042 switch (aarch32_reg) {
10043 case 0 ... 7:
10044 return aarch32_reg;
10045 case 8 ... 12:
10046 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10047 case 13:
10048 switch (mode) {
10049 case ARM_CPU_MODE_USR:
10050 case ARM_CPU_MODE_SYS:
10051 return 13;
10052 case ARM_CPU_MODE_HYP:
10053 return 15;
10054 case ARM_CPU_MODE_IRQ:
10055 return 17;
10056 case ARM_CPU_MODE_SVC:
10057 return 19;
10058 case ARM_CPU_MODE_ABT:
10059 return 21;
10060 case ARM_CPU_MODE_UND:
10061 return 23;
10062 case ARM_CPU_MODE_FIQ:
10063 return 29;
10064 default:
10065 g_assert_not_reached();
10067 case 14:
10068 switch (mode) {
10069 case ARM_CPU_MODE_USR:
10070 case ARM_CPU_MODE_SYS:
10071 case ARM_CPU_MODE_HYP:
10072 return 14;
10073 case ARM_CPU_MODE_IRQ:
10074 return 16;
10075 case ARM_CPU_MODE_SVC:
10076 return 18;
10077 case ARM_CPU_MODE_ABT:
10078 return 20;
10079 case ARM_CPU_MODE_UND:
10080 return 22;
10081 case ARM_CPU_MODE_FIQ:
10082 return 30;
10083 default:
10084 g_assert_not_reached();
10086 case 15:
10087 return 31;
10088 default:
10089 g_assert_not_reached();
10093 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10095 uint32_t ret = cpsr_read(env);
10097 /* Move DIT to the correct location for SPSR_ELx */
10098 if (ret & CPSR_DIT) {
10099 ret &= ~CPSR_DIT;
10100 ret |= PSTATE_DIT;
10102 /* Merge PSTATE.SS into SPSR_ELx */
10103 ret |= env->pstate & PSTATE_SS;
10105 return ret;
10108 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10110 /* Return true if this syndrome value is a synchronous external abort */
10111 switch (syn_get_ec(syndrome)) {
10112 case EC_INSNABORT:
10113 case EC_INSNABORT_SAME_EL:
10114 case EC_DATAABORT:
10115 case EC_DATAABORT_SAME_EL:
10116 /* Look at fault status code for all the synchronous ext abort cases */
10117 switch (syndrome & 0x3f) {
10118 case 0x10:
10119 case 0x13:
10120 case 0x14:
10121 case 0x15:
10122 case 0x16:
10123 case 0x17:
10124 return true;
10125 default:
10126 return false;
10128 default:
10129 return false;
10133 /* Handle exception entry to a target EL which is using AArch64 */
10134 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10136 ARMCPU *cpu = ARM_CPU(cs);
10137 CPUARMState *env = &cpu->env;
10138 unsigned int new_el = env->exception.target_el;
10139 target_ulong addr = env->cp15.vbar_el[new_el];
10140 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10141 unsigned int old_mode;
10142 unsigned int cur_el = arm_current_el(env);
10143 int rt;
10146 * Note that new_el can never be 0. If cur_el is 0, then
10147 * el0_a64 is is_a64(), else el0_a64 is ignored.
10149 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10151 if (cur_el < new_el) {
10152 /* Entry vector offset depends on whether the implemented EL
10153 * immediately lower than the target level is using AArch32 or AArch64
10155 bool is_aa64;
10156 uint64_t hcr;
10158 switch (new_el) {
10159 case 3:
10160 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10161 break;
10162 case 2:
10163 hcr = arm_hcr_el2_eff(env);
10164 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10165 is_aa64 = (hcr & HCR_RW) != 0;
10166 break;
10168 /* fall through */
10169 case 1:
10170 is_aa64 = is_a64(env);
10171 break;
10172 default:
10173 g_assert_not_reached();
10176 if (is_aa64) {
10177 addr += 0x400;
10178 } else {
10179 addr += 0x600;
10181 } else if (pstate_read(env) & PSTATE_SP) {
10182 addr += 0x200;
10185 switch (cs->exception_index) {
10186 case EXCP_PREFETCH_ABORT:
10187 case EXCP_DATA_ABORT:
10189 * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10190 * to be taken to the SError vector entrypoint.
10192 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10193 syndrome_is_sync_extabt(env->exception.syndrome)) {
10194 addr += 0x180;
10196 env->cp15.far_el[new_el] = env->exception.vaddress;
10197 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10198 env->cp15.far_el[new_el]);
10199 /* fall through */
10200 case EXCP_BKPT:
10201 case EXCP_UDEF:
10202 case EXCP_SWI:
10203 case EXCP_HVC:
10204 case EXCP_HYP_TRAP:
10205 case EXCP_SMC:
10206 switch (syn_get_ec(env->exception.syndrome)) {
10207 case EC_ADVSIMDFPACCESSTRAP:
10209 * QEMU internal FP/SIMD syndromes from AArch32 include the
10210 * TA and coproc fields which are only exposed if the exception
10211 * is taken to AArch32 Hyp mode. Mask them out to get a valid
10212 * AArch64 format syndrome.
10214 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10215 break;
10216 case EC_CP14RTTRAP:
10217 case EC_CP15RTTRAP:
10218 case EC_CP14DTTRAP:
10220 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10221 * the raw register field from the insn; when taking this to
10222 * AArch64 we must convert it to the AArch64 view of the register
10223 * number. Notice that we read a 4-bit AArch32 register number and
10224 * write back a 5-bit AArch64 one.
10226 rt = extract32(env->exception.syndrome, 5, 4);
10227 rt = aarch64_regnum(env, rt);
10228 env->exception.syndrome = deposit32(env->exception.syndrome,
10229 5, 5, rt);
10230 break;
10231 case EC_CP15RRTTRAP:
10232 case EC_CP14RRTTRAP:
10233 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10234 rt = extract32(env->exception.syndrome, 5, 4);
10235 rt = aarch64_regnum(env, rt);
10236 env->exception.syndrome = deposit32(env->exception.syndrome,
10237 5, 5, rt);
10238 rt = extract32(env->exception.syndrome, 10, 4);
10239 rt = aarch64_regnum(env, rt);
10240 env->exception.syndrome = deposit32(env->exception.syndrome,
10241 10, 5, rt);
10242 break;
10244 env->cp15.esr_el[new_el] = env->exception.syndrome;
10245 break;
10246 case EXCP_IRQ:
10247 case EXCP_VIRQ:
10248 addr += 0x80;
10249 break;
10250 case EXCP_FIQ:
10251 case EXCP_VFIQ:
10252 addr += 0x100;
10253 break;
10254 case EXCP_VSERR:
10255 addr += 0x180;
10256 /* Construct the SError syndrome from IDS and ISS fields. */
10257 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10258 env->cp15.esr_el[new_el] = env->exception.syndrome;
10259 break;
10260 default:
10261 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10264 if (is_a64(env)) {
10265 old_mode = pstate_read(env);
10266 aarch64_save_sp(env, arm_current_el(env));
10267 env->elr_el[new_el] = env->pc;
10268 } else {
10269 old_mode = cpsr_read_for_spsr_elx(env);
10270 env->elr_el[new_el] = env->regs[15];
10272 aarch64_sync_32_to_64(env);
10274 env->condexec_bits = 0;
10276 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10278 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10279 env->elr_el[new_el]);
10281 if (cpu_isar_feature(aa64_pan, cpu)) {
10282 /* The value of PSTATE.PAN is normally preserved, except when ... */
10283 new_mode |= old_mode & PSTATE_PAN;
10284 switch (new_el) {
10285 case 2:
10286 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
10287 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10288 != (HCR_E2H | HCR_TGE)) {
10289 break;
10291 /* fall through */
10292 case 1:
10293 /* ... the target is EL1 ... */
10294 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
10295 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10296 new_mode |= PSTATE_PAN;
10298 break;
10301 if (cpu_isar_feature(aa64_mte, cpu)) {
10302 new_mode |= PSTATE_TCO;
10305 if (cpu_isar_feature(aa64_ssbs, cpu)) {
10306 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10307 new_mode |= PSTATE_SSBS;
10308 } else {
10309 new_mode &= ~PSTATE_SSBS;
10313 pstate_write(env, PSTATE_DAIF | new_mode);
10314 env->aarch64 = true;
10315 aarch64_restore_sp(env, new_el);
10316 helper_rebuild_hflags_a64(env, new_el);
10318 env->pc = addr;
10320 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10321 new_el, env->pc, pstate_read(env));
10325 * Do semihosting call and set the appropriate return value. All the
10326 * permission and validity checks have been done at translate time.
10328 * We only see semihosting exceptions in TCG only as they are not
10329 * trapped to the hypervisor in KVM.
10331 #ifdef CONFIG_TCG
10332 static void handle_semihosting(CPUState *cs)
10334 ARMCPU *cpu = ARM_CPU(cs);
10335 CPUARMState *env = &cpu->env;
10337 if (is_a64(env)) {
10338 qemu_log_mask(CPU_LOG_INT,
10339 "...handling as semihosting call 0x%" PRIx64 "\n",
10340 env->xregs[0]);
10341 env->xregs[0] = do_common_semihosting(cs);
10342 env->pc += 4;
10343 } else {
10344 qemu_log_mask(CPU_LOG_INT,
10345 "...handling as semihosting call 0x%x\n",
10346 env->regs[0]);
10347 env->regs[0] = do_common_semihosting(cs);
10348 env->regs[15] += env->thumb ? 2 : 4;
10351 #endif
10353 /* Handle a CPU exception for A and R profile CPUs.
10354 * Do any appropriate logging, handle PSCI calls, and then hand off
10355 * to the AArch64-entry or AArch32-entry function depending on the
10356 * target exception level's register width.
10358 * Note: this is used for both TCG (as the do_interrupt tcg op),
10359 * and KVM to re-inject guest debug exceptions, and to
10360 * inject a Synchronous-External-Abort.
10362 void arm_cpu_do_interrupt(CPUState *cs)
10364 ARMCPU *cpu = ARM_CPU(cs);
10365 CPUARMState *env = &cpu->env;
10366 unsigned int new_el = env->exception.target_el;
10368 assert(!arm_feature(env, ARM_FEATURE_M));
10370 arm_log_exception(cs);
10371 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10372 new_el);
10373 if (qemu_loglevel_mask(CPU_LOG_INT)
10374 && !excp_is_internal(cs->exception_index)) {
10375 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10376 syn_get_ec(env->exception.syndrome),
10377 env->exception.syndrome);
10380 if (arm_is_psci_call(cpu, cs->exception_index)) {
10381 arm_handle_psci_call(cpu);
10382 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10383 return;
10387 * Semihosting semantics depend on the register width of the code
10388 * that caused the exception, not the target exception level, so
10389 * must be handled here.
10391 #ifdef CONFIG_TCG
10392 if (cs->exception_index == EXCP_SEMIHOST) {
10393 handle_semihosting(cs);
10394 return;
10396 #endif
10398 /* Hooks may change global state so BQL should be held, also the
10399 * BQL needs to be held for any modification of
10400 * cs->interrupt_request.
10402 g_assert(qemu_mutex_iothread_locked());
10404 arm_call_pre_el_change_hook(cpu);
10406 assert(!excp_is_internal(cs->exception_index));
10407 if (arm_el_is_aa64(env, new_el)) {
10408 arm_cpu_do_interrupt_aarch64(cs);
10409 } else {
10410 arm_cpu_do_interrupt_aarch32(cs);
10413 arm_call_el_change_hook(cpu);
10415 if (!kvm_enabled()) {
10416 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10419 #endif /* !CONFIG_USER_ONLY */
10421 uint64_t arm_sctlr(CPUARMState *env, int el)
10423 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10424 if (el == 0) {
10425 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10426 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10427 ? 2 : 1;
10429 return env->cp15.sctlr_el[el];
10432 #ifndef CONFIG_USER_ONLY
10434 /* Return true if the specified stage of address translation is disabled */
10435 bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
10437 uint64_t hcr_el2;
10439 if (arm_feature(env, ARM_FEATURE_M)) {
10440 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10441 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10442 case R_V7M_MPU_CTRL_ENABLE_MASK:
10443 /* Enabled, but not for HardFault and NMI */
10444 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10445 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10446 /* Enabled for all cases */
10447 return false;
10448 case 0:
10449 default:
10450 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10451 * we warned about that in armv7m_nvic.c when the guest set it.
10453 return true;
10457 hcr_el2 = arm_hcr_el2_eff(env);
10459 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10460 /* HCR.DC means HCR.VM behaves as 1 */
10461 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10464 if (hcr_el2 & HCR_TGE) {
10465 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10466 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10467 return true;
10471 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10472 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10473 return true;
10476 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10479 static inline bool regime_translation_big_endian(CPUARMState *env,
10480 ARMMMUIdx mmu_idx)
10482 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10485 /* Return the TTBR associated with this translation regime */
10486 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10487 int ttbrn)
10489 if (mmu_idx == ARMMMUIdx_Stage2) {
10490 return env->cp15.vttbr_el2;
10492 if (mmu_idx == ARMMMUIdx_Stage2_S) {
10493 return env->cp15.vsttbr_el2;
10495 if (ttbrn == 0) {
10496 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10497 } else {
10498 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10502 /* Convert a possible stage1+2 MMU index into the appropriate
10503 * stage 1 MMU index
10505 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10507 switch (mmu_idx) {
10508 case ARMMMUIdx_SE10_0:
10509 return ARMMMUIdx_Stage1_SE0;
10510 case ARMMMUIdx_SE10_1:
10511 return ARMMMUIdx_Stage1_SE1;
10512 case ARMMMUIdx_SE10_1_PAN:
10513 return ARMMMUIdx_Stage1_SE1_PAN;
10514 case ARMMMUIdx_E10_0:
10515 return ARMMMUIdx_Stage1_E0;
10516 case ARMMMUIdx_E10_1:
10517 return ARMMMUIdx_Stage1_E1;
10518 case ARMMMUIdx_E10_1_PAN:
10519 return ARMMMUIdx_Stage1_E1_PAN;
10520 default:
10521 return mmu_idx;
10524 #endif /* !CONFIG_USER_ONLY */
10526 /* Return true if the translation regime is using LPAE format page tables */
10527 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10529 int el = regime_el(env, mmu_idx);
10530 if (el == 2 || arm_el_is_aa64(env, el)) {
10531 return true;
10533 if (arm_feature(env, ARM_FEATURE_LPAE)
10534 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10535 return true;
10537 return false;
10540 /* Returns true if the stage 1 translation regime is using LPAE format page
10541 * tables. Used when raising alignment exceptions, whose FSR changes depending
10542 * on whether the long or short descriptor format is in use. */
10543 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10545 mmu_idx = stage_1_mmu_idx(mmu_idx);
10547 return regime_using_lpae_format(env, mmu_idx);
10550 #ifndef CONFIG_USER_ONLY
10551 bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10553 switch (mmu_idx) {
10554 case ARMMMUIdx_SE10_0:
10555 case ARMMMUIdx_E20_0:
10556 case ARMMMUIdx_SE20_0:
10557 case ARMMMUIdx_Stage1_E0:
10558 case ARMMMUIdx_Stage1_SE0:
10559 case ARMMMUIdx_MUser:
10560 case ARMMMUIdx_MSUser:
10561 case ARMMMUIdx_MUserNegPri:
10562 case ARMMMUIdx_MSUserNegPri:
10563 return true;
10564 default:
10565 return false;
10566 case ARMMMUIdx_E10_0:
10567 case ARMMMUIdx_E10_1:
10568 case ARMMMUIdx_E10_1_PAN:
10569 g_assert_not_reached();
10573 /* Translate section/page access permissions to page
10574 * R/W protection flags
10576 * @env: CPUARMState
10577 * @mmu_idx: MMU index indicating required translation regime
10578 * @ap: The 3-bit access permissions (AP[2:0])
10579 * @domain_prot: The 2-bit domain access permissions
10581 int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap, int domain_prot)
10583 bool is_user = regime_is_user(env, mmu_idx);
10585 if (domain_prot == 3) {
10586 return PAGE_READ | PAGE_WRITE;
10589 switch (ap) {
10590 case 0:
10591 if (arm_feature(env, ARM_FEATURE_V7)) {
10592 return 0;
10594 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10595 case SCTLR_S:
10596 return is_user ? 0 : PAGE_READ;
10597 case SCTLR_R:
10598 return PAGE_READ;
10599 default:
10600 return 0;
10602 case 1:
10603 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10604 case 2:
10605 if (is_user) {
10606 return PAGE_READ;
10607 } else {
10608 return PAGE_READ | PAGE_WRITE;
10610 case 3:
10611 return PAGE_READ | PAGE_WRITE;
10612 case 4: /* Reserved. */
10613 return 0;
10614 case 5:
10615 return is_user ? 0 : PAGE_READ;
10616 case 6:
10617 return PAGE_READ;
10618 case 7:
10619 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10620 return 0;
10622 return PAGE_READ;
10623 default:
10624 g_assert_not_reached();
10628 /* Translate section/page access permissions to page
10629 * R/W protection flags.
10631 * @ap: The 2-bit simple AP (AP[2:1])
10632 * @is_user: TRUE if accessing from PL0
10634 int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10636 switch (ap) {
10637 case 0:
10638 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10639 case 1:
10640 return PAGE_READ | PAGE_WRITE;
10641 case 2:
10642 return is_user ? 0 : PAGE_READ;
10643 case 3:
10644 return PAGE_READ;
10645 default:
10646 g_assert_not_reached();
10650 /* Translate S2 section/page access permissions to protection flags
10652 * @env: CPUARMState
10653 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10654 * @xn: XN (execute-never) bits
10655 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10657 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10659 int prot = 0;
10661 if (s2ap & 1) {
10662 prot |= PAGE_READ;
10664 if (s2ap & 2) {
10665 prot |= PAGE_WRITE;
10668 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10669 switch (xn) {
10670 case 0:
10671 prot |= PAGE_EXEC;
10672 break;
10673 case 1:
10674 if (s1_is_el0) {
10675 prot |= PAGE_EXEC;
10677 break;
10678 case 2:
10679 break;
10680 case 3:
10681 if (!s1_is_el0) {
10682 prot |= PAGE_EXEC;
10684 break;
10685 default:
10686 g_assert_not_reached();
10688 } else {
10689 if (!extract32(xn, 1, 1)) {
10690 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10691 prot |= PAGE_EXEC;
10695 return prot;
10698 /* Translate section/page access permissions to protection flags
10700 * @env: CPUARMState
10701 * @mmu_idx: MMU index indicating required translation regime
10702 * @is_aa64: TRUE if AArch64
10703 * @ap: The 2-bit simple AP (AP[2:1])
10704 * @ns: NS (non-secure) bit
10705 * @xn: XN (execute-never) bit
10706 * @pxn: PXN (privileged execute-never) bit
10708 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10709 int ap, int ns, int xn, int pxn)
10711 bool is_user = regime_is_user(env, mmu_idx);
10712 int prot_rw, user_rw;
10713 bool have_wxn;
10714 int wxn = 0;
10716 assert(mmu_idx != ARMMMUIdx_Stage2);
10717 assert(mmu_idx != ARMMMUIdx_Stage2_S);
10719 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10720 if (is_user) {
10721 prot_rw = user_rw;
10722 } else {
10723 if (user_rw && regime_is_pan(env, mmu_idx)) {
10724 /* PAN forbids data accesses but doesn't affect insn fetch */
10725 prot_rw = 0;
10726 } else {
10727 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10731 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10732 return prot_rw;
10735 /* TODO have_wxn should be replaced with
10736 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10737 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10738 * compatible processors have EL2, which is required for [U]WXN.
10740 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10742 if (have_wxn) {
10743 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10746 if (is_aa64) {
10747 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10748 xn = pxn || (user_rw & PAGE_WRITE);
10750 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10751 switch (regime_el(env, mmu_idx)) {
10752 case 1:
10753 case 3:
10754 if (is_user) {
10755 xn = xn || !(user_rw & PAGE_READ);
10756 } else {
10757 int uwxn = 0;
10758 if (have_wxn) {
10759 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10761 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10762 (uwxn && (user_rw & PAGE_WRITE));
10764 break;
10765 case 2:
10766 break;
10768 } else {
10769 xn = wxn = 0;
10772 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10773 return prot_rw;
10775 return prot_rw | PAGE_EXEC;
10778 bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10779 uint32_t *table, uint32_t address)
10781 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10782 TCR *tcr = regime_tcr(env, mmu_idx);
10784 if (address & tcr->mask) {
10785 if (tcr->raw_tcr & TTBCR_PD1) {
10786 /* Translation table walk disabled for TTBR1 */
10787 return false;
10789 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10790 } else {
10791 if (tcr->raw_tcr & TTBCR_PD0) {
10792 /* Translation table walk disabled for TTBR0 */
10793 return false;
10795 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10797 *table |= (address >> 18) & 0x3ffc;
10798 return true;
10801 static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
10804 * For an S1 page table walk, the stage 1 attributes are always
10805 * some form of "this is Normal memory". The combined S1+S2
10806 * attributes are therefore only Device if stage 2 specifies Device.
10807 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
10808 * ie when cacheattrs.attrs bits [3:2] are 0b00.
10809 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
10810 * when cacheattrs.attrs bit [2] is 0.
10812 assert(cacheattrs.is_s2_format);
10813 if (arm_hcr_el2_eff(env) & HCR_FWB) {
10814 return (cacheattrs.attrs & 0x4) == 0;
10815 } else {
10816 return (cacheattrs.attrs & 0xc) == 0;
10820 /* Translate a S1 pagetable walk through S2 if needed. */
10821 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10822 hwaddr addr, bool *is_secure,
10823 ARMMMUFaultInfo *fi)
10825 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10826 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10827 target_ulong s2size;
10828 hwaddr s2pa;
10829 int s2prot;
10830 int ret;
10831 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10832 : ARMMMUIdx_Stage2;
10833 ARMCacheAttrs cacheattrs = {};
10834 MemTxAttrs txattrs = {};
10836 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10837 &s2pa, &txattrs, &s2prot, &s2size, fi,
10838 &cacheattrs);
10839 if (ret) {
10840 assert(fi->type != ARMFault_None);
10841 fi->s2addr = addr;
10842 fi->stage2 = true;
10843 fi->s1ptw = true;
10844 fi->s1ns = !*is_secure;
10845 return ~0;
10847 if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10848 ptw_attrs_are_device(env, cacheattrs)) {
10850 * PTW set and S1 walk touched S2 Device memory:
10851 * generate Permission fault.
10853 fi->type = ARMFault_Permission;
10854 fi->s2addr = addr;
10855 fi->stage2 = true;
10856 fi->s1ptw = true;
10857 fi->s1ns = !*is_secure;
10858 return ~0;
10861 if (arm_is_secure_below_el3(env)) {
10862 /* Check if page table walk is to secure or non-secure PA space. */
10863 if (*is_secure) {
10864 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10865 } else {
10866 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10868 } else {
10869 assert(!*is_secure);
10872 addr = s2pa;
10874 return addr;
10877 /* All loads done in the course of a page table walk go through here. */
10878 uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10879 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10881 ARMCPU *cpu = ARM_CPU(cs);
10882 CPUARMState *env = &cpu->env;
10883 MemTxAttrs attrs = {};
10884 MemTxResult result = MEMTX_OK;
10885 AddressSpace *as;
10886 uint32_t data;
10888 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10889 attrs.secure = is_secure;
10890 as = arm_addressspace(cs, attrs);
10891 if (fi->s1ptw) {
10892 return 0;
10894 if (regime_translation_big_endian(env, mmu_idx)) {
10895 data = address_space_ldl_be(as, addr, attrs, &result);
10896 } else {
10897 data = address_space_ldl_le(as, addr, attrs, &result);
10899 if (result == MEMTX_OK) {
10900 return data;
10902 fi->type = ARMFault_SyncExternalOnWalk;
10903 fi->ea = arm_extabort_type(result);
10904 return 0;
10907 uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10908 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10910 ARMCPU *cpu = ARM_CPU(cs);
10911 CPUARMState *env = &cpu->env;
10912 MemTxAttrs attrs = {};
10913 MemTxResult result = MEMTX_OK;
10914 AddressSpace *as;
10915 uint64_t data;
10917 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10918 attrs.secure = is_secure;
10919 as = arm_addressspace(cs, attrs);
10920 if (fi->s1ptw) {
10921 return 0;
10923 if (regime_translation_big_endian(env, mmu_idx)) {
10924 data = address_space_ldq_be(as, addr, attrs, &result);
10925 } else {
10926 data = address_space_ldq_le(as, addr, attrs, &result);
10928 if (result == MEMTX_OK) {
10929 return data;
10931 fi->type = ARMFault_SyncExternalOnWalk;
10932 fi->ea = arm_extabort_type(result);
10933 return 0;
10937 * check_s2_mmu_setup
10938 * @cpu: ARMCPU
10939 * @is_aa64: True if the translation regime is in AArch64 state
10940 * @startlevel: Suggested starting level
10941 * @inputsize: Bitsize of IPAs
10942 * @stride: Page-table stride (See the ARM ARM)
10944 * Returns true if the suggested S2 translation parameters are OK and
10945 * false otherwise.
10947 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10948 int inputsize, int stride, int outputsize)
10950 const int grainsize = stride + 3;
10951 int startsizecheck;
10954 * Negative levels are usually not allowed...
10955 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
10956 * begins with level -1. Note that previous feature tests will have
10957 * eliminated this combination if it is not enabled.
10959 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
10960 return false;
10963 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10964 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10965 return false;
10968 if (is_aa64) {
10969 switch (stride) {
10970 case 13: /* 64KB Pages. */
10971 if (level == 0 || (level == 1 && outputsize <= 42)) {
10972 return false;
10974 break;
10975 case 11: /* 16KB Pages. */
10976 if (level == 0 || (level == 1 && outputsize <= 40)) {
10977 return false;
10979 break;
10980 case 9: /* 4KB Pages. */
10981 if (level == 0 && outputsize <= 42) {
10982 return false;
10984 break;
10985 default:
10986 g_assert_not_reached();
10989 /* Inputsize checks. */
10990 if (inputsize > outputsize &&
10991 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
10992 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10993 return false;
10995 } else {
10996 /* AArch32 only supports 4KB pages. Assert on that. */
10997 assert(stride == 9);
10999 if (level == 0) {
11000 return false;
11003 return true;
11006 /* Translate from the 4-bit stage 2 representation of
11007 * memory attributes (without cache-allocation hints) to
11008 * the 8-bit representation of the stage 1 MAIR registers
11009 * (which includes allocation hints).
11011 * ref: shared/translation/attrs/S2AttrDecode()
11012 * .../S2ConvertAttrsHints()
11014 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11016 uint8_t hiattr = extract32(s2attrs, 2, 2);
11017 uint8_t loattr = extract32(s2attrs, 0, 2);
11018 uint8_t hihint = 0, lohint = 0;
11020 if (hiattr != 0) { /* normal memory */
11021 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11022 hiattr = loattr = 1; /* non-cacheable */
11023 } else {
11024 if (hiattr != 1) { /* Write-through or write-back */
11025 hihint = 3; /* RW allocate */
11027 if (loattr != 1) { /* Write-through or write-back */
11028 lohint = 3; /* RW allocate */
11033 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11035 #endif /* !CONFIG_USER_ONLY */
11037 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11038 static const uint8_t pamax_map[] = {
11039 [0] = 32,
11040 [1] = 36,
11041 [2] = 40,
11042 [3] = 42,
11043 [4] = 44,
11044 [5] = 48,
11045 [6] = 52,
11048 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11049 unsigned int arm_pamax(ARMCPU *cpu)
11051 unsigned int parange =
11052 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11055 * id_aa64mmfr0 is a read-only register so values outside of the
11056 * supported mappings can be considered an implementation error.
11058 assert(parange < ARRAY_SIZE(pamax_map));
11059 return pamax_map[parange];
11062 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11064 if (regime_has_2_ranges(mmu_idx)) {
11065 return extract64(tcr, 37, 2);
11066 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11067 return 0; /* VTCR_EL2 */
11068 } else {
11069 /* Replicate the single TBI bit so we always have 2 bits. */
11070 return extract32(tcr, 20, 1) * 3;
11074 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11076 if (regime_has_2_ranges(mmu_idx)) {
11077 return extract64(tcr, 51, 2);
11078 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11079 return 0; /* VTCR_EL2 */
11080 } else {
11081 /* Replicate the single TBID bit so we always have 2 bits. */
11082 return extract32(tcr, 29, 1) * 3;
11086 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11088 if (regime_has_2_ranges(mmu_idx)) {
11089 return extract64(tcr, 57, 2);
11090 } else {
11091 /* Replicate the single TCMA bit so we always have 2 bits. */
11092 return extract32(tcr, 30, 1) * 3;
11096 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11097 ARMMMUIdx mmu_idx, bool data)
11099 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11100 bool epd, hpd, using16k, using64k, tsz_oob, ds;
11101 int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11102 ARMCPU *cpu = env_archcpu(env);
11104 if (!regime_has_2_ranges(mmu_idx)) {
11105 select = 0;
11106 tsz = extract32(tcr, 0, 6);
11107 using64k = extract32(tcr, 14, 1);
11108 using16k = extract32(tcr, 15, 1);
11109 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11110 /* VTCR_EL2 */
11111 hpd = false;
11112 } else {
11113 hpd = extract32(tcr, 24, 1);
11115 epd = false;
11116 sh = extract32(tcr, 12, 2);
11117 ps = extract32(tcr, 16, 3);
11118 ds = extract64(tcr, 32, 1);
11119 } else {
11121 * Bit 55 is always between the two regions, and is canonical for
11122 * determining if address tagging is enabled.
11124 select = extract64(va, 55, 1);
11125 if (!select) {
11126 tsz = extract32(tcr, 0, 6);
11127 epd = extract32(tcr, 7, 1);
11128 sh = extract32(tcr, 12, 2);
11129 using64k = extract32(tcr, 14, 1);
11130 using16k = extract32(tcr, 15, 1);
11131 hpd = extract64(tcr, 41, 1);
11132 } else {
11133 int tg = extract32(tcr, 30, 2);
11134 using16k = tg == 1;
11135 using64k = tg == 3;
11136 tsz = extract32(tcr, 16, 6);
11137 epd = extract32(tcr, 23, 1);
11138 sh = extract32(tcr, 28, 2);
11139 hpd = extract64(tcr, 42, 1);
11141 ps = extract64(tcr, 32, 3);
11142 ds = extract64(tcr, 59, 1);
11145 if (cpu_isar_feature(aa64_st, cpu)) {
11146 max_tsz = 48 - using64k;
11147 } else {
11148 max_tsz = 39;
11152 * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11153 * adjust the effective value of DS, as documented.
11155 min_tsz = 16;
11156 if (using64k) {
11157 if (cpu_isar_feature(aa64_lva, cpu)) {
11158 min_tsz = 12;
11160 ds = false;
11161 } else if (ds) {
11162 switch (mmu_idx) {
11163 case ARMMMUIdx_Stage2:
11164 case ARMMMUIdx_Stage2_S:
11165 if (using16k) {
11166 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11167 } else {
11168 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11170 break;
11171 default:
11172 if (using16k) {
11173 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11174 } else {
11175 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11177 break;
11179 if (ds) {
11180 min_tsz = 12;
11184 if (tsz > max_tsz) {
11185 tsz = max_tsz;
11186 tsz_oob = true;
11187 } else if (tsz < min_tsz) {
11188 tsz = min_tsz;
11189 tsz_oob = true;
11190 } else {
11191 tsz_oob = false;
11194 /* Present TBI as a composite with TBID. */
11195 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11196 if (!data) {
11197 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11199 tbi = (tbi >> select) & 1;
11201 return (ARMVAParameters) {
11202 .tsz = tsz,
11203 .ps = ps,
11204 .sh = sh,
11205 .select = select,
11206 .tbi = tbi,
11207 .epd = epd,
11208 .hpd = hpd,
11209 .using16k = using16k,
11210 .using64k = using64k,
11211 .tsz_oob = tsz_oob,
11212 .ds = ds,
11216 #ifndef CONFIG_USER_ONLY
11217 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11218 ARMMMUIdx mmu_idx)
11220 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11221 uint32_t el = regime_el(env, mmu_idx);
11222 int select, tsz;
11223 bool epd, hpd;
11225 assert(mmu_idx != ARMMMUIdx_Stage2_S);
11227 if (mmu_idx == ARMMMUIdx_Stage2) {
11228 /* VTCR */
11229 bool sext = extract32(tcr, 4, 1);
11230 bool sign = extract32(tcr, 3, 1);
11233 * If the sign-extend bit is not the same as t0sz[3], the result
11234 * is unpredictable. Flag this as a guest error.
11236 if (sign != sext) {
11237 qemu_log_mask(LOG_GUEST_ERROR,
11238 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11240 tsz = sextract32(tcr, 0, 4) + 8;
11241 select = 0;
11242 hpd = false;
11243 epd = false;
11244 } else if (el == 2) {
11245 /* HTCR */
11246 tsz = extract32(tcr, 0, 3);
11247 select = 0;
11248 hpd = extract64(tcr, 24, 1);
11249 epd = false;
11250 } else {
11251 int t0sz = extract32(tcr, 0, 3);
11252 int t1sz = extract32(tcr, 16, 3);
11254 if (t1sz == 0) {
11255 select = va > (0xffffffffu >> t0sz);
11256 } else {
11257 /* Note that we will detect errors later. */
11258 select = va >= ~(0xffffffffu >> t1sz);
11260 if (!select) {
11261 tsz = t0sz;
11262 epd = extract32(tcr, 7, 1);
11263 hpd = extract64(tcr, 41, 1);
11264 } else {
11265 tsz = t1sz;
11266 epd = extract32(tcr, 23, 1);
11267 hpd = extract64(tcr, 42, 1);
11269 /* For aarch32, hpd0 is not enabled without t2e as well. */
11270 hpd &= extract32(tcr, 6, 1);
11273 return (ARMVAParameters) {
11274 .tsz = tsz,
11275 .select = select,
11276 .epd = epd,
11277 .hpd = hpd,
11282 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11284 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11285 * prot and page_size may not be filled in, and the populated fsr value provides
11286 * information on why the translation aborted, in the format of a long-format
11287 * DFSR/IFSR fault register, with the following caveats:
11288 * * the WnR bit is never set (the caller must do this).
11290 * @env: CPUARMState
11291 * @address: virtual address to get physical address for
11292 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11293 * @mmu_idx: MMU index indicating required translation regime
11294 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11295 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
11296 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11297 * @phys_ptr: set to the physical address corresponding to the virtual address
11298 * @attrs: set to the memory transaction attributes to use
11299 * @prot: set to the permissions for the page containing phys_ptr
11300 * @page_size_ptr: set to the size of the page containing phys_ptr
11301 * @fi: set to fault info if the translation fails
11302 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11304 bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11305 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11306 bool s1_is_el0,
11307 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11308 target_ulong *page_size_ptr,
11309 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11311 ARMCPU *cpu = env_archcpu(env);
11312 CPUState *cs = CPU(cpu);
11313 /* Read an LPAE long-descriptor translation table. */
11314 ARMFaultType fault_type = ARMFault_Translation;
11315 uint32_t level;
11316 ARMVAParameters param;
11317 uint64_t ttbr;
11318 hwaddr descaddr, indexmask, indexmask_grainsize;
11319 uint32_t tableattrs;
11320 target_ulong page_size;
11321 uint32_t attrs;
11322 int32_t stride;
11323 int addrsize, inputsize, outputsize;
11324 TCR *tcr = regime_tcr(env, mmu_idx);
11325 int ap, ns, xn, pxn;
11326 uint32_t el = regime_el(env, mmu_idx);
11327 uint64_t descaddrmask;
11328 bool aarch64 = arm_el_is_aa64(env, el);
11329 bool guarded = false;
11331 /* TODO: This code does not support shareability levels. */
11332 if (aarch64) {
11333 int ps;
11335 param = aa64_va_parameters(env, address, mmu_idx,
11336 access_type != MMU_INST_FETCH);
11337 level = 0;
11340 * If TxSZ is programmed to a value larger than the maximum,
11341 * or smaller than the effective minimum, it is IMPLEMENTATION
11342 * DEFINED whether we behave as if the field were programmed
11343 * within bounds, or if a level 0 Translation fault is generated.
11345 * With FEAT_LVA, fault on less than minimum becomes required,
11346 * so our choice is to always raise the fault.
11348 if (param.tsz_oob) {
11349 fault_type = ARMFault_Translation;
11350 goto do_fault;
11353 addrsize = 64 - 8 * param.tbi;
11354 inputsize = 64 - param.tsz;
11357 * Bound PS by PARANGE to find the effective output address size.
11358 * ID_AA64MMFR0 is a read-only register so values outside of the
11359 * supported mappings can be considered an implementation error.
11361 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11362 ps = MIN(ps, param.ps);
11363 assert(ps < ARRAY_SIZE(pamax_map));
11364 outputsize = pamax_map[ps];
11365 } else {
11366 param = aa32_va_parameters(env, address, mmu_idx);
11367 level = 1;
11368 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11369 inputsize = addrsize - param.tsz;
11370 outputsize = 40;
11374 * We determined the region when collecting the parameters, but we
11375 * have not yet validated that the address is valid for the region.
11376 * Extract the top bits and verify that they all match select.
11378 * For aa32, if inputsize == addrsize, then we have selected the
11379 * region by exclusion in aa32_va_parameters and there is no more
11380 * validation to do here.
11382 if (inputsize < addrsize) {
11383 target_ulong top_bits = sextract64(address, inputsize,
11384 addrsize - inputsize);
11385 if (-top_bits != param.select) {
11386 /* The gap between the two regions is a Translation fault */
11387 fault_type = ARMFault_Translation;
11388 goto do_fault;
11392 if (param.using64k) {
11393 stride = 13;
11394 } else if (param.using16k) {
11395 stride = 11;
11396 } else {
11397 stride = 9;
11400 /* Note that QEMU ignores shareability and cacheability attributes,
11401 * so we don't need to do anything with the SH, ORGN, IRGN fields
11402 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11403 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11404 * implement any ASID-like capability so we can ignore it (instead
11405 * we will always flush the TLB any time the ASID is changed).
11407 ttbr = regime_ttbr(env, mmu_idx, param.select);
11409 /* Here we should have set up all the parameters for the translation:
11410 * inputsize, ttbr, epd, stride, tbi
11413 if (param.epd) {
11414 /* Translation table walk disabled => Translation fault on TLB miss
11415 * Note: This is always 0 on 64-bit EL2 and EL3.
11417 goto do_fault;
11420 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11421 /* The starting level depends on the virtual address size (which can
11422 * be up to 48 bits) and the translation granule size. It indicates
11423 * the number of strides (stride bits at a time) needed to
11424 * consume the bits of the input address. In the pseudocode this is:
11425 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11426 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11427 * our 'stride + 3' and 'stride' is our 'stride'.
11428 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11429 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11430 * = 4 - (inputsize - 4) / stride;
11432 level = 4 - (inputsize - 4) / stride;
11433 } else {
11434 /* For stage 2 translations the starting level is specified by the
11435 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11437 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11438 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11439 uint32_t startlevel;
11440 bool ok;
11442 /* SL2 is RES0 unless DS=1 & 4kb granule. */
11443 if (param.ds && stride == 9 && sl2) {
11444 if (sl0 != 0) {
11445 level = 0;
11446 fault_type = ARMFault_Translation;
11447 goto do_fault;
11449 startlevel = -1;
11450 } else if (!aarch64 || stride == 9) {
11451 /* AArch32 or 4KB pages */
11452 startlevel = 2 - sl0;
11454 if (cpu_isar_feature(aa64_st, cpu)) {
11455 startlevel &= 3;
11457 } else {
11458 /* 16KB or 64KB pages */
11459 startlevel = 3 - sl0;
11462 /* Check that the starting level is valid. */
11463 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11464 inputsize, stride, outputsize);
11465 if (!ok) {
11466 fault_type = ARMFault_Translation;
11467 goto do_fault;
11469 level = startlevel;
11472 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11473 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11475 /* Now we can extract the actual base address from the TTBR */
11476 descaddr = extract64(ttbr, 0, 48);
11479 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11481 * Otherwise, if the base address is out of range, raise AddressSizeFault.
11482 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11483 * but we've just cleared the bits above 47, so simplify the test.
11485 if (outputsize > 48) {
11486 descaddr |= extract64(ttbr, 2, 4) << 48;
11487 } else if (descaddr >> outputsize) {
11488 level = 0;
11489 fault_type = ARMFault_AddressSize;
11490 goto do_fault;
11494 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11495 * and also to mask out CnP (bit 0) which could validly be non-zero.
11497 descaddr &= ~indexmask;
11500 * For AArch32, the address field in the descriptor goes up to bit 39
11501 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
11502 * or an AddressSize fault is raised. So for v8 we extract those SBZ
11503 * bits as part of the address, which will be checked via outputsize.
11504 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11505 * the highest bits of a 52-bit output are placed elsewhere.
11507 if (param.ds) {
11508 descaddrmask = MAKE_64BIT_MASK(0, 50);
11509 } else if (arm_feature(env, ARM_FEATURE_V8)) {
11510 descaddrmask = MAKE_64BIT_MASK(0, 48);
11511 } else {
11512 descaddrmask = MAKE_64BIT_MASK(0, 40);
11514 descaddrmask &= ~indexmask_grainsize;
11516 /* Secure accesses start with the page table in secure memory and
11517 * can be downgraded to non-secure at any step. Non-secure accesses
11518 * remain non-secure. We implement this by just ORing in the NSTable/NS
11519 * bits at each step.
11521 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11522 for (;;) {
11523 uint64_t descriptor;
11524 bool nstable;
11526 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11527 descaddr &= ~7ULL;
11528 nstable = extract32(tableattrs, 4, 1);
11529 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11530 if (fi->type != ARMFault_None) {
11531 goto do_fault;
11534 if (!(descriptor & 1) ||
11535 (!(descriptor & 2) && (level == 3))) {
11536 /* Invalid, or the Reserved level 3 encoding */
11537 goto do_fault;
11540 descaddr = descriptor & descaddrmask;
11543 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11544 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
11545 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
11546 * raise AddressSizeFault.
11548 if (outputsize > 48) {
11549 if (param.ds) {
11550 descaddr |= extract64(descriptor, 8, 2) << 50;
11551 } else {
11552 descaddr |= extract64(descriptor, 12, 4) << 48;
11554 } else if (descaddr >> outputsize) {
11555 fault_type = ARMFault_AddressSize;
11556 goto do_fault;
11559 if ((descriptor & 2) && (level < 3)) {
11560 /* Table entry. The top five bits are attributes which may
11561 * propagate down through lower levels of the table (and
11562 * which are all arranged so that 0 means "no effect", so
11563 * we can gather them up by ORing in the bits at each level).
11565 tableattrs |= extract64(descriptor, 59, 5);
11566 level++;
11567 indexmask = indexmask_grainsize;
11568 continue;
11571 * Block entry at level 1 or 2, or page entry at level 3.
11572 * These are basically the same thing, although the number
11573 * of bits we pull in from the vaddr varies. Note that although
11574 * descaddrmask masks enough of the low bits of the descriptor
11575 * to give a correct page or table address, the address field
11576 * in a block descriptor is smaller; so we need to explicitly
11577 * clear the lower bits here before ORing in the low vaddr bits.
11579 page_size = (1ULL << ((stride * (4 - level)) + 3));
11580 descaddr &= ~(page_size - 1);
11581 descaddr |= (address & (page_size - 1));
11582 /* Extract attributes from the descriptor */
11583 attrs = extract64(descriptor, 2, 10)
11584 | (extract64(descriptor, 52, 12) << 10);
11586 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11587 /* Stage 2 table descriptors do not include any attribute fields */
11588 break;
11590 /* Merge in attributes from table descriptors */
11591 attrs |= nstable << 3; /* NS */
11592 guarded = extract64(descriptor, 50, 1); /* GP */
11593 if (param.hpd) {
11594 /* HPD disables all the table attributes except NSTable. */
11595 break;
11597 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11598 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11599 * means "force PL1 access only", which means forcing AP[1] to 0.
11601 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11602 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11603 break;
11605 /* Here descaddr is the final physical address, and attributes
11606 * are all in attrs.
11608 fault_type = ARMFault_AccessFlag;
11609 if ((attrs & (1 << 8)) == 0) {
11610 /* Access flag */
11611 goto do_fault;
11614 ap = extract32(attrs, 4, 2);
11616 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11617 ns = mmu_idx == ARMMMUIdx_Stage2;
11618 xn = extract32(attrs, 11, 2);
11619 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11620 } else {
11621 ns = extract32(attrs, 3, 1);
11622 xn = extract32(attrs, 12, 1);
11623 pxn = extract32(attrs, 11, 1);
11624 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11627 fault_type = ARMFault_Permission;
11628 if (!(*prot & (1 << access_type))) {
11629 goto do_fault;
11632 if (ns) {
11633 /* The NS bit will (as required by the architecture) have no effect if
11634 * the CPU doesn't support TZ or this is a non-secure translation
11635 * regime, because the attribute will already be non-secure.
11637 txattrs->secure = false;
11639 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11640 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11641 arm_tlb_bti_gp(txattrs) = true;
11644 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11645 cacheattrs->is_s2_format = true;
11646 cacheattrs->attrs = extract32(attrs, 0, 4);
11647 } else {
11648 /* Index into MAIR registers for cache attributes */
11649 uint8_t attrindx = extract32(attrs, 0, 3);
11650 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11651 assert(attrindx <= 7);
11652 cacheattrs->is_s2_format = false;
11653 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11657 * For FEAT_LPA2 and effective DS, the SH field in the attributes
11658 * was re-purposed for output address bits. The SH attribute in
11659 * that case comes from TCR_ELx, which we extracted earlier.
11661 if (param.ds) {
11662 cacheattrs->shareability = param.sh;
11663 } else {
11664 cacheattrs->shareability = extract32(attrs, 6, 2);
11667 *phys_ptr = descaddr;
11668 *page_size_ptr = page_size;
11669 return false;
11671 do_fault:
11672 fi->type = fault_type;
11673 fi->level = level;
11674 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11675 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11676 mmu_idx == ARMMMUIdx_Stage2_S);
11677 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11678 return true;
11681 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11682 ARMMMUIdx mmu_idx,
11683 int32_t address, int *prot)
11685 if (!arm_feature(env, ARM_FEATURE_M)) {
11686 *prot = PAGE_READ | PAGE_WRITE;
11687 switch (address) {
11688 case 0xF0000000 ... 0xFFFFFFFF:
11689 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11690 /* hivecs execing is ok */
11691 *prot |= PAGE_EXEC;
11693 break;
11694 case 0x00000000 ... 0x7FFFFFFF:
11695 *prot |= PAGE_EXEC;
11696 break;
11698 } else {
11699 /* Default system address map for M profile cores.
11700 * The architecture specifies which regions are execute-never;
11701 * at the MPU level no other checks are defined.
11703 switch (address) {
11704 case 0x00000000 ... 0x1fffffff: /* ROM */
11705 case 0x20000000 ... 0x3fffffff: /* SRAM */
11706 case 0x60000000 ... 0x7fffffff: /* RAM */
11707 case 0x80000000 ... 0x9fffffff: /* RAM */
11708 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11709 break;
11710 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11711 case 0xa0000000 ... 0xbfffffff: /* Device */
11712 case 0xc0000000 ... 0xdfffffff: /* Device */
11713 case 0xe0000000 ... 0xffffffff: /* System */
11714 *prot = PAGE_READ | PAGE_WRITE;
11715 break;
11716 default:
11717 g_assert_not_reached();
11722 static bool pmsav7_use_background_region(ARMCPU *cpu,
11723 ARMMMUIdx mmu_idx, bool is_user)
11725 /* Return true if we should use the default memory map as a
11726 * "background" region if there are no hits against any MPU regions.
11728 CPUARMState *env = &cpu->env;
11730 if (is_user) {
11731 return false;
11734 if (arm_feature(env, ARM_FEATURE_M)) {
11735 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11736 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11737 } else {
11738 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11742 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11744 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11745 return arm_feature(env, ARM_FEATURE_M) &&
11746 extract32(address, 20, 12) == 0xe00;
11749 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11751 /* True if address is in the M profile system region
11752 * 0xe0000000 - 0xffffffff
11754 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11757 bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11758 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11759 hwaddr *phys_ptr, int *prot,
11760 target_ulong *page_size,
11761 ARMMMUFaultInfo *fi)
11763 ARMCPU *cpu = env_archcpu(env);
11764 int n;
11765 bool is_user = regime_is_user(env, mmu_idx);
11767 *phys_ptr = address;
11768 *page_size = TARGET_PAGE_SIZE;
11769 *prot = 0;
11771 if (regime_translation_disabled(env, mmu_idx) ||
11772 m_is_ppb_region(env, address)) {
11773 /* MPU disabled or M profile PPB access: use default memory map.
11774 * The other case which uses the default memory map in the
11775 * v7M ARM ARM pseudocode is exception vector reads from the vector
11776 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11777 * which always does a direct read using address_space_ldl(), rather
11778 * than going via this function, so we don't need to check that here.
11780 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11781 } else { /* MPU enabled */
11782 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11783 /* region search */
11784 uint32_t base = env->pmsav7.drbar[n];
11785 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11786 uint32_t rmask;
11787 bool srdis = false;
11789 if (!(env->pmsav7.drsr[n] & 0x1)) {
11790 continue;
11793 if (!rsize) {
11794 qemu_log_mask(LOG_GUEST_ERROR,
11795 "DRSR[%d]: Rsize field cannot be 0\n", n);
11796 continue;
11798 rsize++;
11799 rmask = (1ull << rsize) - 1;
11801 if (base & rmask) {
11802 qemu_log_mask(LOG_GUEST_ERROR,
11803 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11804 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11805 n, base, rmask);
11806 continue;
11809 if (address < base || address > base + rmask) {
11811 * Address not in this region. We must check whether the
11812 * region covers addresses in the same page as our address.
11813 * In that case we must not report a size that covers the
11814 * whole page for a subsequent hit against a different MPU
11815 * region or the background region, because it would result in
11816 * incorrect TLB hits for subsequent accesses to addresses that
11817 * are in this MPU region.
11819 if (ranges_overlap(base, rmask,
11820 address & TARGET_PAGE_MASK,
11821 TARGET_PAGE_SIZE)) {
11822 *page_size = 1;
11824 continue;
11827 /* Region matched */
11829 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11830 int i, snd;
11831 uint32_t srdis_mask;
11833 rsize -= 3; /* sub region size (power of 2) */
11834 snd = ((address - base) >> rsize) & 0x7;
11835 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11837 srdis_mask = srdis ? 0x3 : 0x0;
11838 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11839 /* This will check in groups of 2, 4 and then 8, whether
11840 * the subregion bits are consistent. rsize is incremented
11841 * back up to give the region size, considering consistent
11842 * adjacent subregions as one region. Stop testing if rsize
11843 * is already big enough for an entire QEMU page.
11845 int snd_rounded = snd & ~(i - 1);
11846 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11847 snd_rounded + 8, i);
11848 if (srdis_mask ^ srdis_multi) {
11849 break;
11851 srdis_mask = (srdis_mask << i) | srdis_mask;
11852 rsize++;
11855 if (srdis) {
11856 continue;
11858 if (rsize < TARGET_PAGE_BITS) {
11859 *page_size = 1 << rsize;
11861 break;
11864 if (n == -1) { /* no hits */
11865 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11866 /* background fault */
11867 fi->type = ARMFault_Background;
11868 return true;
11870 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11871 } else { /* a MPU hit! */
11872 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11873 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11875 if (m_is_system_region(env, address)) {
11876 /* System space is always execute never */
11877 xn = 1;
11880 if (is_user) { /* User mode AP bit decoding */
11881 switch (ap) {
11882 case 0:
11883 case 1:
11884 case 5:
11885 break; /* no access */
11886 case 3:
11887 *prot |= PAGE_WRITE;
11888 /* fall through */
11889 case 2:
11890 case 6:
11891 *prot |= PAGE_READ | PAGE_EXEC;
11892 break;
11893 case 7:
11894 /* for v7M, same as 6; for R profile a reserved value */
11895 if (arm_feature(env, ARM_FEATURE_M)) {
11896 *prot |= PAGE_READ | PAGE_EXEC;
11897 break;
11899 /* fall through */
11900 default:
11901 qemu_log_mask(LOG_GUEST_ERROR,
11902 "DRACR[%d]: Bad value for AP bits: 0x%"
11903 PRIx32 "\n", n, ap);
11905 } else { /* Priv. mode AP bits decoding */
11906 switch (ap) {
11907 case 0:
11908 break; /* no access */
11909 case 1:
11910 case 2:
11911 case 3:
11912 *prot |= PAGE_WRITE;
11913 /* fall through */
11914 case 5:
11915 case 6:
11916 *prot |= PAGE_READ | PAGE_EXEC;
11917 break;
11918 case 7:
11919 /* for v7M, same as 6; for R profile a reserved value */
11920 if (arm_feature(env, ARM_FEATURE_M)) {
11921 *prot |= PAGE_READ | PAGE_EXEC;
11922 break;
11924 /* fall through */
11925 default:
11926 qemu_log_mask(LOG_GUEST_ERROR,
11927 "DRACR[%d]: Bad value for AP bits: 0x%"
11928 PRIx32 "\n", n, ap);
11932 /* execute never */
11933 if (xn) {
11934 *prot &= ~PAGE_EXEC;
11939 fi->type = ARMFault_Permission;
11940 fi->level = 1;
11941 return !(*prot & (1 << access_type));
11944 static bool v8m_is_sau_exempt(CPUARMState *env,
11945 uint32_t address, MMUAccessType access_type)
11947 /* The architecture specifies that certain address ranges are
11948 * exempt from v8M SAU/IDAU checks.
11950 return
11951 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11952 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11953 (address >= 0xe000e000 && address <= 0xe000efff) ||
11954 (address >= 0xe002e000 && address <= 0xe002efff) ||
11955 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11956 (address >= 0xe00ff000 && address <= 0xe00fffff);
11959 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11960 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11961 V8M_SAttributes *sattrs)
11963 /* Look up the security attributes for this address. Compare the
11964 * pseudocode SecurityCheck() function.
11965 * We assume the caller has zero-initialized *sattrs.
11967 ARMCPU *cpu = env_archcpu(env);
11968 int r;
11969 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11970 int idau_region = IREGION_NOTVALID;
11971 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11972 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11974 if (cpu->idau) {
11975 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11976 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11978 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11979 &idau_nsc);
11982 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11983 /* 0xf0000000..0xffffffff is always S for insn fetches */
11984 return;
11987 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11988 sattrs->ns = !regime_is_secure(env, mmu_idx);
11989 return;
11992 if (idau_region != IREGION_NOTVALID) {
11993 sattrs->irvalid = true;
11994 sattrs->iregion = idau_region;
11997 switch (env->sau.ctrl & 3) {
11998 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11999 break;
12000 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12001 sattrs->ns = true;
12002 break;
12003 default: /* SAU.ENABLE == 1 */
12004 for (r = 0; r < cpu->sau_sregion; r++) {
12005 if (env->sau.rlar[r] & 1) {
12006 uint32_t base = env->sau.rbar[r] & ~0x1f;
12007 uint32_t limit = env->sau.rlar[r] | 0x1f;
12009 if (base <= address && limit >= address) {
12010 if (base > addr_page_base || limit < addr_page_limit) {
12011 sattrs->subpage = true;
12013 if (sattrs->srvalid) {
12014 /* If we hit in more than one region then we must report
12015 * as Secure, not NS-Callable, with no valid region
12016 * number info.
12018 sattrs->ns = false;
12019 sattrs->nsc = false;
12020 sattrs->sregion = 0;
12021 sattrs->srvalid = false;
12022 break;
12023 } else {
12024 if (env->sau.rlar[r] & 2) {
12025 sattrs->nsc = true;
12026 } else {
12027 sattrs->ns = true;
12029 sattrs->srvalid = true;
12030 sattrs->sregion = r;
12032 } else {
12034 * Address not in this region. We must check whether the
12035 * region covers addresses in the same page as our address.
12036 * In that case we must not report a size that covers the
12037 * whole page for a subsequent hit against a different MPU
12038 * region or the background region, because it would result
12039 * in incorrect TLB hits for subsequent accesses to
12040 * addresses that are in this MPU region.
12042 if (limit >= base &&
12043 ranges_overlap(base, limit - base + 1,
12044 addr_page_base,
12045 TARGET_PAGE_SIZE)) {
12046 sattrs->subpage = true;
12051 break;
12055 * The IDAU will override the SAU lookup results if it specifies
12056 * higher security than the SAU does.
12058 if (!idau_ns) {
12059 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12060 sattrs->ns = false;
12061 sattrs->nsc = idau_nsc;
12066 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12067 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12068 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12069 int *prot, bool *is_subpage,
12070 ARMMMUFaultInfo *fi, uint32_t *mregion)
12072 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12073 * that a full phys-to-virt translation does).
12074 * mregion is (if not NULL) set to the region number which matched,
12075 * or -1 if no region number is returned (MPU off, address did not
12076 * hit a region, address hit in multiple regions).
12077 * We set is_subpage to true if the region hit doesn't cover the
12078 * entire TARGET_PAGE the address is within.
12080 ARMCPU *cpu = env_archcpu(env);
12081 bool is_user = regime_is_user(env, mmu_idx);
12082 uint32_t secure = regime_is_secure(env, mmu_idx);
12083 int n;
12084 int matchregion = -1;
12085 bool hit = false;
12086 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12087 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12089 *is_subpage = false;
12090 *phys_ptr = address;
12091 *prot = 0;
12092 if (mregion) {
12093 *mregion = -1;
12096 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12097 * was an exception vector read from the vector table (which is always
12098 * done using the default system address map), because those accesses
12099 * are done in arm_v7m_load_vector(), which always does a direct
12100 * read using address_space_ldl(), rather than going via this function.
12102 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12103 hit = true;
12104 } else if (m_is_ppb_region(env, address)) {
12105 hit = true;
12106 } else {
12107 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12108 hit = true;
12111 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12112 /* region search */
12113 /* Note that the base address is bits [31:5] from the register
12114 * with bits [4:0] all zeroes, but the limit address is bits
12115 * [31:5] from the register with bits [4:0] all ones.
12117 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12118 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12120 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12121 /* Region disabled */
12122 continue;
12125 if (address < base || address > limit) {
12127 * Address not in this region. We must check whether the
12128 * region covers addresses in the same page as our address.
12129 * In that case we must not report a size that covers the
12130 * whole page for a subsequent hit against a different MPU
12131 * region or the background region, because it would result in
12132 * incorrect TLB hits for subsequent accesses to addresses that
12133 * are in this MPU region.
12135 if (limit >= base &&
12136 ranges_overlap(base, limit - base + 1,
12137 addr_page_base,
12138 TARGET_PAGE_SIZE)) {
12139 *is_subpage = true;
12141 continue;
12144 if (base > addr_page_base || limit < addr_page_limit) {
12145 *is_subpage = true;
12148 if (matchregion != -1) {
12149 /* Multiple regions match -- always a failure (unlike
12150 * PMSAv7 where highest-numbered-region wins)
12152 fi->type = ARMFault_Permission;
12153 fi->level = 1;
12154 return true;
12157 matchregion = n;
12158 hit = true;
12162 if (!hit) {
12163 /* background fault */
12164 fi->type = ARMFault_Background;
12165 return true;
12168 if (matchregion == -1) {
12169 /* hit using the background region */
12170 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12171 } else {
12172 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12173 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12174 bool pxn = false;
12176 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12177 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12180 if (m_is_system_region(env, address)) {
12181 /* System space is always execute never */
12182 xn = 1;
12185 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12186 if (*prot && !xn && !(pxn && !is_user)) {
12187 *prot |= PAGE_EXEC;
12189 /* We don't need to look the attribute up in the MAIR0/MAIR1
12190 * registers because that only tells us about cacheability.
12192 if (mregion) {
12193 *mregion = matchregion;
12197 fi->type = ARMFault_Permission;
12198 fi->level = 1;
12199 return !(*prot & (1 << access_type));
12203 bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12204 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12205 hwaddr *phys_ptr, MemTxAttrs *txattrs,
12206 int *prot, target_ulong *page_size,
12207 ARMMMUFaultInfo *fi)
12209 uint32_t secure = regime_is_secure(env, mmu_idx);
12210 V8M_SAttributes sattrs = {};
12211 bool ret;
12212 bool mpu_is_subpage;
12214 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12215 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12216 if (access_type == MMU_INST_FETCH) {
12217 /* Instruction fetches always use the MMU bank and the
12218 * transaction attribute determined by the fetch address,
12219 * regardless of CPU state. This is painful for QEMU
12220 * to handle, because it would mean we need to encode
12221 * into the mmu_idx not just the (user, negpri) information
12222 * for the current security state but also that for the
12223 * other security state, which would balloon the number
12224 * of mmu_idx values needed alarmingly.
12225 * Fortunately we can avoid this because it's not actually
12226 * possible to arbitrarily execute code from memory with
12227 * the wrong security attribute: it will always generate
12228 * an exception of some kind or another, apart from the
12229 * special case of an NS CPU executing an SG instruction
12230 * in S&NSC memory. So we always just fail the translation
12231 * here and sort things out in the exception handler
12232 * (including possibly emulating an SG instruction).
12234 if (sattrs.ns != !secure) {
12235 if (sattrs.nsc) {
12236 fi->type = ARMFault_QEMU_NSCExec;
12237 } else {
12238 fi->type = ARMFault_QEMU_SFault;
12240 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12241 *phys_ptr = address;
12242 *prot = 0;
12243 return true;
12245 } else {
12246 /* For data accesses we always use the MMU bank indicated
12247 * by the current CPU state, but the security attributes
12248 * might downgrade a secure access to nonsecure.
12250 if (sattrs.ns) {
12251 txattrs->secure = false;
12252 } else if (!secure) {
12253 /* NS access to S memory must fault.
12254 * Architecturally we should first check whether the
12255 * MPU information for this address indicates that we
12256 * are doing an unaligned access to Device memory, which
12257 * should generate a UsageFault instead. QEMU does not
12258 * currently check for that kind of unaligned access though.
12259 * If we added it we would need to do so as a special case
12260 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12262 fi->type = ARMFault_QEMU_SFault;
12263 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12264 *phys_ptr = address;
12265 *prot = 0;
12266 return true;
12271 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12272 txattrs, prot, &mpu_is_subpage, fi, NULL);
12273 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12274 return ret;
12277 bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12278 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12279 hwaddr *phys_ptr, int *prot,
12280 ARMMMUFaultInfo *fi)
12282 int n;
12283 uint32_t mask;
12284 uint32_t base;
12285 bool is_user = regime_is_user(env, mmu_idx);
12287 if (regime_translation_disabled(env, mmu_idx)) {
12288 /* MPU disabled. */
12289 *phys_ptr = address;
12290 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12291 return false;
12294 *phys_ptr = address;
12295 for (n = 7; n >= 0; n--) {
12296 base = env->cp15.c6_region[n];
12297 if ((base & 1) == 0) {
12298 continue;
12300 mask = 1 << ((base >> 1) & 0x1f);
12301 /* Keep this shift separate from the above to avoid an
12302 (undefined) << 32. */
12303 mask = (mask << 1) - 1;
12304 if (((base ^ address) & ~mask) == 0) {
12305 break;
12308 if (n < 0) {
12309 fi->type = ARMFault_Background;
12310 return true;
12313 if (access_type == MMU_INST_FETCH) {
12314 mask = env->cp15.pmsav5_insn_ap;
12315 } else {
12316 mask = env->cp15.pmsav5_data_ap;
12318 mask = (mask >> (n * 4)) & 0xf;
12319 switch (mask) {
12320 case 0:
12321 fi->type = ARMFault_Permission;
12322 fi->level = 1;
12323 return true;
12324 case 1:
12325 if (is_user) {
12326 fi->type = ARMFault_Permission;
12327 fi->level = 1;
12328 return true;
12330 *prot = PAGE_READ | PAGE_WRITE;
12331 break;
12332 case 2:
12333 *prot = PAGE_READ;
12334 if (!is_user) {
12335 *prot |= PAGE_WRITE;
12337 break;
12338 case 3:
12339 *prot = PAGE_READ | PAGE_WRITE;
12340 break;
12341 case 5:
12342 if (is_user) {
12343 fi->type = ARMFault_Permission;
12344 fi->level = 1;
12345 return true;
12347 *prot = PAGE_READ;
12348 break;
12349 case 6:
12350 *prot = PAGE_READ;
12351 break;
12352 default:
12353 /* Bad permission. */
12354 fi->type = ARMFault_Permission;
12355 fi->level = 1;
12356 return true;
12358 *prot |= PAGE_EXEC;
12359 return false;
12362 /* Combine either inner or outer cacheability attributes for normal
12363 * memory, according to table D4-42 and pseudocode procedure
12364 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12366 * NB: only stage 1 includes allocation hints (RW bits), leading to
12367 * some asymmetry.
12369 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12371 if (s1 == 4 || s2 == 4) {
12372 /* non-cacheable has precedence */
12373 return 4;
12374 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12375 /* stage 1 write-through takes precedence */
12376 return s1;
12377 } else if (extract32(s2, 2, 2) == 2) {
12378 /* stage 2 write-through takes precedence, but the allocation hint
12379 * is still taken from stage 1
12381 return (2 << 2) | extract32(s1, 0, 2);
12382 } else { /* write-back */
12383 return s1;
12388 * Combine the memory type and cacheability attributes of
12389 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
12390 * combined attributes in MAIR_EL1 format.
12392 static uint8_t combined_attrs_nofwb(CPUARMState *env,
12393 ARMCacheAttrs s1, ARMCacheAttrs s2)
12395 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
12397 s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);
12399 s1lo = extract32(s1.attrs, 0, 4);
12400 s2lo = extract32(s2_mair_attrs, 0, 4);
12401 s1hi = extract32(s1.attrs, 4, 4);
12402 s2hi = extract32(s2_mair_attrs, 4, 4);
12404 /* Combine memory type and cacheability attributes */
12405 if (s1hi == 0 || s2hi == 0) {
12406 /* Device has precedence over normal */
12407 if (s1lo == 0 || s2lo == 0) {
12408 /* nGnRnE has precedence over anything */
12409 ret_attrs = 0;
12410 } else if (s1lo == 4 || s2lo == 4) {
12411 /* non-Reordering has precedence over Reordering */
12412 ret_attrs = 4; /* nGnRE */
12413 } else if (s1lo == 8 || s2lo == 8) {
12414 /* non-Gathering has precedence over Gathering */
12415 ret_attrs = 8; /* nGRE */
12416 } else {
12417 ret_attrs = 0xc; /* GRE */
12419 } else { /* Normal memory */
12420 /* Outer/inner cacheability combine independently */
12421 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12422 | combine_cacheattr_nibble(s1lo, s2lo);
12424 return ret_attrs;
12427 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
12430 * Given the 4 bits specifying the outer or inner cacheability
12431 * in MAIR format, return a value specifying Normal Write-Back,
12432 * with the allocation and transient hints taken from the input
12433 * if the input specified some kind of cacheable attribute.
12435 if (attr == 0 || attr == 4) {
12437 * 0 == an UNPREDICTABLE encoding
12438 * 4 == Non-cacheable
12439 * Either way, force Write-Back RW allocate non-transient
12441 return 0xf;
12443 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
12444 return attr | 4;
12448 * Combine the memory type and cacheability attributes of
12449 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
12450 * combined attributes in MAIR_EL1 format.
12452 static uint8_t combined_attrs_fwb(CPUARMState *env,
12453 ARMCacheAttrs s1, ARMCacheAttrs s2)
12455 switch (s2.attrs) {
12456 case 7:
12457 /* Use stage 1 attributes */
12458 return s1.attrs;
12459 case 6:
12461 * Force Normal Write-Back. Note that if S1 is Normal cacheable
12462 * then we take the allocation hints from it; otherwise it is
12463 * RW allocate, non-transient.
12465 if ((s1.attrs & 0xf0) == 0) {
12466 /* S1 is Device */
12467 return 0xff;
12469 /* Need to check the Inner and Outer nibbles separately */
12470 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
12471 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
12472 case 5:
12473 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
12474 if ((s1.attrs & 0xf0) == 0) {
12475 return s1.attrs;
12477 return 0x44;
12478 case 0 ... 3:
12479 /* Force Device, of subtype specified by S2 */
12480 return s2.attrs << 2;
12481 default:
12483 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
12484 * arbitrarily force Device.
12486 return 0;
12490 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12491 * and CombineS1S2Desc()
12493 * @env: CPUARMState
12494 * @s1: Attributes from stage 1 walk
12495 * @s2: Attributes from stage 2 walk
12497 ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
12498 ARMCacheAttrs s1, ARMCacheAttrs s2)
12500 ARMCacheAttrs ret;
12501 bool tagged = false;
12503 assert(s2.is_s2_format && !s1.is_s2_format);
12504 ret.is_s2_format = false;
12506 if (s1.attrs == 0xf0) {
12507 tagged = true;
12508 s1.attrs = 0xff;
12511 /* Combine shareability attributes (table D4-43) */
12512 if (s1.shareability == 2 || s2.shareability == 2) {
12513 /* if either are outer-shareable, the result is outer-shareable */
12514 ret.shareability = 2;
12515 } else if (s1.shareability == 3 || s2.shareability == 3) {
12516 /* if either are inner-shareable, the result is inner-shareable */
12517 ret.shareability = 3;
12518 } else {
12519 /* both non-shareable */
12520 ret.shareability = 0;
12523 /* Combine memory type and cacheability attributes */
12524 if (arm_hcr_el2_eff(env) & HCR_FWB) {
12525 ret.attrs = combined_attrs_fwb(env, s1, s2);
12526 } else {
12527 ret.attrs = combined_attrs_nofwb(env, s1, s2);
12531 * Any location for which the resultant memory type is any
12532 * type of Device memory is always treated as Outer Shareable.
12533 * Any location for which the resultant memory type is Normal
12534 * Inner Non-cacheable, Outer Non-cacheable is always treated
12535 * as Outer Shareable.
12536 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
12538 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
12539 ret.shareability = 2;
12542 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12543 if (tagged && ret.attrs == 0xff) {
12544 ret.attrs = 0xf0;
12547 return ret;
12550 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12551 MemTxAttrs *attrs)
12553 ARMCPU *cpu = ARM_CPU(cs);
12554 CPUARMState *env = &cpu->env;
12555 hwaddr phys_addr;
12556 target_ulong page_size;
12557 int prot;
12558 bool ret;
12559 ARMMMUFaultInfo fi = {};
12560 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12561 ARMCacheAttrs cacheattrs = {};
12563 *attrs = (MemTxAttrs) {};
12565 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12566 attrs, &prot, &page_size, &fi, &cacheattrs);
12568 if (ret) {
12569 return -1;
12571 return phys_addr;
12573 #endif
12575 /* Note that signed overflow is undefined in C. The following routines are
12576 careful to use unsigned types where modulo arithmetic is required.
12577 Failure to do so _will_ break on newer gcc. */
12579 /* Signed saturating arithmetic. */
12581 /* Perform 16-bit signed saturating addition. */
12582 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12584 uint16_t res;
12586 res = a + b;
12587 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12588 if (a & 0x8000)
12589 res = 0x8000;
12590 else
12591 res = 0x7fff;
12593 return res;
12596 /* Perform 8-bit signed saturating addition. */
12597 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12599 uint8_t res;
12601 res = a + b;
12602 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12603 if (a & 0x80)
12604 res = 0x80;
12605 else
12606 res = 0x7f;
12608 return res;
12611 /* Perform 16-bit signed saturating subtraction. */
12612 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12614 uint16_t res;
12616 res = a - b;
12617 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12618 if (a & 0x8000)
12619 res = 0x8000;
12620 else
12621 res = 0x7fff;
12623 return res;
12626 /* Perform 8-bit signed saturating subtraction. */
12627 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12629 uint8_t res;
12631 res = a - b;
12632 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12633 if (a & 0x80)
12634 res = 0x80;
12635 else
12636 res = 0x7f;
12638 return res;
12641 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12642 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12643 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12644 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12645 #define PFX q
12647 #include "op_addsub.h"
12649 /* Unsigned saturating arithmetic. */
12650 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12652 uint16_t res;
12653 res = a + b;
12654 if (res < a)
12655 res = 0xffff;
12656 return res;
12659 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12661 if (a > b)
12662 return a - b;
12663 else
12664 return 0;
12667 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12669 uint8_t res;
12670 res = a + b;
12671 if (res < a)
12672 res = 0xff;
12673 return res;
12676 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12678 if (a > b)
12679 return a - b;
12680 else
12681 return 0;
12684 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12685 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12686 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12687 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12688 #define PFX uq
12690 #include "op_addsub.h"
12692 /* Signed modulo arithmetic. */
12693 #define SARITH16(a, b, n, op) do { \
12694 int32_t sum; \
12695 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12696 RESULT(sum, n, 16); \
12697 if (sum >= 0) \
12698 ge |= 3 << (n * 2); \
12699 } while(0)
12701 #define SARITH8(a, b, n, op) do { \
12702 int32_t sum; \
12703 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12704 RESULT(sum, n, 8); \
12705 if (sum >= 0) \
12706 ge |= 1 << n; \
12707 } while(0)
12710 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12711 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12712 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12713 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12714 #define PFX s
12715 #define ARITH_GE
12717 #include "op_addsub.h"
12719 /* Unsigned modulo arithmetic. */
12720 #define ADD16(a, b, n) do { \
12721 uint32_t sum; \
12722 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12723 RESULT(sum, n, 16); \
12724 if ((sum >> 16) == 1) \
12725 ge |= 3 << (n * 2); \
12726 } while(0)
12728 #define ADD8(a, b, n) do { \
12729 uint32_t sum; \
12730 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12731 RESULT(sum, n, 8); \
12732 if ((sum >> 8) == 1) \
12733 ge |= 1 << n; \
12734 } while(0)
12736 #define SUB16(a, b, n) do { \
12737 uint32_t sum; \
12738 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12739 RESULT(sum, n, 16); \
12740 if ((sum >> 16) == 0) \
12741 ge |= 3 << (n * 2); \
12742 } while(0)
12744 #define SUB8(a, b, n) do { \
12745 uint32_t sum; \
12746 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12747 RESULT(sum, n, 8); \
12748 if ((sum >> 8) == 0) \
12749 ge |= 1 << n; \
12750 } while(0)
12752 #define PFX u
12753 #define ARITH_GE
12755 #include "op_addsub.h"
12757 /* Halved signed arithmetic. */
12758 #define ADD16(a, b, n) \
12759 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12760 #define SUB16(a, b, n) \
12761 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12762 #define ADD8(a, b, n) \
12763 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12764 #define SUB8(a, b, n) \
12765 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12766 #define PFX sh
12768 #include "op_addsub.h"
12770 /* Halved unsigned arithmetic. */
12771 #define ADD16(a, b, n) \
12772 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12773 #define SUB16(a, b, n) \
12774 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12775 #define ADD8(a, b, n) \
12776 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12777 #define SUB8(a, b, n) \
12778 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12779 #define PFX uh
12781 #include "op_addsub.h"
12783 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12785 if (a > b)
12786 return a - b;
12787 else
12788 return b - a;
12791 /* Unsigned sum of absolute byte differences. */
12792 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12794 uint32_t sum;
12795 sum = do_usad(a, b);
12796 sum += do_usad(a >> 8, b >> 8);
12797 sum += do_usad(a >> 16, b >> 16);
12798 sum += do_usad(a >> 24, b >> 24);
12799 return sum;
12802 /* For ARMv6 SEL instruction. */
12803 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12805 uint32_t mask;
12807 mask = 0;
12808 if (flags & 1)
12809 mask |= 0xff;
12810 if (flags & 2)
12811 mask |= 0xff00;
12812 if (flags & 4)
12813 mask |= 0xff0000;
12814 if (flags & 8)
12815 mask |= 0xff000000;
12816 return (a & mask) | (b & ~mask);
12819 /* CRC helpers.
12820 * The upper bytes of val (above the number specified by 'bytes') must have
12821 * been zeroed out by the caller.
12823 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12825 uint8_t buf[4];
12827 stl_le_p(buf, val);
12829 /* zlib crc32 converts the accumulator and output to one's complement. */
12830 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12833 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12835 uint8_t buf[4];
12837 stl_le_p(buf, val);
12839 /* Linux crc32c converts the output to one's complement. */
12840 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12843 /* Return the exception level to which FP-disabled exceptions should
12844 * be taken, or 0 if FP is enabled.
12846 int fp_exception_el(CPUARMState *env, int cur_el)
12848 #ifndef CONFIG_USER_ONLY
12849 uint64_t hcr_el2;
12851 /* CPACR and the CPTR registers don't exist before v6, so FP is
12852 * always accessible
12854 if (!arm_feature(env, ARM_FEATURE_V6)) {
12855 return 0;
12858 if (arm_feature(env, ARM_FEATURE_M)) {
12859 /* CPACR can cause a NOCP UsageFault taken to current security state */
12860 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12861 return 1;
12864 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12865 if (!extract32(env->v7m.nsacr, 10, 1)) {
12866 /* FP insns cause a NOCP UsageFault taken to Secure */
12867 return 3;
12871 return 0;
12874 hcr_el2 = arm_hcr_el2_eff(env);
12876 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12877 * 0, 2 : trap EL0 and EL1/PL1 accesses
12878 * 1 : trap only EL0 accesses
12879 * 3 : trap no accesses
12880 * This register is ignored if E2H+TGE are both set.
12882 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12883 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
12885 switch (fpen) {
12886 case 0:
12887 case 2:
12888 if (cur_el == 0 || cur_el == 1) {
12889 /* Trap to PL1, which might be EL1 or EL3 */
12890 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12891 return 3;
12893 return 1;
12895 if (cur_el == 3 && !is_a64(env)) {
12896 /* Secure PL1 running at EL3 */
12897 return 3;
12899 break;
12900 case 1:
12901 if (cur_el == 0) {
12902 return 1;
12904 break;
12905 case 3:
12906 break;
12911 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12912 * to control non-secure access to the FPU. It doesn't have any
12913 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12915 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12916 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12917 if (!extract32(env->cp15.nsacr, 10, 1)) {
12918 /* FP insns act as UNDEF */
12919 return cur_el == 2 ? 2 : 1;
12924 * CPTR_EL2 is present in v7VE or v8, and changes format
12925 * with HCR_EL2.E2H (regardless of TGE).
12927 if (cur_el <= 2) {
12928 if (hcr_el2 & HCR_E2H) {
12929 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
12930 case 1:
12931 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
12932 break;
12934 /* fall through */
12935 case 0:
12936 case 2:
12937 return 2;
12939 } else if (arm_is_el2_enabled(env)) {
12940 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
12941 return 2;
12946 /* CPTR_EL3 : present in v8 */
12947 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12948 /* Trap all FP ops to EL3 */
12949 return 3;
12951 #endif
12952 return 0;
12955 /* Return the exception level we're running at if this is our mmu_idx */
12956 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12958 if (mmu_idx & ARM_MMU_IDX_M) {
12959 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12962 switch (mmu_idx) {
12963 case ARMMMUIdx_E10_0:
12964 case ARMMMUIdx_E20_0:
12965 case ARMMMUIdx_SE10_0:
12966 case ARMMMUIdx_SE20_0:
12967 return 0;
12968 case ARMMMUIdx_E10_1:
12969 case ARMMMUIdx_E10_1_PAN:
12970 case ARMMMUIdx_SE10_1:
12971 case ARMMMUIdx_SE10_1_PAN:
12972 return 1;
12973 case ARMMMUIdx_E2:
12974 case ARMMMUIdx_E20_2:
12975 case ARMMMUIdx_E20_2_PAN:
12976 case ARMMMUIdx_SE2:
12977 case ARMMMUIdx_SE20_2:
12978 case ARMMMUIdx_SE20_2_PAN:
12979 return 2;
12980 case ARMMMUIdx_SE3:
12981 return 3;
12982 default:
12983 g_assert_not_reached();
12987 #ifndef CONFIG_TCG
12988 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12990 g_assert_not_reached();
12992 #endif
12994 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12996 ARMMMUIdx idx;
12997 uint64_t hcr;
12999 if (arm_feature(env, ARM_FEATURE_M)) {
13000 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13003 /* See ARM pseudo-function ELIsInHost. */
13004 switch (el) {
13005 case 0:
13006 hcr = arm_hcr_el2_eff(env);
13007 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13008 idx = ARMMMUIdx_E20_0;
13009 } else {
13010 idx = ARMMMUIdx_E10_0;
13012 break;
13013 case 1:
13014 if (env->pstate & PSTATE_PAN) {
13015 idx = ARMMMUIdx_E10_1_PAN;
13016 } else {
13017 idx = ARMMMUIdx_E10_1;
13019 break;
13020 case 2:
13021 /* Note that TGE does not apply at EL2. */
13022 if (arm_hcr_el2_eff(env) & HCR_E2H) {
13023 if (env->pstate & PSTATE_PAN) {
13024 idx = ARMMMUIdx_E20_2_PAN;
13025 } else {
13026 idx = ARMMMUIdx_E20_2;
13028 } else {
13029 idx = ARMMMUIdx_E2;
13031 break;
13032 case 3:
13033 return ARMMMUIdx_SE3;
13034 default:
13035 g_assert_not_reached();
13038 if (arm_is_secure_below_el3(env)) {
13039 idx &= ~ARM_MMU_IDX_A_NS;
13042 return idx;
13045 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13047 return arm_mmu_idx_el(env, arm_current_el(env));
13050 #ifndef CONFIG_USER_ONLY
13051 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13053 return stage_1_mmu_idx(arm_mmu_idx(env));
13055 #endif
13057 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13058 ARMMMUIdx mmu_idx,
13059 CPUARMTBFlags flags)
13061 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13062 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13064 if (arm_singlestep_active(env)) {
13065 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13067 return flags;
13070 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13071 ARMMMUIdx mmu_idx,
13072 CPUARMTBFlags flags)
13074 bool sctlr_b = arm_sctlr_b(env);
13076 if (sctlr_b) {
13077 DP_TBFLAG_A32(flags, SCTLR__B, 1);
13079 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13080 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13082 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13084 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13087 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13088 ARMMMUIdx mmu_idx)
13090 CPUARMTBFlags flags = {};
13091 uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13093 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13094 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13095 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13098 if (arm_v7m_is_handler_mode(env)) {
13099 DP_TBFLAG_M32(flags, HANDLER, 1);
13103 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13104 * is suppressing them because the requested execution priority
13105 * is less than 0.
13107 if (arm_feature(env, ARM_FEATURE_V8) &&
13108 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13109 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13110 DP_TBFLAG_M32(flags, STACKCHECK, 1);
13113 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13116 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13118 CPUARMTBFlags flags = {};
13120 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13121 return flags;
13124 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13125 ARMMMUIdx mmu_idx)
13127 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13128 int el = arm_current_el(env);
13130 if (arm_sctlr(env, el) & SCTLR_A) {
13131 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13134 if (arm_el_is_aa64(env, 1)) {
13135 DP_TBFLAG_A32(flags, VFPEN, 1);
13138 if (el < 2 && env->cp15.hstr_el2 &&
13139 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13140 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13143 if (env->uncached_cpsr & CPSR_IL) {
13144 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13147 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13150 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13151 ARMMMUIdx mmu_idx)
13153 CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13154 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13155 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13156 uint64_t sctlr;
13157 int tbii, tbid;
13159 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13161 /* Get control bits for tagged addresses. */
13162 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13163 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13165 DP_TBFLAG_A64(flags, TBII, tbii);
13166 DP_TBFLAG_A64(flags, TBID, tbid);
13168 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13169 int sve_el = sve_exception_el(env, el);
13170 uint32_t zcr_len;
13173 * If SVE is disabled, but FP is enabled,
13174 * then the effective len is 0.
13176 if (sve_el != 0 && fp_el == 0) {
13177 zcr_len = 0;
13178 } else {
13179 zcr_len = sve_zcr_len_for_el(env, el);
13181 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13182 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13185 sctlr = regime_sctlr(env, stage1);
13187 if (sctlr & SCTLR_A) {
13188 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13191 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13192 DP_TBFLAG_ANY(flags, BE_DATA, 1);
13195 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13197 * In order to save space in flags, we record only whether
13198 * pauth is "inactive", meaning all insns are implemented as
13199 * a nop, or "active" when some action must be performed.
13200 * The decision of which action to take is left to a helper.
13202 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13203 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13207 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13208 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13209 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13210 DP_TBFLAG_A64(flags, BT, 1);
13214 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13215 if (!(env->pstate & PSTATE_UAO)) {
13216 switch (mmu_idx) {
13217 case ARMMMUIdx_E10_1:
13218 case ARMMMUIdx_E10_1_PAN:
13219 case ARMMMUIdx_SE10_1:
13220 case ARMMMUIdx_SE10_1_PAN:
13221 /* TODO: ARMv8.3-NV */
13222 DP_TBFLAG_A64(flags, UNPRIV, 1);
13223 break;
13224 case ARMMMUIdx_E20_2:
13225 case ARMMMUIdx_E20_2_PAN:
13226 case ARMMMUIdx_SE20_2:
13227 case ARMMMUIdx_SE20_2_PAN:
13229 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13230 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13232 if (env->cp15.hcr_el2 & HCR_TGE) {
13233 DP_TBFLAG_A64(flags, UNPRIV, 1);
13235 break;
13236 default:
13237 break;
13241 if (env->pstate & PSTATE_IL) {
13242 DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13245 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13247 * Set MTE_ACTIVE if any access may be Checked, and leave clear
13248 * if all accesses must be Unchecked:
13249 * 1) If no TBI, then there are no tags in the address to check,
13250 * 2) If Tag Check Override, then all accesses are Unchecked,
13251 * 3) If Tag Check Fail == 0, then Checked access have no effect,
13252 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13254 if (allocation_tag_access_enabled(env, el, sctlr)) {
13255 DP_TBFLAG_A64(flags, ATA, 1);
13256 if (tbid
13257 && !(env->pstate & PSTATE_TCO)
13258 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13259 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13262 /* And again for unprivileged accesses, if required. */
13263 if (EX_TBFLAG_A64(flags, UNPRIV)
13264 && tbid
13265 && !(env->pstate & PSTATE_TCO)
13266 && (sctlr & SCTLR_TCF0)
13267 && allocation_tag_access_enabled(env, 0, sctlr)) {
13268 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13270 /* Cache TCMA as well as TBI. */
13271 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13274 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13277 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13279 int el = arm_current_el(env);
13280 int fp_el = fp_exception_el(env, el);
13281 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13283 if (is_a64(env)) {
13284 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13285 } else if (arm_feature(env, ARM_FEATURE_M)) {
13286 return rebuild_hflags_m32(env, fp_el, mmu_idx);
13287 } else {
13288 return rebuild_hflags_a32(env, fp_el, mmu_idx);
13292 void arm_rebuild_hflags(CPUARMState *env)
13294 env->hflags = rebuild_hflags_internal(env);
13298 * If we have triggered a EL state change we can't rely on the
13299 * translator having passed it to us, we need to recompute.
13301 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13303 int el = arm_current_el(env);
13304 int fp_el = fp_exception_el(env, el);
13305 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13307 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13310 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13312 int fp_el = fp_exception_el(env, el);
13313 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13315 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13319 * If we have triggered a EL state change we can't rely on the
13320 * translator having passed it to us, we need to recompute.
13322 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13324 int el = arm_current_el(env);
13325 int fp_el = fp_exception_el(env, el);
13326 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13327 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13330 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13332 int fp_el = fp_exception_el(env, el);
13333 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13335 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13338 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13340 int fp_el = fp_exception_el(env, el);
13341 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13343 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13346 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13348 #ifdef CONFIG_DEBUG_TCG
13349 CPUARMTBFlags c = env->hflags;
13350 CPUARMTBFlags r = rebuild_hflags_internal(env);
13352 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13353 fprintf(stderr, "TCG hflags mismatch "
13354 "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13355 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13356 c.flags, c.flags2, r.flags, r.flags2);
13357 abort();
13359 #endif
13362 static bool mve_no_pred(CPUARMState *env)
13365 * Return true if there is definitely no predication of MVE
13366 * instructions by VPR or LTPSIZE. (Returning false even if there
13367 * isn't any predication is OK; generated code will just be
13368 * a little worse.)
13369 * If the CPU does not implement MVE then this TB flag is always 0.
13371 * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13372 * logic in gen_update_fp_context() needs to be updated to match.
13374 * We do not include the effect of the ECI bits here -- they are
13375 * tracked in other TB flags. This simplifies the logic for
13376 * "when did we emit code that changes the MVE_NO_PRED TB flag
13377 * and thus need to end the TB?".
13379 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13380 return false;
13382 if (env->v7m.vpr) {
13383 return false;
13385 if (env->v7m.ltpsize < 4) {
13386 return false;
13388 return true;
13391 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13392 target_ulong *cs_base, uint32_t *pflags)
13394 CPUARMTBFlags flags;
13396 assert_hflags_rebuild_correctly(env);
13397 flags = env->hflags;
13399 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13400 *pc = env->pc;
13401 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13402 DP_TBFLAG_A64(flags, BTYPE, env->btype);
13404 } else {
13405 *pc = env->regs[15];
13407 if (arm_feature(env, ARM_FEATURE_M)) {
13408 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13409 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13410 != env->v7m.secure) {
13411 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13414 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13415 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13416 (env->v7m.secure &&
13417 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13419 * ASPEN is set, but FPCA/SFPA indicate that there is no
13420 * active FP context; we must create a new FP context before
13421 * executing any FP insn.
13423 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13426 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13427 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13428 DP_TBFLAG_M32(flags, LSPACT, 1);
13431 if (mve_no_pred(env)) {
13432 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13434 } else {
13436 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13437 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13439 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13440 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13441 } else {
13442 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13443 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13445 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13446 DP_TBFLAG_A32(flags, VFPEN, 1);
13450 DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13451 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13455 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13456 * states defined in the ARM ARM for software singlestep:
13457 * SS_ACTIVE PSTATE.SS State
13458 * 0 x Inactive (the TB flag for SS is always 0)
13459 * 1 0 Active-pending
13460 * 1 1 Active-not-pending
13461 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13463 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13464 DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13467 *pflags = flags.flags;
13468 *cs_base = flags.flags2;
13471 #ifdef TARGET_AARCH64
13473 * The manual says that when SVE is enabled and VQ is widened the
13474 * implementation is allowed to zero the previously inaccessible
13475 * portion of the registers. The corollary to that is that when
13476 * SVE is enabled and VQ is narrowed we are also allowed to zero
13477 * the now inaccessible portion of the registers.
13479 * The intent of this is that no predicate bit beyond VQ is ever set.
13480 * Which means that some operations on predicate registers themselves
13481 * may operate on full uint64_t or even unrolled across the maximum
13482 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13483 * may well be cheaper than conditionals to restrict the operation
13484 * to the relevant portion of a uint16_t[16].
13486 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13488 int i, j;
13489 uint64_t pmask;
13491 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13492 assert(vq <= env_archcpu(env)->sve_max_vq);
13494 /* Zap the high bits of the zregs. */
13495 for (i = 0; i < 32; i++) {
13496 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13499 /* Zap the high bits of the pregs and ffr. */
13500 pmask = 0;
13501 if (vq & 3) {
13502 pmask = ~(-1ULL << (16 * (vq & 3)));
13504 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13505 for (i = 0; i < 17; ++i) {
13506 env->vfp.pregs[i].p[j] &= pmask;
13508 pmask = 0;
13513 * Notice a change in SVE vector size when changing EL.
13515 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13516 int new_el, bool el0_a64)
13518 ARMCPU *cpu = env_archcpu(env);
13519 int old_len, new_len;
13520 bool old_a64, new_a64;
13522 /* Nothing to do if no SVE. */
13523 if (!cpu_isar_feature(aa64_sve, cpu)) {
13524 return;
13527 /* Nothing to do if FP is disabled in either EL. */
13528 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13529 return;
13533 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13534 * at ELx, or not available because the EL is in AArch32 state, then
13535 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13536 * has an effective value of 0".
13538 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13539 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13540 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13541 * we already have the correct register contents when encountering the
13542 * vq0->vq0 transition between EL0->EL1.
13544 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13545 old_len = (old_a64 && !sve_exception_el(env, old_el)
13546 ? sve_zcr_len_for_el(env, old_el) : 0);
13547 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13548 new_len = (new_a64 && !sve_exception_el(env, new_el)
13549 ? sve_zcr_len_for_el(env, new_el) : 0);
13551 /* When changing vector length, clear inaccessible state. */
13552 if (new_len < old_len) {
13553 aarch64_sve_narrow_vq(env, new_len + 1);
13556 #endif