kvm_stat: add 'x' key for enabling/disabling "drilldown"
[qemu/qemu-dev-zwu.git] / kvm-all.c
blobeb0dcb01d422a471de79aabd30993d30b96ebb6e
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
25 #include "sysemu.h"
26 #include "hw/hw.h"
27 #include "gdbstub.h"
28 #include "kvm.h"
29 #include "bswap.h"
31 /* This check must be after config-host.h is included */
32 #ifdef CONFIG_EVENTFD
33 #include <sys/eventfd.h>
34 #endif
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
39 //#define DEBUG_KVM
41 #ifdef DEBUG_KVM
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF(fmt, ...) \
46 do { } while (0)
47 #endif
49 #ifdef OBSOLETE_KVM_IMPL
51 typedef struct KVMSlot
53 target_phys_addr_t start_addr;
54 ram_addr_t memory_size;
55 ram_addr_t phys_offset;
56 int slot;
57 int flags;
58 } KVMSlot;
60 typedef struct kvm_dirty_log KVMDirtyLog;
62 struct KVMState
64 KVMSlot slots[32];
65 int fd;
66 int vmfd;
67 int coalesced_mmio;
68 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
69 int broken_set_mem_region;
70 int migration_log;
71 int vcpu_events;
72 int robust_singlestep;
73 int debugregs;
74 #ifdef KVM_CAP_SET_GUEST_DEBUG
75 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
76 #endif
77 int irqchip_in_kernel;
78 int pit_in_kernel;
79 int xsave, xcrs;
80 int many_ioeventfds;
83 KVMState *kvm_state;
86 static const KVMCapabilityInfo kvm_required_capabilites[] = {
87 KVM_CAP_INFO(USER_MEMORY),
88 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 KVM_CAP_LAST_INFO
92 #endif
94 static KVMSlot *kvm_alloc_slot(KVMState *s)
96 int i;
98 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99 if (s->slots[i].memory_size == 0) {
100 return &s->slots[i];
104 fprintf(stderr, "%s: no free slot available\n", __func__);
105 abort();
108 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
109 target_phys_addr_t start_addr,
110 target_phys_addr_t end_addr)
112 int i;
114 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
115 KVMSlot *mem = &s->slots[i];
117 if (start_addr == mem->start_addr &&
118 end_addr == mem->start_addr + mem->memory_size) {
119 return mem;
123 return NULL;
127 * Find overlapping slot with lowest start address
129 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
130 target_phys_addr_t start_addr,
131 target_phys_addr_t end_addr)
133 KVMSlot *found = NULL;
134 int i;
136 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
137 KVMSlot *mem = &s->slots[i];
139 if (mem->memory_size == 0 ||
140 (found && found->start_addr < mem->start_addr)) {
141 continue;
144 if (end_addr > mem->start_addr &&
145 start_addr < mem->start_addr + mem->memory_size) {
146 found = mem;
150 return found;
153 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
154 target_phys_addr_t *phys_addr)
156 int i;
158 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
159 KVMSlot *mem = &s->slots[i];
161 if (ram_addr >= mem->phys_offset &&
162 ram_addr < mem->phys_offset + mem->memory_size) {
163 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
164 return 1;
168 return 0;
171 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
173 struct kvm_userspace_memory_region mem;
175 mem.slot = slot->slot;
176 mem.guest_phys_addr = slot->start_addr;
177 mem.memory_size = slot->memory_size;
178 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
179 mem.flags = slot->flags;
180 if (s->migration_log) {
181 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
183 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
186 #ifdef OBSOLETE_KVM_IMPL
187 static void kvm_reset_vcpu(void *opaque)
189 CPUState *env = opaque;
191 kvm_arch_reset_vcpu(env);
193 #endif
195 int kvm_irqchip_in_kernel(void)
197 return kvm_state->irqchip_in_kernel;
200 int kvm_pit_in_kernel(void)
202 return kvm_state->pit_in_kernel;
205 #ifdef OBSOLETE_KVM_IMPL
206 int kvm_init_vcpu(CPUState *env)
208 KVMState *s = kvm_state;
209 long mmap_size;
210 int ret;
212 DPRINTF("kvm_init_vcpu\n");
214 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
215 if (ret < 0) {
216 DPRINTF("kvm_create_vcpu failed\n");
217 goto err;
220 env->kvm_fd = ret;
221 env->kvm_state = s;
223 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
224 if (mmap_size < 0) {
225 ret = mmap_size;
226 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
227 goto err;
230 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
231 env->kvm_fd, 0);
232 if (env->kvm_run == MAP_FAILED) {
233 ret = -errno;
234 DPRINTF("mmap'ing vcpu state failed\n");
235 goto err;
238 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
239 s->coalesced_mmio_ring =
240 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
243 ret = kvm_arch_init_vcpu(env);
244 if (ret == 0) {
245 qemu_register_reset(kvm_reset_vcpu, env);
246 kvm_arch_reset_vcpu(env);
248 err:
249 return ret;
251 #endif
254 * dirty pages logging control
256 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
257 ram_addr_t size, int flags, int mask)
259 KVMState *s = kvm_state;
260 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
261 int old_flags;
263 if (mem == NULL) {
264 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
265 TARGET_FMT_plx "\n", __func__, phys_addr,
266 (target_phys_addr_t)(phys_addr + size - 1));
267 return -EINVAL;
270 old_flags = mem->flags;
272 flags = (mem->flags & ~mask) | flags;
273 mem->flags = flags;
275 /* If nothing changed effectively, no need to issue ioctl */
276 if (s->migration_log) {
277 flags |= KVM_MEM_LOG_DIRTY_PAGES;
279 if (flags == old_flags) {
280 return 0;
283 return kvm_set_user_memory_region(s, mem);
286 static int kvm_log_start(CPUPhysMemoryClient *client,
287 target_phys_addr_t phys_addr, ram_addr_t size)
289 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
290 KVM_MEM_LOG_DIRTY_PAGES);
293 static int kvm_log_stop(CPUPhysMemoryClient *client,
294 target_phys_addr_t phys_addr, ram_addr_t size)
296 return kvm_dirty_pages_log_change(phys_addr, size, 0,
297 KVM_MEM_LOG_DIRTY_PAGES);
300 static int kvm_set_migration_log(int enable)
302 KVMState *s = kvm_state;
303 KVMSlot *mem;
304 int i, err;
306 s->migration_log = enable;
308 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
309 mem = &s->slots[i];
311 if (!mem->memory_size) {
312 continue;
314 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
315 continue;
317 err = kvm_set_user_memory_region(s, mem);
318 if (err) {
319 return err;
322 return 0;
325 /* get kvm's dirty pages bitmap and update qemu's */
326 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
327 unsigned long *bitmap,
328 unsigned long offset,
329 unsigned long mem_size)
331 unsigned int i, j;
332 unsigned long page_number, addr, addr1, c;
333 ram_addr_t ram_addr;
334 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
335 HOST_LONG_BITS;
338 * bitmap-traveling is faster than memory-traveling (for addr...)
339 * especially when most of the memory is not dirty.
341 for (i = 0; i < len; i++) {
342 if (bitmap[i] != 0) {
343 c = leul_to_cpu(bitmap[i]);
344 do {
345 j = ffsl(c) - 1;
346 c &= ~(1ul << j);
347 page_number = i * HOST_LONG_BITS + j;
348 addr1 = page_number * TARGET_PAGE_SIZE;
349 addr = offset + addr1;
350 ram_addr = cpu_get_physical_page_desc(addr);
351 cpu_physical_memory_set_dirty(ram_addr);
352 } while (c != 0);
355 return 0;
358 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
361 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
362 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
363 * This means all bits are set to dirty.
365 * @start_add: start of logged region.
366 * @end_addr: end of logged region.
368 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
369 target_phys_addr_t end_addr)
371 KVMState *s = kvm_state;
372 unsigned long size, allocated_size = 0;
373 KVMDirtyLog d;
374 KVMSlot *mem;
375 int ret = 0;
377 d.dirty_bitmap = NULL;
378 while (start_addr < end_addr) {
379 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
380 if (mem == NULL) {
381 break;
384 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
385 if (!d.dirty_bitmap) {
386 d.dirty_bitmap = qemu_malloc(size);
387 } else if (size > allocated_size) {
388 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
390 allocated_size = size;
391 memset(d.dirty_bitmap, 0, allocated_size);
393 d.slot = mem->slot;
395 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
396 DPRINTF("ioctl failed %d\n", errno);
397 ret = -1;
398 break;
401 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
402 mem->start_addr, mem->memory_size);
403 start_addr = mem->start_addr + mem->memory_size;
405 qemu_free(d.dirty_bitmap);
407 return ret;
410 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
412 int ret = -ENOSYS;
413 KVMState *s = kvm_state;
415 if (s->coalesced_mmio) {
416 struct kvm_coalesced_mmio_zone zone;
418 zone.addr = start;
419 zone.size = size;
421 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
424 return ret;
427 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
429 int ret = -ENOSYS;
430 KVMState *s = kvm_state;
432 if (s->coalesced_mmio) {
433 struct kvm_coalesced_mmio_zone zone;
435 zone.addr = start;
436 zone.size = size;
438 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
441 return ret;
444 int kvm_check_extension(KVMState *s, unsigned int extension)
446 int ret;
448 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
449 if (ret < 0) {
450 ret = 0;
453 return ret;
456 static int kvm_check_many_ioeventfds(void)
458 /* Userspace can use ioeventfd for io notification. This requires a host
459 * that supports eventfd(2) and an I/O thread; since eventfd does not
460 * support SIGIO it cannot interrupt the vcpu.
462 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
463 * can avoid creating too many ioeventfds.
465 #if defined(CONFIG_EVENTFD) /* && defined(CONFIG_IOTHREAD) */
466 int ioeventfds[7];
467 int i, ret = 0;
468 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
469 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
470 if (ioeventfds[i] < 0) {
471 break;
473 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
474 if (ret < 0) {
475 close(ioeventfds[i]);
476 break;
480 /* Decide whether many devices are supported or not */
481 ret = i == ARRAY_SIZE(ioeventfds);
483 while (i-- > 0) {
484 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
485 close(ioeventfds[i]);
487 return ret;
488 #else
489 return 0;
490 #endif
493 #ifdef OBSOLETE_KVM_IMPL
494 static const KVMCapabilityInfo *
495 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
497 while (list->name) {
498 if (!kvm_check_extension(s, list->value)) {
499 return list;
501 list++;
503 return NULL;
505 #endif
507 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
508 ram_addr_t phys_offset)
510 KVMState *s = kvm_state;
511 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
512 KVMSlot *mem, old;
513 int err;
515 /* kvm works in page size chunks, but the function may be called
516 with sub-page size and unaligned start address. */
517 size = TARGET_PAGE_ALIGN(size);
518 start_addr = TARGET_PAGE_ALIGN(start_addr);
520 /* KVM does not support read-only slots */
521 phys_offset &= ~IO_MEM_ROM;
523 while (1) {
524 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
525 if (!mem) {
526 break;
529 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
530 (start_addr + size <= mem->start_addr + mem->memory_size) &&
531 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
532 /* The new slot fits into the existing one and comes with
533 * identical parameters - nothing to be done. */
534 return;
537 old = *mem;
539 /* unregister the overlapping slot */
540 mem->memory_size = 0;
541 err = kvm_set_user_memory_region(s, mem);
542 if (err) {
543 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
544 __func__, strerror(-err));
545 abort();
548 /* Workaround for older KVM versions: we can't join slots, even not by
549 * unregistering the previous ones and then registering the larger
550 * slot. We have to maintain the existing fragmentation. Sigh.
552 * This workaround assumes that the new slot starts at the same
553 * address as the first existing one. If not or if some overlapping
554 * slot comes around later, we will fail (not seen in practice so far)
555 * - and actually require a recent KVM version. */
556 if (s->broken_set_mem_region &&
557 old.start_addr == start_addr && old.memory_size < size &&
558 flags < IO_MEM_UNASSIGNED) {
559 mem = kvm_alloc_slot(s);
560 mem->memory_size = old.memory_size;
561 mem->start_addr = old.start_addr;
562 mem->phys_offset = old.phys_offset;
563 mem->flags = 0;
565 err = kvm_set_user_memory_region(s, mem);
566 if (err) {
567 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
568 strerror(-err));
569 abort();
572 start_addr += old.memory_size;
573 phys_offset += old.memory_size;
574 size -= old.memory_size;
575 continue;
578 /* register prefix slot */
579 if (old.start_addr < start_addr) {
580 mem = kvm_alloc_slot(s);
581 mem->memory_size = start_addr - old.start_addr;
582 mem->start_addr = old.start_addr;
583 mem->phys_offset = old.phys_offset;
584 mem->flags = 0;
586 err = kvm_set_user_memory_region(s, mem);
587 if (err) {
588 fprintf(stderr, "%s: error registering prefix slot: %s\n",
589 __func__, strerror(-err));
590 abort();
594 /* register suffix slot */
595 if (old.start_addr + old.memory_size > start_addr + size) {
596 ram_addr_t size_delta;
598 mem = kvm_alloc_slot(s);
599 mem->start_addr = start_addr + size;
600 size_delta = mem->start_addr - old.start_addr;
601 mem->memory_size = old.memory_size - size_delta;
602 mem->phys_offset = old.phys_offset + size_delta;
603 mem->flags = 0;
605 err = kvm_set_user_memory_region(s, mem);
606 if (err) {
607 fprintf(stderr, "%s: error registering suffix slot: %s\n",
608 __func__, strerror(-err));
609 abort();
614 /* in case the KVM bug workaround already "consumed" the new slot */
615 if (!size) {
616 return;
618 /* KVM does not need to know about this memory */
619 if (flags >= IO_MEM_UNASSIGNED) {
620 return;
622 mem = kvm_alloc_slot(s);
623 mem->memory_size = size;
624 mem->start_addr = start_addr;
625 mem->phys_offset = phys_offset;
626 mem->flags = 0;
628 err = kvm_set_user_memory_region(s, mem);
629 if (err) {
630 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
631 strerror(-err));
632 abort();
636 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
637 target_phys_addr_t start_addr,
638 ram_addr_t size, ram_addr_t phys_offset)
640 kvm_set_phys_mem(start_addr, size, phys_offset);
643 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
644 target_phys_addr_t start_addr,
645 target_phys_addr_t end_addr)
647 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
650 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
651 int enable)
653 return kvm_set_migration_log(enable);
656 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
657 .set_memory = kvm_client_set_memory,
658 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
659 .migration_log = kvm_client_migration_log,
660 .log_start = kvm_log_start,
661 .log_stop = kvm_log_stop,
664 void kvm_cpu_register_phys_memory_client(void)
666 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
669 #ifdef OBSOLETE_KVM_IMPL
671 int kvm_init(void)
673 static const char upgrade_note[] =
674 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
675 "(see http://sourceforge.net/projects/kvm).\n";
676 KVMState *s;
677 const KVMCapabilityInfo *missing_cap;
678 int ret;
679 int i;
681 s = qemu_mallocz(sizeof(KVMState));
683 #ifdef KVM_CAP_SET_GUEST_DEBUG
684 QTAILQ_INIT(&s->kvm_sw_breakpoints);
685 #endif
686 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
687 s->slots[i].slot = i;
689 s->vmfd = -1;
690 s->fd = qemu_open("/dev/kvm", O_RDWR);
691 if (s->fd == -1) {
692 fprintf(stderr, "Could not access KVM kernel module: %m\n");
693 ret = -errno;
694 goto err;
697 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
698 if (ret < KVM_API_VERSION) {
699 if (ret > 0) {
700 ret = -EINVAL;
702 fprintf(stderr, "kvm version too old\n");
703 goto err;
706 if (ret > KVM_API_VERSION) {
707 ret = -EINVAL;
708 fprintf(stderr, "kvm version not supported\n");
709 goto err;
712 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
713 if (s->vmfd < 0) {
714 #ifdef TARGET_S390X
715 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
716 "your host kernel command line\n");
717 #endif
718 goto err;
721 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
722 if (!missing_cap) {
723 missing_cap =
724 kvm_check_extension_list(s, kvm_arch_required_capabilities);
726 if (missing_cap) {
727 ret = -EINVAL;
728 fprintf(stderr, "kvm does not support %s\n%s",
729 missing_cap->name, upgrade_note);
730 goto err;
733 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
735 s->broken_set_mem_region = 1;
736 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
737 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
738 if (ret > 0) {
739 s->broken_set_mem_region = 0;
741 #endif
743 s->vcpu_events = 0;
744 #ifdef KVM_CAP_VCPU_EVENTS
745 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
746 #endif
748 s->robust_singlestep = 0;
749 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
750 s->robust_singlestep =
751 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
752 #endif
754 s->debugregs = 0;
755 #ifdef KVM_CAP_DEBUGREGS
756 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
757 #endif
759 s->xsave = 0;
760 #ifdef KVM_CAP_XSAVE
761 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
762 #endif
764 s->xcrs = 0;
765 #ifdef KVM_CAP_XCRS
766 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
767 #endif
769 ret = kvm_arch_init(s);
770 if (ret < 0) {
771 goto err;
774 kvm_state = s;
775 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
777 s->many_ioeventfds = kvm_check_many_ioeventfds();
779 return 0;
781 err:
782 if (s) {
783 if (s->vmfd != -1) {
784 close(s->vmfd);
786 if (s->fd != -1) {
787 close(s->fd);
790 qemu_free(s);
792 return ret;
794 #endif
796 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
797 uint32_t count)
799 int i;
800 uint8_t *ptr = data;
802 for (i = 0; i < count; i++) {
803 if (direction == KVM_EXIT_IO_IN) {
804 switch (size) {
805 case 1:
806 stb_p(ptr, cpu_inb(port));
807 break;
808 case 2:
809 stw_p(ptr, cpu_inw(port));
810 break;
811 case 4:
812 stl_p(ptr, cpu_inl(port));
813 break;
815 } else {
816 switch (size) {
817 case 1:
818 cpu_outb(port, ldub_p(ptr));
819 break;
820 case 2:
821 cpu_outw(port, lduw_p(ptr));
822 break;
823 case 4:
824 cpu_outl(port, ldl_p(ptr));
825 break;
829 ptr += size;
833 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
834 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
836 fprintf(stderr, "KVM internal error.");
837 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
838 int i;
840 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
841 for (i = 0; i < run->internal.ndata; ++i) {
842 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
843 i, (uint64_t)run->internal.data[i]);
845 } else {
846 fprintf(stderr, "\n");
848 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
849 fprintf(stderr, "emulation failure\n");
850 if (!kvm_arch_stop_on_emulation_error(env)) {
851 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
852 return 0;
855 /* FIXME: Should trigger a qmp message to let management know
856 * something went wrong.
858 return -1;
860 #endif
862 void kvm_flush_coalesced_mmio_buffer(void)
864 KVMState *s = kvm_state;
865 if (s->coalesced_mmio_ring) {
866 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
867 while (ring->first != ring->last) {
868 struct kvm_coalesced_mmio *ent;
870 ent = &ring->coalesced_mmio[ring->first];
872 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
873 smp_wmb();
874 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
879 #ifdef OBSOLETE_KVM_IMPL
881 static void do_kvm_cpu_synchronize_state(void *_env)
883 CPUState *env = _env;
885 if (!env->kvm_vcpu_dirty) {
886 kvm_arch_get_registers(env);
887 env->kvm_vcpu_dirty = 1;
891 void kvm_cpu_synchronize_state(CPUState *env)
893 if (!env->kvm_vcpu_dirty) {
894 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
898 void kvm_cpu_synchronize_post_reset(CPUState *env)
900 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
901 env->kvm_vcpu_dirty = 0;
904 void kvm_cpu_synchronize_post_init(CPUState *env)
906 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
907 env->kvm_vcpu_dirty = 0;
910 int kvm_cpu_exec(CPUState *env)
912 struct kvm_run *run = env->kvm_run;
913 int ret;
915 DPRINTF("kvm_cpu_exec()\n");
917 if (kvm_arch_process_irqchip_events(env)) {
918 env->exit_request = 0;
919 return EXCP_HLT;
922 cpu_single_env = env;
924 do {
925 if (env->kvm_vcpu_dirty) {
926 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
927 env->kvm_vcpu_dirty = 0;
930 kvm_arch_pre_run(env, run);
931 if (env->exit_request) {
932 DPRINTF("interrupt exit requested\n");
934 * KVM requires us to reenter the kernel after IO exits to complete
935 * instruction emulation. This self-signal will ensure that we
936 * leave ASAP again.
938 qemu_cpu_kick_self();
940 cpu_single_env = NULL;
941 qemu_mutex_unlock_iothread();
943 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
945 qemu_mutex_lock_iothread();
946 cpu_single_env = env;
947 kvm_arch_post_run(env, run);
949 kvm_flush_coalesced_mmio_buffer();
951 if (ret == -EINTR || ret == -EAGAIN) {
952 DPRINTF("io window exit\n");
953 ret = 0;
954 break;
957 if (ret < 0) {
958 DPRINTF("kvm run failed %s\n", strerror(-ret));
959 abort();
962 ret = 0; /* exit loop */
963 switch (run->exit_reason) {
964 case KVM_EXIT_IO:
965 DPRINTF("handle_io\n");
966 kvm_handle_io(run->io.port,
967 (uint8_t *)run + run->io.data_offset,
968 run->io.direction,
969 run->io.size,
970 run->io.count);
971 ret = 1;
972 break;
973 case KVM_EXIT_MMIO:
974 DPRINTF("handle_mmio\n");
975 cpu_physical_memory_rw(run->mmio.phys_addr,
976 run->mmio.data,
977 run->mmio.len,
978 run->mmio.is_write);
979 ret = 1;
980 break;
981 case KVM_EXIT_IRQ_WINDOW_OPEN:
982 DPRINTF("irq_window_open\n");
983 break;
984 case KVM_EXIT_SHUTDOWN:
985 DPRINTF("shutdown\n");
986 qemu_system_reset_request();
987 break;
988 case KVM_EXIT_UNKNOWN:
989 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
990 (uint64_t)run->hw.hardware_exit_reason);
991 ret = -1;
992 break;
993 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
994 case KVM_EXIT_INTERNAL_ERROR:
995 ret = kvm_handle_internal_error(env, run);
996 break;
997 #endif
998 case KVM_EXIT_DEBUG:
999 DPRINTF("kvm_exit_debug\n");
1000 #ifdef KVM_CAP_SET_GUEST_DEBUG
1001 if (kvm_arch_debug(&run->debug.arch)) {
1002 ret = EXCP_DEBUG;
1003 goto out;
1005 /* re-enter, this exception was guest-internal */
1006 ret = 1;
1007 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1008 break;
1009 default:
1010 DPRINTF("kvm_arch_handle_exit\n");
1011 ret = kvm_arch_handle_exit(env, run);
1012 break;
1014 } while (ret > 0);
1016 if (ret < 0) {
1017 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1018 vm_stop(VMSTOP_PANIC);
1020 ret = EXCP_INTERRUPT;
1022 out:
1023 env->exit_request = 0;
1024 cpu_single_env = NULL;
1025 return ret;
1028 #endif
1029 int kvm_ioctl(KVMState *s, int type, ...)
1031 int ret;
1032 void *arg;
1033 va_list ap;
1035 va_start(ap, type);
1036 arg = va_arg(ap, void *);
1037 va_end(ap);
1039 ret = ioctl(s->fd, type, arg);
1040 if (ret == -1) {
1041 ret = -errno;
1043 return ret;
1046 int kvm_vm_ioctl(KVMState *s, int type, ...)
1048 int ret;
1049 void *arg;
1050 va_list ap;
1052 va_start(ap, type);
1053 arg = va_arg(ap, void *);
1054 va_end(ap);
1056 ret = ioctl(s->vmfd, type, arg);
1057 if (ret == -1) {
1058 ret = -errno;
1060 return ret;
1063 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1065 int ret;
1066 void *arg;
1067 va_list ap;
1069 va_start(ap, type);
1070 arg = va_arg(ap, void *);
1071 va_end(ap);
1073 ret = ioctl(env->kvm_fd, type, arg);
1074 if (ret == -1) {
1075 ret = -errno;
1077 return ret;
1080 int kvm_has_sync_mmu(void)
1082 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1085 int kvm_has_vcpu_events(void)
1087 return kvm_state->vcpu_events;
1090 int kvm_has_robust_singlestep(void)
1092 return kvm_state->robust_singlestep;
1095 int kvm_has_debugregs(void)
1097 return kvm_state->debugregs;
1100 int kvm_has_xsave(void)
1102 return kvm_state->xsave;
1105 int kvm_has_xcrs(void)
1107 return kvm_state->xcrs;
1110 int kvm_has_many_ioeventfds(void)
1112 if (!kvm_enabled()) {
1113 return 0;
1115 return kvm_state->many_ioeventfds;
1118 void kvm_setup_guest_memory(void *start, size_t size)
1120 if (!kvm_has_sync_mmu()) {
1121 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1123 if (ret) {
1124 perror("qemu_madvise");
1125 fprintf(stderr,
1126 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1127 exit(1);
1132 #ifdef KVM_CAP_SET_GUEST_DEBUG
1133 #ifndef OBSOLETE_KVM_IMPL
1134 #define run_on_cpu on_vcpu
1135 #endif /* !OBSOLETE_KVM_IMPL */
1137 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1138 target_ulong pc)
1140 struct kvm_sw_breakpoint *bp;
1142 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1143 if (bp->pc == pc) {
1144 return bp;
1147 return NULL;
1150 int kvm_sw_breakpoints_active(CPUState *env)
1152 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1155 struct kvm_set_guest_debug_data {
1156 struct kvm_guest_debug dbg;
1157 CPUState *env;
1158 int err;
1161 static void kvm_invoke_set_guest_debug(void *data)
1163 struct kvm_set_guest_debug_data *dbg_data = data;
1164 CPUState *env = dbg_data->env;
1166 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1169 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1171 struct kvm_set_guest_debug_data data;
1173 data.dbg.control = reinject_trap;
1175 if (env->singlestep_enabled) {
1176 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1178 kvm_arch_update_guest_debug(env, &data.dbg);
1179 data.env = env;
1181 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1182 return data.err;
1185 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1186 target_ulong len, int type)
1188 struct kvm_sw_breakpoint *bp;
1189 CPUState *env;
1190 int err;
1192 if (type == GDB_BREAKPOINT_SW) {
1193 bp = kvm_find_sw_breakpoint(current_env, addr);
1194 if (bp) {
1195 bp->use_count++;
1196 return 0;
1199 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1200 if (!bp) {
1201 return -ENOMEM;
1204 bp->pc = addr;
1205 bp->use_count = 1;
1206 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1207 if (err) {
1208 free(bp);
1209 return err;
1212 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1213 bp, entry);
1214 } else {
1215 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1216 if (err) {
1217 return err;
1221 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1222 err = kvm_update_guest_debug(env, 0);
1223 if (err) {
1224 return err;
1227 return 0;
1230 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1231 target_ulong len, int type)
1233 struct kvm_sw_breakpoint *bp;
1234 CPUState *env;
1235 int err;
1237 if (type == GDB_BREAKPOINT_SW) {
1238 bp = kvm_find_sw_breakpoint(current_env, addr);
1239 if (!bp) {
1240 return -ENOENT;
1243 if (bp->use_count > 1) {
1244 bp->use_count--;
1245 return 0;
1248 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1249 if (err) {
1250 return err;
1253 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1254 qemu_free(bp);
1255 } else {
1256 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1257 if (err) {
1258 return err;
1262 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1263 err = kvm_update_guest_debug(env, 0);
1264 if (err) {
1265 return err;
1268 return 0;
1271 void kvm_remove_all_breakpoints(CPUState *current_env)
1273 struct kvm_sw_breakpoint *bp, *next;
1274 KVMState *s = current_env->kvm_state;
1275 CPUState *env;
1277 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1278 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1279 /* Try harder to find a CPU that currently sees the breakpoint. */
1280 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1281 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1282 break;
1287 kvm_arch_remove_all_hw_breakpoints();
1289 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1290 kvm_update_guest_debug(env, 0);
1294 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1296 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1298 return -EINVAL;
1301 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1302 target_ulong len, int type)
1304 return -EINVAL;
1307 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1308 target_ulong len, int type)
1310 return -EINVAL;
1313 void kvm_remove_all_breakpoints(CPUState *current_env)
1316 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1318 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1320 struct kvm_signal_mask *sigmask;
1321 int r;
1323 if (!sigset) {
1324 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1327 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1329 sigmask->len = 8;
1330 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1331 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1332 free(sigmask);
1334 return r;
1337 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1339 #ifdef KVM_IOEVENTFD
1340 int ret;
1341 struct kvm_ioeventfd iofd;
1343 iofd.datamatch = val;
1344 iofd.addr = addr;
1345 iofd.len = 4;
1346 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1347 iofd.fd = fd;
1349 if (!kvm_enabled()) {
1350 return -ENOSYS;
1353 if (!assign) {
1354 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1357 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1359 if (ret < 0) {
1360 return -errno;
1363 return 0;
1364 #else
1365 return -ENOSYS;
1366 #endif
1369 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1371 #ifdef KVM_IOEVENTFD
1372 struct kvm_ioeventfd kick = {
1373 .datamatch = val,
1374 .addr = addr,
1375 .len = 2,
1376 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1377 .fd = fd,
1379 int r;
1380 if (!kvm_enabled()) {
1381 return -ENOSYS;
1383 if (!assign) {
1384 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1386 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1387 if (r < 0) {
1388 return r;
1390 return 0;
1391 #else
1392 return -ENOSYS;
1393 #endif
1396 #if defined(KVM_IRQFD)
1397 int kvm_set_irqfd(int gsi, int fd, bool assigned)
1399 struct kvm_irqfd irqfd = {
1400 .fd = fd,
1401 .gsi = gsi,
1402 .flags = assigned ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1404 int r;
1405 if (!kvm_enabled() || !kvm_irqchip_in_kernel())
1406 return -ENOSYS;
1408 r = kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
1409 if (r < 0)
1410 return r;
1411 return 0;
1413 #endif
1415 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1417 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1420 int kvm_on_sigbus(int code, void *addr)
1422 return kvm_arch_on_sigbus(code, addr);
1425 #undef PAGE_SIZE
1426 #include "qemu-kvm.c"