Merge commit 'c0532a76b407af4b276dc5a62d8178db59857ea6' into upstream-merge
[qemu/qemu-dev-zwu.git] / target-i386 / kvm.c
blob211a9b2abb418fac884a7bf3e385c19fb558705e
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "hw/apic.h"
29 #include "ioport.h"
30 #include "kvm_x86.h"
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 #ifdef KVM_CAP_EXT_CPUID
58 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
60 struct kvm_cpuid2 *cpuid;
61 int r, size;
63 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65 cpuid->nent = max;
66 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67 if (r == 0 && cpuid->nent >= max) {
68 r = -E2BIG;
70 if (r < 0) {
71 if (r == -E2BIG) {
72 qemu_free(cpuid);
73 return NULL;
74 } else {
75 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76 strerror(-r));
77 exit(1);
80 return cpuid;
83 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84 uint32_t index, int reg)
86 struct kvm_cpuid2 *cpuid;
87 int i, max;
88 uint32_t ret = 0;
89 uint32_t cpuid_1_edx;
91 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92 return -1U;
95 max = 1;
96 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97 max *= 2;
100 for (i = 0; i < cpuid->nent; ++i) {
101 if (cpuid->entries[i].function == function &&
102 cpuid->entries[i].index == index) {
103 switch (reg) {
104 case R_EAX:
105 ret = cpuid->entries[i].eax;
106 break;
107 case R_EBX:
108 ret = cpuid->entries[i].ebx;
109 break;
110 case R_ECX:
111 ret = cpuid->entries[i].ecx;
112 break;
113 case R_EDX:
114 ret = cpuid->entries[i].edx;
115 switch (function) {
116 case 1:
117 /* KVM before 2.6.30 misreports the following features */
118 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119 break;
120 case 0x80000001:
121 /* On Intel, kvm returns cpuid according to the Intel spec,
122 * so add missing bits according to the AMD spec:
124 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125 ret |= cpuid_1_edx & 0x183f7ff;
126 break;
128 break;
133 qemu_free(cpuid);
135 return ret;
138 #else
140 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141 uint32_t index, int reg)
143 return -1U;
146 #endif
148 #ifdef CONFIG_KVM_PARA
149 struct kvm_para_features {
150 int cap;
151 int feature;
152 } para_features[] = {
153 #ifdef KVM_CAP_CLOCKSOURCE
154 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155 #endif
156 #ifdef KVM_CAP_NOP_IO_DELAY
157 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158 #endif
159 #ifdef KVM_CAP_PV_MMU
160 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161 #endif
162 { -1, -1 }
165 static int get_para_features(CPUState *env)
167 int i, features = 0;
169 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171 features |= (1 << para_features[i].feature);
174 return features;
176 #endif
178 #ifdef KVM_CAP_MCE
179 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180 int *max_banks)
182 int r;
184 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185 if (r > 0) {
186 *max_banks = r;
187 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
189 return -ENOSYS;
192 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
194 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
197 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
199 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
202 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
204 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 int r;
207 kmsrs->nmsrs = n;
208 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211 free(kmsrs);
212 return r;
215 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216 static int kvm_mce_in_exception(CPUState *env)
218 struct kvm_msr_entry msr_mcg_status = {
219 .index = MSR_MCG_STATUS,
221 int r;
223 r = kvm_get_msr(env, &msr_mcg_status, 1);
224 if (r == -1 || r == 0) {
225 return -1;
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
230 struct kvm_x86_mce_data
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
237 static void kvm_do_inject_x86_mce(void *_data)
239 struct kvm_x86_mce_data *data = _data;
240 int r;
242 /* If there is an MCE excpetion being processed, ignore this SRAO MCE */
243 r = kvm_mce_in_exception(data->env);
244 if (r == -1)
245 fprintf(stderr, "Failed to get MCE status\n");
246 else if (r && !(data->mce->status & MCI_STATUS_AR))
247 return;
249 r = kvm_set_mce(data->env, data->mce);
250 if (r < 0) {
251 perror("kvm_set_mce FAILED");
252 if (data->abort_on_error) {
253 abort();
257 #endif
259 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
260 uint64_t mcg_status, uint64_t addr, uint64_t misc,
261 int abort_on_error)
263 #ifdef KVM_CAP_MCE
264 struct kvm_x86_mce mce = {
265 .bank = bank,
266 .status = status,
267 .mcg_status = mcg_status,
268 .addr = addr,
269 .misc = misc,
271 struct kvm_x86_mce_data data = {
272 .env = cenv,
273 .mce = &mce,
276 if (!cenv->mcg_cap) {
277 fprintf(stderr, "MCE support is not enabled!\n");
278 return;
281 on_vcpu(cenv, kvm_do_inject_x86_mce, &data);
282 #else
283 if (abort_on_error)
284 abort();
285 #endif
288 static int _kvm_arch_init_vcpu(CPUState *env);
290 int kvm_arch_init_vcpu(CPUState *env)
292 int r;
293 struct {
294 struct kvm_cpuid2 cpuid;
295 struct kvm_cpuid_entry2 entries[100];
296 } __attribute__((packed)) cpuid_data;
297 uint32_t limit, i, j, cpuid_i;
298 uint32_t unused;
299 struct kvm_cpuid_entry2 *c;
300 #ifdef KVM_CPUID_SIGNATURE
301 uint32_t signature[3];
302 #endif
304 r = _kvm_arch_init_vcpu(env);
305 if (r < 0) {
306 return r;
309 #ifdef OBSOLETE_KVM_IMPL
311 env->mp_state = KVM_MP_STATE_RUNNABLE;
313 #endif
315 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
317 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
318 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
319 env->cpuid_ext_features |= i;
321 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
322 0, R_EDX);
323 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
324 0, R_ECX);
325 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
326 0, R_EDX);
329 cpuid_i = 0;
331 #ifdef CONFIG_KVM_PARA
332 /* Paravirtualization CPUIDs */
333 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
334 c = &cpuid_data.entries[cpuid_i++];
335 memset(c, 0, sizeof(*c));
336 c->function = KVM_CPUID_SIGNATURE;
337 c->eax = 0;
338 c->ebx = signature[0];
339 c->ecx = signature[1];
340 c->edx = signature[2];
342 c = &cpuid_data.entries[cpuid_i++];
343 memset(c, 0, sizeof(*c));
344 c->function = KVM_CPUID_FEATURES;
345 c->eax = env->cpuid_kvm_features & get_para_features(env);
346 #endif
348 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
350 for (i = 0; i <= limit; i++) {
351 c = &cpuid_data.entries[cpuid_i++];
353 switch (i) {
354 case 2: {
355 /* Keep reading function 2 till all the input is received */
356 int times;
358 c->function = i;
359 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
360 KVM_CPUID_FLAG_STATE_READ_NEXT;
361 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
362 times = c->eax & 0xff;
364 for (j = 1; j < times; ++j) {
365 c = &cpuid_data.entries[cpuid_i++];
366 c->function = i;
367 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
368 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
370 break;
372 case 4:
373 case 0xb:
374 case 0xd:
375 for (j = 0; ; j++) {
376 c->function = i;
377 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
378 c->index = j;
379 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
381 if (i == 4 && c->eax == 0)
382 break;
383 if (i == 0xb && !(c->ecx & 0xff00))
384 break;
385 if (i == 0xd && c->eax == 0)
386 break;
388 c = &cpuid_data.entries[cpuid_i++];
390 break;
391 default:
392 c->function = i;
393 c->flags = 0;
394 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
395 break;
398 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
400 for (i = 0x80000000; i <= limit; i++) {
401 c = &cpuid_data.entries[cpuid_i++];
403 c->function = i;
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 cpuid_data.cpuid.nent = cpuid_i;
410 #ifdef KVM_CAP_MCE
411 if (((env->cpuid_version >> 8)&0xF) >= 6
412 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
413 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
414 uint64_t mcg_cap;
415 int banks;
417 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
418 perror("kvm_get_mce_cap_supported FAILED");
419 else {
420 if (banks > MCE_BANKS_DEF)
421 banks = MCE_BANKS_DEF;
422 mcg_cap &= MCE_CAP_DEF;
423 mcg_cap |= banks;
424 if (kvm_setup_mce(env, &mcg_cap))
425 perror("kvm_setup_mce FAILED");
426 else
427 env->mcg_cap = mcg_cap;
430 #endif
432 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
435 void kvm_arch_reset_vcpu(CPUState *env)
437 env->exception_injected = -1;
438 env->interrupt_injected = -1;
439 env->nmi_injected = 0;
440 env->nmi_pending = 0;
441 /* Legal xcr0 for loading */
442 env->xcr0 = 1;
443 if (kvm_irqchip_in_kernel()) {
444 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
445 KVM_MP_STATE_UNINITIALIZED;
446 } else {
447 env->mp_state = KVM_MP_STATE_RUNNABLE;
450 #ifdef OBSOLETE_KVM_IMPL
452 static int kvm_has_msr_star(CPUState *env)
454 static int has_msr_star;
455 int ret;
457 /* first time */
458 if (has_msr_star == 0) {
459 struct kvm_msr_list msr_list, *kvm_msr_list;
461 has_msr_star = -1;
463 /* Obtain MSR list from KVM. These are the MSRs that we must
464 * save/restore */
465 msr_list.nmsrs = 0;
466 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
467 if (ret < 0 && ret != -E2BIG) {
468 return 0;
470 /* Old kernel modules had a bug and could write beyond the provided
471 memory. Allocate at least a safe amount of 1K. */
472 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
473 msr_list.nmsrs *
474 sizeof(msr_list.indices[0])));
476 kvm_msr_list->nmsrs = msr_list.nmsrs;
477 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
478 if (ret >= 0) {
479 int i;
481 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
482 if (kvm_msr_list->indices[i] == MSR_STAR) {
483 has_msr_star = 1;
484 break;
489 free(kvm_msr_list);
492 if (has_msr_star == 1)
493 return 1;
494 return 0;
497 static int kvm_init_identity_map_page(KVMState *s)
499 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
500 int ret;
501 uint64_t addr = 0xfffbc000;
503 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
504 return 0;
507 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
508 if (ret < 0) {
509 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
510 return ret;
512 #endif
513 return 0;
516 int kvm_arch_init(KVMState *s, int smp_cpus)
518 int ret;
520 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
521 * directly. In order to use vm86 mode, a TSS is needed. Since this
522 * must be part of guest physical memory, we need to allocate it. Older
523 * versions of KVM just assumed that it would be at the end of physical
524 * memory but that doesn't work with more than 4GB of memory. We simply
525 * refuse to work with those older versions of KVM. */
526 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
527 if (ret <= 0) {
528 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
529 return ret;
532 /* this address is 3 pages before the bios, and the bios should present
533 * as unavaible memory. FIXME, need to ensure the e820 map deals with
534 * this?
537 * Tell fw_cfg to notify the BIOS to reserve the range.
539 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
540 perror("e820_add_entry() table is full");
541 exit(1);
543 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
544 if (ret < 0) {
545 return ret;
548 return kvm_init_identity_map_page(s);
551 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553 lhs->selector = rhs->selector;
554 lhs->base = rhs->base;
555 lhs->limit = rhs->limit;
556 lhs->type = 3;
557 lhs->present = 1;
558 lhs->dpl = 3;
559 lhs->db = 0;
560 lhs->s = 1;
561 lhs->l = 0;
562 lhs->g = 0;
563 lhs->avl = 0;
564 lhs->unusable = 0;
567 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
569 unsigned flags = rhs->flags;
570 lhs->selector = rhs->selector;
571 lhs->base = rhs->base;
572 lhs->limit = rhs->limit;
573 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
574 lhs->present = (flags & DESC_P_MASK) != 0;
575 lhs->dpl = rhs->selector & 3;
576 lhs->db = (flags >> DESC_B_SHIFT) & 1;
577 lhs->s = (flags & DESC_S_MASK) != 0;
578 lhs->l = (flags >> DESC_L_SHIFT) & 1;
579 lhs->g = (flags & DESC_G_MASK) != 0;
580 lhs->avl = (flags & DESC_AVL_MASK) != 0;
581 lhs->unusable = 0;
584 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
586 lhs->selector = rhs->selector;
587 lhs->base = rhs->base;
588 lhs->limit = rhs->limit;
589 lhs->flags =
590 (rhs->type << DESC_TYPE_SHIFT)
591 | (rhs->present * DESC_P_MASK)
592 | (rhs->dpl << DESC_DPL_SHIFT)
593 | (rhs->db << DESC_B_SHIFT)
594 | (rhs->s * DESC_S_MASK)
595 | (rhs->l << DESC_L_SHIFT)
596 | (rhs->g * DESC_G_MASK)
597 | (rhs->avl * DESC_AVL_MASK);
600 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
602 if (set)
603 *kvm_reg = *qemu_reg;
604 else
605 *qemu_reg = *kvm_reg;
608 static int kvm_getput_regs(CPUState *env, int set)
610 struct kvm_regs regs;
611 int ret = 0;
613 if (!set) {
614 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
615 if (ret < 0)
616 return ret;
619 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
620 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
621 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
622 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
623 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
624 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
625 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
626 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
627 #ifdef TARGET_X86_64
628 kvm_getput_reg(&regs.r8, &env->regs[8], set);
629 kvm_getput_reg(&regs.r9, &env->regs[9], set);
630 kvm_getput_reg(&regs.r10, &env->regs[10], set);
631 kvm_getput_reg(&regs.r11, &env->regs[11], set);
632 kvm_getput_reg(&regs.r12, &env->regs[12], set);
633 kvm_getput_reg(&regs.r13, &env->regs[13], set);
634 kvm_getput_reg(&regs.r14, &env->regs[14], set);
635 kvm_getput_reg(&regs.r15, &env->regs[15], set);
636 #endif
638 kvm_getput_reg(&regs.rflags, &env->eflags, set);
639 kvm_getput_reg(&regs.rip, &env->eip, set);
641 if (set)
642 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
644 return ret;
647 static int kvm_put_fpu(CPUState *env)
649 struct kvm_fpu fpu;
650 int i;
652 memset(&fpu, 0, sizeof fpu);
653 fpu.fsw = env->fpus & ~(7 << 11);
654 fpu.fsw |= (env->fpstt & 7) << 11;
655 fpu.fcw = env->fpuc;
656 for (i = 0; i < 8; ++i)
657 fpu.ftwx |= (!env->fptags[i]) << i;
658 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
659 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
660 fpu.mxcsr = env->mxcsr;
662 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
665 #ifdef KVM_CAP_XSAVE
666 #define XSAVE_CWD_RIP 2
667 #define XSAVE_CWD_RDP 4
668 #define XSAVE_MXCSR 6
669 #define XSAVE_ST_SPACE 8
670 #define XSAVE_XMM_SPACE 40
671 #define XSAVE_XSTATE_BV 128
672 #define XSAVE_YMMH_SPACE 144
673 #endif
675 static int kvm_put_xsave(CPUState *env)
677 #ifdef KVM_CAP_XSAVE
678 int i;
679 struct kvm_xsave* xsave;
680 uint16_t cwd, swd, twd, fop;
682 if (!kvm_has_xsave())
683 return kvm_put_fpu(env);
685 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
686 memset(xsave, 0, sizeof(struct kvm_xsave));
687 cwd = swd = twd = fop = 0;
688 swd = env->fpus & ~(7 << 11);
689 swd |= (env->fpstt & 7) << 11;
690 cwd = env->fpuc;
691 for (i = 0; i < 8; ++i)
692 twd |= (!env->fptags[i]) << i;
693 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
694 xsave->region[1] = (uint32_t)(fop << 16) + twd;
695 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
696 sizeof env->fpregs);
697 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
698 sizeof env->xmm_regs);
699 xsave->region[XSAVE_MXCSR] = env->mxcsr;
700 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
701 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
702 sizeof env->ymmh_regs);
703 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
704 #else
705 return kvm_put_fpu(env);
706 #endif
709 static int kvm_put_xcrs(CPUState *env)
711 #ifdef KVM_CAP_XCRS
712 struct kvm_xcrs xcrs;
714 if (!kvm_has_xcrs())
715 return 0;
717 xcrs.nr_xcrs = 1;
718 xcrs.flags = 0;
719 xcrs.xcrs[0].xcr = 0;
720 xcrs.xcrs[0].value = env->xcr0;
721 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
722 #else
723 return 0;
724 #endif
727 static int kvm_put_sregs(CPUState *env)
729 struct kvm_sregs sregs;
731 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
732 if (env->interrupt_injected >= 0) {
733 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
734 (uint64_t)1 << (env->interrupt_injected % 64);
737 if ((env->eflags & VM_MASK)) {
738 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
739 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
740 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
741 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
742 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
743 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
744 } else {
745 set_seg(&sregs.cs, &env->segs[R_CS]);
746 set_seg(&sregs.ds, &env->segs[R_DS]);
747 set_seg(&sregs.es, &env->segs[R_ES]);
748 set_seg(&sregs.fs, &env->segs[R_FS]);
749 set_seg(&sregs.gs, &env->segs[R_GS]);
750 set_seg(&sregs.ss, &env->segs[R_SS]);
752 if (env->cr[0] & CR0_PE_MASK) {
753 /* force ss cpl to cs cpl */
754 sregs.ss.selector = (sregs.ss.selector & ~3) |
755 (sregs.cs.selector & 3);
756 sregs.ss.dpl = sregs.ss.selector & 3;
760 set_seg(&sregs.tr, &env->tr);
761 set_seg(&sregs.ldt, &env->ldt);
763 sregs.idt.limit = env->idt.limit;
764 sregs.idt.base = env->idt.base;
765 sregs.gdt.limit = env->gdt.limit;
766 sregs.gdt.base = env->gdt.base;
768 sregs.cr0 = env->cr[0];
769 sregs.cr2 = env->cr[2];
770 sregs.cr3 = env->cr[3];
771 sregs.cr4 = env->cr[4];
773 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
774 sregs.apic_base = cpu_get_apic_base(env->apic_state);
776 sregs.efer = env->efer;
778 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
781 #endif
783 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
784 uint32_t index, uint64_t value)
786 entry->index = index;
787 entry->data = value;
790 #ifdef OBSOLETE_KVM_IMPL
791 static int kvm_put_msrs(CPUState *env, int level)
793 struct {
794 struct kvm_msrs info;
795 struct kvm_msr_entry entries[100];
796 } msr_data;
797 struct kvm_msr_entry *msrs = msr_data.entries;
798 int n = 0;
800 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
801 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
802 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
803 if (kvm_has_msr_star(env))
804 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
805 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
806 #ifdef TARGET_X86_64
807 /* FIXME if lm capable */
808 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
809 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
810 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
811 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
812 #endif
813 if (level == KVM_PUT_FULL_STATE) {
814 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
815 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
816 env->system_time_msr);
817 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
820 msr_data.info.nmsrs = n;
822 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
827 static int kvm_get_fpu(CPUState *env)
829 struct kvm_fpu fpu;
830 int i, ret;
832 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
833 if (ret < 0)
834 return ret;
836 env->fpstt = (fpu.fsw >> 11) & 7;
837 env->fpus = fpu.fsw;
838 env->fpuc = fpu.fcw;
839 for (i = 0; i < 8; ++i)
840 env->fptags[i] = !((fpu.ftwx >> i) & 1);
841 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
842 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
843 env->mxcsr = fpu.mxcsr;
845 return 0;
848 static int kvm_get_xsave(CPUState *env)
850 #ifdef KVM_CAP_XSAVE
851 struct kvm_xsave* xsave;
852 int ret, i;
853 uint16_t cwd, swd, twd, fop;
855 if (!kvm_has_xsave())
856 return kvm_get_fpu(env);
858 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
859 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
860 if (ret < 0)
861 return ret;
863 cwd = (uint16_t)xsave->region[0];
864 swd = (uint16_t)(xsave->region[0] >> 16);
865 twd = (uint16_t)xsave->region[1];
866 fop = (uint16_t)(xsave->region[1] >> 16);
867 env->fpstt = (swd >> 11) & 7;
868 env->fpus = swd;
869 env->fpuc = cwd;
870 for (i = 0; i < 8; ++i)
871 env->fptags[i] = !((twd >> i) & 1);
872 env->mxcsr = xsave->region[XSAVE_MXCSR];
873 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
874 sizeof env->fpregs);
875 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
876 sizeof env->xmm_regs);
877 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
878 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
879 sizeof env->ymmh_regs);
880 return 0;
881 #else
882 return kvm_get_fpu(env);
883 #endif
886 static int kvm_get_xcrs(CPUState *env)
888 #ifdef KVM_CAP_XCRS
889 int i, ret;
890 struct kvm_xcrs xcrs;
892 if (!kvm_has_xcrs())
893 return 0;
895 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
896 if (ret < 0)
897 return ret;
899 for (i = 0; i < xcrs.nr_xcrs; i++)
900 /* Only support xcr0 now */
901 if (xcrs.xcrs[0].xcr == 0) {
902 env->xcr0 = xcrs.xcrs[0].value;
903 break;
905 return 0;
906 #else
907 return 0;
908 #endif
911 static int kvm_get_sregs(CPUState *env)
913 struct kvm_sregs sregs;
914 uint32_t hflags;
915 int bit, i, ret;
917 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
918 if (ret < 0)
919 return ret;
921 /* There can only be one pending IRQ set in the bitmap at a time, so try
922 to find it and save its number instead (-1 for none). */
923 env->interrupt_injected = -1;
924 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
925 if (sregs.interrupt_bitmap[i]) {
926 bit = ctz64(sregs.interrupt_bitmap[i]);
927 env->interrupt_injected = i * 64 + bit;
928 break;
932 get_seg(&env->segs[R_CS], &sregs.cs);
933 get_seg(&env->segs[R_DS], &sregs.ds);
934 get_seg(&env->segs[R_ES], &sregs.es);
935 get_seg(&env->segs[R_FS], &sregs.fs);
936 get_seg(&env->segs[R_GS], &sregs.gs);
937 get_seg(&env->segs[R_SS], &sregs.ss);
939 get_seg(&env->tr, &sregs.tr);
940 get_seg(&env->ldt, &sregs.ldt);
942 env->idt.limit = sregs.idt.limit;
943 env->idt.base = sregs.idt.base;
944 env->gdt.limit = sregs.gdt.limit;
945 env->gdt.base = sregs.gdt.base;
947 env->cr[0] = sregs.cr0;
948 env->cr[2] = sregs.cr2;
949 env->cr[3] = sregs.cr3;
950 env->cr[4] = sregs.cr4;
952 cpu_set_apic_base(env->apic_state, sregs.apic_base);
954 env->efer = sregs.efer;
955 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
957 #define HFLAG_COPY_MASK ~( \
958 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
959 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
960 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
961 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
965 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
966 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
967 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
968 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
969 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
970 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
971 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
973 if (env->efer & MSR_EFER_LMA) {
974 hflags |= HF_LMA_MASK;
977 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
978 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
979 } else {
980 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
981 (DESC_B_SHIFT - HF_CS32_SHIFT);
982 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
983 (DESC_B_SHIFT - HF_SS32_SHIFT);
984 if (!(env->cr[0] & CR0_PE_MASK) ||
985 (env->eflags & VM_MASK) ||
986 !(hflags & HF_CS32_MASK)) {
987 hflags |= HF_ADDSEG_MASK;
988 } else {
989 hflags |= ((env->segs[R_DS].base |
990 env->segs[R_ES].base |
991 env->segs[R_SS].base) != 0) <<
992 HF_ADDSEG_SHIFT;
995 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
997 return 0;
1000 static int kvm_get_msrs(CPUState *env)
1002 struct {
1003 struct kvm_msrs info;
1004 struct kvm_msr_entry entries[100];
1005 } msr_data;
1006 struct kvm_msr_entry *msrs = msr_data.entries;
1007 int ret, i, n;
1009 n = 0;
1010 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1011 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1012 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1013 if (kvm_has_msr_star(env))
1014 msrs[n++].index = MSR_STAR;
1015 msrs[n++].index = MSR_IA32_TSC;
1016 msrs[n++].index = MSR_VM_HSAVE_PA;
1017 #ifdef TARGET_X86_64
1018 /* FIXME lm_capable_kernel */
1019 msrs[n++].index = MSR_CSTAR;
1020 msrs[n++].index = MSR_KERNELGSBASE;
1021 msrs[n++].index = MSR_FMASK;
1022 msrs[n++].index = MSR_LSTAR;
1023 #endif
1024 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1025 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1027 msr_data.info.nmsrs = n;
1028 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1029 if (ret < 0)
1030 return ret;
1032 for (i = 0; i < ret; i++) {
1033 switch (msrs[i].index) {
1034 case MSR_IA32_SYSENTER_CS:
1035 env->sysenter_cs = msrs[i].data;
1036 break;
1037 case MSR_IA32_SYSENTER_ESP:
1038 env->sysenter_esp = msrs[i].data;
1039 break;
1040 case MSR_IA32_SYSENTER_EIP:
1041 env->sysenter_eip = msrs[i].data;
1042 break;
1043 case MSR_STAR:
1044 env->star = msrs[i].data;
1045 break;
1046 #ifdef TARGET_X86_64
1047 case MSR_CSTAR:
1048 env->cstar = msrs[i].data;
1049 break;
1050 case MSR_KERNELGSBASE:
1051 env->kernelgsbase = msrs[i].data;
1052 break;
1053 case MSR_FMASK:
1054 env->fmask = msrs[i].data;
1055 break;
1056 case MSR_LSTAR:
1057 env->lstar = msrs[i].data;
1058 break;
1059 #endif
1060 case MSR_IA32_TSC:
1061 env->tsc = msrs[i].data;
1062 break;
1063 case MSR_KVM_SYSTEM_TIME:
1064 env->system_time_msr = msrs[i].data;
1065 break;
1066 case MSR_KVM_WALL_CLOCK:
1067 env->wall_clock_msr = msrs[i].data;
1068 break;
1069 case MSR_VM_HSAVE_PA:
1070 env->vm_hsave = msrs[i].data;
1071 break;
1075 return 0;
1078 static int kvm_put_mp_state(CPUState *env)
1080 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1082 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1085 static int kvm_get_mp_state(CPUState *env)
1087 struct kvm_mp_state mp_state;
1088 int ret;
1090 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1091 if (ret < 0) {
1092 return ret;
1094 env->mp_state = mp_state.mp_state;
1095 return 0;
1097 #endif
1099 static int kvm_put_vcpu_events(CPUState *env, int level)
1101 #ifdef KVM_CAP_VCPU_EVENTS
1102 struct kvm_vcpu_events events;
1104 if (!kvm_has_vcpu_events()) {
1105 return 0;
1108 events.exception.injected = (env->exception_injected >= 0);
1109 events.exception.nr = env->exception_injected;
1110 events.exception.has_error_code = env->has_error_code;
1111 events.exception.error_code = env->error_code;
1113 events.interrupt.injected = (env->interrupt_injected >= 0);
1114 events.interrupt.nr = env->interrupt_injected;
1115 events.interrupt.soft = env->soft_interrupt;
1117 events.nmi.injected = env->nmi_injected;
1118 events.nmi.pending = env->nmi_pending;
1119 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1121 events.sipi_vector = env->sipi_vector;
1123 events.flags = 0;
1124 if (level >= KVM_PUT_RESET_STATE) {
1125 events.flags |=
1126 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1129 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1130 #else
1131 return 0;
1132 #endif
1135 static int kvm_get_vcpu_events(CPUState *env)
1137 #ifdef KVM_CAP_VCPU_EVENTS
1138 struct kvm_vcpu_events events;
1139 int ret;
1141 if (!kvm_has_vcpu_events()) {
1142 return 0;
1145 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1146 if (ret < 0) {
1147 return ret;
1149 env->exception_injected =
1150 events.exception.injected ? events.exception.nr : -1;
1151 env->has_error_code = events.exception.has_error_code;
1152 env->error_code = events.exception.error_code;
1154 env->interrupt_injected =
1155 events.interrupt.injected ? events.interrupt.nr : -1;
1156 env->soft_interrupt = events.interrupt.soft;
1158 env->nmi_injected = events.nmi.injected;
1159 env->nmi_pending = events.nmi.pending;
1160 if (events.nmi.masked) {
1161 env->hflags2 |= HF2_NMI_MASK;
1162 } else {
1163 env->hflags2 &= ~HF2_NMI_MASK;
1166 env->sipi_vector = events.sipi_vector;
1167 #endif
1169 return 0;
1172 static int kvm_guest_debug_workarounds(CPUState *env)
1174 int ret = 0;
1175 #ifdef KVM_CAP_SET_GUEST_DEBUG
1176 unsigned long reinject_trap = 0;
1178 if (!kvm_has_vcpu_events()) {
1179 if (env->exception_injected == 1) {
1180 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1181 } else if (env->exception_injected == 3) {
1182 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1184 env->exception_injected = -1;
1188 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1189 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1190 * by updating the debug state once again if single-stepping is on.
1191 * Another reason to call kvm_update_guest_debug here is a pending debug
1192 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1193 * reinject them via SET_GUEST_DEBUG.
1195 if (reinject_trap ||
1196 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1197 ret = kvm_update_guest_debug(env, reinject_trap);
1199 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1200 return ret;
1203 static int kvm_put_debugregs(CPUState *env)
1205 #ifdef KVM_CAP_DEBUGREGS
1206 struct kvm_debugregs dbgregs;
1207 int i;
1209 if (!kvm_has_debugregs()) {
1210 return 0;
1213 for (i = 0; i < 4; i++) {
1214 dbgregs.db[i] = env->dr[i];
1216 dbgregs.dr6 = env->dr[6];
1217 dbgregs.dr7 = env->dr[7];
1218 dbgregs.flags = 0;
1220 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1221 #else
1222 return 0;
1223 #endif
1226 static int kvm_get_debugregs(CPUState *env)
1228 #ifdef KVM_CAP_DEBUGREGS
1229 struct kvm_debugregs dbgregs;
1230 int i, ret;
1232 if (!kvm_has_debugregs()) {
1233 return 0;
1236 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1237 if (ret < 0) {
1238 return ret;
1240 for (i = 0; i < 4; i++) {
1241 env->dr[i] = dbgregs.db[i];
1243 env->dr[4] = env->dr[6] = dbgregs.dr6;
1244 env->dr[5] = env->dr[7] = dbgregs.dr7;
1245 #endif
1247 return 0;
1250 #ifdef OBSOLETE_KVM_IMPL
1251 int kvm_arch_put_registers(CPUState *env, int level)
1253 int ret;
1255 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1257 ret = kvm_getput_regs(env, 1);
1258 if (ret < 0)
1259 return ret;
1261 ret = kvm_put_xsave(env);
1262 if (ret < 0)
1263 return ret;
1265 ret = kvm_put_xcrs(env);
1266 if (ret < 0)
1267 return ret;
1269 ret = kvm_put_sregs(env);
1270 if (ret < 0)
1271 return ret;
1273 ret = kvm_put_msrs(env, level);
1274 if (ret < 0)
1275 return ret;
1277 if (level >= KVM_PUT_RESET_STATE) {
1278 ret = kvm_put_mp_state(env);
1279 if (ret < 0)
1280 return ret;
1283 ret = kvm_put_vcpu_events(env, level);
1284 if (ret < 0)
1285 return ret;
1287 /* must be last */
1288 ret = kvm_guest_debug_workarounds(env);
1289 if (ret < 0)
1290 return ret;
1292 ret = kvm_put_debugregs(env);
1293 if (ret < 0)
1294 return ret;
1296 return 0;
1299 int kvm_arch_get_registers(CPUState *env)
1301 int ret;
1303 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1305 ret = kvm_getput_regs(env, 0);
1306 if (ret < 0)
1307 return ret;
1309 ret = kvm_get_xsave(env);
1310 if (ret < 0)
1311 return ret;
1313 ret = kvm_get_xcrs(env);
1314 if (ret < 0)
1315 return ret;
1317 ret = kvm_get_sregs(env);
1318 if (ret < 0)
1319 return ret;
1321 ret = kvm_get_msrs(env);
1322 if (ret < 0)
1323 return ret;
1325 ret = kvm_get_mp_state(env);
1326 if (ret < 0)
1327 return ret;
1329 ret = kvm_get_vcpu_events(env);
1330 if (ret < 0)
1331 return ret;
1333 ret = kvm_get_debugregs(env);
1334 if (ret < 0)
1335 return ret;
1337 return 0;
1340 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1342 /* Try to inject an interrupt if the guest can accept it */
1343 if (run->ready_for_interrupt_injection &&
1344 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1345 (env->eflags & IF_MASK)) {
1346 int irq;
1348 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1349 irq = cpu_get_pic_interrupt(env);
1350 if (irq >= 0) {
1351 struct kvm_interrupt intr;
1352 intr.irq = irq;
1353 /* FIXME: errors */
1354 DPRINTF("injected interrupt %d\n", irq);
1355 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1359 /* If we have an interrupt but the guest is not ready to receive an
1360 * interrupt, request an interrupt window exit. This will
1361 * cause a return to userspace as soon as the guest is ready to
1362 * receive interrupts. */
1363 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1364 run->request_interrupt_window = 1;
1365 else
1366 run->request_interrupt_window = 0;
1368 DPRINTF("setting tpr\n");
1369 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1371 return 0;
1373 #endif
1375 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1377 if (run->if_flag)
1378 env->eflags |= IF_MASK;
1379 else
1380 env->eflags &= ~IF_MASK;
1382 cpu_set_apic_tpr(env->apic_state, run->cr8);
1383 cpu_set_apic_base(env->apic_state, run->apic_base);
1385 return 0;
1388 #ifdef OBSOLETE_KVM_IMPL
1390 int kvm_arch_process_irqchip_events(CPUState *env)
1392 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1393 kvm_cpu_synchronize_state(env);
1394 do_cpu_init(env);
1395 env->exception_index = EXCP_HALTED;
1398 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1399 kvm_cpu_synchronize_state(env);
1400 do_cpu_sipi(env);
1403 return env->halted;
1406 static int kvm_handle_halt(CPUState *env)
1408 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1409 (env->eflags & IF_MASK)) &&
1410 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1411 env->halted = 1;
1412 env->exception_index = EXCP_HLT;
1413 return 0;
1416 return 1;
1419 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1421 int ret = 0;
1423 switch (run->exit_reason) {
1424 case KVM_EXIT_HLT:
1425 DPRINTF("handle_hlt\n");
1426 ret = kvm_handle_halt(env);
1427 break;
1430 return ret;
1432 #endif
1434 #ifdef KVM_CAP_SET_GUEST_DEBUG
1435 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1437 static const uint8_t int3 = 0xcc;
1439 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1440 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1441 return -EINVAL;
1442 return 0;
1445 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1447 uint8_t int3;
1449 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1450 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1451 return -EINVAL;
1452 return 0;
1455 static struct {
1456 target_ulong addr;
1457 int len;
1458 int type;
1459 } hw_breakpoint[4];
1461 static int nb_hw_breakpoint;
1463 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1465 int n;
1467 for (n = 0; n < nb_hw_breakpoint; n++)
1468 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1469 (hw_breakpoint[n].len == len || len == -1))
1470 return n;
1471 return -1;
1474 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1475 target_ulong len, int type)
1477 switch (type) {
1478 case GDB_BREAKPOINT_HW:
1479 len = 1;
1480 break;
1481 case GDB_WATCHPOINT_WRITE:
1482 case GDB_WATCHPOINT_ACCESS:
1483 switch (len) {
1484 case 1:
1485 break;
1486 case 2:
1487 case 4:
1488 case 8:
1489 if (addr & (len - 1))
1490 return -EINVAL;
1491 break;
1492 default:
1493 return -EINVAL;
1495 break;
1496 default:
1497 return -ENOSYS;
1500 if (nb_hw_breakpoint == 4)
1501 return -ENOBUFS;
1503 if (find_hw_breakpoint(addr, len, type) >= 0)
1504 return -EEXIST;
1506 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1507 hw_breakpoint[nb_hw_breakpoint].len = len;
1508 hw_breakpoint[nb_hw_breakpoint].type = type;
1509 nb_hw_breakpoint++;
1511 return 0;
1514 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1515 target_ulong len, int type)
1517 int n;
1519 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1520 if (n < 0)
1521 return -ENOENT;
1523 nb_hw_breakpoint--;
1524 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1526 return 0;
1529 void kvm_arch_remove_all_hw_breakpoints(void)
1531 nb_hw_breakpoint = 0;
1534 static CPUWatchpoint hw_watchpoint;
1536 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1538 int handle = 0;
1539 int n;
1541 if (arch_info->exception == 1) {
1542 if (arch_info->dr6 & (1 << 14)) {
1543 if (cpu_single_env->singlestep_enabled)
1544 handle = 1;
1545 } else {
1546 for (n = 0; n < 4; n++)
1547 if (arch_info->dr6 & (1 << n))
1548 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1549 case 0x0:
1550 handle = 1;
1551 break;
1552 case 0x1:
1553 handle = 1;
1554 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1555 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1556 hw_watchpoint.flags = BP_MEM_WRITE;
1557 break;
1558 case 0x3:
1559 handle = 1;
1560 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1561 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1562 hw_watchpoint.flags = BP_MEM_ACCESS;
1563 break;
1566 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1567 handle = 1;
1569 if (!handle) {
1570 cpu_synchronize_state(cpu_single_env);
1571 assert(cpu_single_env->exception_injected == -1);
1573 cpu_single_env->exception_injected = arch_info->exception;
1574 cpu_single_env->has_error_code = 0;
1577 return handle;
1580 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1582 const uint8_t type_code[] = {
1583 [GDB_BREAKPOINT_HW] = 0x0,
1584 [GDB_WATCHPOINT_WRITE] = 0x1,
1585 [GDB_WATCHPOINT_ACCESS] = 0x3
1587 const uint8_t len_code[] = {
1588 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1590 int n;
1592 if (kvm_sw_breakpoints_active(env))
1593 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1595 if (nb_hw_breakpoint > 0) {
1596 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1597 dbg->arch.debugreg[7] = 0x0600;
1598 for (n = 0; n < nb_hw_breakpoint; n++) {
1599 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1600 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1601 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1602 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1605 /* Legal xcr0 for loading */
1606 env->xcr0 = 1;
1608 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1610 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1612 return !(env->cr[0] & CR0_PE_MASK) ||
1613 ((env->segs[R_CS].selector & 3) != 3);
1616 static void hardware_memory_error(void)
1618 fprintf(stderr, "Hardware memory error!\n");
1619 exit(1);
1622 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1624 #if defined(KVM_CAP_MCE)
1625 struct kvm_x86_mce mce = {
1626 .bank = 9,
1628 void *vaddr;
1629 ram_addr_t ram_addr;
1630 target_phys_addr_t paddr;
1631 int r;
1633 if ((env->mcg_cap & MCG_SER_P) && addr
1634 && (code == BUS_MCEERR_AR
1635 || code == BUS_MCEERR_AO)) {
1636 if (code == BUS_MCEERR_AR) {
1637 /* Fake an Intel architectural Data Load SRAR UCR */
1638 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1639 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1640 | MCI_STATUS_AR | 0x134;
1641 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1642 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1643 } else {
1645 * If there is an MCE excpetion being processed, ignore
1646 * this SRAO MCE
1648 r = kvm_mce_in_exception(env);
1649 if (r == -1) {
1650 fprintf(stderr, "Failed to get MCE status\n");
1651 } else if (r) {
1652 return 0;
1654 /* Fake an Intel architectural Memory scrubbing UCR */
1655 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1656 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1657 | 0xc0;
1658 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1659 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1661 vaddr = (void *)addr;
1662 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1663 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1664 fprintf(stderr, "Hardware memory error for memory used by "
1665 "QEMU itself instead of guest system!\n");
1666 /* Hope we are lucky for AO MCE */
1667 if (code == BUS_MCEERR_AO) {
1668 return 0;
1669 } else {
1670 hardware_memory_error();
1673 mce.addr = paddr;
1674 r = kvm_set_mce(env, &mce);
1675 if (r < 0) {
1676 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1677 abort();
1679 } else
1680 #endif
1682 if (code == BUS_MCEERR_AO) {
1683 return 0;
1684 } else if (code == BUS_MCEERR_AR) {
1685 hardware_memory_error();
1686 } else {
1687 return 1;
1690 return 0;
1693 int kvm_on_sigbus(int code, void *addr)
1695 #if defined(KVM_CAP_MCE)
1696 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1697 uint64_t status;
1698 void *vaddr;
1699 ram_addr_t ram_addr;
1700 target_phys_addr_t paddr;
1701 CPUState *cenv;
1703 /* Hope we are lucky for AO MCE */
1704 vaddr = addr;
1705 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1706 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1707 fprintf(stderr, "Hardware memory error for memory used by "
1708 "QEMU itself instead of guest system!: %p\n", addr);
1709 return 0;
1711 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1712 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1713 | 0xc0;
1714 kvm_inject_x86_mce(first_cpu, 9, status,
1715 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1716 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1717 for (cenv = first_cpu->next_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1718 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1719 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1721 } else
1722 #endif
1724 if (code == BUS_MCEERR_AO) {
1725 return 0;
1726 } else if (code == BUS_MCEERR_AR) {
1727 hardware_memory_error();
1728 } else {
1729 return 1;
1732 return 0;
1735 #include "qemu-kvm-x86.c"