target-alpha: fix the return value of stl_c/stq_c
[qemu/qemu-JZ.git] / hw / lsi53c895a.c
blob53a2add0df03691994b4fcd160152fb44a53319c
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include "hw.h"
14 #include "pci.h"
15 #include "scsi-disk.h"
17 //#define DEBUG_LSI
18 //#define DEBUG_LSI_REG
20 #ifdef DEBUG_LSI
21 #define DPRINTF(fmt, args...) \
22 do { printf("lsi_scsi: " fmt , ##args); } while (0)
23 #define BADF(fmt, args...) \
24 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args); exit(1);} while (0)
25 #else
26 #define DPRINTF(fmt, args...) do {} while(0)
27 #define BADF(fmt, args...) \
28 do { fprintf(stderr, "lsi_scsi: error: " fmt , ##args);} while (0)
29 #endif
31 #define LSI_SCNTL0_TRG 0x01
32 #define LSI_SCNTL0_AAP 0x02
33 #define LSI_SCNTL0_EPC 0x08
34 #define LSI_SCNTL0_WATN 0x10
35 #define LSI_SCNTL0_START 0x20
37 #define LSI_SCNTL1_SST 0x01
38 #define LSI_SCNTL1_IARB 0x02
39 #define LSI_SCNTL1_AESP 0x04
40 #define LSI_SCNTL1_RST 0x08
41 #define LSI_SCNTL1_CON 0x10
42 #define LSI_SCNTL1_DHP 0x20
43 #define LSI_SCNTL1_ADB 0x40
44 #define LSI_SCNTL1_EXC 0x80
46 #define LSI_SCNTL2_WSR 0x01
47 #define LSI_SCNTL2_VUE0 0x02
48 #define LSI_SCNTL2_VUE1 0x04
49 #define LSI_SCNTL2_WSS 0x08
50 #define LSI_SCNTL2_SLPHBEN 0x10
51 #define LSI_SCNTL2_SLPMD 0x20
52 #define LSI_SCNTL2_CHM 0x40
53 #define LSI_SCNTL2_SDU 0x80
55 #define LSI_ISTAT0_DIP 0x01
56 #define LSI_ISTAT0_SIP 0x02
57 #define LSI_ISTAT0_INTF 0x04
58 #define LSI_ISTAT0_CON 0x08
59 #define LSI_ISTAT0_SEM 0x10
60 #define LSI_ISTAT0_SIGP 0x20
61 #define LSI_ISTAT0_SRST 0x40
62 #define LSI_ISTAT0_ABRT 0x80
64 #define LSI_ISTAT1_SI 0x01
65 #define LSI_ISTAT1_SRUN 0x02
66 #define LSI_ISTAT1_FLSH 0x04
68 #define LSI_SSTAT0_SDP0 0x01
69 #define LSI_SSTAT0_RST 0x02
70 #define LSI_SSTAT0_WOA 0x04
71 #define LSI_SSTAT0_LOA 0x08
72 #define LSI_SSTAT0_AIP 0x10
73 #define LSI_SSTAT0_OLF 0x20
74 #define LSI_SSTAT0_ORF 0x40
75 #define LSI_SSTAT0_ILF 0x80
77 #define LSI_SIST0_PAR 0x01
78 #define LSI_SIST0_RST 0x02
79 #define LSI_SIST0_UDC 0x04
80 #define LSI_SIST0_SGE 0x08
81 #define LSI_SIST0_RSL 0x10
82 #define LSI_SIST0_SEL 0x20
83 #define LSI_SIST0_CMP 0x40
84 #define LSI_SIST0_MA 0x80
86 #define LSI_SIST1_HTH 0x01
87 #define LSI_SIST1_GEN 0x02
88 #define LSI_SIST1_STO 0x04
89 #define LSI_SIST1_SBMC 0x10
91 #define LSI_SOCL_IO 0x01
92 #define LSI_SOCL_CD 0x02
93 #define LSI_SOCL_MSG 0x04
94 #define LSI_SOCL_ATN 0x08
95 #define LSI_SOCL_SEL 0x10
96 #define LSI_SOCL_BSY 0x20
97 #define LSI_SOCL_ACK 0x40
98 #define LSI_SOCL_REQ 0x80
100 #define LSI_DSTAT_IID 0x01
101 #define LSI_DSTAT_SIR 0x04
102 #define LSI_DSTAT_SSI 0x08
103 #define LSI_DSTAT_ABRT 0x10
104 #define LSI_DSTAT_BF 0x20
105 #define LSI_DSTAT_MDPE 0x40
106 #define LSI_DSTAT_DFE 0x80
108 #define LSI_DCNTL_COM 0x01
109 #define LSI_DCNTL_IRQD 0x02
110 #define LSI_DCNTL_STD 0x04
111 #define LSI_DCNTL_IRQM 0x08
112 #define LSI_DCNTL_SSM 0x10
113 #define LSI_DCNTL_PFEN 0x20
114 #define LSI_DCNTL_PFF 0x40
115 #define LSI_DCNTL_CLSE 0x80
117 #define LSI_DMODE_MAN 0x01
118 #define LSI_DMODE_BOF 0x02
119 #define LSI_DMODE_ERMP 0x04
120 #define LSI_DMODE_ERL 0x08
121 #define LSI_DMODE_DIOM 0x10
122 #define LSI_DMODE_SIOM 0x20
124 #define LSI_CTEST2_DACK 0x01
125 #define LSI_CTEST2_DREQ 0x02
126 #define LSI_CTEST2_TEOP 0x04
127 #define LSI_CTEST2_PCICIE 0x08
128 #define LSI_CTEST2_CM 0x10
129 #define LSI_CTEST2_CIO 0x20
130 #define LSI_CTEST2_SIGP 0x40
131 #define LSI_CTEST2_DDIR 0x80
133 #define LSI_CTEST5_BL2 0x04
134 #define LSI_CTEST5_DDIR 0x08
135 #define LSI_CTEST5_MASR 0x10
136 #define LSI_CTEST5_DFSN 0x20
137 #define LSI_CTEST5_BBCK 0x40
138 #define LSI_CTEST5_ADCK 0x80
140 #define LSI_CCNTL0_DILS 0x01
141 #define LSI_CCNTL0_DISFC 0x10
142 #define LSI_CCNTL0_ENNDJ 0x20
143 #define LSI_CCNTL0_PMJCTL 0x40
144 #define LSI_CCNTL0_ENPMJ 0x80
146 #define PHASE_DO 0
147 #define PHASE_DI 1
148 #define PHASE_CMD 2
149 #define PHASE_ST 3
150 #define PHASE_MO 6
151 #define PHASE_MI 7
152 #define PHASE_MASK 7
154 /* Maximum length of MSG IN data. */
155 #define LSI_MAX_MSGIN_LEN 8
157 /* Flag set if this is a tagged command. */
158 #define LSI_TAG_VALID (1 << 16)
160 typedef struct {
161 uint32_t tag;
162 uint32_t pending;
163 int out;
164 } lsi_queue;
166 typedef struct {
167 PCIDevice pci_dev;
168 int mmio_io_addr;
169 int ram_io_addr;
170 uint32_t script_ram_base;
172 int carry; /* ??? Should this be an a visible register somewhere? */
173 int sense;
174 /* Action to take at the end of a MSG IN phase.
175 0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN. */
176 int msg_action;
177 int msg_len;
178 uint8_t msg[LSI_MAX_MSGIN_LEN];
179 /* 0 if SCRIPTS are running or stopped.
180 * 1 if a Wait Reselect instruction has been issued.
181 * 2 if processing DMA from lsi_execute_script.
182 * 3 if a DMA operation is in progress. */
183 int waiting;
184 SCSIDevice *scsi_dev[LSI_MAX_DEVS];
185 SCSIDevice *current_dev;
186 int current_lun;
187 /* The tag is a combination of the device ID and the SCSI tag. */
188 uint32_t current_tag;
189 uint32_t current_dma_len;
190 int command_complete;
191 uint8_t *dma_buf;
192 lsi_queue *queue;
193 int queue_len;
194 int active_commands;
196 uint32_t dsa;
197 uint32_t temp;
198 uint32_t dnad;
199 uint32_t dbc;
200 uint8_t istat0;
201 uint8_t istat1;
202 uint8_t dcmd;
203 uint8_t dstat;
204 uint8_t dien;
205 uint8_t sist0;
206 uint8_t sist1;
207 uint8_t sien0;
208 uint8_t sien1;
209 uint8_t mbox0;
210 uint8_t mbox1;
211 uint8_t dfifo;
212 uint8_t ctest3;
213 uint8_t ctest4;
214 uint8_t ctest5;
215 uint8_t ccntl0;
216 uint8_t ccntl1;
217 uint32_t dsp;
218 uint32_t dsps;
219 uint8_t dmode;
220 uint8_t dcntl;
221 uint8_t scntl0;
222 uint8_t scntl1;
223 uint8_t scntl2;
224 uint8_t scntl3;
225 uint8_t sstat0;
226 uint8_t sstat1;
227 uint8_t scid;
228 uint8_t sxfer;
229 uint8_t socl;
230 uint8_t sdid;
231 uint8_t ssid;
232 uint8_t sfbr;
233 uint8_t stest1;
234 uint8_t stest2;
235 uint8_t stest3;
236 uint8_t sidl;
237 uint8_t stime0;
238 uint8_t respid0;
239 uint8_t respid1;
240 uint32_t mmrs;
241 uint32_t mmws;
242 uint32_t sfs;
243 uint32_t drs;
244 uint32_t sbms;
245 uint32_t dmbs;
246 uint32_t dnad64;
247 uint32_t pmjad1;
248 uint32_t pmjad2;
249 uint32_t rbc;
250 uint32_t ua;
251 uint32_t ia;
252 uint32_t sbc;
253 uint32_t csbc;
254 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
256 /* Script ram is stored as 32-bit words in host byteorder. */
257 uint32_t script_ram[2048];
258 } LSIState;
260 static void lsi_soft_reset(LSIState *s)
262 DPRINTF("Reset\n");
263 s->carry = 0;
265 s->waiting = 0;
266 s->dsa = 0;
267 s->dnad = 0;
268 s->dbc = 0;
269 s->temp = 0;
270 memset(s->scratch, 0, sizeof(s->scratch));
271 s->istat0 = 0;
272 s->istat1 = 0;
273 s->dcmd = 0;
274 s->dstat = 0;
275 s->dien = 0;
276 s->sist0 = 0;
277 s->sist1 = 0;
278 s->sien0 = 0;
279 s->sien1 = 0;
280 s->mbox0 = 0;
281 s->mbox1 = 0;
282 s->dfifo = 0;
283 s->ctest3 = 0;
284 s->ctest4 = 0;
285 s->ctest5 = 0;
286 s->ccntl0 = 0;
287 s->ccntl1 = 0;
288 s->dsp = 0;
289 s->dsps = 0;
290 s->dmode = 0;
291 s->dcntl = 0;
292 s->scntl0 = 0xc0;
293 s->scntl1 = 0;
294 s->scntl2 = 0;
295 s->scntl3 = 0;
296 s->sstat0 = 0;
297 s->sstat1 = 0;
298 s->scid = 7;
299 s->sxfer = 0;
300 s->socl = 0;
301 s->stest1 = 0;
302 s->stest2 = 0;
303 s->stest3 = 0;
304 s->sidl = 0;
305 s->stime0 = 0;
306 s->respid0 = 0x80;
307 s->respid1 = 0;
308 s->mmrs = 0;
309 s->mmws = 0;
310 s->sfs = 0;
311 s->drs = 0;
312 s->sbms = 0;
313 s->dmbs = 0;
314 s->dnad64 = 0;
315 s->pmjad1 = 0;
316 s->pmjad2 = 0;
317 s->rbc = 0;
318 s->ua = 0;
319 s->ia = 0;
320 s->sbc = 0;
321 s->csbc = 0;
324 static uint8_t lsi_reg_readb(LSIState *s, int offset);
325 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
326 static void lsi_execute_script(LSIState *s);
328 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
330 uint32_t buf;
332 /* Optimize reading from SCRIPTS RAM. */
333 if ((addr & 0xffffe000) == s->script_ram_base) {
334 return s->script_ram[(addr & 0x1fff) >> 2];
336 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
337 return cpu_to_le32(buf);
340 static void lsi_stop_script(LSIState *s)
342 s->istat1 &= ~LSI_ISTAT1_SRUN;
345 static void lsi_update_irq(LSIState *s)
347 int level;
348 static int last_level;
350 /* It's unclear whether the DIP/SIP bits should be cleared when the
351 Interrupt Status Registers are cleared or when istat0 is read.
352 We currently do the formwer, which seems to work. */
353 level = 0;
354 if (s->dstat) {
355 if (s->dstat & s->dien)
356 level = 1;
357 s->istat0 |= LSI_ISTAT0_DIP;
358 } else {
359 s->istat0 &= ~LSI_ISTAT0_DIP;
362 if (s->sist0 || s->sist1) {
363 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
364 level = 1;
365 s->istat0 |= LSI_ISTAT0_SIP;
366 } else {
367 s->istat0 &= ~LSI_ISTAT0_SIP;
369 if (s->istat0 & LSI_ISTAT0_INTF)
370 level = 1;
372 if (level != last_level) {
373 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
374 level, s->dstat, s->sist1, s->sist0);
375 last_level = level;
377 qemu_set_irq(s->pci_dev.irq[0], level);
380 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
381 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
383 uint32_t mask0;
384 uint32_t mask1;
386 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
387 stat1, stat0, s->sist1, s->sist0);
388 s->sist0 |= stat0;
389 s->sist1 |= stat1;
390 /* Stop processor on fatal or unmasked interrupt. As a special hack
391 we don't stop processing when raising STO. Instead continue
392 execution and stop at the next insn that accesses the SCSI bus. */
393 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
394 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
395 mask1 &= ~LSI_SIST1_STO;
396 if (s->sist0 & mask0 || s->sist1 & mask1) {
397 lsi_stop_script(s);
399 lsi_update_irq(s);
402 /* Stop SCRIPTS execution and raise a DMA interrupt. */
403 static void lsi_script_dma_interrupt(LSIState *s, int stat)
405 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
406 s->dstat |= stat;
407 lsi_update_irq(s);
408 lsi_stop_script(s);
411 static inline void lsi_set_phase(LSIState *s, int phase)
413 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
416 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
418 /* Trigger a phase mismatch. */
419 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
420 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
421 s->dsp = s->pmjad1;
422 } else {
423 s->dsp = s->pmjad2;
425 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
426 } else {
427 DPRINTF("Phase mismatch interrupt\n");
428 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
429 lsi_stop_script(s);
431 lsi_set_phase(s, new_phase);
435 /* Resume SCRIPTS execution after a DMA operation. */
436 static void lsi_resume_script(LSIState *s)
438 if (s->waiting != 2) {
439 s->waiting = 0;
440 lsi_execute_script(s);
441 } else {
442 s->waiting = 0;
446 /* Initiate a SCSI layer data transfer. */
447 static void lsi_do_dma(LSIState *s, int out)
449 uint32_t count;
450 uint32_t addr;
452 if (!s->current_dma_len) {
453 /* Wait until data is available. */
454 DPRINTF("DMA no data available\n");
455 return;
458 count = s->dbc;
459 if (count > s->current_dma_len)
460 count = s->current_dma_len;
461 DPRINTF("DMA addr=0x%08x len=%d\n", s->dnad, count);
463 addr = s->dnad;
464 s->csbc += count;
465 s->dnad += count;
466 s->dbc -= count;
468 if (s->dma_buf == NULL) {
469 s->dma_buf = s->current_dev->get_buf(s->current_dev,
470 s->current_tag);
473 /* ??? Set SFBR to first data byte. */
474 if (out) {
475 cpu_physical_memory_read(addr, s->dma_buf, count);
476 } else {
477 cpu_physical_memory_write(addr, s->dma_buf, count);
479 s->current_dma_len -= count;
480 if (s->current_dma_len == 0) {
481 s->dma_buf = NULL;
482 if (out) {
483 /* Write the data. */
484 s->current_dev->write_data(s->current_dev, s->current_tag);
485 } else {
486 /* Request any remaining data. */
487 s->current_dev->read_data(s->current_dev, s->current_tag);
489 } else {
490 s->dma_buf += count;
491 lsi_resume_script(s);
496 /* Add a command to the queue. */
497 static void lsi_queue_command(LSIState *s)
499 lsi_queue *p;
501 DPRINTF("Queueing tag=0x%x\n", s->current_tag);
502 if (s->queue_len == s->active_commands) {
503 s->queue_len++;
504 s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
506 p = &s->queue[s->active_commands++];
507 p->tag = s->current_tag;
508 p->pending = 0;
509 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
512 /* Queue a byte for a MSG IN phase. */
513 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
515 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
516 BADF("MSG IN data too long\n");
517 } else {
518 DPRINTF("MSG IN 0x%02x\n", data);
519 s->msg[s->msg_len++] = data;
523 /* Perform reselection to continue a command. */
524 static void lsi_reselect(LSIState *s, uint32_t tag)
526 lsi_queue *p;
527 int n;
528 int id;
530 p = NULL;
531 for (n = 0; n < s->active_commands; n++) {
532 p = &s->queue[n];
533 if (p->tag == tag)
534 break;
536 if (n == s->active_commands) {
537 BADF("Reselected non-existant command tag=0x%x\n", tag);
538 return;
540 id = (tag >> 8) & 0xf;
541 s->ssid = id | 0x80;
542 DPRINTF("Reselected target %d\n", id);
543 s->current_dev = s->scsi_dev[id];
544 s->current_tag = tag;
545 s->scntl1 |= LSI_SCNTL1_CON;
546 lsi_set_phase(s, PHASE_MI);
547 s->msg_action = p->out ? 2 : 3;
548 s->current_dma_len = p->pending;
549 s->dma_buf = NULL;
550 lsi_add_msg_byte(s, 0x80);
551 if (s->current_tag & LSI_TAG_VALID) {
552 lsi_add_msg_byte(s, 0x20);
553 lsi_add_msg_byte(s, tag & 0xff);
556 s->active_commands--;
557 if (n != s->active_commands) {
558 s->queue[n] = s->queue[s->active_commands];
562 /* Record that data is available for a queued command. Returns zero if
563 the device was reselected, nonzero if the IO is deferred. */
564 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
566 lsi_queue *p;
567 int i;
568 for (i = 0; i < s->active_commands; i++) {
569 p = &s->queue[i];
570 if (p->tag == tag) {
571 if (p->pending) {
572 BADF("Multiple IO pending for tag %d\n", tag);
574 p->pending = arg;
575 if (s->waiting == 1) {
576 /* Reselect device. */
577 lsi_reselect(s, tag);
578 return 0;
579 } else {
580 DPRINTF("Queueing IO tag=0x%x\n", tag);
581 p->pending = arg;
582 return 1;
586 BADF("IO with unknown tag %d\n", tag);
587 return 1;
590 /* Callback to indicate that the SCSI layer has completed a transfer. */
591 static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
592 uint32_t arg)
594 LSIState *s = (LSIState *)opaque;
595 int out;
597 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
598 if (reason == SCSI_REASON_DONE) {
599 DPRINTF("Command complete sense=%d\n", (int)arg);
600 s->sense = arg;
601 s->command_complete = 2;
602 if (s->waiting && s->dbc != 0) {
603 /* Raise phase mismatch for short transfers. */
604 lsi_bad_phase(s, out, PHASE_ST);
605 } else {
606 lsi_set_phase(s, PHASE_ST);
608 lsi_resume_script(s);
609 return;
612 if (s->waiting == 1 || tag != s->current_tag) {
613 if (lsi_queue_tag(s, tag, arg))
614 return;
616 DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
617 s->current_dma_len = arg;
618 s->command_complete = 1;
619 if (!s->waiting)
620 return;
621 if (s->waiting == 1 || s->dbc == 0) {
622 lsi_resume_script(s);
623 } else {
624 lsi_do_dma(s, out);
628 static void lsi_do_command(LSIState *s)
630 uint8_t buf[16];
631 int n;
633 DPRINTF("Send command len=%d\n", s->dbc);
634 if (s->dbc > 16)
635 s->dbc = 16;
636 cpu_physical_memory_read(s->dnad, buf, s->dbc);
637 s->sfbr = buf[0];
638 s->command_complete = 0;
639 n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
640 s->current_lun);
641 if (n > 0) {
642 lsi_set_phase(s, PHASE_DI);
643 s->current_dev->read_data(s->current_dev, s->current_tag);
644 } else if (n < 0) {
645 lsi_set_phase(s, PHASE_DO);
646 s->current_dev->write_data(s->current_dev, s->current_tag);
649 if (!s->command_complete) {
650 if (n) {
651 /* Command did not complete immediately so disconnect. */
652 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
653 lsi_add_msg_byte(s, 4); /* DISCONNECT */
654 /* wait data */
655 lsi_set_phase(s, PHASE_MI);
656 s->msg_action = 1;
657 lsi_queue_command(s);
658 } else {
659 /* wait command complete */
660 lsi_set_phase(s, PHASE_DI);
665 static void lsi_do_status(LSIState *s)
667 uint8_t sense;
668 DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
669 if (s->dbc != 1)
670 BADF("Bad Status move\n");
671 s->dbc = 1;
672 sense = s->sense;
673 s->sfbr = sense;
674 cpu_physical_memory_write(s->dnad, &sense, 1);
675 lsi_set_phase(s, PHASE_MI);
676 s->msg_action = 1;
677 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
680 static void lsi_disconnect(LSIState *s)
682 s->scntl1 &= ~LSI_SCNTL1_CON;
683 s->sstat1 &= ~PHASE_MASK;
686 static void lsi_do_msgin(LSIState *s)
688 int len;
689 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
690 s->sfbr = s->msg[0];
691 len = s->msg_len;
692 if (len > s->dbc)
693 len = s->dbc;
694 cpu_physical_memory_write(s->dnad, s->msg, len);
695 /* Linux drivers rely on the last byte being in the SIDL. */
696 s->sidl = s->msg[len - 1];
697 s->msg_len -= len;
698 if (s->msg_len) {
699 memmove(s->msg, s->msg + len, s->msg_len);
700 } else {
701 /* ??? Check if ATN (not yet implemented) is asserted and maybe
702 switch to PHASE_MO. */
703 switch (s->msg_action) {
704 case 0:
705 lsi_set_phase(s, PHASE_CMD);
706 break;
707 case 1:
708 lsi_disconnect(s);
709 break;
710 case 2:
711 lsi_set_phase(s, PHASE_DO);
712 break;
713 case 3:
714 lsi_set_phase(s, PHASE_DI);
715 break;
716 default:
717 abort();
722 /* Read the next byte during a MSGOUT phase. */
723 static uint8_t lsi_get_msgbyte(LSIState *s)
725 uint8_t data;
726 cpu_physical_memory_read(s->dnad, &data, 1);
727 s->dnad++;
728 s->dbc--;
729 return data;
732 static void lsi_do_msgout(LSIState *s)
734 uint8_t msg;
735 int len;
737 DPRINTF("MSG out len=%d\n", s->dbc);
738 while (s->dbc) {
739 msg = lsi_get_msgbyte(s);
740 s->sfbr = msg;
742 switch (msg) {
743 case 0x00:
744 DPRINTF("MSG: Disconnect\n");
745 lsi_disconnect(s);
746 break;
747 case 0x08:
748 DPRINTF("MSG: No Operation\n");
749 lsi_set_phase(s, PHASE_CMD);
750 break;
751 case 0x01:
752 len = lsi_get_msgbyte(s);
753 msg = lsi_get_msgbyte(s);
754 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
755 switch (msg) {
756 case 1:
757 DPRINTF("SDTR (ignored)\n");
758 s->dbc -= 2;
759 break;
760 case 3:
761 DPRINTF("WDTR (ignored)\n");
762 s->dbc -= 1;
763 break;
764 default:
765 goto bad;
767 break;
768 case 0x20: /* SIMPLE queue */
769 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
770 DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
771 break;
772 case 0x21: /* HEAD of queue */
773 BADF("HEAD queue not implemented\n");
774 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
775 break;
776 case 0x22: /* ORDERED queue */
777 BADF("ORDERED queue not implemented\n");
778 s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
779 break;
780 default:
781 if ((msg & 0x80) == 0) {
782 goto bad;
784 s->current_lun = msg & 7;
785 DPRINTF("Select LUN %d\n", s->current_lun);
786 lsi_set_phase(s, PHASE_CMD);
787 break;
790 return;
791 bad:
792 BADF("Unimplemented message 0x%02x\n", msg);
793 lsi_set_phase(s, PHASE_MI);
794 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
795 s->msg_action = 0;
798 /* Sign extend a 24-bit value. */
799 static inline int32_t sxt24(int32_t n)
801 return (n << 8) >> 8;
804 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
806 int n;
807 uint8_t buf[TARGET_PAGE_SIZE];
809 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
810 while (count) {
811 n = (count > TARGET_PAGE_SIZE) ? TARGET_PAGE_SIZE : count;
812 cpu_physical_memory_read(src, buf, n);
813 cpu_physical_memory_write(dest, buf, n);
814 src += n;
815 dest += n;
816 count -= n;
820 static void lsi_wait_reselect(LSIState *s)
822 int i;
823 DPRINTF("Wait Reselect\n");
824 if (s->current_dma_len)
825 BADF("Reselect with pending DMA\n");
826 for (i = 0; i < s->active_commands; i++) {
827 if (s->queue[i].pending) {
828 lsi_reselect(s, s->queue[i].tag);
829 break;
832 if (s->current_dma_len == 0) {
833 s->waiting = 1;
837 static void lsi_execute_script(LSIState *s)
839 uint32_t insn;
840 uint32_t addr;
841 int opcode;
842 int insn_processed = 0;
844 s->istat1 |= LSI_ISTAT1_SRUN;
845 again:
846 insn_processed++;
847 insn = read_dword(s, s->dsp);
848 addr = read_dword(s, s->dsp + 4);
849 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
850 s->dsps = addr;
851 s->dcmd = insn >> 24;
852 s->dsp += 8;
853 switch (insn >> 30) {
854 case 0: /* Block move. */
855 if (s->sist1 & LSI_SIST1_STO) {
856 DPRINTF("Delayed select timeout\n");
857 lsi_stop_script(s);
858 break;
860 s->dbc = insn & 0xffffff;
861 s->rbc = s->dbc;
862 if (insn & (1 << 29)) {
863 /* Indirect addressing. */
864 addr = read_dword(s, addr);
865 } else if (insn & (1 << 28)) {
866 uint32_t buf[2];
867 int32_t offset;
868 /* Table indirect addressing. */
869 offset = sxt24(addr);
870 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
871 s->dbc = cpu_to_le32(buf[0]);
872 s->rbc = s->dbc;
873 addr = cpu_to_le32(buf[1]);
875 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
876 DPRINTF("Wrong phase got %d expected %d\n",
877 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
878 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
879 break;
881 s->dnad = addr;
882 /* ??? Set ESA. */
883 s->ia = s->dsp - 8;
884 switch (s->sstat1 & 0x7) {
885 case PHASE_DO:
886 s->waiting = 2;
887 lsi_do_dma(s, 1);
888 if (s->waiting)
889 s->waiting = 3;
890 break;
891 case PHASE_DI:
892 s->waiting = 2;
893 lsi_do_dma(s, 0);
894 if (s->waiting)
895 s->waiting = 3;
896 break;
897 case PHASE_CMD:
898 lsi_do_command(s);
899 break;
900 case PHASE_ST:
901 lsi_do_status(s);
902 break;
903 case PHASE_MO:
904 lsi_do_msgout(s);
905 break;
906 case PHASE_MI:
907 lsi_do_msgin(s);
908 break;
909 default:
910 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
911 exit(1);
913 s->dfifo = s->dbc & 0xff;
914 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
915 s->sbc = s->dbc;
916 s->rbc -= s->dbc;
917 s->ua = addr + s->dbc;
918 break;
920 case 1: /* IO or Read/Write instruction. */
921 opcode = (insn >> 27) & 7;
922 if (opcode < 5) {
923 uint32_t id;
925 if (insn & (1 << 25)) {
926 id = read_dword(s, s->dsa + sxt24(insn));
927 } else {
928 id = addr;
930 id = (id >> 16) & 0xf;
931 if (insn & (1 << 26)) {
932 addr = s->dsp + sxt24(addr);
934 s->dnad = addr;
935 switch (opcode) {
936 case 0: /* Select */
937 s->sdid = id;
938 if (s->current_dma_len && (s->ssid & 0xf) == id) {
939 DPRINTF("Already reselected by target %d\n", id);
940 break;
942 s->sstat0 |= LSI_SSTAT0_WOA;
943 s->scntl1 &= ~LSI_SCNTL1_IARB;
944 if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
945 DPRINTF("Selected absent target %d\n", id);
946 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
947 lsi_disconnect(s);
948 break;
950 DPRINTF("Selected target %d%s\n",
951 id, insn & (1 << 3) ? " ATN" : "");
952 /* ??? Linux drivers compain when this is set. Maybe
953 it only applies in low-level mode (unimplemented).
954 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
955 s->current_dev = s->scsi_dev[id];
956 s->current_tag = id << 8;
957 s->scntl1 |= LSI_SCNTL1_CON;
958 if (insn & (1 << 3)) {
959 s->socl |= LSI_SOCL_ATN;
961 lsi_set_phase(s, PHASE_MO);
962 break;
963 case 1: /* Disconnect */
964 DPRINTF("Wait Disconect\n");
965 s->scntl1 &= ~LSI_SCNTL1_CON;
966 break;
967 case 2: /* Wait Reselect */
968 lsi_wait_reselect(s);
969 break;
970 case 3: /* Set */
971 DPRINTF("Set%s%s%s%s\n",
972 insn & (1 << 3) ? " ATN" : "",
973 insn & (1 << 6) ? " ACK" : "",
974 insn & (1 << 9) ? " TM" : "",
975 insn & (1 << 10) ? " CC" : "");
976 if (insn & (1 << 3)) {
977 s->socl |= LSI_SOCL_ATN;
978 lsi_set_phase(s, PHASE_MO);
980 if (insn & (1 << 9)) {
981 BADF("Target mode not implemented\n");
982 exit(1);
984 if (insn & (1 << 10))
985 s->carry = 1;
986 break;
987 case 4: /* Clear */
988 DPRINTF("Clear%s%s%s%s\n",
989 insn & (1 << 3) ? " ATN" : "",
990 insn & (1 << 6) ? " ACK" : "",
991 insn & (1 << 9) ? " TM" : "",
992 insn & (1 << 10) ? " CC" : "");
993 if (insn & (1 << 3)) {
994 s->socl &= ~LSI_SOCL_ATN;
996 if (insn & (1 << 10))
997 s->carry = 0;
998 break;
1000 } else {
1001 uint8_t op0;
1002 uint8_t op1;
1003 uint8_t data8;
1004 int reg;
1005 int operator;
1006 #ifdef DEBUG_LSI
1007 static const char *opcode_names[3] =
1008 {"Write", "Read", "Read-Modify-Write"};
1009 static const char *operator_names[8] =
1010 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1011 #endif
1013 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1014 data8 = (insn >> 8) & 0xff;
1015 opcode = (insn >> 27) & 7;
1016 operator = (insn >> 24) & 7;
1017 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1018 opcode_names[opcode - 5], reg,
1019 operator_names[operator], data8, s->sfbr,
1020 (insn & (1 << 23)) ? " SFBR" : "");
1021 op0 = op1 = 0;
1022 switch (opcode) {
1023 case 5: /* From SFBR */
1024 op0 = s->sfbr;
1025 op1 = data8;
1026 break;
1027 case 6: /* To SFBR */
1028 if (operator)
1029 op0 = lsi_reg_readb(s, reg);
1030 op1 = data8;
1031 break;
1032 case 7: /* Read-modify-write */
1033 if (operator)
1034 op0 = lsi_reg_readb(s, reg);
1035 if (insn & (1 << 23)) {
1036 op1 = s->sfbr;
1037 } else {
1038 op1 = data8;
1040 break;
1043 switch (operator) {
1044 case 0: /* move */
1045 op0 = op1;
1046 break;
1047 case 1: /* Shift left */
1048 op1 = op0 >> 7;
1049 op0 = (op0 << 1) | s->carry;
1050 s->carry = op1;
1051 break;
1052 case 2: /* OR */
1053 op0 |= op1;
1054 break;
1055 case 3: /* XOR */
1056 op0 ^= op1;
1057 break;
1058 case 4: /* AND */
1059 op0 &= op1;
1060 break;
1061 case 5: /* SHR */
1062 op1 = op0 & 1;
1063 op0 = (op0 >> 1) | (s->carry << 7);
1064 s->carry = op1;
1065 break;
1066 case 6: /* ADD */
1067 op0 += op1;
1068 s->carry = op0 < op1;
1069 break;
1070 case 7: /* ADC */
1071 op0 += op1 + s->carry;
1072 if (s->carry)
1073 s->carry = op0 <= op1;
1074 else
1075 s->carry = op0 < op1;
1076 break;
1079 switch (opcode) {
1080 case 5: /* From SFBR */
1081 case 7: /* Read-modify-write */
1082 lsi_reg_writeb(s, reg, op0);
1083 break;
1084 case 6: /* To SFBR */
1085 s->sfbr = op0;
1086 break;
1089 break;
1091 case 2: /* Transfer Control. */
1093 int cond;
1094 int jmp;
1096 if ((insn & 0x002e0000) == 0) {
1097 DPRINTF("NOP\n");
1098 break;
1100 if (s->sist1 & LSI_SIST1_STO) {
1101 DPRINTF("Delayed select timeout\n");
1102 lsi_stop_script(s);
1103 break;
1105 cond = jmp = (insn & (1 << 19)) != 0;
1106 if (cond == jmp && (insn & (1 << 21))) {
1107 DPRINTF("Compare carry %d\n", s->carry == jmp);
1108 cond = s->carry != 0;
1110 if (cond == jmp && (insn & (1 << 17))) {
1111 DPRINTF("Compare phase %d %c= %d\n",
1112 (s->sstat1 & PHASE_MASK),
1113 jmp ? '=' : '!',
1114 ((insn >> 24) & 7));
1115 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1117 if (cond == jmp && (insn & (1 << 18))) {
1118 uint8_t mask;
1120 mask = (~insn >> 8) & 0xff;
1121 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1122 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1123 cond = (s->sfbr & mask) == (insn & mask);
1125 if (cond == jmp) {
1126 if (insn & (1 << 23)) {
1127 /* Relative address. */
1128 addr = s->dsp + sxt24(addr);
1130 switch ((insn >> 27) & 7) {
1131 case 0: /* Jump */
1132 DPRINTF("Jump to 0x%08x\n", addr);
1133 s->dsp = addr;
1134 break;
1135 case 1: /* Call */
1136 DPRINTF("Call 0x%08x\n", addr);
1137 s->temp = s->dsp;
1138 s->dsp = addr;
1139 break;
1140 case 2: /* Return */
1141 DPRINTF("Return to 0x%08x\n", s->temp);
1142 s->dsp = s->temp;
1143 break;
1144 case 3: /* Interrupt */
1145 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1146 if ((insn & (1 << 20)) != 0) {
1147 s->istat0 |= LSI_ISTAT0_INTF;
1148 lsi_update_irq(s);
1149 } else {
1150 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1152 break;
1153 default:
1154 DPRINTF("Illegal transfer control\n");
1155 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1156 break;
1158 } else {
1159 DPRINTF("Control condition failed\n");
1162 break;
1164 case 3:
1165 if ((insn & (1 << 29)) == 0) {
1166 /* Memory move. */
1167 uint32_t dest;
1168 /* ??? The docs imply the destination address is loaded into
1169 the TEMP register. However the Linux drivers rely on
1170 the value being presrved. */
1171 dest = read_dword(s, s->dsp);
1172 s->dsp += 4;
1173 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1174 } else {
1175 uint8_t data[7];
1176 int reg;
1177 int n;
1178 int i;
1180 if (insn & (1 << 28)) {
1181 addr = s->dsa + sxt24(addr);
1183 n = (insn & 7);
1184 reg = (insn >> 16) & 0xff;
1185 if (insn & (1 << 24)) {
1186 cpu_physical_memory_read(addr, data, n);
1187 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1188 addr, *(int *)data);
1189 for (i = 0; i < n; i++) {
1190 lsi_reg_writeb(s, reg + i, data[i]);
1192 } else {
1193 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1194 for (i = 0; i < n; i++) {
1195 data[i] = lsi_reg_readb(s, reg + i);
1197 cpu_physical_memory_write(addr, data, n);
1201 if (insn_processed > 10000 && !s->waiting) {
1202 /* Some windows drivers make the device spin waiting for a memory
1203 location to change. If we have been executed a lot of code then
1204 assume this is the case and force an unexpected device disconnect.
1205 This is apparently sufficient to beat the drivers into submission.
1207 if (!(s->sien0 & LSI_SIST0_UDC))
1208 fprintf(stderr, "inf. loop with UDC masked\n");
1209 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1210 lsi_disconnect(s);
1211 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1212 if (s->dcntl & LSI_DCNTL_SSM) {
1213 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1214 } else {
1215 goto again;
1218 DPRINTF("SCRIPTS execution stopped\n");
1221 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1223 uint8_t tmp;
1224 #define CASE_GET_REG32(name, addr) \
1225 case addr: return s->name & 0xff; \
1226 case addr + 1: return (s->name >> 8) & 0xff; \
1227 case addr + 2: return (s->name >> 16) & 0xff; \
1228 case addr + 3: return (s->name >> 24) & 0xff;
1230 #ifdef DEBUG_LSI_REG
1231 DPRINTF("Read reg %x\n", offset);
1232 #endif
1233 switch (offset) {
1234 case 0x00: /* SCNTL0 */
1235 return s->scntl0;
1236 case 0x01: /* SCNTL1 */
1237 return s->scntl1;
1238 case 0x02: /* SCNTL2 */
1239 return s->scntl2;
1240 case 0x03: /* SCNTL3 */
1241 return s->scntl3;
1242 case 0x04: /* SCID */
1243 return s->scid;
1244 case 0x05: /* SXFER */
1245 return s->sxfer;
1246 case 0x06: /* SDID */
1247 return s->sdid;
1248 case 0x07: /* GPREG0 */
1249 return 0x7f;
1250 case 0x08: /* Revision ID */
1251 return 0x00;
1252 case 0xa: /* SSID */
1253 return s->ssid;
1254 case 0xb: /* SBCL */
1255 /* ??? This is not correct. However it's (hopefully) only
1256 used for diagnostics, so should be ok. */
1257 return 0;
1258 case 0xc: /* DSTAT */
1259 tmp = s->dstat | 0x80;
1260 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1261 s->dstat = 0;
1262 lsi_update_irq(s);
1263 return tmp;
1264 case 0x0d: /* SSTAT0 */
1265 return s->sstat0;
1266 case 0x0e: /* SSTAT1 */
1267 return s->sstat1;
1268 case 0x0f: /* SSTAT2 */
1269 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1270 CASE_GET_REG32(dsa, 0x10)
1271 case 0x14: /* ISTAT0 */
1272 return s->istat0;
1273 case 0x16: /* MBOX0 */
1274 return s->mbox0;
1275 case 0x17: /* MBOX1 */
1276 return s->mbox1;
1277 case 0x18: /* CTEST0 */
1278 return 0xff;
1279 case 0x19: /* CTEST1 */
1280 return 0;
1281 case 0x1a: /* CTEST2 */
1282 tmp = LSI_CTEST2_DACK | LSI_CTEST2_CM;
1283 if (s->istat0 & LSI_ISTAT0_SIGP) {
1284 s->istat0 &= ~LSI_ISTAT0_SIGP;
1285 tmp |= LSI_CTEST2_SIGP;
1287 return tmp;
1288 case 0x1b: /* CTEST3 */
1289 return s->ctest3;
1290 CASE_GET_REG32(temp, 0x1c)
1291 case 0x20: /* DFIFO */
1292 return 0;
1293 case 0x21: /* CTEST4 */
1294 return s->ctest4;
1295 case 0x22: /* CTEST5 */
1296 return s->ctest5;
1297 case 0x23: /* CTEST6 */
1298 return 0;
1299 case 0x24: /* DBC[0:7] */
1300 return s->dbc & 0xff;
1301 case 0x25: /* DBC[8:15] */
1302 return (s->dbc >> 8) & 0xff;
1303 case 0x26: /* DBC[16->23] */
1304 return (s->dbc >> 16) & 0xff;
1305 case 0x27: /* DCMD */
1306 return s->dcmd;
1307 CASE_GET_REG32(dsp, 0x2c)
1308 CASE_GET_REG32(dsps, 0x30)
1309 CASE_GET_REG32(scratch[0], 0x34)
1310 case 0x38: /* DMODE */
1311 return s->dmode;
1312 case 0x39: /* DIEN */
1313 return s->dien;
1314 case 0x3b: /* DCNTL */
1315 return s->dcntl;
1316 case 0x40: /* SIEN0 */
1317 return s->sien0;
1318 case 0x41: /* SIEN1 */
1319 return s->sien1;
1320 case 0x42: /* SIST0 */
1321 tmp = s->sist0;
1322 s->sist0 = 0;
1323 lsi_update_irq(s);
1324 return tmp;
1325 case 0x43: /* SIST1 */
1326 tmp = s->sist1;
1327 s->sist1 = 0;
1328 lsi_update_irq(s);
1329 return tmp;
1330 case 0x47: /* GPCNTL0 */
1331 return 0x0f;
1332 case 0x48: /* STIME0 */
1333 return s->stime0;
1334 case 0x4a: /* RESPID0 */
1335 return s->respid0;
1336 case 0x4b: /* RESPID1 */
1337 return s->respid1;
1338 case 0x4d: /* STEST1 */
1339 return s->stest1;
1340 case 0x4e: /* STEST2 */
1341 return s->stest2;
1342 case 0x4f: /* STEST3 */
1343 return s->stest3;
1344 case 0x50: /* SIDL */
1345 /* This is needed by the linux drivers. We currently only update it
1346 during the MSG IN phase. */
1347 return s->sidl;
1348 case 0x52: /* STEST4 */
1349 return 0xe0;
1350 case 0x56: /* CCNTL0 */
1351 return s->ccntl0;
1352 case 0x57: /* CCNTL1 */
1353 return s->ccntl1;
1354 case 0x58: /* SBDL */
1355 /* Some drivers peek at the data bus during the MSG IN phase. */
1356 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1357 return s->msg[0];
1358 return 0;
1359 case 0x59: /* SBDL high */
1360 return 0;
1361 CASE_GET_REG32(mmrs, 0xa0)
1362 CASE_GET_REG32(mmws, 0xa4)
1363 CASE_GET_REG32(sfs, 0xa8)
1364 CASE_GET_REG32(drs, 0xac)
1365 CASE_GET_REG32(sbms, 0xb0)
1366 CASE_GET_REG32(dmbs, 0xb4)
1367 CASE_GET_REG32(dnad64, 0xb8)
1368 CASE_GET_REG32(pmjad1, 0xc0)
1369 CASE_GET_REG32(pmjad2, 0xc4)
1370 CASE_GET_REG32(rbc, 0xc8)
1371 CASE_GET_REG32(ua, 0xcc)
1372 CASE_GET_REG32(ia, 0xd4)
1373 CASE_GET_REG32(sbc, 0xd8)
1374 CASE_GET_REG32(csbc, 0xdc)
1376 if (offset >= 0x5c && offset < 0xa0) {
1377 int n;
1378 int shift;
1379 n = (offset - 0x58) >> 2;
1380 shift = (offset & 3) * 8;
1381 return (s->scratch[n] >> shift) & 0xff;
1383 BADF("readb 0x%x\n", offset);
1384 exit(1);
1385 #undef CASE_GET_REG32
1388 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1390 #define CASE_SET_REG32(name, addr) \
1391 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1392 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1393 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1394 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1396 #ifdef DEBUG_LSI_REG
1397 DPRINTF("Write reg %x = %02x\n", offset, val);
1398 #endif
1399 switch (offset) {
1400 case 0x00: /* SCNTL0 */
1401 s->scntl0 = val;
1402 if (val & LSI_SCNTL0_START) {
1403 BADF("Start sequence not implemented\n");
1405 break;
1406 case 0x01: /* SCNTL1 */
1407 s->scntl1 = val & ~LSI_SCNTL1_SST;
1408 if (val & LSI_SCNTL1_IARB) {
1409 BADF("Immediate Arbritration not implemented\n");
1411 if (val & LSI_SCNTL1_RST) {
1412 s->sstat0 |= LSI_SSTAT0_RST;
1413 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1414 } else {
1415 s->sstat0 &= ~LSI_SSTAT0_RST;
1417 break;
1418 case 0x02: /* SCNTL2 */
1419 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1420 s->scntl2 = val;
1421 break;
1422 case 0x03: /* SCNTL3 */
1423 s->scntl3 = val;
1424 break;
1425 case 0x04: /* SCID */
1426 s->scid = val;
1427 break;
1428 case 0x05: /* SXFER */
1429 s->sxfer = val;
1430 break;
1431 case 0x06: /* SDID */
1432 if ((val & 0xf) != (s->ssid & 0xf))
1433 BADF("Destination ID does not match SSID\n");
1434 s->sdid = val & 0xf;
1435 break;
1436 case 0x07: /* GPREG0 */
1437 break;
1438 case 0x08: /* SFBR */
1439 /* The CPU is not allowed to write to this register. However the
1440 SCRIPTS register move instructions are. */
1441 s->sfbr = val;
1442 break;
1443 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1444 /* Linux writes to these readonly registers on startup. */
1445 return;
1446 CASE_SET_REG32(dsa, 0x10)
1447 case 0x14: /* ISTAT0 */
1448 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1449 if (val & LSI_ISTAT0_ABRT) {
1450 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1452 if (val & LSI_ISTAT0_INTF) {
1453 s->istat0 &= ~LSI_ISTAT0_INTF;
1454 lsi_update_irq(s);
1456 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1457 DPRINTF("Woken by SIGP\n");
1458 s->waiting = 0;
1459 s->dsp = s->dnad;
1460 lsi_execute_script(s);
1462 if (val & LSI_ISTAT0_SRST) {
1463 lsi_soft_reset(s);
1465 break;
1466 case 0x16: /* MBOX0 */
1467 s->mbox0 = val;
1468 break;
1469 case 0x17: /* MBOX1 */
1470 s->mbox1 = val;
1471 break;
1472 case 0x1b: /* CTEST3 */
1473 s->ctest3 = val & 0x0f;
1474 break;
1475 CASE_SET_REG32(temp, 0x1c)
1476 case 0x21: /* CTEST4 */
1477 if (val & 7) {
1478 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1480 s->ctest4 = val;
1481 break;
1482 case 0x22: /* CTEST5 */
1483 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1484 BADF("CTEST5 DMA increment not implemented\n");
1486 s->ctest5 = val;
1487 break;
1488 case 0x2c: /* DSP[0:7] */
1489 s->dsp &= 0xffffff00;
1490 s->dsp |= val;
1491 break;
1492 case 0x2d: /* DSP[8:15] */
1493 s->dsp &= 0xffff00ff;
1494 s->dsp |= val << 8;
1495 break;
1496 case 0x2e: /* DSP[16:23] */
1497 s->dsp &= 0xff00ffff;
1498 s->dsp |= val << 16;
1499 break;
1500 case 0x2f: /* DSP[24:31] */
1501 s->dsp &= 0x00ffffff;
1502 s->dsp |= val << 24;
1503 if ((s->dmode & LSI_DMODE_MAN) == 0
1504 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1505 lsi_execute_script(s);
1506 break;
1507 CASE_SET_REG32(dsps, 0x30)
1508 CASE_SET_REG32(scratch[0], 0x34)
1509 case 0x38: /* DMODE */
1510 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1511 BADF("IO mappings not implemented\n");
1513 s->dmode = val;
1514 break;
1515 case 0x39: /* DIEN */
1516 s->dien = val;
1517 lsi_update_irq(s);
1518 break;
1519 case 0x3b: /* DCNTL */
1520 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1521 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1522 lsi_execute_script(s);
1523 break;
1524 case 0x40: /* SIEN0 */
1525 s->sien0 = val;
1526 lsi_update_irq(s);
1527 break;
1528 case 0x41: /* SIEN1 */
1529 s->sien1 = val;
1530 lsi_update_irq(s);
1531 break;
1532 case 0x47: /* GPCNTL0 */
1533 break;
1534 case 0x48: /* STIME0 */
1535 s->stime0 = val;
1536 break;
1537 case 0x49: /* STIME1 */
1538 if (val & 0xf) {
1539 DPRINTF("General purpose timer not implemented\n");
1540 /* ??? Raising the interrupt immediately seems to be sufficient
1541 to keep the FreeBSD driver happy. */
1542 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1544 break;
1545 case 0x4a: /* RESPID0 */
1546 s->respid0 = val;
1547 break;
1548 case 0x4b: /* RESPID1 */
1549 s->respid1 = val;
1550 break;
1551 case 0x4d: /* STEST1 */
1552 s->stest1 = val;
1553 break;
1554 case 0x4e: /* STEST2 */
1555 if (val & 1) {
1556 BADF("Low level mode not implemented\n");
1558 s->stest2 = val;
1559 break;
1560 case 0x4f: /* STEST3 */
1561 if (val & 0x41) {
1562 BADF("SCSI FIFO test mode not implemented\n");
1564 s->stest3 = val;
1565 break;
1566 case 0x56: /* CCNTL0 */
1567 s->ccntl0 = val;
1568 break;
1569 case 0x57: /* CCNTL1 */
1570 s->ccntl1 = val;
1571 break;
1572 CASE_SET_REG32(mmrs, 0xa0)
1573 CASE_SET_REG32(mmws, 0xa4)
1574 CASE_SET_REG32(sfs, 0xa8)
1575 CASE_SET_REG32(drs, 0xac)
1576 CASE_SET_REG32(sbms, 0xb0)
1577 CASE_SET_REG32(dmbs, 0xb4)
1578 CASE_SET_REG32(dnad64, 0xb8)
1579 CASE_SET_REG32(pmjad1, 0xc0)
1580 CASE_SET_REG32(pmjad2, 0xc4)
1581 CASE_SET_REG32(rbc, 0xc8)
1582 CASE_SET_REG32(ua, 0xcc)
1583 CASE_SET_REG32(ia, 0xd4)
1584 CASE_SET_REG32(sbc, 0xd8)
1585 CASE_SET_REG32(csbc, 0xdc)
1586 default:
1587 if (offset >= 0x5c && offset < 0xa0) {
1588 int n;
1589 int shift;
1590 n = (offset - 0x58) >> 2;
1591 shift = (offset & 3) * 8;
1592 s->scratch[n] &= ~(0xff << shift);
1593 s->scratch[n] |= (val & 0xff) << shift;
1594 } else {
1595 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1598 #undef CASE_SET_REG32
1601 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1603 LSIState *s = (LSIState *)opaque;
1605 lsi_reg_writeb(s, addr & 0xff, val);
1608 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1610 LSIState *s = (LSIState *)opaque;
1612 addr &= 0xff;
1613 lsi_reg_writeb(s, addr, val & 0xff);
1614 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1617 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1619 LSIState *s = (LSIState *)opaque;
1621 addr &= 0xff;
1622 lsi_reg_writeb(s, addr, val & 0xff);
1623 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1624 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1625 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1628 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1630 LSIState *s = (LSIState *)opaque;
1632 return lsi_reg_readb(s, addr & 0xff);
1635 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1637 LSIState *s = (LSIState *)opaque;
1638 uint32_t val;
1640 addr &= 0xff;
1641 val = lsi_reg_readb(s, addr);
1642 val |= lsi_reg_readb(s, addr + 1) << 8;
1643 return val;
1646 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1648 LSIState *s = (LSIState *)opaque;
1649 uint32_t val;
1650 addr &= 0xff;
1651 val = lsi_reg_readb(s, addr);
1652 val |= lsi_reg_readb(s, addr + 1) << 8;
1653 val |= lsi_reg_readb(s, addr + 2) << 16;
1654 val |= lsi_reg_readb(s, addr + 3) << 24;
1655 return val;
1658 static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1659 lsi_mmio_readb,
1660 lsi_mmio_readw,
1661 lsi_mmio_readl,
1664 static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1665 lsi_mmio_writeb,
1666 lsi_mmio_writew,
1667 lsi_mmio_writel,
1670 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1672 LSIState *s = (LSIState *)opaque;
1673 uint32_t newval;
1674 int shift;
1676 addr &= 0x1fff;
1677 newval = s->script_ram[addr >> 2];
1678 shift = (addr & 3) * 8;
1679 newval &= ~(0xff << shift);
1680 newval |= val << shift;
1681 s->script_ram[addr >> 2] = newval;
1684 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1686 LSIState *s = (LSIState *)opaque;
1687 uint32_t newval;
1689 addr &= 0x1fff;
1690 newval = s->script_ram[addr >> 2];
1691 if (addr & 2) {
1692 newval = (newval & 0xffff) | (val << 16);
1693 } else {
1694 newval = (newval & 0xffff0000) | val;
1696 s->script_ram[addr >> 2] = newval;
1700 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1702 LSIState *s = (LSIState *)opaque;
1704 addr &= 0x1fff;
1705 s->script_ram[addr >> 2] = val;
1708 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1710 LSIState *s = (LSIState *)opaque;
1711 uint32_t val;
1713 addr &= 0x1fff;
1714 val = s->script_ram[addr >> 2];
1715 val >>= (addr & 3) * 8;
1716 return val & 0xff;
1719 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1721 LSIState *s = (LSIState *)opaque;
1722 uint32_t val;
1724 addr &= 0x1fff;
1725 val = s->script_ram[addr >> 2];
1726 if (addr & 2)
1727 val >>= 16;
1728 return le16_to_cpu(val);
1731 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1733 LSIState *s = (LSIState *)opaque;
1735 addr &= 0x1fff;
1736 return le32_to_cpu(s->script_ram[addr >> 2]);
1739 static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1740 lsi_ram_readb,
1741 lsi_ram_readw,
1742 lsi_ram_readl,
1745 static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1746 lsi_ram_writeb,
1747 lsi_ram_writew,
1748 lsi_ram_writel,
1751 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1753 LSIState *s = (LSIState *)opaque;
1754 return lsi_reg_readb(s, addr & 0xff);
1757 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1759 LSIState *s = (LSIState *)opaque;
1760 uint32_t val;
1761 addr &= 0xff;
1762 val = lsi_reg_readb(s, addr);
1763 val |= lsi_reg_readb(s, addr + 1) << 8;
1764 return val;
1767 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1769 LSIState *s = (LSIState *)opaque;
1770 uint32_t val;
1771 addr &= 0xff;
1772 val = lsi_reg_readb(s, addr);
1773 val |= lsi_reg_readb(s, addr + 1) << 8;
1774 val |= lsi_reg_readb(s, addr + 2) << 16;
1775 val |= lsi_reg_readb(s, addr + 3) << 24;
1776 return val;
1779 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1781 LSIState *s = (LSIState *)opaque;
1782 lsi_reg_writeb(s, addr & 0xff, val);
1785 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1787 LSIState *s = (LSIState *)opaque;
1788 addr &= 0xff;
1789 lsi_reg_writeb(s, addr, val & 0xff);
1790 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1793 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1795 LSIState *s = (LSIState *)opaque;
1796 addr &= 0xff;
1797 lsi_reg_writeb(s, addr, val & 0xff);
1798 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1799 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1800 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1803 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1804 uint32_t addr, uint32_t size, int type)
1806 LSIState *s = (LSIState *)pci_dev;
1808 DPRINTF("Mapping IO at %08x\n", addr);
1810 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1811 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1812 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1813 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1814 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1815 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1818 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1819 uint32_t addr, uint32_t size, int type)
1821 LSIState *s = (LSIState *)pci_dev;
1823 DPRINTF("Mapping ram at %08x\n", addr);
1824 s->script_ram_base = addr;
1825 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1828 static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1829 uint32_t addr, uint32_t size, int type)
1831 LSIState *s = (LSIState *)pci_dev;
1833 DPRINTF("Mapping registers at %08x\n", addr);
1834 cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1837 void lsi_scsi_attach(void *opaque, BlockDriverState *bd, int id)
1839 LSIState *s = (LSIState *)opaque;
1841 if (id < 0) {
1842 for (id = 0; id < LSI_MAX_DEVS; id++) {
1843 if (s->scsi_dev[id] == NULL)
1844 break;
1847 if (id >= LSI_MAX_DEVS) {
1848 BADF("Bad Device ID %d\n", id);
1849 return;
1851 if (s->scsi_dev[id]) {
1852 DPRINTF("Destroying device %d\n", id);
1853 s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1855 DPRINTF("Attaching block device %d\n", id);
1856 s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1857 if (s->scsi_dev[id] == NULL)
1858 s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1861 void *lsi_scsi_init(PCIBus *bus, int devfn)
1863 LSIState *s;
1865 s = (LSIState *)pci_register_device(bus, "LSI53C895A SCSI HBA",
1866 sizeof(*s), devfn, NULL, NULL);
1867 if (s == NULL) {
1868 fprintf(stderr, "lsi-scsi: Failed to register PCI device\n");
1869 return NULL;
1872 s->pci_dev.config[0x00] = 0x00;
1873 s->pci_dev.config[0x01] = 0x10;
1874 s->pci_dev.config[0x02] = 0x12;
1875 s->pci_dev.config[0x03] = 0x00;
1876 s->pci_dev.config[0x0b] = 0x01;
1877 s->pci_dev.config[0x3d] = 0x01; /* interrupt pin 1 */
1879 s->mmio_io_addr = cpu_register_io_memory(0, lsi_mmio_readfn,
1880 lsi_mmio_writefn, s);
1881 s->ram_io_addr = cpu_register_io_memory(0, lsi_ram_readfn,
1882 lsi_ram_writefn, s);
1884 pci_register_io_region((struct PCIDevice *)s, 0, 256,
1885 PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
1886 pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
1887 PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
1888 pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
1889 PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
1890 s->queue = qemu_malloc(sizeof(lsi_queue));
1891 s->queue_len = 1;
1892 s->active_commands = 0;
1894 lsi_soft_reset(s);
1896 return s;