README: Add linux to macOS build info
[qemu/kevin.git] / linux-user / elfload.c
blob51794bbb4595f44b009ce1075598251ac58590f8
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
369 unsigned long real_start, test_page_addr;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 return hwcaps;
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
468 #undef GET_FEATURE
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
494 int i;
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
517 #define ELF_HWCAP get_elf_hwcap()
519 static uint32_t get_elf_hwcap(void)
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
527 /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
537 return hwcaps;
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
543 #ifdef TARGET_UNICORE32
545 #define ELF_START_MMAP 0x80000000
547 #define ELF_CLASS ELFCLASS32
548 #define ELF_DATA ELFDATA2LSB
549 #define ELF_ARCH EM_UNICORE32
551 static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
566 #define ELF_NREG 34
567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605 (*regs)[33] = env->regs[0]; /* XXX */
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE 4096
611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
613 #endif
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
627 #define ELF_CLASS ELFCLASS64
628 #define ELF_ARCH EM_SPARCV9
630 #define STACK_BIAS 2047
632 static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
635 #ifndef TARGET_ABI32
636 regs->tstate = 0;
637 #endif
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
641 #ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
656 #define ELF_CLASS ELFCLASS32
657 #define ELF_ARCH EM_SPARC
659 static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
669 #endif
670 #endif
672 #ifdef TARGET_PPC
674 #define ELF_MACHINE PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
681 #define ELF_CLASS ELFCLASS64
683 #else
685 #define ELF_CLASS ELFCLASS32
687 #endif
689 #define ELF_ARCH EM_PPC
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693 enum {
694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
733 #define ELF_HWCAP get_elf_hwcap()
735 static uint32_t get_elf_hwcap(void)
737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738 uint32_t features = 0;
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
742 #define GET_FEATURE(flag, feature) \
743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
749 } while (0)
750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
766 return features;
769 #define ELF_HWCAP2 get_elf_hwcap2()
771 static uint32_t get_elf_hwcap2(void)
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
776 #define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
789 return features;
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
801 #define DLINFO_ARCH_ITEMS 5
802 #define ARCH_DLINFO \
803 do { \
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
817 _regs->gpr[1] = infop->start_stack;
818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
819 if (get_ppc64_abi(infop) < 2) {
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
828 #endif
829 _regs->nip = infop->entry;
832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
833 #define ELF_NREG 48
834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
838 int i;
839 target_ulong ccr = 0;
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
842 (*regs)[i] = tswapreg(env->gpr[i]);
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
854 (*regs)[38] = tswapreg(ccr);
857 #define USE_ELF_CORE_DUMP
858 #define ELF_EXEC_PAGESIZE 4096
860 #endif
862 #ifdef TARGET_MIPS
864 #define ELF_START_MMAP 0x80000000
866 #ifdef TARGET_MIPS64
867 #define ELF_CLASS ELFCLASS64
868 #else
869 #define ELF_CLASS ELFCLASS32
870 #endif
871 #define ELF_ARCH EM_MIPS
873 static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
876 regs->cp0_status = 2 << CP0St_KSU;
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
881 /* See linux kernel: arch/mips/include/asm/elf.h. */
882 #define ELF_NREG 45
883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885 /* See linux kernel: arch/mips/include/asm/reg.h. */
886 enum {
887 #ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889 #else
890 TARGET_EF_R0 = 6,
891 #endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
905 int i;
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
910 (*regs)[TARGET_EF_R0] = 0;
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
926 #define USE_ELF_CORE_DUMP
927 #define ELF_EXEC_PAGESIZE 4096
929 #endif /* TARGET_MIPS */
931 #ifdef TARGET_MICROBLAZE
933 #define ELF_START_MMAP 0x80000000
935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
937 #define ELF_CLASS ELFCLASS32
938 #define ELF_ARCH EM_MICROBLAZE
940 static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
948 #define ELF_EXEC_PAGESIZE 4096
950 #define USE_ELF_CORE_DUMP
951 #define ELF_NREG 38
952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
957 int i, pos = 0;
959 for (i = 0; i < 32; i++) {
960 (*regs)[pos++] = tswapreg(env->regs[i]);
963 for (i = 0; i < 6; i++) {
964 (*regs)[pos++] = tswapreg(env->sregs[i]);
968 #endif /* TARGET_MICROBLAZE */
970 #ifdef TARGET_OPENRISC
972 #define ELF_START_MMAP 0x08000000
974 #define ELF_ARCH EM_OPENRISC
975 #define ELF_CLASS ELFCLASS32
976 #define ELF_DATA ELFDATA2MSB
978 static inline void init_thread(struct target_pt_regs *regs,
979 struct image_info *infop)
981 regs->pc = infop->entry;
982 regs->gpr[1] = infop->start_stack;
985 #define USE_ELF_CORE_DUMP
986 #define ELF_EXEC_PAGESIZE 8192
988 /* See linux kernel arch/openrisc/include/asm/elf.h. */
989 #define ELF_NREG 34 /* gprs and pc, sr */
990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
992 static void elf_core_copy_regs(target_elf_gregset_t *regs,
993 const CPUOpenRISCState *env)
995 int i;
997 for (i = 0; i < 32; i++) {
998 (*regs)[i] = tswapreg(env->gpr[i]);
1001 (*regs)[32] = tswapreg(env->pc);
1002 (*regs)[33] = tswapreg(env->sr);
1004 #define ELF_HWCAP 0
1005 #define ELF_PLATFORM NULL
1007 #endif /* TARGET_OPENRISC */
1009 #ifdef TARGET_SH4
1011 #define ELF_START_MMAP 0x80000000
1013 #define ELF_CLASS ELFCLASS32
1014 #define ELF_ARCH EM_SH
1016 static inline void init_thread(struct target_pt_regs *regs,
1017 struct image_info *infop)
1019 /* Check other registers XXXXX */
1020 regs->pc = infop->entry;
1021 regs->regs[15] = infop->start_stack;
1024 /* See linux kernel: arch/sh/include/asm/elf.h. */
1025 #define ELF_NREG 23
1026 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1028 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1029 enum {
1030 TARGET_REG_PC = 16,
1031 TARGET_REG_PR = 17,
1032 TARGET_REG_SR = 18,
1033 TARGET_REG_GBR = 19,
1034 TARGET_REG_MACH = 20,
1035 TARGET_REG_MACL = 21,
1036 TARGET_REG_SYSCALL = 22
1039 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1040 const CPUSH4State *env)
1042 int i;
1044 for (i = 0; i < 16; i++) {
1045 (*regs[i]) = tswapreg(env->gregs[i]);
1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_EXEC_PAGESIZE 4096
1060 enum {
1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1073 #define ELF_HWCAP get_elf_hwcap()
1075 static uint32_t get_elf_hwcap(void)
1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1078 uint32_t hwcap = 0;
1080 hwcap |= SH_CPU_HAS_FPU;
1082 if (cpu->env.features & SH_FEATURE_SH4A) {
1083 hwcap |= SH_CPU_HAS_LLSC;
1086 return hwcap;
1089 #endif
1091 #ifdef TARGET_CRIS
1093 #define ELF_START_MMAP 0x80000000
1095 #define ELF_CLASS ELFCLASS32
1096 #define ELF_ARCH EM_CRIS
1098 static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
1101 regs->erp = infop->entry;
1104 #define ELF_EXEC_PAGESIZE 8192
1106 #endif
1108 #ifdef TARGET_M68K
1110 #define ELF_START_MMAP 0x80000000
1112 #define ELF_CLASS ELFCLASS32
1113 #define ELF_ARCH EM_68K
1115 /* ??? Does this need to do anything?
1116 #define ELF_PLAT_INIT(_r) */
1118 static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
1121 regs->usp = infop->start_stack;
1122 regs->sr = 0;
1123 regs->pc = infop->entry;
1126 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1127 #define ELF_NREG 20
1128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1130 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1132 (*regs)[0] = tswapreg(env->dregs[1]);
1133 (*regs)[1] = tswapreg(env->dregs[2]);
1134 (*regs)[2] = tswapreg(env->dregs[3]);
1135 (*regs)[3] = tswapreg(env->dregs[4]);
1136 (*regs)[4] = tswapreg(env->dregs[5]);
1137 (*regs)[5] = tswapreg(env->dregs[6]);
1138 (*regs)[6] = tswapreg(env->dregs[7]);
1139 (*regs)[7] = tswapreg(env->aregs[0]);
1140 (*regs)[8] = tswapreg(env->aregs[1]);
1141 (*regs)[9] = tswapreg(env->aregs[2]);
1142 (*regs)[10] = tswapreg(env->aregs[3]);
1143 (*regs)[11] = tswapreg(env->aregs[4]);
1144 (*regs)[12] = tswapreg(env->aregs[5]);
1145 (*regs)[13] = tswapreg(env->aregs[6]);
1146 (*regs)[14] = tswapreg(env->dregs[0]);
1147 (*regs)[15] = tswapreg(env->aregs[7]);
1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1149 (*regs)[17] = tswapreg(env->sr);
1150 (*regs)[18] = tswapreg(env->pc);
1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1154 #define USE_ELF_CORE_DUMP
1155 #define ELF_EXEC_PAGESIZE 8192
1157 #endif
1159 #ifdef TARGET_ALPHA
1161 #define ELF_START_MMAP (0x30000000000ULL)
1163 #define ELF_CLASS ELFCLASS64
1164 #define ELF_ARCH EM_ALPHA
1166 static inline void init_thread(struct target_pt_regs *regs,
1167 struct image_info *infop)
1169 regs->pc = infop->entry;
1170 regs->ps = 8;
1171 regs->usp = infop->start_stack;
1174 #define ELF_EXEC_PAGESIZE 8192
1176 #endif /* TARGET_ALPHA */
1178 #ifdef TARGET_S390X
1180 #define ELF_START_MMAP (0x20000000000ULL)
1182 #define ELF_CLASS ELFCLASS64
1183 #define ELF_DATA ELFDATA2MSB
1184 #define ELF_ARCH EM_S390
1186 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1188 regs->psw.addr = infop->entry;
1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1190 regs->gprs[15] = infop->start_stack;
1193 #endif /* TARGET_S390X */
1195 #ifdef TARGET_TILEGX
1197 /* 42 bits real used address, a half for user mode */
1198 #define ELF_START_MMAP (0x00000020000000000ULL)
1200 #define elf_check_arch(x) ((x) == EM_TILEGX)
1202 #define ELF_CLASS ELFCLASS64
1203 #define ELF_DATA ELFDATA2LSB
1204 #define ELF_ARCH EM_TILEGX
1206 static inline void init_thread(struct target_pt_regs *regs,
1207 struct image_info *infop)
1209 regs->pc = infop->entry;
1210 regs->sp = infop->start_stack;
1214 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1216 #endif /* TARGET_TILEGX */
1218 #ifdef TARGET_HPPA
1220 #define ELF_START_MMAP 0x80000000
1221 #define ELF_CLASS ELFCLASS32
1222 #define ELF_ARCH EM_PARISC
1223 #define ELF_PLATFORM "PARISC"
1224 #define STACK_GROWS_DOWN 0
1225 #define STACK_ALIGNMENT 64
1227 static inline void init_thread(struct target_pt_regs *regs,
1228 struct image_info *infop)
1230 regs->iaoq[0] = infop->entry;
1231 regs->iaoq[1] = infop->entry + 4;
1232 regs->gr[23] = 0;
1233 regs->gr[24] = infop->arg_start;
1234 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1235 /* The top-of-stack contains a linkage buffer. */
1236 regs->gr[30] = infop->start_stack + 64;
1237 regs->gr[31] = infop->entry;
1240 #endif /* TARGET_HPPA */
1242 #ifndef ELF_PLATFORM
1243 #define ELF_PLATFORM (NULL)
1244 #endif
1246 #ifndef ELF_MACHINE
1247 #define ELF_MACHINE ELF_ARCH
1248 #endif
1250 #ifndef elf_check_arch
1251 #define elf_check_arch(x) ((x) == ELF_ARCH)
1252 #endif
1254 #ifndef ELF_HWCAP
1255 #define ELF_HWCAP 0
1256 #endif
1258 #ifndef STACK_GROWS_DOWN
1259 #define STACK_GROWS_DOWN 1
1260 #endif
1262 #ifndef STACK_ALIGNMENT
1263 #define STACK_ALIGNMENT 16
1264 #endif
1266 #ifdef TARGET_ABI32
1267 #undef ELF_CLASS
1268 #define ELF_CLASS ELFCLASS32
1269 #undef bswaptls
1270 #define bswaptls(ptr) bswap32s(ptr)
1271 #endif
1273 #include "elf.h"
1275 struct exec
1277 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1278 unsigned int a_text; /* length of text, in bytes */
1279 unsigned int a_data; /* length of data, in bytes */
1280 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1281 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1282 unsigned int a_entry; /* start address */
1283 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1284 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1288 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1289 #define OMAGIC 0407
1290 #define NMAGIC 0410
1291 #define ZMAGIC 0413
1292 #define QMAGIC 0314
1294 /* Necessary parameters */
1295 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1296 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1297 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1298 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1300 #define DLINFO_ITEMS 14
1302 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1304 memcpy(to, from, n);
1307 #ifdef BSWAP_NEEDED
1308 static void bswap_ehdr(struct elfhdr *ehdr)
1310 bswap16s(&ehdr->e_type); /* Object file type */
1311 bswap16s(&ehdr->e_machine); /* Architecture */
1312 bswap32s(&ehdr->e_version); /* Object file version */
1313 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1314 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1315 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1316 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1317 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1318 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1319 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1320 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1321 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1322 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1325 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1327 int i;
1328 for (i = 0; i < phnum; ++i, ++phdr) {
1329 bswap32s(&phdr->p_type); /* Segment type */
1330 bswap32s(&phdr->p_flags); /* Segment flags */
1331 bswaptls(&phdr->p_offset); /* Segment file offset */
1332 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1333 bswaptls(&phdr->p_paddr); /* Segment physical address */
1334 bswaptls(&phdr->p_filesz); /* Segment size in file */
1335 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1336 bswaptls(&phdr->p_align); /* Segment alignment */
1340 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1342 int i;
1343 for (i = 0; i < shnum; ++i, ++shdr) {
1344 bswap32s(&shdr->sh_name);
1345 bswap32s(&shdr->sh_type);
1346 bswaptls(&shdr->sh_flags);
1347 bswaptls(&shdr->sh_addr);
1348 bswaptls(&shdr->sh_offset);
1349 bswaptls(&shdr->sh_size);
1350 bswap32s(&shdr->sh_link);
1351 bswap32s(&shdr->sh_info);
1352 bswaptls(&shdr->sh_addralign);
1353 bswaptls(&shdr->sh_entsize);
1357 static void bswap_sym(struct elf_sym *sym)
1359 bswap32s(&sym->st_name);
1360 bswaptls(&sym->st_value);
1361 bswaptls(&sym->st_size);
1362 bswap16s(&sym->st_shndx);
1364 #else
1365 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1366 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1367 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1368 static inline void bswap_sym(struct elf_sym *sym) { }
1369 #endif
1371 #ifdef USE_ELF_CORE_DUMP
1372 static int elf_core_dump(int, const CPUArchState *);
1373 #endif /* USE_ELF_CORE_DUMP */
1374 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1376 /* Verify the portions of EHDR within E_IDENT for the target.
1377 This can be performed before bswapping the entire header. */
1378 static bool elf_check_ident(struct elfhdr *ehdr)
1380 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1381 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1382 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1383 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1384 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1385 && ehdr->e_ident[EI_DATA] == ELF_DATA
1386 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1389 /* Verify the portions of EHDR outside of E_IDENT for the target.
1390 This has to wait until after bswapping the header. */
1391 static bool elf_check_ehdr(struct elfhdr *ehdr)
1393 return (elf_check_arch(ehdr->e_machine)
1394 && ehdr->e_ehsize == sizeof(struct elfhdr)
1395 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1396 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1400 * 'copy_elf_strings()' copies argument/envelope strings from user
1401 * memory to free pages in kernel mem. These are in a format ready
1402 * to be put directly into the top of new user memory.
1405 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1406 abi_ulong p, abi_ulong stack_limit)
1408 char *tmp;
1409 int len, i;
1410 abi_ulong top = p;
1412 if (!p) {
1413 return 0; /* bullet-proofing */
1416 if (STACK_GROWS_DOWN) {
1417 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1418 for (i = argc - 1; i >= 0; --i) {
1419 tmp = argv[i];
1420 if (!tmp) {
1421 fprintf(stderr, "VFS: argc is wrong");
1422 exit(-1);
1424 len = strlen(tmp) + 1;
1425 tmp += len;
1427 if (len > (p - stack_limit)) {
1428 return 0;
1430 while (len) {
1431 int bytes_to_copy = (len > offset) ? offset : len;
1432 tmp -= bytes_to_copy;
1433 p -= bytes_to_copy;
1434 offset -= bytes_to_copy;
1435 len -= bytes_to_copy;
1437 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1439 if (offset == 0) {
1440 memcpy_to_target(p, scratch, top - p);
1441 top = p;
1442 offset = TARGET_PAGE_SIZE;
1446 if (p != top) {
1447 memcpy_to_target(p, scratch + offset, top - p);
1449 } else {
1450 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1451 for (i = 0; i < argc; ++i) {
1452 tmp = argv[i];
1453 if (!tmp) {
1454 fprintf(stderr, "VFS: argc is wrong");
1455 exit(-1);
1457 len = strlen(tmp) + 1;
1458 if (len > (stack_limit - p)) {
1459 return 0;
1461 while (len) {
1462 int bytes_to_copy = (len > remaining) ? remaining : len;
1464 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1466 tmp += bytes_to_copy;
1467 remaining -= bytes_to_copy;
1468 p += bytes_to_copy;
1469 len -= bytes_to_copy;
1471 if (remaining == 0) {
1472 memcpy_to_target(top, scratch, p - top);
1473 top = p;
1474 remaining = TARGET_PAGE_SIZE;
1478 if (p != top) {
1479 memcpy_to_target(top, scratch, p - top);
1483 return p;
1486 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1487 * argument/environment space. Newer kernels (>2.6.33) allow more,
1488 * dependent on stack size, but guarantee at least 32 pages for
1489 * backwards compatibility.
1491 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1493 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1494 struct image_info *info)
1496 abi_ulong size, error, guard;
1498 size = guest_stack_size;
1499 if (size < STACK_LOWER_LIMIT) {
1500 size = STACK_LOWER_LIMIT;
1502 guard = TARGET_PAGE_SIZE;
1503 if (guard < qemu_real_host_page_size) {
1504 guard = qemu_real_host_page_size;
1507 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1508 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1509 if (error == -1) {
1510 perror("mmap stack");
1511 exit(-1);
1514 /* We reserve one extra page at the top of the stack as guard. */
1515 if (STACK_GROWS_DOWN) {
1516 target_mprotect(error, guard, PROT_NONE);
1517 info->stack_limit = error + guard;
1518 return info->stack_limit + size - sizeof(void *);
1519 } else {
1520 target_mprotect(error + size, guard, PROT_NONE);
1521 info->stack_limit = error + size;
1522 return error;
1526 /* Map and zero the bss. We need to explicitly zero any fractional pages
1527 after the data section (i.e. bss). */
1528 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1530 uintptr_t host_start, host_map_start, host_end;
1532 last_bss = TARGET_PAGE_ALIGN(last_bss);
1534 /* ??? There is confusion between qemu_real_host_page_size and
1535 qemu_host_page_size here and elsewhere in target_mmap, which
1536 may lead to the end of the data section mapping from the file
1537 not being mapped. At least there was an explicit test and
1538 comment for that here, suggesting that "the file size must
1539 be known". The comment probably pre-dates the introduction
1540 of the fstat system call in target_mmap which does in fact
1541 find out the size. What isn't clear is if the workaround
1542 here is still actually needed. For now, continue with it,
1543 but merge it with the "normal" mmap that would allocate the bss. */
1545 host_start = (uintptr_t) g2h(elf_bss);
1546 host_end = (uintptr_t) g2h(last_bss);
1547 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1549 if (host_map_start < host_end) {
1550 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1551 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1552 if (p == MAP_FAILED) {
1553 perror("cannot mmap brk");
1554 exit(-1);
1558 /* Ensure that the bss page(s) are valid */
1559 if ((page_get_flags(last_bss-1) & prot) != prot) {
1560 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1563 if (host_start < host_map_start) {
1564 memset((void *)host_start, 0, host_map_start - host_start);
1568 #ifdef CONFIG_USE_FDPIC
1569 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1571 uint16_t n;
1572 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1574 /* elf32_fdpic_loadseg */
1575 n = info->nsegs;
1576 while (n--) {
1577 sp -= 12;
1578 put_user_u32(loadsegs[n].addr, sp+0);
1579 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1580 put_user_u32(loadsegs[n].p_memsz, sp+8);
1583 /* elf32_fdpic_loadmap */
1584 sp -= 4;
1585 put_user_u16(0, sp+0); /* version */
1586 put_user_u16(info->nsegs, sp+2); /* nsegs */
1588 info->personality = PER_LINUX_FDPIC;
1589 info->loadmap_addr = sp;
1591 return sp;
1593 #endif
1595 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1596 struct elfhdr *exec,
1597 struct image_info *info,
1598 struct image_info *interp_info)
1600 abi_ulong sp;
1601 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1602 int size;
1603 int i;
1604 abi_ulong u_rand_bytes;
1605 uint8_t k_rand_bytes[16];
1606 abi_ulong u_platform;
1607 const char *k_platform;
1608 const int n = sizeof(elf_addr_t);
1610 sp = p;
1612 #ifdef CONFIG_USE_FDPIC
1613 /* Needs to be before we load the env/argc/... */
1614 if (elf_is_fdpic(exec)) {
1615 /* Need 4 byte alignment for these structs */
1616 sp &= ~3;
1617 sp = loader_build_fdpic_loadmap(info, sp);
1618 info->other_info = interp_info;
1619 if (interp_info) {
1620 interp_info->other_info = info;
1621 sp = loader_build_fdpic_loadmap(interp_info, sp);
1624 #endif
1626 u_platform = 0;
1627 k_platform = ELF_PLATFORM;
1628 if (k_platform) {
1629 size_t len = strlen(k_platform) + 1;
1630 if (STACK_GROWS_DOWN) {
1631 sp -= (len + n - 1) & ~(n - 1);
1632 u_platform = sp;
1633 /* FIXME - check return value of memcpy_to_target() for failure */
1634 memcpy_to_target(sp, k_platform, len);
1635 } else {
1636 memcpy_to_target(sp, k_platform, len);
1637 u_platform = sp;
1638 sp += len + 1;
1642 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1643 * the argv and envp pointers.
1645 if (STACK_GROWS_DOWN) {
1646 sp = QEMU_ALIGN_DOWN(sp, 16);
1647 } else {
1648 sp = QEMU_ALIGN_UP(sp, 16);
1652 * Generate 16 random bytes for userspace PRNG seeding (not
1653 * cryptically secure but it's not the aim of QEMU).
1655 for (i = 0; i < 16; i++) {
1656 k_rand_bytes[i] = rand();
1658 if (STACK_GROWS_DOWN) {
1659 sp -= 16;
1660 u_rand_bytes = sp;
1661 /* FIXME - check return value of memcpy_to_target() for failure */
1662 memcpy_to_target(sp, k_rand_bytes, 16);
1663 } else {
1664 memcpy_to_target(sp, k_rand_bytes, 16);
1665 u_rand_bytes = sp;
1666 sp += 16;
1669 size = (DLINFO_ITEMS + 1) * 2;
1670 if (k_platform)
1671 size += 2;
1672 #ifdef DLINFO_ARCH_ITEMS
1673 size += DLINFO_ARCH_ITEMS * 2;
1674 #endif
1675 #ifdef ELF_HWCAP2
1676 size += 2;
1677 #endif
1678 size += envc + argc + 2;
1679 size += 1; /* argc itself */
1680 size *= n;
1682 /* Allocate space and finalize stack alignment for entry now. */
1683 if (STACK_GROWS_DOWN) {
1684 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1685 sp = u_argc;
1686 } else {
1687 u_argc = sp;
1688 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1691 u_argv = u_argc + n;
1692 u_envp = u_argv + (argc + 1) * n;
1693 u_auxv = u_envp + (envc + 1) * n;
1694 info->saved_auxv = u_auxv;
1695 info->arg_start = u_argv;
1696 info->arg_end = u_argv + argc * n;
1698 /* This is correct because Linux defines
1699 * elf_addr_t as Elf32_Off / Elf64_Off
1701 #define NEW_AUX_ENT(id, val) do { \
1702 put_user_ual(id, u_auxv); u_auxv += n; \
1703 put_user_ual(val, u_auxv); u_auxv += n; \
1704 } while(0)
1706 /* There must be exactly DLINFO_ITEMS entries here. */
1707 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1708 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1709 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1710 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1711 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1712 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1713 NEW_AUX_ENT(AT_ENTRY, info->entry);
1714 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1715 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1716 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1717 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1718 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1719 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1720 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1722 #ifdef ELF_HWCAP2
1723 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1724 #endif
1726 if (u_platform) {
1727 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1729 #ifdef ARCH_DLINFO
1731 * ARCH_DLINFO must come last so platform specific code can enforce
1732 * special alignment requirements on the AUXV if necessary (eg. PPC).
1734 ARCH_DLINFO;
1735 #endif
1736 NEW_AUX_ENT (AT_NULL, 0);
1737 #undef NEW_AUX_ENT
1739 info->auxv_len = u_argv - info->saved_auxv;
1741 put_user_ual(argc, u_argc);
1743 p = info->arg_strings;
1744 for (i = 0; i < argc; ++i) {
1745 put_user_ual(p, u_argv);
1746 u_argv += n;
1747 p += target_strlen(p) + 1;
1749 put_user_ual(0, u_argv);
1751 p = info->env_strings;
1752 for (i = 0; i < envc; ++i) {
1753 put_user_ual(p, u_envp);
1754 u_envp += n;
1755 p += target_strlen(p) + 1;
1757 put_user_ual(0, u_envp);
1759 return sp;
1762 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1763 /* If the guest doesn't have a validation function just agree */
1764 static int validate_guest_space(unsigned long guest_base,
1765 unsigned long guest_size)
1767 return 1;
1769 #endif
1771 unsigned long init_guest_space(unsigned long host_start,
1772 unsigned long host_size,
1773 unsigned long guest_start,
1774 bool fixed)
1776 unsigned long current_start, real_start;
1777 int flags;
1779 assert(host_start || host_size);
1781 /* If just a starting address is given, then just verify that
1782 * address. */
1783 if (host_start && !host_size) {
1784 if (validate_guest_space(host_start, host_size) == 1) {
1785 return host_start;
1786 } else {
1787 return (unsigned long)-1;
1791 /* Setup the initial flags and start address. */
1792 current_start = host_start & qemu_host_page_mask;
1793 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1794 if (fixed) {
1795 flags |= MAP_FIXED;
1798 /* Otherwise, a non-zero size region of memory needs to be mapped
1799 * and validated. */
1800 while (1) {
1801 unsigned long real_size = host_size;
1803 /* Do not use mmap_find_vma here because that is limited to the
1804 * guest address space. We are going to make the
1805 * guest address space fit whatever we're given.
1807 real_start = (unsigned long)
1808 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1809 if (real_start == (unsigned long)-1) {
1810 return (unsigned long)-1;
1813 /* Ensure the address is properly aligned. */
1814 if (real_start & ~qemu_host_page_mask) {
1815 munmap((void *)real_start, host_size);
1816 real_size = host_size + qemu_host_page_size;
1817 real_start = (unsigned long)
1818 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1819 if (real_start == (unsigned long)-1) {
1820 return (unsigned long)-1;
1822 real_start = HOST_PAGE_ALIGN(real_start);
1825 /* Check to see if the address is valid. */
1826 if (!host_start || real_start == current_start) {
1827 int valid = validate_guest_space(real_start - guest_start,
1828 real_size);
1829 if (valid == 1) {
1830 break;
1831 } else if (valid == -1) {
1832 return (unsigned long)-1;
1834 /* valid == 0, so try again. */
1837 /* That address didn't work. Unmap and try a different one.
1838 * The address the host picked because is typically right at
1839 * the top of the host address space and leaves the guest with
1840 * no usable address space. Resort to a linear search. We
1841 * already compensated for mmap_min_addr, so this should not
1842 * happen often. Probably means we got unlucky and host
1843 * address space randomization put a shared library somewhere
1844 * inconvenient.
1846 munmap((void *)real_start, host_size);
1847 current_start += qemu_host_page_size;
1848 if (host_start == current_start) {
1849 /* Theoretically possible if host doesn't have any suitably
1850 * aligned areas. Normally the first mmap will fail.
1852 return (unsigned long)-1;
1856 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1858 return real_start;
1861 static void probe_guest_base(const char *image_name,
1862 abi_ulong loaddr, abi_ulong hiaddr)
1864 /* Probe for a suitable guest base address, if the user has not set
1865 * it explicitly, and set guest_base appropriately.
1866 * In case of error we will print a suitable message and exit.
1868 const char *errmsg;
1869 if (!have_guest_base && !reserved_va) {
1870 unsigned long host_start, real_start, host_size;
1872 /* Round addresses to page boundaries. */
1873 loaddr &= qemu_host_page_mask;
1874 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1876 if (loaddr < mmap_min_addr) {
1877 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1878 } else {
1879 host_start = loaddr;
1880 if (host_start != loaddr) {
1881 errmsg = "Address overflow loading ELF binary";
1882 goto exit_errmsg;
1885 host_size = hiaddr - loaddr;
1887 /* Setup the initial guest memory space with ranges gleaned from
1888 * the ELF image that is being loaded.
1890 real_start = init_guest_space(host_start, host_size, loaddr, false);
1891 if (real_start == (unsigned long)-1) {
1892 errmsg = "Unable to find space for application";
1893 goto exit_errmsg;
1895 guest_base = real_start - loaddr;
1897 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1898 TARGET_ABI_FMT_lx " to 0x%lx\n",
1899 loaddr, real_start);
1901 return;
1903 exit_errmsg:
1904 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1905 exit(-1);
1909 /* Load an ELF image into the address space.
1911 IMAGE_NAME is the filename of the image, to use in error messages.
1912 IMAGE_FD is the open file descriptor for the image.
1914 BPRM_BUF is a copy of the beginning of the file; this of course
1915 contains the elf file header at offset 0. It is assumed that this
1916 buffer is sufficiently aligned to present no problems to the host
1917 in accessing data at aligned offsets within the buffer.
1919 On return: INFO values will be filled in, as necessary or available. */
1921 static void load_elf_image(const char *image_name, int image_fd,
1922 struct image_info *info, char **pinterp_name,
1923 char bprm_buf[BPRM_BUF_SIZE])
1925 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1926 struct elf_phdr *phdr;
1927 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1928 int i, retval;
1929 const char *errmsg;
1931 /* First of all, some simple consistency checks */
1932 errmsg = "Invalid ELF image for this architecture";
1933 if (!elf_check_ident(ehdr)) {
1934 goto exit_errmsg;
1936 bswap_ehdr(ehdr);
1937 if (!elf_check_ehdr(ehdr)) {
1938 goto exit_errmsg;
1941 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1942 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1943 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1944 } else {
1945 phdr = (struct elf_phdr *) alloca(i);
1946 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1947 if (retval != i) {
1948 goto exit_read;
1951 bswap_phdr(phdr, ehdr->e_phnum);
1953 #ifdef CONFIG_USE_FDPIC
1954 info->nsegs = 0;
1955 info->pt_dynamic_addr = 0;
1956 #endif
1958 mmap_lock();
1960 /* Find the maximum size of the image and allocate an appropriate
1961 amount of memory to handle that. */
1962 loaddr = -1, hiaddr = 0;
1963 for (i = 0; i < ehdr->e_phnum; ++i) {
1964 if (phdr[i].p_type == PT_LOAD) {
1965 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1966 if (a < loaddr) {
1967 loaddr = a;
1969 a = phdr[i].p_vaddr + phdr[i].p_memsz;
1970 if (a > hiaddr) {
1971 hiaddr = a;
1973 #ifdef CONFIG_USE_FDPIC
1974 ++info->nsegs;
1975 #endif
1979 load_addr = loaddr;
1980 if (ehdr->e_type == ET_DYN) {
1981 /* The image indicates that it can be loaded anywhere. Find a
1982 location that can hold the memory space required. If the
1983 image is pre-linked, LOADDR will be non-zero. Since we do
1984 not supply MAP_FIXED here we'll use that address if and
1985 only if it remains available. */
1986 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1987 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1988 -1, 0);
1989 if (load_addr == -1) {
1990 goto exit_perror;
1992 } else if (pinterp_name != NULL) {
1993 /* This is the main executable. Make sure that the low
1994 address does not conflict with MMAP_MIN_ADDR or the
1995 QEMU application itself. */
1996 probe_guest_base(image_name, loaddr, hiaddr);
1998 load_bias = load_addr - loaddr;
2000 #ifdef CONFIG_USE_FDPIC
2002 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2003 g_malloc(sizeof(*loadsegs) * info->nsegs);
2005 for (i = 0; i < ehdr->e_phnum; ++i) {
2006 switch (phdr[i].p_type) {
2007 case PT_DYNAMIC:
2008 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2009 break;
2010 case PT_LOAD:
2011 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2012 loadsegs->p_vaddr = phdr[i].p_vaddr;
2013 loadsegs->p_memsz = phdr[i].p_memsz;
2014 ++loadsegs;
2015 break;
2019 #endif
2021 info->load_bias = load_bias;
2022 info->load_addr = load_addr;
2023 info->entry = ehdr->e_entry + load_bias;
2024 info->start_code = -1;
2025 info->end_code = 0;
2026 info->start_data = -1;
2027 info->end_data = 0;
2028 info->brk = 0;
2029 info->elf_flags = ehdr->e_flags;
2031 for (i = 0; i < ehdr->e_phnum; i++) {
2032 struct elf_phdr *eppnt = phdr + i;
2033 if (eppnt->p_type == PT_LOAD) {
2034 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2035 int elf_prot = 0;
2037 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2038 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2039 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2041 vaddr = load_bias + eppnt->p_vaddr;
2042 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2043 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2045 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2046 elf_prot, MAP_PRIVATE | MAP_FIXED,
2047 image_fd, eppnt->p_offset - vaddr_po);
2048 if (error == -1) {
2049 goto exit_perror;
2052 vaddr_ef = vaddr + eppnt->p_filesz;
2053 vaddr_em = vaddr + eppnt->p_memsz;
2055 /* If the load segment requests extra zeros (e.g. bss), map it. */
2056 if (vaddr_ef < vaddr_em) {
2057 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2060 /* Find the full program boundaries. */
2061 if (elf_prot & PROT_EXEC) {
2062 if (vaddr < info->start_code) {
2063 info->start_code = vaddr;
2065 if (vaddr_ef > info->end_code) {
2066 info->end_code = vaddr_ef;
2069 if (elf_prot & PROT_WRITE) {
2070 if (vaddr < info->start_data) {
2071 info->start_data = vaddr;
2073 if (vaddr_ef > info->end_data) {
2074 info->end_data = vaddr_ef;
2076 if (vaddr_em > info->brk) {
2077 info->brk = vaddr_em;
2080 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2081 char *interp_name;
2083 if (*pinterp_name) {
2084 errmsg = "Multiple PT_INTERP entries";
2085 goto exit_errmsg;
2087 interp_name = malloc(eppnt->p_filesz);
2088 if (!interp_name) {
2089 goto exit_perror;
2092 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2093 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2094 eppnt->p_filesz);
2095 } else {
2096 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2097 eppnt->p_offset);
2098 if (retval != eppnt->p_filesz) {
2099 goto exit_perror;
2102 if (interp_name[eppnt->p_filesz - 1] != 0) {
2103 errmsg = "Invalid PT_INTERP entry";
2104 goto exit_errmsg;
2106 *pinterp_name = interp_name;
2110 if (info->end_data == 0) {
2111 info->start_data = info->end_code;
2112 info->end_data = info->end_code;
2113 info->brk = info->end_code;
2116 if (qemu_log_enabled()) {
2117 load_symbols(ehdr, image_fd, load_bias);
2120 mmap_unlock();
2122 close(image_fd);
2123 return;
2125 exit_read:
2126 if (retval >= 0) {
2127 errmsg = "Incomplete read of file header";
2128 goto exit_errmsg;
2130 exit_perror:
2131 errmsg = strerror(errno);
2132 exit_errmsg:
2133 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2134 exit(-1);
2137 static void load_elf_interp(const char *filename, struct image_info *info,
2138 char bprm_buf[BPRM_BUF_SIZE])
2140 int fd, retval;
2142 fd = open(path(filename), O_RDONLY);
2143 if (fd < 0) {
2144 goto exit_perror;
2147 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2148 if (retval < 0) {
2149 goto exit_perror;
2151 if (retval < BPRM_BUF_SIZE) {
2152 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2155 load_elf_image(filename, fd, info, NULL, bprm_buf);
2156 return;
2158 exit_perror:
2159 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2160 exit(-1);
2163 static int symfind(const void *s0, const void *s1)
2165 target_ulong addr = *(target_ulong *)s0;
2166 struct elf_sym *sym = (struct elf_sym *)s1;
2167 int result = 0;
2168 if (addr < sym->st_value) {
2169 result = -1;
2170 } else if (addr >= sym->st_value + sym->st_size) {
2171 result = 1;
2173 return result;
2176 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2178 #if ELF_CLASS == ELFCLASS32
2179 struct elf_sym *syms = s->disas_symtab.elf32;
2180 #else
2181 struct elf_sym *syms = s->disas_symtab.elf64;
2182 #endif
2184 // binary search
2185 struct elf_sym *sym;
2187 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2188 if (sym != NULL) {
2189 return s->disas_strtab + sym->st_name;
2192 return "";
2195 /* FIXME: This should use elf_ops.h */
2196 static int symcmp(const void *s0, const void *s1)
2198 struct elf_sym *sym0 = (struct elf_sym *)s0;
2199 struct elf_sym *sym1 = (struct elf_sym *)s1;
2200 return (sym0->st_value < sym1->st_value)
2201 ? -1
2202 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2205 /* Best attempt to load symbols from this ELF object. */
2206 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2208 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2209 struct elf_shdr *shdr;
2210 char *strings = NULL;
2211 struct syminfo *s = NULL;
2212 struct elf_sym *new_syms, *syms = NULL;
2214 shnum = hdr->e_shnum;
2215 i = shnum * sizeof(struct elf_shdr);
2216 shdr = (struct elf_shdr *)alloca(i);
2217 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2218 return;
2221 bswap_shdr(shdr, shnum);
2222 for (i = 0; i < shnum; ++i) {
2223 if (shdr[i].sh_type == SHT_SYMTAB) {
2224 sym_idx = i;
2225 str_idx = shdr[i].sh_link;
2226 goto found;
2230 /* There will be no symbol table if the file was stripped. */
2231 return;
2233 found:
2234 /* Now know where the strtab and symtab are. Snarf them. */
2235 s = g_try_new(struct syminfo, 1);
2236 if (!s) {
2237 goto give_up;
2240 i = shdr[str_idx].sh_size;
2241 s->disas_strtab = strings = g_try_malloc(i);
2242 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2243 goto give_up;
2246 i = shdr[sym_idx].sh_size;
2247 syms = g_try_malloc(i);
2248 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2249 goto give_up;
2252 nsyms = i / sizeof(struct elf_sym);
2253 for (i = 0; i < nsyms; ) {
2254 bswap_sym(syms + i);
2255 /* Throw away entries which we do not need. */
2256 if (syms[i].st_shndx == SHN_UNDEF
2257 || syms[i].st_shndx >= SHN_LORESERVE
2258 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2259 if (i < --nsyms) {
2260 syms[i] = syms[nsyms];
2262 } else {
2263 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2264 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2265 syms[i].st_value &= ~(target_ulong)1;
2266 #endif
2267 syms[i].st_value += load_bias;
2268 i++;
2272 /* No "useful" symbol. */
2273 if (nsyms == 0) {
2274 goto give_up;
2277 /* Attempt to free the storage associated with the local symbols
2278 that we threw away. Whether or not this has any effect on the
2279 memory allocation depends on the malloc implementation and how
2280 many symbols we managed to discard. */
2281 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2282 if (new_syms == NULL) {
2283 goto give_up;
2285 syms = new_syms;
2287 qsort(syms, nsyms, sizeof(*syms), symcmp);
2289 s->disas_num_syms = nsyms;
2290 #if ELF_CLASS == ELFCLASS32
2291 s->disas_symtab.elf32 = syms;
2292 #else
2293 s->disas_symtab.elf64 = syms;
2294 #endif
2295 s->lookup_symbol = lookup_symbolxx;
2296 s->next = syminfos;
2297 syminfos = s;
2299 return;
2301 give_up:
2302 g_free(s);
2303 g_free(strings);
2304 g_free(syms);
2307 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2309 struct image_info interp_info;
2310 struct elfhdr elf_ex;
2311 char *elf_interpreter = NULL;
2312 char *scratch;
2314 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2316 load_elf_image(bprm->filename, bprm->fd, info,
2317 &elf_interpreter, bprm->buf);
2319 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2320 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2321 when we load the interpreter. */
2322 elf_ex = *(struct elfhdr *)bprm->buf;
2324 /* Do this so that we can load the interpreter, if need be. We will
2325 change some of these later */
2326 bprm->p = setup_arg_pages(bprm, info);
2328 scratch = g_new0(char, TARGET_PAGE_SIZE);
2329 if (STACK_GROWS_DOWN) {
2330 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2331 bprm->p, info->stack_limit);
2332 info->file_string = bprm->p;
2333 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2334 bprm->p, info->stack_limit);
2335 info->env_strings = bprm->p;
2336 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2337 bprm->p, info->stack_limit);
2338 info->arg_strings = bprm->p;
2339 } else {
2340 info->arg_strings = bprm->p;
2341 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2342 bprm->p, info->stack_limit);
2343 info->env_strings = bprm->p;
2344 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2345 bprm->p, info->stack_limit);
2346 info->file_string = bprm->p;
2347 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2348 bprm->p, info->stack_limit);
2351 g_free(scratch);
2353 if (!bprm->p) {
2354 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2355 exit(-1);
2358 if (elf_interpreter) {
2359 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2361 /* If the program interpreter is one of these two, then assume
2362 an iBCS2 image. Otherwise assume a native linux image. */
2364 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2365 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2366 info->personality = PER_SVR4;
2368 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2369 and some applications "depend" upon this behavior. Since
2370 we do not have the power to recompile these, we emulate
2371 the SVr4 behavior. Sigh. */
2372 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2373 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2377 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2378 info, (elf_interpreter ? &interp_info : NULL));
2379 info->start_stack = bprm->p;
2381 /* If we have an interpreter, set that as the program's entry point.
2382 Copy the load_bias as well, to help PPC64 interpret the entry
2383 point as a function descriptor. Do this after creating elf tables
2384 so that we copy the original program entry point into the AUXV. */
2385 if (elf_interpreter) {
2386 info->load_bias = interp_info.load_bias;
2387 info->entry = interp_info.entry;
2388 free(elf_interpreter);
2391 #ifdef USE_ELF_CORE_DUMP
2392 bprm->core_dump = &elf_core_dump;
2393 #endif
2395 return 0;
2398 #ifdef USE_ELF_CORE_DUMP
2400 * Definitions to generate Intel SVR4-like core files.
2401 * These mostly have the same names as the SVR4 types with "target_elf_"
2402 * tacked on the front to prevent clashes with linux definitions,
2403 * and the typedef forms have been avoided. This is mostly like
2404 * the SVR4 structure, but more Linuxy, with things that Linux does
2405 * not support and which gdb doesn't really use excluded.
2407 * Fields we don't dump (their contents is zero) in linux-user qemu
2408 * are marked with XXX.
2410 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2412 * Porting ELF coredump for target is (quite) simple process. First you
2413 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2414 * the target resides):
2416 * #define USE_ELF_CORE_DUMP
2418 * Next you define type of register set used for dumping. ELF specification
2419 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2421 * typedef <target_regtype> target_elf_greg_t;
2422 * #define ELF_NREG <number of registers>
2423 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2425 * Last step is to implement target specific function that copies registers
2426 * from given cpu into just specified register set. Prototype is:
2428 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2429 * const CPUArchState *env);
2431 * Parameters:
2432 * regs - copy register values into here (allocated and zeroed by caller)
2433 * env - copy registers from here
2435 * Example for ARM target is provided in this file.
2438 /* An ELF note in memory */
2439 struct memelfnote {
2440 const char *name;
2441 size_t namesz;
2442 size_t namesz_rounded;
2443 int type;
2444 size_t datasz;
2445 size_t datasz_rounded;
2446 void *data;
2447 size_t notesz;
2450 struct target_elf_siginfo {
2451 abi_int si_signo; /* signal number */
2452 abi_int si_code; /* extra code */
2453 abi_int si_errno; /* errno */
2456 struct target_elf_prstatus {
2457 struct target_elf_siginfo pr_info; /* Info associated with signal */
2458 abi_short pr_cursig; /* Current signal */
2459 abi_ulong pr_sigpend; /* XXX */
2460 abi_ulong pr_sighold; /* XXX */
2461 target_pid_t pr_pid;
2462 target_pid_t pr_ppid;
2463 target_pid_t pr_pgrp;
2464 target_pid_t pr_sid;
2465 struct target_timeval pr_utime; /* XXX User time */
2466 struct target_timeval pr_stime; /* XXX System time */
2467 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2468 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2469 target_elf_gregset_t pr_reg; /* GP registers */
2470 abi_int pr_fpvalid; /* XXX */
2473 #define ELF_PRARGSZ (80) /* Number of chars for args */
2475 struct target_elf_prpsinfo {
2476 char pr_state; /* numeric process state */
2477 char pr_sname; /* char for pr_state */
2478 char pr_zomb; /* zombie */
2479 char pr_nice; /* nice val */
2480 abi_ulong pr_flag; /* flags */
2481 target_uid_t pr_uid;
2482 target_gid_t pr_gid;
2483 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2484 /* Lots missing */
2485 char pr_fname[16]; /* filename of executable */
2486 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2489 /* Here is the structure in which status of each thread is captured. */
2490 struct elf_thread_status {
2491 QTAILQ_ENTRY(elf_thread_status) ets_link;
2492 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2493 #if 0
2494 elf_fpregset_t fpu; /* NT_PRFPREG */
2495 struct task_struct *thread;
2496 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2497 #endif
2498 struct memelfnote notes[1];
2499 int num_notes;
2502 struct elf_note_info {
2503 struct memelfnote *notes;
2504 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2505 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2507 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2508 #if 0
2510 * Current version of ELF coredump doesn't support
2511 * dumping fp regs etc.
2513 elf_fpregset_t *fpu;
2514 elf_fpxregset_t *xfpu;
2515 int thread_status_size;
2516 #endif
2517 int notes_size;
2518 int numnote;
2521 struct vm_area_struct {
2522 target_ulong vma_start; /* start vaddr of memory region */
2523 target_ulong vma_end; /* end vaddr of memory region */
2524 abi_ulong vma_flags; /* protection etc. flags for the region */
2525 QTAILQ_ENTRY(vm_area_struct) vma_link;
2528 struct mm_struct {
2529 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2530 int mm_count; /* number of mappings */
2533 static struct mm_struct *vma_init(void);
2534 static void vma_delete(struct mm_struct *);
2535 static int vma_add_mapping(struct mm_struct *, target_ulong,
2536 target_ulong, abi_ulong);
2537 static int vma_get_mapping_count(const struct mm_struct *);
2538 static struct vm_area_struct *vma_first(const struct mm_struct *);
2539 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2540 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2541 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2542 unsigned long flags);
2544 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2545 static void fill_note(struct memelfnote *, const char *, int,
2546 unsigned int, void *);
2547 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2548 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2549 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2550 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2551 static size_t note_size(const struct memelfnote *);
2552 static void free_note_info(struct elf_note_info *);
2553 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2554 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2555 static int core_dump_filename(const TaskState *, char *, size_t);
2557 static int dump_write(int, const void *, size_t);
2558 static int write_note(struct memelfnote *, int);
2559 static int write_note_info(struct elf_note_info *, int);
2561 #ifdef BSWAP_NEEDED
2562 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2564 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2565 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2566 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2567 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2568 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2569 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2570 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2571 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2572 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2573 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2574 /* cpu times are not filled, so we skip them */
2575 /* regs should be in correct format already */
2576 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2579 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2581 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2582 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2583 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2584 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2585 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2586 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2587 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2590 static void bswap_note(struct elf_note *en)
2592 bswap32s(&en->n_namesz);
2593 bswap32s(&en->n_descsz);
2594 bswap32s(&en->n_type);
2596 #else
2597 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2598 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2599 static inline void bswap_note(struct elf_note *en) { }
2600 #endif /* BSWAP_NEEDED */
2603 * Minimal support for linux memory regions. These are needed
2604 * when we are finding out what memory exactly belongs to
2605 * emulated process. No locks needed here, as long as
2606 * thread that received the signal is stopped.
2609 static struct mm_struct *vma_init(void)
2611 struct mm_struct *mm;
2613 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2614 return (NULL);
2616 mm->mm_count = 0;
2617 QTAILQ_INIT(&mm->mm_mmap);
2619 return (mm);
2622 static void vma_delete(struct mm_struct *mm)
2624 struct vm_area_struct *vma;
2626 while ((vma = vma_first(mm)) != NULL) {
2627 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2628 g_free(vma);
2630 g_free(mm);
2633 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2634 target_ulong end, abi_ulong flags)
2636 struct vm_area_struct *vma;
2638 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2639 return (-1);
2641 vma->vma_start = start;
2642 vma->vma_end = end;
2643 vma->vma_flags = flags;
2645 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2646 mm->mm_count++;
2648 return (0);
2651 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2653 return (QTAILQ_FIRST(&mm->mm_mmap));
2656 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2658 return (QTAILQ_NEXT(vma, vma_link));
2661 static int vma_get_mapping_count(const struct mm_struct *mm)
2663 return (mm->mm_count);
2667 * Calculate file (dump) size of given memory region.
2669 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2671 /* if we cannot even read the first page, skip it */
2672 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2673 return (0);
2676 * Usually we don't dump executable pages as they contain
2677 * non-writable code that debugger can read directly from
2678 * target library etc. However, thread stacks are marked
2679 * also executable so we read in first page of given region
2680 * and check whether it contains elf header. If there is
2681 * no elf header, we dump it.
2683 if (vma->vma_flags & PROT_EXEC) {
2684 char page[TARGET_PAGE_SIZE];
2686 copy_from_user(page, vma->vma_start, sizeof (page));
2687 if ((page[EI_MAG0] == ELFMAG0) &&
2688 (page[EI_MAG1] == ELFMAG1) &&
2689 (page[EI_MAG2] == ELFMAG2) &&
2690 (page[EI_MAG3] == ELFMAG3)) {
2692 * Mappings are possibly from ELF binary. Don't dump
2693 * them.
2695 return (0);
2699 return (vma->vma_end - vma->vma_start);
2702 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2703 unsigned long flags)
2705 struct mm_struct *mm = (struct mm_struct *)priv;
2707 vma_add_mapping(mm, start, end, flags);
2708 return (0);
2711 static void fill_note(struct memelfnote *note, const char *name, int type,
2712 unsigned int sz, void *data)
2714 unsigned int namesz;
2716 namesz = strlen(name) + 1;
2717 note->name = name;
2718 note->namesz = namesz;
2719 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2720 note->type = type;
2721 note->datasz = sz;
2722 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2724 note->data = data;
2727 * We calculate rounded up note size here as specified by
2728 * ELF document.
2730 note->notesz = sizeof (struct elf_note) +
2731 note->namesz_rounded + note->datasz_rounded;
2734 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2735 uint32_t flags)
2737 (void) memset(elf, 0, sizeof(*elf));
2739 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2740 elf->e_ident[EI_CLASS] = ELF_CLASS;
2741 elf->e_ident[EI_DATA] = ELF_DATA;
2742 elf->e_ident[EI_VERSION] = EV_CURRENT;
2743 elf->e_ident[EI_OSABI] = ELF_OSABI;
2745 elf->e_type = ET_CORE;
2746 elf->e_machine = machine;
2747 elf->e_version = EV_CURRENT;
2748 elf->e_phoff = sizeof(struct elfhdr);
2749 elf->e_flags = flags;
2750 elf->e_ehsize = sizeof(struct elfhdr);
2751 elf->e_phentsize = sizeof(struct elf_phdr);
2752 elf->e_phnum = segs;
2754 bswap_ehdr(elf);
2757 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2759 phdr->p_type = PT_NOTE;
2760 phdr->p_offset = offset;
2761 phdr->p_vaddr = 0;
2762 phdr->p_paddr = 0;
2763 phdr->p_filesz = sz;
2764 phdr->p_memsz = 0;
2765 phdr->p_flags = 0;
2766 phdr->p_align = 0;
2768 bswap_phdr(phdr, 1);
2771 static size_t note_size(const struct memelfnote *note)
2773 return (note->notesz);
2776 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2777 const TaskState *ts, int signr)
2779 (void) memset(prstatus, 0, sizeof (*prstatus));
2780 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2781 prstatus->pr_pid = ts->ts_tid;
2782 prstatus->pr_ppid = getppid();
2783 prstatus->pr_pgrp = getpgrp();
2784 prstatus->pr_sid = getsid(0);
2786 bswap_prstatus(prstatus);
2789 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2791 char *base_filename;
2792 unsigned int i, len;
2794 (void) memset(psinfo, 0, sizeof (*psinfo));
2796 len = ts->info->arg_end - ts->info->arg_start;
2797 if (len >= ELF_PRARGSZ)
2798 len = ELF_PRARGSZ - 1;
2799 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2800 return -EFAULT;
2801 for (i = 0; i < len; i++)
2802 if (psinfo->pr_psargs[i] == 0)
2803 psinfo->pr_psargs[i] = ' ';
2804 psinfo->pr_psargs[len] = 0;
2806 psinfo->pr_pid = getpid();
2807 psinfo->pr_ppid = getppid();
2808 psinfo->pr_pgrp = getpgrp();
2809 psinfo->pr_sid = getsid(0);
2810 psinfo->pr_uid = getuid();
2811 psinfo->pr_gid = getgid();
2813 base_filename = g_path_get_basename(ts->bprm->filename);
2815 * Using strncpy here is fine: at max-length,
2816 * this field is not NUL-terminated.
2818 (void) strncpy(psinfo->pr_fname, base_filename,
2819 sizeof(psinfo->pr_fname));
2821 g_free(base_filename);
2822 bswap_psinfo(psinfo);
2823 return (0);
2826 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2828 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2829 elf_addr_t orig_auxv = auxv;
2830 void *ptr;
2831 int len = ts->info->auxv_len;
2834 * Auxiliary vector is stored in target process stack. It contains
2835 * {type, value} pairs that we need to dump into note. This is not
2836 * strictly necessary but we do it here for sake of completeness.
2839 /* read in whole auxv vector and copy it to memelfnote */
2840 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2841 if (ptr != NULL) {
2842 fill_note(note, "CORE", NT_AUXV, len, ptr);
2843 unlock_user(ptr, auxv, len);
2848 * Constructs name of coredump file. We have following convention
2849 * for the name:
2850 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2852 * Returns 0 in case of success, -1 otherwise (errno is set).
2854 static int core_dump_filename(const TaskState *ts, char *buf,
2855 size_t bufsize)
2857 char timestamp[64];
2858 char *base_filename = NULL;
2859 struct timeval tv;
2860 struct tm tm;
2862 assert(bufsize >= PATH_MAX);
2864 if (gettimeofday(&tv, NULL) < 0) {
2865 (void) fprintf(stderr, "unable to get current timestamp: %s",
2866 strerror(errno));
2867 return (-1);
2870 base_filename = g_path_get_basename(ts->bprm->filename);
2871 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2872 localtime_r(&tv.tv_sec, &tm));
2873 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2874 base_filename, timestamp, (int)getpid());
2875 g_free(base_filename);
2877 return (0);
2880 static int dump_write(int fd, const void *ptr, size_t size)
2882 const char *bufp = (const char *)ptr;
2883 ssize_t bytes_written, bytes_left;
2884 struct rlimit dumpsize;
2885 off_t pos;
2887 bytes_written = 0;
2888 getrlimit(RLIMIT_CORE, &dumpsize);
2889 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2890 if (errno == ESPIPE) { /* not a seekable stream */
2891 bytes_left = size;
2892 } else {
2893 return pos;
2895 } else {
2896 if (dumpsize.rlim_cur <= pos) {
2897 return -1;
2898 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2899 bytes_left = size;
2900 } else {
2901 size_t limit_left=dumpsize.rlim_cur - pos;
2902 bytes_left = limit_left >= size ? size : limit_left ;
2907 * In normal conditions, single write(2) should do but
2908 * in case of socket etc. this mechanism is more portable.
2910 do {
2911 bytes_written = write(fd, bufp, bytes_left);
2912 if (bytes_written < 0) {
2913 if (errno == EINTR)
2914 continue;
2915 return (-1);
2916 } else if (bytes_written == 0) { /* eof */
2917 return (-1);
2919 bufp += bytes_written;
2920 bytes_left -= bytes_written;
2921 } while (bytes_left > 0);
2923 return (0);
2926 static int write_note(struct memelfnote *men, int fd)
2928 struct elf_note en;
2930 en.n_namesz = men->namesz;
2931 en.n_type = men->type;
2932 en.n_descsz = men->datasz;
2934 bswap_note(&en);
2936 if (dump_write(fd, &en, sizeof(en)) != 0)
2937 return (-1);
2938 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2939 return (-1);
2940 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2941 return (-1);
2943 return (0);
2946 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2948 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2949 TaskState *ts = (TaskState *)cpu->opaque;
2950 struct elf_thread_status *ets;
2952 ets = g_malloc0(sizeof (*ets));
2953 ets->num_notes = 1; /* only prstatus is dumped */
2954 fill_prstatus(&ets->prstatus, ts, 0);
2955 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2956 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2957 &ets->prstatus);
2959 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2961 info->notes_size += note_size(&ets->notes[0]);
2964 static void init_note_info(struct elf_note_info *info)
2966 /* Initialize the elf_note_info structure so that it is at
2967 * least safe to call free_note_info() on it. Must be
2968 * called before calling fill_note_info().
2970 memset(info, 0, sizeof (*info));
2971 QTAILQ_INIT(&info->thread_list);
2974 static int fill_note_info(struct elf_note_info *info,
2975 long signr, const CPUArchState *env)
2977 #define NUMNOTES 3
2978 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2979 TaskState *ts = (TaskState *)cpu->opaque;
2980 int i;
2982 info->notes = g_new0(struct memelfnote, NUMNOTES);
2983 if (info->notes == NULL)
2984 return (-ENOMEM);
2985 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2986 if (info->prstatus == NULL)
2987 return (-ENOMEM);
2988 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2989 if (info->prstatus == NULL)
2990 return (-ENOMEM);
2993 * First fill in status (and registers) of current thread
2994 * including process info & aux vector.
2996 fill_prstatus(info->prstatus, ts, signr);
2997 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2998 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2999 sizeof (*info->prstatus), info->prstatus);
3000 fill_psinfo(info->psinfo, ts);
3001 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3002 sizeof (*info->psinfo), info->psinfo);
3003 fill_auxv_note(&info->notes[2], ts);
3004 info->numnote = 3;
3006 info->notes_size = 0;
3007 for (i = 0; i < info->numnote; i++)
3008 info->notes_size += note_size(&info->notes[i]);
3010 /* read and fill status of all threads */
3011 cpu_list_lock();
3012 CPU_FOREACH(cpu) {
3013 if (cpu == thread_cpu) {
3014 continue;
3016 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3018 cpu_list_unlock();
3020 return (0);
3023 static void free_note_info(struct elf_note_info *info)
3025 struct elf_thread_status *ets;
3027 while (!QTAILQ_EMPTY(&info->thread_list)) {
3028 ets = QTAILQ_FIRST(&info->thread_list);
3029 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3030 g_free(ets);
3033 g_free(info->prstatus);
3034 g_free(info->psinfo);
3035 g_free(info->notes);
3038 static int write_note_info(struct elf_note_info *info, int fd)
3040 struct elf_thread_status *ets;
3041 int i, error = 0;
3043 /* write prstatus, psinfo and auxv for current thread */
3044 for (i = 0; i < info->numnote; i++)
3045 if ((error = write_note(&info->notes[i], fd)) != 0)
3046 return (error);
3048 /* write prstatus for each thread */
3049 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3050 if ((error = write_note(&ets->notes[0], fd)) != 0)
3051 return (error);
3054 return (0);
3058 * Write out ELF coredump.
3060 * See documentation of ELF object file format in:
3061 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3063 * Coredump format in linux is following:
3065 * 0 +----------------------+ \
3066 * | ELF header | ET_CORE |
3067 * +----------------------+ |
3068 * | ELF program headers | |--- headers
3069 * | - NOTE section | |
3070 * | - PT_LOAD sections | |
3071 * +----------------------+ /
3072 * | NOTEs: |
3073 * | - NT_PRSTATUS |
3074 * | - NT_PRSINFO |
3075 * | - NT_AUXV |
3076 * +----------------------+ <-- aligned to target page
3077 * | Process memory dump |
3078 * : :
3079 * . .
3080 * : :
3081 * | |
3082 * +----------------------+
3084 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3085 * NT_PRSINFO -> struct elf_prpsinfo
3086 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3088 * Format follows System V format as close as possible. Current
3089 * version limitations are as follows:
3090 * - no floating point registers are dumped
3092 * Function returns 0 in case of success, negative errno otherwise.
3094 * TODO: make this work also during runtime: it should be
3095 * possible to force coredump from running process and then
3096 * continue processing. For example qemu could set up SIGUSR2
3097 * handler (provided that target process haven't registered
3098 * handler for that) that does the dump when signal is received.
3100 static int elf_core_dump(int signr, const CPUArchState *env)
3102 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3103 const TaskState *ts = (const TaskState *)cpu->opaque;
3104 struct vm_area_struct *vma = NULL;
3105 char corefile[PATH_MAX];
3106 struct elf_note_info info;
3107 struct elfhdr elf;
3108 struct elf_phdr phdr;
3109 struct rlimit dumpsize;
3110 struct mm_struct *mm = NULL;
3111 off_t offset = 0, data_offset = 0;
3112 int segs = 0;
3113 int fd = -1;
3115 init_note_info(&info);
3117 errno = 0;
3118 getrlimit(RLIMIT_CORE, &dumpsize);
3119 if (dumpsize.rlim_cur == 0)
3120 return 0;
3122 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3123 return (-errno);
3125 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3126 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3127 return (-errno);
3130 * Walk through target process memory mappings and
3131 * set up structure containing this information. After
3132 * this point vma_xxx functions can be used.
3134 if ((mm = vma_init()) == NULL)
3135 goto out;
3137 walk_memory_regions(mm, vma_walker);
3138 segs = vma_get_mapping_count(mm);
3141 * Construct valid coredump ELF header. We also
3142 * add one more segment for notes.
3144 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3145 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3146 goto out;
3148 /* fill in the in-memory version of notes */
3149 if (fill_note_info(&info, signr, env) < 0)
3150 goto out;
3152 offset += sizeof (elf); /* elf header */
3153 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3155 /* write out notes program header */
3156 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3158 offset += info.notes_size;
3159 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3160 goto out;
3163 * ELF specification wants data to start at page boundary so
3164 * we align it here.
3166 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3169 * Write program headers for memory regions mapped in
3170 * the target process.
3172 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3173 (void) memset(&phdr, 0, sizeof (phdr));
3175 phdr.p_type = PT_LOAD;
3176 phdr.p_offset = offset;
3177 phdr.p_vaddr = vma->vma_start;
3178 phdr.p_paddr = 0;
3179 phdr.p_filesz = vma_dump_size(vma);
3180 offset += phdr.p_filesz;
3181 phdr.p_memsz = vma->vma_end - vma->vma_start;
3182 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3183 if (vma->vma_flags & PROT_WRITE)
3184 phdr.p_flags |= PF_W;
3185 if (vma->vma_flags & PROT_EXEC)
3186 phdr.p_flags |= PF_X;
3187 phdr.p_align = ELF_EXEC_PAGESIZE;
3189 bswap_phdr(&phdr, 1);
3190 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3191 goto out;
3196 * Next we write notes just after program headers. No
3197 * alignment needed here.
3199 if (write_note_info(&info, fd) < 0)
3200 goto out;
3202 /* align data to page boundary */
3203 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3204 goto out;
3207 * Finally we can dump process memory into corefile as well.
3209 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3210 abi_ulong addr;
3211 abi_ulong end;
3213 end = vma->vma_start + vma_dump_size(vma);
3215 for (addr = vma->vma_start; addr < end;
3216 addr += TARGET_PAGE_SIZE) {
3217 char page[TARGET_PAGE_SIZE];
3218 int error;
3221 * Read in page from target process memory and
3222 * write it to coredump file.
3224 error = copy_from_user(page, addr, sizeof (page));
3225 if (error != 0) {
3226 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3227 addr);
3228 errno = -error;
3229 goto out;
3231 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3232 goto out;
3236 out:
3237 free_note_info(&info);
3238 if (mm != NULL)
3239 vma_delete(mm);
3240 (void) close(fd);
3242 if (errno != 0)
3243 return (-errno);
3244 return (0);
3246 #endif /* USE_ELF_CORE_DUMP */
3248 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3250 init_thread(regs, infop);