migration/multifd: not use multifd during postcopy
[qemu/kevin.git] / migration / ram.c
blobd4f33a4f2fd4a0bb4fdc98d97d9e4b75edccfc35
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
60 /***********************************************************/
61 /* ram save/restore */
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 return buffer_is_zero(p, size);
84 XBZRLECacheStats xbzrle_counters;
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
102 static void XBZRLE_cache_lock(void)
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
108 static void XBZRLE_cache_unlock(void)
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
115 * xbzrle_cache_resize: resize the xbzrle cache
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
122 * Returns 0 for success or -1 for error
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 PageCache *new_cache;
130 int64_t ret = 0;
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
144 XBZRLE_cache_lock();
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
161 static bool ramblock_is_ignored(RAMBlock *block)
163 return !qemu_ram_is_migratable(block) ||
164 (migrate_ignore_shared() && qemu_ram_is_shared(block));
167 /* Should be holding either ram_list.mutex, or the RCU lock. */
168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
169 INTERNAL_RAMBLOCK_FOREACH(block) \
170 if (ramblock_is_ignored(block)) {} else
172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
173 INTERNAL_RAMBLOCK_FOREACH(block) \
174 if (!qemu_ram_is_migratable(block)) {} else
176 #undef RAMBLOCK_FOREACH
178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180 RAMBlock *block;
181 int ret = 0;
183 RCU_READ_LOCK_GUARD();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
191 return ret;
194 static void ramblock_recv_map_init(void)
196 RAMBlock *rb;
198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
199 assert(!rb->receivedmap);
200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
207 rb->receivedmap);
210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
221 size_t nr)
223 bitmap_set_atomic(rb->receivedmap,
224 ramblock_recv_bitmap_offset(host_addr, rb),
225 nr);
228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 * Returns >0 if success with sent bytes, or <0 if error.
235 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
236 const char *block_name)
238 RAMBlock *block = qemu_ram_block_by_name(block_name);
239 unsigned long *le_bitmap, nbits;
240 uint64_t size;
242 if (!block) {
243 error_report("%s: invalid block name: %s", __func__, block_name);
244 return -1;
247 nbits = block->used_length >> TARGET_PAGE_BITS;
250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
251 * machines we may need 4 more bytes for padding (see below
252 * comment). So extend it a bit before hand.
254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
257 * Always use little endian when sending the bitmap. This is
258 * required that when source and destination VMs are not using the
259 * same endianess. (Note: big endian won't work.)
261 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263 /* Size of the bitmap, in bytes */
264 size = DIV_ROUND_UP(nbits, 8);
267 * size is always aligned to 8 bytes for 64bit machines, but it
268 * may not be true for 32bit machines. We need this padding to
269 * make sure the migration can survive even between 32bit and
270 * 64bit machines.
272 size = ROUND_UP(size, 8);
274 qemu_put_be64(file, size);
275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 * Mark as an end, in case the middle part is screwed up due to
278 * some "misterious" reason.
280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
281 qemu_fflush(file);
283 g_free(le_bitmap);
285 if (qemu_file_get_error(file)) {
286 return qemu_file_get_error(file);
289 return size + sizeof(size);
293 * An outstanding page request, on the source, having been received
294 * and queued
296 struct RAMSrcPageRequest {
297 RAMBlock *rb;
298 hwaddr offset;
299 hwaddr len;
301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
304 /* State of RAM for migration */
305 struct RAMState {
306 /* QEMUFile used for this migration */
307 QEMUFile *f;
308 /* Last block that we have visited searching for dirty pages */
309 RAMBlock *last_seen_block;
310 /* Last block from where we have sent data */
311 RAMBlock *last_sent_block;
312 /* Last dirty target page we have sent */
313 ram_addr_t last_page;
314 /* last ram version we have seen */
315 uint32_t last_version;
316 /* We are in the first round */
317 bool ram_bulk_stage;
318 /* The free page optimization is enabled */
319 bool fpo_enabled;
320 /* How many times we have dirty too many pages */
321 int dirty_rate_high_cnt;
322 /* these variables are used for bitmap sync */
323 /* last time we did a full bitmap_sync */
324 int64_t time_last_bitmap_sync;
325 /* bytes transferred at start_time */
326 uint64_t bytes_xfer_prev;
327 /* number of dirty pages since start_time */
328 uint64_t num_dirty_pages_period;
329 /* xbzrle misses since the beginning of the period */
330 uint64_t xbzrle_cache_miss_prev;
332 /* compression statistics since the beginning of the period */
333 /* amount of count that no free thread to compress data */
334 uint64_t compress_thread_busy_prev;
335 /* amount bytes after compression */
336 uint64_t compressed_size_prev;
337 /* amount of compressed pages */
338 uint64_t compress_pages_prev;
340 /* total handled target pages at the beginning of period */
341 uint64_t target_page_count_prev;
342 /* total handled target pages since start */
343 uint64_t target_page_count;
344 /* number of dirty bits in the bitmap */
345 uint64_t migration_dirty_pages;
346 /* Protects modification of the bitmap and migration dirty pages */
347 QemuMutex bitmap_mutex;
348 /* The RAMBlock used in the last src_page_requests */
349 RAMBlock *last_req_rb;
350 /* Queue of outstanding page requests from the destination */
351 QemuMutex src_page_req_mutex;
352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
354 typedef struct RAMState RAMState;
356 static RAMState *ram_state;
358 static NotifierWithReturnList precopy_notifier_list;
360 void precopy_infrastructure_init(void)
362 notifier_with_return_list_init(&precopy_notifier_list);
365 void precopy_add_notifier(NotifierWithReturn *n)
367 notifier_with_return_list_add(&precopy_notifier_list, n);
370 void precopy_remove_notifier(NotifierWithReturn *n)
372 notifier_with_return_remove(n);
375 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377 PrecopyNotifyData pnd;
378 pnd.reason = reason;
379 pnd.errp = errp;
381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
384 void precopy_enable_free_page_optimization(void)
386 if (!ram_state) {
387 return;
390 ram_state->fpo_enabled = true;
393 uint64_t ram_bytes_remaining(void)
395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
399 MigrationStats ram_counters;
401 /* used by the search for pages to send */
402 struct PageSearchStatus {
403 /* Current block being searched */
404 RAMBlock *block;
405 /* Current page to search from */
406 unsigned long page;
407 /* Set once we wrap around */
408 bool complete_round;
410 typedef struct PageSearchStatus PageSearchStatus;
412 CompressionStats compression_counters;
414 struct CompressParam {
415 bool done;
416 bool quit;
417 bool zero_page;
418 QEMUFile *file;
419 QemuMutex mutex;
420 QemuCond cond;
421 RAMBlock *block;
422 ram_addr_t offset;
424 /* internally used fields */
425 z_stream stream;
426 uint8_t *originbuf;
428 typedef struct CompressParam CompressParam;
430 struct DecompressParam {
431 bool done;
432 bool quit;
433 QemuMutex mutex;
434 QemuCond cond;
435 void *des;
436 uint8_t *compbuf;
437 int len;
438 z_stream stream;
440 typedef struct DecompressParam DecompressParam;
442 static CompressParam *comp_param;
443 static QemuThread *compress_threads;
444 /* comp_done_cond is used to wake up the migration thread when
445 * one of the compression threads has finished the compression.
446 * comp_done_lock is used to co-work with comp_done_cond.
448 static QemuMutex comp_done_lock;
449 static QemuCond comp_done_cond;
450 /* The empty QEMUFileOps will be used by file in CompressParam */
451 static const QEMUFileOps empty_ops = { };
453 static QEMUFile *decomp_file;
454 static DecompressParam *decomp_param;
455 static QemuThread *decompress_threads;
456 static QemuMutex decomp_done_lock;
457 static QemuCond decomp_done_cond;
459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
460 ram_addr_t offset, uint8_t *source_buf);
462 static void *do_data_compress(void *opaque)
464 CompressParam *param = opaque;
465 RAMBlock *block;
466 ram_addr_t offset;
467 bool zero_page;
469 qemu_mutex_lock(&param->mutex);
470 while (!param->quit) {
471 if (param->block) {
472 block = param->block;
473 offset = param->offset;
474 param->block = NULL;
475 qemu_mutex_unlock(&param->mutex);
477 zero_page = do_compress_ram_page(param->file, &param->stream,
478 block, offset, param->originbuf);
480 qemu_mutex_lock(&comp_done_lock);
481 param->done = true;
482 param->zero_page = zero_page;
483 qemu_cond_signal(&comp_done_cond);
484 qemu_mutex_unlock(&comp_done_lock);
486 qemu_mutex_lock(&param->mutex);
487 } else {
488 qemu_cond_wait(&param->cond, &param->mutex);
491 qemu_mutex_unlock(&param->mutex);
493 return NULL;
496 static void compress_threads_save_cleanup(void)
498 int i, thread_count;
500 if (!migrate_use_compression() || !comp_param) {
501 return;
504 thread_count = migrate_compress_threads();
505 for (i = 0; i < thread_count; i++) {
507 * we use it as a indicator which shows if the thread is
508 * properly init'd or not
510 if (!comp_param[i].file) {
511 break;
514 qemu_mutex_lock(&comp_param[i].mutex);
515 comp_param[i].quit = true;
516 qemu_cond_signal(&comp_param[i].cond);
517 qemu_mutex_unlock(&comp_param[i].mutex);
519 qemu_thread_join(compress_threads + i);
520 qemu_mutex_destroy(&comp_param[i].mutex);
521 qemu_cond_destroy(&comp_param[i].cond);
522 deflateEnd(&comp_param[i].stream);
523 g_free(comp_param[i].originbuf);
524 qemu_fclose(comp_param[i].file);
525 comp_param[i].file = NULL;
527 qemu_mutex_destroy(&comp_done_lock);
528 qemu_cond_destroy(&comp_done_cond);
529 g_free(compress_threads);
530 g_free(comp_param);
531 compress_threads = NULL;
532 comp_param = NULL;
535 static int compress_threads_save_setup(void)
537 int i, thread_count;
539 if (!migrate_use_compression()) {
540 return 0;
542 thread_count = migrate_compress_threads();
543 compress_threads = g_new0(QemuThread, thread_count);
544 comp_param = g_new0(CompressParam, thread_count);
545 qemu_cond_init(&comp_done_cond);
546 qemu_mutex_init(&comp_done_lock);
547 for (i = 0; i < thread_count; i++) {
548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
549 if (!comp_param[i].originbuf) {
550 goto exit;
553 if (deflateInit(&comp_param[i].stream,
554 migrate_compress_level()) != Z_OK) {
555 g_free(comp_param[i].originbuf);
556 goto exit;
559 /* comp_param[i].file is just used as a dummy buffer to save data,
560 * set its ops to empty.
562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
563 comp_param[i].done = true;
564 comp_param[i].quit = false;
565 qemu_mutex_init(&comp_param[i].mutex);
566 qemu_cond_init(&comp_param[i].cond);
567 qemu_thread_create(compress_threads + i, "compress",
568 do_data_compress, comp_param + i,
569 QEMU_THREAD_JOINABLE);
571 return 0;
573 exit:
574 compress_threads_save_cleanup();
575 return -1;
578 /* Multiple fd's */
580 #define MULTIFD_MAGIC 0x11223344U
581 #define MULTIFD_VERSION 1
583 #define MULTIFD_FLAG_SYNC (1 << 0)
585 /* This value needs to be a multiple of qemu_target_page_size() */
586 #define MULTIFD_PACKET_SIZE (512 * 1024)
588 typedef struct {
589 uint32_t magic;
590 uint32_t version;
591 unsigned char uuid[16]; /* QemuUUID */
592 uint8_t id;
593 uint8_t unused1[7]; /* Reserved for future use */
594 uint64_t unused2[4]; /* Reserved for future use */
595 } __attribute__((packed)) MultiFDInit_t;
597 typedef struct {
598 uint32_t magic;
599 uint32_t version;
600 uint32_t flags;
601 /* maximum number of allocated pages */
602 uint32_t pages_alloc;
603 uint32_t pages_used;
604 /* size of the next packet that contains pages */
605 uint32_t next_packet_size;
606 uint64_t packet_num;
607 uint64_t unused[4]; /* Reserved for future use */
608 char ramblock[256];
609 uint64_t offset[];
610 } __attribute__((packed)) MultiFDPacket_t;
612 typedef struct {
613 /* number of used pages */
614 uint32_t used;
615 /* number of allocated pages */
616 uint32_t allocated;
617 /* global number of generated multifd packets */
618 uint64_t packet_num;
619 /* offset of each page */
620 ram_addr_t *offset;
621 /* pointer to each page */
622 struct iovec *iov;
623 RAMBlock *block;
624 } MultiFDPages_t;
626 typedef struct {
627 /* this fields are not changed once the thread is created */
628 /* channel number */
629 uint8_t id;
630 /* channel thread name */
631 char *name;
632 /* channel thread id */
633 QemuThread thread;
634 /* communication channel */
635 QIOChannel *c;
636 /* sem where to wait for more work */
637 QemuSemaphore sem;
638 /* this mutex protects the following parameters */
639 QemuMutex mutex;
640 /* is this channel thread running */
641 bool running;
642 /* should this thread finish */
643 bool quit;
644 /* thread has work to do */
645 int pending_job;
646 /* array of pages to sent */
647 MultiFDPages_t *pages;
648 /* packet allocated len */
649 uint32_t packet_len;
650 /* pointer to the packet */
651 MultiFDPacket_t *packet;
652 /* multifd flags for each packet */
653 uint32_t flags;
654 /* size of the next packet that contains pages */
655 uint32_t next_packet_size;
656 /* global number of generated multifd packets */
657 uint64_t packet_num;
658 /* thread local variables */
659 /* packets sent through this channel */
660 uint64_t num_packets;
661 /* pages sent through this channel */
662 uint64_t num_pages;
663 /* syncs main thread and channels */
664 QemuSemaphore sem_sync;
665 } MultiFDSendParams;
667 typedef struct {
668 /* this fields are not changed once the thread is created */
669 /* channel number */
670 uint8_t id;
671 /* channel thread name */
672 char *name;
673 /* channel thread id */
674 QemuThread thread;
675 /* communication channel */
676 QIOChannel *c;
677 /* this mutex protects the following parameters */
678 QemuMutex mutex;
679 /* is this channel thread running */
680 bool running;
681 /* should this thread finish */
682 bool quit;
683 /* array of pages to receive */
684 MultiFDPages_t *pages;
685 /* packet allocated len */
686 uint32_t packet_len;
687 /* pointer to the packet */
688 MultiFDPacket_t *packet;
689 /* multifd flags for each packet */
690 uint32_t flags;
691 /* global number of generated multifd packets */
692 uint64_t packet_num;
693 /* thread local variables */
694 /* size of the next packet that contains pages */
695 uint32_t next_packet_size;
696 /* packets sent through this channel */
697 uint64_t num_packets;
698 /* pages sent through this channel */
699 uint64_t num_pages;
700 /* syncs main thread and channels */
701 QemuSemaphore sem_sync;
702 } MultiFDRecvParams;
704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
706 MultiFDInit_t msg = {};
707 int ret;
709 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
710 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 msg.id = p->id;
712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
715 if (ret != 0) {
716 return -1;
718 return 0;
721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
723 MultiFDInit_t msg;
724 int ret;
726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
727 if (ret != 0) {
728 return -1;
731 msg.magic = be32_to_cpu(msg.magic);
732 msg.version = be32_to_cpu(msg.version);
734 if (msg.magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet magic %x "
736 "expected %x", msg.magic, MULTIFD_MAGIC);
737 return -1;
740 if (msg.version != MULTIFD_VERSION) {
741 error_setg(errp, "multifd: received packet version %d "
742 "expected %d", msg.version, MULTIFD_VERSION);
743 return -1;
746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
750 error_setg(errp, "multifd: received uuid '%s' and expected "
751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
752 g_free(uuid);
753 g_free(msg_uuid);
754 return -1;
757 if (msg.id > migrate_multifd_channels()) {
758 error_setg(errp, "multifd: received channel version %d "
759 "expected %d", msg.version, MULTIFD_VERSION);
760 return -1;
763 return msg.id;
766 static MultiFDPages_t *multifd_pages_init(size_t size)
768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
770 pages->allocated = size;
771 pages->iov = g_new0(struct iovec, size);
772 pages->offset = g_new0(ram_addr_t, size);
774 return pages;
777 static void multifd_pages_clear(MultiFDPages_t *pages)
779 pages->used = 0;
780 pages->allocated = 0;
781 pages->packet_num = 0;
782 pages->block = NULL;
783 g_free(pages->iov);
784 pages->iov = NULL;
785 g_free(pages->offset);
786 pages->offset = NULL;
787 g_free(pages);
790 static void multifd_send_fill_packet(MultiFDSendParams *p)
792 MultiFDPacket_t *packet = p->packet;
793 int i;
795 packet->flags = cpu_to_be32(p->flags);
796 packet->pages_alloc = cpu_to_be32(p->pages->allocated);
797 packet->pages_used = cpu_to_be32(p->pages->used);
798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
799 packet->packet_num = cpu_to_be64(p->packet_num);
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
812 MultiFDPacket_t *packet = p->packet;
813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
814 RAMBlock *block;
815 int i;
817 packet->magic = be32_to_cpu(packet->magic);
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
825 packet->version = be32_to_cpu(packet->version);
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
833 p->flags = be32_to_cpu(packet->flags);
835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
837 * If we received a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
840 if (packet->pages_alloc > pages_max * 100) {
841 error_setg(errp, "multifd: received packet "
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
844 return -1;
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
852 p->pages = multifd_pages_init(packet->pages_alloc);
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
857 error_setg(errp, "multifd: received packet "
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
860 return -1;
863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
864 p->packet_num = be64_to_cpu(packet->packet_num);
866 if (p->pages->used == 0) {
867 return 0;
870 /* make sure that ramblock is 0 terminated */
871 packet->ramblock[255] = 0;
872 block = qemu_ram_block_by_name(packet->ramblock);
873 if (!block) {
874 error_setg(errp, "multifd: unknown ram block %s",
875 packet->ramblock);
876 return -1;
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
886 return -1;
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
892 return 0;
895 struct {
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
901 /* send channels ready */
902 QemuSemaphore channels_ready;
904 * Have we already run terminate threads. There is a race when it
905 * happens that we got one error while we are exiting.
906 * We will use atomic operations. Only valid values are 0 and 1.
908 int exiting;
909 } *multifd_send_state;
912 * How we use multifd_send_state->pages and channel->pages?
914 * We create a pages for each channel, and a main one. Each time that
915 * we need to send a batch of pages we interchange the ones between
916 * multifd_send_state and the channel that is sending it. There are
917 * two reasons for that:
918 * - to not have to do so many mallocs during migration
919 * - to make easier to know what to free at the end of migration
921 * This way we always know who is the owner of each "pages" struct,
922 * and we don't need any locking. It belongs to the migration thread
923 * or to the channel thread. Switching is safe because the migration
924 * thread is using the channel mutex when changing it, and the channel
925 * have to had finish with its own, otherwise pending_job can't be
926 * false.
929 static int multifd_send_pages(RAMState *rs)
931 int i;
932 static int next_channel;
933 MultiFDSendParams *p = NULL; /* make happy gcc */
934 MultiFDPages_t *pages = multifd_send_state->pages;
935 uint64_t transferred;
937 if (atomic_read(&multifd_send_state->exiting)) {
938 return -1;
941 qemu_sem_wait(&multifd_send_state->channels_ready);
942 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
943 p = &multifd_send_state->params[i];
945 qemu_mutex_lock(&p->mutex);
946 if (p->quit) {
947 error_report("%s: channel %d has already quit!", __func__, i);
948 qemu_mutex_unlock(&p->mutex);
949 return -1;
951 if (!p->pending_job) {
952 p->pending_job++;
953 next_channel = (i + 1) % migrate_multifd_channels();
954 break;
956 qemu_mutex_unlock(&p->mutex);
958 assert(!p->pages->used);
959 assert(!p->pages->block);
961 p->packet_num = multifd_send_state->packet_num++;
962 multifd_send_state->pages = p->pages;
963 p->pages = pages;
964 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
965 qemu_file_update_transfer(rs->f, transferred);
966 ram_counters.multifd_bytes += transferred;
967 ram_counters.transferred += transferred;;
968 qemu_mutex_unlock(&p->mutex);
969 qemu_sem_post(&p->sem);
971 return 1;
974 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
976 MultiFDPages_t *pages = multifd_send_state->pages;
978 if (!pages->block) {
979 pages->block = block;
982 if (pages->block == block) {
983 pages->offset[pages->used] = offset;
984 pages->iov[pages->used].iov_base = block->host + offset;
985 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
986 pages->used++;
988 if (pages->used < pages->allocated) {
989 return 1;
993 if (multifd_send_pages(rs) < 0) {
994 return -1;
997 if (pages->block != block) {
998 return multifd_queue_page(rs, block, offset);
1001 return 1;
1004 static void multifd_send_terminate_threads(Error *err)
1006 int i;
1008 trace_multifd_send_terminate_threads(err != NULL);
1010 if (err) {
1011 MigrationState *s = migrate_get_current();
1012 migrate_set_error(s, err);
1013 if (s->state == MIGRATION_STATUS_SETUP ||
1014 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1015 s->state == MIGRATION_STATUS_DEVICE ||
1016 s->state == MIGRATION_STATUS_ACTIVE) {
1017 migrate_set_state(&s->state, s->state,
1018 MIGRATION_STATUS_FAILED);
1023 * We don't want to exit each threads twice. Depending on where
1024 * we get the error, or if there are two independent errors in two
1025 * threads at the same time, we can end calling this function
1026 * twice.
1028 if (atomic_xchg(&multifd_send_state->exiting, 1)) {
1029 return;
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1035 qemu_mutex_lock(&p->mutex);
1036 p->quit = true;
1037 qemu_sem_post(&p->sem);
1038 qemu_mutex_unlock(&p->mutex);
1042 void multifd_save_cleanup(void)
1044 int i;
1046 if (!migrate_use_multifd()) {
1047 return;
1049 multifd_send_terminate_threads(NULL);
1050 for (i = 0; i < migrate_multifd_channels(); i++) {
1051 MultiFDSendParams *p = &multifd_send_state->params[i];
1053 if (p->running) {
1054 qemu_thread_join(&p->thread);
1056 socket_send_channel_destroy(p->c);
1057 p->c = NULL;
1058 qemu_mutex_destroy(&p->mutex);
1059 qemu_sem_destroy(&p->sem);
1060 qemu_sem_destroy(&p->sem_sync);
1061 g_free(p->name);
1062 p->name = NULL;
1063 multifd_pages_clear(p->pages);
1064 p->pages = NULL;
1065 p->packet_len = 0;
1066 g_free(p->packet);
1067 p->packet = NULL;
1069 qemu_sem_destroy(&multifd_send_state->channels_ready);
1070 g_free(multifd_send_state->params);
1071 multifd_send_state->params = NULL;
1072 multifd_pages_clear(multifd_send_state->pages);
1073 multifd_send_state->pages = NULL;
1074 g_free(multifd_send_state);
1075 multifd_send_state = NULL;
1078 static void multifd_send_sync_main(RAMState *rs)
1080 int i;
1082 if (!migrate_use_multifd()) {
1083 return;
1085 if (multifd_send_state->pages->used) {
1086 if (multifd_send_pages(rs) < 0) {
1087 error_report("%s: multifd_send_pages fail", __func__);
1088 return;
1091 for (i = 0; i < migrate_multifd_channels(); i++) {
1092 MultiFDSendParams *p = &multifd_send_state->params[i];
1094 trace_multifd_send_sync_main_signal(p->id);
1096 qemu_mutex_lock(&p->mutex);
1098 if (p->quit) {
1099 error_report("%s: channel %d has already quit", __func__, i);
1100 qemu_mutex_unlock(&p->mutex);
1101 return;
1104 p->packet_num = multifd_send_state->packet_num++;
1105 p->flags |= MULTIFD_FLAG_SYNC;
1106 p->pending_job++;
1107 qemu_file_update_transfer(rs->f, p->packet_len);
1108 ram_counters.multifd_bytes += p->packet_len;
1109 ram_counters.transferred += p->packet_len;
1110 qemu_mutex_unlock(&p->mutex);
1111 qemu_sem_post(&p->sem);
1113 for (i = 0; i < migrate_multifd_channels(); i++) {
1114 MultiFDSendParams *p = &multifd_send_state->params[i];
1116 trace_multifd_send_sync_main_wait(p->id);
1117 qemu_sem_wait(&p->sem_sync);
1119 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1122 static void *multifd_send_thread(void *opaque)
1124 MultiFDSendParams *p = opaque;
1125 Error *local_err = NULL;
1126 int ret = 0;
1127 uint32_t flags = 0;
1129 trace_multifd_send_thread_start(p->id);
1130 rcu_register_thread();
1132 if (multifd_send_initial_packet(p, &local_err) < 0) {
1133 ret = -1;
1134 goto out;
1136 /* initial packet */
1137 p->num_packets = 1;
1139 while (true) {
1140 qemu_sem_wait(&p->sem);
1142 if (atomic_read(&multifd_send_state->exiting)) {
1143 break;
1145 qemu_mutex_lock(&p->mutex);
1147 if (p->pending_job) {
1148 uint32_t used = p->pages->used;
1149 uint64_t packet_num = p->packet_num;
1150 flags = p->flags;
1152 p->next_packet_size = used * qemu_target_page_size();
1153 multifd_send_fill_packet(p);
1154 p->flags = 0;
1155 p->num_packets++;
1156 p->num_pages += used;
1157 p->pages->used = 0;
1158 p->pages->block = NULL;
1159 qemu_mutex_unlock(&p->mutex);
1161 trace_multifd_send(p->id, packet_num, used, flags,
1162 p->next_packet_size);
1164 ret = qio_channel_write_all(p->c, (void *)p->packet,
1165 p->packet_len, &local_err);
1166 if (ret != 0) {
1167 break;
1170 if (used) {
1171 ret = qio_channel_writev_all(p->c, p->pages->iov,
1172 used, &local_err);
1173 if (ret != 0) {
1174 break;
1178 qemu_mutex_lock(&p->mutex);
1179 p->pending_job--;
1180 qemu_mutex_unlock(&p->mutex);
1182 if (flags & MULTIFD_FLAG_SYNC) {
1183 qemu_sem_post(&p->sem_sync);
1185 qemu_sem_post(&multifd_send_state->channels_ready);
1186 } else if (p->quit) {
1187 qemu_mutex_unlock(&p->mutex);
1188 break;
1189 } else {
1190 qemu_mutex_unlock(&p->mutex);
1191 /* sometimes there are spurious wakeups */
1195 out:
1196 if (local_err) {
1197 trace_multifd_send_error(p->id);
1198 multifd_send_terminate_threads(local_err);
1202 * Error happen, I will exit, but I can't just leave, tell
1203 * who pay attention to me.
1205 if (ret != 0) {
1206 qemu_sem_post(&p->sem_sync);
1207 qemu_sem_post(&multifd_send_state->channels_ready);
1210 qemu_mutex_lock(&p->mutex);
1211 p->running = false;
1212 qemu_mutex_unlock(&p->mutex);
1214 rcu_unregister_thread();
1215 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1217 return NULL;
1220 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1222 MultiFDSendParams *p = opaque;
1223 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1224 Error *local_err = NULL;
1226 trace_multifd_new_send_channel_async(p->id);
1227 if (qio_task_propagate_error(task, &local_err)) {
1228 migrate_set_error(migrate_get_current(), local_err);
1229 multifd_save_cleanup();
1230 } else {
1231 p->c = QIO_CHANNEL(sioc);
1232 qio_channel_set_delay(p->c, false);
1233 p->running = true;
1234 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1235 QEMU_THREAD_JOINABLE);
1239 int multifd_save_setup(void)
1241 int thread_count;
1242 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1243 uint8_t i;
1245 if (!migrate_use_multifd()) {
1246 return 0;
1248 thread_count = migrate_multifd_channels();
1249 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1250 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1251 multifd_send_state->pages = multifd_pages_init(page_count);
1252 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1253 atomic_set(&multifd_send_state->exiting, 0);
1255 for (i = 0; i < thread_count; i++) {
1256 MultiFDSendParams *p = &multifd_send_state->params[i];
1258 qemu_mutex_init(&p->mutex);
1259 qemu_sem_init(&p->sem, 0);
1260 qemu_sem_init(&p->sem_sync, 0);
1261 p->quit = false;
1262 p->pending_job = 0;
1263 p->id = i;
1264 p->pages = multifd_pages_init(page_count);
1265 p->packet_len = sizeof(MultiFDPacket_t)
1266 + sizeof(ram_addr_t) * page_count;
1267 p->packet = g_malloc0(p->packet_len);
1268 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC);
1269 p->packet->version = cpu_to_be32(MULTIFD_VERSION);
1270 p->name = g_strdup_printf("multifdsend_%d", i);
1271 socket_send_channel_create(multifd_new_send_channel_async, p);
1273 return 0;
1276 struct {
1277 MultiFDRecvParams *params;
1278 /* number of created threads */
1279 int count;
1280 /* syncs main thread and channels */
1281 QemuSemaphore sem_sync;
1282 /* global number of generated multifd packets */
1283 uint64_t packet_num;
1284 } *multifd_recv_state;
1286 static void multifd_recv_terminate_threads(Error *err)
1288 int i;
1290 trace_multifd_recv_terminate_threads(err != NULL);
1292 if (err) {
1293 MigrationState *s = migrate_get_current();
1294 migrate_set_error(s, err);
1295 if (s->state == MIGRATION_STATUS_SETUP ||
1296 s->state == MIGRATION_STATUS_ACTIVE) {
1297 migrate_set_state(&s->state, s->state,
1298 MIGRATION_STATUS_FAILED);
1302 for (i = 0; i < migrate_multifd_channels(); i++) {
1303 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1305 qemu_mutex_lock(&p->mutex);
1306 p->quit = true;
1307 /* We could arrive here for two reasons:
1308 - normal quit, i.e. everything went fine, just finished
1309 - error quit: We close the channels so the channel threads
1310 finish the qio_channel_read_all_eof() */
1311 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1312 qemu_mutex_unlock(&p->mutex);
1316 int multifd_load_cleanup(Error **errp)
1318 int i;
1319 int ret = 0;
1321 if (!migrate_use_multifd()) {
1322 return 0;
1324 multifd_recv_terminate_threads(NULL);
1325 for (i = 0; i < migrate_multifd_channels(); i++) {
1326 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1328 if (p->running) {
1329 p->quit = true;
1331 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1332 * however try to wakeup it without harm in cleanup phase.
1334 qemu_sem_post(&p->sem_sync);
1335 qemu_thread_join(&p->thread);
1337 object_unref(OBJECT(p->c));
1338 p->c = NULL;
1339 qemu_mutex_destroy(&p->mutex);
1340 qemu_sem_destroy(&p->sem_sync);
1341 g_free(p->name);
1342 p->name = NULL;
1343 multifd_pages_clear(p->pages);
1344 p->pages = NULL;
1345 p->packet_len = 0;
1346 g_free(p->packet);
1347 p->packet = NULL;
1349 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1350 g_free(multifd_recv_state->params);
1351 multifd_recv_state->params = NULL;
1352 g_free(multifd_recv_state);
1353 multifd_recv_state = NULL;
1355 return ret;
1358 static void multifd_recv_sync_main(void)
1360 int i;
1362 if (!migrate_use_multifd()) {
1363 return;
1365 for (i = 0; i < migrate_multifd_channels(); i++) {
1366 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1368 trace_multifd_recv_sync_main_wait(p->id);
1369 qemu_sem_wait(&multifd_recv_state->sem_sync);
1371 for (i = 0; i < migrate_multifd_channels(); i++) {
1372 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1374 qemu_mutex_lock(&p->mutex);
1375 if (multifd_recv_state->packet_num < p->packet_num) {
1376 multifd_recv_state->packet_num = p->packet_num;
1378 qemu_mutex_unlock(&p->mutex);
1379 trace_multifd_recv_sync_main_signal(p->id);
1380 qemu_sem_post(&p->sem_sync);
1382 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1385 static void *multifd_recv_thread(void *opaque)
1387 MultiFDRecvParams *p = opaque;
1388 Error *local_err = NULL;
1389 int ret;
1391 trace_multifd_recv_thread_start(p->id);
1392 rcu_register_thread();
1394 while (true) {
1395 uint32_t used;
1396 uint32_t flags;
1398 if (p->quit) {
1399 break;
1402 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1403 p->packet_len, &local_err);
1404 if (ret == 0) { /* EOF */
1405 break;
1407 if (ret == -1) { /* Error */
1408 break;
1411 qemu_mutex_lock(&p->mutex);
1412 ret = multifd_recv_unfill_packet(p, &local_err);
1413 if (ret) {
1414 qemu_mutex_unlock(&p->mutex);
1415 break;
1418 used = p->pages->used;
1419 flags = p->flags;
1420 trace_multifd_recv(p->id, p->packet_num, used, flags,
1421 p->next_packet_size);
1422 p->num_packets++;
1423 p->num_pages += used;
1424 qemu_mutex_unlock(&p->mutex);
1426 if (used) {
1427 ret = qio_channel_readv_all(p->c, p->pages->iov,
1428 used, &local_err);
1429 if (ret != 0) {
1430 break;
1434 if (flags & MULTIFD_FLAG_SYNC) {
1435 qemu_sem_post(&multifd_recv_state->sem_sync);
1436 qemu_sem_wait(&p->sem_sync);
1440 if (local_err) {
1441 multifd_recv_terminate_threads(local_err);
1443 qemu_mutex_lock(&p->mutex);
1444 p->running = false;
1445 qemu_mutex_unlock(&p->mutex);
1447 rcu_unregister_thread();
1448 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1450 return NULL;
1453 int multifd_load_setup(void)
1455 int thread_count;
1456 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1457 uint8_t i;
1459 if (!migrate_use_multifd()) {
1460 return 0;
1462 thread_count = migrate_multifd_channels();
1463 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1464 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1465 atomic_set(&multifd_recv_state->count, 0);
1466 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1468 for (i = 0; i < thread_count; i++) {
1469 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1471 qemu_mutex_init(&p->mutex);
1472 qemu_sem_init(&p->sem_sync, 0);
1473 p->quit = false;
1474 p->id = i;
1475 p->pages = multifd_pages_init(page_count);
1476 p->packet_len = sizeof(MultiFDPacket_t)
1477 + sizeof(ram_addr_t) * page_count;
1478 p->packet = g_malloc0(p->packet_len);
1479 p->name = g_strdup_printf("multifdrecv_%d", i);
1481 return 0;
1484 bool multifd_recv_all_channels_created(void)
1486 int thread_count = migrate_multifd_channels();
1488 if (!migrate_use_multifd()) {
1489 return true;
1492 return thread_count == atomic_read(&multifd_recv_state->count);
1496 * Try to receive all multifd channels to get ready for the migration.
1497 * - Return true and do not set @errp when correctly receving all channels;
1498 * - Return false and do not set @errp when correctly receiving the current one;
1499 * - Return false and set @errp when failing to receive the current channel.
1501 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1503 MultiFDRecvParams *p;
1504 Error *local_err = NULL;
1505 int id;
1507 id = multifd_recv_initial_packet(ioc, &local_err);
1508 if (id < 0) {
1509 multifd_recv_terminate_threads(local_err);
1510 error_propagate_prepend(errp, local_err,
1511 "failed to receive packet"
1512 " via multifd channel %d: ",
1513 atomic_read(&multifd_recv_state->count));
1514 return false;
1516 trace_multifd_recv_new_channel(id);
1518 p = &multifd_recv_state->params[id];
1519 if (p->c != NULL) {
1520 error_setg(&local_err, "multifd: received id '%d' already setup'",
1521 id);
1522 multifd_recv_terminate_threads(local_err);
1523 error_propagate(errp, local_err);
1524 return false;
1526 p->c = ioc;
1527 object_ref(OBJECT(ioc));
1528 /* initial packet */
1529 p->num_packets = 1;
1531 p->running = true;
1532 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1533 QEMU_THREAD_JOINABLE);
1534 atomic_inc(&multifd_recv_state->count);
1535 return atomic_read(&multifd_recv_state->count) ==
1536 migrate_multifd_channels();
1540 * save_page_header: write page header to wire
1542 * If this is the 1st block, it also writes the block identification
1544 * Returns the number of bytes written
1546 * @f: QEMUFile where to send the data
1547 * @block: block that contains the page we want to send
1548 * @offset: offset inside the block for the page
1549 * in the lower bits, it contains flags
1551 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1552 ram_addr_t offset)
1554 size_t size, len;
1556 if (block == rs->last_sent_block) {
1557 offset |= RAM_SAVE_FLAG_CONTINUE;
1559 qemu_put_be64(f, offset);
1560 size = 8;
1562 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1563 len = strlen(block->idstr);
1564 qemu_put_byte(f, len);
1565 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1566 size += 1 + len;
1567 rs->last_sent_block = block;
1569 return size;
1573 * mig_throttle_guest_down: throotle down the guest
1575 * Reduce amount of guest cpu execution to hopefully slow down memory
1576 * writes. If guest dirty memory rate is reduced below the rate at
1577 * which we can transfer pages to the destination then we should be
1578 * able to complete migration. Some workloads dirty memory way too
1579 * fast and will not effectively converge, even with auto-converge.
1581 static void mig_throttle_guest_down(void)
1583 MigrationState *s = migrate_get_current();
1584 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1585 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1586 int pct_max = s->parameters.max_cpu_throttle;
1588 /* We have not started throttling yet. Let's start it. */
1589 if (!cpu_throttle_active()) {
1590 cpu_throttle_set(pct_initial);
1591 } else {
1592 /* Throttling already on, just increase the rate */
1593 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1594 pct_max));
1599 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1601 * @rs: current RAM state
1602 * @current_addr: address for the zero page
1604 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1605 * The important thing is that a stale (not-yet-0'd) page be replaced
1606 * by the new data.
1607 * As a bonus, if the page wasn't in the cache it gets added so that
1608 * when a small write is made into the 0'd page it gets XBZRLE sent.
1610 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1612 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1613 return;
1616 /* We don't care if this fails to allocate a new cache page
1617 * as long as it updated an old one */
1618 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1619 ram_counters.dirty_sync_count);
1622 #define ENCODING_FLAG_XBZRLE 0x1
1625 * save_xbzrle_page: compress and send current page
1627 * Returns: 1 means that we wrote the page
1628 * 0 means that page is identical to the one already sent
1629 * -1 means that xbzrle would be longer than normal
1631 * @rs: current RAM state
1632 * @current_data: pointer to the address of the page contents
1633 * @current_addr: addr of the page
1634 * @block: block that contains the page we want to send
1635 * @offset: offset inside the block for the page
1636 * @last_stage: if we are at the completion stage
1638 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1639 ram_addr_t current_addr, RAMBlock *block,
1640 ram_addr_t offset, bool last_stage)
1642 int encoded_len = 0, bytes_xbzrle;
1643 uint8_t *prev_cached_page;
1645 if (!cache_is_cached(XBZRLE.cache, current_addr,
1646 ram_counters.dirty_sync_count)) {
1647 xbzrle_counters.cache_miss++;
1648 if (!last_stage) {
1649 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1650 ram_counters.dirty_sync_count) == -1) {
1651 return -1;
1652 } else {
1653 /* update *current_data when the page has been
1654 inserted into cache */
1655 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1658 return -1;
1661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1663 /* save current buffer into memory */
1664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1666 /* XBZRLE encoding (if there is no overflow) */
1667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1669 TARGET_PAGE_SIZE);
1672 * Update the cache contents, so that it corresponds to the data
1673 * sent, in all cases except where we skip the page.
1675 if (!last_stage && encoded_len != 0) {
1676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1678 * In the case where we couldn't compress, ensure that the caller
1679 * sends the data from the cache, since the guest might have
1680 * changed the RAM since we copied it.
1682 *current_data = prev_cached_page;
1685 if (encoded_len == 0) {
1686 trace_save_xbzrle_page_skipping();
1687 return 0;
1688 } else if (encoded_len == -1) {
1689 trace_save_xbzrle_page_overflow();
1690 xbzrle_counters.overflow++;
1691 return -1;
1694 /* Send XBZRLE based compressed page */
1695 bytes_xbzrle = save_page_header(rs, rs->f, block,
1696 offset | RAM_SAVE_FLAG_XBZRLE);
1697 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1698 qemu_put_be16(rs->f, encoded_len);
1699 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1700 bytes_xbzrle += encoded_len + 1 + 2;
1701 xbzrle_counters.pages++;
1702 xbzrle_counters.bytes += bytes_xbzrle;
1703 ram_counters.transferred += bytes_xbzrle;
1705 return 1;
1709 * migration_bitmap_find_dirty: find the next dirty page from start
1711 * Returns the page offset within memory region of the start of a dirty page
1713 * @rs: current RAM state
1714 * @rb: RAMBlock where to search for dirty pages
1715 * @start: page where we start the search
1717 static inline
1718 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1719 unsigned long start)
1721 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1722 unsigned long *bitmap = rb->bmap;
1723 unsigned long next;
1725 if (ramblock_is_ignored(rb)) {
1726 return size;
1730 * When the free page optimization is enabled, we need to check the bitmap
1731 * to send the non-free pages rather than all the pages in the bulk stage.
1733 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1734 next = start + 1;
1735 } else {
1736 next = find_next_bit(bitmap, size, start);
1739 return next;
1742 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1743 RAMBlock *rb,
1744 unsigned long page)
1746 bool ret;
1748 qemu_mutex_lock(&rs->bitmap_mutex);
1751 * Clear dirty bitmap if needed. This _must_ be called before we
1752 * send any of the page in the chunk because we need to make sure
1753 * we can capture further page content changes when we sync dirty
1754 * log the next time. So as long as we are going to send any of
1755 * the page in the chunk we clear the remote dirty bitmap for all.
1756 * Clearing it earlier won't be a problem, but too late will.
1758 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1759 uint8_t shift = rb->clear_bmap_shift;
1760 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1761 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1764 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1765 * can make things easier sometimes since then start address
1766 * of the small chunk will always be 64 pages aligned so the
1767 * bitmap will always be aligned to unsigned long. We should
1768 * even be able to remove this restriction but I'm simply
1769 * keeping it.
1771 assert(shift >= 6);
1772 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1773 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1776 ret = test_and_clear_bit(page, rb->bmap);
1778 if (ret) {
1779 rs->migration_dirty_pages--;
1781 qemu_mutex_unlock(&rs->bitmap_mutex);
1783 return ret;
1786 /* Called with RCU critical section */
1787 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1789 rs->migration_dirty_pages +=
1790 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1791 &rs->num_dirty_pages_period);
1795 * ram_pagesize_summary: calculate all the pagesizes of a VM
1797 * Returns a summary bitmap of the page sizes of all RAMBlocks
1799 * For VMs with just normal pages this is equivalent to the host page
1800 * size. If it's got some huge pages then it's the OR of all the
1801 * different page sizes.
1803 uint64_t ram_pagesize_summary(void)
1805 RAMBlock *block;
1806 uint64_t summary = 0;
1808 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1809 summary |= block->page_size;
1812 return summary;
1815 uint64_t ram_get_total_transferred_pages(void)
1817 return ram_counters.normal + ram_counters.duplicate +
1818 compression_counters.pages + xbzrle_counters.pages;
1821 static void migration_update_rates(RAMState *rs, int64_t end_time)
1823 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1824 double compressed_size;
1826 /* calculate period counters */
1827 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1828 / (end_time - rs->time_last_bitmap_sync);
1830 if (!page_count) {
1831 return;
1834 if (migrate_use_xbzrle()) {
1835 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1836 rs->xbzrle_cache_miss_prev) / page_count;
1837 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1840 if (migrate_use_compression()) {
1841 compression_counters.busy_rate = (double)(compression_counters.busy -
1842 rs->compress_thread_busy_prev) / page_count;
1843 rs->compress_thread_busy_prev = compression_counters.busy;
1845 compressed_size = compression_counters.compressed_size -
1846 rs->compressed_size_prev;
1847 if (compressed_size) {
1848 double uncompressed_size = (compression_counters.pages -
1849 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1851 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1852 compression_counters.compression_rate =
1853 uncompressed_size / compressed_size;
1855 rs->compress_pages_prev = compression_counters.pages;
1856 rs->compressed_size_prev = compression_counters.compressed_size;
1861 static void migration_bitmap_sync(RAMState *rs)
1863 RAMBlock *block;
1864 int64_t end_time;
1865 uint64_t bytes_xfer_now;
1867 ram_counters.dirty_sync_count++;
1869 if (!rs->time_last_bitmap_sync) {
1870 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1873 trace_migration_bitmap_sync_start();
1874 memory_global_dirty_log_sync();
1876 qemu_mutex_lock(&rs->bitmap_mutex);
1877 WITH_RCU_READ_LOCK_GUARD() {
1878 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1879 ramblock_sync_dirty_bitmap(rs, block);
1881 ram_counters.remaining = ram_bytes_remaining();
1883 qemu_mutex_unlock(&rs->bitmap_mutex);
1885 memory_global_after_dirty_log_sync();
1886 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1888 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1890 /* more than 1 second = 1000 millisecons */
1891 if (end_time > rs->time_last_bitmap_sync + 1000) {
1892 bytes_xfer_now = ram_counters.transferred;
1894 /* During block migration the auto-converge logic incorrectly detects
1895 * that ram migration makes no progress. Avoid this by disabling the
1896 * throttling logic during the bulk phase of block migration. */
1897 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1898 /* The following detection logic can be refined later. For now:
1899 Check to see if the dirtied bytes is 50% more than the approx.
1900 amount of bytes that just got transferred since the last time we
1901 were in this routine. If that happens twice, start or increase
1902 throttling */
1904 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1905 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1906 (++rs->dirty_rate_high_cnt >= 2)) {
1907 trace_migration_throttle();
1908 rs->dirty_rate_high_cnt = 0;
1909 mig_throttle_guest_down();
1913 migration_update_rates(rs, end_time);
1915 rs->target_page_count_prev = rs->target_page_count;
1917 /* reset period counters */
1918 rs->time_last_bitmap_sync = end_time;
1919 rs->num_dirty_pages_period = 0;
1920 rs->bytes_xfer_prev = bytes_xfer_now;
1922 if (migrate_use_events()) {
1923 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1927 static void migration_bitmap_sync_precopy(RAMState *rs)
1929 Error *local_err = NULL;
1932 * The current notifier usage is just an optimization to migration, so we
1933 * don't stop the normal migration process in the error case.
1935 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1936 error_report_err(local_err);
1939 migration_bitmap_sync(rs);
1941 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1942 error_report_err(local_err);
1947 * save_zero_page_to_file: send the zero page to the file
1949 * Returns the size of data written to the file, 0 means the page is not
1950 * a zero page
1952 * @rs: current RAM state
1953 * @file: the file where the data is saved
1954 * @block: block that contains the page we want to send
1955 * @offset: offset inside the block for the page
1957 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1958 RAMBlock *block, ram_addr_t offset)
1960 uint8_t *p = block->host + offset;
1961 int len = 0;
1963 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1964 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1965 qemu_put_byte(file, 0);
1966 len += 1;
1968 return len;
1972 * save_zero_page: send the zero page to the stream
1974 * Returns the number of pages written.
1976 * @rs: current RAM state
1977 * @block: block that contains the page we want to send
1978 * @offset: offset inside the block for the page
1980 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1982 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1984 if (len) {
1985 ram_counters.duplicate++;
1986 ram_counters.transferred += len;
1987 return 1;
1989 return -1;
1992 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1994 if (!migrate_release_ram() || !migration_in_postcopy()) {
1995 return;
1998 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
2002 * @pages: the number of pages written by the control path,
2003 * < 0 - error
2004 * > 0 - number of pages written
2006 * Return true if the pages has been saved, otherwise false is returned.
2008 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2009 int *pages)
2011 uint64_t bytes_xmit = 0;
2012 int ret;
2014 *pages = -1;
2015 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
2016 &bytes_xmit);
2017 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
2018 return false;
2021 if (bytes_xmit) {
2022 ram_counters.transferred += bytes_xmit;
2023 *pages = 1;
2026 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2027 return true;
2030 if (bytes_xmit > 0) {
2031 ram_counters.normal++;
2032 } else if (bytes_xmit == 0) {
2033 ram_counters.duplicate++;
2036 return true;
2040 * directly send the page to the stream
2042 * Returns the number of pages written.
2044 * @rs: current RAM state
2045 * @block: block that contains the page we want to send
2046 * @offset: offset inside the block for the page
2047 * @buf: the page to be sent
2048 * @async: send to page asyncly
2050 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2051 uint8_t *buf, bool async)
2053 ram_counters.transferred += save_page_header(rs, rs->f, block,
2054 offset | RAM_SAVE_FLAG_PAGE);
2055 if (async) {
2056 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2057 migrate_release_ram() &
2058 migration_in_postcopy());
2059 } else {
2060 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2062 ram_counters.transferred += TARGET_PAGE_SIZE;
2063 ram_counters.normal++;
2064 return 1;
2068 * ram_save_page: send the given page to the stream
2070 * Returns the number of pages written.
2071 * < 0 - error
2072 * >=0 - Number of pages written - this might legally be 0
2073 * if xbzrle noticed the page was the same.
2075 * @rs: current RAM state
2076 * @block: block that contains the page we want to send
2077 * @offset: offset inside the block for the page
2078 * @last_stage: if we are at the completion stage
2080 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2082 int pages = -1;
2083 uint8_t *p;
2084 bool send_async = true;
2085 RAMBlock *block = pss->block;
2086 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2087 ram_addr_t current_addr = block->offset + offset;
2089 p = block->host + offset;
2090 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2092 XBZRLE_cache_lock();
2093 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2094 migrate_use_xbzrle()) {
2095 pages = save_xbzrle_page(rs, &p, current_addr, block,
2096 offset, last_stage);
2097 if (!last_stage) {
2098 /* Can't send this cached data async, since the cache page
2099 * might get updated before it gets to the wire
2101 send_async = false;
2105 /* XBZRLE overflow or normal page */
2106 if (pages == -1) {
2107 pages = save_normal_page(rs, block, offset, p, send_async);
2110 XBZRLE_cache_unlock();
2112 return pages;
2115 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2116 ram_addr_t offset)
2118 if (multifd_queue_page(rs, block, offset) < 0) {
2119 return -1;
2121 ram_counters.normal++;
2123 return 1;
2126 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2127 ram_addr_t offset, uint8_t *source_buf)
2129 RAMState *rs = ram_state;
2130 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2131 bool zero_page = false;
2132 int ret;
2134 if (save_zero_page_to_file(rs, f, block, offset)) {
2135 zero_page = true;
2136 goto exit;
2139 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2142 * copy it to a internal buffer to avoid it being modified by VM
2143 * so that we can catch up the error during compression and
2144 * decompression
2146 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2147 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2148 if (ret < 0) {
2149 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2150 error_report("compressed data failed!");
2151 return false;
2154 exit:
2155 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2156 return zero_page;
2159 static void
2160 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2162 ram_counters.transferred += bytes_xmit;
2164 if (param->zero_page) {
2165 ram_counters.duplicate++;
2166 return;
2169 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2170 compression_counters.compressed_size += bytes_xmit - 8;
2171 compression_counters.pages++;
2174 static bool save_page_use_compression(RAMState *rs);
2176 static void flush_compressed_data(RAMState *rs)
2178 int idx, len, thread_count;
2180 if (!save_page_use_compression(rs)) {
2181 return;
2183 thread_count = migrate_compress_threads();
2185 qemu_mutex_lock(&comp_done_lock);
2186 for (idx = 0; idx < thread_count; idx++) {
2187 while (!comp_param[idx].done) {
2188 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2191 qemu_mutex_unlock(&comp_done_lock);
2193 for (idx = 0; idx < thread_count; idx++) {
2194 qemu_mutex_lock(&comp_param[idx].mutex);
2195 if (!comp_param[idx].quit) {
2196 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2198 * it's safe to fetch zero_page without holding comp_done_lock
2199 * as there is no further request submitted to the thread,
2200 * i.e, the thread should be waiting for a request at this point.
2202 update_compress_thread_counts(&comp_param[idx], len);
2204 qemu_mutex_unlock(&comp_param[idx].mutex);
2208 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2209 ram_addr_t offset)
2211 param->block = block;
2212 param->offset = offset;
2215 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2216 ram_addr_t offset)
2218 int idx, thread_count, bytes_xmit = -1, pages = -1;
2219 bool wait = migrate_compress_wait_thread();
2221 thread_count = migrate_compress_threads();
2222 qemu_mutex_lock(&comp_done_lock);
2223 retry:
2224 for (idx = 0; idx < thread_count; idx++) {
2225 if (comp_param[idx].done) {
2226 comp_param[idx].done = false;
2227 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2228 qemu_mutex_lock(&comp_param[idx].mutex);
2229 set_compress_params(&comp_param[idx], block, offset);
2230 qemu_cond_signal(&comp_param[idx].cond);
2231 qemu_mutex_unlock(&comp_param[idx].mutex);
2232 pages = 1;
2233 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2234 break;
2239 * wait for the free thread if the user specifies 'compress-wait-thread',
2240 * otherwise we will post the page out in the main thread as normal page.
2242 if (pages < 0 && wait) {
2243 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2244 goto retry;
2246 qemu_mutex_unlock(&comp_done_lock);
2248 return pages;
2252 * find_dirty_block: find the next dirty page and update any state
2253 * associated with the search process.
2255 * Returns true if a page is found
2257 * @rs: current RAM state
2258 * @pss: data about the state of the current dirty page scan
2259 * @again: set to false if the search has scanned the whole of RAM
2261 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2263 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2264 if (pss->complete_round && pss->block == rs->last_seen_block &&
2265 pss->page >= rs->last_page) {
2267 * We've been once around the RAM and haven't found anything.
2268 * Give up.
2270 *again = false;
2271 return false;
2273 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2274 /* Didn't find anything in this RAM Block */
2275 pss->page = 0;
2276 pss->block = QLIST_NEXT_RCU(pss->block, next);
2277 if (!pss->block) {
2279 * If memory migration starts over, we will meet a dirtied page
2280 * which may still exists in compression threads's ring, so we
2281 * should flush the compressed data to make sure the new page
2282 * is not overwritten by the old one in the destination.
2284 * Also If xbzrle is on, stop using the data compression at this
2285 * point. In theory, xbzrle can do better than compression.
2287 flush_compressed_data(rs);
2289 /* Hit the end of the list */
2290 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2291 /* Flag that we've looped */
2292 pss->complete_round = true;
2293 rs->ram_bulk_stage = false;
2295 /* Didn't find anything this time, but try again on the new block */
2296 *again = true;
2297 return false;
2298 } else {
2299 /* Can go around again, but... */
2300 *again = true;
2301 /* We've found something so probably don't need to */
2302 return true;
2307 * unqueue_page: gets a page of the queue
2309 * Helper for 'get_queued_page' - gets a page off the queue
2311 * Returns the block of the page (or NULL if none available)
2313 * @rs: current RAM state
2314 * @offset: used to return the offset within the RAMBlock
2316 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2318 RAMBlock *block = NULL;
2320 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2321 return NULL;
2324 qemu_mutex_lock(&rs->src_page_req_mutex);
2325 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2326 struct RAMSrcPageRequest *entry =
2327 QSIMPLEQ_FIRST(&rs->src_page_requests);
2328 block = entry->rb;
2329 *offset = entry->offset;
2331 if (entry->len > TARGET_PAGE_SIZE) {
2332 entry->len -= TARGET_PAGE_SIZE;
2333 entry->offset += TARGET_PAGE_SIZE;
2334 } else {
2335 memory_region_unref(block->mr);
2336 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2337 g_free(entry);
2338 migration_consume_urgent_request();
2341 qemu_mutex_unlock(&rs->src_page_req_mutex);
2343 return block;
2347 * get_queued_page: unqueue a page from the postcopy requests
2349 * Skips pages that are already sent (!dirty)
2351 * Returns true if a queued page is found
2353 * @rs: current RAM state
2354 * @pss: data about the state of the current dirty page scan
2356 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2358 RAMBlock *block;
2359 ram_addr_t offset;
2360 bool dirty;
2362 do {
2363 block = unqueue_page(rs, &offset);
2365 * We're sending this page, and since it's postcopy nothing else
2366 * will dirty it, and we must make sure it doesn't get sent again
2367 * even if this queue request was received after the background
2368 * search already sent it.
2370 if (block) {
2371 unsigned long page;
2373 page = offset >> TARGET_PAGE_BITS;
2374 dirty = test_bit(page, block->bmap);
2375 if (!dirty) {
2376 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2377 page);
2378 } else {
2379 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2383 } while (block && !dirty);
2385 if (block) {
2387 * As soon as we start servicing pages out of order, then we have
2388 * to kill the bulk stage, since the bulk stage assumes
2389 * in (migration_bitmap_find_and_reset_dirty) that every page is
2390 * dirty, that's no longer true.
2392 rs->ram_bulk_stage = false;
2395 * We want the background search to continue from the queued page
2396 * since the guest is likely to want other pages near to the page
2397 * it just requested.
2399 pss->block = block;
2400 pss->page = offset >> TARGET_PAGE_BITS;
2403 * This unqueued page would break the "one round" check, even is
2404 * really rare.
2406 pss->complete_round = false;
2409 return !!block;
2413 * migration_page_queue_free: drop any remaining pages in the ram
2414 * request queue
2416 * It should be empty at the end anyway, but in error cases there may
2417 * be some left. in case that there is any page left, we drop it.
2420 static void migration_page_queue_free(RAMState *rs)
2422 struct RAMSrcPageRequest *mspr, *next_mspr;
2423 /* This queue generally should be empty - but in the case of a failed
2424 * migration might have some droppings in.
2426 RCU_READ_LOCK_GUARD();
2427 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2428 memory_region_unref(mspr->rb->mr);
2429 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2430 g_free(mspr);
2435 * ram_save_queue_pages: queue the page for transmission
2437 * A request from postcopy destination for example.
2439 * Returns zero on success or negative on error
2441 * @rbname: Name of the RAMBLock of the request. NULL means the
2442 * same that last one.
2443 * @start: starting address from the start of the RAMBlock
2444 * @len: length (in bytes) to send
2446 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2448 RAMBlock *ramblock;
2449 RAMState *rs = ram_state;
2451 ram_counters.postcopy_requests++;
2452 RCU_READ_LOCK_GUARD();
2454 if (!rbname) {
2455 /* Reuse last RAMBlock */
2456 ramblock = rs->last_req_rb;
2458 if (!ramblock) {
2460 * Shouldn't happen, we can't reuse the last RAMBlock if
2461 * it's the 1st request.
2463 error_report("ram_save_queue_pages no previous block");
2464 return -1;
2466 } else {
2467 ramblock = qemu_ram_block_by_name(rbname);
2469 if (!ramblock) {
2470 /* We shouldn't be asked for a non-existent RAMBlock */
2471 error_report("ram_save_queue_pages no block '%s'", rbname);
2472 return -1;
2474 rs->last_req_rb = ramblock;
2476 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2477 if (start+len > ramblock->used_length) {
2478 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2479 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2480 __func__, start, len, ramblock->used_length);
2481 return -1;
2484 struct RAMSrcPageRequest *new_entry =
2485 g_malloc0(sizeof(struct RAMSrcPageRequest));
2486 new_entry->rb = ramblock;
2487 new_entry->offset = start;
2488 new_entry->len = len;
2490 memory_region_ref(ramblock->mr);
2491 qemu_mutex_lock(&rs->src_page_req_mutex);
2492 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2493 migration_make_urgent_request();
2494 qemu_mutex_unlock(&rs->src_page_req_mutex);
2496 return 0;
2499 static bool save_page_use_compression(RAMState *rs)
2501 if (!migrate_use_compression()) {
2502 return false;
2506 * If xbzrle is on, stop using the data compression after first
2507 * round of migration even if compression is enabled. In theory,
2508 * xbzrle can do better than compression.
2510 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2511 return true;
2514 return false;
2518 * try to compress the page before posting it out, return true if the page
2519 * has been properly handled by compression, otherwise needs other
2520 * paths to handle it
2522 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2524 if (!save_page_use_compression(rs)) {
2525 return false;
2529 * When starting the process of a new block, the first page of
2530 * the block should be sent out before other pages in the same
2531 * block, and all the pages in last block should have been sent
2532 * out, keeping this order is important, because the 'cont' flag
2533 * is used to avoid resending the block name.
2535 * We post the fist page as normal page as compression will take
2536 * much CPU resource.
2538 if (block != rs->last_sent_block) {
2539 flush_compressed_data(rs);
2540 return false;
2543 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2544 return true;
2547 compression_counters.busy++;
2548 return false;
2552 * ram_save_target_page: save one target page
2554 * Returns the number of pages written
2556 * @rs: current RAM state
2557 * @pss: data about the page we want to send
2558 * @last_stage: if we are at the completion stage
2560 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2561 bool last_stage)
2563 RAMBlock *block = pss->block;
2564 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2565 int res;
2567 if (control_save_page(rs, block, offset, &res)) {
2568 return res;
2571 if (save_compress_page(rs, block, offset)) {
2572 return 1;
2575 res = save_zero_page(rs, block, offset);
2576 if (res > 0) {
2577 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2578 * page would be stale
2580 if (!save_page_use_compression(rs)) {
2581 XBZRLE_cache_lock();
2582 xbzrle_cache_zero_page(rs, block->offset + offset);
2583 XBZRLE_cache_unlock();
2585 ram_release_pages(block->idstr, offset, res);
2586 return res;
2590 * Do not use multifd for:
2591 * 1. Compression as the first page in the new block should be posted out
2592 * before sending the compressed page
2593 * 2. In postcopy as one whole host page should be placed
2595 if (!save_page_use_compression(rs) && migrate_use_multifd()
2596 && !migration_in_postcopy()) {
2597 return ram_save_multifd_page(rs, block, offset);
2600 return ram_save_page(rs, pss, last_stage);
2604 * ram_save_host_page: save a whole host page
2606 * Starting at *offset send pages up to the end of the current host
2607 * page. It's valid for the initial offset to point into the middle of
2608 * a host page in which case the remainder of the hostpage is sent.
2609 * Only dirty target pages are sent. Note that the host page size may
2610 * be a huge page for this block.
2611 * The saving stops at the boundary of the used_length of the block
2612 * if the RAMBlock isn't a multiple of the host page size.
2614 * Returns the number of pages written or negative on error
2616 * @rs: current RAM state
2617 * @ms: current migration state
2618 * @pss: data about the page we want to send
2619 * @last_stage: if we are at the completion stage
2621 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2622 bool last_stage)
2624 int tmppages, pages = 0;
2625 size_t pagesize_bits =
2626 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2628 if (ramblock_is_ignored(pss->block)) {
2629 error_report("block %s should not be migrated !", pss->block->idstr);
2630 return 0;
2633 do {
2634 /* Check the pages is dirty and if it is send it */
2635 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2636 pss->page++;
2637 continue;
2640 tmppages = ram_save_target_page(rs, pss, last_stage);
2641 if (tmppages < 0) {
2642 return tmppages;
2645 pages += tmppages;
2646 pss->page++;
2647 /* Allow rate limiting to happen in the middle of huge pages */
2648 migration_rate_limit();
2649 } while ((pss->page & (pagesize_bits - 1)) &&
2650 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2652 /* The offset we leave with is the last one we looked at */
2653 pss->page--;
2654 return pages;
2658 * ram_find_and_save_block: finds a dirty page and sends it to f
2660 * Called within an RCU critical section.
2662 * Returns the number of pages written where zero means no dirty pages,
2663 * or negative on error
2665 * @rs: current RAM state
2666 * @last_stage: if we are at the completion stage
2668 * On systems where host-page-size > target-page-size it will send all the
2669 * pages in a host page that are dirty.
2672 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2674 PageSearchStatus pss;
2675 int pages = 0;
2676 bool again, found;
2678 /* No dirty page as there is zero RAM */
2679 if (!ram_bytes_total()) {
2680 return pages;
2683 pss.block = rs->last_seen_block;
2684 pss.page = rs->last_page;
2685 pss.complete_round = false;
2687 if (!pss.block) {
2688 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2691 do {
2692 again = true;
2693 found = get_queued_page(rs, &pss);
2695 if (!found) {
2696 /* priority queue empty, so just search for something dirty */
2697 found = find_dirty_block(rs, &pss, &again);
2700 if (found) {
2701 pages = ram_save_host_page(rs, &pss, last_stage);
2703 } while (!pages && again);
2705 rs->last_seen_block = pss.block;
2706 rs->last_page = pss.page;
2708 return pages;
2711 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2713 uint64_t pages = size / TARGET_PAGE_SIZE;
2715 if (zero) {
2716 ram_counters.duplicate += pages;
2717 } else {
2718 ram_counters.normal += pages;
2719 ram_counters.transferred += size;
2720 qemu_update_position(f, size);
2724 static uint64_t ram_bytes_total_common(bool count_ignored)
2726 RAMBlock *block;
2727 uint64_t total = 0;
2729 RCU_READ_LOCK_GUARD();
2731 if (count_ignored) {
2732 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2733 total += block->used_length;
2735 } else {
2736 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2737 total += block->used_length;
2740 return total;
2743 uint64_t ram_bytes_total(void)
2745 return ram_bytes_total_common(false);
2748 static void xbzrle_load_setup(void)
2750 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2753 static void xbzrle_load_cleanup(void)
2755 g_free(XBZRLE.decoded_buf);
2756 XBZRLE.decoded_buf = NULL;
2759 static void ram_state_cleanup(RAMState **rsp)
2761 if (*rsp) {
2762 migration_page_queue_free(*rsp);
2763 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2764 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2765 g_free(*rsp);
2766 *rsp = NULL;
2770 static void xbzrle_cleanup(void)
2772 XBZRLE_cache_lock();
2773 if (XBZRLE.cache) {
2774 cache_fini(XBZRLE.cache);
2775 g_free(XBZRLE.encoded_buf);
2776 g_free(XBZRLE.current_buf);
2777 g_free(XBZRLE.zero_target_page);
2778 XBZRLE.cache = NULL;
2779 XBZRLE.encoded_buf = NULL;
2780 XBZRLE.current_buf = NULL;
2781 XBZRLE.zero_target_page = NULL;
2783 XBZRLE_cache_unlock();
2786 static void ram_save_cleanup(void *opaque)
2788 RAMState **rsp = opaque;
2789 RAMBlock *block;
2791 /* caller have hold iothread lock or is in a bh, so there is
2792 * no writing race against the migration bitmap
2794 memory_global_dirty_log_stop();
2796 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2797 g_free(block->clear_bmap);
2798 block->clear_bmap = NULL;
2799 g_free(block->bmap);
2800 block->bmap = NULL;
2803 xbzrle_cleanup();
2804 compress_threads_save_cleanup();
2805 ram_state_cleanup(rsp);
2808 static void ram_state_reset(RAMState *rs)
2810 rs->last_seen_block = NULL;
2811 rs->last_sent_block = NULL;
2812 rs->last_page = 0;
2813 rs->last_version = ram_list.version;
2814 rs->ram_bulk_stage = true;
2815 rs->fpo_enabled = false;
2818 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2821 * 'expected' is the value you expect the bitmap mostly to be full
2822 * of; it won't bother printing lines that are all this value.
2823 * If 'todump' is null the migration bitmap is dumped.
2825 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2826 unsigned long pages)
2828 int64_t cur;
2829 int64_t linelen = 128;
2830 char linebuf[129];
2832 for (cur = 0; cur < pages; cur += linelen) {
2833 int64_t curb;
2834 bool found = false;
2836 * Last line; catch the case where the line length
2837 * is longer than remaining ram
2839 if (cur + linelen > pages) {
2840 linelen = pages - cur;
2842 for (curb = 0; curb < linelen; curb++) {
2843 bool thisbit = test_bit(cur + curb, todump);
2844 linebuf[curb] = thisbit ? '1' : '.';
2845 found = found || (thisbit != expected);
2847 if (found) {
2848 linebuf[curb] = '\0';
2849 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2854 /* **** functions for postcopy ***** */
2856 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2858 struct RAMBlock *block;
2860 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2861 unsigned long *bitmap = block->bmap;
2862 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2863 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2865 while (run_start < range) {
2866 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2867 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2868 (run_end - run_start) << TARGET_PAGE_BITS);
2869 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2875 * postcopy_send_discard_bm_ram: discard a RAMBlock
2877 * Returns zero on success
2879 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2881 * @ms: current migration state
2882 * @block: RAMBlock to discard
2884 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2886 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2887 unsigned long current;
2888 unsigned long *bitmap = block->bmap;
2890 for (current = 0; current < end; ) {
2891 unsigned long one = find_next_bit(bitmap, end, current);
2892 unsigned long zero, discard_length;
2894 if (one >= end) {
2895 break;
2898 zero = find_next_zero_bit(bitmap, end, one + 1);
2900 if (zero >= end) {
2901 discard_length = end - one;
2902 } else {
2903 discard_length = zero - one;
2905 postcopy_discard_send_range(ms, one, discard_length);
2906 current = one + discard_length;
2909 return 0;
2913 * postcopy_each_ram_send_discard: discard all RAMBlocks
2915 * Returns 0 for success or negative for error
2917 * Utility for the outgoing postcopy code.
2918 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2919 * passing it bitmap indexes and name.
2920 * (qemu_ram_foreach_block ends up passing unscaled lengths
2921 * which would mean postcopy code would have to deal with target page)
2923 * @ms: current migration state
2925 static int postcopy_each_ram_send_discard(MigrationState *ms)
2927 struct RAMBlock *block;
2928 int ret;
2930 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2931 postcopy_discard_send_init(ms, block->idstr);
2934 * Postcopy sends chunks of bitmap over the wire, but it
2935 * just needs indexes at this point, avoids it having
2936 * target page specific code.
2938 ret = postcopy_send_discard_bm_ram(ms, block);
2939 postcopy_discard_send_finish(ms);
2940 if (ret) {
2941 return ret;
2945 return 0;
2949 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2951 * Helper for postcopy_chunk_hostpages; it's called twice to
2952 * canonicalize the two bitmaps, that are similar, but one is
2953 * inverted.
2955 * Postcopy requires that all target pages in a hostpage are dirty or
2956 * clean, not a mix. This function canonicalizes the bitmaps.
2958 * @ms: current migration state
2959 * @block: block that contains the page we want to canonicalize
2961 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2963 RAMState *rs = ram_state;
2964 unsigned long *bitmap = block->bmap;
2965 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2966 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2967 unsigned long run_start;
2969 if (block->page_size == TARGET_PAGE_SIZE) {
2970 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2971 return;
2974 /* Find a dirty page */
2975 run_start = find_next_bit(bitmap, pages, 0);
2977 while (run_start < pages) {
2980 * If the start of this run of pages is in the middle of a host
2981 * page, then we need to fixup this host page.
2983 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2984 /* Find the end of this run */
2985 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2987 * If the end isn't at the start of a host page, then the
2988 * run doesn't finish at the end of a host page
2989 * and we need to discard.
2993 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2994 unsigned long page;
2995 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2996 host_ratio);
2997 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2999 /* Clean up the bitmap */
3000 for (page = fixup_start_addr;
3001 page < fixup_start_addr + host_ratio; page++) {
3003 * Remark them as dirty, updating the count for any pages
3004 * that weren't previously dirty.
3006 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3010 /* Find the next dirty page for the next iteration */
3011 run_start = find_next_bit(bitmap, pages, run_start);
3016 * postcopy_chunk_hostpages: discard any partially sent host page
3018 * Utility for the outgoing postcopy code.
3020 * Discard any partially sent host-page size chunks, mark any partially
3021 * dirty host-page size chunks as all dirty. In this case the host-page
3022 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3024 * Returns zero on success
3026 * @ms: current migration state
3027 * @block: block we want to work with
3029 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3031 postcopy_discard_send_init(ms, block->idstr);
3034 * Ensure that all partially dirty host pages are made fully dirty.
3036 postcopy_chunk_hostpages_pass(ms, block);
3038 postcopy_discard_send_finish(ms);
3039 return 0;
3043 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3045 * Returns zero on success
3047 * Transmit the set of pages to be discarded after precopy to the target
3048 * these are pages that:
3049 * a) Have been previously transmitted but are now dirty again
3050 * b) Pages that have never been transmitted, this ensures that
3051 * any pages on the destination that have been mapped by background
3052 * tasks get discarded (transparent huge pages is the specific concern)
3053 * Hopefully this is pretty sparse
3055 * @ms: current migration state
3057 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3059 RAMState *rs = ram_state;
3060 RAMBlock *block;
3061 int ret;
3063 RCU_READ_LOCK_GUARD();
3065 /* This should be our last sync, the src is now paused */
3066 migration_bitmap_sync(rs);
3068 /* Easiest way to make sure we don't resume in the middle of a host-page */
3069 rs->last_seen_block = NULL;
3070 rs->last_sent_block = NULL;
3071 rs->last_page = 0;
3073 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3074 /* Deal with TPS != HPS and huge pages */
3075 ret = postcopy_chunk_hostpages(ms, block);
3076 if (ret) {
3077 return ret;
3080 #ifdef DEBUG_POSTCOPY
3081 ram_debug_dump_bitmap(block->bmap, true,
3082 block->used_length >> TARGET_PAGE_BITS);
3083 #endif
3085 trace_ram_postcopy_send_discard_bitmap();
3087 ret = postcopy_each_ram_send_discard(ms);
3089 return ret;
3093 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3095 * Returns zero on success
3097 * @rbname: name of the RAMBlock of the request. NULL means the
3098 * same that last one.
3099 * @start: RAMBlock starting page
3100 * @length: RAMBlock size
3102 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3104 trace_ram_discard_range(rbname, start, length);
3106 RCU_READ_LOCK_GUARD();
3107 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3109 if (!rb) {
3110 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3111 return -1;
3115 * On source VM, we don't need to update the received bitmap since
3116 * we don't even have one.
3118 if (rb->receivedmap) {
3119 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3120 length >> qemu_target_page_bits());
3123 return ram_block_discard_range(rb, start, length);
3127 * For every allocation, we will try not to crash the VM if the
3128 * allocation failed.
3130 static int xbzrle_init(void)
3132 Error *local_err = NULL;
3134 if (!migrate_use_xbzrle()) {
3135 return 0;
3138 XBZRLE_cache_lock();
3140 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3141 if (!XBZRLE.zero_target_page) {
3142 error_report("%s: Error allocating zero page", __func__);
3143 goto err_out;
3146 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3147 TARGET_PAGE_SIZE, &local_err);
3148 if (!XBZRLE.cache) {
3149 error_report_err(local_err);
3150 goto free_zero_page;
3153 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3154 if (!XBZRLE.encoded_buf) {
3155 error_report("%s: Error allocating encoded_buf", __func__);
3156 goto free_cache;
3159 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3160 if (!XBZRLE.current_buf) {
3161 error_report("%s: Error allocating current_buf", __func__);
3162 goto free_encoded_buf;
3165 /* We are all good */
3166 XBZRLE_cache_unlock();
3167 return 0;
3169 free_encoded_buf:
3170 g_free(XBZRLE.encoded_buf);
3171 XBZRLE.encoded_buf = NULL;
3172 free_cache:
3173 cache_fini(XBZRLE.cache);
3174 XBZRLE.cache = NULL;
3175 free_zero_page:
3176 g_free(XBZRLE.zero_target_page);
3177 XBZRLE.zero_target_page = NULL;
3178 err_out:
3179 XBZRLE_cache_unlock();
3180 return -ENOMEM;
3183 static int ram_state_init(RAMState **rsp)
3185 *rsp = g_try_new0(RAMState, 1);
3187 if (!*rsp) {
3188 error_report("%s: Init ramstate fail", __func__);
3189 return -1;
3192 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3193 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3194 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3197 * Count the total number of pages used by ram blocks not including any
3198 * gaps due to alignment or unplugs.
3199 * This must match with the initial values of dirty bitmap.
3201 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3202 ram_state_reset(*rsp);
3204 return 0;
3207 static void ram_list_init_bitmaps(void)
3209 MigrationState *ms = migrate_get_current();
3210 RAMBlock *block;
3211 unsigned long pages;
3212 uint8_t shift;
3214 /* Skip setting bitmap if there is no RAM */
3215 if (ram_bytes_total()) {
3216 shift = ms->clear_bitmap_shift;
3217 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3218 error_report("clear_bitmap_shift (%u) too big, using "
3219 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3220 shift = CLEAR_BITMAP_SHIFT_MAX;
3221 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3222 error_report("clear_bitmap_shift (%u) too small, using "
3223 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3224 shift = CLEAR_BITMAP_SHIFT_MIN;
3227 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3228 pages = block->max_length >> TARGET_PAGE_BITS;
3230 * The initial dirty bitmap for migration must be set with all
3231 * ones to make sure we'll migrate every guest RAM page to
3232 * destination.
3233 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3234 * new migration after a failed migration, ram_list.
3235 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3236 * guest memory.
3238 block->bmap = bitmap_new(pages);
3239 bitmap_set(block->bmap, 0, pages);
3240 block->clear_bmap_shift = shift;
3241 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3246 static void ram_init_bitmaps(RAMState *rs)
3248 /* For memory_global_dirty_log_start below. */
3249 qemu_mutex_lock_iothread();
3250 qemu_mutex_lock_ramlist();
3252 WITH_RCU_READ_LOCK_GUARD() {
3253 ram_list_init_bitmaps();
3254 memory_global_dirty_log_start();
3255 migration_bitmap_sync_precopy(rs);
3257 qemu_mutex_unlock_ramlist();
3258 qemu_mutex_unlock_iothread();
3261 static int ram_init_all(RAMState **rsp)
3263 if (ram_state_init(rsp)) {
3264 return -1;
3267 if (xbzrle_init()) {
3268 ram_state_cleanup(rsp);
3269 return -1;
3272 ram_init_bitmaps(*rsp);
3274 return 0;
3277 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3279 RAMBlock *block;
3280 uint64_t pages = 0;
3283 * Postcopy is not using xbzrle/compression, so no need for that.
3284 * Also, since source are already halted, we don't need to care
3285 * about dirty page logging as well.
3288 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3289 pages += bitmap_count_one(block->bmap,
3290 block->used_length >> TARGET_PAGE_BITS);
3293 /* This may not be aligned with current bitmaps. Recalculate. */
3294 rs->migration_dirty_pages = pages;
3296 rs->last_seen_block = NULL;
3297 rs->last_sent_block = NULL;
3298 rs->last_page = 0;
3299 rs->last_version = ram_list.version;
3301 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3302 * matter what we have sent.
3304 rs->ram_bulk_stage = false;
3306 /* Update RAMState cache of output QEMUFile */
3307 rs->f = out;
3309 trace_ram_state_resume_prepare(pages);
3313 * This function clears bits of the free pages reported by the caller from the
3314 * migration dirty bitmap. @addr is the host address corresponding to the
3315 * start of the continuous guest free pages, and @len is the total bytes of
3316 * those pages.
3318 void qemu_guest_free_page_hint(void *addr, size_t len)
3320 RAMBlock *block;
3321 ram_addr_t offset;
3322 size_t used_len, start, npages;
3323 MigrationState *s = migrate_get_current();
3325 /* This function is currently expected to be used during live migration */
3326 if (!migration_is_setup_or_active(s->state)) {
3327 return;
3330 for (; len > 0; len -= used_len, addr += used_len) {
3331 block = qemu_ram_block_from_host(addr, false, &offset);
3332 if (unlikely(!block || offset >= block->used_length)) {
3334 * The implementation might not support RAMBlock resize during
3335 * live migration, but it could happen in theory with future
3336 * updates. So we add a check here to capture that case.
3338 error_report_once("%s unexpected error", __func__);
3339 return;
3342 if (len <= block->used_length - offset) {
3343 used_len = len;
3344 } else {
3345 used_len = block->used_length - offset;
3348 start = offset >> TARGET_PAGE_BITS;
3349 npages = used_len >> TARGET_PAGE_BITS;
3351 qemu_mutex_lock(&ram_state->bitmap_mutex);
3352 ram_state->migration_dirty_pages -=
3353 bitmap_count_one_with_offset(block->bmap, start, npages);
3354 bitmap_clear(block->bmap, start, npages);
3355 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3360 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3361 * long-running RCU critical section. When rcu-reclaims in the code
3362 * start to become numerous it will be necessary to reduce the
3363 * granularity of these critical sections.
3367 * ram_save_setup: Setup RAM for migration
3369 * Returns zero to indicate success and negative for error
3371 * @f: QEMUFile where to send the data
3372 * @opaque: RAMState pointer
3374 static int ram_save_setup(QEMUFile *f, void *opaque)
3376 RAMState **rsp = opaque;
3377 RAMBlock *block;
3379 if (compress_threads_save_setup()) {
3380 return -1;
3383 /* migration has already setup the bitmap, reuse it. */
3384 if (!migration_in_colo_state()) {
3385 if (ram_init_all(rsp) != 0) {
3386 compress_threads_save_cleanup();
3387 return -1;
3390 (*rsp)->f = f;
3392 WITH_RCU_READ_LOCK_GUARD() {
3393 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3395 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3396 qemu_put_byte(f, strlen(block->idstr));
3397 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3398 qemu_put_be64(f, block->used_length);
3399 if (migrate_postcopy_ram() && block->page_size !=
3400 qemu_host_page_size) {
3401 qemu_put_be64(f, block->page_size);
3403 if (migrate_ignore_shared()) {
3404 qemu_put_be64(f, block->mr->addr);
3409 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3410 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3412 multifd_send_sync_main(*rsp);
3413 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3414 qemu_fflush(f);
3416 return 0;
3420 * ram_save_iterate: iterative stage for migration
3422 * Returns zero to indicate success and negative for error
3424 * @f: QEMUFile where to send the data
3425 * @opaque: RAMState pointer
3427 static int ram_save_iterate(QEMUFile *f, void *opaque)
3429 RAMState **temp = opaque;
3430 RAMState *rs = *temp;
3431 int ret;
3432 int i;
3433 int64_t t0;
3434 int done = 0;
3436 if (blk_mig_bulk_active()) {
3437 /* Avoid transferring ram during bulk phase of block migration as
3438 * the bulk phase will usually take a long time and transferring
3439 * ram updates during that time is pointless. */
3440 goto out;
3443 WITH_RCU_READ_LOCK_GUARD() {
3444 if (ram_list.version != rs->last_version) {
3445 ram_state_reset(rs);
3448 /* Read version before ram_list.blocks */
3449 smp_rmb();
3451 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3453 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3454 i = 0;
3455 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3456 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3457 int pages;
3459 if (qemu_file_get_error(f)) {
3460 break;
3463 pages = ram_find_and_save_block(rs, false);
3464 /* no more pages to sent */
3465 if (pages == 0) {
3466 done = 1;
3467 break;
3470 if (pages < 0) {
3471 qemu_file_set_error(f, pages);
3472 break;
3475 rs->target_page_count += pages;
3478 * During postcopy, it is necessary to make sure one whole host
3479 * page is sent in one chunk.
3481 if (migrate_postcopy_ram()) {
3482 flush_compressed_data(rs);
3486 * we want to check in the 1st loop, just in case it was the 1st
3487 * time and we had to sync the dirty bitmap.
3488 * qemu_clock_get_ns() is a bit expensive, so we only check each
3489 * some iterations
3491 if ((i & 63) == 0) {
3492 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3493 1000000;
3494 if (t1 > MAX_WAIT) {
3495 trace_ram_save_iterate_big_wait(t1, i);
3496 break;
3499 i++;
3504 * Must occur before EOS (or any QEMUFile operation)
3505 * because of RDMA protocol.
3507 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3509 out:
3510 multifd_send_sync_main(rs);
3511 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3512 qemu_fflush(f);
3513 ram_counters.transferred += 8;
3515 ret = qemu_file_get_error(f);
3516 if (ret < 0) {
3517 return ret;
3520 return done;
3524 * ram_save_complete: function called to send the remaining amount of ram
3526 * Returns zero to indicate success or negative on error
3528 * Called with iothread lock
3530 * @f: QEMUFile where to send the data
3531 * @opaque: RAMState pointer
3533 static int ram_save_complete(QEMUFile *f, void *opaque)
3535 RAMState **temp = opaque;
3536 RAMState *rs = *temp;
3537 int ret = 0;
3539 WITH_RCU_READ_LOCK_GUARD() {
3540 if (!migration_in_postcopy()) {
3541 migration_bitmap_sync_precopy(rs);
3544 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3546 /* try transferring iterative blocks of memory */
3548 /* flush all remaining blocks regardless of rate limiting */
3549 while (true) {
3550 int pages;
3552 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3553 /* no more blocks to sent */
3554 if (pages == 0) {
3555 break;
3557 if (pages < 0) {
3558 ret = pages;
3559 break;
3563 flush_compressed_data(rs);
3564 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3567 multifd_send_sync_main(rs);
3568 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3569 qemu_fflush(f);
3571 return ret;
3574 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3575 uint64_t *res_precopy_only,
3576 uint64_t *res_compatible,
3577 uint64_t *res_postcopy_only)
3579 RAMState **temp = opaque;
3580 RAMState *rs = *temp;
3581 uint64_t remaining_size;
3583 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3585 if (!migration_in_postcopy() &&
3586 remaining_size < max_size) {
3587 qemu_mutex_lock_iothread();
3588 WITH_RCU_READ_LOCK_GUARD() {
3589 migration_bitmap_sync_precopy(rs);
3591 qemu_mutex_unlock_iothread();
3592 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3595 if (migrate_postcopy_ram()) {
3596 /* We can do postcopy, and all the data is postcopiable */
3597 *res_compatible += remaining_size;
3598 } else {
3599 *res_precopy_only += remaining_size;
3603 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3605 unsigned int xh_len;
3606 int xh_flags;
3607 uint8_t *loaded_data;
3609 /* extract RLE header */
3610 xh_flags = qemu_get_byte(f);
3611 xh_len = qemu_get_be16(f);
3613 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3614 error_report("Failed to load XBZRLE page - wrong compression!");
3615 return -1;
3618 if (xh_len > TARGET_PAGE_SIZE) {
3619 error_report("Failed to load XBZRLE page - len overflow!");
3620 return -1;
3622 loaded_data = XBZRLE.decoded_buf;
3623 /* load data and decode */
3624 /* it can change loaded_data to point to an internal buffer */
3625 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3627 /* decode RLE */
3628 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3629 TARGET_PAGE_SIZE) == -1) {
3630 error_report("Failed to load XBZRLE page - decode error!");
3631 return -1;
3634 return 0;
3638 * ram_block_from_stream: read a RAMBlock id from the migration stream
3640 * Must be called from within a rcu critical section.
3642 * Returns a pointer from within the RCU-protected ram_list.
3644 * @f: QEMUFile where to read the data from
3645 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3647 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3649 static RAMBlock *block = NULL;
3650 char id[256];
3651 uint8_t len;
3653 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3654 if (!block) {
3655 error_report("Ack, bad migration stream!");
3656 return NULL;
3658 return block;
3661 len = qemu_get_byte(f);
3662 qemu_get_buffer(f, (uint8_t *)id, len);
3663 id[len] = 0;
3665 block = qemu_ram_block_by_name(id);
3666 if (!block) {
3667 error_report("Can't find block %s", id);
3668 return NULL;
3671 if (ramblock_is_ignored(block)) {
3672 error_report("block %s should not be migrated !", id);
3673 return NULL;
3676 return block;
3679 static inline void *host_from_ram_block_offset(RAMBlock *block,
3680 ram_addr_t offset)
3682 if (!offset_in_ramblock(block, offset)) {
3683 return NULL;
3686 return block->host + offset;
3689 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3690 ram_addr_t offset)
3692 if (!offset_in_ramblock(block, offset)) {
3693 return NULL;
3695 if (!block->colo_cache) {
3696 error_report("%s: colo_cache is NULL in block :%s",
3697 __func__, block->idstr);
3698 return NULL;
3702 * During colo checkpoint, we need bitmap of these migrated pages.
3703 * It help us to decide which pages in ram cache should be flushed
3704 * into VM's RAM later.
3706 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3707 ram_state->migration_dirty_pages++;
3709 return block->colo_cache + offset;
3713 * ram_handle_compressed: handle the zero page case
3715 * If a page (or a whole RDMA chunk) has been
3716 * determined to be zero, then zap it.
3718 * @host: host address for the zero page
3719 * @ch: what the page is filled from. We only support zero
3720 * @size: size of the zero page
3722 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3724 if (ch != 0 || !is_zero_range(host, size)) {
3725 memset(host, ch, size);
3729 /* return the size after decompression, or negative value on error */
3730 static int
3731 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3732 const uint8_t *source, size_t source_len)
3734 int err;
3736 err = inflateReset(stream);
3737 if (err != Z_OK) {
3738 return -1;
3741 stream->avail_in = source_len;
3742 stream->next_in = (uint8_t *)source;
3743 stream->avail_out = dest_len;
3744 stream->next_out = dest;
3746 err = inflate(stream, Z_NO_FLUSH);
3747 if (err != Z_STREAM_END) {
3748 return -1;
3751 return stream->total_out;
3754 static void *do_data_decompress(void *opaque)
3756 DecompressParam *param = opaque;
3757 unsigned long pagesize;
3758 uint8_t *des;
3759 int len, ret;
3761 qemu_mutex_lock(&param->mutex);
3762 while (!param->quit) {
3763 if (param->des) {
3764 des = param->des;
3765 len = param->len;
3766 param->des = 0;
3767 qemu_mutex_unlock(&param->mutex);
3769 pagesize = TARGET_PAGE_SIZE;
3771 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3772 param->compbuf, len);
3773 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3774 error_report("decompress data failed");
3775 qemu_file_set_error(decomp_file, ret);
3778 qemu_mutex_lock(&decomp_done_lock);
3779 param->done = true;
3780 qemu_cond_signal(&decomp_done_cond);
3781 qemu_mutex_unlock(&decomp_done_lock);
3783 qemu_mutex_lock(&param->mutex);
3784 } else {
3785 qemu_cond_wait(&param->cond, &param->mutex);
3788 qemu_mutex_unlock(&param->mutex);
3790 return NULL;
3793 static int wait_for_decompress_done(void)
3795 int idx, thread_count;
3797 if (!migrate_use_compression()) {
3798 return 0;
3801 thread_count = migrate_decompress_threads();
3802 qemu_mutex_lock(&decomp_done_lock);
3803 for (idx = 0; idx < thread_count; idx++) {
3804 while (!decomp_param[idx].done) {
3805 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3808 qemu_mutex_unlock(&decomp_done_lock);
3809 return qemu_file_get_error(decomp_file);
3812 static void compress_threads_load_cleanup(void)
3814 int i, thread_count;
3816 if (!migrate_use_compression()) {
3817 return;
3819 thread_count = migrate_decompress_threads();
3820 for (i = 0; i < thread_count; i++) {
3822 * we use it as a indicator which shows if the thread is
3823 * properly init'd or not
3825 if (!decomp_param[i].compbuf) {
3826 break;
3829 qemu_mutex_lock(&decomp_param[i].mutex);
3830 decomp_param[i].quit = true;
3831 qemu_cond_signal(&decomp_param[i].cond);
3832 qemu_mutex_unlock(&decomp_param[i].mutex);
3834 for (i = 0; i < thread_count; i++) {
3835 if (!decomp_param[i].compbuf) {
3836 break;
3839 qemu_thread_join(decompress_threads + i);
3840 qemu_mutex_destroy(&decomp_param[i].mutex);
3841 qemu_cond_destroy(&decomp_param[i].cond);
3842 inflateEnd(&decomp_param[i].stream);
3843 g_free(decomp_param[i].compbuf);
3844 decomp_param[i].compbuf = NULL;
3846 g_free(decompress_threads);
3847 g_free(decomp_param);
3848 decompress_threads = NULL;
3849 decomp_param = NULL;
3850 decomp_file = NULL;
3853 static int compress_threads_load_setup(QEMUFile *f)
3855 int i, thread_count;
3857 if (!migrate_use_compression()) {
3858 return 0;
3861 thread_count = migrate_decompress_threads();
3862 decompress_threads = g_new0(QemuThread, thread_count);
3863 decomp_param = g_new0(DecompressParam, thread_count);
3864 qemu_mutex_init(&decomp_done_lock);
3865 qemu_cond_init(&decomp_done_cond);
3866 decomp_file = f;
3867 for (i = 0; i < thread_count; i++) {
3868 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3869 goto exit;
3872 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3873 qemu_mutex_init(&decomp_param[i].mutex);
3874 qemu_cond_init(&decomp_param[i].cond);
3875 decomp_param[i].done = true;
3876 decomp_param[i].quit = false;
3877 qemu_thread_create(decompress_threads + i, "decompress",
3878 do_data_decompress, decomp_param + i,
3879 QEMU_THREAD_JOINABLE);
3881 return 0;
3882 exit:
3883 compress_threads_load_cleanup();
3884 return -1;
3887 static void decompress_data_with_multi_threads(QEMUFile *f,
3888 void *host, int len)
3890 int idx, thread_count;
3892 thread_count = migrate_decompress_threads();
3893 qemu_mutex_lock(&decomp_done_lock);
3894 while (true) {
3895 for (idx = 0; idx < thread_count; idx++) {
3896 if (decomp_param[idx].done) {
3897 decomp_param[idx].done = false;
3898 qemu_mutex_lock(&decomp_param[idx].mutex);
3899 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3900 decomp_param[idx].des = host;
3901 decomp_param[idx].len = len;
3902 qemu_cond_signal(&decomp_param[idx].cond);
3903 qemu_mutex_unlock(&decomp_param[idx].mutex);
3904 break;
3907 if (idx < thread_count) {
3908 break;
3909 } else {
3910 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3913 qemu_mutex_unlock(&decomp_done_lock);
3917 * colo cache: this is for secondary VM, we cache the whole
3918 * memory of the secondary VM, it is need to hold the global lock
3919 * to call this helper.
3921 int colo_init_ram_cache(void)
3923 RAMBlock *block;
3925 WITH_RCU_READ_LOCK_GUARD() {
3926 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3927 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3928 NULL,
3929 false);
3930 if (!block->colo_cache) {
3931 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3932 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3933 block->used_length);
3934 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3935 if (block->colo_cache) {
3936 qemu_anon_ram_free(block->colo_cache, block->used_length);
3937 block->colo_cache = NULL;
3940 return -errno;
3942 memcpy(block->colo_cache, block->host, block->used_length);
3947 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3948 * with to decide which page in cache should be flushed into SVM's RAM. Here
3949 * we use the same name 'ram_bitmap' as for migration.
3951 if (ram_bytes_total()) {
3952 RAMBlock *block;
3954 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3955 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3957 block->bmap = bitmap_new(pages);
3958 bitmap_set(block->bmap, 0, pages);
3961 ram_state = g_new0(RAMState, 1);
3962 ram_state->migration_dirty_pages = 0;
3963 qemu_mutex_init(&ram_state->bitmap_mutex);
3964 memory_global_dirty_log_start();
3966 return 0;
3969 /* It is need to hold the global lock to call this helper */
3970 void colo_release_ram_cache(void)
3972 RAMBlock *block;
3974 memory_global_dirty_log_stop();
3975 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3976 g_free(block->bmap);
3977 block->bmap = NULL;
3980 WITH_RCU_READ_LOCK_GUARD() {
3981 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3982 if (block->colo_cache) {
3983 qemu_anon_ram_free(block->colo_cache, block->used_length);
3984 block->colo_cache = NULL;
3988 qemu_mutex_destroy(&ram_state->bitmap_mutex);
3989 g_free(ram_state);
3990 ram_state = NULL;
3994 * ram_load_setup: Setup RAM for migration incoming side
3996 * Returns zero to indicate success and negative for error
3998 * @f: QEMUFile where to receive the data
3999 * @opaque: RAMState pointer
4001 static int ram_load_setup(QEMUFile *f, void *opaque)
4003 if (compress_threads_load_setup(f)) {
4004 return -1;
4007 xbzrle_load_setup();
4008 ramblock_recv_map_init();
4010 return 0;
4013 static int ram_load_cleanup(void *opaque)
4015 RAMBlock *rb;
4017 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4018 qemu_ram_block_writeback(rb);
4021 xbzrle_load_cleanup();
4022 compress_threads_load_cleanup();
4024 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4025 g_free(rb->receivedmap);
4026 rb->receivedmap = NULL;
4029 return 0;
4033 * ram_postcopy_incoming_init: allocate postcopy data structures
4035 * Returns 0 for success and negative if there was one error
4037 * @mis: current migration incoming state
4039 * Allocate data structures etc needed by incoming migration with
4040 * postcopy-ram. postcopy-ram's similarly names
4041 * postcopy_ram_incoming_init does the work.
4043 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4045 return postcopy_ram_incoming_init(mis);
4049 * ram_load_postcopy: load a page in postcopy case
4051 * Returns 0 for success or -errno in case of error
4053 * Called in postcopy mode by ram_load().
4054 * rcu_read_lock is taken prior to this being called.
4056 * @f: QEMUFile where to send the data
4058 static int ram_load_postcopy(QEMUFile *f)
4060 int flags = 0, ret = 0;
4061 bool place_needed = false;
4062 bool matches_target_page_size = false;
4063 MigrationIncomingState *mis = migration_incoming_get_current();
4064 /* Temporary page that is later 'placed' */
4065 void *postcopy_host_page = mis->postcopy_tmp_page;
4066 void *this_host = NULL;
4067 bool all_zero = false;
4068 int target_pages = 0;
4070 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4071 ram_addr_t addr;
4072 void *host = NULL;
4073 void *page_buffer = NULL;
4074 void *place_source = NULL;
4075 RAMBlock *block = NULL;
4076 uint8_t ch;
4077 int len;
4079 addr = qemu_get_be64(f);
4082 * If qemu file error, we should stop here, and then "addr"
4083 * may be invalid
4085 ret = qemu_file_get_error(f);
4086 if (ret) {
4087 break;
4090 flags = addr & ~TARGET_PAGE_MASK;
4091 addr &= TARGET_PAGE_MASK;
4093 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4094 place_needed = false;
4095 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4096 RAM_SAVE_FLAG_COMPRESS_PAGE)) {
4097 block = ram_block_from_stream(f, flags);
4099 host = host_from_ram_block_offset(block, addr);
4100 if (!host) {
4101 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4102 ret = -EINVAL;
4103 break;
4105 target_pages++;
4106 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4108 * Postcopy requires that we place whole host pages atomically;
4109 * these may be huge pages for RAMBlocks that are backed by
4110 * hugetlbfs.
4111 * To make it atomic, the data is read into a temporary page
4112 * that's moved into place later.
4113 * The migration protocol uses, possibly smaller, target-pages
4114 * however the source ensures it always sends all the components
4115 * of a host page in one chunk.
4117 page_buffer = postcopy_host_page +
4118 ((uintptr_t)host & (block->page_size - 1));
4119 /* If all TP are zero then we can optimise the place */
4120 if (target_pages == 1) {
4121 all_zero = true;
4122 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4123 block->page_size);
4124 } else {
4125 /* not the 1st TP within the HP */
4126 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) !=
4127 (uintptr_t)this_host) {
4128 error_report("Non-same host page %p/%p",
4129 host, this_host);
4130 ret = -EINVAL;
4131 break;
4136 * If it's the last part of a host page then we place the host
4137 * page
4139 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
4140 place_needed = true;
4141 target_pages = 0;
4143 place_source = postcopy_host_page;
4146 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4147 case RAM_SAVE_FLAG_ZERO:
4148 ch = qemu_get_byte(f);
4150 * Can skip to set page_buffer when
4151 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
4153 if (ch || !matches_target_page_size) {
4154 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4156 if (ch) {
4157 all_zero = false;
4159 break;
4161 case RAM_SAVE_FLAG_PAGE:
4162 all_zero = false;
4163 if (!matches_target_page_size) {
4164 /* For huge pages, we always use temporary buffer */
4165 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4166 } else {
4168 * For small pages that matches target page size, we
4169 * avoid the qemu_file copy. Instead we directly use
4170 * the buffer of QEMUFile to place the page. Note: we
4171 * cannot do any QEMUFile operation before using that
4172 * buffer to make sure the buffer is valid when
4173 * placing the page.
4175 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4176 TARGET_PAGE_SIZE);
4178 break;
4179 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4180 all_zero = false;
4181 len = qemu_get_be32(f);
4182 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4183 error_report("Invalid compressed data length: %d", len);
4184 ret = -EINVAL;
4185 break;
4187 decompress_data_with_multi_threads(f, page_buffer, len);
4188 break;
4190 case RAM_SAVE_FLAG_EOS:
4191 /* normal exit */
4192 multifd_recv_sync_main();
4193 break;
4194 default:
4195 error_report("Unknown combination of migration flags: %#x"
4196 " (postcopy mode)", flags);
4197 ret = -EINVAL;
4198 break;
4201 /* Got the whole host page, wait for decompress before placing. */
4202 if (place_needed) {
4203 ret |= wait_for_decompress_done();
4206 /* Detect for any possible file errors */
4207 if (!ret && qemu_file_get_error(f)) {
4208 ret = qemu_file_get_error(f);
4211 if (!ret && place_needed) {
4212 /* This gets called at the last target page in the host page */
4213 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host,
4214 block->page_size);
4216 if (all_zero) {
4217 ret = postcopy_place_page_zero(mis, place_dest,
4218 block);
4219 } else {
4220 ret = postcopy_place_page(mis, place_dest,
4221 place_source, block);
4226 return ret;
4229 static bool postcopy_is_advised(void)
4231 PostcopyState ps = postcopy_state_get();
4232 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4235 static bool postcopy_is_running(void)
4237 PostcopyState ps = postcopy_state_get();
4238 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4242 * Flush content of RAM cache into SVM's memory.
4243 * Only flush the pages that be dirtied by PVM or SVM or both.
4245 static void colo_flush_ram_cache(void)
4247 RAMBlock *block = NULL;
4248 void *dst_host;
4249 void *src_host;
4250 unsigned long offset = 0;
4252 memory_global_dirty_log_sync();
4253 WITH_RCU_READ_LOCK_GUARD() {
4254 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4255 ramblock_sync_dirty_bitmap(ram_state, block);
4259 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4260 WITH_RCU_READ_LOCK_GUARD() {
4261 block = QLIST_FIRST_RCU(&ram_list.blocks);
4263 while (block) {
4264 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4266 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4267 offset = 0;
4268 block = QLIST_NEXT_RCU(block, next);
4269 } else {
4270 migration_bitmap_clear_dirty(ram_state, block, offset);
4271 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4272 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4273 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4277 trace_colo_flush_ram_cache_end();
4281 * ram_load_precopy: load pages in precopy case
4283 * Returns 0 for success or -errno in case of error
4285 * Called in precopy mode by ram_load().
4286 * rcu_read_lock is taken prior to this being called.
4288 * @f: QEMUFile where to send the data
4290 static int ram_load_precopy(QEMUFile *f)
4292 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4293 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4294 bool postcopy_advised = postcopy_is_advised();
4295 if (!migrate_use_compression()) {
4296 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4299 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4300 ram_addr_t addr, total_ram_bytes;
4301 void *host = NULL;
4302 uint8_t ch;
4305 * Yield periodically to let main loop run, but an iteration of
4306 * the main loop is expensive, so do it each some iterations
4308 if ((i & 32767) == 0 && qemu_in_coroutine()) {
4309 aio_co_schedule(qemu_get_current_aio_context(),
4310 qemu_coroutine_self());
4311 qemu_coroutine_yield();
4313 i++;
4315 addr = qemu_get_be64(f);
4316 flags = addr & ~TARGET_PAGE_MASK;
4317 addr &= TARGET_PAGE_MASK;
4319 if (flags & invalid_flags) {
4320 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4321 error_report("Received an unexpected compressed page");
4324 ret = -EINVAL;
4325 break;
4328 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4329 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4330 RAMBlock *block = ram_block_from_stream(f, flags);
4333 * After going into COLO, we should load the Page into colo_cache.
4335 if (migration_incoming_in_colo_state()) {
4336 host = colo_cache_from_block_offset(block, addr);
4337 } else {
4338 host = host_from_ram_block_offset(block, addr);
4340 if (!host) {
4341 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4342 ret = -EINVAL;
4343 break;
4346 if (!migration_incoming_in_colo_state()) {
4347 ramblock_recv_bitmap_set(block, host);
4350 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4353 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4354 case RAM_SAVE_FLAG_MEM_SIZE:
4355 /* Synchronize RAM block list */
4356 total_ram_bytes = addr;
4357 while (!ret && total_ram_bytes) {
4358 RAMBlock *block;
4359 char id[256];
4360 ram_addr_t length;
4362 len = qemu_get_byte(f);
4363 qemu_get_buffer(f, (uint8_t *)id, len);
4364 id[len] = 0;
4365 length = qemu_get_be64(f);
4367 block = qemu_ram_block_by_name(id);
4368 if (block && !qemu_ram_is_migratable(block)) {
4369 error_report("block %s should not be migrated !", id);
4370 ret = -EINVAL;
4371 } else if (block) {
4372 if (length != block->used_length) {
4373 Error *local_err = NULL;
4375 ret = qemu_ram_resize(block, length,
4376 &local_err);
4377 if (local_err) {
4378 error_report_err(local_err);
4381 /* For postcopy we need to check hugepage sizes match */
4382 if (postcopy_advised &&
4383 block->page_size != qemu_host_page_size) {
4384 uint64_t remote_page_size = qemu_get_be64(f);
4385 if (remote_page_size != block->page_size) {
4386 error_report("Mismatched RAM page size %s "
4387 "(local) %zd != %" PRId64,
4388 id, block->page_size,
4389 remote_page_size);
4390 ret = -EINVAL;
4393 if (migrate_ignore_shared()) {
4394 hwaddr addr = qemu_get_be64(f);
4395 if (ramblock_is_ignored(block) &&
4396 block->mr->addr != addr) {
4397 error_report("Mismatched GPAs for block %s "
4398 "%" PRId64 "!= %" PRId64,
4399 id, (uint64_t)addr,
4400 (uint64_t)block->mr->addr);
4401 ret = -EINVAL;
4404 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4405 block->idstr);
4406 } else {
4407 error_report("Unknown ramblock \"%s\", cannot "
4408 "accept migration", id);
4409 ret = -EINVAL;
4412 total_ram_bytes -= length;
4414 break;
4416 case RAM_SAVE_FLAG_ZERO:
4417 ch = qemu_get_byte(f);
4418 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4419 break;
4421 case RAM_SAVE_FLAG_PAGE:
4422 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4423 break;
4425 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4426 len = qemu_get_be32(f);
4427 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4428 error_report("Invalid compressed data length: %d", len);
4429 ret = -EINVAL;
4430 break;
4432 decompress_data_with_multi_threads(f, host, len);
4433 break;
4435 case RAM_SAVE_FLAG_XBZRLE:
4436 if (load_xbzrle(f, addr, host) < 0) {
4437 error_report("Failed to decompress XBZRLE page at "
4438 RAM_ADDR_FMT, addr);
4439 ret = -EINVAL;
4440 break;
4442 break;
4443 case RAM_SAVE_FLAG_EOS:
4444 /* normal exit */
4445 multifd_recv_sync_main();
4446 break;
4447 default:
4448 if (flags & RAM_SAVE_FLAG_HOOK) {
4449 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4450 } else {
4451 error_report("Unknown combination of migration flags: %#x",
4452 flags);
4453 ret = -EINVAL;
4456 if (!ret) {
4457 ret = qemu_file_get_error(f);
4461 ret |= wait_for_decompress_done();
4462 return ret;
4465 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4467 int ret = 0;
4468 static uint64_t seq_iter;
4470 * If system is running in postcopy mode, page inserts to host memory must
4471 * be atomic
4473 bool postcopy_running = postcopy_is_running();
4475 seq_iter++;
4477 if (version_id != 4) {
4478 return -EINVAL;
4482 * This RCU critical section can be very long running.
4483 * When RCU reclaims in the code start to become numerous,
4484 * it will be necessary to reduce the granularity of this
4485 * critical section.
4487 WITH_RCU_READ_LOCK_GUARD() {
4488 if (postcopy_running) {
4489 ret = ram_load_postcopy(f);
4490 } else {
4491 ret = ram_load_precopy(f);
4494 trace_ram_load_complete(ret, seq_iter);
4496 if (!ret && migration_incoming_in_colo_state()) {
4497 colo_flush_ram_cache();
4499 return ret;
4502 static bool ram_has_postcopy(void *opaque)
4504 RAMBlock *rb;
4505 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4506 if (ramblock_is_pmem(rb)) {
4507 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4508 "is not supported now!", rb->idstr, rb->host);
4509 return false;
4513 return migrate_postcopy_ram();
4516 /* Sync all the dirty bitmap with destination VM. */
4517 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4519 RAMBlock *block;
4520 QEMUFile *file = s->to_dst_file;
4521 int ramblock_count = 0;
4523 trace_ram_dirty_bitmap_sync_start();
4525 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4526 qemu_savevm_send_recv_bitmap(file, block->idstr);
4527 trace_ram_dirty_bitmap_request(block->idstr);
4528 ramblock_count++;
4531 trace_ram_dirty_bitmap_sync_wait();
4533 /* Wait until all the ramblocks' dirty bitmap synced */
4534 while (ramblock_count--) {
4535 qemu_sem_wait(&s->rp_state.rp_sem);
4538 trace_ram_dirty_bitmap_sync_complete();
4540 return 0;
4543 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4545 qemu_sem_post(&s->rp_state.rp_sem);
4549 * Read the received bitmap, revert it as the initial dirty bitmap.
4550 * This is only used when the postcopy migration is paused but wants
4551 * to resume from a middle point.
4553 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4555 int ret = -EINVAL;
4556 QEMUFile *file = s->rp_state.from_dst_file;
4557 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4558 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4559 uint64_t size, end_mark;
4561 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4563 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4564 error_report("%s: incorrect state %s", __func__,
4565 MigrationStatus_str(s->state));
4566 return -EINVAL;
4570 * Note: see comments in ramblock_recv_bitmap_send() on why we
4571 * need the endianess convertion, and the paddings.
4573 local_size = ROUND_UP(local_size, 8);
4575 /* Add paddings */
4576 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4578 size = qemu_get_be64(file);
4580 /* The size of the bitmap should match with our ramblock */
4581 if (size != local_size) {
4582 error_report("%s: ramblock '%s' bitmap size mismatch "
4583 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4584 block->idstr, size, local_size);
4585 ret = -EINVAL;
4586 goto out;
4589 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4590 end_mark = qemu_get_be64(file);
4592 ret = qemu_file_get_error(file);
4593 if (ret || size != local_size) {
4594 error_report("%s: read bitmap failed for ramblock '%s': %d"
4595 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4596 __func__, block->idstr, ret, local_size, size);
4597 ret = -EIO;
4598 goto out;
4601 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4602 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4603 __func__, block->idstr, end_mark);
4604 ret = -EINVAL;
4605 goto out;
4609 * Endianess convertion. We are during postcopy (though paused).
4610 * The dirty bitmap won't change. We can directly modify it.
4612 bitmap_from_le(block->bmap, le_bitmap, nbits);
4615 * What we received is "received bitmap". Revert it as the initial
4616 * dirty bitmap for this ramblock.
4618 bitmap_complement(block->bmap, block->bmap, nbits);
4620 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4623 * We succeeded to sync bitmap for current ramblock. If this is
4624 * the last one to sync, we need to notify the main send thread.
4626 ram_dirty_bitmap_reload_notify(s);
4628 ret = 0;
4629 out:
4630 g_free(le_bitmap);
4631 return ret;
4634 static int ram_resume_prepare(MigrationState *s, void *opaque)
4636 RAMState *rs = *(RAMState **)opaque;
4637 int ret;
4639 ret = ram_dirty_bitmap_sync_all(s, rs);
4640 if (ret) {
4641 return ret;
4644 ram_state_resume_prepare(rs, s->to_dst_file);
4646 return 0;
4649 static SaveVMHandlers savevm_ram_handlers = {
4650 .save_setup = ram_save_setup,
4651 .save_live_iterate = ram_save_iterate,
4652 .save_live_complete_postcopy = ram_save_complete,
4653 .save_live_complete_precopy = ram_save_complete,
4654 .has_postcopy = ram_has_postcopy,
4655 .save_live_pending = ram_save_pending,
4656 .load_state = ram_load,
4657 .save_cleanup = ram_save_cleanup,
4658 .load_setup = ram_load_setup,
4659 .load_cleanup = ram_load_cleanup,
4660 .resume_prepare = ram_resume_prepare,
4663 void ram_mig_init(void)
4665 qemu_mutex_init(&XBZRLE.lock);
4666 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);