pixman: drop configure switches
[qemu/kevin.git] / hw / ppc / spapr.c
blobcaffa12763288a063c05b9c401f92d951a38cba2
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "qom/cpu.h"
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/ppc/xics.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
73 #include "hw/compat.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "qmp-commands.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103 const char *type_ics,
104 int nr_irqs, Error **errp)
106 Error *local_err = NULL;
107 Object *obj;
109 obj = object_new(type_ics);
110 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
111 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
112 &error_abort);
113 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
114 if (local_err) {
115 goto error;
117 object_property_set_bool(obj, true, "realized", &local_err);
118 if (local_err) {
119 goto error;
122 return ICS_SIMPLE(obj);
124 error:
125 error_propagate(errp, local_err);
126 return NULL;
129 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
132 * and newer QEMUs don't even have them. In both cases, we don't want
133 * to send anything on the wire.
135 return false;
138 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
139 .name = "icp/server",
140 .version_id = 1,
141 .minimum_version_id = 1,
142 .needed = pre_2_10_vmstate_dummy_icp_needed,
143 .fields = (VMStateField[]) {
144 VMSTATE_UNUSED(4), /* uint32_t xirr */
145 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
146 VMSTATE_UNUSED(1), /* uint8_t mfrr */
147 VMSTATE_END_OF_LIST()
151 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
154 (void *)(uintptr_t) i);
157 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
160 (void *)(uintptr_t) i);
163 static inline int xics_max_server_number(void)
165 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
168 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
170 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
171 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
173 if (kvm_enabled()) {
174 if (machine_kernel_irqchip_allowed(machine) &&
175 !xics_kvm_init(spapr, errp)) {
176 spapr->icp_type = TYPE_KVM_ICP;
177 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
179 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
180 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
181 return;
185 if (!spapr->ics) {
186 xics_spapr_init(spapr);
187 spapr->icp_type = TYPE_ICP;
188 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
189 if (!spapr->ics) {
190 return;
194 if (smc->pre_2_10_has_unused_icps) {
195 int i;
197 for (i = 0; i < xics_max_server_number(); i++) {
198 /* Dummy entries get deregistered when real ICPState objects
199 * are registered during CPU core hotplug.
201 pre_2_10_vmstate_register_dummy_icp(i);
206 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
207 int smt_threads)
209 int i, ret = 0;
210 uint32_t servers_prop[smt_threads];
211 uint32_t gservers_prop[smt_threads * 2];
212 int index = spapr_vcpu_id(cpu);
214 if (cpu->compat_pvr) {
215 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
216 if (ret < 0) {
217 return ret;
221 /* Build interrupt servers and gservers properties */
222 for (i = 0; i < smt_threads; i++) {
223 servers_prop[i] = cpu_to_be32(index + i);
224 /* Hack, direct the group queues back to cpu 0 */
225 gservers_prop[i*2] = cpu_to_be32(index + i);
226 gservers_prop[i*2 + 1] = 0;
228 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
229 servers_prop, sizeof(servers_prop));
230 if (ret < 0) {
231 return ret;
233 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
234 gservers_prop, sizeof(gservers_prop));
236 return ret;
239 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
241 int index = spapr_vcpu_id(cpu);
242 uint32_t associativity[] = {cpu_to_be32(0x5),
243 cpu_to_be32(0x0),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(cpu->node_id),
247 cpu_to_be32(index)};
249 /* Advertise NUMA via ibm,associativity */
250 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
251 sizeof(associativity));
254 /* Populate the "ibm,pa-features" property */
255 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
256 bool legacy_guest)
258 uint8_t pa_features_206[] = { 6, 0,
259 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
260 uint8_t pa_features_207[] = { 24, 0,
261 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
262 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
263 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
265 uint8_t pa_features_300[] = { 66, 0,
266 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
267 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
268 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
269 /* 6: DS207 */
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
271 /* 16: Vector */
272 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
273 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
274 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
275 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
276 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
277 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
278 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
279 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
280 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
281 /* 42: PM, 44: PC RA, 46: SC vec'd */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
283 /* 48: SIMD, 50: QP BFP, 52: String */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
285 /* 54: DecFP, 56: DecI, 58: SHA */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
287 /* 60: NM atomic, 62: RNG */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
290 uint8_t *pa_features;
291 size_t pa_size;
293 switch (POWERPC_MMU_VER(env->mmu_model)) {
294 case POWERPC_MMU_VER_2_06:
295 pa_features = pa_features_206;
296 pa_size = sizeof(pa_features_206);
297 break;
298 case POWERPC_MMU_VER_2_07:
299 pa_features = pa_features_207;
300 pa_size = sizeof(pa_features_207);
301 break;
302 case POWERPC_MMU_VER_3_00:
303 pa_features = pa_features_300;
304 pa_size = sizeof(pa_features_300);
305 break;
306 default:
307 return;
310 if (env->ci_large_pages) {
312 * Note: we keep CI large pages off by default because a 64K capable
313 * guest provisioned with large pages might otherwise try to map a qemu
314 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
315 * even if that qemu runs on a 4k host.
316 * We dd this bit back here if we are confident this is not an issue
318 pa_features[3] |= 0x20;
320 if (kvmppc_has_cap_htm() && pa_size > 24) {
321 pa_features[24] |= 0x80; /* Transactional memory support */
323 if (legacy_guest && pa_size > 40) {
324 /* Workaround for broken kernels that attempt (guest) radix
325 * mode when they can't handle it, if they see the radix bit set
326 * in pa-features. So hide it from them. */
327 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
330 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
333 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
335 int ret = 0, offset, cpus_offset;
336 CPUState *cs;
337 char cpu_model[32];
338 int smt = kvmppc_smt_threads();
339 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
341 CPU_FOREACH(cs) {
342 PowerPCCPU *cpu = POWERPC_CPU(cs);
343 CPUPPCState *env = &cpu->env;
344 DeviceClass *dc = DEVICE_GET_CLASS(cs);
345 int index = spapr_vcpu_id(cpu);
346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
348 if ((index % smt) != 0) {
349 continue;
352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
354 cpus_offset = fdt_path_offset(fdt, "/cpus");
355 if (cpus_offset < 0) {
356 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
357 "cpus");
358 if (cpus_offset < 0) {
359 return cpus_offset;
362 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
363 if (offset < 0) {
364 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
365 if (offset < 0) {
366 return offset;
370 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
371 pft_size_prop, sizeof(pft_size_prop));
372 if (ret < 0) {
373 return ret;
376 if (nb_numa_nodes > 1) {
377 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
378 if (ret < 0) {
379 return ret;
383 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
384 if (ret < 0) {
385 return ret;
388 spapr_populate_pa_features(env, fdt, offset,
389 spapr->cas_legacy_guest_workaround);
391 return ret;
394 static hwaddr spapr_node0_size(void)
396 MachineState *machine = MACHINE(qdev_get_machine());
398 if (nb_numa_nodes) {
399 int i;
400 for (i = 0; i < nb_numa_nodes; ++i) {
401 if (numa_info[i].node_mem) {
402 return MIN(pow2floor(numa_info[i].node_mem),
403 machine->ram_size);
407 return machine->ram_size;
410 static void add_str(GString *s, const gchar *s1)
412 g_string_append_len(s, s1, strlen(s1) + 1);
415 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
416 hwaddr size)
418 uint32_t associativity[] = {
419 cpu_to_be32(0x4), /* length */
420 cpu_to_be32(0x0), cpu_to_be32(0x0),
421 cpu_to_be32(0x0), cpu_to_be32(nodeid)
423 char mem_name[32];
424 uint64_t mem_reg_property[2];
425 int off;
427 mem_reg_property[0] = cpu_to_be64(start);
428 mem_reg_property[1] = cpu_to_be64(size);
430 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
431 off = fdt_add_subnode(fdt, 0, mem_name);
432 _FDT(off);
433 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
434 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
435 sizeof(mem_reg_property))));
436 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
437 sizeof(associativity))));
438 return off;
441 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
443 MachineState *machine = MACHINE(spapr);
444 hwaddr mem_start, node_size;
445 int i, nb_nodes = nb_numa_nodes;
446 NodeInfo *nodes = numa_info;
447 NodeInfo ramnode;
449 /* No NUMA nodes, assume there is just one node with whole RAM */
450 if (!nb_numa_nodes) {
451 nb_nodes = 1;
452 ramnode.node_mem = machine->ram_size;
453 nodes = &ramnode;
456 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
457 if (!nodes[i].node_mem) {
458 continue;
460 if (mem_start >= machine->ram_size) {
461 node_size = 0;
462 } else {
463 node_size = nodes[i].node_mem;
464 if (node_size > machine->ram_size - mem_start) {
465 node_size = machine->ram_size - mem_start;
468 if (!mem_start) {
469 /* ppc_spapr_init() checks for rma_size <= node0_size already */
470 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
471 mem_start += spapr->rma_size;
472 node_size -= spapr->rma_size;
474 for ( ; node_size; ) {
475 hwaddr sizetmp = pow2floor(node_size);
477 /* mem_start != 0 here */
478 if (ctzl(mem_start) < ctzl(sizetmp)) {
479 sizetmp = 1ULL << ctzl(mem_start);
482 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
483 node_size -= sizetmp;
484 mem_start += sizetmp;
488 return 0;
491 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
492 sPAPRMachineState *spapr)
494 PowerPCCPU *cpu = POWERPC_CPU(cs);
495 CPUPPCState *env = &cpu->env;
496 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
497 int index = spapr_vcpu_id(cpu);
498 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
499 0xffffffff, 0xffffffff};
500 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
501 : SPAPR_TIMEBASE_FREQ;
502 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
503 uint32_t page_sizes_prop[64];
504 size_t page_sizes_prop_size;
505 uint32_t vcpus_per_socket = smp_threads * smp_cores;
506 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
507 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
508 sPAPRDRConnector *drc;
509 int drc_index;
510 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
511 int i;
513 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
514 if (drc) {
515 drc_index = spapr_drc_index(drc);
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
519 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
520 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
522 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
523 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
524 env->dcache_line_size)));
525 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
526 env->dcache_line_size)));
527 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
528 env->icache_line_size)));
529 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
530 env->icache_line_size)));
532 if (pcc->l1_dcache_size) {
533 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
534 pcc->l1_dcache_size)));
535 } else {
536 warn_report("Unknown L1 dcache size for cpu");
538 if (pcc->l1_icache_size) {
539 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
540 pcc->l1_icache_size)));
541 } else {
542 warn_report("Unknown L1 icache size for cpu");
545 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
546 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
547 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
548 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
549 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
550 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
552 if (env->spr_cb[SPR_PURR].oea_read) {
553 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
556 if (env->mmu_model & POWERPC_MMU_1TSEG) {
557 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
558 segs, sizeof(segs))));
561 /* Advertise VMX/VSX (vector extensions) if available
562 * 0 / no property == no vector extensions
563 * 1 == VMX / Altivec available
564 * 2 == VSX available */
565 if (env->insns_flags & PPC_ALTIVEC) {
566 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
568 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
571 /* Advertise DFP (Decimal Floating Point) if available
572 * 0 / no property == no DFP
573 * 1 == DFP available */
574 if (env->insns_flags2 & PPC2_DFP) {
575 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
578 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
579 sizeof(page_sizes_prop));
580 if (page_sizes_prop_size) {
581 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
582 page_sizes_prop, page_sizes_prop_size)));
585 spapr_populate_pa_features(env, fdt, offset, false);
587 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
588 cs->cpu_index / vcpus_per_socket)));
590 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
591 pft_size_prop, sizeof(pft_size_prop))));
593 if (nb_numa_nodes > 1) {
594 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
597 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
599 if (pcc->radix_page_info) {
600 for (i = 0; i < pcc->radix_page_info->count; i++) {
601 radix_AP_encodings[i] =
602 cpu_to_be32(pcc->radix_page_info->entries[i]);
604 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
605 radix_AP_encodings,
606 pcc->radix_page_info->count *
607 sizeof(radix_AP_encodings[0]))));
611 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
613 CPUState *cs;
614 int cpus_offset;
615 char *nodename;
616 int smt = kvmppc_smt_threads();
618 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
619 _FDT(cpus_offset);
620 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
621 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
624 * We walk the CPUs in reverse order to ensure that CPU DT nodes
625 * created by fdt_add_subnode() end up in the right order in FDT
626 * for the guest kernel the enumerate the CPUs correctly.
628 CPU_FOREACH_REVERSE(cs) {
629 PowerPCCPU *cpu = POWERPC_CPU(cs);
630 int index = spapr_vcpu_id(cpu);
631 DeviceClass *dc = DEVICE_GET_CLASS(cs);
632 int offset;
634 if ((index % smt) != 0) {
635 continue;
638 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
639 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
640 g_free(nodename);
641 _FDT(offset);
642 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
648 * Adds ibm,dynamic-reconfiguration-memory node.
649 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
650 * of this device tree node.
652 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
654 MachineState *machine = MACHINE(spapr);
655 int ret, i, offset;
656 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
657 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
658 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
659 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
660 memory_region_size(&spapr->hotplug_memory.mr)) /
661 lmb_size;
662 uint32_t *int_buf, *cur_index, buf_len;
663 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
666 * Don't create the node if there is no hotpluggable memory
668 if (machine->ram_size == machine->maxram_size) {
669 return 0;
673 * Allocate enough buffer size to fit in ibm,dynamic-memory
674 * or ibm,associativity-lookup-arrays
676 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
677 * sizeof(uint32_t);
678 cur_index = int_buf = g_malloc0(buf_len);
680 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
682 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
683 sizeof(prop_lmb_size));
684 if (ret < 0) {
685 goto out;
688 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
689 if (ret < 0) {
690 goto out;
693 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
694 if (ret < 0) {
695 goto out;
698 /* ibm,dynamic-memory */
699 int_buf[0] = cpu_to_be32(nr_lmbs);
700 cur_index++;
701 for (i = 0; i < nr_lmbs; i++) {
702 uint64_t addr = i * lmb_size;
703 uint32_t *dynamic_memory = cur_index;
705 if (i >= hotplug_lmb_start) {
706 sPAPRDRConnector *drc;
708 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
709 g_assert(drc);
711 dynamic_memory[0] = cpu_to_be32(addr >> 32);
712 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
713 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
714 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
715 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
716 if (memory_region_present(get_system_memory(), addr)) {
717 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
718 } else {
719 dynamic_memory[5] = cpu_to_be32(0);
721 } else {
723 * LMB information for RMA, boot time RAM and gap b/n RAM and
724 * hotplug memory region -- all these are marked as reserved
725 * and as having no valid DRC.
727 dynamic_memory[0] = cpu_to_be32(addr >> 32);
728 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
729 dynamic_memory[2] = cpu_to_be32(0);
730 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
731 dynamic_memory[4] = cpu_to_be32(-1);
732 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
733 SPAPR_LMB_FLAGS_DRC_INVALID);
736 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
738 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
739 if (ret < 0) {
740 goto out;
743 /* ibm,associativity-lookup-arrays */
744 cur_index = int_buf;
745 int_buf[0] = cpu_to_be32(nr_nodes);
746 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
747 cur_index += 2;
748 for (i = 0; i < nr_nodes; i++) {
749 uint32_t associativity[] = {
750 cpu_to_be32(0x0),
751 cpu_to_be32(0x0),
752 cpu_to_be32(0x0),
753 cpu_to_be32(i)
755 memcpy(cur_index, associativity, sizeof(associativity));
756 cur_index += 4;
758 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
759 (cur_index - int_buf) * sizeof(uint32_t));
760 out:
761 g_free(int_buf);
762 return ret;
765 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
766 sPAPROptionVector *ov5_updates)
768 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
769 int ret = 0, offset;
771 /* Generate ibm,dynamic-reconfiguration-memory node if required */
772 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
773 g_assert(smc->dr_lmb_enabled);
774 ret = spapr_populate_drconf_memory(spapr, fdt);
775 if (ret) {
776 goto out;
780 offset = fdt_path_offset(fdt, "/chosen");
781 if (offset < 0) {
782 offset = fdt_add_subnode(fdt, 0, "chosen");
783 if (offset < 0) {
784 return offset;
787 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
788 "ibm,architecture-vec-5");
790 out:
791 return ret;
794 static bool spapr_hotplugged_dev_before_cas(void)
796 Object *drc_container, *obj;
797 ObjectProperty *prop;
798 ObjectPropertyIterator iter;
800 drc_container = container_get(object_get_root(), "/dr-connector");
801 object_property_iter_init(&iter, drc_container);
802 while ((prop = object_property_iter_next(&iter))) {
803 if (!strstart(prop->type, "link<", NULL)) {
804 continue;
806 obj = object_property_get_link(drc_container, prop->name, NULL);
807 if (spapr_drc_needed(obj)) {
808 return true;
811 return false;
814 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
815 target_ulong addr, target_ulong size,
816 sPAPROptionVector *ov5_updates)
818 void *fdt, *fdt_skel;
819 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
821 if (spapr_hotplugged_dev_before_cas()) {
822 return 1;
825 size -= sizeof(hdr);
827 /* Create skeleton */
828 fdt_skel = g_malloc0(size);
829 _FDT((fdt_create(fdt_skel, size)));
830 _FDT((fdt_begin_node(fdt_skel, "")));
831 _FDT((fdt_end_node(fdt_skel)));
832 _FDT((fdt_finish(fdt_skel)));
833 fdt = g_malloc0(size);
834 _FDT((fdt_open_into(fdt_skel, fdt, size)));
835 g_free(fdt_skel);
837 /* Fixup cpu nodes */
838 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
840 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
841 return -1;
844 /* Pack resulting tree */
845 _FDT((fdt_pack(fdt)));
847 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
848 trace_spapr_cas_failed(size);
849 return -1;
852 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
853 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
854 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
855 g_free(fdt);
857 return 0;
860 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
862 int rtas;
863 GString *hypertas = g_string_sized_new(256);
864 GString *qemu_hypertas = g_string_sized_new(256);
865 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
866 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
867 memory_region_size(&spapr->hotplug_memory.mr);
868 uint32_t lrdr_capacity[] = {
869 cpu_to_be32(max_hotplug_addr >> 32),
870 cpu_to_be32(max_hotplug_addr & 0xffffffff),
871 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
872 cpu_to_be32(max_cpus / smp_threads),
875 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
877 /* hypertas */
878 add_str(hypertas, "hcall-pft");
879 add_str(hypertas, "hcall-term");
880 add_str(hypertas, "hcall-dabr");
881 add_str(hypertas, "hcall-interrupt");
882 add_str(hypertas, "hcall-tce");
883 add_str(hypertas, "hcall-vio");
884 add_str(hypertas, "hcall-splpar");
885 add_str(hypertas, "hcall-bulk");
886 add_str(hypertas, "hcall-set-mode");
887 add_str(hypertas, "hcall-sprg0");
888 add_str(hypertas, "hcall-copy");
889 add_str(hypertas, "hcall-debug");
890 add_str(qemu_hypertas, "hcall-memop1");
892 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
893 add_str(hypertas, "hcall-multi-tce");
896 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
897 add_str(hypertas, "hcall-hpt-resize");
900 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
901 hypertas->str, hypertas->len));
902 g_string_free(hypertas, TRUE);
903 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
904 qemu_hypertas->str, qemu_hypertas->len));
905 g_string_free(qemu_hypertas, TRUE);
907 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
908 refpoints, sizeof(refpoints)));
910 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
911 RTAS_ERROR_LOG_MAX));
912 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
913 RTAS_EVENT_SCAN_RATE));
915 if (msi_nonbroken) {
916 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
920 * According to PAPR, rtas ibm,os-term does not guarantee a return
921 * back to the guest cpu.
923 * While an additional ibm,extended-os-term property indicates
924 * that rtas call return will always occur. Set this property.
926 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
928 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
929 lrdr_capacity, sizeof(lrdr_capacity)));
931 spapr_dt_rtas_tokens(fdt, rtas);
934 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
935 * that the guest may request and thus the valid values for bytes 24..26 of
936 * option vector 5: */
937 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
939 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
941 char val[2 * 4] = {
942 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
943 24, 0x00, /* Hash/Radix, filled in below. */
944 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
945 26, 0x40, /* Radix options: GTSE == yes. */
948 if (kvm_enabled()) {
949 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
950 val[3] = 0x80; /* OV5_MMU_BOTH */
951 } else if (kvmppc_has_cap_mmu_radix()) {
952 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
953 } else {
954 val[3] = 0x00; /* Hash */
956 } else {
957 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
958 /* V3 MMU supports both hash and radix (with dynamic switching) */
959 val[3] = 0xC0;
960 } else {
961 /* Otherwise we can only do hash */
962 val[3] = 0x00;
965 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
966 val, sizeof(val)));
969 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
971 MachineState *machine = MACHINE(spapr);
972 int chosen;
973 const char *boot_device = machine->boot_order;
974 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
975 size_t cb = 0;
976 char *bootlist = get_boot_devices_list(&cb, true);
978 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
980 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
981 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
982 spapr->initrd_base));
983 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
984 spapr->initrd_base + spapr->initrd_size));
986 if (spapr->kernel_size) {
987 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
988 cpu_to_be64(spapr->kernel_size) };
990 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
991 &kprop, sizeof(kprop)));
992 if (spapr->kernel_le) {
993 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
996 if (boot_menu) {
997 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
999 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1000 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1001 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1003 if (cb && bootlist) {
1004 int i;
1006 for (i = 0; i < cb; i++) {
1007 if (bootlist[i] == '\n') {
1008 bootlist[i] = ' ';
1011 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1014 if (boot_device && strlen(boot_device)) {
1015 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1018 if (!spapr->has_graphics && stdout_path) {
1019 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1022 spapr_dt_ov5_platform_support(fdt, chosen);
1024 g_free(stdout_path);
1025 g_free(bootlist);
1028 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1030 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1031 * KVM to work under pHyp with some guest co-operation */
1032 int hypervisor;
1033 uint8_t hypercall[16];
1035 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1036 /* indicate KVM hypercall interface */
1037 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1038 if (kvmppc_has_cap_fixup_hcalls()) {
1040 * Older KVM versions with older guest kernels were broken
1041 * with the magic page, don't allow the guest to map it.
1043 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1044 sizeof(hypercall))) {
1045 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1046 hypercall, sizeof(hypercall)));
1051 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1052 hwaddr rtas_addr,
1053 hwaddr rtas_size)
1055 MachineState *machine = MACHINE(qdev_get_machine());
1056 MachineClass *mc = MACHINE_GET_CLASS(machine);
1057 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1058 int ret;
1059 void *fdt;
1060 sPAPRPHBState *phb;
1061 char *buf;
1063 fdt = g_malloc0(FDT_MAX_SIZE);
1064 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1066 /* Root node */
1067 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1068 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1069 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1072 * Add info to guest to indentify which host is it being run on
1073 * and what is the uuid of the guest
1075 if (kvmppc_get_host_model(&buf)) {
1076 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1077 g_free(buf);
1079 if (kvmppc_get_host_serial(&buf)) {
1080 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1081 g_free(buf);
1084 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1086 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1087 if (qemu_uuid_set) {
1088 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1090 g_free(buf);
1092 if (qemu_get_vm_name()) {
1093 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1094 qemu_get_vm_name()));
1097 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1098 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1100 /* /interrupt controller */
1101 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1103 ret = spapr_populate_memory(spapr, fdt);
1104 if (ret < 0) {
1105 error_report("couldn't setup memory nodes in fdt");
1106 exit(1);
1109 /* /vdevice */
1110 spapr_dt_vdevice(spapr->vio_bus, fdt);
1112 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1113 ret = spapr_rng_populate_dt(fdt);
1114 if (ret < 0) {
1115 error_report("could not set up rng device in the fdt");
1116 exit(1);
1120 QLIST_FOREACH(phb, &spapr->phbs, list) {
1121 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1122 if (ret < 0) {
1123 error_report("couldn't setup PCI devices in fdt");
1124 exit(1);
1128 /* cpus */
1129 spapr_populate_cpus_dt_node(fdt, spapr);
1131 if (smc->dr_lmb_enabled) {
1132 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1135 if (mc->has_hotpluggable_cpus) {
1136 int offset = fdt_path_offset(fdt, "/cpus");
1137 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1138 SPAPR_DR_CONNECTOR_TYPE_CPU);
1139 if (ret < 0) {
1140 error_report("Couldn't set up CPU DR device tree properties");
1141 exit(1);
1145 /* /event-sources */
1146 spapr_dt_events(spapr, fdt);
1148 /* /rtas */
1149 spapr_dt_rtas(spapr, fdt);
1151 /* /chosen */
1152 spapr_dt_chosen(spapr, fdt);
1154 /* /hypervisor */
1155 if (kvm_enabled()) {
1156 spapr_dt_hypervisor(spapr, fdt);
1159 /* Build memory reserve map */
1160 if (spapr->kernel_size) {
1161 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1163 if (spapr->initrd_size) {
1164 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1167 /* ibm,client-architecture-support updates */
1168 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1169 if (ret < 0) {
1170 error_report("couldn't setup CAS properties fdt");
1171 exit(1);
1174 return fdt;
1177 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1179 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1182 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1183 PowerPCCPU *cpu)
1185 CPUPPCState *env = &cpu->env;
1187 /* The TCG path should also be holding the BQL at this point */
1188 g_assert(qemu_mutex_iothread_locked());
1190 if (msr_pr) {
1191 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1192 env->gpr[3] = H_PRIVILEGE;
1193 } else {
1194 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1198 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1200 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1202 return spapr->patb_entry;
1205 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1206 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1207 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1208 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1209 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1212 * Get the fd to access the kernel htab, re-opening it if necessary
1214 static int get_htab_fd(sPAPRMachineState *spapr)
1216 if (spapr->htab_fd >= 0) {
1217 return spapr->htab_fd;
1220 spapr->htab_fd = kvmppc_get_htab_fd(false);
1221 if (spapr->htab_fd < 0) {
1222 error_report("Unable to open fd for reading hash table from KVM: %s",
1223 strerror(errno));
1226 return spapr->htab_fd;
1229 void close_htab_fd(sPAPRMachineState *spapr)
1231 if (spapr->htab_fd >= 0) {
1232 close(spapr->htab_fd);
1234 spapr->htab_fd = -1;
1237 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1239 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1241 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1244 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1245 hwaddr ptex, int n)
1247 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1248 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1250 if (!spapr->htab) {
1252 * HTAB is controlled by KVM. Fetch into temporary buffer
1254 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1255 kvmppc_read_hptes(hptes, ptex, n);
1256 return hptes;
1260 * HTAB is controlled by QEMU. Just point to the internally
1261 * accessible PTEG.
1263 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1266 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1267 const ppc_hash_pte64_t *hptes,
1268 hwaddr ptex, int n)
1270 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1272 if (!spapr->htab) {
1273 g_free((void *)hptes);
1276 /* Nothing to do for qemu managed HPT */
1279 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1280 uint64_t pte0, uint64_t pte1)
1282 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1283 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1285 if (!spapr->htab) {
1286 kvmppc_write_hpte(ptex, pte0, pte1);
1287 } else {
1288 stq_p(spapr->htab + offset, pte0);
1289 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1293 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1295 int shift;
1297 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1298 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1299 * that's much more than is needed for Linux guests */
1300 shift = ctz64(pow2ceil(ramsize)) - 7;
1301 shift = MAX(shift, 18); /* Minimum architected size */
1302 shift = MIN(shift, 46); /* Maximum architected size */
1303 return shift;
1306 void spapr_free_hpt(sPAPRMachineState *spapr)
1308 g_free(spapr->htab);
1309 spapr->htab = NULL;
1310 spapr->htab_shift = 0;
1311 close_htab_fd(spapr);
1314 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1315 Error **errp)
1317 long rc;
1319 /* Clean up any HPT info from a previous boot */
1320 spapr_free_hpt(spapr);
1322 rc = kvmppc_reset_htab(shift);
1323 if (rc < 0) {
1324 /* kernel-side HPT needed, but couldn't allocate one */
1325 error_setg_errno(errp, errno,
1326 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1327 shift);
1328 /* This is almost certainly fatal, but if the caller really
1329 * wants to carry on with shift == 0, it's welcome to try */
1330 } else if (rc > 0) {
1331 /* kernel-side HPT allocated */
1332 if (rc != shift) {
1333 error_setg(errp,
1334 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1335 shift, rc);
1338 spapr->htab_shift = shift;
1339 spapr->htab = NULL;
1340 } else {
1341 /* kernel-side HPT not needed, allocate in userspace instead */
1342 size_t size = 1ULL << shift;
1343 int i;
1345 spapr->htab = qemu_memalign(size, size);
1346 if (!spapr->htab) {
1347 error_setg_errno(errp, errno,
1348 "Could not allocate HPT of order %d", shift);
1349 return;
1352 memset(spapr->htab, 0, size);
1353 spapr->htab_shift = shift;
1355 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1356 DIRTY_HPTE(HPTE(spapr->htab, i));
1361 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1363 int hpt_shift;
1365 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1366 || (spapr->cas_reboot
1367 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1368 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1369 } else {
1370 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1372 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1374 if (spapr->vrma_adjust) {
1375 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1376 spapr->htab_shift);
1378 /* We're setting up a hash table, so that means we're not radix */
1379 spapr->patb_entry = 0;
1382 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1384 bool matched = false;
1386 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1387 matched = true;
1390 if (!matched) {
1391 error_report("Device %s is not supported by this machine yet.",
1392 qdev_fw_name(DEVICE(sbdev)));
1393 exit(1);
1397 static void ppc_spapr_reset(void)
1399 MachineState *machine = MACHINE(qdev_get_machine());
1400 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1401 PowerPCCPU *first_ppc_cpu;
1402 uint32_t rtas_limit;
1403 hwaddr rtas_addr, fdt_addr;
1404 void *fdt;
1405 int rc;
1407 /* Check for unknown sysbus devices */
1408 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1410 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1411 /* If using KVM with radix mode available, VCPUs can be started
1412 * without a HPT because KVM will start them in radix mode.
1413 * Set the GR bit in PATB so that we know there is no HPT. */
1414 spapr->patb_entry = PATBE1_GR;
1415 } else {
1416 spapr_setup_hpt_and_vrma(spapr);
1419 qemu_devices_reset();
1420 spapr_clear_pending_events(spapr);
1423 * We place the device tree and RTAS just below either the top of the RMA,
1424 * or just below 2GB, whichever is lowere, so that it can be
1425 * processed with 32-bit real mode code if necessary
1427 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1428 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1429 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1431 /* if this reset wasn't generated by CAS, we should reset our
1432 * negotiated options and start from scratch */
1433 if (!spapr->cas_reboot) {
1434 spapr_ovec_cleanup(spapr->ov5_cas);
1435 spapr->ov5_cas = spapr_ovec_new();
1437 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1440 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1442 spapr_load_rtas(spapr, fdt, rtas_addr);
1444 rc = fdt_pack(fdt);
1446 /* Should only fail if we've built a corrupted tree */
1447 assert(rc == 0);
1449 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1450 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1451 fdt_totalsize(fdt), FDT_MAX_SIZE);
1452 exit(1);
1455 /* Load the fdt */
1456 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1457 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1458 g_free(fdt);
1460 /* Set up the entry state */
1461 first_ppc_cpu = POWERPC_CPU(first_cpu);
1462 first_ppc_cpu->env.gpr[3] = fdt_addr;
1463 first_ppc_cpu->env.gpr[5] = 0;
1464 first_cpu->halted = 0;
1465 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1467 spapr->cas_reboot = false;
1470 static void spapr_create_nvram(sPAPRMachineState *spapr)
1472 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1473 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1475 if (dinfo) {
1476 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1477 &error_fatal);
1480 qdev_init_nofail(dev);
1482 spapr->nvram = (struct sPAPRNVRAM *)dev;
1485 static void spapr_rtc_create(sPAPRMachineState *spapr)
1487 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1488 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1489 &error_fatal);
1490 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1491 &error_fatal);
1492 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1493 "date", &error_fatal);
1496 /* Returns whether we want to use VGA or not */
1497 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1499 switch (vga_interface_type) {
1500 case VGA_NONE:
1501 return false;
1502 case VGA_DEVICE:
1503 return true;
1504 case VGA_STD:
1505 case VGA_VIRTIO:
1506 return pci_vga_init(pci_bus) != NULL;
1507 default:
1508 error_setg(errp,
1509 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1510 return false;
1514 static int spapr_post_load(void *opaque, int version_id)
1516 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1517 int err = 0;
1519 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1520 CPUState *cs;
1521 CPU_FOREACH(cs) {
1522 PowerPCCPU *cpu = POWERPC_CPU(cs);
1523 icp_resend(ICP(cpu->intc));
1527 /* In earlier versions, there was no separate qdev for the PAPR
1528 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1529 * So when migrating from those versions, poke the incoming offset
1530 * value into the RTC device */
1531 if (version_id < 3) {
1532 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1535 if (spapr->patb_entry) {
1536 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1537 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1538 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1540 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1541 if (err) {
1542 error_report("Process table config unsupported by the host");
1543 return -EINVAL;
1547 return err;
1550 static bool version_before_3(void *opaque, int version_id)
1552 return version_id < 3;
1555 static bool spapr_pending_events_needed(void *opaque)
1557 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1558 return !QTAILQ_EMPTY(&spapr->pending_events);
1561 static const VMStateDescription vmstate_spapr_event_entry = {
1562 .name = "spapr_event_log_entry",
1563 .version_id = 1,
1564 .minimum_version_id = 1,
1565 .fields = (VMStateField[]) {
1566 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1567 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1568 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1569 NULL, extended_length),
1570 VMSTATE_END_OF_LIST()
1574 static const VMStateDescription vmstate_spapr_pending_events = {
1575 .name = "spapr_pending_events",
1576 .version_id = 1,
1577 .minimum_version_id = 1,
1578 .needed = spapr_pending_events_needed,
1579 .fields = (VMStateField[]) {
1580 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1581 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1582 VMSTATE_END_OF_LIST()
1586 static bool spapr_ov5_cas_needed(void *opaque)
1588 sPAPRMachineState *spapr = opaque;
1589 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1590 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1591 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1592 bool cas_needed;
1594 /* Prior to the introduction of sPAPROptionVector, we had two option
1595 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1596 * Both of these options encode machine topology into the device-tree
1597 * in such a way that the now-booted OS should still be able to interact
1598 * appropriately with QEMU regardless of what options were actually
1599 * negotiatied on the source side.
1601 * As such, we can avoid migrating the CAS-negotiated options if these
1602 * are the only options available on the current machine/platform.
1603 * Since these are the only options available for pseries-2.7 and
1604 * earlier, this allows us to maintain old->new/new->old migration
1605 * compatibility.
1607 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1608 * via default pseries-2.8 machines and explicit command-line parameters.
1609 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1610 * of the actual CAS-negotiated values to continue working properly. For
1611 * example, availability of memory unplug depends on knowing whether
1612 * OV5_HP_EVT was negotiated via CAS.
1614 * Thus, for any cases where the set of available CAS-negotiatable
1615 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1616 * include the CAS-negotiated options in the migration stream.
1618 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1619 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1621 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1622 * the mask itself since in the future it's possible "legacy" bits may be
1623 * removed via machine options, which could generate a false positive
1624 * that breaks migration.
1626 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1627 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1629 spapr_ovec_cleanup(ov5_mask);
1630 spapr_ovec_cleanup(ov5_legacy);
1631 spapr_ovec_cleanup(ov5_removed);
1633 return cas_needed;
1636 static const VMStateDescription vmstate_spapr_ov5_cas = {
1637 .name = "spapr_option_vector_ov5_cas",
1638 .version_id = 1,
1639 .minimum_version_id = 1,
1640 .needed = spapr_ov5_cas_needed,
1641 .fields = (VMStateField[]) {
1642 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1643 vmstate_spapr_ovec, sPAPROptionVector),
1644 VMSTATE_END_OF_LIST()
1648 static bool spapr_patb_entry_needed(void *opaque)
1650 sPAPRMachineState *spapr = opaque;
1652 return !!spapr->patb_entry;
1655 static const VMStateDescription vmstate_spapr_patb_entry = {
1656 .name = "spapr_patb_entry",
1657 .version_id = 1,
1658 .minimum_version_id = 1,
1659 .needed = spapr_patb_entry_needed,
1660 .fields = (VMStateField[]) {
1661 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1662 VMSTATE_END_OF_LIST()
1666 static const VMStateDescription vmstate_spapr = {
1667 .name = "spapr",
1668 .version_id = 3,
1669 .minimum_version_id = 1,
1670 .post_load = spapr_post_load,
1671 .fields = (VMStateField[]) {
1672 /* used to be @next_irq */
1673 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1675 /* RTC offset */
1676 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1678 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1679 VMSTATE_END_OF_LIST()
1681 .subsections = (const VMStateDescription*[]) {
1682 &vmstate_spapr_ov5_cas,
1683 &vmstate_spapr_patb_entry,
1684 &vmstate_spapr_pending_events,
1685 NULL
1689 static int htab_save_setup(QEMUFile *f, void *opaque)
1691 sPAPRMachineState *spapr = opaque;
1693 /* "Iteration" header */
1694 if (!spapr->htab_shift) {
1695 qemu_put_be32(f, -1);
1696 } else {
1697 qemu_put_be32(f, spapr->htab_shift);
1700 if (spapr->htab) {
1701 spapr->htab_save_index = 0;
1702 spapr->htab_first_pass = true;
1703 } else {
1704 if (spapr->htab_shift) {
1705 assert(kvm_enabled());
1710 return 0;
1713 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1714 int64_t max_ns)
1716 bool has_timeout = max_ns != -1;
1717 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1718 int index = spapr->htab_save_index;
1719 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1721 assert(spapr->htab_first_pass);
1723 do {
1724 int chunkstart;
1726 /* Consume invalid HPTEs */
1727 while ((index < htabslots)
1728 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1729 CLEAN_HPTE(HPTE(spapr->htab, index));
1730 index++;
1733 /* Consume valid HPTEs */
1734 chunkstart = index;
1735 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1736 && HPTE_VALID(HPTE(spapr->htab, index))) {
1737 CLEAN_HPTE(HPTE(spapr->htab, index));
1738 index++;
1741 if (index > chunkstart) {
1742 int n_valid = index - chunkstart;
1744 qemu_put_be32(f, chunkstart);
1745 qemu_put_be16(f, n_valid);
1746 qemu_put_be16(f, 0);
1747 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1748 HASH_PTE_SIZE_64 * n_valid);
1750 if (has_timeout &&
1751 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1752 break;
1755 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1757 if (index >= htabslots) {
1758 assert(index == htabslots);
1759 index = 0;
1760 spapr->htab_first_pass = false;
1762 spapr->htab_save_index = index;
1765 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1766 int64_t max_ns)
1768 bool final = max_ns < 0;
1769 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1770 int examined = 0, sent = 0;
1771 int index = spapr->htab_save_index;
1772 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1774 assert(!spapr->htab_first_pass);
1776 do {
1777 int chunkstart, invalidstart;
1779 /* Consume non-dirty HPTEs */
1780 while ((index < htabslots)
1781 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1782 index++;
1783 examined++;
1786 chunkstart = index;
1787 /* Consume valid dirty HPTEs */
1788 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1789 && HPTE_DIRTY(HPTE(spapr->htab, index))
1790 && HPTE_VALID(HPTE(spapr->htab, index))) {
1791 CLEAN_HPTE(HPTE(spapr->htab, index));
1792 index++;
1793 examined++;
1796 invalidstart = index;
1797 /* Consume invalid dirty HPTEs */
1798 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1799 && HPTE_DIRTY(HPTE(spapr->htab, index))
1800 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1801 CLEAN_HPTE(HPTE(spapr->htab, index));
1802 index++;
1803 examined++;
1806 if (index > chunkstart) {
1807 int n_valid = invalidstart - chunkstart;
1808 int n_invalid = index - invalidstart;
1810 qemu_put_be32(f, chunkstart);
1811 qemu_put_be16(f, n_valid);
1812 qemu_put_be16(f, n_invalid);
1813 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1814 HASH_PTE_SIZE_64 * n_valid);
1815 sent += index - chunkstart;
1817 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1818 break;
1822 if (examined >= htabslots) {
1823 break;
1826 if (index >= htabslots) {
1827 assert(index == htabslots);
1828 index = 0;
1830 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1832 if (index >= htabslots) {
1833 assert(index == htabslots);
1834 index = 0;
1837 spapr->htab_save_index = index;
1839 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1842 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1843 #define MAX_KVM_BUF_SIZE 2048
1845 static int htab_save_iterate(QEMUFile *f, void *opaque)
1847 sPAPRMachineState *spapr = opaque;
1848 int fd;
1849 int rc = 0;
1851 /* Iteration header */
1852 if (!spapr->htab_shift) {
1853 qemu_put_be32(f, -1);
1854 return 1;
1855 } else {
1856 qemu_put_be32(f, 0);
1859 if (!spapr->htab) {
1860 assert(kvm_enabled());
1862 fd = get_htab_fd(spapr);
1863 if (fd < 0) {
1864 return fd;
1867 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1868 if (rc < 0) {
1869 return rc;
1871 } else if (spapr->htab_first_pass) {
1872 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1873 } else {
1874 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1877 /* End marker */
1878 qemu_put_be32(f, 0);
1879 qemu_put_be16(f, 0);
1880 qemu_put_be16(f, 0);
1882 return rc;
1885 static int htab_save_complete(QEMUFile *f, void *opaque)
1887 sPAPRMachineState *spapr = opaque;
1888 int fd;
1890 /* Iteration header */
1891 if (!spapr->htab_shift) {
1892 qemu_put_be32(f, -1);
1893 return 0;
1894 } else {
1895 qemu_put_be32(f, 0);
1898 if (!spapr->htab) {
1899 int rc;
1901 assert(kvm_enabled());
1903 fd = get_htab_fd(spapr);
1904 if (fd < 0) {
1905 return fd;
1908 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1909 if (rc < 0) {
1910 return rc;
1912 } else {
1913 if (spapr->htab_first_pass) {
1914 htab_save_first_pass(f, spapr, -1);
1916 htab_save_later_pass(f, spapr, -1);
1919 /* End marker */
1920 qemu_put_be32(f, 0);
1921 qemu_put_be16(f, 0);
1922 qemu_put_be16(f, 0);
1924 return 0;
1927 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1929 sPAPRMachineState *spapr = opaque;
1930 uint32_t section_hdr;
1931 int fd = -1;
1933 if (version_id < 1 || version_id > 1) {
1934 error_report("htab_load() bad version");
1935 return -EINVAL;
1938 section_hdr = qemu_get_be32(f);
1940 if (section_hdr == -1) {
1941 spapr_free_hpt(spapr);
1942 return 0;
1945 if (section_hdr) {
1946 Error *local_err = NULL;
1948 /* First section gives the htab size */
1949 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1950 if (local_err) {
1951 error_report_err(local_err);
1952 return -EINVAL;
1954 return 0;
1957 if (!spapr->htab) {
1958 assert(kvm_enabled());
1960 fd = kvmppc_get_htab_fd(true);
1961 if (fd < 0) {
1962 error_report("Unable to open fd to restore KVM hash table: %s",
1963 strerror(errno));
1967 while (true) {
1968 uint32_t index;
1969 uint16_t n_valid, n_invalid;
1971 index = qemu_get_be32(f);
1972 n_valid = qemu_get_be16(f);
1973 n_invalid = qemu_get_be16(f);
1975 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1976 /* End of Stream */
1977 break;
1980 if ((index + n_valid + n_invalid) >
1981 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1982 /* Bad index in stream */
1983 error_report(
1984 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1985 index, n_valid, n_invalid, spapr->htab_shift);
1986 return -EINVAL;
1989 if (spapr->htab) {
1990 if (n_valid) {
1991 qemu_get_buffer(f, HPTE(spapr->htab, index),
1992 HASH_PTE_SIZE_64 * n_valid);
1994 if (n_invalid) {
1995 memset(HPTE(spapr->htab, index + n_valid), 0,
1996 HASH_PTE_SIZE_64 * n_invalid);
1998 } else {
1999 int rc;
2001 assert(fd >= 0);
2003 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2004 if (rc < 0) {
2005 return rc;
2010 if (!spapr->htab) {
2011 assert(fd >= 0);
2012 close(fd);
2015 return 0;
2018 static void htab_save_cleanup(void *opaque)
2020 sPAPRMachineState *spapr = opaque;
2022 close_htab_fd(spapr);
2025 static SaveVMHandlers savevm_htab_handlers = {
2026 .save_setup = htab_save_setup,
2027 .save_live_iterate = htab_save_iterate,
2028 .save_live_complete_precopy = htab_save_complete,
2029 .save_cleanup = htab_save_cleanup,
2030 .load_state = htab_load,
2033 static void spapr_boot_set(void *opaque, const char *boot_device,
2034 Error **errp)
2036 MachineState *machine = MACHINE(qdev_get_machine());
2037 machine->boot_order = g_strdup(boot_device);
2040 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2042 MachineState *machine = MACHINE(spapr);
2043 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2044 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2045 int i;
2047 for (i = 0; i < nr_lmbs; i++) {
2048 uint64_t addr;
2050 addr = i * lmb_size + spapr->hotplug_memory.base;
2051 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2052 addr / lmb_size);
2057 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2058 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2059 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2061 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2063 int i;
2065 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2066 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2067 " is not aligned to %llu MiB",
2068 machine->ram_size,
2069 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2070 return;
2073 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2074 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2075 " is not aligned to %llu MiB",
2076 machine->ram_size,
2077 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2078 return;
2081 for (i = 0; i < nb_numa_nodes; i++) {
2082 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2083 error_setg(errp,
2084 "Node %d memory size 0x%" PRIx64
2085 " is not aligned to %llu MiB",
2086 i, numa_info[i].node_mem,
2087 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2088 return;
2093 /* find cpu slot in machine->possible_cpus by core_id */
2094 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2096 int index = id / smp_threads;
2098 if (index >= ms->possible_cpus->len) {
2099 return NULL;
2101 if (idx) {
2102 *idx = index;
2104 return &ms->possible_cpus->cpus[index];
2107 static void spapr_init_cpus(sPAPRMachineState *spapr)
2109 MachineState *machine = MACHINE(spapr);
2110 MachineClass *mc = MACHINE_GET_CLASS(machine);
2111 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2112 int smt = kvmppc_smt_threads();
2113 const CPUArchIdList *possible_cpus;
2114 int boot_cores_nr = smp_cpus / smp_threads;
2115 int i;
2117 if (!type) {
2118 error_report("Unable to find sPAPR CPU Core definition");
2119 exit(1);
2122 possible_cpus = mc->possible_cpu_arch_ids(machine);
2123 if (mc->has_hotpluggable_cpus) {
2124 if (smp_cpus % smp_threads) {
2125 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2126 smp_cpus, smp_threads);
2127 exit(1);
2129 if (max_cpus % smp_threads) {
2130 error_report("max_cpus (%u) must be multiple of threads (%u)",
2131 max_cpus, smp_threads);
2132 exit(1);
2134 } else {
2135 if (max_cpus != smp_cpus) {
2136 error_report("This machine version does not support CPU hotplug");
2137 exit(1);
2139 boot_cores_nr = possible_cpus->len;
2142 for (i = 0; i < possible_cpus->len; i++) {
2143 int core_id = i * smp_threads;
2145 if (mc->has_hotpluggable_cpus) {
2146 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2147 (core_id / smp_threads) * smt);
2150 if (i < boot_cores_nr) {
2151 Object *core = object_new(type);
2152 int nr_threads = smp_threads;
2154 /* Handle the partially filled core for older machine types */
2155 if ((i + 1) * smp_threads >= smp_cpus) {
2156 nr_threads = smp_cpus - i * smp_threads;
2159 object_property_set_int(core, nr_threads, "nr-threads",
2160 &error_fatal);
2161 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2162 &error_fatal);
2163 object_property_set_bool(core, true, "realized", &error_fatal);
2166 g_free(type);
2169 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2171 Error *local_err = NULL;
2172 bool vsmt_user = !!spapr->vsmt;
2173 int kvm_smt = kvmppc_smt_threads();
2174 int ret;
2176 if (!kvm_enabled() && (smp_threads > 1)) {
2177 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2178 "on a pseries machine");
2179 goto out;
2181 if (!is_power_of_2(smp_threads)) {
2182 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2183 "machine because it must be a power of 2", smp_threads);
2184 goto out;
2187 /* Detemine the VSMT mode to use: */
2188 if (vsmt_user) {
2189 if (spapr->vsmt < smp_threads) {
2190 error_setg(&local_err, "Cannot support VSMT mode %d"
2191 " because it must be >= threads/core (%d)",
2192 spapr->vsmt, smp_threads);
2193 goto out;
2195 /* In this case, spapr->vsmt has been set by the command line */
2196 } else {
2197 /* Choose a VSMT mode that may be higher than necessary but is
2198 * likely to be compatible with hosts that don't have VSMT. */
2199 spapr->vsmt = MAX(kvm_smt, smp_threads);
2202 /* KVM: If necessary, set the SMT mode: */
2203 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2204 ret = kvmppc_set_smt_threads(spapr->vsmt);
2205 if (ret) {
2206 error_setg(&local_err,
2207 "Failed to set KVM's VSMT mode to %d (errno %d)",
2208 spapr->vsmt, ret);
2209 if (!vsmt_user) {
2210 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2211 "core on a host with %d threads/core requires "
2212 " the use of VSMT mode %d.\n",
2213 smp_threads, kvm_smt, spapr->vsmt);
2215 kvmppc_hint_smt_possible(&local_err);
2216 goto out;
2219 /* else TCG: nothing to do currently */
2220 out:
2221 error_propagate(errp, local_err);
2224 /* pSeries LPAR / sPAPR hardware init */
2225 static void ppc_spapr_init(MachineState *machine)
2227 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2228 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2229 const char *kernel_filename = machine->kernel_filename;
2230 const char *initrd_filename = machine->initrd_filename;
2231 PCIHostState *phb;
2232 int i;
2233 MemoryRegion *sysmem = get_system_memory();
2234 MemoryRegion *ram = g_new(MemoryRegion, 1);
2235 MemoryRegion *rma_region;
2236 void *rma = NULL;
2237 hwaddr rma_alloc_size;
2238 hwaddr node0_size = spapr_node0_size();
2239 long load_limit, fw_size;
2240 char *filename;
2241 Error *resize_hpt_err = NULL;
2243 msi_nonbroken = true;
2245 QLIST_INIT(&spapr->phbs);
2246 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2248 /* Check HPT resizing availability */
2249 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2250 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2252 * If the user explicitly requested a mode we should either
2253 * supply it, or fail completely (which we do below). But if
2254 * it's not set explicitly, we reset our mode to something
2255 * that works
2257 if (resize_hpt_err) {
2258 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2259 error_free(resize_hpt_err);
2260 resize_hpt_err = NULL;
2261 } else {
2262 spapr->resize_hpt = smc->resize_hpt_default;
2266 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2268 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2270 * User requested HPT resize, but this host can't supply it. Bail out
2272 error_report_err(resize_hpt_err);
2273 exit(1);
2276 /* Allocate RMA if necessary */
2277 rma_alloc_size = kvmppc_alloc_rma(&rma);
2279 if (rma_alloc_size == -1) {
2280 error_report("Unable to create RMA");
2281 exit(1);
2284 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2285 spapr->rma_size = rma_alloc_size;
2286 } else {
2287 spapr->rma_size = node0_size;
2289 /* With KVM, we don't actually know whether KVM supports an
2290 * unbounded RMA (PR KVM) or is limited by the hash table size
2291 * (HV KVM using VRMA), so we always assume the latter
2293 * In that case, we also limit the initial allocations for RTAS
2294 * etc... to 256M since we have no way to know what the VRMA size
2295 * is going to be as it depends on the size of the hash table
2296 * isn't determined yet.
2298 if (kvm_enabled()) {
2299 spapr->vrma_adjust = 1;
2300 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2303 /* Actually we don't support unbounded RMA anymore since we
2304 * added proper emulation of HV mode. The max we can get is
2305 * 16G which also happens to be what we configure for PAPR
2306 * mode so make sure we don't do anything bigger than that
2308 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2311 if (spapr->rma_size > node0_size) {
2312 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2313 spapr->rma_size);
2314 exit(1);
2317 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2318 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2320 /* Set up Interrupt Controller before we create the VCPUs */
2321 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2323 /* Set up containers for ibm,client-set-architecture negotiated options */
2324 spapr->ov5 = spapr_ovec_new();
2325 spapr->ov5_cas = spapr_ovec_new();
2327 if (smc->dr_lmb_enabled) {
2328 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2329 spapr_validate_node_memory(machine, &error_fatal);
2332 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2333 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2334 /* KVM and TCG always allow GTSE with radix... */
2335 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2337 /* ... but not with hash (currently). */
2339 /* advertise support for dedicated HP event source to guests */
2340 if (spapr->use_hotplug_event_source) {
2341 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2344 /* advertise support for HPT resizing */
2345 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2346 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2349 /* init CPUs */
2350 if (machine->cpu_model == NULL) {
2351 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2354 spapr_cpu_parse_features(spapr);
2356 spapr_set_vsmt_mode(spapr, &error_fatal);
2358 spapr_init_cpus(spapr);
2360 if (kvm_enabled()) {
2361 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2362 kvmppc_enable_logical_ci_hcalls();
2363 kvmppc_enable_set_mode_hcall();
2365 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2366 kvmppc_enable_clear_ref_mod_hcalls();
2369 /* allocate RAM */
2370 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2371 machine->ram_size);
2372 memory_region_add_subregion(sysmem, 0, ram);
2374 if (rma_alloc_size && rma) {
2375 rma_region = g_new(MemoryRegion, 1);
2376 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2377 rma_alloc_size, rma);
2378 vmstate_register_ram_global(rma_region);
2379 memory_region_add_subregion(sysmem, 0, rma_region);
2382 /* initialize hotplug memory address space */
2383 if (machine->ram_size < machine->maxram_size) {
2384 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2386 * Limit the number of hotpluggable memory slots to half the number
2387 * slots that KVM supports, leaving the other half for PCI and other
2388 * devices. However ensure that number of slots doesn't drop below 32.
2390 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2391 SPAPR_MAX_RAM_SLOTS;
2393 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2394 max_memslots = SPAPR_MAX_RAM_SLOTS;
2396 if (machine->ram_slots > max_memslots) {
2397 error_report("Specified number of memory slots %"
2398 PRIu64" exceeds max supported %d",
2399 machine->ram_slots, max_memslots);
2400 exit(1);
2403 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2404 SPAPR_HOTPLUG_MEM_ALIGN);
2405 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2406 "hotplug-memory", hotplug_mem_size);
2407 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2408 &spapr->hotplug_memory.mr);
2411 if (smc->dr_lmb_enabled) {
2412 spapr_create_lmb_dr_connectors(spapr);
2415 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2416 if (!filename) {
2417 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2418 exit(1);
2420 spapr->rtas_size = get_image_size(filename);
2421 if (spapr->rtas_size < 0) {
2422 error_report("Could not get size of LPAR rtas '%s'", filename);
2423 exit(1);
2425 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2426 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2427 error_report("Could not load LPAR rtas '%s'", filename);
2428 exit(1);
2430 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2431 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2432 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2433 exit(1);
2435 g_free(filename);
2437 /* Set up RTAS event infrastructure */
2438 spapr_events_init(spapr);
2440 /* Set up the RTC RTAS interfaces */
2441 spapr_rtc_create(spapr);
2443 /* Set up VIO bus */
2444 spapr->vio_bus = spapr_vio_bus_init();
2446 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2447 if (serial_hds[i]) {
2448 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2452 /* We always have at least the nvram device on VIO */
2453 spapr_create_nvram(spapr);
2455 /* Set up PCI */
2456 spapr_pci_rtas_init();
2458 phb = spapr_create_phb(spapr, 0);
2460 for (i = 0; i < nb_nics; i++) {
2461 NICInfo *nd = &nd_table[i];
2463 if (!nd->model) {
2464 nd->model = g_strdup("ibmveth");
2467 if (strcmp(nd->model, "ibmveth") == 0) {
2468 spapr_vlan_create(spapr->vio_bus, nd);
2469 } else {
2470 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2474 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2475 spapr_vscsi_create(spapr->vio_bus);
2478 /* Graphics */
2479 if (spapr_vga_init(phb->bus, &error_fatal)) {
2480 spapr->has_graphics = true;
2481 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2484 if (machine->usb) {
2485 if (smc->use_ohci_by_default) {
2486 pci_create_simple(phb->bus, -1, "pci-ohci");
2487 } else {
2488 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2491 if (spapr->has_graphics) {
2492 USBBus *usb_bus = usb_bus_find(-1);
2494 usb_create_simple(usb_bus, "usb-kbd");
2495 usb_create_simple(usb_bus, "usb-mouse");
2499 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2500 error_report(
2501 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2502 MIN_RMA_SLOF);
2503 exit(1);
2506 if (kernel_filename) {
2507 uint64_t lowaddr = 0;
2509 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2510 NULL, NULL, &lowaddr, NULL, 1,
2511 PPC_ELF_MACHINE, 0, 0);
2512 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2513 spapr->kernel_size = load_elf(kernel_filename,
2514 translate_kernel_address, NULL, NULL,
2515 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2516 0, 0);
2517 spapr->kernel_le = spapr->kernel_size > 0;
2519 if (spapr->kernel_size < 0) {
2520 error_report("error loading %s: %s", kernel_filename,
2521 load_elf_strerror(spapr->kernel_size));
2522 exit(1);
2525 /* load initrd */
2526 if (initrd_filename) {
2527 /* Try to locate the initrd in the gap between the kernel
2528 * and the firmware. Add a bit of space just in case
2530 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2531 + 0x1ffff) & ~0xffff;
2532 spapr->initrd_size = load_image_targphys(initrd_filename,
2533 spapr->initrd_base,
2534 load_limit
2535 - spapr->initrd_base);
2536 if (spapr->initrd_size < 0) {
2537 error_report("could not load initial ram disk '%s'",
2538 initrd_filename);
2539 exit(1);
2544 if (bios_name == NULL) {
2545 bios_name = FW_FILE_NAME;
2547 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2548 if (!filename) {
2549 error_report("Could not find LPAR firmware '%s'", bios_name);
2550 exit(1);
2552 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2553 if (fw_size <= 0) {
2554 error_report("Could not load LPAR firmware '%s'", filename);
2555 exit(1);
2557 g_free(filename);
2559 /* FIXME: Should register things through the MachineState's qdev
2560 * interface, this is a legacy from the sPAPREnvironment structure
2561 * which predated MachineState but had a similar function */
2562 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2563 register_savevm_live(NULL, "spapr/htab", -1, 1,
2564 &savevm_htab_handlers, spapr);
2566 qemu_register_boot_set(spapr_boot_set, spapr);
2568 if (kvm_enabled()) {
2569 /* to stop and start vmclock */
2570 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2571 &spapr->tb);
2573 kvmppc_spapr_enable_inkernel_multitce();
2577 static int spapr_kvm_type(const char *vm_type)
2579 if (!vm_type) {
2580 return 0;
2583 if (!strcmp(vm_type, "HV")) {
2584 return 1;
2587 if (!strcmp(vm_type, "PR")) {
2588 return 2;
2591 error_report("Unknown kvm-type specified '%s'", vm_type);
2592 exit(1);
2596 * Implementation of an interface to adjust firmware path
2597 * for the bootindex property handling.
2599 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2600 DeviceState *dev)
2602 #define CAST(type, obj, name) \
2603 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2604 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2605 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2606 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2608 if (d) {
2609 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2610 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2611 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2613 if (spapr) {
2615 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2616 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2617 * in the top 16 bits of the 64-bit LUN
2619 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2620 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2621 (uint64_t)id << 48);
2622 } else if (virtio) {
2624 * We use SRP luns of the form 01000000 | (target << 8) | lun
2625 * in the top 32 bits of the 64-bit LUN
2626 * Note: the quote above is from SLOF and it is wrong,
2627 * the actual binding is:
2628 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2630 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2631 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2632 (uint64_t)id << 32);
2633 } else if (usb) {
2635 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2636 * in the top 32 bits of the 64-bit LUN
2638 unsigned usb_port = atoi(usb->port->path);
2639 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2640 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2641 (uint64_t)id << 32);
2646 * SLOF probes the USB devices, and if it recognizes that the device is a
2647 * storage device, it changes its name to "storage" instead of "usb-host",
2648 * and additionally adds a child node for the SCSI LUN, so the correct
2649 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2651 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2652 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2653 if (usb_host_dev_is_scsi_storage(usbdev)) {
2654 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2658 if (phb) {
2659 /* Replace "pci" with "pci@800000020000000" */
2660 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2663 if (vsc) {
2664 /* Same logic as virtio above */
2665 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2666 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2669 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2670 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2671 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2672 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2675 return NULL;
2678 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2680 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2682 return g_strdup(spapr->kvm_type);
2685 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2687 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2689 g_free(spapr->kvm_type);
2690 spapr->kvm_type = g_strdup(value);
2693 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2695 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2697 return spapr->use_hotplug_event_source;
2700 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2701 Error **errp)
2703 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2705 spapr->use_hotplug_event_source = value;
2708 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2710 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2712 switch (spapr->resize_hpt) {
2713 case SPAPR_RESIZE_HPT_DEFAULT:
2714 return g_strdup("default");
2715 case SPAPR_RESIZE_HPT_DISABLED:
2716 return g_strdup("disabled");
2717 case SPAPR_RESIZE_HPT_ENABLED:
2718 return g_strdup("enabled");
2719 case SPAPR_RESIZE_HPT_REQUIRED:
2720 return g_strdup("required");
2722 g_assert_not_reached();
2725 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2727 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2729 if (strcmp(value, "default") == 0) {
2730 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2731 } else if (strcmp(value, "disabled") == 0) {
2732 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2733 } else if (strcmp(value, "enabled") == 0) {
2734 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2735 } else if (strcmp(value, "required") == 0) {
2736 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2737 } else {
2738 error_setg(errp, "Bad value for \"resize-hpt\" property");
2742 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2743 void *opaque, Error **errp)
2745 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2748 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2749 void *opaque, Error **errp)
2751 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2754 static void spapr_machine_initfn(Object *obj)
2756 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2758 spapr->htab_fd = -1;
2759 spapr->use_hotplug_event_source = true;
2760 object_property_add_str(obj, "kvm-type",
2761 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2762 object_property_set_description(obj, "kvm-type",
2763 "Specifies the KVM virtualization mode (HV, PR)",
2764 NULL);
2765 object_property_add_bool(obj, "modern-hotplug-events",
2766 spapr_get_modern_hotplug_events,
2767 spapr_set_modern_hotplug_events,
2768 NULL);
2769 object_property_set_description(obj, "modern-hotplug-events",
2770 "Use dedicated hotplug event mechanism in"
2771 " place of standard EPOW events when possible"
2772 " (required for memory hot-unplug support)",
2773 NULL);
2775 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2776 "Maximum permitted CPU compatibility mode",
2777 &error_fatal);
2779 object_property_add_str(obj, "resize-hpt",
2780 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2781 object_property_set_description(obj, "resize-hpt",
2782 "Resizing of the Hash Page Table (enabled, disabled, required)",
2783 NULL);
2784 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2785 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2786 object_property_set_description(obj, "vsmt",
2787 "Virtual SMT: KVM behaves as if this were"
2788 " the host's SMT mode", &error_abort);
2791 static void spapr_machine_finalizefn(Object *obj)
2793 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2795 g_free(spapr->kvm_type);
2798 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2800 cpu_synchronize_state(cs);
2801 ppc_cpu_do_system_reset(cs);
2804 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2806 CPUState *cs;
2808 CPU_FOREACH(cs) {
2809 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2813 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2814 uint32_t node, bool dedicated_hp_event_source,
2815 Error **errp)
2817 sPAPRDRConnector *drc;
2818 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2819 int i, fdt_offset, fdt_size;
2820 void *fdt;
2821 uint64_t addr = addr_start;
2822 bool hotplugged = spapr_drc_hotplugged(dev);
2823 Error *local_err = NULL;
2825 for (i = 0; i < nr_lmbs; i++) {
2826 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2827 addr / SPAPR_MEMORY_BLOCK_SIZE);
2828 g_assert(drc);
2830 fdt = create_device_tree(&fdt_size);
2831 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2832 SPAPR_MEMORY_BLOCK_SIZE);
2834 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2835 if (local_err) {
2836 while (addr > addr_start) {
2837 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2838 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2839 addr / SPAPR_MEMORY_BLOCK_SIZE);
2840 spapr_drc_detach(drc);
2842 g_free(fdt);
2843 error_propagate(errp, local_err);
2844 return;
2846 if (!hotplugged) {
2847 spapr_drc_reset(drc);
2849 addr += SPAPR_MEMORY_BLOCK_SIZE;
2851 /* send hotplug notification to the
2852 * guest only in case of hotplugged memory
2854 if (hotplugged) {
2855 if (dedicated_hp_event_source) {
2856 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2857 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2858 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2859 nr_lmbs,
2860 spapr_drc_index(drc));
2861 } else {
2862 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2863 nr_lmbs);
2868 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2869 uint32_t node, Error **errp)
2871 Error *local_err = NULL;
2872 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2873 PCDIMMDevice *dimm = PC_DIMM(dev);
2874 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2875 MemoryRegion *mr;
2876 uint64_t align, size, addr;
2878 mr = ddc->get_memory_region(dimm, &local_err);
2879 if (local_err) {
2880 goto out;
2882 align = memory_region_get_alignment(mr);
2883 size = memory_region_size(mr);
2885 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2886 if (local_err) {
2887 goto out;
2890 addr = object_property_get_uint(OBJECT(dimm),
2891 PC_DIMM_ADDR_PROP, &local_err);
2892 if (local_err) {
2893 goto out_unplug;
2896 spapr_add_lmbs(dev, addr, size, node,
2897 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2898 &local_err);
2899 if (local_err) {
2900 goto out_unplug;
2903 return;
2905 out_unplug:
2906 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2907 out:
2908 error_propagate(errp, local_err);
2911 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2912 Error **errp)
2914 PCDIMMDevice *dimm = PC_DIMM(dev);
2915 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2916 MemoryRegion *mr;
2917 uint64_t size;
2918 char *mem_dev;
2920 mr = ddc->get_memory_region(dimm, errp);
2921 if (!mr) {
2922 return;
2924 size = memory_region_size(mr);
2926 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2927 error_setg(errp, "Hotplugged memory size must be a multiple of "
2928 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2929 return;
2932 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2933 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2934 error_setg(errp, "Memory backend has bad page size. "
2935 "Use 'memory-backend-file' with correct mem-path.");
2936 goto out;
2939 out:
2940 g_free(mem_dev);
2943 struct sPAPRDIMMState {
2944 PCDIMMDevice *dimm;
2945 uint32_t nr_lmbs;
2946 QTAILQ_ENTRY(sPAPRDIMMState) next;
2949 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2950 PCDIMMDevice *dimm)
2952 sPAPRDIMMState *dimm_state = NULL;
2954 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2955 if (dimm_state->dimm == dimm) {
2956 break;
2959 return dimm_state;
2962 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2963 uint32_t nr_lmbs,
2964 PCDIMMDevice *dimm)
2966 sPAPRDIMMState *ds = NULL;
2969 * If this request is for a DIMM whose removal had failed earlier
2970 * (due to guest's refusal to remove the LMBs), we would have this
2971 * dimm already in the pending_dimm_unplugs list. In that
2972 * case don't add again.
2974 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2975 if (!ds) {
2976 ds = g_malloc0(sizeof(sPAPRDIMMState));
2977 ds->nr_lmbs = nr_lmbs;
2978 ds->dimm = dimm;
2979 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2981 return ds;
2984 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2985 sPAPRDIMMState *dimm_state)
2987 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2988 g_free(dimm_state);
2991 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2992 PCDIMMDevice *dimm)
2994 sPAPRDRConnector *drc;
2995 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2996 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
2997 uint64_t size = memory_region_size(mr);
2998 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2999 uint32_t avail_lmbs = 0;
3000 uint64_t addr_start, addr;
3001 int i;
3003 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3004 &error_abort);
3006 addr = addr_start;
3007 for (i = 0; i < nr_lmbs; i++) {
3008 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3009 addr / SPAPR_MEMORY_BLOCK_SIZE);
3010 g_assert(drc);
3011 if (drc->dev) {
3012 avail_lmbs++;
3014 addr += SPAPR_MEMORY_BLOCK_SIZE;
3017 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3020 /* Callback to be called during DRC release. */
3021 void spapr_lmb_release(DeviceState *dev)
3023 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3024 PCDIMMDevice *dimm = PC_DIMM(dev);
3025 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3026 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3027 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3029 /* This information will get lost if a migration occurs
3030 * during the unplug process. In this case recover it. */
3031 if (ds == NULL) {
3032 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3033 g_assert(ds);
3034 /* The DRC being examined by the caller at least must be counted */
3035 g_assert(ds->nr_lmbs);
3038 if (--ds->nr_lmbs) {
3039 return;
3042 spapr_pending_dimm_unplugs_remove(spapr, ds);
3045 * Now that all the LMBs have been removed by the guest, call the
3046 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3048 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3049 object_unparent(OBJECT(dev));
3052 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3053 DeviceState *dev, Error **errp)
3055 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3056 Error *local_err = NULL;
3057 PCDIMMDevice *dimm = PC_DIMM(dev);
3058 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3059 MemoryRegion *mr;
3060 uint32_t nr_lmbs;
3061 uint64_t size, addr_start, addr;
3062 int i;
3063 sPAPRDRConnector *drc;
3065 mr = ddc->get_memory_region(dimm, &local_err);
3066 if (local_err) {
3067 goto out;
3069 size = memory_region_size(mr);
3070 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3072 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3073 &local_err);
3074 if (local_err) {
3075 goto out;
3078 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3080 addr = addr_start;
3081 for (i = 0; i < nr_lmbs; i++) {
3082 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3083 addr / SPAPR_MEMORY_BLOCK_SIZE);
3084 g_assert(drc);
3086 spapr_drc_detach(drc);
3087 addr += SPAPR_MEMORY_BLOCK_SIZE;
3090 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3091 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3092 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3093 nr_lmbs, spapr_drc_index(drc));
3094 out:
3095 error_propagate(errp, local_err);
3098 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3099 sPAPRMachineState *spapr)
3101 PowerPCCPU *cpu = POWERPC_CPU(cs);
3102 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3103 int id = spapr_vcpu_id(cpu);
3104 void *fdt;
3105 int offset, fdt_size;
3106 char *nodename;
3108 fdt = create_device_tree(&fdt_size);
3109 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3110 offset = fdt_add_subnode(fdt, 0, nodename);
3112 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3113 g_free(nodename);
3115 *fdt_offset = offset;
3116 return fdt;
3119 /* Callback to be called during DRC release. */
3120 void spapr_core_release(DeviceState *dev)
3122 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3123 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3124 CPUCore *cc = CPU_CORE(dev);
3125 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3127 if (smc->pre_2_10_has_unused_icps) {
3128 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3129 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3130 const char *typename = object_class_get_name(scc->cpu_class);
3131 size_t size = object_type_get_instance_size(typename);
3132 int i;
3134 for (i = 0; i < cc->nr_threads; i++) {
3135 CPUState *cs = CPU(sc->threads + i * size);
3137 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3141 assert(core_slot);
3142 core_slot->cpu = NULL;
3143 object_unparent(OBJECT(dev));
3146 static
3147 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3148 Error **errp)
3150 int index;
3151 sPAPRDRConnector *drc;
3152 CPUCore *cc = CPU_CORE(dev);
3153 int smt = kvmppc_smt_threads();
3155 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3156 error_setg(errp, "Unable to find CPU core with core-id: %d",
3157 cc->core_id);
3158 return;
3160 if (index == 0) {
3161 error_setg(errp, "Boot CPU core may not be unplugged");
3162 return;
3165 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3166 g_assert(drc);
3168 spapr_drc_detach(drc);
3170 spapr_hotplug_req_remove_by_index(drc);
3173 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3174 Error **errp)
3176 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3177 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3178 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3179 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3180 CPUCore *cc = CPU_CORE(dev);
3181 CPUState *cs = CPU(core->threads);
3182 sPAPRDRConnector *drc;
3183 Error *local_err = NULL;
3184 int smt = kvmppc_smt_threads();
3185 CPUArchId *core_slot;
3186 int index;
3187 bool hotplugged = spapr_drc_hotplugged(dev);
3189 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3190 if (!core_slot) {
3191 error_setg(errp, "Unable to find CPU core with core-id: %d",
3192 cc->core_id);
3193 return;
3195 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3197 g_assert(drc || !mc->has_hotpluggable_cpus);
3199 if (drc) {
3200 void *fdt;
3201 int fdt_offset;
3203 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3205 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3206 if (local_err) {
3207 g_free(fdt);
3208 error_propagate(errp, local_err);
3209 return;
3212 if (hotplugged) {
3214 * Send hotplug notification interrupt to the guest only
3215 * in case of hotplugged CPUs.
3217 spapr_hotplug_req_add_by_index(drc);
3218 } else {
3219 spapr_drc_reset(drc);
3223 core_slot->cpu = OBJECT(dev);
3225 if (smc->pre_2_10_has_unused_icps) {
3226 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3227 const char *typename = object_class_get_name(scc->cpu_class);
3228 size_t size = object_type_get_instance_size(typename);
3229 int i;
3231 for (i = 0; i < cc->nr_threads; i++) {
3232 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3233 void *obj = sc->threads + i * size;
3235 cs = CPU(obj);
3236 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3241 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3242 Error **errp)
3244 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3245 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3246 Error *local_err = NULL;
3247 CPUCore *cc = CPU_CORE(dev);
3248 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3249 const char *type = object_get_typename(OBJECT(dev));
3250 CPUArchId *core_slot;
3251 int index;
3253 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3254 error_setg(&local_err, "CPU hotplug not supported for this machine");
3255 goto out;
3258 if (strcmp(base_core_type, type)) {
3259 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3260 goto out;
3263 if (cc->core_id % smp_threads) {
3264 error_setg(&local_err, "invalid core id %d", cc->core_id);
3265 goto out;
3269 * In general we should have homogeneous threads-per-core, but old
3270 * (pre hotplug support) machine types allow the last core to have
3271 * reduced threads as a compatibility hack for when we allowed
3272 * total vcpus not a multiple of threads-per-core.
3274 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3275 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3276 cc->nr_threads, smp_threads);
3277 goto out;
3280 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3281 if (!core_slot) {
3282 error_setg(&local_err, "core id %d out of range", cc->core_id);
3283 goto out;
3286 if (core_slot->cpu) {
3287 error_setg(&local_err, "core %d already populated", cc->core_id);
3288 goto out;
3291 numa_cpu_pre_plug(core_slot, dev, &local_err);
3293 out:
3294 g_free(base_core_type);
3295 error_propagate(errp, local_err);
3298 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3299 DeviceState *dev, Error **errp)
3301 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3303 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3304 int node;
3306 if (!smc->dr_lmb_enabled) {
3307 error_setg(errp, "Memory hotplug not supported for this machine");
3308 return;
3310 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3311 if (*errp) {
3312 return;
3314 if (node < 0 || node >= MAX_NODES) {
3315 error_setg(errp, "Invaild node %d", node);
3316 return;
3320 * Currently PowerPC kernel doesn't allow hot-adding memory to
3321 * memory-less node, but instead will silently add the memory
3322 * to the first node that has some memory. This causes two
3323 * unexpected behaviours for the user.
3325 * - Memory gets hotplugged to a different node than what the user
3326 * specified.
3327 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3328 * to memory-less node, a reboot will set things accordingly
3329 * and the previously hotplugged memory now ends in the right node.
3330 * This appears as if some memory moved from one node to another.
3332 * So until kernel starts supporting memory hotplug to memory-less
3333 * nodes, just prevent such attempts upfront in QEMU.
3335 if (nb_numa_nodes && !numa_info[node].node_mem) {
3336 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3337 node);
3338 return;
3341 spapr_memory_plug(hotplug_dev, dev, node, errp);
3342 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3343 spapr_core_plug(hotplug_dev, dev, errp);
3347 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3348 DeviceState *dev, Error **errp)
3350 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3351 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3353 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3354 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3355 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3356 } else {
3357 /* NOTE: this means there is a window after guest reset, prior to
3358 * CAS negotiation, where unplug requests will fail due to the
3359 * capability not being detected yet. This is a bit different than
3360 * the case with PCI unplug, where the events will be queued and
3361 * eventually handled by the guest after boot
3363 error_setg(errp, "Memory hot unplug not supported for this guest");
3365 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3366 if (!mc->has_hotpluggable_cpus) {
3367 error_setg(errp, "CPU hot unplug not supported on this machine");
3368 return;
3370 spapr_core_unplug_request(hotplug_dev, dev, errp);
3374 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3375 DeviceState *dev, Error **errp)
3377 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3378 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3379 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3380 spapr_core_pre_plug(hotplug_dev, dev, errp);
3384 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3385 DeviceState *dev)
3387 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3388 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3389 return HOTPLUG_HANDLER(machine);
3391 return NULL;
3394 static CpuInstanceProperties
3395 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3397 CPUArchId *core_slot;
3398 MachineClass *mc = MACHINE_GET_CLASS(machine);
3400 /* make sure possible_cpu are intialized */
3401 mc->possible_cpu_arch_ids(machine);
3402 /* get CPU core slot containing thread that matches cpu_index */
3403 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3404 assert(core_slot);
3405 return core_slot->props;
3408 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3410 int i;
3411 int spapr_max_cores = max_cpus / smp_threads;
3412 MachineClass *mc = MACHINE_GET_CLASS(machine);
3414 if (!mc->has_hotpluggable_cpus) {
3415 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3417 if (machine->possible_cpus) {
3418 assert(machine->possible_cpus->len == spapr_max_cores);
3419 return machine->possible_cpus;
3422 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3423 sizeof(CPUArchId) * spapr_max_cores);
3424 machine->possible_cpus->len = spapr_max_cores;
3425 for (i = 0; i < machine->possible_cpus->len; i++) {
3426 int core_id = i * smp_threads;
3428 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3429 machine->possible_cpus->cpus[i].arch_id = core_id;
3430 machine->possible_cpus->cpus[i].props.has_core_id = true;
3431 machine->possible_cpus->cpus[i].props.core_id = core_id;
3433 /* default distribution of CPUs over NUMA nodes */
3434 if (nb_numa_nodes) {
3435 /* preset values but do not enable them i.e. 'has_node_id = false',
3436 * numa init code will enable them later if manual mapping wasn't
3437 * present on CLI */
3438 machine->possible_cpus->cpus[i].props.node_id =
3439 core_id / smp_threads / smp_cores % nb_numa_nodes;
3442 return machine->possible_cpus;
3445 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3446 uint64_t *buid, hwaddr *pio,
3447 hwaddr *mmio32, hwaddr *mmio64,
3448 unsigned n_dma, uint32_t *liobns, Error **errp)
3451 * New-style PHB window placement.
3453 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3454 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3455 * windows.
3457 * Some guest kernels can't work with MMIO windows above 1<<46
3458 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3460 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3461 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3462 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3463 * 1TiB 64-bit MMIO windows for each PHB.
3465 const uint64_t base_buid = 0x800000020000000ULL;
3466 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3467 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3468 int i;
3470 /* Sanity check natural alignments */
3471 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3472 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3473 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3474 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3475 /* Sanity check bounds */
3476 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3477 SPAPR_PCI_MEM32_WIN_SIZE);
3478 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3479 SPAPR_PCI_MEM64_WIN_SIZE);
3481 if (index >= SPAPR_MAX_PHBS) {
3482 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3483 SPAPR_MAX_PHBS - 1);
3484 return;
3487 *buid = base_buid + index;
3488 for (i = 0; i < n_dma; ++i) {
3489 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3492 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3493 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3494 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3497 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3499 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3501 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3504 static void spapr_ics_resend(XICSFabric *dev)
3506 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3508 ics_resend(spapr->ics);
3511 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3513 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3515 return cpu ? ICP(cpu->intc) : NULL;
3518 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3519 Monitor *mon)
3521 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3522 CPUState *cs;
3524 CPU_FOREACH(cs) {
3525 PowerPCCPU *cpu = POWERPC_CPU(cs);
3527 icp_pic_print_info(ICP(cpu->intc), mon);
3530 ics_pic_print_info(spapr->ics, mon);
3533 int spapr_vcpu_id(PowerPCCPU *cpu)
3535 CPUState *cs = CPU(cpu);
3537 if (kvm_enabled()) {
3538 return kvm_arch_vcpu_id(cs);
3539 } else {
3540 return cs->cpu_index;
3544 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3546 CPUState *cs;
3548 CPU_FOREACH(cs) {
3549 PowerPCCPU *cpu = POWERPC_CPU(cs);
3551 if (spapr_vcpu_id(cpu) == vcpu_id) {
3552 return cpu;
3556 return NULL;
3559 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3561 MachineClass *mc = MACHINE_CLASS(oc);
3562 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3563 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3564 NMIClass *nc = NMI_CLASS(oc);
3565 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3566 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3567 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3568 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3570 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3573 * We set up the default / latest behaviour here. The class_init
3574 * functions for the specific versioned machine types can override
3575 * these details for backwards compatibility
3577 mc->init = ppc_spapr_init;
3578 mc->reset = ppc_spapr_reset;
3579 mc->block_default_type = IF_SCSI;
3580 mc->max_cpus = 1024;
3581 mc->no_parallel = 1;
3582 mc->default_boot_order = "";
3583 mc->default_ram_size = 512 * M_BYTE;
3584 mc->kvm_type = spapr_kvm_type;
3585 mc->has_dynamic_sysbus = true;
3586 mc->pci_allow_0_address = true;
3587 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3588 hc->pre_plug = spapr_machine_device_pre_plug;
3589 hc->plug = spapr_machine_device_plug;
3590 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3591 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3592 hc->unplug_request = spapr_machine_device_unplug_request;
3594 smc->dr_lmb_enabled = true;
3595 smc->tcg_default_cpu = "POWER8";
3596 mc->has_hotpluggable_cpus = true;
3597 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3598 fwc->get_dev_path = spapr_get_fw_dev_path;
3599 nc->nmi_monitor_handler = spapr_nmi;
3600 smc->phb_placement = spapr_phb_placement;
3601 vhc->hypercall = emulate_spapr_hypercall;
3602 vhc->hpt_mask = spapr_hpt_mask;
3603 vhc->map_hptes = spapr_map_hptes;
3604 vhc->unmap_hptes = spapr_unmap_hptes;
3605 vhc->store_hpte = spapr_store_hpte;
3606 vhc->get_patbe = spapr_get_patbe;
3607 xic->ics_get = spapr_ics_get;
3608 xic->ics_resend = spapr_ics_resend;
3609 xic->icp_get = spapr_icp_get;
3610 ispc->print_info = spapr_pic_print_info;
3611 /* Force NUMA node memory size to be a multiple of
3612 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3613 * in which LMBs are represented and hot-added
3615 mc->numa_mem_align_shift = 28;
3618 static const TypeInfo spapr_machine_info = {
3619 .name = TYPE_SPAPR_MACHINE,
3620 .parent = TYPE_MACHINE,
3621 .abstract = true,
3622 .instance_size = sizeof(sPAPRMachineState),
3623 .instance_init = spapr_machine_initfn,
3624 .instance_finalize = spapr_machine_finalizefn,
3625 .class_size = sizeof(sPAPRMachineClass),
3626 .class_init = spapr_machine_class_init,
3627 .interfaces = (InterfaceInfo[]) {
3628 { TYPE_FW_PATH_PROVIDER },
3629 { TYPE_NMI },
3630 { TYPE_HOTPLUG_HANDLER },
3631 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3632 { TYPE_XICS_FABRIC },
3633 { TYPE_INTERRUPT_STATS_PROVIDER },
3638 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3639 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3640 void *data) \
3642 MachineClass *mc = MACHINE_CLASS(oc); \
3643 spapr_machine_##suffix##_class_options(mc); \
3644 if (latest) { \
3645 mc->alias = "pseries"; \
3646 mc->is_default = 1; \
3649 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3651 MachineState *machine = MACHINE(obj); \
3652 spapr_machine_##suffix##_instance_options(machine); \
3654 static const TypeInfo spapr_machine_##suffix##_info = { \
3655 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3656 .parent = TYPE_SPAPR_MACHINE, \
3657 .class_init = spapr_machine_##suffix##_class_init, \
3658 .instance_init = spapr_machine_##suffix##_instance_init, \
3659 }; \
3660 static void spapr_machine_register_##suffix(void) \
3662 type_register(&spapr_machine_##suffix##_info); \
3664 type_init(spapr_machine_register_##suffix)
3667 * pseries-2.11
3669 static void spapr_machine_2_11_instance_options(MachineState *machine)
3673 static void spapr_machine_2_11_class_options(MachineClass *mc)
3675 /* Defaults for the latest behaviour inherited from the base class */
3678 DEFINE_SPAPR_MACHINE(2_11, "2.11", true);
3681 * pseries-2.10
3683 #define SPAPR_COMPAT_2_10 \
3684 HW_COMPAT_2_10 \
3686 static void spapr_machine_2_10_instance_options(MachineState *machine)
3690 static void spapr_machine_2_10_class_options(MachineClass *mc)
3692 spapr_machine_2_11_class_options(mc);
3693 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3696 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3699 * pseries-2.9
3701 #define SPAPR_COMPAT_2_9 \
3702 HW_COMPAT_2_9 \
3704 .driver = TYPE_POWERPC_CPU, \
3705 .property = "pre-2.10-migration", \
3706 .value = "on", \
3707 }, \
3709 static void spapr_machine_2_9_instance_options(MachineState *machine)
3711 spapr_machine_2_10_instance_options(machine);
3714 static void spapr_machine_2_9_class_options(MachineClass *mc)
3716 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3718 spapr_machine_2_10_class_options(mc);
3719 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3720 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3721 smc->pre_2_10_has_unused_icps = true;
3722 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3725 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3728 * pseries-2.8
3730 #define SPAPR_COMPAT_2_8 \
3731 HW_COMPAT_2_8 \
3733 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3734 .property = "pcie-extended-configuration-space", \
3735 .value = "off", \
3738 static void spapr_machine_2_8_instance_options(MachineState *machine)
3740 spapr_machine_2_9_instance_options(machine);
3743 static void spapr_machine_2_8_class_options(MachineClass *mc)
3745 spapr_machine_2_9_class_options(mc);
3746 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3747 mc->numa_mem_align_shift = 23;
3750 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3753 * pseries-2.7
3755 #define SPAPR_COMPAT_2_7 \
3756 HW_COMPAT_2_7 \
3758 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3759 .property = "mem_win_size", \
3760 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3761 }, \
3763 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3764 .property = "mem64_win_size", \
3765 .value = "0", \
3766 }, \
3768 .driver = TYPE_POWERPC_CPU, \
3769 .property = "pre-2.8-migration", \
3770 .value = "on", \
3771 }, \
3773 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3774 .property = "pre-2.8-migration", \
3775 .value = "on", \
3778 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3779 uint64_t *buid, hwaddr *pio,
3780 hwaddr *mmio32, hwaddr *mmio64,
3781 unsigned n_dma, uint32_t *liobns, Error **errp)
3783 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3784 const uint64_t base_buid = 0x800000020000000ULL;
3785 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3786 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3787 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3788 const uint32_t max_index = 255;
3789 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3791 uint64_t ram_top = MACHINE(spapr)->ram_size;
3792 hwaddr phb0_base, phb_base;
3793 int i;
3795 /* Do we have hotpluggable memory? */
3796 if (MACHINE(spapr)->maxram_size > ram_top) {
3797 /* Can't just use maxram_size, because there may be an
3798 * alignment gap between normal and hotpluggable memory
3799 * regions */
3800 ram_top = spapr->hotplug_memory.base +
3801 memory_region_size(&spapr->hotplug_memory.mr);
3804 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3806 if (index > max_index) {
3807 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3808 max_index);
3809 return;
3812 *buid = base_buid + index;
3813 for (i = 0; i < n_dma; ++i) {
3814 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3817 phb_base = phb0_base + index * phb_spacing;
3818 *pio = phb_base + pio_offset;
3819 *mmio32 = phb_base + mmio_offset;
3821 * We don't set the 64-bit MMIO window, relying on the PHB's
3822 * fallback behaviour of automatically splitting a large "32-bit"
3823 * window into contiguous 32-bit and 64-bit windows
3827 static void spapr_machine_2_7_instance_options(MachineState *machine)
3829 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3831 spapr_machine_2_8_instance_options(machine);
3832 spapr->use_hotplug_event_source = false;
3835 static void spapr_machine_2_7_class_options(MachineClass *mc)
3837 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3839 spapr_machine_2_8_class_options(mc);
3840 smc->tcg_default_cpu = "POWER7";
3841 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3842 smc->phb_placement = phb_placement_2_7;
3845 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3848 * pseries-2.6
3850 #define SPAPR_COMPAT_2_6 \
3851 HW_COMPAT_2_6 \
3853 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3854 .property = "ddw",\
3855 .value = stringify(off),\
3858 static void spapr_machine_2_6_instance_options(MachineState *machine)
3860 spapr_machine_2_7_instance_options(machine);
3863 static void spapr_machine_2_6_class_options(MachineClass *mc)
3865 spapr_machine_2_7_class_options(mc);
3866 mc->has_hotpluggable_cpus = false;
3867 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3870 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3873 * pseries-2.5
3875 #define SPAPR_COMPAT_2_5 \
3876 HW_COMPAT_2_5 \
3878 .driver = "spapr-vlan", \
3879 .property = "use-rx-buffer-pools", \
3880 .value = "off", \
3883 static void spapr_machine_2_5_instance_options(MachineState *machine)
3885 spapr_machine_2_6_instance_options(machine);
3888 static void spapr_machine_2_5_class_options(MachineClass *mc)
3890 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3892 spapr_machine_2_6_class_options(mc);
3893 smc->use_ohci_by_default = true;
3894 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3897 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3900 * pseries-2.4
3902 #define SPAPR_COMPAT_2_4 \
3903 HW_COMPAT_2_4
3905 static void spapr_machine_2_4_instance_options(MachineState *machine)
3907 spapr_machine_2_5_instance_options(machine);
3910 static void spapr_machine_2_4_class_options(MachineClass *mc)
3912 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3914 spapr_machine_2_5_class_options(mc);
3915 smc->dr_lmb_enabled = false;
3916 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3919 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3922 * pseries-2.3
3924 #define SPAPR_COMPAT_2_3 \
3925 HW_COMPAT_2_3 \
3927 .driver = "spapr-pci-host-bridge",\
3928 .property = "dynamic-reconfiguration",\
3929 .value = "off",\
3932 static void spapr_machine_2_3_instance_options(MachineState *machine)
3934 spapr_machine_2_4_instance_options(machine);
3937 static void spapr_machine_2_3_class_options(MachineClass *mc)
3939 spapr_machine_2_4_class_options(mc);
3940 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3942 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3945 * pseries-2.2
3948 #define SPAPR_COMPAT_2_2 \
3949 HW_COMPAT_2_2 \
3951 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3952 .property = "mem_win_size",\
3953 .value = "0x20000000",\
3956 static void spapr_machine_2_2_instance_options(MachineState *machine)
3958 spapr_machine_2_3_instance_options(machine);
3959 machine->suppress_vmdesc = true;
3962 static void spapr_machine_2_2_class_options(MachineClass *mc)
3964 spapr_machine_2_3_class_options(mc);
3965 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3967 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3970 * pseries-2.1
3972 #define SPAPR_COMPAT_2_1 \
3973 HW_COMPAT_2_1
3975 static void spapr_machine_2_1_instance_options(MachineState *machine)
3977 spapr_machine_2_2_instance_options(machine);
3980 static void spapr_machine_2_1_class_options(MachineClass *mc)
3982 spapr_machine_2_2_class_options(mc);
3983 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3985 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3987 static void spapr_machine_register_types(void)
3989 type_register_static(&spapr_machine_info);
3992 type_init(spapr_machine_register_types)