migration/rdma: Fix io_writev(), io_readv() methods to obey contract
[qemu/armbru.git] / migration / rdma.c
blob18be228e3b8bcb375fe7141d35f6d8ef1ad7fa47
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
44 * Print and error on both the Monitor and the Log file.
46 #define ERROR(errp, fmt, ...) \
47 do { \
48 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49 if (errp && (*(errp) == NULL)) { \
50 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51 } \
52 } while (0)
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
63 * This is only for non-live state being migrated.
64 * Instead of RDMA_WRITE messages, we use RDMA_SEND
65 * messages for that state, which requires a different
66 * delivery design than main memory.
68 #define RDMA_SEND_INCREMENT 32768
71 * Maximum size infiniband SEND message
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
76 #define RDMA_CONTROL_VERSION_CURRENT 1
78 * Capabilities for negotiation.
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
83 * Add the other flags above to this list of known capabilities
84 * as they are introduced.
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
88 #define CHECK_ERROR_STATE() \
89 do { \
90 if (rdma->error_state) { \
91 if (!rdma->error_reported) { \
92 error_report("RDMA is in an error state waiting migration" \
93 " to abort!"); \
94 rdma->error_reported = true; \
95 } \
96 return rdma->error_state; \
97 } \
98 } while (0)
101 * A work request ID is 64-bits and we split up these bits
102 * into 3 parts:
104 * bits 0-15 : type of control message, 2^16
105 * bits 16-29: ram block index, 2^14
106 * bits 30-63: ram block chunk number, 2^34
108 * The last two bit ranges are only used for RDMA writes,
109 * in order to track their completion and potentially
110 * also track unregistration status of the message.
112 #define RDMA_WRID_TYPE_SHIFT 0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
116 #define RDMA_WRID_TYPE_MASK \
117 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
119 #define RDMA_WRID_BLOCK_MASK \
120 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
125 * RDMA migration protocol:
126 * 1. RDMA Writes (data messages, i.e. RAM)
127 * 2. IB Send/Recv (control channel messages)
129 enum {
130 RDMA_WRID_NONE = 0,
131 RDMA_WRID_RDMA_WRITE = 1,
132 RDMA_WRID_SEND_CONTROL = 2000,
133 RDMA_WRID_RECV_CONTROL = 4000,
137 * Work request IDs for IB SEND messages only (not RDMA writes).
138 * This is used by the migration protocol to transmit
139 * control messages (such as device state and registration commands)
141 * We could use more WRs, but we have enough for now.
143 enum {
144 RDMA_WRID_READY = 0,
145 RDMA_WRID_DATA,
146 RDMA_WRID_CONTROL,
147 RDMA_WRID_MAX,
151 * SEND/RECV IB Control Messages.
153 enum {
154 RDMA_CONTROL_NONE = 0,
155 RDMA_CONTROL_ERROR,
156 RDMA_CONTROL_READY, /* ready to receive */
157 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
158 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
159 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
160 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
161 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
162 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
163 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
164 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
165 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
170 * Memory and MR structures used to represent an IB Send/Recv work request.
171 * This is *not* used for RDMA writes, only IB Send/Recv.
173 typedef struct {
174 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
175 struct ibv_mr *control_mr; /* registration metadata */
176 size_t control_len; /* length of the message */
177 uint8_t *control_curr; /* start of unconsumed bytes */
178 } RDMAWorkRequestData;
181 * Negotiate RDMA capabilities during connection-setup time.
183 typedef struct {
184 uint32_t version;
185 uint32_t flags;
186 } RDMACapabilities;
188 static void caps_to_network(RDMACapabilities *cap)
190 cap->version = htonl(cap->version);
191 cap->flags = htonl(cap->flags);
194 static void network_to_caps(RDMACapabilities *cap)
196 cap->version = ntohl(cap->version);
197 cap->flags = ntohl(cap->flags);
201 * Representation of a RAMBlock from an RDMA perspective.
202 * This is not transmitted, only local.
203 * This and subsequent structures cannot be linked lists
204 * because we're using a single IB message to transmit
205 * the information. It's small anyway, so a list is overkill.
207 typedef struct RDMALocalBlock {
208 char *block_name;
209 uint8_t *local_host_addr; /* local virtual address */
210 uint64_t remote_host_addr; /* remote virtual address */
211 uint64_t offset;
212 uint64_t length;
213 struct ibv_mr **pmr; /* MRs for chunk-level registration */
214 struct ibv_mr *mr; /* MR for non-chunk-level registration */
215 uint32_t *remote_keys; /* rkeys for chunk-level registration */
216 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
217 int index; /* which block are we */
218 unsigned int src_index; /* (Only used on dest) */
219 bool is_ram_block;
220 int nb_chunks;
221 unsigned long *transit_bitmap;
222 unsigned long *unregister_bitmap;
223 } RDMALocalBlock;
226 * Also represents a RAMblock, but only on the dest.
227 * This gets transmitted by the dest during connection-time
228 * to the source VM and then is used to populate the
229 * corresponding RDMALocalBlock with
230 * the information needed to perform the actual RDMA.
232 typedef struct QEMU_PACKED RDMADestBlock {
233 uint64_t remote_host_addr;
234 uint64_t offset;
235 uint64_t length;
236 uint32_t remote_rkey;
237 uint32_t padding;
238 } RDMADestBlock;
240 static const char *control_desc(unsigned int rdma_control)
242 static const char *strs[] = {
243 [RDMA_CONTROL_NONE] = "NONE",
244 [RDMA_CONTROL_ERROR] = "ERROR",
245 [RDMA_CONTROL_READY] = "READY",
246 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
247 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
248 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
249 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
250 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
251 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
252 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
253 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
254 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
257 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
258 return "??BAD CONTROL VALUE??";
261 return strs[rdma_control];
264 static uint64_t htonll(uint64_t v)
266 union { uint32_t lv[2]; uint64_t llv; } u;
267 u.lv[0] = htonl(v >> 32);
268 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
269 return u.llv;
272 static uint64_t ntohll(uint64_t v)
274 union { uint32_t lv[2]; uint64_t llv; } u;
275 u.llv = v;
276 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 static void dest_block_to_network(RDMADestBlock *db)
281 db->remote_host_addr = htonll(db->remote_host_addr);
282 db->offset = htonll(db->offset);
283 db->length = htonll(db->length);
284 db->remote_rkey = htonl(db->remote_rkey);
287 static void network_to_dest_block(RDMADestBlock *db)
289 db->remote_host_addr = ntohll(db->remote_host_addr);
290 db->offset = ntohll(db->offset);
291 db->length = ntohll(db->length);
292 db->remote_rkey = ntohl(db->remote_rkey);
296 * Virtual address of the above structures used for transmitting
297 * the RAMBlock descriptions at connection-time.
298 * This structure is *not* transmitted.
300 typedef struct RDMALocalBlocks {
301 int nb_blocks;
302 bool init; /* main memory init complete */
303 RDMALocalBlock *block;
304 } RDMALocalBlocks;
307 * Main data structure for RDMA state.
308 * While there is only one copy of this structure being allocated right now,
309 * this is the place where one would start if you wanted to consider
310 * having more than one RDMA connection open at the same time.
312 typedef struct RDMAContext {
313 char *host;
314 int port;
315 char *host_port;
317 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
320 * This is used by *_exchange_send() to figure out whether or not
321 * the initial "READY" message has already been received or not.
322 * This is because other functions may potentially poll() and detect
323 * the READY message before send() does, in which case we need to
324 * know if it completed.
326 int control_ready_expected;
328 /* number of outstanding writes */
329 int nb_sent;
331 /* store info about current buffer so that we can
332 merge it with future sends */
333 uint64_t current_addr;
334 uint64_t current_length;
335 /* index of ram block the current buffer belongs to */
336 int current_index;
337 /* index of the chunk in the current ram block */
338 int current_chunk;
340 bool pin_all;
343 * infiniband-specific variables for opening the device
344 * and maintaining connection state and so forth.
346 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
347 * cm_id->verbs, cm_id->channel, and cm_id->qp.
349 struct rdma_cm_id *cm_id; /* connection manager ID */
350 struct rdma_cm_id *listen_id;
351 bool connected;
353 struct ibv_context *verbs;
354 struct rdma_event_channel *channel;
355 struct ibv_qp *qp; /* queue pair */
356 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
357 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
358 struct ibv_pd *pd; /* protection domain */
359 struct ibv_cq *recv_cq; /* recvieve completion queue */
360 struct ibv_cq *send_cq; /* send completion queue */
363 * If a previous write failed (perhaps because of a failed
364 * memory registration, then do not attempt any future work
365 * and remember the error state.
367 int error_state;
368 bool error_reported;
369 bool received_error;
372 * Description of ram blocks used throughout the code.
374 RDMALocalBlocks local_ram_blocks;
375 RDMADestBlock *dest_blocks;
377 /* Index of the next RAMBlock received during block registration */
378 unsigned int next_src_index;
381 * Migration on *destination* started.
382 * Then use coroutine yield function.
383 * Source runs in a thread, so we don't care.
385 int migration_started_on_destination;
387 int total_registrations;
388 int total_writes;
390 int unregister_current, unregister_next;
391 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
393 GHashTable *blockmap;
395 /* the RDMAContext for return path */
396 struct RDMAContext *return_path;
397 bool is_return_path;
398 } RDMAContext;
400 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
401 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
405 struct QIOChannelRDMA {
406 QIOChannel parent;
407 RDMAContext *rdmain;
408 RDMAContext *rdmaout;
409 QEMUFile *file;
410 bool blocking; /* XXX we don't actually honour this yet */
414 * Main structure for IB Send/Recv control messages.
415 * This gets prepended at the beginning of every Send/Recv.
417 typedef struct QEMU_PACKED {
418 uint32_t len; /* Total length of data portion */
419 uint32_t type; /* which control command to perform */
420 uint32_t repeat; /* number of commands in data portion of same type */
421 uint32_t padding;
422 } RDMAControlHeader;
424 static void control_to_network(RDMAControlHeader *control)
426 control->type = htonl(control->type);
427 control->len = htonl(control->len);
428 control->repeat = htonl(control->repeat);
431 static void network_to_control(RDMAControlHeader *control)
433 control->type = ntohl(control->type);
434 control->len = ntohl(control->len);
435 control->repeat = ntohl(control->repeat);
439 * Register a single Chunk.
440 * Information sent by the source VM to inform the dest
441 * to register an single chunk of memory before we can perform
442 * the actual RDMA operation.
444 typedef struct QEMU_PACKED {
445 union QEMU_PACKED {
446 uint64_t current_addr; /* offset into the ram_addr_t space */
447 uint64_t chunk; /* chunk to lookup if unregistering */
448 } key;
449 uint32_t current_index; /* which ramblock the chunk belongs to */
450 uint32_t padding;
451 uint64_t chunks; /* how many sequential chunks to register */
452 } RDMARegister;
454 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
456 RDMALocalBlock *local_block;
457 local_block = &rdma->local_ram_blocks.block[reg->current_index];
459 if (local_block->is_ram_block) {
461 * current_addr as passed in is an address in the local ram_addr_t
462 * space, we need to translate this for the destination
464 reg->key.current_addr -= local_block->offset;
465 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
467 reg->key.current_addr = htonll(reg->key.current_addr);
468 reg->current_index = htonl(reg->current_index);
469 reg->chunks = htonll(reg->chunks);
472 static void network_to_register(RDMARegister *reg)
474 reg->key.current_addr = ntohll(reg->key.current_addr);
475 reg->current_index = ntohl(reg->current_index);
476 reg->chunks = ntohll(reg->chunks);
479 typedef struct QEMU_PACKED {
480 uint32_t value; /* if zero, we will madvise() */
481 uint32_t block_idx; /* which ram block index */
482 uint64_t offset; /* Address in remote ram_addr_t space */
483 uint64_t length; /* length of the chunk */
484 } RDMACompress;
486 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
488 comp->value = htonl(comp->value);
490 * comp->offset as passed in is an address in the local ram_addr_t
491 * space, we need to translate this for the destination
493 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
494 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
495 comp->block_idx = htonl(comp->block_idx);
496 comp->offset = htonll(comp->offset);
497 comp->length = htonll(comp->length);
500 static void network_to_compress(RDMACompress *comp)
502 comp->value = ntohl(comp->value);
503 comp->block_idx = ntohl(comp->block_idx);
504 comp->offset = ntohll(comp->offset);
505 comp->length = ntohll(comp->length);
509 * The result of the dest's memory registration produces an "rkey"
510 * which the source VM must reference in order to perform
511 * the RDMA operation.
513 typedef struct QEMU_PACKED {
514 uint32_t rkey;
515 uint32_t padding;
516 uint64_t host_addr;
517 } RDMARegisterResult;
519 static void result_to_network(RDMARegisterResult *result)
521 result->rkey = htonl(result->rkey);
522 result->host_addr = htonll(result->host_addr);
525 static void network_to_result(RDMARegisterResult *result)
527 result->rkey = ntohl(result->rkey);
528 result->host_addr = ntohll(result->host_addr);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532 uint8_t *data, RDMAControlHeader *resp,
533 int *resp_idx,
534 int (*callback)(RDMAContext *rdma));
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
537 const uint8_t *host)
539 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
543 uint64_t i)
545 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546 (i << RDMA_REG_CHUNK_SHIFT));
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
550 uint64_t i)
552 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553 (1UL << RDMA_REG_CHUNK_SHIFT);
555 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
559 return result;
562 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
563 void *host_addr,
564 ram_addr_t block_offset, uint64_t length)
566 RDMALocalBlocks *local = &rdma->local_ram_blocks;
567 RDMALocalBlock *block;
568 RDMALocalBlock *old = local->block;
570 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
572 if (local->nb_blocks) {
573 int x;
575 if (rdma->blockmap) {
576 for (x = 0; x < local->nb_blocks; x++) {
577 g_hash_table_remove(rdma->blockmap,
578 (void *)(uintptr_t)old[x].offset);
579 g_hash_table_insert(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset,
581 &local->block[x]);
584 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
585 g_free(old);
588 block = &local->block[local->nb_blocks];
590 block->block_name = g_strdup(block_name);
591 block->local_host_addr = host_addr;
592 block->offset = block_offset;
593 block->length = length;
594 block->index = local->nb_blocks;
595 block->src_index = ~0U; /* Filled in by the receipt of the block list */
596 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597 block->transit_bitmap = bitmap_new(block->nb_chunks);
598 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599 block->unregister_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
603 block->is_ram_block = local->init ? false : true;
605 if (rdma->blockmap) {
606 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609 trace_rdma_add_block(block_name, local->nb_blocks,
610 (uintptr_t) block->local_host_addr,
611 block->offset, block->length,
612 (uintptr_t) (block->local_host_addr + block->length),
613 BITS_TO_LONGS(block->nb_chunks) *
614 sizeof(unsigned long) * 8,
615 block->nb_chunks);
617 local->nb_blocks++;
621 * Memory regions need to be registered with the device and queue pairs setup
622 * in advanced before the migration starts. This tells us where the RAM blocks
623 * are so that we can register them individually.
625 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
627 const char *block_name = qemu_ram_get_idstr(rb);
628 void *host_addr = qemu_ram_get_host_addr(rb);
629 ram_addr_t block_offset = qemu_ram_get_offset(rb);
630 ram_addr_t length = qemu_ram_get_used_length(rb);
631 rdma_add_block(opaque, block_name, host_addr, block_offset, length);
632 return 0;
636 * Identify the RAMBlocks and their quantity. They will be references to
637 * identify chunk boundaries inside each RAMBlock and also be referenced
638 * during dynamic page registration.
640 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
642 RDMALocalBlocks *local = &rdma->local_ram_blocks;
643 int ret;
645 assert(rdma->blockmap == NULL);
646 memset(local, 0, sizeof *local);
647 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
648 assert(!ret);
649 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
650 rdma->dest_blocks = g_new0(RDMADestBlock,
651 rdma->local_ram_blocks.nb_blocks);
652 local->init = true;
656 * Note: If used outside of cleanup, the caller must ensure that the destination
657 * block structures are also updated
659 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
661 RDMALocalBlocks *local = &rdma->local_ram_blocks;
662 RDMALocalBlock *old = local->block;
663 int x;
665 if (rdma->blockmap) {
666 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
668 if (block->pmr) {
669 int j;
671 for (j = 0; j < block->nb_chunks; j++) {
672 if (!block->pmr[j]) {
673 continue;
675 ibv_dereg_mr(block->pmr[j]);
676 rdma->total_registrations--;
678 g_free(block->pmr);
679 block->pmr = NULL;
682 if (block->mr) {
683 ibv_dereg_mr(block->mr);
684 rdma->total_registrations--;
685 block->mr = NULL;
688 g_free(block->transit_bitmap);
689 block->transit_bitmap = NULL;
691 g_free(block->unregister_bitmap);
692 block->unregister_bitmap = NULL;
694 g_free(block->remote_keys);
695 block->remote_keys = NULL;
697 g_free(block->block_name);
698 block->block_name = NULL;
700 if (rdma->blockmap) {
701 for (x = 0; x < local->nb_blocks; x++) {
702 g_hash_table_remove(rdma->blockmap,
703 (void *)(uintptr_t)old[x].offset);
707 if (local->nb_blocks > 1) {
709 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
711 if (block->index) {
712 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
715 if (block->index < (local->nb_blocks - 1)) {
716 memcpy(local->block + block->index, old + (block->index + 1),
717 sizeof(RDMALocalBlock) *
718 (local->nb_blocks - (block->index + 1)));
719 for (x = block->index; x < local->nb_blocks - 1; x++) {
720 local->block[x].index--;
723 } else {
724 assert(block == local->block);
725 local->block = NULL;
728 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
729 block->offset, block->length,
730 (uintptr_t)(block->local_host_addr + block->length),
731 BITS_TO_LONGS(block->nb_chunks) *
732 sizeof(unsigned long) * 8, block->nb_chunks);
734 g_free(old);
736 local->nb_blocks--;
738 if (local->nb_blocks && rdma->blockmap) {
739 for (x = 0; x < local->nb_blocks; x++) {
740 g_hash_table_insert(rdma->blockmap,
741 (void *)(uintptr_t)local->block[x].offset,
742 &local->block[x]);
748 * Put in the log file which RDMA device was opened and the details
749 * associated with that device.
751 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
753 struct ibv_port_attr port;
755 if (ibv_query_port(verbs, 1, &port)) {
756 error_report("Failed to query port information");
757 return;
760 printf("%s RDMA Device opened: kernel name %s "
761 "uverbs device name %s, "
762 "infiniband_verbs class device path %s, "
763 "infiniband class device path %s, "
764 "transport: (%d) %s\n",
765 who,
766 verbs->device->name,
767 verbs->device->dev_name,
768 verbs->device->dev_path,
769 verbs->device->ibdev_path,
770 port.link_layer,
771 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
772 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
773 ? "Ethernet" : "Unknown"));
777 * Put in the log file the RDMA gid addressing information,
778 * useful for folks who have trouble understanding the
779 * RDMA device hierarchy in the kernel.
781 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
783 char sgid[33];
784 char dgid[33];
785 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
786 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
787 trace_qemu_rdma_dump_gid(who, sgid, dgid);
791 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
792 * We will try the next addrinfo struct, and fail if there are
793 * no other valid addresses to bind against.
795 * If user is listening on '[::]', then we will not have a opened a device
796 * yet and have no way of verifying if the device is RoCE or not.
798 * In this case, the source VM will throw an error for ALL types of
799 * connections (both IPv4 and IPv6) if the destination machine does not have
800 * a regular infiniband network available for use.
802 * The only way to guarantee that an error is thrown for broken kernels is
803 * for the management software to choose a *specific* interface at bind time
804 * and validate what time of hardware it is.
806 * Unfortunately, this puts the user in a fix:
808 * If the source VM connects with an IPv4 address without knowing that the
809 * destination has bound to '[::]' the migration will unconditionally fail
810 * unless the management software is explicitly listening on the IPv4
811 * address while using a RoCE-based device.
813 * If the source VM connects with an IPv6 address, then we're OK because we can
814 * throw an error on the source (and similarly on the destination).
816 * But in mixed environments, this will be broken for a while until it is fixed
817 * inside linux.
819 * We do provide a *tiny* bit of help in this function: We can list all of the
820 * devices in the system and check to see if all the devices are RoCE or
821 * Infiniband.
823 * If we detect that we have a *pure* RoCE environment, then we can safely
824 * thrown an error even if the management software has specified '[::]' as the
825 * bind address.
827 * However, if there is are multiple hetergeneous devices, then we cannot make
828 * this assumption and the user just has to be sure they know what they are
829 * doing.
831 * Patches are being reviewed on linux-rdma.
833 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
835 /* This bug only exists in linux, to our knowledge. */
836 #ifdef CONFIG_LINUX
837 struct ibv_port_attr port_attr;
840 * Verbs are only NULL if management has bound to '[::]'.
842 * Let's iterate through all the devices and see if there any pure IB
843 * devices (non-ethernet).
845 * If not, then we can safely proceed with the migration.
846 * Otherwise, there are no guarantees until the bug is fixed in linux.
848 if (!verbs) {
849 int num_devices, x;
850 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
851 bool roce_found = false;
852 bool ib_found = false;
854 for (x = 0; x < num_devices; x++) {
855 verbs = ibv_open_device(dev_list[x]);
857 * ibv_open_device() is not documented to set errno. If
858 * it does, it's somebody else's doc bug. If it doesn't,
859 * the use of errno below is wrong.
860 * TODO Find out whether ibv_open_device() sets errno.
862 if (!verbs) {
863 if (errno == EPERM) {
864 continue;
865 } else {
866 return -EINVAL;
870 if (ibv_query_port(verbs, 1, &port_attr)) {
871 ibv_close_device(verbs);
872 ERROR(errp, "Could not query initial IB port");
873 return -EINVAL;
876 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
877 ib_found = true;
878 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
879 roce_found = true;
882 ibv_close_device(verbs);
886 if (roce_found) {
887 if (ib_found) {
888 fprintf(stderr, "WARN: migrations may fail:"
889 " IPv6 over RoCE / iWARP in linux"
890 " is broken. But since you appear to have a"
891 " mixed RoCE / IB environment, be sure to only"
892 " migrate over the IB fabric until the kernel "
893 " fixes the bug.\n");
894 } else {
895 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
896 " and your management software has specified '[::]'"
897 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
898 return -ENONET;
902 return 0;
906 * If we have a verbs context, that means that some other than '[::]' was
907 * used by the management software for binding. In which case we can
908 * actually warn the user about a potentially broken kernel.
911 /* IB ports start with 1, not 0 */
912 if (ibv_query_port(verbs, 1, &port_attr)) {
913 ERROR(errp, "Could not query initial IB port");
914 return -EINVAL;
917 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
918 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
919 "(but patches on linux-rdma in progress)");
920 return -ENONET;
923 #endif
925 return 0;
929 * Figure out which RDMA device corresponds to the requested IP hostname
930 * Also create the initial connection manager identifiers for opening
931 * the connection.
933 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
935 int ret;
936 struct rdma_addrinfo *res;
937 char port_str[16];
938 struct rdma_cm_event *cm_event;
939 char ip[40] = "unknown";
940 struct rdma_addrinfo *e;
942 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
943 ERROR(errp, "RDMA hostname has not been set");
944 return -EINVAL;
947 /* create CM channel */
948 rdma->channel = rdma_create_event_channel();
949 if (!rdma->channel) {
950 ERROR(errp, "could not create CM channel");
951 return -EINVAL;
954 /* create CM id */
955 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
956 if (ret) {
957 ERROR(errp, "could not create channel id");
958 goto err_resolve_create_id;
961 snprintf(port_str, 16, "%d", rdma->port);
962 port_str[15] = '\0';
964 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
965 if (ret < 0) {
966 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
967 goto err_resolve_get_addr;
970 for (e = res; e != NULL; e = e->ai_next) {
971 inet_ntop(e->ai_family,
972 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
973 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
975 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
976 RDMA_RESOLVE_TIMEOUT_MS);
977 if (!ret) {
978 if (e->ai_family == AF_INET6) {
979 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
980 if (ret) {
981 continue;
984 goto route;
988 rdma_freeaddrinfo(res);
989 ERROR(errp, "could not resolve address %s", rdma->host);
990 goto err_resolve_get_addr;
992 route:
993 rdma_freeaddrinfo(res);
994 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
996 ret = rdma_get_cm_event(rdma->channel, &cm_event);
997 if (ret) {
998 ERROR(errp, "could not perform event_addr_resolved");
999 goto err_resolve_get_addr;
1002 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1003 ERROR(errp, "result not equal to event_addr_resolved %s",
1004 rdma_event_str(cm_event->event));
1005 error_report("rdma_resolve_addr");
1006 rdma_ack_cm_event(cm_event);
1007 ret = -EINVAL;
1008 goto err_resolve_get_addr;
1010 rdma_ack_cm_event(cm_event);
1012 /* resolve route */
1013 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1014 if (ret) {
1015 ERROR(errp, "could not resolve rdma route");
1016 goto err_resolve_get_addr;
1019 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1020 if (ret) {
1021 ERROR(errp, "could not perform event_route_resolved");
1022 goto err_resolve_get_addr;
1024 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1025 ERROR(errp, "result not equal to event_route_resolved: %s",
1026 rdma_event_str(cm_event->event));
1027 rdma_ack_cm_event(cm_event);
1028 ret = -EINVAL;
1029 goto err_resolve_get_addr;
1031 rdma_ack_cm_event(cm_event);
1032 rdma->verbs = rdma->cm_id->verbs;
1033 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1034 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1035 return 0;
1037 err_resolve_get_addr:
1038 rdma_destroy_id(rdma->cm_id);
1039 rdma->cm_id = NULL;
1040 err_resolve_create_id:
1041 rdma_destroy_event_channel(rdma->channel);
1042 rdma->channel = NULL;
1043 return ret;
1047 * Create protection domain and completion queues
1049 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1051 /* allocate pd */
1052 rdma->pd = ibv_alloc_pd(rdma->verbs);
1053 if (!rdma->pd) {
1054 error_report("failed to allocate protection domain");
1055 return -1;
1058 /* create receive completion channel */
1059 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1060 if (!rdma->recv_comp_channel) {
1061 error_report("failed to allocate receive completion channel");
1062 goto err_alloc_pd_cq;
1066 * Completion queue can be filled by read work requests.
1068 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1069 NULL, rdma->recv_comp_channel, 0);
1070 if (!rdma->recv_cq) {
1071 error_report("failed to allocate receive completion queue");
1072 goto err_alloc_pd_cq;
1075 /* create send completion channel */
1076 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1077 if (!rdma->send_comp_channel) {
1078 error_report("failed to allocate send completion channel");
1079 goto err_alloc_pd_cq;
1082 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1083 NULL, rdma->send_comp_channel, 0);
1084 if (!rdma->send_cq) {
1085 error_report("failed to allocate send completion queue");
1086 goto err_alloc_pd_cq;
1089 return 0;
1091 err_alloc_pd_cq:
1092 if (rdma->pd) {
1093 ibv_dealloc_pd(rdma->pd);
1095 if (rdma->recv_comp_channel) {
1096 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1098 if (rdma->send_comp_channel) {
1099 ibv_destroy_comp_channel(rdma->send_comp_channel);
1101 if (rdma->recv_cq) {
1102 ibv_destroy_cq(rdma->recv_cq);
1103 rdma->recv_cq = NULL;
1105 rdma->pd = NULL;
1106 rdma->recv_comp_channel = NULL;
1107 rdma->send_comp_channel = NULL;
1108 return -1;
1113 * Create queue pairs.
1115 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1117 struct ibv_qp_init_attr attr = { 0 };
1118 int ret;
1120 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1121 attr.cap.max_recv_wr = 3;
1122 attr.cap.max_send_sge = 1;
1123 attr.cap.max_recv_sge = 1;
1124 attr.send_cq = rdma->send_cq;
1125 attr.recv_cq = rdma->recv_cq;
1126 attr.qp_type = IBV_QPT_RC;
1128 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1129 if (ret) {
1130 return -1;
1133 rdma->qp = rdma->cm_id->qp;
1134 return 0;
1137 /* Check whether On-Demand Paging is supported by RDAM device */
1138 static bool rdma_support_odp(struct ibv_context *dev)
1140 struct ibv_device_attr_ex attr = {0};
1141 int ret = ibv_query_device_ex(dev, NULL, &attr);
1142 if (ret) {
1143 return false;
1146 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1147 return true;
1150 return false;
1154 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1155 * The responder mr registering with ODP will sent RNR NAK back to
1156 * the requester in the face of the page fault.
1158 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1159 uint32_t len, uint32_t lkey,
1160 const char *name, bool wr)
1162 #ifdef HAVE_IBV_ADVISE_MR
1163 int ret;
1164 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1165 IBV_ADVISE_MR_ADVICE_PREFETCH;
1166 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1168 ret = ibv_advise_mr(pd, advice,
1169 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1170 /* ignore the error */
1171 trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1172 #endif
1175 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1177 int i;
1178 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1180 for (i = 0; i < local->nb_blocks; i++) {
1181 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1183 local->block[i].mr =
1184 ibv_reg_mr(rdma->pd,
1185 local->block[i].local_host_addr,
1186 local->block[i].length, access
1189 * ibv_reg_mr() is not documented to set errno. If it does,
1190 * it's somebody else's doc bug. If it doesn't, the use of
1191 * errno below is wrong.
1192 * TODO Find out whether ibv_reg_mr() sets errno.
1194 if (!local->block[i].mr &&
1195 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1196 access |= IBV_ACCESS_ON_DEMAND;
1197 /* register ODP mr */
1198 local->block[i].mr =
1199 ibv_reg_mr(rdma->pd,
1200 local->block[i].local_host_addr,
1201 local->block[i].length, access);
1202 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1204 if (local->block[i].mr) {
1205 qemu_rdma_advise_prefetch_mr(rdma->pd,
1206 (uintptr_t)local->block[i].local_host_addr,
1207 local->block[i].length,
1208 local->block[i].mr->lkey,
1209 local->block[i].block_name,
1210 true);
1214 if (!local->block[i].mr) {
1215 perror("Failed to register local dest ram block!");
1216 break;
1218 rdma->total_registrations++;
1221 if (i >= local->nb_blocks) {
1222 return 0;
1225 for (i--; i >= 0; i--) {
1226 ibv_dereg_mr(local->block[i].mr);
1227 local->block[i].mr = NULL;
1228 rdma->total_registrations--;
1231 return -1;
1236 * Find the ram block that corresponds to the page requested to be
1237 * transmitted by QEMU.
1239 * Once the block is found, also identify which 'chunk' within that
1240 * block that the page belongs to.
1242 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1243 uintptr_t block_offset,
1244 uint64_t offset,
1245 uint64_t length,
1246 uint64_t *block_index,
1247 uint64_t *chunk_index)
1249 uint64_t current_addr = block_offset + offset;
1250 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1251 (void *) block_offset);
1252 assert(block);
1253 assert(current_addr >= block->offset);
1254 assert((current_addr + length) <= (block->offset + block->length));
1256 *block_index = block->index;
1257 *chunk_index = ram_chunk_index(block->local_host_addr,
1258 block->local_host_addr + (current_addr - block->offset));
1262 * Register a chunk with IB. If the chunk was already registered
1263 * previously, then skip.
1265 * Also return the keys associated with the registration needed
1266 * to perform the actual RDMA operation.
1268 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1269 RDMALocalBlock *block, uintptr_t host_addr,
1270 uint32_t *lkey, uint32_t *rkey, int chunk,
1271 uint8_t *chunk_start, uint8_t *chunk_end)
1273 if (block->mr) {
1274 if (lkey) {
1275 *lkey = block->mr->lkey;
1277 if (rkey) {
1278 *rkey = block->mr->rkey;
1280 return 0;
1283 /* allocate memory to store chunk MRs */
1284 if (!block->pmr) {
1285 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1289 * If 'rkey', then we're the destination, so grant access to the source.
1291 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1293 if (!block->pmr[chunk]) {
1294 uint64_t len = chunk_end - chunk_start;
1295 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1298 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1300 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1302 * ibv_reg_mr() is not documented to set errno. If it does,
1303 * it's somebody else's doc bug. If it doesn't, the use of
1304 * errno below is wrong.
1305 * TODO Find out whether ibv_reg_mr() sets errno.
1307 if (!block->pmr[chunk] &&
1308 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1309 access |= IBV_ACCESS_ON_DEMAND;
1310 /* register ODP mr */
1311 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312 trace_qemu_rdma_register_odp_mr(block->block_name);
1314 if (block->pmr[chunk]) {
1315 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1316 len, block->pmr[chunk]->lkey,
1317 block->block_name, rkey);
1322 if (!block->pmr[chunk]) {
1323 perror("Failed to register chunk!");
1324 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1325 " start %" PRIuPTR " end %" PRIuPTR
1326 " host %" PRIuPTR
1327 " local %" PRIuPTR " registrations: %d\n",
1328 block->index, chunk, (uintptr_t)chunk_start,
1329 (uintptr_t)chunk_end, host_addr,
1330 (uintptr_t)block->local_host_addr,
1331 rdma->total_registrations);
1332 return -1;
1334 rdma->total_registrations++;
1336 if (lkey) {
1337 *lkey = block->pmr[chunk]->lkey;
1339 if (rkey) {
1340 *rkey = block->pmr[chunk]->rkey;
1342 return 0;
1346 * Register (at connection time) the memory used for control
1347 * channel messages.
1349 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1351 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1352 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1353 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1354 if (rdma->wr_data[idx].control_mr) {
1355 rdma->total_registrations++;
1356 return 0;
1358 error_report("qemu_rdma_reg_control failed");
1359 return -1;
1363 * Perform a non-optimized memory unregistration after every transfer
1364 * for demonstration purposes, only if pin-all is not requested.
1366 * Potential optimizations:
1367 * 1. Start a new thread to run this function continuously
1368 - for bit clearing
1369 - and for receipt of unregister messages
1370 * 2. Use an LRU.
1371 * 3. Use workload hints.
1373 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1375 while (rdma->unregistrations[rdma->unregister_current]) {
1376 int ret;
1377 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1378 uint64_t chunk =
1379 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1380 uint64_t index =
1381 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1382 RDMALocalBlock *block =
1383 &(rdma->local_ram_blocks.block[index]);
1384 RDMARegister reg = { .current_index = index };
1385 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1387 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1388 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1389 .repeat = 1,
1392 trace_qemu_rdma_unregister_waiting_proc(chunk,
1393 rdma->unregister_current);
1395 rdma->unregistrations[rdma->unregister_current] = 0;
1396 rdma->unregister_current++;
1398 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1399 rdma->unregister_current = 0;
1404 * Unregistration is speculative (because migration is single-threaded
1405 * and we cannot break the protocol's inifinband message ordering).
1406 * Thus, if the memory is currently being used for transmission,
1407 * then abort the attempt to unregister and try again
1408 * later the next time a completion is received for this memory.
1410 clear_bit(chunk, block->unregister_bitmap);
1412 if (test_bit(chunk, block->transit_bitmap)) {
1413 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1414 continue;
1417 trace_qemu_rdma_unregister_waiting_send(chunk);
1419 ret = ibv_dereg_mr(block->pmr[chunk]);
1420 block->pmr[chunk] = NULL;
1421 block->remote_keys[chunk] = 0;
1423 if (ret != 0) {
1425 * FIXME perror() is problematic, bcause ibv_dereg_mr() is
1426 * not documented to set errno. Will go away later in
1427 * this series.
1429 perror("unregistration chunk failed");
1430 return -ret;
1432 rdma->total_registrations--;
1434 reg.key.chunk = chunk;
1435 register_to_network(rdma, &reg);
1436 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1437 &resp, NULL, NULL);
1438 if (ret < 0) {
1439 return ret;
1442 trace_qemu_rdma_unregister_waiting_complete(chunk);
1445 return 0;
1448 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1449 uint64_t chunk)
1451 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1453 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1454 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1456 return result;
1460 * Consult the connection manager to see a work request
1461 * (of any kind) has completed.
1462 * Return the work request ID that completed.
1464 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1465 uint64_t *wr_id_out, uint32_t *byte_len)
1467 int ret;
1468 struct ibv_wc wc;
1469 uint64_t wr_id;
1471 ret = ibv_poll_cq(cq, 1, &wc);
1473 if (!ret) {
1474 *wr_id_out = RDMA_WRID_NONE;
1475 return 0;
1478 if (ret < 0) {
1479 error_report("ibv_poll_cq failed");
1480 return ret;
1483 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1485 if (wc.status != IBV_WC_SUCCESS) {
1486 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1487 wc.status, ibv_wc_status_str(wc.status));
1488 fprintf(stderr, "ibv_poll_cq wrid=%" PRIu64 "!\n", wr_id);
1490 return -1;
1493 if (rdma->control_ready_expected &&
1494 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1495 trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1496 rdma->nb_sent);
1497 rdma->control_ready_expected = 0;
1500 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1501 uint64_t chunk =
1502 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1503 uint64_t index =
1504 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1505 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1507 trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1508 index, chunk, block->local_host_addr,
1509 (void *)(uintptr_t)block->remote_host_addr);
1511 clear_bit(chunk, block->transit_bitmap);
1513 if (rdma->nb_sent > 0) {
1514 rdma->nb_sent--;
1516 } else {
1517 trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1520 *wr_id_out = wc.wr_id;
1521 if (byte_len) {
1522 *byte_len = wc.byte_len;
1525 return 0;
1528 /* Wait for activity on the completion channel.
1529 * Returns 0 on success, none-0 on error.
1531 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1532 struct ibv_comp_channel *comp_channel)
1534 struct rdma_cm_event *cm_event;
1535 int ret = -1;
1538 * Coroutine doesn't start until migration_fd_process_incoming()
1539 * so don't yield unless we know we're running inside of a coroutine.
1541 if (rdma->migration_started_on_destination &&
1542 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1543 yield_until_fd_readable(comp_channel->fd);
1544 } else {
1545 /* This is the source side, we're in a separate thread
1546 * or destination prior to migration_fd_process_incoming()
1547 * after postcopy, the destination also in a separate thread.
1548 * we can't yield; so we have to poll the fd.
1549 * But we need to be able to handle 'cancel' or an error
1550 * without hanging forever.
1552 while (!rdma->error_state && !rdma->received_error) {
1553 GPollFD pfds[2];
1554 pfds[0].fd = comp_channel->fd;
1555 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1556 pfds[0].revents = 0;
1558 pfds[1].fd = rdma->channel->fd;
1559 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1560 pfds[1].revents = 0;
1562 /* 0.1s timeout, should be fine for a 'cancel' */
1563 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1564 case 2:
1565 case 1: /* fd active */
1566 if (pfds[0].revents) {
1567 return 0;
1570 if (pfds[1].revents) {
1571 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1572 if (ret) {
1573 error_report("failed to get cm event while wait "
1574 "completion channel");
1575 return -EPIPE;
1578 error_report("receive cm event while wait comp channel,"
1579 "cm event is %d", cm_event->event);
1580 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1581 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1582 rdma_ack_cm_event(cm_event);
1583 return -EPIPE;
1585 rdma_ack_cm_event(cm_event);
1587 break;
1589 case 0: /* Timeout, go around again */
1590 break;
1592 default: /* Error of some type -
1593 * I don't trust errno from qemu_poll_ns
1595 error_report("%s: poll failed", __func__);
1596 return -EPIPE;
1599 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1600 /* Bail out and let the cancellation happen */
1601 return -EPIPE;
1606 if (rdma->received_error) {
1607 return -EPIPE;
1609 return rdma->error_state;
1612 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1614 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1615 rdma->recv_comp_channel;
1618 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1620 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1624 * Block until the next work request has completed.
1626 * First poll to see if a work request has already completed,
1627 * otherwise block.
1629 * If we encounter completed work requests for IDs other than
1630 * the one we're interested in, then that's generally an error.
1632 * The only exception is actual RDMA Write completions. These
1633 * completions only need to be recorded, but do not actually
1634 * need further processing.
1636 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1637 uint64_t wrid_requested,
1638 uint32_t *byte_len)
1640 int num_cq_events = 0, ret = 0;
1641 struct ibv_cq *cq;
1642 void *cq_ctx;
1643 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1644 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1645 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1647 if (ibv_req_notify_cq(poll_cq, 0)) {
1648 return -1;
1650 /* poll cq first */
1651 while (wr_id != wrid_requested) {
1652 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1653 if (ret < 0) {
1654 return ret;
1657 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1659 if (wr_id == RDMA_WRID_NONE) {
1660 break;
1662 if (wr_id != wrid_requested) {
1663 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1667 if (wr_id == wrid_requested) {
1668 return 0;
1671 while (1) {
1672 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1673 if (ret) {
1674 goto err_block_for_wrid;
1677 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1678 if (ret) {
1680 * FIXME perror() is problematic, because ibv_reg_mr() is
1681 * not documented to set errno. Will go away later in
1682 * this series.
1684 perror("ibv_get_cq_event");
1685 goto err_block_for_wrid;
1688 num_cq_events++;
1690 ret = -ibv_req_notify_cq(cq, 0);
1691 if (ret) {
1692 goto err_block_for_wrid;
1695 while (wr_id != wrid_requested) {
1696 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1697 if (ret < 0) {
1698 goto err_block_for_wrid;
1701 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1703 if (wr_id == RDMA_WRID_NONE) {
1704 break;
1706 if (wr_id != wrid_requested) {
1707 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1711 if (wr_id == wrid_requested) {
1712 goto success_block_for_wrid;
1716 success_block_for_wrid:
1717 if (num_cq_events) {
1718 ibv_ack_cq_events(cq, num_cq_events);
1720 return 0;
1722 err_block_for_wrid:
1723 if (num_cq_events) {
1724 ibv_ack_cq_events(cq, num_cq_events);
1727 rdma->error_state = ret;
1728 return ret;
1732 * Post a SEND message work request for the control channel
1733 * containing some data and block until the post completes.
1735 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1736 RDMAControlHeader *head)
1738 int ret = 0;
1739 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1740 struct ibv_send_wr *bad_wr;
1741 struct ibv_sge sge = {
1742 .addr = (uintptr_t)(wr->control),
1743 .length = head->len + sizeof(RDMAControlHeader),
1744 .lkey = wr->control_mr->lkey,
1746 struct ibv_send_wr send_wr = {
1747 .wr_id = RDMA_WRID_SEND_CONTROL,
1748 .opcode = IBV_WR_SEND,
1749 .send_flags = IBV_SEND_SIGNALED,
1750 .sg_list = &sge,
1751 .num_sge = 1,
1754 trace_qemu_rdma_post_send_control(control_desc(head->type));
1757 * We don't actually need to do a memcpy() in here if we used
1758 * the "sge" properly, but since we're only sending control messages
1759 * (not RAM in a performance-critical path), then its OK for now.
1761 * The copy makes the RDMAControlHeader simpler to manipulate
1762 * for the time being.
1764 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1765 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1766 control_to_network((void *) wr->control);
1768 if (buf) {
1769 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1773 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1775 if (ret > 0) {
1776 error_report("Failed to use post IB SEND for control");
1777 return -ret;
1780 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1781 if (ret < 0) {
1782 error_report("rdma migration: send polling control error");
1785 return ret;
1789 * Post a RECV work request in anticipation of some future receipt
1790 * of data on the control channel.
1792 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1794 struct ibv_recv_wr *bad_wr;
1795 struct ibv_sge sge = {
1796 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1797 .length = RDMA_CONTROL_MAX_BUFFER,
1798 .lkey = rdma->wr_data[idx].control_mr->lkey,
1801 struct ibv_recv_wr recv_wr = {
1802 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1803 .sg_list = &sge,
1804 .num_sge = 1,
1808 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1809 return -1;
1812 return 0;
1816 * Block and wait for a RECV control channel message to arrive.
1818 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1819 RDMAControlHeader *head, uint32_t expecting, int idx)
1821 uint32_t byte_len;
1822 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1823 &byte_len);
1825 if (ret < 0) {
1826 error_report("rdma migration: recv polling control error!");
1827 return ret;
1830 network_to_control((void *) rdma->wr_data[idx].control);
1831 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1833 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1835 if (expecting == RDMA_CONTROL_NONE) {
1836 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1837 head->type);
1838 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1839 error_report("Was expecting a %s (%d) control message"
1840 ", but got: %s (%d), length: %d",
1841 control_desc(expecting), expecting,
1842 control_desc(head->type), head->type, head->len);
1843 if (head->type == RDMA_CONTROL_ERROR) {
1844 rdma->received_error = true;
1846 return -EIO;
1848 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1849 error_report("too long length: %d", head->len);
1850 return -EINVAL;
1852 if (sizeof(*head) + head->len != byte_len) {
1853 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1854 return -EINVAL;
1857 return 0;
1861 * When a RECV work request has completed, the work request's
1862 * buffer is pointed at the header.
1864 * This will advance the pointer to the data portion
1865 * of the control message of the work request's buffer that
1866 * was populated after the work request finished.
1868 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1869 RDMAControlHeader *head)
1871 rdma->wr_data[idx].control_len = head->len;
1872 rdma->wr_data[idx].control_curr =
1873 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1877 * This is an 'atomic' high-level operation to deliver a single, unified
1878 * control-channel message.
1880 * Additionally, if the user is expecting some kind of reply to this message,
1881 * they can request a 'resp' response message be filled in by posting an
1882 * additional work request on behalf of the user and waiting for an additional
1883 * completion.
1885 * The extra (optional) response is used during registration to us from having
1886 * to perform an *additional* exchange of message just to provide a response by
1887 * instead piggy-backing on the acknowledgement.
1889 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1890 uint8_t *data, RDMAControlHeader *resp,
1891 int *resp_idx,
1892 int (*callback)(RDMAContext *rdma))
1894 int ret = 0;
1897 * Wait until the dest is ready before attempting to deliver the message
1898 * by waiting for a READY message.
1900 if (rdma->control_ready_expected) {
1901 RDMAControlHeader resp_ignored;
1903 ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1904 RDMA_CONTROL_READY,
1905 RDMA_WRID_READY);
1906 if (ret < 0) {
1907 return ret;
1912 * If the user is expecting a response, post a WR in anticipation of it.
1914 if (resp) {
1915 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1916 if (ret) {
1917 error_report("rdma migration: error posting"
1918 " extra control recv for anticipated result!");
1919 return ret;
1924 * Post a WR to replace the one we just consumed for the READY message.
1926 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1927 if (ret) {
1928 error_report("rdma migration: error posting first control recv!");
1929 return ret;
1933 * Deliver the control message that was requested.
1935 ret = qemu_rdma_post_send_control(rdma, data, head);
1937 if (ret < 0) {
1938 error_report("Failed to send control buffer!");
1939 return ret;
1943 * If we're expecting a response, block and wait for it.
1945 if (resp) {
1946 if (callback) {
1947 trace_qemu_rdma_exchange_send_issue_callback();
1948 ret = callback(rdma);
1949 if (ret < 0) {
1950 return ret;
1954 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1955 ret = qemu_rdma_exchange_get_response(rdma, resp,
1956 resp->type, RDMA_WRID_DATA);
1958 if (ret < 0) {
1959 return ret;
1962 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1963 if (resp_idx) {
1964 *resp_idx = RDMA_WRID_DATA;
1966 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1969 rdma->control_ready_expected = 1;
1971 return 0;
1975 * This is an 'atomic' high-level operation to receive a single, unified
1976 * control-channel message.
1978 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1979 uint32_t expecting)
1981 RDMAControlHeader ready = {
1982 .len = 0,
1983 .type = RDMA_CONTROL_READY,
1984 .repeat = 1,
1986 int ret;
1989 * Inform the source that we're ready to receive a message.
1991 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1993 if (ret < 0) {
1994 error_report("Failed to send control buffer!");
1995 return ret;
1999 * Block and wait for the message.
2001 ret = qemu_rdma_exchange_get_response(rdma, head,
2002 expecting, RDMA_WRID_READY);
2004 if (ret < 0) {
2005 return ret;
2008 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2011 * Post a new RECV work request to replace the one we just consumed.
2013 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2014 if (ret) {
2015 error_report("rdma migration: error posting second control recv!");
2016 return ret;
2019 return 0;
2023 * Write an actual chunk of memory using RDMA.
2025 * If we're using dynamic registration on the dest-side, we have to
2026 * send a registration command first.
2028 static int qemu_rdma_write_one(RDMAContext *rdma,
2029 int current_index, uint64_t current_addr,
2030 uint64_t length)
2032 struct ibv_sge sge;
2033 struct ibv_send_wr send_wr = { 0 };
2034 struct ibv_send_wr *bad_wr;
2035 int reg_result_idx, ret, count = 0;
2036 uint64_t chunk, chunks;
2037 uint8_t *chunk_start, *chunk_end;
2038 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2039 RDMARegister reg;
2040 RDMARegisterResult *reg_result;
2041 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2042 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2043 .type = RDMA_CONTROL_REGISTER_REQUEST,
2044 .repeat = 1,
2047 retry:
2048 sge.addr = (uintptr_t)(block->local_host_addr +
2049 (current_addr - block->offset));
2050 sge.length = length;
2052 chunk = ram_chunk_index(block->local_host_addr,
2053 (uint8_t *)(uintptr_t)sge.addr);
2054 chunk_start = ram_chunk_start(block, chunk);
2056 if (block->is_ram_block) {
2057 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2059 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2060 chunks--;
2062 } else {
2063 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2065 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2066 chunks--;
2070 trace_qemu_rdma_write_one_top(chunks + 1,
2071 (chunks + 1) *
2072 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2074 chunk_end = ram_chunk_end(block, chunk + chunks);
2077 while (test_bit(chunk, block->transit_bitmap)) {
2078 (void)count;
2079 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2080 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2082 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2084 if (ret < 0) {
2085 error_report("Failed to Wait for previous write to complete "
2086 "block %d chunk %" PRIu64
2087 " current %" PRIu64 " len %" PRIu64 " %d",
2088 current_index, chunk, sge.addr, length, rdma->nb_sent);
2089 return ret;
2093 if (!rdma->pin_all || !block->is_ram_block) {
2094 if (!block->remote_keys[chunk]) {
2096 * This chunk has not yet been registered, so first check to see
2097 * if the entire chunk is zero. If so, tell the other size to
2098 * memset() + madvise() the entire chunk without RDMA.
2101 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2102 RDMACompress comp = {
2103 .offset = current_addr,
2104 .value = 0,
2105 .block_idx = current_index,
2106 .length = length,
2109 head.len = sizeof(comp);
2110 head.type = RDMA_CONTROL_COMPRESS;
2112 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2113 current_index, current_addr);
2115 compress_to_network(rdma, &comp);
2116 ret = qemu_rdma_exchange_send(rdma, &head,
2117 (uint8_t *) &comp, NULL, NULL, NULL);
2119 if (ret < 0) {
2120 return -EIO;
2124 * TODO: Here we are sending something, but we are not
2125 * accounting for anything transferred. The following is wrong:
2127 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2129 * because we are using some kind of compression. I
2130 * would think that head.len would be the more similar
2131 * thing to a correct value.
2133 stat64_add(&mig_stats.zero_pages,
2134 sge.length / qemu_target_page_size());
2135 return 1;
2139 * Otherwise, tell other side to register.
2141 reg.current_index = current_index;
2142 if (block->is_ram_block) {
2143 reg.key.current_addr = current_addr;
2144 } else {
2145 reg.key.chunk = chunk;
2147 reg.chunks = chunks;
2149 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2150 current_addr);
2152 register_to_network(rdma, &reg);
2153 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2154 &resp, &reg_result_idx, NULL);
2155 if (ret < 0) {
2156 return ret;
2159 /* try to overlap this single registration with the one we sent. */
2160 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2161 &sge.lkey, NULL, chunk,
2162 chunk_start, chunk_end)) {
2163 error_report("cannot get lkey");
2164 return -EINVAL;
2167 reg_result = (RDMARegisterResult *)
2168 rdma->wr_data[reg_result_idx].control_curr;
2170 network_to_result(reg_result);
2172 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2173 reg_result->rkey, chunk);
2175 block->remote_keys[chunk] = reg_result->rkey;
2176 block->remote_host_addr = reg_result->host_addr;
2177 } else {
2178 /* already registered before */
2179 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2180 &sge.lkey, NULL, chunk,
2181 chunk_start, chunk_end)) {
2182 error_report("cannot get lkey!");
2183 return -EINVAL;
2187 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2188 } else {
2189 send_wr.wr.rdma.rkey = block->remote_rkey;
2191 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2192 &sge.lkey, NULL, chunk,
2193 chunk_start, chunk_end)) {
2194 error_report("cannot get lkey!");
2195 return -EINVAL;
2200 * Encode the ram block index and chunk within this wrid.
2201 * We will use this information at the time of completion
2202 * to figure out which bitmap to check against and then which
2203 * chunk in the bitmap to look for.
2205 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2206 current_index, chunk);
2208 send_wr.opcode = IBV_WR_RDMA_WRITE;
2209 send_wr.send_flags = IBV_SEND_SIGNALED;
2210 send_wr.sg_list = &sge;
2211 send_wr.num_sge = 1;
2212 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2213 (current_addr - block->offset);
2215 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2216 sge.length);
2219 * ibv_post_send() does not return negative error numbers,
2220 * per the specification they are positive - no idea why.
2222 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2224 if (ret == ENOMEM) {
2225 trace_qemu_rdma_write_one_queue_full();
2226 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2227 if (ret < 0) {
2228 error_report("rdma migration: failed to make "
2229 "room in full send queue!");
2230 return ret;
2233 goto retry;
2235 } else if (ret > 0) {
2237 * FIXME perror() is problematic, because whether
2238 * ibv_post_send() sets errno is unclear. Will go away later
2239 * in this series.
2241 perror("rdma migration: post rdma write failed");
2242 return -ret;
2245 set_bit(chunk, block->transit_bitmap);
2246 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2248 * We are adding to transferred the amount of data written, but no
2249 * overhead at all. I will asume that RDMA is magicaly and don't
2250 * need to transfer (at least) the addresses where it wants to
2251 * write the pages. Here it looks like it should be something
2252 * like:
2253 * sizeof(send_wr) + sge.length
2254 * but this being RDMA, who knows.
2256 stat64_add(&mig_stats.rdma_bytes, sge.length);
2257 ram_transferred_add(sge.length);
2258 rdma->total_writes++;
2260 return 0;
2264 * Push out any unwritten RDMA operations.
2266 * We support sending out multiple chunks at the same time.
2267 * Not all of them need to get signaled in the completion queue.
2269 static int qemu_rdma_write_flush(RDMAContext *rdma)
2271 int ret;
2273 if (!rdma->current_length) {
2274 return 0;
2277 ret = qemu_rdma_write_one(rdma,
2278 rdma->current_index, rdma->current_addr, rdma->current_length);
2280 if (ret < 0) {
2281 return ret;
2284 if (ret == 0) {
2285 rdma->nb_sent++;
2286 trace_qemu_rdma_write_flush(rdma->nb_sent);
2289 rdma->current_length = 0;
2290 rdma->current_addr = 0;
2292 return 0;
2295 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2296 uint64_t offset, uint64_t len)
2298 RDMALocalBlock *block;
2299 uint8_t *host_addr;
2300 uint8_t *chunk_end;
2302 if (rdma->current_index < 0) {
2303 return false;
2306 if (rdma->current_chunk < 0) {
2307 return false;
2310 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2311 host_addr = block->local_host_addr + (offset - block->offset);
2312 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2314 if (rdma->current_length == 0) {
2315 return false;
2319 * Only merge into chunk sequentially.
2321 if (offset != (rdma->current_addr + rdma->current_length)) {
2322 return false;
2325 if (offset < block->offset) {
2326 return false;
2329 if ((offset + len) > (block->offset + block->length)) {
2330 return false;
2333 if ((host_addr + len) > chunk_end) {
2334 return false;
2337 return true;
2341 * We're not actually writing here, but doing three things:
2343 * 1. Identify the chunk the buffer belongs to.
2344 * 2. If the chunk is full or the buffer doesn't belong to the current
2345 * chunk, then start a new chunk and flush() the old chunk.
2346 * 3. To keep the hardware busy, we also group chunks into batches
2347 * and only require that a batch gets acknowledged in the completion
2348 * queue instead of each individual chunk.
2350 static int qemu_rdma_write(RDMAContext *rdma,
2351 uint64_t block_offset, uint64_t offset,
2352 uint64_t len)
2354 uint64_t current_addr = block_offset + offset;
2355 uint64_t index = rdma->current_index;
2356 uint64_t chunk = rdma->current_chunk;
2357 int ret;
2359 /* If we cannot merge it, we flush the current buffer first. */
2360 if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2361 ret = qemu_rdma_write_flush(rdma);
2362 if (ret) {
2363 return ret;
2365 rdma->current_length = 0;
2366 rdma->current_addr = current_addr;
2368 qemu_rdma_search_ram_block(rdma, block_offset,
2369 offset, len, &index, &chunk);
2370 rdma->current_index = index;
2371 rdma->current_chunk = chunk;
2374 /* merge it */
2375 rdma->current_length += len;
2377 /* flush it if buffer is too large */
2378 if (rdma->current_length >= RDMA_MERGE_MAX) {
2379 return qemu_rdma_write_flush(rdma);
2382 return 0;
2385 static void qemu_rdma_cleanup(RDMAContext *rdma)
2387 int idx;
2389 if (rdma->cm_id && rdma->connected) {
2390 if ((rdma->error_state ||
2391 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2392 !rdma->received_error) {
2393 RDMAControlHeader head = { .len = 0,
2394 .type = RDMA_CONTROL_ERROR,
2395 .repeat = 1,
2397 error_report("Early error. Sending error.");
2398 qemu_rdma_post_send_control(rdma, NULL, &head);
2401 rdma_disconnect(rdma->cm_id);
2402 trace_qemu_rdma_cleanup_disconnect();
2403 rdma->connected = false;
2406 if (rdma->channel) {
2407 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2409 g_free(rdma->dest_blocks);
2410 rdma->dest_blocks = NULL;
2412 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2413 if (rdma->wr_data[idx].control_mr) {
2414 rdma->total_registrations--;
2415 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2417 rdma->wr_data[idx].control_mr = NULL;
2420 if (rdma->local_ram_blocks.block) {
2421 while (rdma->local_ram_blocks.nb_blocks) {
2422 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2426 if (rdma->qp) {
2427 rdma_destroy_qp(rdma->cm_id);
2428 rdma->qp = NULL;
2430 if (rdma->recv_cq) {
2431 ibv_destroy_cq(rdma->recv_cq);
2432 rdma->recv_cq = NULL;
2434 if (rdma->send_cq) {
2435 ibv_destroy_cq(rdma->send_cq);
2436 rdma->send_cq = NULL;
2438 if (rdma->recv_comp_channel) {
2439 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2440 rdma->recv_comp_channel = NULL;
2442 if (rdma->send_comp_channel) {
2443 ibv_destroy_comp_channel(rdma->send_comp_channel);
2444 rdma->send_comp_channel = NULL;
2446 if (rdma->pd) {
2447 ibv_dealloc_pd(rdma->pd);
2448 rdma->pd = NULL;
2450 if (rdma->cm_id) {
2451 rdma_destroy_id(rdma->cm_id);
2452 rdma->cm_id = NULL;
2455 /* the destination side, listen_id and channel is shared */
2456 if (rdma->listen_id) {
2457 if (!rdma->is_return_path) {
2458 rdma_destroy_id(rdma->listen_id);
2460 rdma->listen_id = NULL;
2462 if (rdma->channel) {
2463 if (!rdma->is_return_path) {
2464 rdma_destroy_event_channel(rdma->channel);
2466 rdma->channel = NULL;
2470 if (rdma->channel) {
2471 rdma_destroy_event_channel(rdma->channel);
2472 rdma->channel = NULL;
2474 g_free(rdma->host);
2475 g_free(rdma->host_port);
2476 rdma->host = NULL;
2477 rdma->host_port = NULL;
2481 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2483 int ret, idx;
2486 * Will be validated against destination's actual capabilities
2487 * after the connect() completes.
2489 rdma->pin_all = pin_all;
2491 ret = qemu_rdma_resolve_host(rdma, errp);
2492 if (ret) {
2493 goto err_rdma_source_init;
2496 ret = qemu_rdma_alloc_pd_cq(rdma);
2497 if (ret) {
2498 ERROR(errp, "rdma migration: error allocating pd and cq! Your mlock()"
2499 " limits may be too low. Please check $ ulimit -a # and "
2500 "search for 'ulimit -l' in the output");
2501 goto err_rdma_source_init;
2504 ret = qemu_rdma_alloc_qp(rdma);
2505 if (ret) {
2506 ERROR(errp, "rdma migration: error allocating qp!");
2507 goto err_rdma_source_init;
2510 qemu_rdma_init_ram_blocks(rdma);
2512 /* Build the hash that maps from offset to RAMBlock */
2513 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2514 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2515 g_hash_table_insert(rdma->blockmap,
2516 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2517 &rdma->local_ram_blocks.block[idx]);
2520 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2521 ret = qemu_rdma_reg_control(rdma, idx);
2522 if (ret) {
2523 ERROR(errp, "rdma migration: error registering %d control!",
2524 idx);
2525 goto err_rdma_source_init;
2529 return 0;
2531 err_rdma_source_init:
2532 qemu_rdma_cleanup(rdma);
2533 return -1;
2536 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2537 struct rdma_cm_event **cm_event,
2538 long msec, Error **errp)
2540 int ret;
2541 struct pollfd poll_fd = {
2542 .fd = rdma->channel->fd,
2543 .events = POLLIN,
2544 .revents = 0
2547 do {
2548 ret = poll(&poll_fd, 1, msec);
2549 } while (ret < 0 && errno == EINTR);
2551 if (ret == 0) {
2552 ERROR(errp, "poll cm event timeout");
2553 return -1;
2554 } else if (ret < 0) {
2555 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2556 return -1;
2557 } else if (poll_fd.revents & POLLIN) {
2558 return rdma_get_cm_event(rdma->channel, cm_event);
2559 } else {
2560 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2561 return -1;
2565 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2566 Error **errp)
2568 RDMACapabilities cap = {
2569 .version = RDMA_CONTROL_VERSION_CURRENT,
2570 .flags = 0,
2572 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2573 .retry_count = 5,
2574 .private_data = &cap,
2575 .private_data_len = sizeof(cap),
2577 struct rdma_cm_event *cm_event;
2578 int ret;
2581 * Only negotiate the capability with destination if the user
2582 * on the source first requested the capability.
2584 if (rdma->pin_all) {
2585 trace_qemu_rdma_connect_pin_all_requested();
2586 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2589 caps_to_network(&cap);
2591 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2592 if (ret) {
2593 ERROR(errp, "posting second control recv");
2594 goto err_rdma_source_connect;
2597 ret = rdma_connect(rdma->cm_id, &conn_param);
2598 if (ret) {
2599 perror("rdma_connect");
2600 ERROR(errp, "connecting to destination!");
2601 goto err_rdma_source_connect;
2604 if (return_path) {
2605 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2606 } else {
2607 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2609 if (ret) {
2611 * FIXME perror() is wrong, because
2612 * qemu_get_cm_event_timeout() can fail without setting errno.
2613 * Will go away later in this series.
2615 perror("rdma_get_cm_event after rdma_connect");
2616 ERROR(errp, "connecting to destination!");
2617 goto err_rdma_source_connect;
2620 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2621 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2622 ERROR(errp, "connecting to destination!");
2623 rdma_ack_cm_event(cm_event);
2624 goto err_rdma_source_connect;
2626 rdma->connected = true;
2628 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2629 network_to_caps(&cap);
2632 * Verify that the *requested* capabilities are supported by the destination
2633 * and disable them otherwise.
2635 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2636 ERROR(errp, "Server cannot support pinning all memory. "
2637 "Will register memory dynamically.");
2638 rdma->pin_all = false;
2641 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2643 rdma_ack_cm_event(cm_event);
2645 rdma->control_ready_expected = 1;
2646 rdma->nb_sent = 0;
2647 return 0;
2649 err_rdma_source_connect:
2650 qemu_rdma_cleanup(rdma);
2651 return -1;
2654 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2656 int ret, idx;
2657 struct rdma_cm_id *listen_id;
2658 char ip[40] = "unknown";
2659 struct rdma_addrinfo *res, *e;
2660 char port_str[16];
2661 int reuse = 1;
2663 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2664 rdma->wr_data[idx].control_len = 0;
2665 rdma->wr_data[idx].control_curr = NULL;
2668 if (!rdma->host || !rdma->host[0]) {
2669 ERROR(errp, "RDMA host is not set!");
2670 rdma->error_state = -EINVAL;
2671 return -1;
2673 /* create CM channel */
2674 rdma->channel = rdma_create_event_channel();
2675 if (!rdma->channel) {
2676 ERROR(errp, "could not create rdma event channel");
2677 rdma->error_state = -EINVAL;
2678 return -1;
2681 /* create CM id */
2682 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2683 if (ret) {
2684 ERROR(errp, "could not create cm_id!");
2685 goto err_dest_init_create_listen_id;
2688 snprintf(port_str, 16, "%d", rdma->port);
2689 port_str[15] = '\0';
2691 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2692 if (ret < 0) {
2693 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2694 goto err_dest_init_bind_addr;
2697 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2698 &reuse, sizeof reuse);
2699 if (ret) {
2700 ERROR(errp, "Error: could not set REUSEADDR option");
2701 goto err_dest_init_bind_addr;
2703 for (e = res; e != NULL; e = e->ai_next) {
2704 inet_ntop(e->ai_family,
2705 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2706 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2707 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2708 if (ret) {
2709 continue;
2711 if (e->ai_family == AF_INET6) {
2712 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2713 if (ret) {
2714 continue;
2717 break;
2720 rdma_freeaddrinfo(res);
2721 if (!e) {
2722 ERROR(errp, "Error: could not rdma_bind_addr!");
2723 goto err_dest_init_bind_addr;
2726 rdma->listen_id = listen_id;
2727 qemu_rdma_dump_gid("dest_init", listen_id);
2728 return 0;
2730 err_dest_init_bind_addr:
2731 rdma_destroy_id(listen_id);
2732 err_dest_init_create_listen_id:
2733 rdma_destroy_event_channel(rdma->channel);
2734 rdma->channel = NULL;
2735 rdma->error_state = ret;
2736 return ret;
2740 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2741 RDMAContext *rdma)
2743 int idx;
2745 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2746 rdma_return_path->wr_data[idx].control_len = 0;
2747 rdma_return_path->wr_data[idx].control_curr = NULL;
2750 /*the CM channel and CM id is shared*/
2751 rdma_return_path->channel = rdma->channel;
2752 rdma_return_path->listen_id = rdma->listen_id;
2754 rdma->return_path = rdma_return_path;
2755 rdma_return_path->return_path = rdma;
2756 rdma_return_path->is_return_path = true;
2759 static RDMAContext *qemu_rdma_data_init(const char *host_port, Error **errp)
2761 RDMAContext *rdma = NULL;
2762 InetSocketAddress *addr;
2764 if (host_port) {
2765 rdma = g_new0(RDMAContext, 1);
2766 rdma->current_index = -1;
2767 rdma->current_chunk = -1;
2769 addr = g_new(InetSocketAddress, 1);
2770 if (!inet_parse(addr, host_port, NULL)) {
2771 rdma->port = atoi(addr->port);
2772 rdma->host = g_strdup(addr->host);
2773 rdma->host_port = g_strdup(host_port);
2774 } else {
2775 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2776 g_free(rdma);
2777 rdma = NULL;
2780 qapi_free_InetSocketAddress(addr);
2783 return rdma;
2787 * QEMUFile interface to the control channel.
2788 * SEND messages for control only.
2789 * VM's ram is handled with regular RDMA messages.
2791 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2792 const struct iovec *iov,
2793 size_t niov,
2794 int *fds,
2795 size_t nfds,
2796 int flags,
2797 Error **errp)
2799 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2800 RDMAContext *rdma;
2801 int ret;
2802 ssize_t done = 0;
2803 size_t i, len;
2805 RCU_READ_LOCK_GUARD();
2806 rdma = qatomic_rcu_read(&rioc->rdmaout);
2808 if (!rdma) {
2809 error_setg(errp, "RDMA control channel output is not set");
2810 return -1;
2813 if (rdma->error_state) {
2814 error_setg(errp,
2815 "RDMA is in an error state waiting migration to abort!");
2816 return -1;
2820 * Push out any writes that
2821 * we're queued up for VM's ram.
2823 ret = qemu_rdma_write_flush(rdma);
2824 if (ret < 0) {
2825 rdma->error_state = ret;
2826 error_setg(errp, "qemu_rdma_write_flush failed");
2827 return -1;
2830 for (i = 0; i < niov; i++) {
2831 size_t remaining = iov[i].iov_len;
2832 uint8_t * data = (void *)iov[i].iov_base;
2833 while (remaining) {
2834 RDMAControlHeader head = {};
2836 len = MIN(remaining, RDMA_SEND_INCREMENT);
2837 remaining -= len;
2839 head.len = len;
2840 head.type = RDMA_CONTROL_QEMU_FILE;
2842 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2844 if (ret < 0) {
2845 rdma->error_state = ret;
2846 error_setg(errp, "qemu_rdma_exchange_send failed");
2847 return -1;
2850 data += len;
2851 done += len;
2855 return done;
2858 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2859 size_t size, int idx)
2861 size_t len = 0;
2863 if (rdma->wr_data[idx].control_len) {
2864 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2866 len = MIN(size, rdma->wr_data[idx].control_len);
2867 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2868 rdma->wr_data[idx].control_curr += len;
2869 rdma->wr_data[idx].control_len -= len;
2872 return len;
2876 * QEMUFile interface to the control channel.
2877 * RDMA links don't use bytestreams, so we have to
2878 * return bytes to QEMUFile opportunistically.
2880 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2881 const struct iovec *iov,
2882 size_t niov,
2883 int **fds,
2884 size_t *nfds,
2885 int flags,
2886 Error **errp)
2888 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2889 RDMAContext *rdma;
2890 RDMAControlHeader head;
2891 int ret = 0;
2892 ssize_t done = 0;
2893 size_t i, len;
2895 RCU_READ_LOCK_GUARD();
2896 rdma = qatomic_rcu_read(&rioc->rdmain);
2898 if (!rdma) {
2899 error_setg(errp, "RDMA control channel input is not set");
2900 return -1;
2903 if (rdma->error_state) {
2904 error_setg(errp,
2905 "RDMA is in an error state waiting migration to abort!");
2906 return -1;
2909 for (i = 0; i < niov; i++) {
2910 size_t want = iov[i].iov_len;
2911 uint8_t *data = (void *)iov[i].iov_base;
2914 * First, we hold on to the last SEND message we
2915 * were given and dish out the bytes until we run
2916 * out of bytes.
2918 len = qemu_rdma_fill(rdma, data, want, 0);
2919 done += len;
2920 want -= len;
2921 /* Got what we needed, so go to next iovec */
2922 if (want == 0) {
2923 continue;
2926 /* If we got any data so far, then don't wait
2927 * for more, just return what we have */
2928 if (done > 0) {
2929 break;
2933 /* We've got nothing at all, so lets wait for
2934 * more to arrive
2936 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2938 if (ret < 0) {
2939 rdma->error_state = ret;
2940 error_setg(errp, "qemu_rdma_exchange_recv failed");
2941 return -1;
2945 * SEND was received with new bytes, now try again.
2947 len = qemu_rdma_fill(rdma, data, want, 0);
2948 done += len;
2949 want -= len;
2951 /* Still didn't get enough, so lets just return */
2952 if (want) {
2953 if (done == 0) {
2954 return QIO_CHANNEL_ERR_BLOCK;
2955 } else {
2956 break;
2960 return done;
2964 * Block until all the outstanding chunks have been delivered by the hardware.
2966 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2968 int ret;
2970 if (qemu_rdma_write_flush(rdma) < 0) {
2971 return -EIO;
2974 while (rdma->nb_sent) {
2975 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2976 if (ret < 0) {
2977 error_report("rdma migration: complete polling error!");
2978 return -EIO;
2982 qemu_rdma_unregister_waiting(rdma);
2984 return 0;
2988 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2989 bool blocking,
2990 Error **errp)
2992 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2993 /* XXX we should make readv/writev actually honour this :-) */
2994 rioc->blocking = blocking;
2995 return 0;
2999 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
3000 struct QIOChannelRDMASource {
3001 GSource parent;
3002 QIOChannelRDMA *rioc;
3003 GIOCondition condition;
3006 static gboolean
3007 qio_channel_rdma_source_prepare(GSource *source,
3008 gint *timeout)
3010 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3011 RDMAContext *rdma;
3012 GIOCondition cond = 0;
3013 *timeout = -1;
3015 RCU_READ_LOCK_GUARD();
3016 if (rsource->condition == G_IO_IN) {
3017 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3018 } else {
3019 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3022 if (!rdma) {
3023 error_report("RDMAContext is NULL when prepare Gsource");
3024 return FALSE;
3027 if (rdma->wr_data[0].control_len) {
3028 cond |= G_IO_IN;
3030 cond |= G_IO_OUT;
3032 return cond & rsource->condition;
3035 static gboolean
3036 qio_channel_rdma_source_check(GSource *source)
3038 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3039 RDMAContext *rdma;
3040 GIOCondition cond = 0;
3042 RCU_READ_LOCK_GUARD();
3043 if (rsource->condition == G_IO_IN) {
3044 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3045 } else {
3046 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3049 if (!rdma) {
3050 error_report("RDMAContext is NULL when check Gsource");
3051 return FALSE;
3054 if (rdma->wr_data[0].control_len) {
3055 cond |= G_IO_IN;
3057 cond |= G_IO_OUT;
3059 return cond & rsource->condition;
3062 static gboolean
3063 qio_channel_rdma_source_dispatch(GSource *source,
3064 GSourceFunc callback,
3065 gpointer user_data)
3067 QIOChannelFunc func = (QIOChannelFunc)callback;
3068 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3069 RDMAContext *rdma;
3070 GIOCondition cond = 0;
3072 RCU_READ_LOCK_GUARD();
3073 if (rsource->condition == G_IO_IN) {
3074 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3075 } else {
3076 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3079 if (!rdma) {
3080 error_report("RDMAContext is NULL when dispatch Gsource");
3081 return FALSE;
3084 if (rdma->wr_data[0].control_len) {
3085 cond |= G_IO_IN;
3087 cond |= G_IO_OUT;
3089 return (*func)(QIO_CHANNEL(rsource->rioc),
3090 (cond & rsource->condition),
3091 user_data);
3094 static void
3095 qio_channel_rdma_source_finalize(GSource *source)
3097 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3099 object_unref(OBJECT(ssource->rioc));
3102 static GSourceFuncs qio_channel_rdma_source_funcs = {
3103 qio_channel_rdma_source_prepare,
3104 qio_channel_rdma_source_check,
3105 qio_channel_rdma_source_dispatch,
3106 qio_channel_rdma_source_finalize
3109 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3110 GIOCondition condition)
3112 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3113 QIOChannelRDMASource *ssource;
3114 GSource *source;
3116 source = g_source_new(&qio_channel_rdma_source_funcs,
3117 sizeof(QIOChannelRDMASource));
3118 ssource = (QIOChannelRDMASource *)source;
3120 ssource->rioc = rioc;
3121 object_ref(OBJECT(rioc));
3123 ssource->condition = condition;
3125 return source;
3128 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3129 AioContext *read_ctx,
3130 IOHandler *io_read,
3131 AioContext *write_ctx,
3132 IOHandler *io_write,
3133 void *opaque)
3135 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3136 if (io_read) {
3137 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3138 io_read, io_write, NULL, NULL, opaque);
3139 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3140 io_read, io_write, NULL, NULL, opaque);
3141 } else {
3142 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3143 io_read, io_write, NULL, NULL, opaque);
3144 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3145 io_read, io_write, NULL, NULL, opaque);
3149 struct rdma_close_rcu {
3150 struct rcu_head rcu;
3151 RDMAContext *rdmain;
3152 RDMAContext *rdmaout;
3155 /* callback from qio_channel_rdma_close via call_rcu */
3156 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3158 if (rcu->rdmain) {
3159 qemu_rdma_cleanup(rcu->rdmain);
3162 if (rcu->rdmaout) {
3163 qemu_rdma_cleanup(rcu->rdmaout);
3166 g_free(rcu->rdmain);
3167 g_free(rcu->rdmaout);
3168 g_free(rcu);
3171 static int qio_channel_rdma_close(QIOChannel *ioc,
3172 Error **errp)
3174 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3175 RDMAContext *rdmain, *rdmaout;
3176 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3178 trace_qemu_rdma_close();
3180 rdmain = rioc->rdmain;
3181 if (rdmain) {
3182 qatomic_rcu_set(&rioc->rdmain, NULL);
3185 rdmaout = rioc->rdmaout;
3186 if (rdmaout) {
3187 qatomic_rcu_set(&rioc->rdmaout, NULL);
3190 rcu->rdmain = rdmain;
3191 rcu->rdmaout = rdmaout;
3192 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3194 return 0;
3197 static int
3198 qio_channel_rdma_shutdown(QIOChannel *ioc,
3199 QIOChannelShutdown how,
3200 Error **errp)
3202 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3203 RDMAContext *rdmain, *rdmaout;
3205 RCU_READ_LOCK_GUARD();
3207 rdmain = qatomic_rcu_read(&rioc->rdmain);
3208 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3210 switch (how) {
3211 case QIO_CHANNEL_SHUTDOWN_READ:
3212 if (rdmain) {
3213 rdmain->error_state = -1;
3215 break;
3216 case QIO_CHANNEL_SHUTDOWN_WRITE:
3217 if (rdmaout) {
3218 rdmaout->error_state = -1;
3220 break;
3221 case QIO_CHANNEL_SHUTDOWN_BOTH:
3222 default:
3223 if (rdmain) {
3224 rdmain->error_state = -1;
3226 if (rdmaout) {
3227 rdmaout->error_state = -1;
3229 break;
3232 return 0;
3236 * Parameters:
3237 * @offset == 0 :
3238 * This means that 'block_offset' is a full virtual address that does not
3239 * belong to a RAMBlock of the virtual machine and instead
3240 * represents a private malloc'd memory area that the caller wishes to
3241 * transfer.
3243 * @offset != 0 :
3244 * Offset is an offset to be added to block_offset and used
3245 * to also lookup the corresponding RAMBlock.
3247 * @size : Number of bytes to transfer
3249 * @pages_sent : User-specificed pointer to indicate how many pages were
3250 * sent. Usually, this will not be more than a few bytes of
3251 * the protocol because most transfers are sent asynchronously.
3253 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3254 ram_addr_t offset, size_t size)
3256 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3257 RDMAContext *rdma;
3258 int ret;
3260 if (migration_in_postcopy()) {
3261 return RAM_SAVE_CONTROL_NOT_SUPP;
3264 RCU_READ_LOCK_GUARD();
3265 rdma = qatomic_rcu_read(&rioc->rdmaout);
3267 if (!rdma) {
3268 return -EIO;
3271 CHECK_ERROR_STATE();
3273 qemu_fflush(f);
3276 * Add this page to the current 'chunk'. If the chunk
3277 * is full, or the page doesn't belong to the current chunk,
3278 * an actual RDMA write will occur and a new chunk will be formed.
3280 ret = qemu_rdma_write(rdma, block_offset, offset, size);
3281 if (ret < 0) {
3282 error_report("rdma migration: write error");
3283 goto err;
3287 * Drain the Completion Queue if possible, but do not block,
3288 * just poll.
3290 * If nothing to poll, the end of the iteration will do this
3291 * again to make sure we don't overflow the request queue.
3293 while (1) {
3294 uint64_t wr_id, wr_id_in;
3295 ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3297 if (ret < 0) {
3298 error_report("rdma migration: polling error");
3299 goto err;
3302 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3304 if (wr_id == RDMA_WRID_NONE) {
3305 break;
3309 while (1) {
3310 uint64_t wr_id, wr_id_in;
3311 ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3313 if (ret < 0) {
3314 error_report("rdma migration: polling error");
3315 goto err;
3318 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3320 if (wr_id == RDMA_WRID_NONE) {
3321 break;
3325 return RAM_SAVE_CONTROL_DELAYED;
3326 err:
3327 rdma->error_state = ret;
3328 return ret;
3331 static void rdma_accept_incoming_migration(void *opaque);
3333 static void rdma_cm_poll_handler(void *opaque)
3335 RDMAContext *rdma = opaque;
3336 int ret;
3337 struct rdma_cm_event *cm_event;
3338 MigrationIncomingState *mis = migration_incoming_get_current();
3340 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3341 if (ret) {
3342 error_report("get_cm_event failed %d", errno);
3343 return;
3346 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3347 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3348 if (!rdma->error_state &&
3349 migration_incoming_get_current()->state !=
3350 MIGRATION_STATUS_COMPLETED) {
3351 error_report("receive cm event, cm event is %d", cm_event->event);
3352 rdma->error_state = -EPIPE;
3353 if (rdma->return_path) {
3354 rdma->return_path->error_state = -EPIPE;
3357 rdma_ack_cm_event(cm_event);
3358 if (mis->loadvm_co) {
3359 qemu_coroutine_enter(mis->loadvm_co);
3361 return;
3363 rdma_ack_cm_event(cm_event);
3366 static int qemu_rdma_accept(RDMAContext *rdma)
3368 RDMACapabilities cap;
3369 struct rdma_conn_param conn_param = {
3370 .responder_resources = 2,
3371 .private_data = &cap,
3372 .private_data_len = sizeof(cap),
3374 RDMAContext *rdma_return_path = NULL;
3375 struct rdma_cm_event *cm_event;
3376 struct ibv_context *verbs;
3377 int ret = -EINVAL;
3378 int idx;
3380 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3381 if (ret) {
3382 goto err_rdma_dest_wait;
3385 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3386 rdma_ack_cm_event(cm_event);
3387 ret = -1;
3388 goto err_rdma_dest_wait;
3392 * initialize the RDMAContext for return path for postcopy after first
3393 * connection request reached.
3395 if ((migrate_postcopy() || migrate_return_path())
3396 && !rdma->is_return_path) {
3397 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3398 if (rdma_return_path == NULL) {
3399 rdma_ack_cm_event(cm_event);
3400 ret = -1;
3401 goto err_rdma_dest_wait;
3404 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3407 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3409 network_to_caps(&cap);
3411 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3412 error_report("Unknown source RDMA version: %d, bailing...",
3413 cap.version);
3414 rdma_ack_cm_event(cm_event);
3415 ret = -1;
3416 goto err_rdma_dest_wait;
3420 * Respond with only the capabilities this version of QEMU knows about.
3422 cap.flags &= known_capabilities;
3425 * Enable the ones that we do know about.
3426 * Add other checks here as new ones are introduced.
3428 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3429 rdma->pin_all = true;
3432 rdma->cm_id = cm_event->id;
3433 verbs = cm_event->id->verbs;
3435 rdma_ack_cm_event(cm_event);
3437 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3439 caps_to_network(&cap);
3441 trace_qemu_rdma_accept_pin_verbsc(verbs);
3443 if (!rdma->verbs) {
3444 rdma->verbs = verbs;
3445 } else if (rdma->verbs != verbs) {
3446 error_report("ibv context not matching %p, %p!", rdma->verbs,
3447 verbs);
3448 ret = -1;
3449 goto err_rdma_dest_wait;
3452 qemu_rdma_dump_id("dest_init", verbs);
3454 ret = qemu_rdma_alloc_pd_cq(rdma);
3455 if (ret) {
3456 error_report("rdma migration: error allocating pd and cq!");
3457 goto err_rdma_dest_wait;
3460 ret = qemu_rdma_alloc_qp(rdma);
3461 if (ret) {
3462 error_report("rdma migration: error allocating qp!");
3463 goto err_rdma_dest_wait;
3466 qemu_rdma_init_ram_blocks(rdma);
3468 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3469 ret = qemu_rdma_reg_control(rdma, idx);
3470 if (ret) {
3471 error_report("rdma: error registering %d control", idx);
3472 goto err_rdma_dest_wait;
3476 /* Accept the second connection request for return path */
3477 if ((migrate_postcopy() || migrate_return_path())
3478 && !rdma->is_return_path) {
3479 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3480 NULL,
3481 (void *)(intptr_t)rdma->return_path);
3482 } else {
3483 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3484 NULL, rdma);
3487 ret = rdma_accept(rdma->cm_id, &conn_param);
3488 if (ret) {
3489 error_report("rdma_accept failed");
3490 goto err_rdma_dest_wait;
3493 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3494 if (ret) {
3495 error_report("rdma_accept get_cm_event failed");
3496 goto err_rdma_dest_wait;
3499 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3500 error_report("rdma_accept not event established");
3501 rdma_ack_cm_event(cm_event);
3502 ret = -1;
3503 goto err_rdma_dest_wait;
3506 rdma_ack_cm_event(cm_event);
3507 rdma->connected = true;
3509 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3510 if (ret) {
3511 error_report("rdma migration: error posting second control recv");
3512 goto err_rdma_dest_wait;
3515 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3517 return 0;
3519 err_rdma_dest_wait:
3520 rdma->error_state = ret;
3521 qemu_rdma_cleanup(rdma);
3522 g_free(rdma_return_path);
3523 return ret;
3526 static int dest_ram_sort_func(const void *a, const void *b)
3528 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3529 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3531 return (a_index < b_index) ? -1 : (a_index != b_index);
3535 * During each iteration of the migration, we listen for instructions
3536 * by the source VM to perform dynamic page registrations before they
3537 * can perform RDMA operations.
3539 * We respond with the 'rkey'.
3541 * Keep doing this until the source tells us to stop.
3543 static int qemu_rdma_registration_handle(QEMUFile *f)
3545 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3546 .type = RDMA_CONTROL_REGISTER_RESULT,
3547 .repeat = 0,
3549 RDMAControlHeader unreg_resp = { .len = 0,
3550 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3551 .repeat = 0,
3553 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3554 .repeat = 1 };
3555 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3556 RDMAContext *rdma;
3557 RDMALocalBlocks *local;
3558 RDMAControlHeader head;
3559 RDMARegister *reg, *registers;
3560 RDMACompress *comp;
3561 RDMARegisterResult *reg_result;
3562 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3563 RDMALocalBlock *block;
3564 void *host_addr;
3565 int ret = 0;
3566 int idx = 0;
3567 int count = 0;
3568 int i = 0;
3570 RCU_READ_LOCK_GUARD();
3571 rdma = qatomic_rcu_read(&rioc->rdmain);
3573 if (!rdma) {
3574 return -EIO;
3577 CHECK_ERROR_STATE();
3579 local = &rdma->local_ram_blocks;
3580 do {
3581 trace_qemu_rdma_registration_handle_wait();
3583 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3585 if (ret < 0) {
3586 break;
3589 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3590 error_report("rdma: Too many requests in this message (%d)."
3591 "Bailing.", head.repeat);
3592 ret = -EIO;
3593 break;
3596 switch (head.type) {
3597 case RDMA_CONTROL_COMPRESS:
3598 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3599 network_to_compress(comp);
3601 trace_qemu_rdma_registration_handle_compress(comp->length,
3602 comp->block_idx,
3603 comp->offset);
3604 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3605 error_report("rdma: 'compress' bad block index %u (vs %d)",
3606 (unsigned int)comp->block_idx,
3607 rdma->local_ram_blocks.nb_blocks);
3608 ret = -EIO;
3609 goto out;
3611 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3613 host_addr = block->local_host_addr +
3614 (comp->offset - block->offset);
3616 ram_handle_compressed(host_addr, comp->value, comp->length);
3617 break;
3619 case RDMA_CONTROL_REGISTER_FINISHED:
3620 trace_qemu_rdma_registration_handle_finished();
3621 goto out;
3623 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3624 trace_qemu_rdma_registration_handle_ram_blocks();
3626 /* Sort our local RAM Block list so it's the same as the source,
3627 * we can do this since we've filled in a src_index in the list
3628 * as we received the RAMBlock list earlier.
3630 qsort(rdma->local_ram_blocks.block,
3631 rdma->local_ram_blocks.nb_blocks,
3632 sizeof(RDMALocalBlock), dest_ram_sort_func);
3633 for (i = 0; i < local->nb_blocks; i++) {
3634 local->block[i].index = i;
3637 if (rdma->pin_all) {
3638 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3639 if (ret) {
3640 error_report("rdma migration: error dest "
3641 "registering ram blocks");
3642 goto out;
3647 * Dest uses this to prepare to transmit the RAMBlock descriptions
3648 * to the source VM after connection setup.
3649 * Both sides use the "remote" structure to communicate and update
3650 * their "local" descriptions with what was sent.
3652 for (i = 0; i < local->nb_blocks; i++) {
3653 rdma->dest_blocks[i].remote_host_addr =
3654 (uintptr_t)(local->block[i].local_host_addr);
3656 if (rdma->pin_all) {
3657 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3660 rdma->dest_blocks[i].offset = local->block[i].offset;
3661 rdma->dest_blocks[i].length = local->block[i].length;
3663 dest_block_to_network(&rdma->dest_blocks[i]);
3664 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3665 local->block[i].block_name,
3666 local->block[i].offset,
3667 local->block[i].length,
3668 local->block[i].local_host_addr,
3669 local->block[i].src_index);
3672 blocks.len = rdma->local_ram_blocks.nb_blocks
3673 * sizeof(RDMADestBlock);
3676 ret = qemu_rdma_post_send_control(rdma,
3677 (uint8_t *) rdma->dest_blocks, &blocks);
3679 if (ret < 0) {
3680 error_report("rdma migration: error sending remote info");
3681 goto out;
3684 break;
3685 case RDMA_CONTROL_REGISTER_REQUEST:
3686 trace_qemu_rdma_registration_handle_register(head.repeat);
3688 reg_resp.repeat = head.repeat;
3689 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3691 for (count = 0; count < head.repeat; count++) {
3692 uint64_t chunk;
3693 uint8_t *chunk_start, *chunk_end;
3695 reg = &registers[count];
3696 network_to_register(reg);
3698 reg_result = &results[count];
3700 trace_qemu_rdma_registration_handle_register_loop(count,
3701 reg->current_index, reg->key.current_addr, reg->chunks);
3703 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3704 error_report("rdma: 'register' bad block index %u (vs %d)",
3705 (unsigned int)reg->current_index,
3706 rdma->local_ram_blocks.nb_blocks);
3707 ret = -ENOENT;
3708 goto out;
3710 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3711 if (block->is_ram_block) {
3712 if (block->offset > reg->key.current_addr) {
3713 error_report("rdma: bad register address for block %s"
3714 " offset: %" PRIx64 " current_addr: %" PRIx64,
3715 block->block_name, block->offset,
3716 reg->key.current_addr);
3717 ret = -ERANGE;
3718 goto out;
3720 host_addr = (block->local_host_addr +
3721 (reg->key.current_addr - block->offset));
3722 chunk = ram_chunk_index(block->local_host_addr,
3723 (uint8_t *) host_addr);
3724 } else {
3725 chunk = reg->key.chunk;
3726 host_addr = block->local_host_addr +
3727 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3728 /* Check for particularly bad chunk value */
3729 if (host_addr < (void *)block->local_host_addr) {
3730 error_report("rdma: bad chunk for block %s"
3731 " chunk: %" PRIx64,
3732 block->block_name, reg->key.chunk);
3733 ret = -ERANGE;
3734 goto out;
3737 chunk_start = ram_chunk_start(block, chunk);
3738 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3739 /* avoid "-Waddress-of-packed-member" warning */
3740 uint32_t tmp_rkey = 0;
3741 if (qemu_rdma_register_and_get_keys(rdma, block,
3742 (uintptr_t)host_addr, NULL, &tmp_rkey,
3743 chunk, chunk_start, chunk_end)) {
3744 error_report("cannot get rkey");
3745 ret = -EINVAL;
3746 goto out;
3748 reg_result->rkey = tmp_rkey;
3750 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3752 trace_qemu_rdma_registration_handle_register_rkey(
3753 reg_result->rkey);
3755 result_to_network(reg_result);
3758 ret = qemu_rdma_post_send_control(rdma,
3759 (uint8_t *) results, &reg_resp);
3761 if (ret < 0) {
3762 error_report("Failed to send control buffer");
3763 goto out;
3765 break;
3766 case RDMA_CONTROL_UNREGISTER_REQUEST:
3767 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3768 unreg_resp.repeat = head.repeat;
3769 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3771 for (count = 0; count < head.repeat; count++) {
3772 reg = &registers[count];
3773 network_to_register(reg);
3775 trace_qemu_rdma_registration_handle_unregister_loop(count,
3776 reg->current_index, reg->key.chunk);
3778 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3780 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3781 block->pmr[reg->key.chunk] = NULL;
3783 if (ret != 0) {
3784 perror("rdma unregistration chunk failed");
3785 ret = -ret;
3786 goto out;
3789 rdma->total_registrations--;
3791 trace_qemu_rdma_registration_handle_unregister_success(
3792 reg->key.chunk);
3795 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3797 if (ret < 0) {
3798 error_report("Failed to send control buffer");
3799 goto out;
3801 break;
3802 case RDMA_CONTROL_REGISTER_RESULT:
3803 error_report("Invalid RESULT message at dest.");
3804 ret = -EIO;
3805 goto out;
3806 default:
3807 error_report("Unknown control message %s", control_desc(head.type));
3808 ret = -EIO;
3809 goto out;
3811 } while (1);
3812 out:
3813 if (ret < 0) {
3814 rdma->error_state = ret;
3816 return ret;
3819 /* Destination:
3820 * Called via a ram_control_load_hook during the initial RAM load section which
3821 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3822 * on the source.
3823 * We've already built our local RAMBlock list, but not yet sent the list to
3824 * the source.
3826 static int
3827 rdma_block_notification_handle(QEMUFile *f, const char *name)
3829 RDMAContext *rdma;
3830 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3831 int curr;
3832 int found = -1;
3834 RCU_READ_LOCK_GUARD();
3835 rdma = qatomic_rcu_read(&rioc->rdmain);
3837 if (!rdma) {
3838 return -EIO;
3841 /* Find the matching RAMBlock in our local list */
3842 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3843 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3844 found = curr;
3845 break;
3849 if (found == -1) {
3850 error_report("RAMBlock '%s' not found on destination", name);
3851 return -ENOENT;
3854 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3855 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3856 rdma->next_src_index++;
3858 return 0;
3861 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3863 switch (flags) {
3864 case RAM_CONTROL_BLOCK_REG:
3865 return rdma_block_notification_handle(f, data);
3867 case RAM_CONTROL_HOOK:
3868 return qemu_rdma_registration_handle(f);
3870 default:
3871 /* Shouldn't be called with any other values */
3872 abort();
3876 static int qemu_rdma_registration_start(QEMUFile *f,
3877 uint64_t flags, void *data)
3879 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3880 RDMAContext *rdma;
3882 if (migration_in_postcopy()) {
3883 return 0;
3886 RCU_READ_LOCK_GUARD();
3887 rdma = qatomic_rcu_read(&rioc->rdmaout);
3888 if (!rdma) {
3889 return -EIO;
3892 CHECK_ERROR_STATE();
3894 trace_qemu_rdma_registration_start(flags);
3895 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3896 qemu_fflush(f);
3898 return 0;
3902 * Inform dest that dynamic registrations are done for now.
3903 * First, flush writes, if any.
3905 static int qemu_rdma_registration_stop(QEMUFile *f,
3906 uint64_t flags, void *data)
3908 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3909 RDMAContext *rdma;
3910 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3911 int ret = 0;
3913 if (migration_in_postcopy()) {
3914 return 0;
3917 RCU_READ_LOCK_GUARD();
3918 rdma = qatomic_rcu_read(&rioc->rdmaout);
3919 if (!rdma) {
3920 return -EIO;
3923 CHECK_ERROR_STATE();
3925 qemu_fflush(f);
3926 ret = qemu_rdma_drain_cq(rdma);
3928 if (ret < 0) {
3929 goto err;
3932 if (flags == RAM_CONTROL_SETUP) {
3933 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3934 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3935 int reg_result_idx, i, nb_dest_blocks;
3937 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3938 trace_qemu_rdma_registration_stop_ram();
3941 * Make sure that we parallelize the pinning on both sides.
3942 * For very large guests, doing this serially takes a really
3943 * long time, so we have to 'interleave' the pinning locally
3944 * with the control messages by performing the pinning on this
3945 * side before we receive the control response from the other
3946 * side that the pinning has completed.
3948 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3949 &reg_result_idx, rdma->pin_all ?
3950 qemu_rdma_reg_whole_ram_blocks : NULL);
3951 if (ret < 0) {
3952 fprintf(stderr, "receiving remote info!");
3953 return ret;
3956 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3959 * The protocol uses two different sets of rkeys (mutually exclusive):
3960 * 1. One key to represent the virtual address of the entire ram block.
3961 * (dynamic chunk registration disabled - pin everything with one rkey.)
3962 * 2. One to represent individual chunks within a ram block.
3963 * (dynamic chunk registration enabled - pin individual chunks.)
3965 * Once the capability is successfully negotiated, the destination transmits
3966 * the keys to use (or sends them later) including the virtual addresses
3967 * and then propagates the remote ram block descriptions to his local copy.
3970 if (local->nb_blocks != nb_dest_blocks) {
3971 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3972 "Your QEMU command line parameters are probably "
3973 "not identical on both the source and destination.",
3974 local->nb_blocks, nb_dest_blocks);
3975 rdma->error_state = -EINVAL;
3976 return -EINVAL;
3979 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3980 memcpy(rdma->dest_blocks,
3981 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3982 for (i = 0; i < nb_dest_blocks; i++) {
3983 network_to_dest_block(&rdma->dest_blocks[i]);
3985 /* We require that the blocks are in the same order */
3986 if (rdma->dest_blocks[i].length != local->block[i].length) {
3987 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3988 "vs %" PRIu64, local->block[i].block_name, i,
3989 local->block[i].length,
3990 rdma->dest_blocks[i].length);
3991 rdma->error_state = -EINVAL;
3992 return -EINVAL;
3994 local->block[i].remote_host_addr =
3995 rdma->dest_blocks[i].remote_host_addr;
3996 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4000 trace_qemu_rdma_registration_stop(flags);
4002 head.type = RDMA_CONTROL_REGISTER_FINISHED;
4003 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4005 if (ret < 0) {
4006 goto err;
4009 return 0;
4010 err:
4011 rdma->error_state = ret;
4012 return ret;
4015 static const QEMUFileHooks rdma_read_hooks = {
4016 .hook_ram_load = rdma_load_hook,
4019 static const QEMUFileHooks rdma_write_hooks = {
4020 .before_ram_iterate = qemu_rdma_registration_start,
4021 .after_ram_iterate = qemu_rdma_registration_stop,
4022 .save_page = qemu_rdma_save_page,
4026 static void qio_channel_rdma_finalize(Object *obj)
4028 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4029 if (rioc->rdmain) {
4030 qemu_rdma_cleanup(rioc->rdmain);
4031 g_free(rioc->rdmain);
4032 rioc->rdmain = NULL;
4034 if (rioc->rdmaout) {
4035 qemu_rdma_cleanup(rioc->rdmaout);
4036 g_free(rioc->rdmaout);
4037 rioc->rdmaout = NULL;
4041 static void qio_channel_rdma_class_init(ObjectClass *klass,
4042 void *class_data G_GNUC_UNUSED)
4044 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4046 ioc_klass->io_writev = qio_channel_rdma_writev;
4047 ioc_klass->io_readv = qio_channel_rdma_readv;
4048 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4049 ioc_klass->io_close = qio_channel_rdma_close;
4050 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4051 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4052 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4055 static const TypeInfo qio_channel_rdma_info = {
4056 .parent = TYPE_QIO_CHANNEL,
4057 .name = TYPE_QIO_CHANNEL_RDMA,
4058 .instance_size = sizeof(QIOChannelRDMA),
4059 .instance_finalize = qio_channel_rdma_finalize,
4060 .class_init = qio_channel_rdma_class_init,
4063 static void qio_channel_rdma_register_types(void)
4065 type_register_static(&qio_channel_rdma_info);
4068 type_init(qio_channel_rdma_register_types);
4070 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4072 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4074 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4075 rioc->rdmain = rdma;
4076 rioc->rdmaout = rdma->return_path;
4077 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4079 return rioc->file;
4082 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4084 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4086 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4087 rioc->rdmaout = rdma;
4088 rioc->rdmain = rdma->return_path;
4089 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4091 return rioc->file;
4094 static void rdma_accept_incoming_migration(void *opaque)
4096 RDMAContext *rdma = opaque;
4097 int ret;
4098 QEMUFile *f;
4099 Error *local_err = NULL;
4101 trace_qemu_rdma_accept_incoming_migration();
4102 ret = qemu_rdma_accept(rdma);
4104 if (ret) {
4105 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4106 return;
4109 trace_qemu_rdma_accept_incoming_migration_accepted();
4111 if (rdma->is_return_path) {
4112 return;
4115 f = rdma_new_input(rdma);
4116 if (f == NULL) {
4117 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4118 qemu_rdma_cleanup(rdma);
4119 return;
4122 rdma->migration_started_on_destination = 1;
4123 migration_fd_process_incoming(f, &local_err);
4124 if (local_err) {
4125 error_reportf_err(local_err, "RDMA ERROR:");
4129 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4131 int ret;
4132 RDMAContext *rdma;
4134 trace_rdma_start_incoming_migration();
4136 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4137 if (ram_block_discard_is_required()) {
4138 error_setg(errp, "RDMA: cannot disable RAM discard");
4139 return;
4142 rdma = qemu_rdma_data_init(host_port, errp);
4143 if (rdma == NULL) {
4144 goto err;
4147 ret = qemu_rdma_dest_init(rdma, errp);
4148 if (ret) {
4149 goto err;
4152 trace_rdma_start_incoming_migration_after_dest_init();
4154 ret = rdma_listen(rdma->listen_id, 5);
4156 if (ret) {
4157 ERROR(errp, "listening on socket!");
4158 goto cleanup_rdma;
4161 trace_rdma_start_incoming_migration_after_rdma_listen();
4163 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4164 NULL, (void *)(intptr_t)rdma);
4165 return;
4167 cleanup_rdma:
4168 qemu_rdma_cleanup(rdma);
4169 err:
4170 if (rdma) {
4171 g_free(rdma->host);
4172 g_free(rdma->host_port);
4174 g_free(rdma);
4177 void rdma_start_outgoing_migration(void *opaque,
4178 const char *host_port, Error **errp)
4180 MigrationState *s = opaque;
4181 RDMAContext *rdma_return_path = NULL;
4182 RDMAContext *rdma;
4183 int ret = 0;
4185 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4186 if (ram_block_discard_is_required()) {
4187 error_setg(errp, "RDMA: cannot disable RAM discard");
4188 return;
4191 rdma = qemu_rdma_data_init(host_port, errp);
4192 if (rdma == NULL) {
4193 goto err;
4196 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4198 if (ret) {
4199 goto err;
4202 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4203 ret = qemu_rdma_connect(rdma, false, errp);
4205 if (ret) {
4206 goto err;
4209 /* RDMA postcopy need a separate queue pair for return path */
4210 if (migrate_postcopy() || migrate_return_path()) {
4211 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4213 if (rdma_return_path == NULL) {
4214 goto return_path_err;
4217 ret = qemu_rdma_source_init(rdma_return_path,
4218 migrate_rdma_pin_all(), errp);
4220 if (ret) {
4221 goto return_path_err;
4224 ret = qemu_rdma_connect(rdma_return_path, true, errp);
4226 if (ret) {
4227 goto return_path_err;
4230 rdma->return_path = rdma_return_path;
4231 rdma_return_path->return_path = rdma;
4232 rdma_return_path->is_return_path = true;
4235 trace_rdma_start_outgoing_migration_after_rdma_connect();
4237 s->to_dst_file = rdma_new_output(rdma);
4238 migrate_fd_connect(s, NULL);
4239 return;
4240 return_path_err:
4241 qemu_rdma_cleanup(rdma);
4242 err:
4243 g_free(rdma);
4244 g_free(rdma_return_path);