Merge remote-tracking branch 'remotes/mcayland/tags/qemu-openbios-signed' into staging
[qemu/ar7.git] / target / arm / helper-a64.c
blob10e08bdc1f180e1de550d38ba76d9a9b855a31a3
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/log.h"
26 #include "sysemu/sysemu.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32 #include "qemu/int128.h"
33 #include "tcg.h"
34 #include "fpu/softfloat.h"
35 #include <zlib.h> /* For crc32 */
37 /* C2.4.7 Multiply and divide */
38 /* special cases for 0 and LLONG_MIN are mandated by the standard */
39 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
41 if (den == 0) {
42 return 0;
44 return num / den;
47 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
49 if (den == 0) {
50 return 0;
52 if (num == LLONG_MIN && den == -1) {
53 return LLONG_MIN;
55 return num / den;
58 uint64_t HELPER(rbit64)(uint64_t x)
60 return revbit64(x);
63 /* Convert a softfloat float_relation_ (as returned by
64 * the float*_compare functions) to the correct ARM
65 * NZCV flag state.
67 static inline uint32_t float_rel_to_flags(int res)
69 uint64_t flags;
70 switch (res) {
71 case float_relation_equal:
72 flags = PSTATE_Z | PSTATE_C;
73 break;
74 case float_relation_less:
75 flags = PSTATE_N;
76 break;
77 case float_relation_greater:
78 flags = PSTATE_C;
79 break;
80 case float_relation_unordered:
81 default:
82 flags = PSTATE_C | PSTATE_V;
83 break;
85 return flags;
88 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
90 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
93 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
95 return float_rel_to_flags(float32_compare(x, y, fp_status));
98 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
100 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
103 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
105 return float_rel_to_flags(float64_compare(x, y, fp_status));
108 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
110 float_status *fpst = fpstp;
112 a = float32_squash_input_denormal(a, fpst);
113 b = float32_squash_input_denormal(b, fpst);
115 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
116 (float32_is_infinity(a) && float32_is_zero(b))) {
117 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
118 return make_float32((1U << 30) |
119 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
121 return float32_mul(a, b, fpst);
124 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
126 float_status *fpst = fpstp;
128 a = float64_squash_input_denormal(a, fpst);
129 b = float64_squash_input_denormal(b, fpst);
131 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
132 (float64_is_infinity(a) && float64_is_zero(b))) {
133 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
134 return make_float64((1ULL << 62) |
135 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
137 return float64_mul(a, b, fpst);
140 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
141 uint32_t rn, uint32_t numregs)
143 /* Helper function for SIMD TBL and TBX. We have to do the table
144 * lookup part for the 64 bits worth of indices we're passed in.
145 * result is the initial results vector (either zeroes for TBL
146 * or some guest values for TBX), rn the register number where
147 * the table starts, and numregs the number of registers in the table.
148 * We return the results of the lookups.
150 int shift;
152 for (shift = 0; shift < 64; shift += 8) {
153 int index = extract64(indices, shift, 8);
154 if (index < 16 * numregs) {
155 /* Convert index (a byte offset into the virtual table
156 * which is a series of 128-bit vectors concatenated)
157 * into the correct register element plus a bit offset
158 * into that element, bearing in mind that the table
159 * can wrap around from V31 to V0.
161 int elt = (rn * 2 + (index >> 3)) % 64;
162 int bitidx = (index & 7) * 8;
163 uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
164 uint64_t val = extract64(q[elt & 1], bitidx, 8);
166 result = deposit64(result, shift, 8, val);
169 return result;
172 /* 64bit/double versions of the neon float compare functions */
173 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
175 float_status *fpst = fpstp;
176 return -float64_eq_quiet(a, b, fpst);
179 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
181 float_status *fpst = fpstp;
182 return -float64_le(b, a, fpst);
185 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
187 float_status *fpst = fpstp;
188 return -float64_lt(b, a, fpst);
191 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
192 * versions, these do a fully fused multiply-add or
193 * multiply-add-and-halve.
195 #define float32_two make_float32(0x40000000)
196 #define float32_three make_float32(0x40400000)
197 #define float32_one_point_five make_float32(0x3fc00000)
199 #define float64_two make_float64(0x4000000000000000ULL)
200 #define float64_three make_float64(0x4008000000000000ULL)
201 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
203 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
205 float_status *fpst = fpstp;
207 a = float32_squash_input_denormal(a, fpst);
208 b = float32_squash_input_denormal(b, fpst);
210 a = float32_chs(a);
211 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
212 (float32_is_infinity(b) && float32_is_zero(a))) {
213 return float32_two;
215 return float32_muladd(a, b, float32_two, 0, fpst);
218 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
220 float_status *fpst = fpstp;
222 a = float64_squash_input_denormal(a, fpst);
223 b = float64_squash_input_denormal(b, fpst);
225 a = float64_chs(a);
226 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
227 (float64_is_infinity(b) && float64_is_zero(a))) {
228 return float64_two;
230 return float64_muladd(a, b, float64_two, 0, fpst);
233 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
235 float_status *fpst = fpstp;
237 a = float32_squash_input_denormal(a, fpst);
238 b = float32_squash_input_denormal(b, fpst);
240 a = float32_chs(a);
241 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
242 (float32_is_infinity(b) && float32_is_zero(a))) {
243 return float32_one_point_five;
245 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
248 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
250 float_status *fpst = fpstp;
252 a = float64_squash_input_denormal(a, fpst);
253 b = float64_squash_input_denormal(b, fpst);
255 a = float64_chs(a);
256 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
257 (float64_is_infinity(b) && float64_is_zero(a))) {
258 return float64_one_point_five;
260 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
263 /* Pairwise long add: add pairs of adjacent elements into
264 * double-width elements in the result (eg _s8 is an 8x8->16 op)
266 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
268 uint64_t nsignmask = 0x0080008000800080ULL;
269 uint64_t wsignmask = 0x8000800080008000ULL;
270 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
271 uint64_t tmp1, tmp2;
272 uint64_t res, signres;
274 /* Extract odd elements, sign extend each to a 16 bit field */
275 tmp1 = a & elementmask;
276 tmp1 ^= nsignmask;
277 tmp1 |= wsignmask;
278 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
279 /* Ditto for the even elements */
280 tmp2 = (a >> 8) & elementmask;
281 tmp2 ^= nsignmask;
282 tmp2 |= wsignmask;
283 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
285 /* calculate the result by summing bits 0..14, 16..22, etc,
286 * and then adjusting the sign bits 15, 23, etc manually.
287 * This ensures the addition can't overflow the 16 bit field.
289 signres = (tmp1 ^ tmp2) & wsignmask;
290 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
291 res ^= signres;
293 return res;
296 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
298 uint64_t tmp;
300 tmp = a & 0x00ff00ff00ff00ffULL;
301 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
302 return tmp;
305 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
307 int32_t reslo, reshi;
309 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
310 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
312 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
315 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
317 uint64_t tmp;
319 tmp = a & 0x0000ffff0000ffffULL;
320 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
321 return tmp;
324 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
325 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
327 float_status *fpst = fpstp;
328 uint32_t val32, sbit;
329 int32_t exp;
331 if (float32_is_any_nan(a)) {
332 float32 nan = a;
333 if (float32_is_signaling_nan(a, fpst)) {
334 float_raise(float_flag_invalid, fpst);
335 nan = float32_maybe_silence_nan(a, fpst);
337 if (fpst->default_nan_mode) {
338 nan = float32_default_nan(fpst);
340 return nan;
343 val32 = float32_val(a);
344 sbit = 0x80000000ULL & val32;
345 exp = extract32(val32, 23, 8);
347 if (exp == 0) {
348 return make_float32(sbit | (0xfe << 23));
349 } else {
350 return make_float32(sbit | (~exp & 0xff) << 23);
354 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
356 float_status *fpst = fpstp;
357 uint64_t val64, sbit;
358 int64_t exp;
360 if (float64_is_any_nan(a)) {
361 float64 nan = a;
362 if (float64_is_signaling_nan(a, fpst)) {
363 float_raise(float_flag_invalid, fpst);
364 nan = float64_maybe_silence_nan(a, fpst);
366 if (fpst->default_nan_mode) {
367 nan = float64_default_nan(fpst);
369 return nan;
372 val64 = float64_val(a);
373 sbit = 0x8000000000000000ULL & val64;
374 exp = extract64(float64_val(a), 52, 11);
376 if (exp == 0) {
377 return make_float64(sbit | (0x7feULL << 52));
378 } else {
379 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
383 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
385 /* Von Neumann rounding is implemented by using round-to-zero
386 * and then setting the LSB of the result if Inexact was raised.
388 float32 r;
389 float_status *fpst = &env->vfp.fp_status;
390 float_status tstat = *fpst;
391 int exflags;
393 set_float_rounding_mode(float_round_to_zero, &tstat);
394 set_float_exception_flags(0, &tstat);
395 r = float64_to_float32(a, &tstat);
396 r = float32_maybe_silence_nan(r, &tstat);
397 exflags = get_float_exception_flags(&tstat);
398 if (exflags & float_flag_inexact) {
399 r = make_float32(float32_val(r) | 1);
401 exflags |= get_float_exception_flags(fpst);
402 set_float_exception_flags(exflags, fpst);
403 return r;
406 /* 64-bit versions of the CRC helpers. Note that although the operation
407 * (and the prototypes of crc32c() and crc32() mean that only the bottom
408 * 32 bits of the accumulator and result are used, we pass and return
409 * uint64_t for convenience of the generated code. Unlike the 32-bit
410 * instruction set versions, val may genuinely have 64 bits of data in it.
411 * The upper bytes of val (above the number specified by 'bytes') must have
412 * been zeroed out by the caller.
414 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
416 uint8_t buf[8];
418 stq_le_p(buf, val);
420 /* zlib crc32 converts the accumulator and output to one's complement. */
421 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
424 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
426 uint8_t buf[8];
428 stq_le_p(buf, val);
430 /* Linux crc32c converts the output to one's complement. */
431 return crc32c(acc, buf, bytes) ^ 0xffffffff;
434 /* Returns 0 on success; 1 otherwise. */
435 static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr,
436 uint64_t new_lo, uint64_t new_hi,
437 bool parallel, uintptr_t ra)
439 Int128 oldv, cmpv, newv;
440 bool success;
442 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
443 newv = int128_make128(new_lo, new_hi);
445 if (parallel) {
446 #ifndef CONFIG_ATOMIC128
447 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
448 #else
449 int mem_idx = cpu_mmu_index(env, false);
450 TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
451 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
452 success = int128_eq(oldv, cmpv);
453 #endif
454 } else {
455 uint64_t o0, o1;
457 #ifdef CONFIG_USER_ONLY
458 /* ??? Enforce alignment. */
459 uint64_t *haddr = g2h(addr);
461 helper_retaddr = ra;
462 o0 = ldq_le_p(haddr + 0);
463 o1 = ldq_le_p(haddr + 1);
464 oldv = int128_make128(o0, o1);
466 success = int128_eq(oldv, cmpv);
467 if (success) {
468 stq_le_p(haddr + 0, int128_getlo(newv));
469 stq_le_p(haddr + 1, int128_gethi(newv));
471 helper_retaddr = 0;
472 #else
473 int mem_idx = cpu_mmu_index(env, false);
474 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
475 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
477 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
478 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
479 oldv = int128_make128(o0, o1);
481 success = int128_eq(oldv, cmpv);
482 if (success) {
483 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
484 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
486 #endif
489 return !success;
492 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
493 uint64_t new_lo, uint64_t new_hi)
495 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false, GETPC());
498 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
499 uint64_t new_lo, uint64_t new_hi)
501 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true, GETPC());
504 static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr,
505 uint64_t new_lo, uint64_t new_hi,
506 bool parallel, uintptr_t ra)
508 Int128 oldv, cmpv, newv;
509 bool success;
511 /* high and low need to be switched here because this is not actually a
512 * 128bit store but two doublewords stored consecutively
514 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
515 newv = int128_make128(new_hi, new_lo);
517 if (parallel) {
518 #ifndef CONFIG_ATOMIC128
519 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
520 #else
521 int mem_idx = cpu_mmu_index(env, false);
522 TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
523 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
524 success = int128_eq(oldv, cmpv);
525 #endif
526 } else {
527 uint64_t o0, o1;
529 #ifdef CONFIG_USER_ONLY
530 /* ??? Enforce alignment. */
531 uint64_t *haddr = g2h(addr);
533 helper_retaddr = ra;
534 o1 = ldq_be_p(haddr + 0);
535 o0 = ldq_be_p(haddr + 1);
536 oldv = int128_make128(o0, o1);
538 success = int128_eq(oldv, cmpv);
539 if (success) {
540 stq_be_p(haddr + 0, int128_gethi(newv));
541 stq_be_p(haddr + 1, int128_getlo(newv));
543 helper_retaddr = 0;
544 #else
545 int mem_idx = cpu_mmu_index(env, false);
546 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
547 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
549 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
550 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
551 oldv = int128_make128(o0, o1);
553 success = int128_eq(oldv, cmpv);
554 if (success) {
555 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
556 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
558 #endif
561 return !success;
564 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
565 uint64_t new_lo, uint64_t new_hi)
567 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false, GETPC());
570 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
571 uint64_t new_lo, uint64_t new_hi)
573 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true, GETPC());