target/arm: Implement dummy versions of M-profile FP-related registers
[qemu/ar7.git] / target / arm / cpu.h
blob67e4e95d4408dcb7d77ad6d1a5a7e902dfa1e07f
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
83 enum {
84 M_REG_NS = 0,
85 M_REG_S = 1,
86 M_REG_NUM_BANKS = 2,
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 /* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
103 #else
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
106 #endif
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
138 * DynamicGDBXMLInfo:
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
144 typedef struct DynamicGDBXMLInfo {
145 char *desc;
146 int num_cpregs;
147 uint32_t *cpregs_keys;
148 } DynamicGDBXMLInfo;
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer {
152 uint64_t cval; /* Timer CompareValue register */
153 uint64_t ctl; /* Timer Control register */
154 } ARMGenericTimer;
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
158 #define GTIMER_HYP 2
159 #define GTIMER_SEC 3
160 #define NUM_GTIMERS 4
162 typedef struct {
163 uint64_t raw_tcr;
164 uint32_t mask;
165 uint32_t base_mask;
166 } TCR;
168 /* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
174 * In AArch32:
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
180 * In AArch64:
181 * Zn = regs[n].d[*]
182 * Qn = regs[n].d[1]:regs[n].d[0]
183 * Dn = regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
185 * Hn = regs[n].d[0] bits 15..0
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
191 * Align the data for use with TCG host vector operations.
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ 16
196 #else
197 # define ARM_MAX_VQ 1
198 #endif
200 typedef struct ARMVectorReg {
201 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
202 } ARMVectorReg;
204 #ifdef TARGET_AARCH64
205 /* In AArch32 mode, predicate registers do not exist at all. */
206 typedef struct ARMPredicateReg {
207 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
208 } ARMPredicateReg;
210 /* In AArch32 mode, PAC keys do not exist at all. */
211 typedef struct ARMPACKey {
212 uint64_t lo, hi;
213 } ARMPACKey;
214 #endif
217 typedef struct CPUARMState {
218 /* Regs for current mode. */
219 uint32_t regs[16];
221 /* 32/64 switch only happens when taking and returning from
222 * exceptions so the overlap semantics are taken care of then
223 * instead of having a complicated union.
225 /* Regs for A64 mode. */
226 uint64_t xregs[32];
227 uint64_t pc;
228 /* PSTATE isn't an architectural register for ARMv8. However, it is
229 * convenient for us to assemble the underlying state into a 32 bit format
230 * identical to the architectural format used for the SPSR. (This is also
231 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
232 * 'pstate' register are.) Of the PSTATE bits:
233 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
234 * semantics as for AArch32, as described in the comments on each field)
235 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
236 * DAIF (exception masks) are kept in env->daif
237 * BTYPE is kept in env->btype
238 * all other bits are stored in their correct places in env->pstate
240 uint32_t pstate;
241 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
243 /* Frequently accessed CPSR bits are stored separately for efficiency.
244 This contains all the other bits. Use cpsr_{read,write} to access
245 the whole CPSR. */
246 uint32_t uncached_cpsr;
247 uint32_t spsr;
249 /* Banked registers. */
250 uint64_t banked_spsr[8];
251 uint32_t banked_r13[8];
252 uint32_t banked_r14[8];
254 /* These hold r8-r12. */
255 uint32_t usr_regs[5];
256 uint32_t fiq_regs[5];
258 /* cpsr flag cache for faster execution */
259 uint32_t CF; /* 0 or 1 */
260 uint32_t VF; /* V is the bit 31. All other bits are undefined */
261 uint32_t NF; /* N is bit 31. All other bits are undefined. */
262 uint32_t ZF; /* Z set if zero. */
263 uint32_t QF; /* 0 or 1 */
264 uint32_t GE; /* cpsr[19:16] */
265 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
266 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
267 uint32_t btype; /* BTI branch type. spsr[11:10]. */
268 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
270 uint64_t elr_el[4]; /* AArch64 exception link regs */
271 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
273 /* System control coprocessor (cp15) */
274 struct {
275 uint32_t c0_cpuid;
276 union { /* Cache size selection */
277 struct {
278 uint64_t _unused_csselr0;
279 uint64_t csselr_ns;
280 uint64_t _unused_csselr1;
281 uint64_t csselr_s;
283 uint64_t csselr_el[4];
285 union { /* System control register. */
286 struct {
287 uint64_t _unused_sctlr;
288 uint64_t sctlr_ns;
289 uint64_t hsctlr;
290 uint64_t sctlr_s;
292 uint64_t sctlr_el[4];
294 uint64_t cpacr_el1; /* Architectural feature access control register */
295 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
296 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
297 uint64_t sder; /* Secure debug enable register. */
298 uint32_t nsacr; /* Non-secure access control register. */
299 union { /* MMU translation table base 0. */
300 struct {
301 uint64_t _unused_ttbr0_0;
302 uint64_t ttbr0_ns;
303 uint64_t _unused_ttbr0_1;
304 uint64_t ttbr0_s;
306 uint64_t ttbr0_el[4];
308 union { /* MMU translation table base 1. */
309 struct {
310 uint64_t _unused_ttbr1_0;
311 uint64_t ttbr1_ns;
312 uint64_t _unused_ttbr1_1;
313 uint64_t ttbr1_s;
315 uint64_t ttbr1_el[4];
317 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
318 /* MMU translation table base control. */
319 TCR tcr_el[4];
320 TCR vtcr_el2; /* Virtualization Translation Control. */
321 uint32_t c2_data; /* MPU data cacheable bits. */
322 uint32_t c2_insn; /* MPU instruction cacheable bits. */
323 union { /* MMU domain access control register
324 * MPU write buffer control.
326 struct {
327 uint64_t dacr_ns;
328 uint64_t dacr_s;
330 struct {
331 uint64_t dacr32_el2;
334 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
335 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
336 uint64_t hcr_el2; /* Hypervisor configuration register */
337 uint64_t scr_el3; /* Secure configuration register. */
338 union { /* Fault status registers. */
339 struct {
340 uint64_t ifsr_ns;
341 uint64_t ifsr_s;
343 struct {
344 uint64_t ifsr32_el2;
347 union {
348 struct {
349 uint64_t _unused_dfsr;
350 uint64_t dfsr_ns;
351 uint64_t hsr;
352 uint64_t dfsr_s;
354 uint64_t esr_el[4];
356 uint32_t c6_region[8]; /* MPU base/size registers. */
357 union { /* Fault address registers. */
358 struct {
359 uint64_t _unused_far0;
360 #ifdef HOST_WORDS_BIGENDIAN
361 uint32_t ifar_ns;
362 uint32_t dfar_ns;
363 uint32_t ifar_s;
364 uint32_t dfar_s;
365 #else
366 uint32_t dfar_ns;
367 uint32_t ifar_ns;
368 uint32_t dfar_s;
369 uint32_t ifar_s;
370 #endif
371 uint64_t _unused_far3;
373 uint64_t far_el[4];
375 uint64_t hpfar_el2;
376 uint64_t hstr_el2;
377 union { /* Translation result. */
378 struct {
379 uint64_t _unused_par_0;
380 uint64_t par_ns;
381 uint64_t _unused_par_1;
382 uint64_t par_s;
384 uint64_t par_el[4];
387 uint32_t c9_insn; /* Cache lockdown registers. */
388 uint32_t c9_data;
389 uint64_t c9_pmcr; /* performance monitor control register */
390 uint64_t c9_pmcnten; /* perf monitor counter enables */
391 uint64_t c9_pmovsr; /* perf monitor overflow status */
392 uint64_t c9_pmuserenr; /* perf monitor user enable */
393 uint64_t c9_pmselr; /* perf monitor counter selection register */
394 uint64_t c9_pminten; /* perf monitor interrupt enables */
395 union { /* Memory attribute redirection */
396 struct {
397 #ifdef HOST_WORDS_BIGENDIAN
398 uint64_t _unused_mair_0;
399 uint32_t mair1_ns;
400 uint32_t mair0_ns;
401 uint64_t _unused_mair_1;
402 uint32_t mair1_s;
403 uint32_t mair0_s;
404 #else
405 uint64_t _unused_mair_0;
406 uint32_t mair0_ns;
407 uint32_t mair1_ns;
408 uint64_t _unused_mair_1;
409 uint32_t mair0_s;
410 uint32_t mair1_s;
411 #endif
413 uint64_t mair_el[4];
415 union { /* vector base address register */
416 struct {
417 uint64_t _unused_vbar;
418 uint64_t vbar_ns;
419 uint64_t hvbar;
420 uint64_t vbar_s;
422 uint64_t vbar_el[4];
424 uint32_t mvbar; /* (monitor) vector base address register */
425 struct { /* FCSE PID. */
426 uint32_t fcseidr_ns;
427 uint32_t fcseidr_s;
429 union { /* Context ID. */
430 struct {
431 uint64_t _unused_contextidr_0;
432 uint64_t contextidr_ns;
433 uint64_t _unused_contextidr_1;
434 uint64_t contextidr_s;
436 uint64_t contextidr_el[4];
438 union { /* User RW Thread register. */
439 struct {
440 uint64_t tpidrurw_ns;
441 uint64_t tpidrprw_ns;
442 uint64_t htpidr;
443 uint64_t _tpidr_el3;
445 uint64_t tpidr_el[4];
447 /* The secure banks of these registers don't map anywhere */
448 uint64_t tpidrurw_s;
449 uint64_t tpidrprw_s;
450 uint64_t tpidruro_s;
452 union { /* User RO Thread register. */
453 uint64_t tpidruro_ns;
454 uint64_t tpidrro_el[1];
456 uint64_t c14_cntfrq; /* Counter Frequency register */
457 uint64_t c14_cntkctl; /* Timer Control register */
458 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
460 ARMGenericTimer c14_timer[NUM_GTIMERS];
461 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462 uint32_t c15_ticonfig; /* TI925T configuration byte. */
463 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
464 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
465 uint32_t c15_threadid; /* TI debugger thread-ID. */
466 uint32_t c15_config_base_address; /* SCU base address. */
467 uint32_t c15_diagnostic; /* diagnostic register */
468 uint32_t c15_power_diagnostic;
469 uint32_t c15_power_control; /* power control */
470 uint64_t dbgbvr[16]; /* breakpoint value registers */
471 uint64_t dbgbcr[16]; /* breakpoint control registers */
472 uint64_t dbgwvr[16]; /* watchpoint value registers */
473 uint64_t dbgwcr[16]; /* watchpoint control registers */
474 uint64_t mdscr_el1;
475 uint64_t oslsr_el1; /* OS Lock Status */
476 uint64_t mdcr_el2;
477 uint64_t mdcr_el3;
478 /* Stores the architectural value of the counter *the last time it was
479 * updated* by pmccntr_op_start. Accesses should always be surrounded
480 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
481 * architecturally-correct value is being read/set.
483 uint64_t c15_ccnt;
484 /* Stores the delta between the architectural value and the underlying
485 * cycle count during normal operation. It is used to update c15_ccnt
486 * to be the correct architectural value before accesses. During
487 * accesses, c15_ccnt_delta contains the underlying count being used
488 * for the access, after which it reverts to the delta value in
489 * pmccntr_op_finish.
491 uint64_t c15_ccnt_delta;
492 uint64_t c14_pmevcntr[31];
493 uint64_t c14_pmevcntr_delta[31];
494 uint64_t c14_pmevtyper[31];
495 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
496 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
497 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
498 } cp15;
500 struct {
501 /* M profile has up to 4 stack pointers:
502 * a Main Stack Pointer and a Process Stack Pointer for each
503 * of the Secure and Non-Secure states. (If the CPU doesn't support
504 * the security extension then it has only two SPs.)
505 * In QEMU we always store the currently active SP in regs[13],
506 * and the non-active SP for the current security state in
507 * v7m.other_sp. The stack pointers for the inactive security state
508 * are stored in other_ss_msp and other_ss_psp.
509 * switch_v7m_security_state() is responsible for rearranging them
510 * when we change security state.
512 uint32_t other_sp;
513 uint32_t other_ss_msp;
514 uint32_t other_ss_psp;
515 uint32_t vecbase[M_REG_NUM_BANKS];
516 uint32_t basepri[M_REG_NUM_BANKS];
517 uint32_t control[M_REG_NUM_BANKS];
518 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
519 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
520 uint32_t hfsr; /* HardFault Status */
521 uint32_t dfsr; /* Debug Fault Status Register */
522 uint32_t sfsr; /* Secure Fault Status Register */
523 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
524 uint32_t bfar; /* BusFault Address */
525 uint32_t sfar; /* Secure Fault Address Register */
526 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
527 int exception;
528 uint32_t primask[M_REG_NUM_BANKS];
529 uint32_t faultmask[M_REG_NUM_BANKS];
530 uint32_t aircr; /* only holds r/w state if security extn implemented */
531 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
532 uint32_t csselr[M_REG_NUM_BANKS];
533 uint32_t scr[M_REG_NUM_BANKS];
534 uint32_t msplim[M_REG_NUM_BANKS];
535 uint32_t psplim[M_REG_NUM_BANKS];
536 uint32_t fpcar[M_REG_NUM_BANKS];
537 uint32_t fpccr[M_REG_NUM_BANKS];
538 uint32_t fpdscr[M_REG_NUM_BANKS];
539 uint32_t cpacr[M_REG_NUM_BANKS];
540 uint32_t nsacr;
541 } v7m;
543 /* Information associated with an exception about to be taken:
544 * code which raises an exception must set cs->exception_index and
545 * the relevant parts of this structure; the cpu_do_interrupt function
546 * will then set the guest-visible registers as part of the exception
547 * entry process.
549 struct {
550 uint32_t syndrome; /* AArch64 format syndrome register */
551 uint32_t fsr; /* AArch32 format fault status register info */
552 uint64_t vaddress; /* virtual addr associated with exception, if any */
553 uint32_t target_el; /* EL the exception should be targeted for */
554 /* If we implement EL2 we will also need to store information
555 * about the intermediate physical address for stage 2 faults.
557 } exception;
559 /* Information associated with an SError */
560 struct {
561 uint8_t pending;
562 uint8_t has_esr;
563 uint64_t esr;
564 } serror;
566 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
567 uint32_t irq_line_state;
569 /* Thumb-2 EE state. */
570 uint32_t teecr;
571 uint32_t teehbr;
573 /* VFP coprocessor state. */
574 struct {
575 ARMVectorReg zregs[32];
577 #ifdef TARGET_AARCH64
578 /* Store FFR as pregs[16] to make it easier to treat as any other. */
579 #define FFR_PRED_NUM 16
580 ARMPredicateReg pregs[17];
581 /* Scratch space for aa64 sve predicate temporary. */
582 ARMPredicateReg preg_tmp;
583 #endif
585 /* We store these fpcsr fields separately for convenience. */
586 uint32_t qc[4] QEMU_ALIGNED(16);
587 int vec_len;
588 int vec_stride;
590 uint32_t xregs[16];
592 /* Scratch space for aa32 neon expansion. */
593 uint32_t scratch[8];
595 /* There are a number of distinct float control structures:
597 * fp_status: is the "normal" fp status.
598 * fp_status_fp16: used for half-precision calculations
599 * standard_fp_status : the ARM "Standard FPSCR Value"
601 * Half-precision operations are governed by a separate
602 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
603 * status structure to control this.
605 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
606 * round-to-nearest and is used by any operations (generally
607 * Neon) which the architecture defines as controlled by the
608 * standard FPSCR value rather than the FPSCR.
610 * To avoid having to transfer exception bits around, we simply
611 * say that the FPSCR cumulative exception flags are the logical
612 * OR of the flags in the three fp statuses. This relies on the
613 * only thing which needs to read the exception flags being
614 * an explicit FPSCR read.
616 float_status fp_status;
617 float_status fp_status_f16;
618 float_status standard_fp_status;
620 /* ZCR_EL[1-3] */
621 uint64_t zcr_el[4];
622 } vfp;
623 uint64_t exclusive_addr;
624 uint64_t exclusive_val;
625 uint64_t exclusive_high;
627 /* iwMMXt coprocessor state. */
628 struct {
629 uint64_t regs[16];
630 uint64_t val;
632 uint32_t cregs[16];
633 } iwmmxt;
635 #ifdef TARGET_AARCH64
636 ARMPACKey apia_key;
637 ARMPACKey apib_key;
638 ARMPACKey apda_key;
639 ARMPACKey apdb_key;
640 ARMPACKey apga_key;
641 #endif
643 #if defined(CONFIG_USER_ONLY)
644 /* For usermode syscall translation. */
645 int eabi;
646 #endif
648 struct CPUBreakpoint *cpu_breakpoint[16];
649 struct CPUWatchpoint *cpu_watchpoint[16];
651 /* Fields up to this point are cleared by a CPU reset */
652 struct {} end_reset_fields;
654 CPU_COMMON
656 /* Fields after CPU_COMMON are preserved across CPU reset. */
658 /* Internal CPU feature flags. */
659 uint64_t features;
661 /* PMSAv7 MPU */
662 struct {
663 uint32_t *drbar;
664 uint32_t *drsr;
665 uint32_t *dracr;
666 uint32_t rnr[M_REG_NUM_BANKS];
667 } pmsav7;
669 /* PMSAv8 MPU */
670 struct {
671 /* The PMSAv8 implementation also shares some PMSAv7 config
672 * and state:
673 * pmsav7.rnr (region number register)
674 * pmsav7_dregion (number of configured regions)
676 uint32_t *rbar[M_REG_NUM_BANKS];
677 uint32_t *rlar[M_REG_NUM_BANKS];
678 uint32_t mair0[M_REG_NUM_BANKS];
679 uint32_t mair1[M_REG_NUM_BANKS];
680 } pmsav8;
682 /* v8M SAU */
683 struct {
684 uint32_t *rbar;
685 uint32_t *rlar;
686 uint32_t rnr;
687 uint32_t ctrl;
688 } sau;
690 void *nvic;
691 const struct arm_boot_info *boot_info;
692 /* Store GICv3CPUState to access from this struct */
693 void *gicv3state;
694 } CPUARMState;
697 * ARMELChangeHookFn:
698 * type of a function which can be registered via arm_register_el_change_hook()
699 * to get callbacks when the CPU changes its exception level or mode.
701 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
702 typedef struct ARMELChangeHook ARMELChangeHook;
703 struct ARMELChangeHook {
704 ARMELChangeHookFn *hook;
705 void *opaque;
706 QLIST_ENTRY(ARMELChangeHook) node;
709 /* These values map onto the return values for
710 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
711 typedef enum ARMPSCIState {
712 PSCI_ON = 0,
713 PSCI_OFF = 1,
714 PSCI_ON_PENDING = 2
715 } ARMPSCIState;
717 typedef struct ARMISARegisters ARMISARegisters;
720 * ARMCPU:
721 * @env: #CPUARMState
723 * An ARM CPU core.
725 struct ARMCPU {
726 /*< private >*/
727 CPUState parent_obj;
728 /*< public >*/
730 CPUARMState env;
732 /* Coprocessor information */
733 GHashTable *cp_regs;
734 /* For marshalling (mostly coprocessor) register state between the
735 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
736 * we use these arrays.
738 /* List of register indexes managed via these arrays; (full KVM style
739 * 64 bit indexes, not CPRegInfo 32 bit indexes)
741 uint64_t *cpreg_indexes;
742 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
743 uint64_t *cpreg_values;
744 /* Length of the indexes, values, reset_values arrays */
745 int32_t cpreg_array_len;
746 /* These are used only for migration: incoming data arrives in
747 * these fields and is sanity checked in post_load before copying
748 * to the working data structures above.
750 uint64_t *cpreg_vmstate_indexes;
751 uint64_t *cpreg_vmstate_values;
752 int32_t cpreg_vmstate_array_len;
754 DynamicGDBXMLInfo dyn_xml;
756 /* Timers used by the generic (architected) timer */
757 QEMUTimer *gt_timer[NUM_GTIMERS];
759 * Timer used by the PMU. Its state is restored after migration by
760 * pmu_op_finish() - it does not need other handling during migration
762 QEMUTimer *pmu_timer;
763 /* GPIO outputs for generic timer */
764 qemu_irq gt_timer_outputs[NUM_GTIMERS];
765 /* GPIO output for GICv3 maintenance interrupt signal */
766 qemu_irq gicv3_maintenance_interrupt;
767 /* GPIO output for the PMU interrupt */
768 qemu_irq pmu_interrupt;
770 /* MemoryRegion to use for secure physical accesses */
771 MemoryRegion *secure_memory;
773 /* For v8M, pointer to the IDAU interface provided by board/SoC */
774 Object *idau;
776 /* 'compatible' string for this CPU for Linux device trees */
777 const char *dtb_compatible;
779 /* PSCI version for this CPU
780 * Bits[31:16] = Major Version
781 * Bits[15:0] = Minor Version
783 uint32_t psci_version;
785 /* Should CPU start in PSCI powered-off state? */
786 bool start_powered_off;
788 /* Current power state, access guarded by BQL */
789 ARMPSCIState power_state;
791 /* CPU has virtualization extension */
792 bool has_el2;
793 /* CPU has security extension */
794 bool has_el3;
795 /* CPU has PMU (Performance Monitor Unit) */
796 bool has_pmu;
798 /* CPU has memory protection unit */
799 bool has_mpu;
800 /* PMSAv7 MPU number of supported regions */
801 uint32_t pmsav7_dregion;
802 /* v8M SAU number of supported regions */
803 uint32_t sau_sregion;
805 /* PSCI conduit used to invoke PSCI methods
806 * 0 - disabled, 1 - smc, 2 - hvc
808 uint32_t psci_conduit;
810 /* For v8M, initial value of the Secure VTOR */
811 uint32_t init_svtor;
813 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
814 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
816 uint32_t kvm_target;
818 /* KVM init features for this CPU */
819 uint32_t kvm_init_features[7];
821 /* Uniprocessor system with MP extensions */
822 bool mp_is_up;
824 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
825 * and the probe failed (so we need to report the error in realize)
827 bool host_cpu_probe_failed;
829 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
830 * register.
832 int32_t core_count;
834 /* The instance init functions for implementation-specific subclasses
835 * set these fields to specify the implementation-dependent values of
836 * various constant registers and reset values of non-constant
837 * registers.
838 * Some of these might become QOM properties eventually.
839 * Field names match the official register names as defined in the
840 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
841 * is used for reset values of non-constant registers; no reset_
842 * prefix means a constant register.
843 * Some of these registers are split out into a substructure that
844 * is shared with the translators to control the ISA.
846 struct ARMISARegisters {
847 uint32_t id_isar0;
848 uint32_t id_isar1;
849 uint32_t id_isar2;
850 uint32_t id_isar3;
851 uint32_t id_isar4;
852 uint32_t id_isar5;
853 uint32_t id_isar6;
854 uint32_t mvfr0;
855 uint32_t mvfr1;
856 uint32_t mvfr2;
857 uint64_t id_aa64isar0;
858 uint64_t id_aa64isar1;
859 uint64_t id_aa64pfr0;
860 uint64_t id_aa64pfr1;
861 uint64_t id_aa64mmfr0;
862 uint64_t id_aa64mmfr1;
863 } isar;
864 uint32_t midr;
865 uint32_t revidr;
866 uint32_t reset_fpsid;
867 uint32_t ctr;
868 uint32_t reset_sctlr;
869 uint32_t id_pfr0;
870 uint32_t id_pfr1;
871 uint32_t id_dfr0;
872 uint64_t pmceid0;
873 uint64_t pmceid1;
874 uint32_t id_afr0;
875 uint32_t id_mmfr0;
876 uint32_t id_mmfr1;
877 uint32_t id_mmfr2;
878 uint32_t id_mmfr3;
879 uint32_t id_mmfr4;
880 uint64_t id_aa64dfr0;
881 uint64_t id_aa64dfr1;
882 uint64_t id_aa64afr0;
883 uint64_t id_aa64afr1;
884 uint32_t dbgdidr;
885 uint32_t clidr;
886 uint64_t mp_affinity; /* MP ID without feature bits */
887 /* The elements of this array are the CCSIDR values for each cache,
888 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
890 uint32_t ccsidr[16];
891 uint64_t reset_cbar;
892 uint32_t reset_auxcr;
893 bool reset_hivecs;
894 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
895 uint32_t dcz_blocksize;
896 uint64_t rvbar;
898 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
899 int gic_num_lrs; /* number of list registers */
900 int gic_vpribits; /* number of virtual priority bits */
901 int gic_vprebits; /* number of virtual preemption bits */
903 /* Whether the cfgend input is high (i.e. this CPU should reset into
904 * big-endian mode). This setting isn't used directly: instead it modifies
905 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
906 * architecture version.
908 bool cfgend;
910 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
911 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
913 int32_t node_id; /* NUMA node this CPU belongs to */
915 /* Used to synchronize KVM and QEMU in-kernel device levels */
916 uint8_t device_irq_level;
918 /* Used to set the maximum vector length the cpu will support. */
919 uint32_t sve_max_vq;
922 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
924 return container_of(env, ARMCPU, env);
927 void arm_cpu_post_init(Object *obj);
929 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
931 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
933 #define ENV_OFFSET offsetof(ARMCPU, env)
935 #ifndef CONFIG_USER_ONLY
936 extern const struct VMStateDescription vmstate_arm_cpu;
937 #endif
939 void arm_cpu_do_interrupt(CPUState *cpu);
940 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
941 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
943 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
945 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
946 MemTxAttrs *attrs);
948 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
949 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
951 /* Dynamically generates for gdb stub an XML description of the sysregs from
952 * the cp_regs hashtable. Returns the registered sysregs number.
954 int arm_gen_dynamic_xml(CPUState *cpu);
956 /* Returns the dynamically generated XML for the gdb stub.
957 * Returns a pointer to the XML contents for the specified XML file or NULL
958 * if the XML name doesn't match the predefined one.
960 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
962 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
963 int cpuid, void *opaque);
964 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
965 int cpuid, void *opaque);
967 #ifdef TARGET_AARCH64
968 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
969 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
970 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
971 void aarch64_sve_change_el(CPUARMState *env, int old_el,
972 int new_el, bool el0_a64);
973 #else
974 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
975 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
976 int n, bool a)
978 #endif
980 target_ulong do_arm_semihosting(CPUARMState *env);
981 void aarch64_sync_32_to_64(CPUARMState *env);
982 void aarch64_sync_64_to_32(CPUARMState *env);
984 int fp_exception_el(CPUARMState *env, int cur_el);
985 int sve_exception_el(CPUARMState *env, int cur_el);
986 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
988 static inline bool is_a64(CPUARMState *env)
990 return env->aarch64;
993 /* you can call this signal handler from your SIGBUS and SIGSEGV
994 signal handlers to inform the virtual CPU of exceptions. non zero
995 is returned if the signal was handled by the virtual CPU. */
996 int cpu_arm_signal_handler(int host_signum, void *pinfo,
997 void *puc);
1000 * pmu_op_start/finish
1001 * @env: CPUARMState
1003 * Convert all PMU counters between their delta form (the typical mode when
1004 * they are enabled) and the guest-visible values. These two calls must
1005 * surround any action which might affect the counters.
1007 void pmu_op_start(CPUARMState *env);
1008 void pmu_op_finish(CPUARMState *env);
1011 * Called when a PMU counter is due to overflow
1013 void arm_pmu_timer_cb(void *opaque);
1016 * Functions to register as EL change hooks for PMU mode filtering
1018 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1019 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1022 * pmu_init
1023 * @cpu: ARMCPU
1025 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1026 * for the current configuration
1028 void pmu_init(ARMCPU *cpu);
1030 /* SCTLR bit meanings. Several bits have been reused in newer
1031 * versions of the architecture; in that case we define constants
1032 * for both old and new bit meanings. Code which tests against those
1033 * bits should probably check or otherwise arrange that the CPU
1034 * is the architectural version it expects.
1036 #define SCTLR_M (1U << 0)
1037 #define SCTLR_A (1U << 1)
1038 #define SCTLR_C (1U << 2)
1039 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1040 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1041 #define SCTLR_SA (1U << 3) /* AArch64 only */
1042 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1043 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1044 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1045 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1046 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1047 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1048 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1049 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1050 #define SCTLR_ITD (1U << 7) /* v8 onward */
1051 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1052 #define SCTLR_SED (1U << 8) /* v8 onward */
1053 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1054 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1055 #define SCTLR_F (1U << 10) /* up to v6 */
1056 #define SCTLR_SW (1U << 10) /* v7 */
1057 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1058 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1059 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1060 #define SCTLR_I (1U << 12)
1061 #define SCTLR_V (1U << 13) /* AArch32 only */
1062 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1063 #define SCTLR_RR (1U << 14) /* up to v7 */
1064 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1065 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1066 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1067 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1068 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1069 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1070 #define SCTLR_BR (1U << 17) /* PMSA only */
1071 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1072 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1073 #define SCTLR_WXN (1U << 19)
1074 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1075 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1076 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1077 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1078 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1079 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1080 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1081 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1082 #define SCTLR_VE (1U << 24) /* up to v7 */
1083 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1084 #define SCTLR_EE (1U << 25)
1085 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1086 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1087 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1088 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1089 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1090 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1091 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1092 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1093 #define SCTLR_TE (1U << 30) /* AArch32 only */
1094 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1095 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1096 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1097 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1098 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1099 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1100 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1101 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1102 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1103 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1105 #define CPTR_TCPAC (1U << 31)
1106 #define CPTR_TTA (1U << 20)
1107 #define CPTR_TFP (1U << 10)
1108 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1109 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1111 #define MDCR_EPMAD (1U << 21)
1112 #define MDCR_EDAD (1U << 20)
1113 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1114 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1115 #define MDCR_SDD (1U << 16)
1116 #define MDCR_SPD (3U << 14)
1117 #define MDCR_TDRA (1U << 11)
1118 #define MDCR_TDOSA (1U << 10)
1119 #define MDCR_TDA (1U << 9)
1120 #define MDCR_TDE (1U << 8)
1121 #define MDCR_HPME (1U << 7)
1122 #define MDCR_TPM (1U << 6)
1123 #define MDCR_TPMCR (1U << 5)
1124 #define MDCR_HPMN (0x1fU)
1126 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1127 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1129 #define CPSR_M (0x1fU)
1130 #define CPSR_T (1U << 5)
1131 #define CPSR_F (1U << 6)
1132 #define CPSR_I (1U << 7)
1133 #define CPSR_A (1U << 8)
1134 #define CPSR_E (1U << 9)
1135 #define CPSR_IT_2_7 (0xfc00U)
1136 #define CPSR_GE (0xfU << 16)
1137 #define CPSR_IL (1U << 20)
1138 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1139 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1140 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1141 * where it is live state but not accessible to the AArch32 code.
1143 #define CPSR_RESERVED (0x7U << 21)
1144 #define CPSR_J (1U << 24)
1145 #define CPSR_IT_0_1 (3U << 25)
1146 #define CPSR_Q (1U << 27)
1147 #define CPSR_V (1U << 28)
1148 #define CPSR_C (1U << 29)
1149 #define CPSR_Z (1U << 30)
1150 #define CPSR_N (1U << 31)
1151 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1152 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1154 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1155 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1156 | CPSR_NZCV)
1157 /* Bits writable in user mode. */
1158 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1159 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1160 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1161 /* Mask of bits which may be set by exception return copying them from SPSR */
1162 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1164 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1165 #define XPSR_EXCP 0x1ffU
1166 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1167 #define XPSR_IT_2_7 CPSR_IT_2_7
1168 #define XPSR_GE CPSR_GE
1169 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1170 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1171 #define XPSR_IT_0_1 CPSR_IT_0_1
1172 #define XPSR_Q CPSR_Q
1173 #define XPSR_V CPSR_V
1174 #define XPSR_C CPSR_C
1175 #define XPSR_Z CPSR_Z
1176 #define XPSR_N CPSR_N
1177 #define XPSR_NZCV CPSR_NZCV
1178 #define XPSR_IT CPSR_IT
1180 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1181 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1182 #define TTBCR_PD0 (1U << 4)
1183 #define TTBCR_PD1 (1U << 5)
1184 #define TTBCR_EPD0 (1U << 7)
1185 #define TTBCR_IRGN0 (3U << 8)
1186 #define TTBCR_ORGN0 (3U << 10)
1187 #define TTBCR_SH0 (3U << 12)
1188 #define TTBCR_T1SZ (3U << 16)
1189 #define TTBCR_A1 (1U << 22)
1190 #define TTBCR_EPD1 (1U << 23)
1191 #define TTBCR_IRGN1 (3U << 24)
1192 #define TTBCR_ORGN1 (3U << 26)
1193 #define TTBCR_SH1 (1U << 28)
1194 #define TTBCR_EAE (1U << 31)
1196 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1197 * Only these are valid when in AArch64 mode; in
1198 * AArch32 mode SPSRs are basically CPSR-format.
1200 #define PSTATE_SP (1U)
1201 #define PSTATE_M (0xFU)
1202 #define PSTATE_nRW (1U << 4)
1203 #define PSTATE_F (1U << 6)
1204 #define PSTATE_I (1U << 7)
1205 #define PSTATE_A (1U << 8)
1206 #define PSTATE_D (1U << 9)
1207 #define PSTATE_BTYPE (3U << 10)
1208 #define PSTATE_IL (1U << 20)
1209 #define PSTATE_SS (1U << 21)
1210 #define PSTATE_V (1U << 28)
1211 #define PSTATE_C (1U << 29)
1212 #define PSTATE_Z (1U << 30)
1213 #define PSTATE_N (1U << 31)
1214 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1215 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1216 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1217 /* Mode values for AArch64 */
1218 #define PSTATE_MODE_EL3h 13
1219 #define PSTATE_MODE_EL3t 12
1220 #define PSTATE_MODE_EL2h 9
1221 #define PSTATE_MODE_EL2t 8
1222 #define PSTATE_MODE_EL1h 5
1223 #define PSTATE_MODE_EL1t 4
1224 #define PSTATE_MODE_EL0t 0
1226 /* Write a new value to v7m.exception, thus transitioning into or out
1227 * of Handler mode; this may result in a change of active stack pointer.
1229 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1231 /* Map EL and handler into a PSTATE_MODE. */
1232 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1234 return (el << 2) | handler;
1237 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1238 * interprocessing, so we don't attempt to sync with the cpsr state used by
1239 * the 32 bit decoder.
1241 static inline uint32_t pstate_read(CPUARMState *env)
1243 int ZF;
1245 ZF = (env->ZF == 0);
1246 return (env->NF & 0x80000000) | (ZF << 30)
1247 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1248 | env->pstate | env->daif | (env->btype << 10);
1251 static inline void pstate_write(CPUARMState *env, uint32_t val)
1253 env->ZF = (~val) & PSTATE_Z;
1254 env->NF = val;
1255 env->CF = (val >> 29) & 1;
1256 env->VF = (val << 3) & 0x80000000;
1257 env->daif = val & PSTATE_DAIF;
1258 env->btype = (val >> 10) & 3;
1259 env->pstate = val & ~CACHED_PSTATE_BITS;
1262 /* Return the current CPSR value. */
1263 uint32_t cpsr_read(CPUARMState *env);
1265 typedef enum CPSRWriteType {
1266 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1267 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1268 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1269 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1270 } CPSRWriteType;
1272 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1273 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1274 CPSRWriteType write_type);
1276 /* Return the current xPSR value. */
1277 static inline uint32_t xpsr_read(CPUARMState *env)
1279 int ZF;
1280 ZF = (env->ZF == 0);
1281 return (env->NF & 0x80000000) | (ZF << 30)
1282 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1283 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1284 | ((env->condexec_bits & 0xfc) << 8)
1285 | env->v7m.exception;
1288 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1289 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1291 if (mask & XPSR_NZCV) {
1292 env->ZF = (~val) & XPSR_Z;
1293 env->NF = val;
1294 env->CF = (val >> 29) & 1;
1295 env->VF = (val << 3) & 0x80000000;
1297 if (mask & XPSR_Q) {
1298 env->QF = ((val & XPSR_Q) != 0);
1300 if (mask & XPSR_T) {
1301 env->thumb = ((val & XPSR_T) != 0);
1303 if (mask & XPSR_IT_0_1) {
1304 env->condexec_bits &= ~3;
1305 env->condexec_bits |= (val >> 25) & 3;
1307 if (mask & XPSR_IT_2_7) {
1308 env->condexec_bits &= 3;
1309 env->condexec_bits |= (val >> 8) & 0xfc;
1311 if (mask & XPSR_EXCP) {
1312 /* Note that this only happens on exception exit */
1313 write_v7m_exception(env, val & XPSR_EXCP);
1317 #define HCR_VM (1ULL << 0)
1318 #define HCR_SWIO (1ULL << 1)
1319 #define HCR_PTW (1ULL << 2)
1320 #define HCR_FMO (1ULL << 3)
1321 #define HCR_IMO (1ULL << 4)
1322 #define HCR_AMO (1ULL << 5)
1323 #define HCR_VF (1ULL << 6)
1324 #define HCR_VI (1ULL << 7)
1325 #define HCR_VSE (1ULL << 8)
1326 #define HCR_FB (1ULL << 9)
1327 #define HCR_BSU_MASK (3ULL << 10)
1328 #define HCR_DC (1ULL << 12)
1329 #define HCR_TWI (1ULL << 13)
1330 #define HCR_TWE (1ULL << 14)
1331 #define HCR_TID0 (1ULL << 15)
1332 #define HCR_TID1 (1ULL << 16)
1333 #define HCR_TID2 (1ULL << 17)
1334 #define HCR_TID3 (1ULL << 18)
1335 #define HCR_TSC (1ULL << 19)
1336 #define HCR_TIDCP (1ULL << 20)
1337 #define HCR_TACR (1ULL << 21)
1338 #define HCR_TSW (1ULL << 22)
1339 #define HCR_TPCP (1ULL << 23)
1340 #define HCR_TPU (1ULL << 24)
1341 #define HCR_TTLB (1ULL << 25)
1342 #define HCR_TVM (1ULL << 26)
1343 #define HCR_TGE (1ULL << 27)
1344 #define HCR_TDZ (1ULL << 28)
1345 #define HCR_HCD (1ULL << 29)
1346 #define HCR_TRVM (1ULL << 30)
1347 #define HCR_RW (1ULL << 31)
1348 #define HCR_CD (1ULL << 32)
1349 #define HCR_ID (1ULL << 33)
1350 #define HCR_E2H (1ULL << 34)
1351 #define HCR_TLOR (1ULL << 35)
1352 #define HCR_TERR (1ULL << 36)
1353 #define HCR_TEA (1ULL << 37)
1354 #define HCR_MIOCNCE (1ULL << 38)
1355 #define HCR_APK (1ULL << 40)
1356 #define HCR_API (1ULL << 41)
1357 #define HCR_NV (1ULL << 42)
1358 #define HCR_NV1 (1ULL << 43)
1359 #define HCR_AT (1ULL << 44)
1360 #define HCR_NV2 (1ULL << 45)
1361 #define HCR_FWB (1ULL << 46)
1362 #define HCR_FIEN (1ULL << 47)
1363 #define HCR_TID4 (1ULL << 49)
1364 #define HCR_TICAB (1ULL << 50)
1365 #define HCR_TOCU (1ULL << 52)
1366 #define HCR_TTLBIS (1ULL << 54)
1367 #define HCR_TTLBOS (1ULL << 55)
1368 #define HCR_ATA (1ULL << 56)
1369 #define HCR_DCT (1ULL << 57)
1372 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1373 * HCR_MASK and then clear it again if the feature bit is not set in
1374 * hcr_write().
1376 #define HCR_MASK ((1ULL << 34) - 1)
1378 #define SCR_NS (1U << 0)
1379 #define SCR_IRQ (1U << 1)
1380 #define SCR_FIQ (1U << 2)
1381 #define SCR_EA (1U << 3)
1382 #define SCR_FW (1U << 4)
1383 #define SCR_AW (1U << 5)
1384 #define SCR_NET (1U << 6)
1385 #define SCR_SMD (1U << 7)
1386 #define SCR_HCE (1U << 8)
1387 #define SCR_SIF (1U << 9)
1388 #define SCR_RW (1U << 10)
1389 #define SCR_ST (1U << 11)
1390 #define SCR_TWI (1U << 12)
1391 #define SCR_TWE (1U << 13)
1392 #define SCR_TLOR (1U << 14)
1393 #define SCR_TERR (1U << 15)
1394 #define SCR_APK (1U << 16)
1395 #define SCR_API (1U << 17)
1396 #define SCR_EEL2 (1U << 18)
1397 #define SCR_EASE (1U << 19)
1398 #define SCR_NMEA (1U << 20)
1399 #define SCR_FIEN (1U << 21)
1400 #define SCR_ENSCXT (1U << 25)
1401 #define SCR_ATA (1U << 26)
1403 /* Return the current FPSCR value. */
1404 uint32_t vfp_get_fpscr(CPUARMState *env);
1405 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1407 /* FPCR, Floating Point Control Register
1408 * FPSR, Floating Poiht Status Register
1410 * For A64 the FPSCR is split into two logically distinct registers,
1411 * FPCR and FPSR. However since they still use non-overlapping bits
1412 * we store the underlying state in fpscr and just mask on read/write.
1414 #define FPSR_MASK 0xf800009f
1415 #define FPCR_MASK 0x07ff9f00
1417 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1418 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1419 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1420 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1421 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1422 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1423 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1424 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1425 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1426 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1428 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1430 return vfp_get_fpscr(env) & FPSR_MASK;
1433 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1435 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1436 vfp_set_fpscr(env, new_fpscr);
1439 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1441 return vfp_get_fpscr(env) & FPCR_MASK;
1444 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1446 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1447 vfp_set_fpscr(env, new_fpscr);
1450 enum arm_cpu_mode {
1451 ARM_CPU_MODE_USR = 0x10,
1452 ARM_CPU_MODE_FIQ = 0x11,
1453 ARM_CPU_MODE_IRQ = 0x12,
1454 ARM_CPU_MODE_SVC = 0x13,
1455 ARM_CPU_MODE_MON = 0x16,
1456 ARM_CPU_MODE_ABT = 0x17,
1457 ARM_CPU_MODE_HYP = 0x1a,
1458 ARM_CPU_MODE_UND = 0x1b,
1459 ARM_CPU_MODE_SYS = 0x1f
1462 /* VFP system registers. */
1463 #define ARM_VFP_FPSID 0
1464 #define ARM_VFP_FPSCR 1
1465 #define ARM_VFP_MVFR2 5
1466 #define ARM_VFP_MVFR1 6
1467 #define ARM_VFP_MVFR0 7
1468 #define ARM_VFP_FPEXC 8
1469 #define ARM_VFP_FPINST 9
1470 #define ARM_VFP_FPINST2 10
1472 /* iwMMXt coprocessor control registers. */
1473 #define ARM_IWMMXT_wCID 0
1474 #define ARM_IWMMXT_wCon 1
1475 #define ARM_IWMMXT_wCSSF 2
1476 #define ARM_IWMMXT_wCASF 3
1477 #define ARM_IWMMXT_wCGR0 8
1478 #define ARM_IWMMXT_wCGR1 9
1479 #define ARM_IWMMXT_wCGR2 10
1480 #define ARM_IWMMXT_wCGR3 11
1482 /* V7M CCR bits */
1483 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1484 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1485 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1486 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1487 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1488 FIELD(V7M_CCR, STKALIGN, 9, 1)
1489 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1490 FIELD(V7M_CCR, DC, 16, 1)
1491 FIELD(V7M_CCR, IC, 17, 1)
1492 FIELD(V7M_CCR, BP, 18, 1)
1494 /* V7M SCR bits */
1495 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1496 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1497 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1498 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1500 /* V7M AIRCR bits */
1501 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1502 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1503 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1504 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1505 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1506 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1507 FIELD(V7M_AIRCR, PRIS, 14, 1)
1508 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1509 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1511 /* V7M CFSR bits for MMFSR */
1512 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1513 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1514 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1515 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1516 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1517 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1519 /* V7M CFSR bits for BFSR */
1520 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1521 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1522 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1523 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1524 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1525 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1526 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1528 /* V7M CFSR bits for UFSR */
1529 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1530 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1531 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1532 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1533 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1534 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1535 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1537 /* V7M CFSR bit masks covering all of the subregister bits */
1538 FIELD(V7M_CFSR, MMFSR, 0, 8)
1539 FIELD(V7M_CFSR, BFSR, 8, 8)
1540 FIELD(V7M_CFSR, UFSR, 16, 16)
1542 /* V7M HFSR bits */
1543 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1544 FIELD(V7M_HFSR, FORCED, 30, 1)
1545 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1547 /* V7M DFSR bits */
1548 FIELD(V7M_DFSR, HALTED, 0, 1)
1549 FIELD(V7M_DFSR, BKPT, 1, 1)
1550 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1551 FIELD(V7M_DFSR, VCATCH, 3, 1)
1552 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1554 /* V7M SFSR bits */
1555 FIELD(V7M_SFSR, INVEP, 0, 1)
1556 FIELD(V7M_SFSR, INVIS, 1, 1)
1557 FIELD(V7M_SFSR, INVER, 2, 1)
1558 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1559 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1560 FIELD(V7M_SFSR, LSPERR, 5, 1)
1561 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1562 FIELD(V7M_SFSR, LSERR, 7, 1)
1564 /* v7M MPU_CTRL bits */
1565 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1566 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1567 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1569 /* v7M CLIDR bits */
1570 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1571 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1572 FIELD(V7M_CLIDR, LOC, 24, 3)
1573 FIELD(V7M_CLIDR, LOUU, 27, 3)
1574 FIELD(V7M_CLIDR, ICB, 30, 2)
1576 FIELD(V7M_CSSELR, IND, 0, 1)
1577 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1578 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1579 * define a mask for this and check that it doesn't permit running off
1580 * the end of the array.
1582 FIELD(V7M_CSSELR, INDEX, 0, 4)
1584 /* v7M FPCCR bits */
1585 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1586 FIELD(V7M_FPCCR, USER, 1, 1)
1587 FIELD(V7M_FPCCR, S, 2, 1)
1588 FIELD(V7M_FPCCR, THREAD, 3, 1)
1589 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1590 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1591 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1592 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1593 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1594 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1595 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1596 FIELD(V7M_FPCCR, RES0, 11, 15)
1597 FIELD(V7M_FPCCR, TS, 26, 1)
1598 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1599 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1600 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1601 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1602 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1603 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1604 #define R_V7M_FPCCR_BANKED_MASK \
1605 (R_V7M_FPCCR_LSPACT_MASK | \
1606 R_V7M_FPCCR_USER_MASK | \
1607 R_V7M_FPCCR_THREAD_MASK | \
1608 R_V7M_FPCCR_MMRDY_MASK | \
1609 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1610 R_V7M_FPCCR_UFRDY_MASK | \
1611 R_V7M_FPCCR_ASPEN_MASK)
1614 * System register ID fields.
1616 FIELD(ID_ISAR0, SWAP, 0, 4)
1617 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1618 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1619 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1620 FIELD(ID_ISAR0, COPROC, 16, 4)
1621 FIELD(ID_ISAR0, DEBUG, 20, 4)
1622 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1624 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1625 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1626 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1627 FIELD(ID_ISAR1, EXTEND, 12, 4)
1628 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1629 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1630 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1631 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1633 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1634 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1635 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1636 FIELD(ID_ISAR2, MULT, 12, 4)
1637 FIELD(ID_ISAR2, MULTS, 16, 4)
1638 FIELD(ID_ISAR2, MULTU, 20, 4)
1639 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1640 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1642 FIELD(ID_ISAR3, SATURATE, 0, 4)
1643 FIELD(ID_ISAR3, SIMD, 4, 4)
1644 FIELD(ID_ISAR3, SVC, 8, 4)
1645 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1646 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1647 FIELD(ID_ISAR3, T32COPY, 20, 4)
1648 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1649 FIELD(ID_ISAR3, T32EE, 28, 4)
1651 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1652 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1653 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1654 FIELD(ID_ISAR4, SMC, 12, 4)
1655 FIELD(ID_ISAR4, BARRIER, 16, 4)
1656 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1657 FIELD(ID_ISAR4, PSR_M, 24, 4)
1658 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1660 FIELD(ID_ISAR5, SEVL, 0, 4)
1661 FIELD(ID_ISAR5, AES, 4, 4)
1662 FIELD(ID_ISAR5, SHA1, 8, 4)
1663 FIELD(ID_ISAR5, SHA2, 12, 4)
1664 FIELD(ID_ISAR5, CRC32, 16, 4)
1665 FIELD(ID_ISAR5, RDM, 24, 4)
1666 FIELD(ID_ISAR5, VCMA, 28, 4)
1668 FIELD(ID_ISAR6, JSCVT, 0, 4)
1669 FIELD(ID_ISAR6, DP, 4, 4)
1670 FIELD(ID_ISAR6, FHM, 8, 4)
1671 FIELD(ID_ISAR6, SB, 12, 4)
1672 FIELD(ID_ISAR6, SPECRES, 16, 4)
1674 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1675 FIELD(ID_MMFR4, AC2, 4, 4)
1676 FIELD(ID_MMFR4, XNX, 8, 4)
1677 FIELD(ID_MMFR4, CNP, 12, 4)
1678 FIELD(ID_MMFR4, HPDS, 16, 4)
1679 FIELD(ID_MMFR4, LSM, 20, 4)
1680 FIELD(ID_MMFR4, CCIDX, 24, 4)
1681 FIELD(ID_MMFR4, EVT, 28, 4)
1683 FIELD(ID_AA64ISAR0, AES, 4, 4)
1684 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1685 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1686 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1687 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1688 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1689 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1690 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1691 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1692 FIELD(ID_AA64ISAR0, DP, 44, 4)
1693 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1694 FIELD(ID_AA64ISAR0, TS, 52, 4)
1695 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1696 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1698 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1699 FIELD(ID_AA64ISAR1, APA, 4, 4)
1700 FIELD(ID_AA64ISAR1, API, 8, 4)
1701 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1702 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1703 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1704 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1705 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1706 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1707 FIELD(ID_AA64ISAR1, SB, 36, 4)
1708 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1710 FIELD(ID_AA64PFR0, EL0, 0, 4)
1711 FIELD(ID_AA64PFR0, EL1, 4, 4)
1712 FIELD(ID_AA64PFR0, EL2, 8, 4)
1713 FIELD(ID_AA64PFR0, EL3, 12, 4)
1714 FIELD(ID_AA64PFR0, FP, 16, 4)
1715 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1716 FIELD(ID_AA64PFR0, GIC, 24, 4)
1717 FIELD(ID_AA64PFR0, RAS, 28, 4)
1718 FIELD(ID_AA64PFR0, SVE, 32, 4)
1720 FIELD(ID_AA64PFR1, BT, 0, 4)
1721 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1722 FIELD(ID_AA64PFR1, MTE, 8, 4)
1723 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1725 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1726 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1727 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1728 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1729 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1730 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1731 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1732 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1733 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1734 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1735 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1736 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1738 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1739 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1740 FIELD(ID_AA64MMFR1, VH, 8, 4)
1741 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1742 FIELD(ID_AA64MMFR1, LO, 16, 4)
1743 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1744 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1745 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1747 FIELD(ID_DFR0, COPDBG, 0, 4)
1748 FIELD(ID_DFR0, COPSDBG, 4, 4)
1749 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1750 FIELD(ID_DFR0, COPTRC, 12, 4)
1751 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1752 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1753 FIELD(ID_DFR0, PERFMON, 24, 4)
1754 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1756 FIELD(MVFR0, SIMDREG, 0, 4)
1757 FIELD(MVFR0, FPSP, 4, 4)
1758 FIELD(MVFR0, FPDP, 8, 4)
1759 FIELD(MVFR0, FPTRAP, 12, 4)
1760 FIELD(MVFR0, FPDIVIDE, 16, 4)
1761 FIELD(MVFR0, FPSQRT, 20, 4)
1762 FIELD(MVFR0, FPSHVEC, 24, 4)
1763 FIELD(MVFR0, FPROUND, 28, 4)
1765 FIELD(MVFR1, FPFTZ, 0, 4)
1766 FIELD(MVFR1, FPDNAN, 4, 4)
1767 FIELD(MVFR1, SIMDLS, 8, 4)
1768 FIELD(MVFR1, SIMDINT, 12, 4)
1769 FIELD(MVFR1, SIMDSP, 16, 4)
1770 FIELD(MVFR1, SIMDHP, 20, 4)
1771 FIELD(MVFR1, FPHP, 24, 4)
1772 FIELD(MVFR1, SIMDFMAC, 28, 4)
1774 FIELD(MVFR2, SIMDMISC, 0, 4)
1775 FIELD(MVFR2, FPMISC, 4, 4)
1777 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1779 /* If adding a feature bit which corresponds to a Linux ELF
1780 * HWCAP bit, remember to update the feature-bit-to-hwcap
1781 * mapping in linux-user/elfload.c:get_elf_hwcap().
1783 enum arm_features {
1784 ARM_FEATURE_VFP,
1785 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1786 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1787 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1788 ARM_FEATURE_V6,
1789 ARM_FEATURE_V6K,
1790 ARM_FEATURE_V7,
1791 ARM_FEATURE_THUMB2,
1792 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1793 ARM_FEATURE_VFP3,
1794 ARM_FEATURE_NEON,
1795 ARM_FEATURE_M, /* Microcontroller profile. */
1796 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1797 ARM_FEATURE_THUMB2EE,
1798 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1799 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1800 ARM_FEATURE_V4T,
1801 ARM_FEATURE_V5,
1802 ARM_FEATURE_STRONGARM,
1803 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1804 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1805 ARM_FEATURE_GENERIC_TIMER,
1806 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1807 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1808 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1809 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1810 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1811 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1812 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1813 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1814 ARM_FEATURE_V8,
1815 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1816 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1817 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1818 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1819 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1820 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1821 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1822 ARM_FEATURE_PMU, /* has PMU support */
1823 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1824 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1825 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1828 static inline int arm_feature(CPUARMState *env, int feature)
1830 return (env->features & (1ULL << feature)) != 0;
1833 #if !defined(CONFIG_USER_ONLY)
1834 /* Return true if exception levels below EL3 are in secure state,
1835 * or would be following an exception return to that level.
1836 * Unlike arm_is_secure() (which is always a question about the
1837 * _current_ state of the CPU) this doesn't care about the current
1838 * EL or mode.
1840 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1842 if (arm_feature(env, ARM_FEATURE_EL3)) {
1843 return !(env->cp15.scr_el3 & SCR_NS);
1844 } else {
1845 /* If EL3 is not supported then the secure state is implementation
1846 * defined, in which case QEMU defaults to non-secure.
1848 return false;
1852 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1853 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1855 if (arm_feature(env, ARM_FEATURE_EL3)) {
1856 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1857 /* CPU currently in AArch64 state and EL3 */
1858 return true;
1859 } else if (!is_a64(env) &&
1860 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1861 /* CPU currently in AArch32 state and monitor mode */
1862 return true;
1865 return false;
1868 /* Return true if the processor is in secure state */
1869 static inline bool arm_is_secure(CPUARMState *env)
1871 if (arm_is_el3_or_mon(env)) {
1872 return true;
1874 return arm_is_secure_below_el3(env);
1877 #else
1878 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1880 return false;
1883 static inline bool arm_is_secure(CPUARMState *env)
1885 return false;
1887 #endif
1890 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1891 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1892 * "for all purposes other than a direct read or write access of HCR_EL2."
1893 * Not included here is HCR_RW.
1895 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1897 /* Return true if the specified exception level is running in AArch64 state. */
1898 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1900 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1901 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1903 assert(el >= 1 && el <= 3);
1904 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1906 /* The highest exception level is always at the maximum supported
1907 * register width, and then lower levels have a register width controlled
1908 * by bits in the SCR or HCR registers.
1910 if (el == 3) {
1911 return aa64;
1914 if (arm_feature(env, ARM_FEATURE_EL3)) {
1915 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1918 if (el == 2) {
1919 return aa64;
1922 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1923 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1926 return aa64;
1929 /* Function for determing whether guest cp register reads and writes should
1930 * access the secure or non-secure bank of a cp register. When EL3 is
1931 * operating in AArch32 state, the NS-bit determines whether the secure
1932 * instance of a cp register should be used. When EL3 is AArch64 (or if
1933 * it doesn't exist at all) then there is no register banking, and all
1934 * accesses are to the non-secure version.
1936 static inline bool access_secure_reg(CPUARMState *env)
1938 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1939 !arm_el_is_aa64(env, 3) &&
1940 !(env->cp15.scr_el3 & SCR_NS));
1942 return ret;
1945 /* Macros for accessing a specified CP register bank */
1946 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1947 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1949 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1950 do { \
1951 if (_secure) { \
1952 (_env)->cp15._regname##_s = (_val); \
1953 } else { \
1954 (_env)->cp15._regname##_ns = (_val); \
1956 } while (0)
1958 /* Macros for automatically accessing a specific CP register bank depending on
1959 * the current secure state of the system. These macros are not intended for
1960 * supporting instruction translation reads/writes as these are dependent
1961 * solely on the SCR.NS bit and not the mode.
1963 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1964 A32_BANKED_REG_GET((_env), _regname, \
1965 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1967 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1968 A32_BANKED_REG_SET((_env), _regname, \
1969 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1970 (_val))
1972 void arm_cpu_list(void);
1973 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1974 uint32_t cur_el, bool secure);
1976 /* Interface between CPU and Interrupt controller. */
1977 #ifndef CONFIG_USER_ONLY
1978 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1979 #else
1980 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1982 return true;
1984 #endif
1986 * armv7m_nvic_set_pending: mark the specified exception as pending
1987 * @opaque: the NVIC
1988 * @irq: the exception number to mark pending
1989 * @secure: false for non-banked exceptions or for the nonsecure
1990 * version of a banked exception, true for the secure version of a banked
1991 * exception.
1993 * Marks the specified exception as pending. Note that we will assert()
1994 * if @secure is true and @irq does not specify one of the fixed set
1995 * of architecturally banked exceptions.
1997 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1999 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2000 * @opaque: the NVIC
2001 * @irq: the exception number to mark pending
2002 * @secure: false for non-banked exceptions or for the nonsecure
2003 * version of a banked exception, true for the secure version of a banked
2004 * exception.
2006 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2007 * exceptions (exceptions generated in the course of trying to take
2008 * a different exception).
2010 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2012 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2013 * exception, and whether it targets Secure state
2014 * @opaque: the NVIC
2015 * @pirq: set to pending exception number
2016 * @ptargets_secure: set to whether pending exception targets Secure
2018 * This function writes the number of the highest priority pending
2019 * exception (the one which would be made active by
2020 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2021 * to true if the current highest priority pending exception should
2022 * be taken to Secure state, false for NS.
2024 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2025 bool *ptargets_secure);
2027 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2028 * @opaque: the NVIC
2030 * Move the current highest priority pending exception from the pending
2031 * state to the active state, and update v7m.exception to indicate that
2032 * it is the exception currently being handled.
2034 void armv7m_nvic_acknowledge_irq(void *opaque);
2036 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2037 * @opaque: the NVIC
2038 * @irq: the exception number to complete
2039 * @secure: true if this exception was secure
2041 * Returns: -1 if the irq was not active
2042 * 1 if completing this irq brought us back to base (no active irqs)
2043 * 0 if there is still an irq active after this one was completed
2044 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2046 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2048 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2049 * @opaque: the NVIC
2051 * Returns: the raw execution priority as defined by the v8M architecture.
2052 * This is the execution priority minus the effects of AIRCR.PRIS,
2053 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2054 * (v8M ARM ARM I_PKLD.)
2056 int armv7m_nvic_raw_execution_priority(void *opaque);
2058 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2059 * priority is negative for the specified security state.
2060 * @opaque: the NVIC
2061 * @secure: the security state to test
2062 * This corresponds to the pseudocode IsReqExecPriNeg().
2064 #ifndef CONFIG_USER_ONLY
2065 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2066 #else
2067 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2069 return false;
2071 #endif
2073 /* Interface for defining coprocessor registers.
2074 * Registers are defined in tables of arm_cp_reginfo structs
2075 * which are passed to define_arm_cp_regs().
2078 /* When looking up a coprocessor register we look for it
2079 * via an integer which encodes all of:
2080 * coprocessor number
2081 * Crn, Crm, opc1, opc2 fields
2082 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2083 * or via MRRC/MCRR?)
2084 * non-secure/secure bank (AArch32 only)
2085 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2086 * (In this case crn and opc2 should be zero.)
2087 * For AArch64, there is no 32/64 bit size distinction;
2088 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2089 * and 4 bit CRn and CRm. The encoding patterns are chosen
2090 * to be easy to convert to and from the KVM encodings, and also
2091 * so that the hashtable can contain both AArch32 and AArch64
2092 * registers (to allow for interprocessing where we might run
2093 * 32 bit code on a 64 bit core).
2095 /* This bit is private to our hashtable cpreg; in KVM register
2096 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2097 * in the upper bits of the 64 bit ID.
2099 #define CP_REG_AA64_SHIFT 28
2100 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2102 /* To enable banking of coprocessor registers depending on ns-bit we
2103 * add a bit to distinguish between secure and non-secure cpregs in the
2104 * hashtable.
2106 #define CP_REG_NS_SHIFT 29
2107 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2109 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2110 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2111 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2113 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2114 (CP_REG_AA64_MASK | \
2115 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2116 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2117 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2118 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2119 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2120 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2122 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2123 * version used as a key for the coprocessor register hashtable
2125 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2127 uint32_t cpregid = kvmid;
2128 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2129 cpregid |= CP_REG_AA64_MASK;
2130 } else {
2131 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2132 cpregid |= (1 << 15);
2135 /* KVM is always non-secure so add the NS flag on AArch32 register
2136 * entries.
2138 cpregid |= 1 << CP_REG_NS_SHIFT;
2140 return cpregid;
2143 /* Convert a truncated 32 bit hashtable key into the full
2144 * 64 bit KVM register ID.
2146 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2148 uint64_t kvmid;
2150 if (cpregid & CP_REG_AA64_MASK) {
2151 kvmid = cpregid & ~CP_REG_AA64_MASK;
2152 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2153 } else {
2154 kvmid = cpregid & ~(1 << 15);
2155 if (cpregid & (1 << 15)) {
2156 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2157 } else {
2158 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2161 return kvmid;
2164 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2165 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2166 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2167 * TCG can assume the value to be constant (ie load at translate time)
2168 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2169 * indicates that the TB should not be ended after a write to this register
2170 * (the default is that the TB ends after cp writes). OVERRIDE permits
2171 * a register definition to override a previous definition for the
2172 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2173 * old must have the OVERRIDE bit set.
2174 * ALIAS indicates that this register is an alias view of some underlying
2175 * state which is also visible via another register, and that the other
2176 * register is handling migration and reset; registers marked ALIAS will not be
2177 * migrated but may have their state set by syncing of register state from KVM.
2178 * NO_RAW indicates that this register has no underlying state and does not
2179 * support raw access for state saving/loading; it will not be used for either
2180 * migration or KVM state synchronization. (Typically this is for "registers"
2181 * which are actually used as instructions for cache maintenance and so on.)
2182 * IO indicates that this register does I/O and therefore its accesses
2183 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2184 * registers which implement clocks or timers require this.
2186 #define ARM_CP_SPECIAL 0x0001
2187 #define ARM_CP_CONST 0x0002
2188 #define ARM_CP_64BIT 0x0004
2189 #define ARM_CP_SUPPRESS_TB_END 0x0008
2190 #define ARM_CP_OVERRIDE 0x0010
2191 #define ARM_CP_ALIAS 0x0020
2192 #define ARM_CP_IO 0x0040
2193 #define ARM_CP_NO_RAW 0x0080
2194 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2195 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2196 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2197 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2198 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2199 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2200 #define ARM_CP_FPU 0x1000
2201 #define ARM_CP_SVE 0x2000
2202 #define ARM_CP_NO_GDB 0x4000
2203 /* Used only as a terminator for ARMCPRegInfo lists */
2204 #define ARM_CP_SENTINEL 0xffff
2205 /* Mask of only the flag bits in a type field */
2206 #define ARM_CP_FLAG_MASK 0x70ff
2208 /* Valid values for ARMCPRegInfo state field, indicating which of
2209 * the AArch32 and AArch64 execution states this register is visible in.
2210 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2211 * If the reginfo is declared to be visible in both states then a second
2212 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2213 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2214 * Note that we rely on the values of these enums as we iterate through
2215 * the various states in some places.
2217 enum {
2218 ARM_CP_STATE_AA32 = 0,
2219 ARM_CP_STATE_AA64 = 1,
2220 ARM_CP_STATE_BOTH = 2,
2223 /* ARM CP register secure state flags. These flags identify security state
2224 * attributes for a given CP register entry.
2225 * The existence of both or neither secure and non-secure flags indicates that
2226 * the register has both a secure and non-secure hash entry. A single one of
2227 * these flags causes the register to only be hashed for the specified
2228 * security state.
2229 * Although definitions may have any combination of the S/NS bits, each
2230 * registered entry will only have one to identify whether the entry is secure
2231 * or non-secure.
2233 enum {
2234 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2235 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2238 /* Return true if cptype is a valid type field. This is used to try to
2239 * catch errors where the sentinel has been accidentally left off the end
2240 * of a list of registers.
2242 static inline bool cptype_valid(int cptype)
2244 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2245 || ((cptype & ARM_CP_SPECIAL) &&
2246 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2249 /* Access rights:
2250 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2251 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2252 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2253 * (ie any of the privileged modes in Secure state, or Monitor mode).
2254 * If a register is accessible in one privilege level it's always accessible
2255 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2256 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2257 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2258 * terminology a little and call this PL3.
2259 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2260 * with the ELx exception levels.
2262 * If access permissions for a register are more complex than can be
2263 * described with these bits, then use a laxer set of restrictions, and
2264 * do the more restrictive/complex check inside a helper function.
2266 #define PL3_R 0x80
2267 #define PL3_W 0x40
2268 #define PL2_R (0x20 | PL3_R)
2269 #define PL2_W (0x10 | PL3_W)
2270 #define PL1_R (0x08 | PL2_R)
2271 #define PL1_W (0x04 | PL2_W)
2272 #define PL0_R (0x02 | PL1_R)
2273 #define PL0_W (0x01 | PL1_W)
2276 * For user-mode some registers are accessible to EL0 via a kernel
2277 * trap-and-emulate ABI. In this case we define the read permissions
2278 * as actually being PL0_R. However some bits of any given register
2279 * may still be masked.
2281 #ifdef CONFIG_USER_ONLY
2282 #define PL0U_R PL0_R
2283 #else
2284 #define PL0U_R PL1_R
2285 #endif
2287 #define PL3_RW (PL3_R | PL3_W)
2288 #define PL2_RW (PL2_R | PL2_W)
2289 #define PL1_RW (PL1_R | PL1_W)
2290 #define PL0_RW (PL0_R | PL0_W)
2292 /* Return the highest implemented Exception Level */
2293 static inline int arm_highest_el(CPUARMState *env)
2295 if (arm_feature(env, ARM_FEATURE_EL3)) {
2296 return 3;
2298 if (arm_feature(env, ARM_FEATURE_EL2)) {
2299 return 2;
2301 return 1;
2304 /* Return true if a v7M CPU is in Handler mode */
2305 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2307 return env->v7m.exception != 0;
2310 /* Return the current Exception Level (as per ARMv8; note that this differs
2311 * from the ARMv7 Privilege Level).
2313 static inline int arm_current_el(CPUARMState *env)
2315 if (arm_feature(env, ARM_FEATURE_M)) {
2316 return arm_v7m_is_handler_mode(env) ||
2317 !(env->v7m.control[env->v7m.secure] & 1);
2320 if (is_a64(env)) {
2321 return extract32(env->pstate, 2, 2);
2324 switch (env->uncached_cpsr & 0x1f) {
2325 case ARM_CPU_MODE_USR:
2326 return 0;
2327 case ARM_CPU_MODE_HYP:
2328 return 2;
2329 case ARM_CPU_MODE_MON:
2330 return 3;
2331 default:
2332 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2333 /* If EL3 is 32-bit then all secure privileged modes run in
2334 * EL3
2336 return 3;
2339 return 1;
2343 typedef struct ARMCPRegInfo ARMCPRegInfo;
2345 typedef enum CPAccessResult {
2346 /* Access is permitted */
2347 CP_ACCESS_OK = 0,
2348 /* Access fails due to a configurable trap or enable which would
2349 * result in a categorized exception syndrome giving information about
2350 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2351 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2352 * PL1 if in EL0, otherwise to the current EL).
2354 CP_ACCESS_TRAP = 1,
2355 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2356 * Note that this is not a catch-all case -- the set of cases which may
2357 * result in this failure is specifically defined by the architecture.
2359 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2360 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2361 CP_ACCESS_TRAP_EL2 = 3,
2362 CP_ACCESS_TRAP_EL3 = 4,
2363 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2364 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2365 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2366 /* Access fails and results in an exception syndrome for an FP access,
2367 * trapped directly to EL2 or EL3
2369 CP_ACCESS_TRAP_FP_EL2 = 7,
2370 CP_ACCESS_TRAP_FP_EL3 = 8,
2371 } CPAccessResult;
2373 /* Access functions for coprocessor registers. These cannot fail and
2374 * may not raise exceptions.
2376 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2377 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2378 uint64_t value);
2379 /* Access permission check functions for coprocessor registers. */
2380 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2381 const ARMCPRegInfo *opaque,
2382 bool isread);
2383 /* Hook function for register reset */
2384 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2386 #define CP_ANY 0xff
2388 /* Definition of an ARM coprocessor register */
2389 struct ARMCPRegInfo {
2390 /* Name of register (useful mainly for debugging, need not be unique) */
2391 const char *name;
2392 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2393 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2394 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2395 * will be decoded to this register. The register read and write
2396 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2397 * used by the program, so it is possible to register a wildcard and
2398 * then behave differently on read/write if necessary.
2399 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2400 * must both be zero.
2401 * For AArch64-visible registers, opc0 is also used.
2402 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2403 * way to distinguish (for KVM's benefit) guest-visible system registers
2404 * from demuxed ones provided to preserve the "no side effects on
2405 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2406 * visible (to match KVM's encoding); cp==0 will be converted to
2407 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2409 uint8_t cp;
2410 uint8_t crn;
2411 uint8_t crm;
2412 uint8_t opc0;
2413 uint8_t opc1;
2414 uint8_t opc2;
2415 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2416 int state;
2417 /* Register type: ARM_CP_* bits/values */
2418 int type;
2419 /* Access rights: PL*_[RW] */
2420 int access;
2421 /* Security state: ARM_CP_SECSTATE_* bits/values */
2422 int secure;
2423 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2424 * this register was defined: can be used to hand data through to the
2425 * register read/write functions, since they are passed the ARMCPRegInfo*.
2427 void *opaque;
2428 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2429 * fieldoffset is non-zero, the reset value of the register.
2431 uint64_t resetvalue;
2432 /* Offset of the field in CPUARMState for this register.
2434 * This is not needed if either:
2435 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2436 * 2. both readfn and writefn are specified
2438 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2440 /* Offsets of the secure and non-secure fields in CPUARMState for the
2441 * register if it is banked. These fields are only used during the static
2442 * registration of a register. During hashing the bank associated
2443 * with a given security state is copied to fieldoffset which is used from
2444 * there on out.
2446 * It is expected that register definitions use either fieldoffset or
2447 * bank_fieldoffsets in the definition but not both. It is also expected
2448 * that both bank offsets are set when defining a banked register. This
2449 * use indicates that a register is banked.
2451 ptrdiff_t bank_fieldoffsets[2];
2453 /* Function for making any access checks for this register in addition to
2454 * those specified by the 'access' permissions bits. If NULL, no extra
2455 * checks required. The access check is performed at runtime, not at
2456 * translate time.
2458 CPAccessFn *accessfn;
2459 /* Function for handling reads of this register. If NULL, then reads
2460 * will be done by loading from the offset into CPUARMState specified
2461 * by fieldoffset.
2463 CPReadFn *readfn;
2464 /* Function for handling writes of this register. If NULL, then writes
2465 * will be done by writing to the offset into CPUARMState specified
2466 * by fieldoffset.
2468 CPWriteFn *writefn;
2469 /* Function for doing a "raw" read; used when we need to copy
2470 * coprocessor state to the kernel for KVM or out for
2471 * migration. This only needs to be provided if there is also a
2472 * readfn and it has side effects (for instance clear-on-read bits).
2474 CPReadFn *raw_readfn;
2475 /* Function for doing a "raw" write; used when we need to copy KVM
2476 * kernel coprocessor state into userspace, or for inbound
2477 * migration. This only needs to be provided if there is also a
2478 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2479 * or similar behaviour.
2481 CPWriteFn *raw_writefn;
2482 /* Function for resetting the register. If NULL, then reset will be done
2483 * by writing resetvalue to the field specified in fieldoffset. If
2484 * fieldoffset is 0 then no reset will be done.
2486 CPResetFn *resetfn;
2489 /* Macros which are lvalues for the field in CPUARMState for the
2490 * ARMCPRegInfo *ri.
2492 #define CPREG_FIELD32(env, ri) \
2493 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2494 #define CPREG_FIELD64(env, ri) \
2495 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2497 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2499 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2500 const ARMCPRegInfo *regs, void *opaque);
2501 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2502 const ARMCPRegInfo *regs, void *opaque);
2503 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2505 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2507 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2509 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2511 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2514 * Definition of an ARM co-processor register as viewed from
2515 * userspace. This is used for presenting sanitised versions of
2516 * registers to userspace when emulating the Linux AArch64 CPU
2517 * ID/feature ABI (advertised as HWCAP_CPUID).
2519 typedef struct ARMCPRegUserSpaceInfo {
2520 /* Name of register */
2521 const char *name;
2523 /* Is the name actually a glob pattern */
2524 bool is_glob;
2526 /* Only some bits are exported to user space */
2527 uint64_t exported_bits;
2529 /* Fixed bits are applied after the mask */
2530 uint64_t fixed_bits;
2531 } ARMCPRegUserSpaceInfo;
2533 #define REGUSERINFO_SENTINEL { .name = NULL }
2535 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2537 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2538 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2539 uint64_t value);
2540 /* CPReadFn that can be used for read-as-zero behaviour */
2541 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2543 /* CPResetFn that does nothing, for use if no reset is required even
2544 * if fieldoffset is non zero.
2546 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2548 /* Return true if this reginfo struct's field in the cpu state struct
2549 * is 64 bits wide.
2551 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2553 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2556 static inline bool cp_access_ok(int current_el,
2557 const ARMCPRegInfo *ri, int isread)
2559 return (ri->access >> ((current_el * 2) + isread)) & 1;
2562 /* Raw read of a coprocessor register (as needed for migration, etc) */
2563 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2566 * write_list_to_cpustate
2567 * @cpu: ARMCPU
2569 * For each register listed in the ARMCPU cpreg_indexes list, write
2570 * its value from the cpreg_values list into the ARMCPUState structure.
2571 * This updates TCG's working data structures from KVM data or
2572 * from incoming migration state.
2574 * Returns: true if all register values were updated correctly,
2575 * false if some register was unknown or could not be written.
2576 * Note that we do not stop early on failure -- we will attempt
2577 * writing all registers in the list.
2579 bool write_list_to_cpustate(ARMCPU *cpu);
2582 * write_cpustate_to_list:
2583 * @cpu: ARMCPU
2585 * For each register listed in the ARMCPU cpreg_indexes list, write
2586 * its value from the ARMCPUState structure into the cpreg_values list.
2587 * This is used to copy info from TCG's working data structures into
2588 * KVM or for outbound migration.
2590 * Returns: true if all register values were read correctly,
2591 * false if some register was unknown or could not be read.
2592 * Note that we do not stop early on failure -- we will attempt
2593 * reading all registers in the list.
2595 bool write_cpustate_to_list(ARMCPU *cpu);
2597 #define ARM_CPUID_TI915T 0x54029152
2598 #define ARM_CPUID_TI925T 0x54029252
2600 #if defined(CONFIG_USER_ONLY)
2601 #define TARGET_PAGE_BITS 12
2602 #else
2603 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2604 * have to support 1K tiny pages.
2606 #define TARGET_PAGE_BITS_VARY
2607 #define TARGET_PAGE_BITS_MIN 10
2608 #endif
2610 #if defined(TARGET_AARCH64)
2611 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2612 # define TARGET_VIRT_ADDR_SPACE_BITS 48
2613 #else
2614 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2615 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2616 #endif
2618 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2619 unsigned int target_el)
2621 CPUARMState *env = cs->env_ptr;
2622 unsigned int cur_el = arm_current_el(env);
2623 bool secure = arm_is_secure(env);
2624 bool pstate_unmasked;
2625 int8_t unmasked = 0;
2626 uint64_t hcr_el2;
2628 /* Don't take exceptions if they target a lower EL.
2629 * This check should catch any exceptions that would not be taken but left
2630 * pending.
2632 if (cur_el > target_el) {
2633 return false;
2636 hcr_el2 = arm_hcr_el2_eff(env);
2638 switch (excp_idx) {
2639 case EXCP_FIQ:
2640 pstate_unmasked = !(env->daif & PSTATE_F);
2641 break;
2643 case EXCP_IRQ:
2644 pstate_unmasked = !(env->daif & PSTATE_I);
2645 break;
2647 case EXCP_VFIQ:
2648 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2649 /* VFIQs are only taken when hypervized and non-secure. */
2650 return false;
2652 return !(env->daif & PSTATE_F);
2653 case EXCP_VIRQ:
2654 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2655 /* VIRQs are only taken when hypervized and non-secure. */
2656 return false;
2658 return !(env->daif & PSTATE_I);
2659 default:
2660 g_assert_not_reached();
2663 /* Use the target EL, current execution state and SCR/HCR settings to
2664 * determine whether the corresponding CPSR bit is used to mask the
2665 * interrupt.
2667 if ((target_el > cur_el) && (target_el != 1)) {
2668 /* Exceptions targeting a higher EL may not be maskable */
2669 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2670 /* 64-bit masking rules are simple: exceptions to EL3
2671 * can't be masked, and exceptions to EL2 can only be
2672 * masked from Secure state. The HCR and SCR settings
2673 * don't affect the masking logic, only the interrupt routing.
2675 if (target_el == 3 || !secure) {
2676 unmasked = 1;
2678 } else {
2679 /* The old 32-bit-only environment has a more complicated
2680 * masking setup. HCR and SCR bits not only affect interrupt
2681 * routing but also change the behaviour of masking.
2683 bool hcr, scr;
2685 switch (excp_idx) {
2686 case EXCP_FIQ:
2687 /* If FIQs are routed to EL3 or EL2 then there are cases where
2688 * we override the CPSR.F in determining if the exception is
2689 * masked or not. If neither of these are set then we fall back
2690 * to the CPSR.F setting otherwise we further assess the state
2691 * below.
2693 hcr = hcr_el2 & HCR_FMO;
2694 scr = (env->cp15.scr_el3 & SCR_FIQ);
2696 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2697 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2698 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2699 * when non-secure but only when FIQs are only routed to EL3.
2701 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2702 break;
2703 case EXCP_IRQ:
2704 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2705 * we may override the CPSR.I masking when in non-secure state.
2706 * The SCR.IRQ setting has already been taken into consideration
2707 * when setting the target EL, so it does not have a further
2708 * affect here.
2710 hcr = hcr_el2 & HCR_IMO;
2711 scr = false;
2712 break;
2713 default:
2714 g_assert_not_reached();
2717 if ((scr || hcr) && !secure) {
2718 unmasked = 1;
2723 /* The PSTATE bits only mask the interrupt if we have not overriden the
2724 * ability above.
2726 return unmasked || pstate_unmasked;
2729 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2730 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2731 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2733 #define cpu_signal_handler cpu_arm_signal_handler
2734 #define cpu_list arm_cpu_list
2736 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2738 * If EL3 is 64-bit:
2739 * + NonSecure EL1 & 0 stage 1
2740 * + NonSecure EL1 & 0 stage 2
2741 * + NonSecure EL2
2742 * + Secure EL1 & EL0
2743 * + Secure EL3
2744 * If EL3 is 32-bit:
2745 * + NonSecure PL1 & 0 stage 1
2746 * + NonSecure PL1 & 0 stage 2
2747 * + NonSecure PL2
2748 * + Secure PL0 & PL1
2749 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2751 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2752 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2753 * may differ in access permissions even if the VA->PA map is the same
2754 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2755 * translation, which means that we have one mmu_idx that deals with two
2756 * concatenated translation regimes [this sort of combined s1+2 TLB is
2757 * architecturally permitted]
2758 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2759 * handling via the TLB. The only way to do a stage 1 translation without
2760 * the immediate stage 2 translation is via the ATS or AT system insns,
2761 * which can be slow-pathed and always do a page table walk.
2762 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2763 * translation regimes, because they map reasonably well to each other
2764 * and they can't both be active at the same time.
2765 * This gives us the following list of mmu_idx values:
2767 * NS EL0 (aka NS PL0) stage 1+2
2768 * NS EL1 (aka NS PL1) stage 1+2
2769 * NS EL2 (aka NS PL2)
2770 * S EL3 (aka S PL1)
2771 * S EL0 (aka S PL0)
2772 * S EL1 (not used if EL3 is 32 bit)
2773 * NS EL0+1 stage 2
2775 * (The last of these is an mmu_idx because we want to be able to use the TLB
2776 * for the accesses done as part of a stage 1 page table walk, rather than
2777 * having to walk the stage 2 page table over and over.)
2779 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2780 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2781 * NS EL2 if we ever model a Cortex-R52).
2783 * M profile CPUs are rather different as they do not have a true MMU.
2784 * They have the following different MMU indexes:
2785 * User
2786 * Privileged
2787 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2788 * Privileged, execution priority negative (ditto)
2789 * If the CPU supports the v8M Security Extension then there are also:
2790 * Secure User
2791 * Secure Privileged
2792 * Secure User, execution priority negative
2793 * Secure Privileged, execution priority negative
2795 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2796 * are not quite the same -- different CPU types (most notably M profile
2797 * vs A/R profile) would like to use MMU indexes with different semantics,
2798 * but since we don't ever need to use all of those in a single CPU we
2799 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2800 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2801 * the same for any particular CPU.
2802 * Variables of type ARMMUIdx are always full values, and the core
2803 * index values are in variables of type 'int'.
2805 * Our enumeration includes at the end some entries which are not "true"
2806 * mmu_idx values in that they don't have corresponding TLBs and are only
2807 * valid for doing slow path page table walks.
2809 * The constant names here are patterned after the general style of the names
2810 * of the AT/ATS operations.
2811 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2812 * For M profile we arrange them to have a bit for priv, a bit for negpri
2813 * and a bit for secure.
2815 #define ARM_MMU_IDX_A 0x10 /* A profile */
2816 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2817 #define ARM_MMU_IDX_M 0x40 /* M profile */
2819 /* meanings of the bits for M profile mmu idx values */
2820 #define ARM_MMU_IDX_M_PRIV 0x1
2821 #define ARM_MMU_IDX_M_NEGPRI 0x2
2822 #define ARM_MMU_IDX_M_S 0x4
2824 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2825 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2827 typedef enum ARMMMUIdx {
2828 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2829 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2830 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2831 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2832 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2833 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2834 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2835 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2836 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2837 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2838 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2839 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2840 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2841 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2842 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2843 /* Indexes below here don't have TLBs and are used only for AT system
2844 * instructions or for the first stage of an S12 page table walk.
2846 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2847 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2848 } ARMMMUIdx;
2850 /* Bit macros for the core-mmu-index values for each index,
2851 * for use when calling tlb_flush_by_mmuidx() and friends.
2853 typedef enum ARMMMUIdxBit {
2854 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2855 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2856 ARMMMUIdxBit_S1E2 = 1 << 2,
2857 ARMMMUIdxBit_S1E3 = 1 << 3,
2858 ARMMMUIdxBit_S1SE0 = 1 << 4,
2859 ARMMMUIdxBit_S1SE1 = 1 << 5,
2860 ARMMMUIdxBit_S2NS = 1 << 6,
2861 ARMMMUIdxBit_MUser = 1 << 0,
2862 ARMMMUIdxBit_MPriv = 1 << 1,
2863 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2864 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2865 ARMMMUIdxBit_MSUser = 1 << 4,
2866 ARMMMUIdxBit_MSPriv = 1 << 5,
2867 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2868 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2869 } ARMMMUIdxBit;
2871 #define MMU_USER_IDX 0
2873 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2875 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2878 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2880 if (arm_feature(env, ARM_FEATURE_M)) {
2881 return mmu_idx | ARM_MMU_IDX_M;
2882 } else {
2883 return mmu_idx | ARM_MMU_IDX_A;
2887 /* Return the exception level we're running at if this is our mmu_idx */
2888 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2890 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2891 case ARM_MMU_IDX_A:
2892 return mmu_idx & 3;
2893 case ARM_MMU_IDX_M:
2894 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2895 default:
2896 g_assert_not_reached();
2900 /* Return the MMU index for a v7M CPU in the specified security and
2901 * privilege state.
2903 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2904 bool secstate, bool priv);
2906 /* Return the MMU index for a v7M CPU in the specified security state */
2907 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2910 * cpu_mmu_index:
2911 * @env: The cpu environment
2912 * @ifetch: True for code access, false for data access.
2914 * Return the core mmu index for the current translation regime.
2915 * This function is used by generic TCG code paths.
2917 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2919 /* Indexes used when registering address spaces with cpu_address_space_init */
2920 typedef enum ARMASIdx {
2921 ARMASIdx_NS = 0,
2922 ARMASIdx_S = 1,
2923 } ARMASIdx;
2925 /* Return the Exception Level targeted by debug exceptions. */
2926 static inline int arm_debug_target_el(CPUARMState *env)
2928 bool secure = arm_is_secure(env);
2929 bool route_to_el2 = false;
2931 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2932 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2933 env->cp15.mdcr_el2 & MDCR_TDE;
2936 if (route_to_el2) {
2937 return 2;
2938 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2939 !arm_el_is_aa64(env, 3) && secure) {
2940 return 3;
2941 } else {
2942 return 1;
2946 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2948 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2949 * CSSELR is RAZ/WI.
2951 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2954 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2955 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2957 int cur_el = arm_current_el(env);
2958 int debug_el;
2960 if (cur_el == 3) {
2961 return false;
2964 /* MDCR_EL3.SDD disables debug events from Secure state */
2965 if (arm_is_secure_below_el3(env)
2966 && extract32(env->cp15.mdcr_el3, 16, 1)) {
2967 return false;
2971 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2972 * while not masking the (D)ebug bit in DAIF.
2974 debug_el = arm_debug_target_el(env);
2976 if (cur_el == debug_el) {
2977 return extract32(env->cp15.mdscr_el1, 13, 1)
2978 && !(env->daif & PSTATE_D);
2981 /* Otherwise the debug target needs to be a higher EL */
2982 return debug_el > cur_el;
2985 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2987 int el = arm_current_el(env);
2989 if (el == 0 && arm_el_is_aa64(env, 1)) {
2990 return aa64_generate_debug_exceptions(env);
2993 if (arm_is_secure(env)) {
2994 int spd;
2996 if (el == 0 && (env->cp15.sder & 1)) {
2997 /* SDER.SUIDEN means debug exceptions from Secure EL0
2998 * are always enabled. Otherwise they are controlled by
2999 * SDCR.SPD like those from other Secure ELs.
3001 return true;
3004 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3005 switch (spd) {
3006 case 1:
3007 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3008 case 0:
3009 /* For 0b00 we return true if external secure invasive debug
3010 * is enabled. On real hardware this is controlled by external
3011 * signals to the core. QEMU always permits debug, and behaves
3012 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3014 return true;
3015 case 2:
3016 return false;
3017 case 3:
3018 return true;
3022 return el != 2;
3025 /* Return true if debugging exceptions are currently enabled.
3026 * This corresponds to what in ARM ARM pseudocode would be
3027 * if UsingAArch32() then
3028 * return AArch32.GenerateDebugExceptions()
3029 * else
3030 * return AArch64.GenerateDebugExceptions()
3031 * We choose to push the if() down into this function for clarity,
3032 * since the pseudocode has it at all callsites except for the one in
3033 * CheckSoftwareStep(), where it is elided because both branches would
3034 * always return the same value.
3036 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3038 if (env->aarch64) {
3039 return aa64_generate_debug_exceptions(env);
3040 } else {
3041 return aa32_generate_debug_exceptions(env);
3045 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3046 * implicitly means this always returns false in pre-v8 CPUs.)
3048 static inline bool arm_singlestep_active(CPUARMState *env)
3050 return extract32(env->cp15.mdscr_el1, 0, 1)
3051 && arm_el_is_aa64(env, arm_debug_target_el(env))
3052 && arm_generate_debug_exceptions(env);
3055 static inline bool arm_sctlr_b(CPUARMState *env)
3057 return
3058 /* We need not implement SCTLR.ITD in user-mode emulation, so
3059 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3060 * This lets people run BE32 binaries with "-cpu any".
3062 #ifndef CONFIG_USER_ONLY
3063 !arm_feature(env, ARM_FEATURE_V7) &&
3064 #endif
3065 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3068 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3070 if (el == 0) {
3071 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3072 return env->cp15.sctlr_el[1];
3073 } else {
3074 return env->cp15.sctlr_el[el];
3079 /* Return true if the processor is in big-endian mode. */
3080 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3082 /* In 32bit endianness is determined by looking at CPSR's E bit */
3083 if (!is_a64(env)) {
3084 return
3085 #ifdef CONFIG_USER_ONLY
3086 /* In system mode, BE32 is modelled in line with the
3087 * architecture (as word-invariant big-endianness), where loads
3088 * and stores are done little endian but from addresses which
3089 * are adjusted by XORing with the appropriate constant. So the
3090 * endianness to use for the raw data access is not affected by
3091 * SCTLR.B.
3092 * In user mode, however, we model BE32 as byte-invariant
3093 * big-endianness (because user-only code cannot tell the
3094 * difference), and so we need to use a data access endianness
3095 * that depends on SCTLR.B.
3097 arm_sctlr_b(env) ||
3098 #endif
3099 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3100 } else {
3101 int cur_el = arm_current_el(env);
3102 uint64_t sctlr = arm_sctlr(env, cur_el);
3104 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3108 #include "exec/cpu-all.h"
3110 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3111 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3112 * We put flags which are shared between 32 and 64 bit mode at the top
3113 * of the word, and flags which apply to only one mode at the bottom.
3115 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3116 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3117 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3118 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3119 /* Target EL if we take a floating-point-disabled exception */
3120 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3121 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3123 /* Bit usage when in AArch32 state: */
3124 FIELD(TBFLAG_A32, THUMB, 0, 1)
3125 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3126 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3127 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3128 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3129 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3130 /* We store the bottom two bits of the CPAR as TB flags and handle
3131 * checks on the other bits at runtime
3133 FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3134 /* Indicates whether cp register reads and writes by guest code should access
3135 * the secure or nonsecure bank of banked registers; note that this is not
3136 * the same thing as the current security state of the processor!
3138 FIELD(TBFLAG_A32, NS, 19, 1)
3139 /* For M profile only, Handler (ie not Thread) mode */
3140 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3141 /* For M profile only, whether we should generate stack-limit checks */
3142 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3144 /* Bit usage when in AArch64 state */
3145 FIELD(TBFLAG_A64, TBII, 0, 2)
3146 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3147 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3148 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3149 FIELD(TBFLAG_A64, BT, 9, 1)
3150 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3151 FIELD(TBFLAG_A64, TBID, 12, 2)
3153 static inline bool bswap_code(bool sctlr_b)
3155 #ifdef CONFIG_USER_ONLY
3156 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3157 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3158 * would also end up as a mixed-endian mode with BE code, LE data.
3160 return
3161 #ifdef TARGET_WORDS_BIGENDIAN
3163 #endif
3164 sctlr_b;
3165 #else
3166 /* All code access in ARM is little endian, and there are no loaders
3167 * doing swaps that need to be reversed
3169 return 0;
3170 #endif
3173 #ifdef CONFIG_USER_ONLY
3174 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3176 return
3177 #ifdef TARGET_WORDS_BIGENDIAN
3179 #endif
3180 arm_cpu_data_is_big_endian(env);
3182 #endif
3184 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3185 target_ulong *cs_base, uint32_t *flags);
3187 enum {
3188 QEMU_PSCI_CONDUIT_DISABLED = 0,
3189 QEMU_PSCI_CONDUIT_SMC = 1,
3190 QEMU_PSCI_CONDUIT_HVC = 2,
3193 #ifndef CONFIG_USER_ONLY
3194 /* Return the address space index to use for a memory access */
3195 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3197 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3200 /* Return the AddressSpace to use for a memory access
3201 * (which depends on whether the access is S or NS, and whether
3202 * the board gave us a separate AddressSpace for S accesses).
3204 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3206 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3208 #endif
3211 * arm_register_pre_el_change_hook:
3212 * Register a hook function which will be called immediately before this
3213 * CPU changes exception level or mode. The hook function will be
3214 * passed a pointer to the ARMCPU and the opaque data pointer passed
3215 * to this function when the hook was registered.
3217 * Note that if a pre-change hook is called, any registered post-change hooks
3218 * are guaranteed to subsequently be called.
3220 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3221 void *opaque);
3223 * arm_register_el_change_hook:
3224 * Register a hook function which will be called immediately after this
3225 * CPU changes exception level or mode. The hook function will be
3226 * passed a pointer to the ARMCPU and the opaque data pointer passed
3227 * to this function when the hook was registered.
3229 * Note that any registered hooks registered here are guaranteed to be called
3230 * if pre-change hooks have been.
3232 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3233 *opaque);
3236 * aa32_vfp_dreg:
3237 * Return a pointer to the Dn register within env in 32-bit mode.
3239 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3241 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3245 * aa32_vfp_qreg:
3246 * Return a pointer to the Qn register within env in 32-bit mode.
3248 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3250 return &env->vfp.zregs[regno].d[0];
3254 * aa64_vfp_qreg:
3255 * Return a pointer to the Qn register within env in 64-bit mode.
3257 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3259 return &env->vfp.zregs[regno].d[0];
3262 /* Shared between translate-sve.c and sve_helper.c. */
3263 extern const uint64_t pred_esz_masks[4];
3266 * 32-bit feature tests via id registers.
3268 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3270 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3273 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3275 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3278 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3280 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3283 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3285 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3288 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3290 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3293 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3295 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3298 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3300 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3303 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3305 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3308 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3310 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3313 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3315 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3318 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3320 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3323 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3325 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3328 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3330 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3333 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3335 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3338 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3340 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3343 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3346 * This is a placeholder for use by VCMA until the rest of
3347 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3348 * At which point we can properly set and check MVFR1.FPHP.
3350 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3354 * We always set the FP and SIMD FP16 fields to indicate identical
3355 * levels of support (assuming SIMD is implemented at all), so
3356 * we only need one set of accessors.
3358 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3360 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3363 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3365 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3368 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3370 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3373 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3375 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3378 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3380 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3383 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3385 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3389 * 64-bit feature tests via id registers.
3391 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3393 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3396 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3398 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3401 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3403 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3406 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3408 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3411 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3413 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3416 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3418 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3421 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3423 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3426 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3428 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3431 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3433 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3436 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3438 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3441 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3443 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3446 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3448 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3451 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3453 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3456 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3458 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3461 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3463 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3466 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3468 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3471 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3473 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3476 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3479 * Note that while QEMU will only implement the architected algorithm
3480 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3481 * defined algorithms, and thus API+GPI, and this predicate controls
3482 * migration of the 128-bit keys.
3484 return (id->id_aa64isar1 &
3485 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3486 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3487 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3488 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3491 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3493 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3496 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3498 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3501 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3503 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3506 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3508 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3509 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3512 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3514 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3517 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3519 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3522 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3524 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3527 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3529 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3533 * Forward to the above feature tests given an ARMCPU pointer.
3535 #define cpu_isar_feature(name, cpu) \
3536 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3538 #endif