Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / hw / intc / arm_gic.c
blobf55124174d312410b7f96e77a9844e1f14946efe
1 /*
2 * ARM Generic/Distributed Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 /* This file contains implementation code for the RealView EB interrupt
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
21 #include "qemu/osdep.h"
22 #include "hw/sysbus.h"
23 #include "gic_internal.h"
24 #include "qapi/error.h"
25 #include "qom/cpu.h"
27 //#define DEBUG_GIC
29 #ifdef DEBUG_GIC
30 #define DPRINTF(fmt, ...) \
31 do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
32 #else
33 #define DPRINTF(fmt, ...) do {} while(0)
34 #endif
36 static const uint8_t gic_id_11mpcore[] = {
37 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
40 static const uint8_t gic_id_gicv1[] = {
41 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
44 static const uint8_t gic_id_gicv2[] = {
45 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
48 static inline int gic_get_current_cpu(GICState *s)
50 if (s->num_cpu > 1) {
51 return current_cpu->cpu_index;
53 return 0;
56 /* Return true if this GIC config has interrupt groups, which is
57 * true if we're a GICv2, or a GICv1 with the security extensions.
59 static inline bool gic_has_groups(GICState *s)
61 return s->revision == 2 || s->security_extn;
64 /* TODO: Many places that call this routine could be optimized. */
65 /* Update interrupt status after enabled or pending bits have been changed. */
66 void gic_update(GICState *s)
68 int best_irq;
69 int best_prio;
70 int irq;
71 int irq_level, fiq_level;
72 int cpu;
73 int cm;
75 for (cpu = 0; cpu < s->num_cpu; cpu++) {
76 cm = 1 << cpu;
77 s->current_pending[cpu] = 1023;
78 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
79 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
80 qemu_irq_lower(s->parent_irq[cpu]);
81 qemu_irq_lower(s->parent_fiq[cpu]);
82 continue;
84 best_prio = 0x100;
85 best_irq = 1023;
86 for (irq = 0; irq < s->num_irq; irq++) {
87 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
88 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
89 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
90 best_prio = GIC_GET_PRIORITY(irq, cpu);
91 best_irq = irq;
96 irq_level = fiq_level = 0;
98 if (best_prio < s->priority_mask[cpu]) {
99 s->current_pending[cpu] = best_irq;
100 if (best_prio < s->running_priority[cpu]) {
101 int group = GIC_TEST_GROUP(best_irq, cm);
103 if (extract32(s->ctlr, group, 1) &&
104 extract32(s->cpu_ctlr[cpu], group, 1)) {
105 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
106 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
107 best_irq, cpu);
108 fiq_level = 1;
109 } else {
110 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
111 best_irq, cpu);
112 irq_level = 1;
118 qemu_set_irq(s->parent_irq[cpu], irq_level);
119 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
123 void gic_set_pending_private(GICState *s, int cpu, int irq)
125 int cm = 1 << cpu;
127 if (gic_test_pending(s, irq, cm)) {
128 return;
131 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
132 GIC_SET_PENDING(irq, cm);
133 gic_update(s);
136 static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
137 int cm, int target)
139 if (level) {
140 GIC_SET_LEVEL(irq, cm);
141 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
142 DPRINTF("Set %d pending mask %x\n", irq, target);
143 GIC_SET_PENDING(irq, target);
145 } else {
146 GIC_CLEAR_LEVEL(irq, cm);
150 static void gic_set_irq_generic(GICState *s, int irq, int level,
151 int cm, int target)
153 if (level) {
154 GIC_SET_LEVEL(irq, cm);
155 DPRINTF("Set %d pending mask %x\n", irq, target);
156 if (GIC_TEST_EDGE_TRIGGER(irq)) {
157 GIC_SET_PENDING(irq, target);
159 } else {
160 GIC_CLEAR_LEVEL(irq, cm);
164 /* Process a change in an external IRQ input. */
165 static void gic_set_irq(void *opaque, int irq, int level)
167 /* Meaning of the 'irq' parameter:
168 * [0..N-1] : external interrupts
169 * [N..N+31] : PPI (internal) interrupts for CPU 0
170 * [N+32..N+63] : PPI (internal interrupts for CPU 1
171 * ...
173 GICState *s = (GICState *)opaque;
174 int cm, target;
175 if (irq < (s->num_irq - GIC_INTERNAL)) {
176 /* The first external input line is internal interrupt 32. */
177 cm = ALL_CPU_MASK;
178 irq += GIC_INTERNAL;
179 target = GIC_TARGET(irq);
180 } else {
181 int cpu;
182 irq -= (s->num_irq - GIC_INTERNAL);
183 cpu = irq / GIC_INTERNAL;
184 irq %= GIC_INTERNAL;
185 cm = 1 << cpu;
186 target = cm;
189 assert(irq >= GIC_NR_SGIS);
191 if (level == GIC_TEST_LEVEL(irq, cm)) {
192 return;
195 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
196 gic_set_irq_11mpcore(s, irq, level, cm, target);
197 } else {
198 gic_set_irq_generic(s, irq, level, cm, target);
201 gic_update(s);
204 static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
205 MemTxAttrs attrs)
207 uint16_t pending_irq = s->current_pending[cpu];
209 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
210 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
211 /* On a GIC without the security extensions, reading this register
212 * behaves in the same way as a secure access to a GIC with them.
214 bool secure = !s->security_extn || attrs.secure;
216 if (group == 0 && !secure) {
217 /* Group0 interrupts hidden from Non-secure access */
218 return 1023;
220 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
221 /* Group1 interrupts only seen by Secure access if
222 * AckCtl bit set.
224 return 1022;
227 return pending_irq;
230 static int gic_get_group_priority(GICState *s, int cpu, int irq)
232 /* Return the group priority of the specified interrupt
233 * (which is the top bits of its priority, with the number
234 * of bits masked determined by the applicable binary point register).
236 int bpr;
237 uint32_t mask;
239 if (gic_has_groups(s) &&
240 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
241 GIC_TEST_GROUP(irq, (1 << cpu))) {
242 bpr = s->abpr[cpu];
243 } else {
244 bpr = s->bpr[cpu];
247 /* a BPR of 0 means the group priority bits are [7:1];
248 * a BPR of 1 means they are [7:2], and so on down to
249 * a BPR of 7 meaning no group priority bits at all.
251 mask = ~0U << ((bpr & 7) + 1);
253 return GIC_GET_PRIORITY(irq, cpu) & mask;
256 static void gic_activate_irq(GICState *s, int cpu, int irq)
258 /* Set the appropriate Active Priority Register bit for this IRQ,
259 * and update the running priority.
261 int prio = gic_get_group_priority(s, cpu, irq);
262 int preemption_level = prio >> (GIC_MIN_BPR + 1);
263 int regno = preemption_level / 32;
264 int bitno = preemption_level % 32;
266 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
267 s->nsapr[regno][cpu] |= (1 << bitno);
268 } else {
269 s->apr[regno][cpu] |= (1 << bitno);
272 s->running_priority[cpu] = prio;
273 GIC_SET_ACTIVE(irq, 1 << cpu);
276 static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
278 /* Recalculate the current running priority for this CPU based
279 * on the set bits in the Active Priority Registers.
281 int i;
282 for (i = 0; i < GIC_NR_APRS; i++) {
283 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
284 if (!apr) {
285 continue;
287 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
289 return 0x100;
292 static void gic_drop_prio(GICState *s, int cpu, int group)
294 /* Drop the priority of the currently active interrupt in the
295 * specified group.
297 * Note that we can guarantee (because of the requirement to nest
298 * GICC_IAR reads [which activate an interrupt and raise priority]
299 * with GICC_EOIR writes [which drop the priority for the interrupt])
300 * that the interrupt we're being called for is the highest priority
301 * active interrupt, meaning that it has the lowest set bit in the
302 * APR registers.
304 * If the guest does not honour the ordering constraints then the
305 * behaviour of the GIC is UNPREDICTABLE, which for us means that
306 * the values of the APR registers might become incorrect and the
307 * running priority will be wrong, so interrupts that should preempt
308 * might not do so, and interrupts that should not preempt might do so.
310 int i;
312 for (i = 0; i < GIC_NR_APRS; i++) {
313 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
314 if (!*papr) {
315 continue;
317 /* Clear lowest set bit */
318 *papr &= *papr - 1;
319 break;
322 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
325 uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
327 int ret, irq, src;
328 int cm = 1 << cpu;
330 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
331 * for the case where this GIC supports grouping and the pending interrupt
332 * is in the wrong group.
334 irq = gic_get_current_pending_irq(s, cpu, attrs);
336 if (irq >= GIC_MAXIRQ) {
337 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
338 return irq;
341 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
342 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
343 return 1023;
346 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
347 /* Clear pending flags for both level and edge triggered interrupts.
348 * Level triggered IRQs will be reasserted once they become inactive.
350 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
351 ret = irq;
352 } else {
353 if (irq < GIC_NR_SGIS) {
354 /* Lookup the source CPU for the SGI and clear this in the
355 * sgi_pending map. Return the src and clear the overall pending
356 * state on this CPU if the SGI is not pending from any CPUs.
358 assert(s->sgi_pending[irq][cpu] != 0);
359 src = ctz32(s->sgi_pending[irq][cpu]);
360 s->sgi_pending[irq][cpu] &= ~(1 << src);
361 if (s->sgi_pending[irq][cpu] == 0) {
362 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
364 ret = irq | ((src & 0x7) << 10);
365 } else {
366 /* Clear pending state for both level and edge triggered
367 * interrupts. (level triggered interrupts with an active line
368 * remain pending, see gic_test_pending)
370 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
371 ret = irq;
375 gic_activate_irq(s, cpu, irq);
376 gic_update(s);
377 DPRINTF("ACK %d\n", irq);
378 return ret;
381 void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
382 MemTxAttrs attrs)
384 if (s->security_extn && !attrs.secure) {
385 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
386 return; /* Ignore Non-secure access of Group0 IRQ */
388 val = 0x80 | (val >> 1); /* Non-secure view */
391 if (irq < GIC_INTERNAL) {
392 s->priority1[irq][cpu] = val;
393 } else {
394 s->priority2[(irq) - GIC_INTERNAL] = val;
398 static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
399 MemTxAttrs attrs)
401 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
403 if (s->security_extn && !attrs.secure) {
404 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
405 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
407 prio = (prio << 1) & 0xff; /* Non-secure view */
409 return prio;
412 static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
413 MemTxAttrs attrs)
415 if (s->security_extn && !attrs.secure) {
416 if (s->priority_mask[cpu] & 0x80) {
417 /* Priority Mask in upper half */
418 pmask = 0x80 | (pmask >> 1);
419 } else {
420 /* Non-secure write ignored if priority mask is in lower half */
421 return;
424 s->priority_mask[cpu] = pmask;
427 static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
429 uint32_t pmask = s->priority_mask[cpu];
431 if (s->security_extn && !attrs.secure) {
432 if (pmask & 0x80) {
433 /* Priority Mask in upper half, return Non-secure view */
434 pmask = (pmask << 1) & 0xff;
435 } else {
436 /* Priority Mask in lower half, RAZ */
437 pmask = 0;
440 return pmask;
443 static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
445 uint32_t ret = s->cpu_ctlr[cpu];
447 if (s->security_extn && !attrs.secure) {
448 /* Construct the NS banked view of GICC_CTLR from the correct
449 * bits of the S banked view. We don't need to move the bypass
450 * control bits because we don't implement that (IMPDEF) part
451 * of the GIC architecture.
453 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
455 return ret;
458 static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
459 MemTxAttrs attrs)
461 uint32_t mask;
463 if (s->security_extn && !attrs.secure) {
464 /* The NS view can only write certain bits in the register;
465 * the rest are unchanged
467 mask = GICC_CTLR_EN_GRP1;
468 if (s->revision == 2) {
469 mask |= GICC_CTLR_EOIMODE_NS;
471 s->cpu_ctlr[cpu] &= ~mask;
472 s->cpu_ctlr[cpu] |= (value << 1) & mask;
473 } else {
474 if (s->revision == 2) {
475 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
476 } else {
477 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
479 s->cpu_ctlr[cpu] = value & mask;
481 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
482 "Group1 Interrupts %sabled\n", cpu,
483 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
484 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
487 static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
489 if (s->security_extn && !attrs.secure) {
490 if (s->running_priority[cpu] & 0x80) {
491 /* Running priority in upper half of range: return the Non-secure
492 * view of the priority.
494 return s->running_priority[cpu] << 1;
495 } else {
496 /* Running priority in lower half of range: RAZ */
497 return 0;
499 } else {
500 return s->running_priority[cpu];
504 /* Return true if we should split priority drop and interrupt deactivation,
505 * ie whether the relevant EOIMode bit is set.
507 static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
509 if (s->revision != 2) {
510 /* Before GICv2 prio-drop and deactivate are not separable */
511 return false;
513 if (s->security_extn && !attrs.secure) {
514 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
516 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
519 static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
521 int cm = 1 << cpu;
522 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
524 if (!gic_eoi_split(s, cpu, attrs)) {
525 /* This is UNPREDICTABLE; we choose to ignore it */
526 qemu_log_mask(LOG_GUEST_ERROR,
527 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
528 return;
531 if (s->security_extn && !attrs.secure && !group) {
532 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
533 return;
536 GIC_CLEAR_ACTIVE(irq, cm);
539 void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
541 int cm = 1 << cpu;
542 int group;
544 DPRINTF("EOI %d\n", irq);
545 if (irq >= s->num_irq) {
546 /* This handles two cases:
547 * 1. If software writes the ID of a spurious interrupt [ie 1023]
548 * to the GICC_EOIR, the GIC ignores that write.
549 * 2. If software writes the number of a non-existent interrupt
550 * this must be a subcase of "value written does not match the last
551 * valid interrupt value read from the Interrupt Acknowledge
552 * register" and so this is UNPREDICTABLE. We choose to ignore it.
554 return;
556 if (s->running_priority[cpu] == 0x100) {
557 return; /* No active IRQ. */
560 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
561 /* Mark level triggered interrupts as pending if they are still
562 raised. */
563 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
564 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
565 DPRINTF("Set %d pending mask %x\n", irq, cm);
566 GIC_SET_PENDING(irq, cm);
570 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
572 if (s->security_extn && !attrs.secure && !group) {
573 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
574 return;
577 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
578 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
579 * i.e. go ahead and complete the irq anyway.
582 gic_drop_prio(s, cpu, group);
584 /* In GICv2 the guest can choose to split priority-drop and deactivate */
585 if (!gic_eoi_split(s, cpu, attrs)) {
586 GIC_CLEAR_ACTIVE(irq, cm);
588 gic_update(s);
591 static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
593 GICState *s = (GICState *)opaque;
594 uint32_t res;
595 int irq;
596 int i;
597 int cpu;
598 int cm;
599 int mask;
601 cpu = gic_get_current_cpu(s);
602 cm = 1 << cpu;
603 if (offset < 0x100) {
604 if (offset == 0) { /* GICD_CTLR */
605 if (s->security_extn && !attrs.secure) {
606 /* The NS bank of this register is just an alias of the
607 * EnableGrp1 bit in the S bank version.
609 return extract32(s->ctlr, 1, 1);
610 } else {
611 return s->ctlr;
614 if (offset == 4)
615 /* Interrupt Controller Type Register */
616 return ((s->num_irq / 32) - 1)
617 | ((s->num_cpu - 1) << 5)
618 | (s->security_extn << 10);
619 if (offset < 0x08)
620 return 0;
621 if (offset >= 0x80) {
622 /* Interrupt Group Registers: these RAZ/WI if this is an NS
623 * access to a GIC with the security extensions, or if the GIC
624 * doesn't have groups at all.
626 res = 0;
627 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
628 /* Every byte offset holds 8 group status bits */
629 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
630 if (irq >= s->num_irq) {
631 goto bad_reg;
633 for (i = 0; i < 8; i++) {
634 if (GIC_TEST_GROUP(irq + i, cm)) {
635 res |= (1 << i);
639 return res;
641 goto bad_reg;
642 } else if (offset < 0x200) {
643 /* Interrupt Set/Clear Enable. */
644 if (offset < 0x180)
645 irq = (offset - 0x100) * 8;
646 else
647 irq = (offset - 0x180) * 8;
648 irq += GIC_BASE_IRQ;
649 if (irq >= s->num_irq)
650 goto bad_reg;
651 res = 0;
652 for (i = 0; i < 8; i++) {
653 if (GIC_TEST_ENABLED(irq + i, cm)) {
654 res |= (1 << i);
657 } else if (offset < 0x300) {
658 /* Interrupt Set/Clear Pending. */
659 if (offset < 0x280)
660 irq = (offset - 0x200) * 8;
661 else
662 irq = (offset - 0x280) * 8;
663 irq += GIC_BASE_IRQ;
664 if (irq >= s->num_irq)
665 goto bad_reg;
666 res = 0;
667 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
668 for (i = 0; i < 8; i++) {
669 if (gic_test_pending(s, irq + i, mask)) {
670 res |= (1 << i);
673 } else if (offset < 0x400) {
674 /* Interrupt Active. */
675 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
676 if (irq >= s->num_irq)
677 goto bad_reg;
678 res = 0;
679 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
680 for (i = 0; i < 8; i++) {
681 if (GIC_TEST_ACTIVE(irq + i, mask)) {
682 res |= (1 << i);
685 } else if (offset < 0x800) {
686 /* Interrupt Priority. */
687 irq = (offset - 0x400) + GIC_BASE_IRQ;
688 if (irq >= s->num_irq)
689 goto bad_reg;
690 res = gic_get_priority(s, cpu, irq, attrs);
691 } else if (offset < 0xc00) {
692 /* Interrupt CPU Target. */
693 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
694 /* For uniprocessor GICs these RAZ/WI */
695 res = 0;
696 } else {
697 irq = (offset - 0x800) + GIC_BASE_IRQ;
698 if (irq >= s->num_irq) {
699 goto bad_reg;
701 if (irq >= 29 && irq <= 31) {
702 res = cm;
703 } else {
704 res = GIC_TARGET(irq);
707 } else if (offset < 0xf00) {
708 /* Interrupt Configuration. */
709 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
710 if (irq >= s->num_irq)
711 goto bad_reg;
712 res = 0;
713 for (i = 0; i < 4; i++) {
714 if (GIC_TEST_MODEL(irq + i))
715 res |= (1 << (i * 2));
716 if (GIC_TEST_EDGE_TRIGGER(irq + i))
717 res |= (2 << (i * 2));
719 } else if (offset < 0xf10) {
720 goto bad_reg;
721 } else if (offset < 0xf30) {
722 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
723 goto bad_reg;
726 if (offset < 0xf20) {
727 /* GICD_CPENDSGIRn */
728 irq = (offset - 0xf10);
729 } else {
730 irq = (offset - 0xf20);
731 /* GICD_SPENDSGIRn */
734 res = s->sgi_pending[irq][cpu];
735 } else if (offset < 0xfd0) {
736 goto bad_reg;
737 } else if (offset < 0x1000) {
738 if (offset & 3) {
739 res = 0;
740 } else {
741 switch (s->revision) {
742 case REV_11MPCORE:
743 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
744 break;
745 case 1:
746 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
747 break;
748 case 2:
749 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
750 break;
751 case REV_NVIC:
752 /* Shouldn't be able to get here */
753 abort();
754 default:
755 res = 0;
758 } else {
759 g_assert_not_reached();
761 return res;
762 bad_reg:
763 qemu_log_mask(LOG_GUEST_ERROR,
764 "gic_dist_readb: Bad offset %x\n", (int)offset);
765 return 0;
768 static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
769 unsigned size, MemTxAttrs attrs)
771 switch (size) {
772 case 1:
773 *data = gic_dist_readb(opaque, offset, attrs);
774 return MEMTX_OK;
775 case 2:
776 *data = gic_dist_readb(opaque, offset, attrs);
777 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
778 return MEMTX_OK;
779 case 4:
780 *data = gic_dist_readb(opaque, offset, attrs);
781 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
782 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
783 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
784 return MEMTX_OK;
785 default:
786 return MEMTX_ERROR;
790 static void gic_dist_writeb(void *opaque, hwaddr offset,
791 uint32_t value, MemTxAttrs attrs)
793 GICState *s = (GICState *)opaque;
794 int irq;
795 int i;
796 int cpu;
798 cpu = gic_get_current_cpu(s);
799 if (offset < 0x100) {
800 if (offset == 0) {
801 if (s->security_extn && !attrs.secure) {
802 /* NS version is just an alias of the S version's bit 1 */
803 s->ctlr = deposit32(s->ctlr, 1, 1, value);
804 } else if (gic_has_groups(s)) {
805 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
806 } else {
807 s->ctlr = value & GICD_CTLR_EN_GRP0;
809 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
810 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
811 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
812 } else if (offset < 4) {
813 /* ignored. */
814 } else if (offset >= 0x80) {
815 /* Interrupt Group Registers: RAZ/WI for NS access to secure
816 * GIC, or for GICs without groups.
818 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
819 /* Every byte offset holds 8 group status bits */
820 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
821 if (irq >= s->num_irq) {
822 goto bad_reg;
824 for (i = 0; i < 8; i++) {
825 /* Group bits are banked for private interrupts */
826 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
827 if (value & (1 << i)) {
828 /* Group1 (Non-secure) */
829 GIC_SET_GROUP(irq + i, cm);
830 } else {
831 /* Group0 (Secure) */
832 GIC_CLEAR_GROUP(irq + i, cm);
836 } else {
837 goto bad_reg;
839 } else if (offset < 0x180) {
840 /* Interrupt Set Enable. */
841 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
842 if (irq >= s->num_irq)
843 goto bad_reg;
844 if (irq < GIC_NR_SGIS) {
845 value = 0xff;
848 for (i = 0; i < 8; i++) {
849 if (value & (1 << i)) {
850 int mask =
851 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
852 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
854 if (!GIC_TEST_ENABLED(irq + i, cm)) {
855 DPRINTF("Enabled IRQ %d\n", irq + i);
857 GIC_SET_ENABLED(irq + i, cm);
858 /* If a raised level triggered IRQ enabled then mark
859 is as pending. */
860 if (GIC_TEST_LEVEL(irq + i, mask)
861 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
862 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
863 GIC_SET_PENDING(irq + i, mask);
867 } else if (offset < 0x200) {
868 /* Interrupt Clear Enable. */
869 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
870 if (irq >= s->num_irq)
871 goto bad_reg;
872 if (irq < GIC_NR_SGIS) {
873 value = 0;
876 for (i = 0; i < 8; i++) {
877 if (value & (1 << i)) {
878 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
880 if (GIC_TEST_ENABLED(irq + i, cm)) {
881 DPRINTF("Disabled IRQ %d\n", irq + i);
883 GIC_CLEAR_ENABLED(irq + i, cm);
886 } else if (offset < 0x280) {
887 /* Interrupt Set Pending. */
888 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
889 if (irq >= s->num_irq)
890 goto bad_reg;
891 if (irq < GIC_NR_SGIS) {
892 value = 0;
895 for (i = 0; i < 8; i++) {
896 if (value & (1 << i)) {
897 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
900 } else if (offset < 0x300) {
901 /* Interrupt Clear Pending. */
902 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
903 if (irq >= s->num_irq)
904 goto bad_reg;
905 if (irq < GIC_NR_SGIS) {
906 value = 0;
909 for (i = 0; i < 8; i++) {
910 /* ??? This currently clears the pending bit for all CPUs, even
911 for per-CPU interrupts. It's unclear whether this is the
912 corect behavior. */
913 if (value & (1 << i)) {
914 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
917 } else if (offset < 0x400) {
918 /* Interrupt Active. */
919 goto bad_reg;
920 } else if (offset < 0x800) {
921 /* Interrupt Priority. */
922 irq = (offset - 0x400) + GIC_BASE_IRQ;
923 if (irq >= s->num_irq)
924 goto bad_reg;
925 gic_set_priority(s, cpu, irq, value, attrs);
926 } else if (offset < 0xc00) {
927 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
928 * annoying exception of the 11MPCore's GIC.
930 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
931 irq = (offset - 0x800) + GIC_BASE_IRQ;
932 if (irq >= s->num_irq) {
933 goto bad_reg;
935 if (irq < 29) {
936 value = 0;
937 } else if (irq < GIC_INTERNAL) {
938 value = ALL_CPU_MASK;
940 s->irq_target[irq] = value & ALL_CPU_MASK;
942 } else if (offset < 0xf00) {
943 /* Interrupt Configuration. */
944 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
945 if (irq >= s->num_irq)
946 goto bad_reg;
947 if (irq < GIC_NR_SGIS)
948 value |= 0xaa;
949 for (i = 0; i < 4; i++) {
950 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
951 if (value & (1 << (i * 2))) {
952 GIC_SET_MODEL(irq + i);
953 } else {
954 GIC_CLEAR_MODEL(irq + i);
957 if (value & (2 << (i * 2))) {
958 GIC_SET_EDGE_TRIGGER(irq + i);
959 } else {
960 GIC_CLEAR_EDGE_TRIGGER(irq + i);
963 } else if (offset < 0xf10) {
964 /* 0xf00 is only handled for 32-bit writes. */
965 goto bad_reg;
966 } else if (offset < 0xf20) {
967 /* GICD_CPENDSGIRn */
968 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
969 goto bad_reg;
971 irq = (offset - 0xf10);
973 s->sgi_pending[irq][cpu] &= ~value;
974 if (s->sgi_pending[irq][cpu] == 0) {
975 GIC_CLEAR_PENDING(irq, 1 << cpu);
977 } else if (offset < 0xf30) {
978 /* GICD_SPENDSGIRn */
979 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
980 goto bad_reg;
982 irq = (offset - 0xf20);
984 GIC_SET_PENDING(irq, 1 << cpu);
985 s->sgi_pending[irq][cpu] |= value;
986 } else {
987 goto bad_reg;
989 gic_update(s);
990 return;
991 bad_reg:
992 qemu_log_mask(LOG_GUEST_ERROR,
993 "gic_dist_writeb: Bad offset %x\n", (int)offset);
996 static void gic_dist_writew(void *opaque, hwaddr offset,
997 uint32_t value, MemTxAttrs attrs)
999 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1000 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1003 static void gic_dist_writel(void *opaque, hwaddr offset,
1004 uint32_t value, MemTxAttrs attrs)
1006 GICState *s = (GICState *)opaque;
1007 if (offset == 0xf00) {
1008 int cpu;
1009 int irq;
1010 int mask;
1011 int target_cpu;
1013 cpu = gic_get_current_cpu(s);
1014 irq = value & 0x3ff;
1015 switch ((value >> 24) & 3) {
1016 case 0:
1017 mask = (value >> 16) & ALL_CPU_MASK;
1018 break;
1019 case 1:
1020 mask = ALL_CPU_MASK ^ (1 << cpu);
1021 break;
1022 case 2:
1023 mask = 1 << cpu;
1024 break;
1025 default:
1026 DPRINTF("Bad Soft Int target filter\n");
1027 mask = ALL_CPU_MASK;
1028 break;
1030 GIC_SET_PENDING(irq, mask);
1031 target_cpu = ctz32(mask);
1032 while (target_cpu < GIC_NCPU) {
1033 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1034 mask &= ~(1 << target_cpu);
1035 target_cpu = ctz32(mask);
1037 gic_update(s);
1038 return;
1040 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1041 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1044 static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1045 unsigned size, MemTxAttrs attrs)
1047 switch (size) {
1048 case 1:
1049 gic_dist_writeb(opaque, offset, data, attrs);
1050 return MEMTX_OK;
1051 case 2:
1052 gic_dist_writew(opaque, offset, data, attrs);
1053 return MEMTX_OK;
1054 case 4:
1055 gic_dist_writel(opaque, offset, data, attrs);
1056 return MEMTX_OK;
1057 default:
1058 return MEMTX_ERROR;
1062 static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1064 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1065 * second half of GICC_NSAPR.
1067 switch (GIC_MIN_BPR) {
1068 case 0:
1069 if (regno < 2) {
1070 return s->nsapr[regno + 2][cpu];
1072 break;
1073 case 1:
1074 if (regno == 0) {
1075 return s->nsapr[regno + 1][cpu];
1077 break;
1078 case 2:
1079 if (regno == 0) {
1080 return extract32(s->nsapr[0][cpu], 16, 16);
1082 break;
1083 case 3:
1084 if (regno == 0) {
1085 return extract32(s->nsapr[0][cpu], 8, 8);
1087 break;
1088 default:
1089 g_assert_not_reached();
1091 return 0;
1094 static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1095 uint32_t value)
1097 /* Write the Nonsecure view of GICC_APR<regno>. */
1098 switch (GIC_MIN_BPR) {
1099 case 0:
1100 if (regno < 2) {
1101 s->nsapr[regno + 2][cpu] = value;
1103 break;
1104 case 1:
1105 if (regno == 0) {
1106 s->nsapr[regno + 1][cpu] = value;
1108 break;
1109 case 2:
1110 if (regno == 0) {
1111 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1113 break;
1114 case 3:
1115 if (regno == 0) {
1116 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1118 break;
1119 default:
1120 g_assert_not_reached();
1124 static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1125 uint64_t *data, MemTxAttrs attrs)
1127 switch (offset) {
1128 case 0x00: /* Control */
1129 *data = gic_get_cpu_control(s, cpu, attrs);
1130 break;
1131 case 0x04: /* Priority mask */
1132 *data = gic_get_priority_mask(s, cpu, attrs);
1133 break;
1134 case 0x08: /* Binary Point */
1135 if (s->security_extn && !attrs.secure) {
1136 /* BPR is banked. Non-secure copy stored in ABPR. */
1137 *data = s->abpr[cpu];
1138 } else {
1139 *data = s->bpr[cpu];
1141 break;
1142 case 0x0c: /* Acknowledge */
1143 *data = gic_acknowledge_irq(s, cpu, attrs);
1144 break;
1145 case 0x14: /* Running Priority */
1146 *data = gic_get_running_priority(s, cpu, attrs);
1147 break;
1148 case 0x18: /* Highest Pending Interrupt */
1149 *data = gic_get_current_pending_irq(s, cpu, attrs);
1150 break;
1151 case 0x1c: /* Aliased Binary Point */
1152 /* GIC v2, no security: ABPR
1153 * GIC v1, no security: not implemented (RAZ/WI)
1154 * With security extensions, secure access: ABPR (alias of NS BPR)
1155 * With security extensions, nonsecure access: RAZ/WI
1157 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1158 *data = 0;
1159 } else {
1160 *data = s->abpr[cpu];
1162 break;
1163 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1165 int regno = (offset - 0xd0) / 4;
1167 if (regno >= GIC_NR_APRS || s->revision != 2) {
1168 *data = 0;
1169 } else if (s->security_extn && !attrs.secure) {
1170 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1171 *data = gic_apr_ns_view(s, regno, cpu);
1172 } else {
1173 *data = s->apr[regno][cpu];
1175 break;
1177 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1179 int regno = (offset - 0xe0) / 4;
1181 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1182 (s->security_extn && !attrs.secure)) {
1183 *data = 0;
1184 } else {
1185 *data = s->nsapr[regno][cpu];
1187 break;
1189 default:
1190 qemu_log_mask(LOG_GUEST_ERROR,
1191 "gic_cpu_read: Bad offset %x\n", (int)offset);
1192 return MEMTX_ERROR;
1194 return MEMTX_OK;
1197 static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1198 uint32_t value, MemTxAttrs attrs)
1200 switch (offset) {
1201 case 0x00: /* Control */
1202 gic_set_cpu_control(s, cpu, value, attrs);
1203 break;
1204 case 0x04: /* Priority mask */
1205 gic_set_priority_mask(s, cpu, value, attrs);
1206 break;
1207 case 0x08: /* Binary Point */
1208 if (s->security_extn && !attrs.secure) {
1209 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1210 } else {
1211 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1213 break;
1214 case 0x10: /* End Of Interrupt */
1215 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1216 return MEMTX_OK;
1217 case 0x1c: /* Aliased Binary Point */
1218 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1219 /* unimplemented, or NS access: RAZ/WI */
1220 return MEMTX_OK;
1221 } else {
1222 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1224 break;
1225 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1227 int regno = (offset - 0xd0) / 4;
1229 if (regno >= GIC_NR_APRS || s->revision != 2) {
1230 return MEMTX_OK;
1232 if (s->security_extn && !attrs.secure) {
1233 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1234 gic_apr_write_ns_view(s, regno, cpu, value);
1235 } else {
1236 s->apr[regno][cpu] = value;
1238 break;
1240 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1242 int regno = (offset - 0xe0) / 4;
1244 if (regno >= GIC_NR_APRS || s->revision != 2) {
1245 return MEMTX_OK;
1247 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1248 return MEMTX_OK;
1250 s->nsapr[regno][cpu] = value;
1251 break;
1253 case 0x1000:
1254 /* GICC_DIR */
1255 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1256 break;
1257 default:
1258 qemu_log_mask(LOG_GUEST_ERROR,
1259 "gic_cpu_write: Bad offset %x\n", (int)offset);
1260 return MEMTX_ERROR;
1262 gic_update(s);
1263 return MEMTX_OK;
1266 /* Wrappers to read/write the GIC CPU interface for the current CPU */
1267 static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1268 unsigned size, MemTxAttrs attrs)
1270 GICState *s = (GICState *)opaque;
1271 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1274 static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1275 uint64_t value, unsigned size,
1276 MemTxAttrs attrs)
1278 GICState *s = (GICState *)opaque;
1279 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1282 /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1283 * These just decode the opaque pointer into GICState* + cpu id.
1285 static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1286 unsigned size, MemTxAttrs attrs)
1288 GICState **backref = (GICState **)opaque;
1289 GICState *s = *backref;
1290 int id = (backref - s->backref);
1291 return gic_cpu_read(s, id, addr, data, attrs);
1294 static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1295 uint64_t value, unsigned size,
1296 MemTxAttrs attrs)
1298 GICState **backref = (GICState **)opaque;
1299 GICState *s = *backref;
1300 int id = (backref - s->backref);
1301 return gic_cpu_write(s, id, addr, value, attrs);
1304 static const MemoryRegionOps gic_ops[2] = {
1306 .read_with_attrs = gic_dist_read,
1307 .write_with_attrs = gic_dist_write,
1308 .endianness = DEVICE_NATIVE_ENDIAN,
1311 .read_with_attrs = gic_thiscpu_read,
1312 .write_with_attrs = gic_thiscpu_write,
1313 .endianness = DEVICE_NATIVE_ENDIAN,
1317 static const MemoryRegionOps gic_cpu_ops = {
1318 .read_with_attrs = gic_do_cpu_read,
1319 .write_with_attrs = gic_do_cpu_write,
1320 .endianness = DEVICE_NATIVE_ENDIAN,
1323 /* This function is used by nvic model */
1324 void gic_init_irqs_and_distributor(GICState *s)
1326 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1329 static void arm_gic_realize(DeviceState *dev, Error **errp)
1331 /* Device instance realize function for the GIC sysbus device */
1332 int i;
1333 GICState *s = ARM_GIC(dev);
1334 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1335 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
1336 Error *local_err = NULL;
1338 agc->parent_realize(dev, &local_err);
1339 if (local_err) {
1340 error_propagate(errp, local_err);
1341 return;
1344 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1345 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
1347 /* Extra core-specific regions for the CPU interfaces. This is
1348 * necessary for "franken-GIC" implementations, for example on
1349 * Exynos 4.
1350 * NB that the memory region size of 0x100 applies for the 11MPCore
1351 * and also cores following the GIC v1 spec (ie A9).
1352 * GIC v2 defines a larger memory region (0x1000) so this will need
1353 * to be extended when we implement A15.
1355 for (i = 0; i < s->num_cpu; i++) {
1356 s->backref[i] = s;
1357 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1358 &s->backref[i], "gic_cpu", 0x100);
1359 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
1363 static void arm_gic_class_init(ObjectClass *klass, void *data)
1365 DeviceClass *dc = DEVICE_CLASS(klass);
1366 ARMGICClass *agc = ARM_GIC_CLASS(klass);
1368 agc->parent_realize = dc->realize;
1369 dc->realize = arm_gic_realize;
1372 static const TypeInfo arm_gic_info = {
1373 .name = TYPE_ARM_GIC,
1374 .parent = TYPE_ARM_GIC_COMMON,
1375 .instance_size = sizeof(GICState),
1376 .class_init = arm_gic_class_init,
1377 .class_size = sizeof(ARMGICClass),
1380 static void arm_gic_register_types(void)
1382 type_register_static(&arm_gic_info);
1385 type_init(arm_gic_register_types)