hw/sd: sd: Remove duplicated codes in single/multiple block read/write
[qemu/ar7.git] / softmmu / physmem.c
blob19e0aa9836ae2c26796d21455c2626c560fb9777
1 /*
2 * RAM allocation and memory access
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "cpu.h"
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
77 #include "monitor/monitor.h"
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
83 //#define DEBUG_SUBPAGE
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
96 static MemoryRegion io_mem_unassigned;
98 typedef struct PhysPageEntry PhysPageEntry;
100 struct PhysPageEntry {
101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102 uint32_t skip : 6;
103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104 uint32_t ptr : 26;
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
109 /* Size of the L2 (and L3, etc) page tables. */
110 #define ADDR_SPACE_BITS 64
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
117 typedef PhysPageEntry Node[P_L2_SIZE];
119 typedef struct PhysPageMap {
120 struct rcu_head rcu;
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128 } PhysPageMap;
130 struct AddressSpaceDispatch {
131 MemoryRegionSection *mru_section;
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
135 PhysPageEntry phys_map;
136 PhysPageMap map;
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141 MemoryRegion iomem;
142 FlatView *fv;
143 hwaddr base;
144 uint16_t sub_section[];
145 } subpage_t;
147 #define PHYS_SECTION_UNASSIGNED 0
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
161 struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
168 struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
176 static unsigned alloc_hint = 16;
177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180 alloc_hint = map->nodes_nb_alloc;
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
186 unsigned i;
187 uint32_t ret;
188 PhysPageEntry e;
189 PhysPageEntry *p;
191 ret = map->nodes_nb++;
192 p = map->nodes[ret];
193 assert(ret != PHYS_MAP_NODE_NIL);
194 assert(ret != map->nodes_nb_alloc);
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198 for (i = 0; i < P_L2_SIZE; ++i) {
199 memcpy(&p[i], &e, sizeof(e));
201 return ret;
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205 hwaddr *index, uint64_t *nb, uint16_t leaf,
206 int level)
208 PhysPageEntry *p;
209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212 lp->ptr = phys_map_node_alloc(map, level == 0);
214 p = map->nodes[lp->ptr];
215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
217 while (*nb && lp < &p[P_L2_SIZE]) {
218 if ((*index & (step - 1)) == 0 && *nb >= step) {
219 lp->skip = 0;
220 lp->ptr = leaf;
221 *index += step;
222 *nb -= step;
223 } else {
224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
226 ++lp;
230 static void phys_page_set(AddressSpaceDispatch *d,
231 hwaddr index, uint64_t nb,
232 uint16_t leaf)
234 /* Wildly overreserve - it doesn't matter much. */
235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
263 phys_page_compact(&p[i], nodes);
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
272 assert(valid_ptr < P_L2_SIZE);
274 /* Don't compress if it won't fit in the # of bits we have. */
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277 return;
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
296 if (d->phys_map.skip) {
297 phys_page_compact(&d->phys_map, d->map.nodes);
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
307 return int128_gethi(section->size) ||
308 range_covers_byte(section->offset_within_address_space,
309 int128_getlo(section->size), addr);
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
317 hwaddr index = addr >> TARGET_PAGE_BITS;
318 int i;
320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
322 return &sections[PHYS_SECTION_UNASSIGNED];
324 p = nodes[lp.ptr];
325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
328 if (section_covers_addr(&sections[lp.ptr], addr)) {
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337 hwaddr addr,
338 bool resolve_subpage)
340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
341 subpage_t *subpage;
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
345 section = phys_page_find(d, addr);
346 qatomic_set(&d->mru_section, section);
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
352 return section;
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358 hwaddr *plen, bool resolve_subpage)
360 MemoryRegionSection *section;
361 MemoryRegion *mr;
362 Int128 diff;
364 section = address_space_lookup_region(d, addr, resolve_subpage);
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
371 mr = section->mr;
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
384 if (memory_region_is_ram(mr)) {
385 diff = int128_sub(section->size, int128_make64(addr));
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 return section;
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
408 * @attrs: transaction attributes
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
458 return *section;
460 unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
479 * @target_as: the address space targeted by the IOMMU
480 * @attrs: memory transaction attributes
482 * This function is called from RCU critical section
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
489 bool is_write,
490 bool is_mmio,
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
494 MemoryRegionSection *section;
495 IOMMUMemoryRegion *iommu_mr;
496 hwaddr plen = (hwaddr)(-1);
498 if (!plen_out) {
499 plen_out = &plen;
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
511 target_as, attrs);
513 if (page_mask_out) {
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
518 return *section;
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523 bool is_write, MemTxAttrs attrs)
525 MemoryRegionSection section;
526 hwaddr xlat, page_mask;
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
545 return (IOMMUTLBEntry) {
546 .target_as = as,
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
554 iotlb_fail:
555 return (IOMMUTLBEntry) {0};
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
563 MemoryRegion *mr;
564 MemoryRegionSection section;
565 AddressSpace *as = NULL;
567 /* This can be MMIO, so setup MMIO bit. */
568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569 is_write, true, &as, attrs);
570 mr = section.mr;
572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574 *plen = MIN(page, *plen);
577 return mr;
580 typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586 } TCGIOMMUNotifier;
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
592 if (!notifier->active) {
593 return;
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613 TCGIOMMUNotifier *notifier = NULL;
614 int i;
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
641 HWADDR_MAX,
642 iommu_idx);
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
647 if (!notifier->active) {
648 notifier->active = true;
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661 g_free(notifier);
663 g_array_free(cpu->iommu_notifiers, true);
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
677 MemoryRegionSection *section;
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
682 AddressSpaceDispatch *d =
683 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 for (;;) {
686 section = address_space_translate_internal(d, addr, &addr, plen, false);
688 iommu_mr = memory_region_get_iommu(section->mr);
689 if (!iommu_mr) {
690 break;
693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698 * doesn't short-cut its translation table walk.
700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702 | (addr & iotlb.addr_mask));
703 /* Update the caller's prot bits to remove permissions the IOMMU
704 * is giving us a failure response for. If we get down to no
705 * permissions left at all we can give up now.
707 if (!(iotlb.perm & IOMMU_RO)) {
708 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 if (!(iotlb.perm & IOMMU_WO)) {
711 *prot &= ~PAGE_WRITE;
714 if (!*prot) {
715 goto translate_fail;
718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
721 assert(!memory_region_is_iommu(section->mr));
722 *xlat = addr;
723 return section;
725 translate_fail:
726 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
729 void cpu_address_space_init(CPUState *cpu, int asidx,
730 const char *prefix, MemoryRegion *mr)
732 CPUAddressSpace *newas;
733 AddressSpace *as = g_new0(AddressSpace, 1);
734 char *as_name;
736 assert(mr);
737 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
738 address_space_init(as, mr, as_name);
739 g_free(as_name);
741 /* Target code should have set num_ases before calling us */
742 assert(asidx < cpu->num_ases);
744 if (asidx == 0) {
745 /* address space 0 gets the convenience alias */
746 cpu->as = as;
749 /* KVM cannot currently support multiple address spaces. */
750 assert(asidx == 0 || !kvm_enabled());
752 if (!cpu->cpu_ases) {
753 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
756 newas = &cpu->cpu_ases[asidx];
757 newas->cpu = cpu;
758 newas->as = as;
759 if (tcg_enabled()) {
760 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
761 newas->tcg_as_listener.commit = tcg_commit;
762 memory_listener_register(&newas->tcg_as_listener, as);
766 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
768 /* Return the AddressSpace corresponding to the specified index */
769 return cpu->cpu_ases[asidx].as;
772 /* Add a watchpoint. */
773 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
774 int flags, CPUWatchpoint **watchpoint)
776 CPUWatchpoint *wp;
777 vaddr in_page;
779 /* forbid ranges which are empty or run off the end of the address space */
780 if (len == 0 || (addr + len - 1) < addr) {
781 error_report("tried to set invalid watchpoint at %"
782 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
783 return -EINVAL;
785 wp = g_malloc(sizeof(*wp));
787 wp->vaddr = addr;
788 wp->len = len;
789 wp->flags = flags;
791 /* keep all GDB-injected watchpoints in front */
792 if (flags & BP_GDB) {
793 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
794 } else {
795 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
798 in_page = -(addr | TARGET_PAGE_MASK);
799 if (len <= in_page) {
800 tlb_flush_page(cpu, addr);
801 } else {
802 tlb_flush(cpu);
805 if (watchpoint)
806 *watchpoint = wp;
807 return 0;
810 /* Remove a specific watchpoint. */
811 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
812 int flags)
814 CPUWatchpoint *wp;
816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
817 if (addr == wp->vaddr && len == wp->len
818 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
819 cpu_watchpoint_remove_by_ref(cpu, wp);
820 return 0;
823 return -ENOENT;
826 /* Remove a specific watchpoint by reference. */
827 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
829 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
831 tlb_flush_page(cpu, watchpoint->vaddr);
833 g_free(watchpoint);
836 /* Remove all matching watchpoints. */
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
839 CPUWatchpoint *wp, *next;
841 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
842 if (wp->flags & mask) {
843 cpu_watchpoint_remove_by_ref(cpu, wp);
848 #ifdef CONFIG_TCG
849 /* Return true if this watchpoint address matches the specified
850 * access (ie the address range covered by the watchpoint overlaps
851 * partially or completely with the address range covered by the
852 * access).
854 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
855 vaddr addr, vaddr len)
857 /* We know the lengths are non-zero, but a little caution is
858 * required to avoid errors in the case where the range ends
859 * exactly at the top of the address space and so addr + len
860 * wraps round to zero.
862 vaddr wpend = wp->vaddr + wp->len - 1;
863 vaddr addrend = addr + len - 1;
865 return !(addr > wpend || wp->vaddr > addrend);
868 /* Return flags for watchpoints that match addr + prot. */
869 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
871 CPUWatchpoint *wp;
872 int ret = 0;
874 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
875 if (watchpoint_address_matches(wp, addr, len)) {
876 ret |= wp->flags;
879 return ret;
882 /* Generate a debug exception if a watchpoint has been hit. */
883 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
884 MemTxAttrs attrs, int flags, uintptr_t ra)
886 CPUClass *cc = CPU_GET_CLASS(cpu);
887 CPUWatchpoint *wp;
889 assert(tcg_enabled());
890 if (cpu->watchpoint_hit) {
892 * We re-entered the check after replacing the TB.
893 * Now raise the debug interrupt so that it will
894 * trigger after the current instruction.
896 qemu_mutex_lock_iothread();
897 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
898 qemu_mutex_unlock_iothread();
899 return;
902 if (cc->tcg_ops->adjust_watchpoint_address) {
903 /* this is currently used only by ARM BE32 */
904 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
906 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
907 if (watchpoint_address_matches(wp, addr, len)
908 && (wp->flags & flags)) {
909 if (replay_running_debug()) {
911 * Don't process the watchpoints when we are
912 * in a reverse debugging operation.
914 replay_breakpoint();
915 return;
917 if (flags == BP_MEM_READ) {
918 wp->flags |= BP_WATCHPOINT_HIT_READ;
919 } else {
920 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
922 wp->hitaddr = MAX(addr, wp->vaddr);
923 wp->hitattrs = attrs;
924 if (!cpu->watchpoint_hit) {
925 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
926 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
927 wp->flags &= ~BP_WATCHPOINT_HIT;
928 continue;
930 cpu->watchpoint_hit = wp;
932 mmap_lock();
933 tb_check_watchpoint(cpu, ra);
934 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
935 cpu->exception_index = EXCP_DEBUG;
936 mmap_unlock();
937 cpu_loop_exit_restore(cpu, ra);
938 } else {
939 /* Force execution of one insn next time. */
940 cpu->cflags_next_tb = 1 | curr_cflags();
941 mmap_unlock();
942 if (ra) {
943 cpu_restore_state(cpu, ra, true);
945 cpu_loop_exit_noexc(cpu);
948 } else {
949 wp->flags &= ~BP_WATCHPOINT_HIT;
954 #endif /* CONFIG_TCG */
956 /* Called from RCU critical section */
957 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
959 RAMBlock *block;
961 block = qatomic_rcu_read(&ram_list.mru_block);
962 if (block && addr - block->offset < block->max_length) {
963 return block;
965 RAMBLOCK_FOREACH(block) {
966 if (addr - block->offset < block->max_length) {
967 goto found;
971 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
972 abort();
974 found:
975 /* It is safe to write mru_block outside the iothread lock. This
976 * is what happens:
978 * mru_block = xxx
979 * rcu_read_unlock()
980 * xxx removed from list
981 * rcu_read_lock()
982 * read mru_block
983 * mru_block = NULL;
984 * call_rcu(reclaim_ramblock, xxx);
985 * rcu_read_unlock()
987 * qatomic_rcu_set is not needed here. The block was already published
988 * when it was placed into the list. Here we're just making an extra
989 * copy of the pointer.
991 ram_list.mru_block = block;
992 return block;
995 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
997 CPUState *cpu;
998 ram_addr_t start1;
999 RAMBlock *block;
1000 ram_addr_t end;
1002 assert(tcg_enabled());
1003 end = TARGET_PAGE_ALIGN(start + length);
1004 start &= TARGET_PAGE_MASK;
1006 RCU_READ_LOCK_GUARD();
1007 block = qemu_get_ram_block(start);
1008 assert(block == qemu_get_ram_block(end - 1));
1009 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1010 CPU_FOREACH(cpu) {
1011 tlb_reset_dirty(cpu, start1, length);
1015 /* Note: start and end must be within the same ram block. */
1016 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1017 ram_addr_t length,
1018 unsigned client)
1020 DirtyMemoryBlocks *blocks;
1021 unsigned long end, page, start_page;
1022 bool dirty = false;
1023 RAMBlock *ramblock;
1024 uint64_t mr_offset, mr_size;
1026 if (length == 0) {
1027 return false;
1030 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1031 start_page = start >> TARGET_PAGE_BITS;
1032 page = start_page;
1034 WITH_RCU_READ_LOCK_GUARD() {
1035 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1036 ramblock = qemu_get_ram_block(start);
1037 /* Range sanity check on the ramblock */
1038 assert(start >= ramblock->offset &&
1039 start + length <= ramblock->offset + ramblock->used_length);
1041 while (page < end) {
1042 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1043 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1044 unsigned long num = MIN(end - page,
1045 DIRTY_MEMORY_BLOCK_SIZE - offset);
1047 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1048 offset, num);
1049 page += num;
1052 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1053 mr_size = (end - start_page) << TARGET_PAGE_BITS;
1054 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1057 if (dirty && tcg_enabled()) {
1058 tlb_reset_dirty_range_all(start, length);
1061 return dirty;
1064 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1065 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1067 DirtyMemoryBlocks *blocks;
1068 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1069 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1070 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1071 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1072 DirtyBitmapSnapshot *snap;
1073 unsigned long page, end, dest;
1075 snap = g_malloc0(sizeof(*snap) +
1076 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1077 snap->start = first;
1078 snap->end = last;
1080 page = first >> TARGET_PAGE_BITS;
1081 end = last >> TARGET_PAGE_BITS;
1082 dest = 0;
1084 WITH_RCU_READ_LOCK_GUARD() {
1085 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1087 while (page < end) {
1088 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1089 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1090 unsigned long num = MIN(end - page,
1091 DIRTY_MEMORY_BLOCK_SIZE - offset);
1093 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1094 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1095 offset >>= BITS_PER_LEVEL;
1097 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1098 blocks->blocks[idx] + offset,
1099 num);
1100 page += num;
1101 dest += num >> BITS_PER_LEVEL;
1105 if (tcg_enabled()) {
1106 tlb_reset_dirty_range_all(start, length);
1109 memory_region_clear_dirty_bitmap(mr, offset, length);
1111 return snap;
1114 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1115 ram_addr_t start,
1116 ram_addr_t length)
1118 unsigned long page, end;
1120 assert(start >= snap->start);
1121 assert(start + length <= snap->end);
1123 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1124 page = (start - snap->start) >> TARGET_PAGE_BITS;
1126 while (page < end) {
1127 if (test_bit(page, snap->dirty)) {
1128 return true;
1130 page++;
1132 return false;
1135 /* Called from RCU critical section */
1136 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1137 MemoryRegionSection *section)
1139 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1140 return section - d->map.sections;
1143 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1144 uint16_t section);
1145 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1147 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1148 qemu_anon_ram_alloc;
1151 * Set a custom physical guest memory alloator.
1152 * Accelerators with unusual needs may need this. Hopefully, we can
1153 * get rid of it eventually.
1155 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1157 phys_mem_alloc = alloc;
1160 static uint16_t phys_section_add(PhysPageMap *map,
1161 MemoryRegionSection *section)
1163 /* The physical section number is ORed with a page-aligned
1164 * pointer to produce the iotlb entries. Thus it should
1165 * never overflow into the page-aligned value.
1167 assert(map->sections_nb < TARGET_PAGE_SIZE);
1169 if (map->sections_nb == map->sections_nb_alloc) {
1170 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1171 map->sections = g_renew(MemoryRegionSection, map->sections,
1172 map->sections_nb_alloc);
1174 map->sections[map->sections_nb] = *section;
1175 memory_region_ref(section->mr);
1176 return map->sections_nb++;
1179 static void phys_section_destroy(MemoryRegion *mr)
1181 bool have_sub_page = mr->subpage;
1183 memory_region_unref(mr);
1185 if (have_sub_page) {
1186 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1187 object_unref(OBJECT(&subpage->iomem));
1188 g_free(subpage);
1192 static void phys_sections_free(PhysPageMap *map)
1194 while (map->sections_nb > 0) {
1195 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1196 phys_section_destroy(section->mr);
1198 g_free(map->sections);
1199 g_free(map->nodes);
1202 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1204 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1205 subpage_t *subpage;
1206 hwaddr base = section->offset_within_address_space
1207 & TARGET_PAGE_MASK;
1208 MemoryRegionSection *existing = phys_page_find(d, base);
1209 MemoryRegionSection subsection = {
1210 .offset_within_address_space = base,
1211 .size = int128_make64(TARGET_PAGE_SIZE),
1213 hwaddr start, end;
1215 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1217 if (!(existing->mr->subpage)) {
1218 subpage = subpage_init(fv, base);
1219 subsection.fv = fv;
1220 subsection.mr = &subpage->iomem;
1221 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1222 phys_section_add(&d->map, &subsection));
1223 } else {
1224 subpage = container_of(existing->mr, subpage_t, iomem);
1226 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1227 end = start + int128_get64(section->size) - 1;
1228 subpage_register(subpage, start, end,
1229 phys_section_add(&d->map, section));
1233 static void register_multipage(FlatView *fv,
1234 MemoryRegionSection *section)
1236 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1237 hwaddr start_addr = section->offset_within_address_space;
1238 uint16_t section_index = phys_section_add(&d->map, section);
1239 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1240 TARGET_PAGE_BITS));
1242 assert(num_pages);
1243 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1247 * The range in *section* may look like this:
1249 * |s|PPPPPPP|s|
1251 * where s stands for subpage and P for page.
1253 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1255 MemoryRegionSection remain = *section;
1256 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1258 /* register first subpage */
1259 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1260 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1261 - remain.offset_within_address_space;
1263 MemoryRegionSection now = remain;
1264 now.size = int128_min(int128_make64(left), now.size);
1265 register_subpage(fv, &now);
1266 if (int128_eq(remain.size, now.size)) {
1267 return;
1269 remain.size = int128_sub(remain.size, now.size);
1270 remain.offset_within_address_space += int128_get64(now.size);
1271 remain.offset_within_region += int128_get64(now.size);
1274 /* register whole pages */
1275 if (int128_ge(remain.size, page_size)) {
1276 MemoryRegionSection now = remain;
1277 now.size = int128_and(now.size, int128_neg(page_size));
1278 register_multipage(fv, &now);
1279 if (int128_eq(remain.size, now.size)) {
1280 return;
1282 remain.size = int128_sub(remain.size, now.size);
1283 remain.offset_within_address_space += int128_get64(now.size);
1284 remain.offset_within_region += int128_get64(now.size);
1287 /* register last subpage */
1288 register_subpage(fv, &remain);
1291 void qemu_flush_coalesced_mmio_buffer(void)
1293 if (kvm_enabled())
1294 kvm_flush_coalesced_mmio_buffer();
1297 void qemu_mutex_lock_ramlist(void)
1299 qemu_mutex_lock(&ram_list.mutex);
1302 void qemu_mutex_unlock_ramlist(void)
1304 qemu_mutex_unlock(&ram_list.mutex);
1307 void ram_block_dump(Monitor *mon)
1309 RAMBlock *block;
1310 char *psize;
1312 RCU_READ_LOCK_GUARD();
1313 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1314 "Block Name", "PSize", "Offset", "Used", "Total");
1315 RAMBLOCK_FOREACH(block) {
1316 psize = size_to_str(block->page_size);
1317 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1318 " 0x%016" PRIx64 "\n", block->idstr, psize,
1319 (uint64_t)block->offset,
1320 (uint64_t)block->used_length,
1321 (uint64_t)block->max_length);
1322 g_free(psize);
1326 #ifdef __linux__
1328 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1329 * may or may not name the same files / on the same filesystem now as
1330 * when we actually open and map them. Iterate over the file
1331 * descriptors instead, and use qemu_fd_getpagesize().
1333 static int find_min_backend_pagesize(Object *obj, void *opaque)
1335 long *hpsize_min = opaque;
1337 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1338 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1339 long hpsize = host_memory_backend_pagesize(backend);
1341 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1342 *hpsize_min = hpsize;
1346 return 0;
1349 static int find_max_backend_pagesize(Object *obj, void *opaque)
1351 long *hpsize_max = opaque;
1353 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1354 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1355 long hpsize = host_memory_backend_pagesize(backend);
1357 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1358 *hpsize_max = hpsize;
1362 return 0;
1366 * TODO: We assume right now that all mapped host memory backends are
1367 * used as RAM, however some might be used for different purposes.
1369 long qemu_minrampagesize(void)
1371 long hpsize = LONG_MAX;
1372 Object *memdev_root = object_resolve_path("/objects", NULL);
1374 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1375 return hpsize;
1378 long qemu_maxrampagesize(void)
1380 long pagesize = 0;
1381 Object *memdev_root = object_resolve_path("/objects", NULL);
1383 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1384 return pagesize;
1386 #else
1387 long qemu_minrampagesize(void)
1389 return qemu_real_host_page_size;
1391 long qemu_maxrampagesize(void)
1393 return qemu_real_host_page_size;
1395 #endif
1397 #ifdef CONFIG_POSIX
1398 static int64_t get_file_size(int fd)
1400 int64_t size;
1401 #if defined(__linux__)
1402 struct stat st;
1404 if (fstat(fd, &st) < 0) {
1405 return -errno;
1408 /* Special handling for devdax character devices */
1409 if (S_ISCHR(st.st_mode)) {
1410 g_autofree char *subsystem_path = NULL;
1411 g_autofree char *subsystem = NULL;
1413 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1414 major(st.st_rdev), minor(st.st_rdev));
1415 subsystem = g_file_read_link(subsystem_path, NULL);
1417 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1418 g_autofree char *size_path = NULL;
1419 g_autofree char *size_str = NULL;
1421 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1422 major(st.st_rdev), minor(st.st_rdev));
1424 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1425 return g_ascii_strtoll(size_str, NULL, 0);
1429 #endif /* defined(__linux__) */
1431 /* st.st_size may be zero for special files yet lseek(2) works */
1432 size = lseek(fd, 0, SEEK_END);
1433 if (size < 0) {
1434 return -errno;
1436 return size;
1439 static int64_t get_file_align(int fd)
1441 int64_t align = -1;
1442 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1443 struct stat st;
1445 if (fstat(fd, &st) < 0) {
1446 return -errno;
1449 /* Special handling for devdax character devices */
1450 if (S_ISCHR(st.st_mode)) {
1451 g_autofree char *path = NULL;
1452 g_autofree char *rpath = NULL;
1453 struct daxctl_ctx *ctx;
1454 struct daxctl_region *region;
1455 int rc = 0;
1457 path = g_strdup_printf("/sys/dev/char/%d:%d",
1458 major(st.st_rdev), minor(st.st_rdev));
1459 rpath = realpath(path, NULL);
1461 rc = daxctl_new(&ctx);
1462 if (rc) {
1463 return -1;
1466 daxctl_region_foreach(ctx, region) {
1467 if (strstr(rpath, daxctl_region_get_path(region))) {
1468 align = daxctl_region_get_align(region);
1469 break;
1472 daxctl_unref(ctx);
1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1476 return align;
1479 static int file_ram_open(const char *path,
1480 const char *region_name,
1481 bool readonly,
1482 bool *created,
1483 Error **errp)
1485 char *filename;
1486 char *sanitized_name;
1487 char *c;
1488 int fd = -1;
1490 *created = false;
1491 for (;;) {
1492 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1493 if (fd >= 0) {
1494 /* @path names an existing file, use it */
1495 break;
1497 if (errno == ENOENT) {
1498 /* @path names a file that doesn't exist, create it */
1499 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1500 if (fd >= 0) {
1501 *created = true;
1502 break;
1504 } else if (errno == EISDIR) {
1505 /* @path names a directory, create a file there */
1506 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1507 sanitized_name = g_strdup(region_name);
1508 for (c = sanitized_name; *c != '\0'; c++) {
1509 if (*c == '/') {
1510 *c = '_';
1514 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1515 sanitized_name);
1516 g_free(sanitized_name);
1518 fd = mkstemp(filename);
1519 if (fd >= 0) {
1520 unlink(filename);
1521 g_free(filename);
1522 break;
1524 g_free(filename);
1526 if (errno != EEXIST && errno != EINTR) {
1527 error_setg_errno(errp, errno,
1528 "can't open backing store %s for guest RAM",
1529 path);
1530 return -1;
1533 * Try again on EINTR and EEXIST. The latter happens when
1534 * something else creates the file between our two open().
1538 return fd;
1541 static void *file_ram_alloc(RAMBlock *block,
1542 ram_addr_t memory,
1543 int fd,
1544 bool readonly,
1545 bool truncate,
1546 off_t offset,
1547 Error **errp)
1549 void *area;
1551 block->page_size = qemu_fd_getpagesize(fd);
1552 if (block->mr->align % block->page_size) {
1553 error_setg(errp, "alignment 0x%" PRIx64
1554 " must be multiples of page size 0x%zx",
1555 block->mr->align, block->page_size);
1556 return NULL;
1557 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1558 error_setg(errp, "alignment 0x%" PRIx64
1559 " must be a power of two", block->mr->align);
1560 return NULL;
1562 block->mr->align = MAX(block->page_size, block->mr->align);
1563 #if defined(__s390x__)
1564 if (kvm_enabled()) {
1565 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1567 #endif
1569 if (memory < block->page_size) {
1570 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1571 "or larger than page size 0x%zx",
1572 memory, block->page_size);
1573 return NULL;
1576 memory = ROUND_UP(memory, block->page_size);
1579 * ftruncate is not supported by hugetlbfs in older
1580 * hosts, so don't bother bailing out on errors.
1581 * If anything goes wrong with it under other filesystems,
1582 * mmap will fail.
1584 * Do not truncate the non-empty backend file to avoid corrupting
1585 * the existing data in the file. Disabling shrinking is not
1586 * enough. For example, the current vNVDIMM implementation stores
1587 * the guest NVDIMM labels at the end of the backend file. If the
1588 * backend file is later extended, QEMU will not be able to find
1589 * those labels. Therefore, extending the non-empty backend file
1590 * is disabled as well.
1592 if (truncate && ftruncate(fd, memory)) {
1593 perror("ftruncate");
1596 area = qemu_ram_mmap(fd, memory, block->mr->align, readonly,
1597 block->flags & RAM_SHARED, block->flags & RAM_PMEM,
1598 offset);
1599 if (area == MAP_FAILED) {
1600 error_setg_errno(errp, errno,
1601 "unable to map backing store for guest RAM");
1602 return NULL;
1605 block->fd = fd;
1606 return area;
1608 #endif
1610 /* Allocate space within the ram_addr_t space that governs the
1611 * dirty bitmaps.
1612 * Called with the ramlist lock held.
1614 static ram_addr_t find_ram_offset(ram_addr_t size)
1616 RAMBlock *block, *next_block;
1617 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1619 assert(size != 0); /* it would hand out same offset multiple times */
1621 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1622 return 0;
1625 RAMBLOCK_FOREACH(block) {
1626 ram_addr_t candidate, next = RAM_ADDR_MAX;
1628 /* Align blocks to start on a 'long' in the bitmap
1629 * which makes the bitmap sync'ing take the fast path.
1631 candidate = block->offset + block->max_length;
1632 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1634 /* Search for the closest following block
1635 * and find the gap.
1637 RAMBLOCK_FOREACH(next_block) {
1638 if (next_block->offset >= candidate) {
1639 next = MIN(next, next_block->offset);
1643 /* If it fits remember our place and remember the size
1644 * of gap, but keep going so that we might find a smaller
1645 * gap to fill so avoiding fragmentation.
1647 if (next - candidate >= size && next - candidate < mingap) {
1648 offset = candidate;
1649 mingap = next - candidate;
1652 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1655 if (offset == RAM_ADDR_MAX) {
1656 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1657 (uint64_t)size);
1658 abort();
1661 trace_find_ram_offset(size, offset);
1663 return offset;
1666 static unsigned long last_ram_page(void)
1668 RAMBlock *block;
1669 ram_addr_t last = 0;
1671 RCU_READ_LOCK_GUARD();
1672 RAMBLOCK_FOREACH(block) {
1673 last = MAX(last, block->offset + block->max_length);
1675 return last >> TARGET_PAGE_BITS;
1678 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680 int ret;
1682 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1683 if (!machine_dump_guest_core(current_machine)) {
1684 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1685 if (ret) {
1686 perror("qemu_madvise");
1687 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1688 "but dump_guest_core=off specified\n");
1693 const char *qemu_ram_get_idstr(RAMBlock *rb)
1695 return rb->idstr;
1698 void *qemu_ram_get_host_addr(RAMBlock *rb)
1700 return rb->host;
1703 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1705 return rb->offset;
1708 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1710 return rb->used_length;
1713 bool qemu_ram_is_shared(RAMBlock *rb)
1715 return rb->flags & RAM_SHARED;
1718 /* Note: Only set at the start of postcopy */
1719 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1721 return rb->flags & RAM_UF_ZEROPAGE;
1724 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1726 rb->flags |= RAM_UF_ZEROPAGE;
1729 bool qemu_ram_is_migratable(RAMBlock *rb)
1731 return rb->flags & RAM_MIGRATABLE;
1734 void qemu_ram_set_migratable(RAMBlock *rb)
1736 rb->flags |= RAM_MIGRATABLE;
1739 void qemu_ram_unset_migratable(RAMBlock *rb)
1741 rb->flags &= ~RAM_MIGRATABLE;
1744 /* Called with iothread lock held. */
1745 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1747 RAMBlock *block;
1749 assert(new_block);
1750 assert(!new_block->idstr[0]);
1752 if (dev) {
1753 char *id = qdev_get_dev_path(dev);
1754 if (id) {
1755 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1756 g_free(id);
1759 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1761 RCU_READ_LOCK_GUARD();
1762 RAMBLOCK_FOREACH(block) {
1763 if (block != new_block &&
1764 !strcmp(block->idstr, new_block->idstr)) {
1765 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1766 new_block->idstr);
1767 abort();
1772 /* Called with iothread lock held. */
1773 void qemu_ram_unset_idstr(RAMBlock *block)
1775 /* FIXME: arch_init.c assumes that this is not called throughout
1776 * migration. Ignore the problem since hot-unplug during migration
1777 * does not work anyway.
1779 if (block) {
1780 memset(block->idstr, 0, sizeof(block->idstr));
1784 size_t qemu_ram_pagesize(RAMBlock *rb)
1786 return rb->page_size;
1789 /* Returns the largest size of page in use */
1790 size_t qemu_ram_pagesize_largest(void)
1792 RAMBlock *block;
1793 size_t largest = 0;
1795 RAMBLOCK_FOREACH(block) {
1796 largest = MAX(largest, qemu_ram_pagesize(block));
1799 return largest;
1802 static int memory_try_enable_merging(void *addr, size_t len)
1804 if (!machine_mem_merge(current_machine)) {
1805 /* disabled by the user */
1806 return 0;
1809 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1812 /* Only legal before guest might have detected the memory size: e.g. on
1813 * incoming migration, or right after reset.
1815 * As memory core doesn't know how is memory accessed, it is up to
1816 * resize callback to update device state and/or add assertions to detect
1817 * misuse, if necessary.
1819 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1821 const ram_addr_t unaligned_size = newsize;
1823 assert(block);
1825 newsize = HOST_PAGE_ALIGN(newsize);
1827 if (block->used_length == newsize) {
1829 * We don't have to resize the ram block (which only knows aligned
1830 * sizes), however, we have to notify if the unaligned size changed.
1832 if (unaligned_size != memory_region_size(block->mr)) {
1833 memory_region_set_size(block->mr, unaligned_size);
1834 if (block->resized) {
1835 block->resized(block->idstr, unaligned_size, block->host);
1838 return 0;
1841 if (!(block->flags & RAM_RESIZEABLE)) {
1842 error_setg_errno(errp, EINVAL,
1843 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1844 " != 0x" RAM_ADDR_FMT, block->idstr,
1845 newsize, block->used_length);
1846 return -EINVAL;
1849 if (block->max_length < newsize) {
1850 error_setg_errno(errp, EINVAL,
1851 "Size too large: %s: 0x" RAM_ADDR_FMT
1852 " > 0x" RAM_ADDR_FMT, block->idstr,
1853 newsize, block->max_length);
1854 return -EINVAL;
1857 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1858 block->used_length = newsize;
1859 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1860 DIRTY_CLIENTS_ALL);
1861 memory_region_set_size(block->mr, unaligned_size);
1862 if (block->resized) {
1863 block->resized(block->idstr, unaligned_size, block->host);
1865 return 0;
1869 * Trigger sync on the given ram block for range [start, start + length]
1870 * with the backing store if one is available.
1871 * Otherwise no-op.
1872 * @Note: this is supposed to be a synchronous op.
1874 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1876 /* The requested range should fit in within the block range */
1877 g_assert((start + length) <= block->used_length);
1879 #ifdef CONFIG_LIBPMEM
1880 /* The lack of support for pmem should not block the sync */
1881 if (ramblock_is_pmem(block)) {
1882 void *addr = ramblock_ptr(block, start);
1883 pmem_persist(addr, length);
1884 return;
1886 #endif
1887 if (block->fd >= 0) {
1889 * Case there is no support for PMEM or the memory has not been
1890 * specified as persistent (or is not one) - use the msync.
1891 * Less optimal but still achieves the same goal
1893 void *addr = ramblock_ptr(block, start);
1894 if (qemu_msync(addr, length, block->fd)) {
1895 warn_report("%s: failed to sync memory range: start: "
1896 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1897 __func__, start, length);
1902 /* Called with ram_list.mutex held */
1903 static void dirty_memory_extend(ram_addr_t old_ram_size,
1904 ram_addr_t new_ram_size)
1906 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1907 DIRTY_MEMORY_BLOCK_SIZE);
1908 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1909 DIRTY_MEMORY_BLOCK_SIZE);
1910 int i;
1912 /* Only need to extend if block count increased */
1913 if (new_num_blocks <= old_num_blocks) {
1914 return;
1917 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1918 DirtyMemoryBlocks *old_blocks;
1919 DirtyMemoryBlocks *new_blocks;
1920 int j;
1922 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1923 new_blocks = g_malloc(sizeof(*new_blocks) +
1924 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1926 if (old_num_blocks) {
1927 memcpy(new_blocks->blocks, old_blocks->blocks,
1928 old_num_blocks * sizeof(old_blocks->blocks[0]));
1931 for (j = old_num_blocks; j < new_num_blocks; j++) {
1932 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1935 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1937 if (old_blocks) {
1938 g_free_rcu(old_blocks, rcu);
1943 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
1945 RAMBlock *block;
1946 RAMBlock *last_block = NULL;
1947 ram_addr_t old_ram_size, new_ram_size;
1948 Error *err = NULL;
1950 old_ram_size = last_ram_page();
1952 qemu_mutex_lock_ramlist();
1953 new_block->offset = find_ram_offset(new_block->max_length);
1955 if (!new_block->host) {
1956 if (xen_enabled()) {
1957 xen_ram_alloc(new_block->offset, new_block->max_length,
1958 new_block->mr, &err);
1959 if (err) {
1960 error_propagate(errp, err);
1961 qemu_mutex_unlock_ramlist();
1962 return;
1964 } else {
1965 new_block->host = phys_mem_alloc(new_block->max_length,
1966 &new_block->mr->align, shared);
1967 if (!new_block->host) {
1968 error_setg_errno(errp, errno,
1969 "cannot set up guest memory '%s'",
1970 memory_region_name(new_block->mr));
1971 qemu_mutex_unlock_ramlist();
1972 return;
1974 memory_try_enable_merging(new_block->host, new_block->max_length);
1978 new_ram_size = MAX(old_ram_size,
1979 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1980 if (new_ram_size > old_ram_size) {
1981 dirty_memory_extend(old_ram_size, new_ram_size);
1983 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1984 * QLIST (which has an RCU-friendly variant) does not have insertion at
1985 * tail, so save the last element in last_block.
1987 RAMBLOCK_FOREACH(block) {
1988 last_block = block;
1989 if (block->max_length < new_block->max_length) {
1990 break;
1993 if (block) {
1994 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1995 } else if (last_block) {
1996 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1997 } else { /* list is empty */
1998 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2000 ram_list.mru_block = NULL;
2002 /* Write list before version */
2003 smp_wmb();
2004 ram_list.version++;
2005 qemu_mutex_unlock_ramlist();
2007 cpu_physical_memory_set_dirty_range(new_block->offset,
2008 new_block->used_length,
2009 DIRTY_CLIENTS_ALL);
2011 if (new_block->host) {
2012 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2013 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2015 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2016 * Configure it unless the machine is a qtest server, in which case
2017 * KVM is not used and it may be forked (eg for fuzzing purposes).
2019 if (!qtest_enabled()) {
2020 qemu_madvise(new_block->host, new_block->max_length,
2021 QEMU_MADV_DONTFORK);
2023 ram_block_notify_add(new_block->host, new_block->max_length);
2027 #ifdef CONFIG_POSIX
2028 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2029 uint32_t ram_flags, int fd, off_t offset,
2030 bool readonly, Error **errp)
2032 RAMBlock *new_block;
2033 Error *local_err = NULL;
2034 int64_t file_size, file_align;
2036 /* Just support these ram flags by now. */
2037 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2039 if (xen_enabled()) {
2040 error_setg(errp, "-mem-path not supported with Xen");
2041 return NULL;
2044 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2045 error_setg(errp,
2046 "host lacks kvm mmu notifiers, -mem-path unsupported");
2047 return NULL;
2050 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2052 * file_ram_alloc() needs to allocate just like
2053 * phys_mem_alloc, but we haven't bothered to provide
2054 * a hook there.
2056 error_setg(errp,
2057 "-mem-path not supported with this accelerator");
2058 return NULL;
2061 size = HOST_PAGE_ALIGN(size);
2062 file_size = get_file_size(fd);
2063 if (file_size > 0 && file_size < size) {
2064 error_setg(errp, "backing store size 0x%" PRIx64
2065 " does not match 'size' option 0x" RAM_ADDR_FMT,
2066 file_size, size);
2067 return NULL;
2070 file_align = get_file_align(fd);
2071 if (file_align > 0 && mr && file_align > mr->align) {
2072 error_setg(errp, "backing store align 0x%" PRIx64
2073 " is larger than 'align' option 0x%" PRIx64,
2074 file_align, mr->align);
2075 return NULL;
2078 new_block = g_malloc0(sizeof(*new_block));
2079 new_block->mr = mr;
2080 new_block->used_length = size;
2081 new_block->max_length = size;
2082 new_block->flags = ram_flags;
2083 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2084 !file_size, offset, errp);
2085 if (!new_block->host) {
2086 g_free(new_block);
2087 return NULL;
2090 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2091 if (local_err) {
2092 g_free(new_block);
2093 error_propagate(errp, local_err);
2094 return NULL;
2096 return new_block;
2101 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2102 uint32_t ram_flags, const char *mem_path,
2103 bool readonly, Error **errp)
2105 int fd;
2106 bool created;
2107 RAMBlock *block;
2109 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2110 errp);
2111 if (fd < 0) {
2112 return NULL;
2115 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2116 if (!block) {
2117 if (created) {
2118 unlink(mem_path);
2120 close(fd);
2121 return NULL;
2124 return block;
2126 #endif
2128 static
2129 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2130 void (*resized)(const char*,
2131 uint64_t length,
2132 void *host),
2133 void *host, bool resizeable, bool share,
2134 MemoryRegion *mr, Error **errp)
2136 RAMBlock *new_block;
2137 Error *local_err = NULL;
2139 size = HOST_PAGE_ALIGN(size);
2140 max_size = HOST_PAGE_ALIGN(max_size);
2141 new_block = g_malloc0(sizeof(*new_block));
2142 new_block->mr = mr;
2143 new_block->resized = resized;
2144 new_block->used_length = size;
2145 new_block->max_length = max_size;
2146 assert(max_size >= size);
2147 new_block->fd = -1;
2148 new_block->page_size = qemu_real_host_page_size;
2149 new_block->host = host;
2150 if (host) {
2151 new_block->flags |= RAM_PREALLOC;
2153 if (resizeable) {
2154 new_block->flags |= RAM_RESIZEABLE;
2156 ram_block_add(new_block, &local_err, share);
2157 if (local_err) {
2158 g_free(new_block);
2159 error_propagate(errp, local_err);
2160 return NULL;
2162 return new_block;
2165 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2166 MemoryRegion *mr, Error **errp)
2168 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2169 false, mr, errp);
2172 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2173 MemoryRegion *mr, Error **errp)
2175 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2176 share, mr, errp);
2179 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2180 void (*resized)(const char*,
2181 uint64_t length,
2182 void *host),
2183 MemoryRegion *mr, Error **errp)
2185 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2186 false, mr, errp);
2189 static void reclaim_ramblock(RAMBlock *block)
2191 if (block->flags & RAM_PREALLOC) {
2193 } else if (xen_enabled()) {
2194 xen_invalidate_map_cache_entry(block->host);
2195 #ifndef _WIN32
2196 } else if (block->fd >= 0) {
2197 qemu_ram_munmap(block->fd, block->host, block->max_length);
2198 close(block->fd);
2199 #endif
2200 } else {
2201 qemu_anon_ram_free(block->host, block->max_length);
2203 g_free(block);
2206 void qemu_ram_free(RAMBlock *block)
2208 if (!block) {
2209 return;
2212 if (block->host) {
2213 ram_block_notify_remove(block->host, block->max_length);
2216 qemu_mutex_lock_ramlist();
2217 QLIST_REMOVE_RCU(block, next);
2218 ram_list.mru_block = NULL;
2219 /* Write list before version */
2220 smp_wmb();
2221 ram_list.version++;
2222 call_rcu(block, reclaim_ramblock, rcu);
2223 qemu_mutex_unlock_ramlist();
2226 #ifndef _WIN32
2227 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2229 RAMBlock *block;
2230 ram_addr_t offset;
2231 int flags;
2232 void *area, *vaddr;
2234 RAMBLOCK_FOREACH(block) {
2235 offset = addr - block->offset;
2236 if (offset < block->max_length) {
2237 vaddr = ramblock_ptr(block, offset);
2238 if (block->flags & RAM_PREALLOC) {
2240 } else if (xen_enabled()) {
2241 abort();
2242 } else {
2243 flags = MAP_FIXED;
2244 if (block->fd >= 0) {
2245 flags |= (block->flags & RAM_SHARED ?
2246 MAP_SHARED : MAP_PRIVATE);
2247 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2248 flags, block->fd, offset);
2249 } else {
2251 * Remap needs to match alloc. Accelerators that
2252 * set phys_mem_alloc never remap. If they did,
2253 * we'd need a remap hook here.
2255 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2257 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2258 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2259 flags, -1, 0);
2261 if (area != vaddr) {
2262 error_report("Could not remap addr: "
2263 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2264 length, addr);
2265 exit(1);
2267 memory_try_enable_merging(vaddr, length);
2268 qemu_ram_setup_dump(vaddr, length);
2273 #endif /* !_WIN32 */
2275 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2276 * This should not be used for general purpose DMA. Use address_space_map
2277 * or address_space_rw instead. For local memory (e.g. video ram) that the
2278 * device owns, use memory_region_get_ram_ptr.
2280 * Called within RCU critical section.
2282 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2284 RAMBlock *block = ram_block;
2286 if (block == NULL) {
2287 block = qemu_get_ram_block(addr);
2288 addr -= block->offset;
2291 if (xen_enabled() && block->host == NULL) {
2292 /* We need to check if the requested address is in the RAM
2293 * because we don't want to map the entire memory in QEMU.
2294 * In that case just map until the end of the page.
2296 if (block->offset == 0) {
2297 return xen_map_cache(addr, 0, 0, false);
2300 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2302 return ramblock_ptr(block, addr);
2305 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2306 * but takes a size argument.
2308 * Called within RCU critical section.
2310 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2311 hwaddr *size, bool lock)
2313 RAMBlock *block = ram_block;
2314 if (*size == 0) {
2315 return NULL;
2318 if (block == NULL) {
2319 block = qemu_get_ram_block(addr);
2320 addr -= block->offset;
2322 *size = MIN(*size, block->max_length - addr);
2324 if (xen_enabled() && block->host == NULL) {
2325 /* We need to check if the requested address is in the RAM
2326 * because we don't want to map the entire memory in QEMU.
2327 * In that case just map the requested area.
2329 if (block->offset == 0) {
2330 return xen_map_cache(addr, *size, lock, lock);
2333 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2336 return ramblock_ptr(block, addr);
2339 /* Return the offset of a hostpointer within a ramblock */
2340 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2342 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2343 assert((uintptr_t)host >= (uintptr_t)rb->host);
2344 assert(res < rb->max_length);
2346 return res;
2350 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2351 * in that RAMBlock.
2353 * ptr: Host pointer to look up
2354 * round_offset: If true round the result offset down to a page boundary
2355 * *ram_addr: set to result ram_addr
2356 * *offset: set to result offset within the RAMBlock
2358 * Returns: RAMBlock (or NULL if not found)
2360 * By the time this function returns, the returned pointer is not protected
2361 * by RCU anymore. If the caller is not within an RCU critical section and
2362 * does not hold the iothread lock, it must have other means of protecting the
2363 * pointer, such as a reference to the region that includes the incoming
2364 * ram_addr_t.
2366 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2367 ram_addr_t *offset)
2369 RAMBlock *block;
2370 uint8_t *host = ptr;
2372 if (xen_enabled()) {
2373 ram_addr_t ram_addr;
2374 RCU_READ_LOCK_GUARD();
2375 ram_addr = xen_ram_addr_from_mapcache(ptr);
2376 block = qemu_get_ram_block(ram_addr);
2377 if (block) {
2378 *offset = ram_addr - block->offset;
2380 return block;
2383 RCU_READ_LOCK_GUARD();
2384 block = qatomic_rcu_read(&ram_list.mru_block);
2385 if (block && block->host && host - block->host < block->max_length) {
2386 goto found;
2389 RAMBLOCK_FOREACH(block) {
2390 /* This case append when the block is not mapped. */
2391 if (block->host == NULL) {
2392 continue;
2394 if (host - block->host < block->max_length) {
2395 goto found;
2399 return NULL;
2401 found:
2402 *offset = (host - block->host);
2403 if (round_offset) {
2404 *offset &= TARGET_PAGE_MASK;
2406 return block;
2410 * Finds the named RAMBlock
2412 * name: The name of RAMBlock to find
2414 * Returns: RAMBlock (or NULL if not found)
2416 RAMBlock *qemu_ram_block_by_name(const char *name)
2418 RAMBlock *block;
2420 RAMBLOCK_FOREACH(block) {
2421 if (!strcmp(name, block->idstr)) {
2422 return block;
2426 return NULL;
2429 /* Some of the softmmu routines need to translate from a host pointer
2430 (typically a TLB entry) back to a ram offset. */
2431 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2433 RAMBlock *block;
2434 ram_addr_t offset;
2436 block = qemu_ram_block_from_host(ptr, false, &offset);
2437 if (!block) {
2438 return RAM_ADDR_INVALID;
2441 return block->offset + offset;
2444 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2445 MemTxAttrs attrs, void *buf, hwaddr len);
2446 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2447 const void *buf, hwaddr len);
2448 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2449 bool is_write, MemTxAttrs attrs);
2451 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2452 unsigned len, MemTxAttrs attrs)
2454 subpage_t *subpage = opaque;
2455 uint8_t buf[8];
2456 MemTxResult res;
2458 #if defined(DEBUG_SUBPAGE)
2459 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2460 subpage, len, addr);
2461 #endif
2462 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2463 if (res) {
2464 return res;
2466 *data = ldn_p(buf, len);
2467 return MEMTX_OK;
2470 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2471 uint64_t value, unsigned len, MemTxAttrs attrs)
2473 subpage_t *subpage = opaque;
2474 uint8_t buf[8];
2476 #if defined(DEBUG_SUBPAGE)
2477 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2478 " value %"PRIx64"\n",
2479 __func__, subpage, len, addr, value);
2480 #endif
2481 stn_p(buf, len, value);
2482 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2485 static bool subpage_accepts(void *opaque, hwaddr addr,
2486 unsigned len, bool is_write,
2487 MemTxAttrs attrs)
2489 subpage_t *subpage = opaque;
2490 #if defined(DEBUG_SUBPAGE)
2491 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2492 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2493 #endif
2495 return flatview_access_valid(subpage->fv, addr + subpage->base,
2496 len, is_write, attrs);
2499 static const MemoryRegionOps subpage_ops = {
2500 .read_with_attrs = subpage_read,
2501 .write_with_attrs = subpage_write,
2502 .impl.min_access_size = 1,
2503 .impl.max_access_size = 8,
2504 .valid.min_access_size = 1,
2505 .valid.max_access_size = 8,
2506 .valid.accepts = subpage_accepts,
2507 .endianness = DEVICE_NATIVE_ENDIAN,
2510 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2511 uint16_t section)
2513 int idx, eidx;
2515 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2516 return -1;
2517 idx = SUBPAGE_IDX(start);
2518 eidx = SUBPAGE_IDX(end);
2519 #if defined(DEBUG_SUBPAGE)
2520 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2521 __func__, mmio, start, end, idx, eidx, section);
2522 #endif
2523 for (; idx <= eidx; idx++) {
2524 mmio->sub_section[idx] = section;
2527 return 0;
2530 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2532 subpage_t *mmio;
2534 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2535 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2536 mmio->fv = fv;
2537 mmio->base = base;
2538 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2539 NULL, TARGET_PAGE_SIZE);
2540 mmio->iomem.subpage = true;
2541 #if defined(DEBUG_SUBPAGE)
2542 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2543 mmio, base, TARGET_PAGE_SIZE);
2544 #endif
2546 return mmio;
2549 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2551 assert(fv);
2552 MemoryRegionSection section = {
2553 .fv = fv,
2554 .mr = mr,
2555 .offset_within_address_space = 0,
2556 .offset_within_region = 0,
2557 .size = int128_2_64(),
2560 return phys_section_add(map, &section);
2563 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2564 hwaddr index, MemTxAttrs attrs)
2566 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2567 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2568 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2569 MemoryRegionSection *sections = d->map.sections;
2571 return &sections[index & ~TARGET_PAGE_MASK];
2574 static void io_mem_init(void)
2576 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2577 NULL, UINT64_MAX);
2580 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2582 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2583 uint16_t n;
2585 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2586 assert(n == PHYS_SECTION_UNASSIGNED);
2588 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2590 return d;
2593 void address_space_dispatch_free(AddressSpaceDispatch *d)
2595 phys_sections_free(&d->map);
2596 g_free(d);
2599 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2603 static void tcg_log_global_after_sync(MemoryListener *listener)
2605 CPUAddressSpace *cpuas;
2607 /* Wait for the CPU to end the current TB. This avoids the following
2608 * incorrect race:
2610 * vCPU migration
2611 * ---------------------- -------------------------
2612 * TLB check -> slow path
2613 * notdirty_mem_write
2614 * write to RAM
2615 * mark dirty
2616 * clear dirty flag
2617 * TLB check -> fast path
2618 * read memory
2619 * write to RAM
2621 * by pushing the migration thread's memory read after the vCPU thread has
2622 * written the memory.
2624 if (replay_mode == REPLAY_MODE_NONE) {
2626 * VGA can make calls to this function while updating the screen.
2627 * In record/replay mode this causes a deadlock, because
2628 * run_on_cpu waits for rr mutex. Therefore no races are possible
2629 * in this case and no need for making run_on_cpu when
2630 * record/replay is not enabled.
2632 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2633 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2637 static void tcg_commit(MemoryListener *listener)
2639 CPUAddressSpace *cpuas;
2640 AddressSpaceDispatch *d;
2642 assert(tcg_enabled());
2643 /* since each CPU stores ram addresses in its TLB cache, we must
2644 reset the modified entries */
2645 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2646 cpu_reloading_memory_map();
2647 /* The CPU and TLB are protected by the iothread lock.
2648 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2649 * may have split the RCU critical section.
2651 d = address_space_to_dispatch(cpuas->as);
2652 qatomic_rcu_set(&cpuas->memory_dispatch, d);
2653 tlb_flush(cpuas->cpu);
2656 static void memory_map_init(void)
2658 system_memory = g_malloc(sizeof(*system_memory));
2660 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2661 address_space_init(&address_space_memory, system_memory, "memory");
2663 system_io = g_malloc(sizeof(*system_io));
2664 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2665 65536);
2666 address_space_init(&address_space_io, system_io, "I/O");
2669 MemoryRegion *get_system_memory(void)
2671 return system_memory;
2674 MemoryRegion *get_system_io(void)
2676 return system_io;
2679 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2680 hwaddr length)
2682 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2683 addr += memory_region_get_ram_addr(mr);
2685 /* No early return if dirty_log_mask is or becomes 0, because
2686 * cpu_physical_memory_set_dirty_range will still call
2687 * xen_modified_memory.
2689 if (dirty_log_mask) {
2690 dirty_log_mask =
2691 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2693 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2694 assert(tcg_enabled());
2695 tb_invalidate_phys_range(addr, addr + length);
2696 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2698 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2701 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2704 * In principle this function would work on other memory region types too,
2705 * but the ROM device use case is the only one where this operation is
2706 * necessary. Other memory regions should use the
2707 * address_space_read/write() APIs.
2709 assert(memory_region_is_romd(mr));
2711 invalidate_and_set_dirty(mr, addr, size);
2714 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2716 unsigned access_size_max = mr->ops->valid.max_access_size;
2718 /* Regions are assumed to support 1-4 byte accesses unless
2719 otherwise specified. */
2720 if (access_size_max == 0) {
2721 access_size_max = 4;
2724 /* Bound the maximum access by the alignment of the address. */
2725 if (!mr->ops->impl.unaligned) {
2726 unsigned align_size_max = addr & -addr;
2727 if (align_size_max != 0 && align_size_max < access_size_max) {
2728 access_size_max = align_size_max;
2732 /* Don't attempt accesses larger than the maximum. */
2733 if (l > access_size_max) {
2734 l = access_size_max;
2736 l = pow2floor(l);
2738 return l;
2741 static bool prepare_mmio_access(MemoryRegion *mr)
2743 bool release_lock = false;
2745 if (!qemu_mutex_iothread_locked()) {
2746 qemu_mutex_lock_iothread();
2747 release_lock = true;
2749 if (mr->flush_coalesced_mmio) {
2750 qemu_flush_coalesced_mmio_buffer();
2753 return release_lock;
2756 /* Called within RCU critical section. */
2757 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2758 MemTxAttrs attrs,
2759 const void *ptr,
2760 hwaddr len, hwaddr addr1,
2761 hwaddr l, MemoryRegion *mr)
2763 uint8_t *ram_ptr;
2764 uint64_t val;
2765 MemTxResult result = MEMTX_OK;
2766 bool release_lock = false;
2767 const uint8_t *buf = ptr;
2769 for (;;) {
2770 if (!memory_access_is_direct(mr, true)) {
2771 release_lock |= prepare_mmio_access(mr);
2772 l = memory_access_size(mr, l, addr1);
2773 /* XXX: could force current_cpu to NULL to avoid
2774 potential bugs */
2775 val = ldn_he_p(buf, l);
2776 result |= memory_region_dispatch_write(mr, addr1, val,
2777 size_memop(l), attrs);
2778 } else {
2779 /* RAM case */
2780 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2781 memcpy(ram_ptr, buf, l);
2782 invalidate_and_set_dirty(mr, addr1, l);
2785 if (release_lock) {
2786 qemu_mutex_unlock_iothread();
2787 release_lock = false;
2790 len -= l;
2791 buf += l;
2792 addr += l;
2794 if (!len) {
2795 break;
2798 l = len;
2799 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2802 return result;
2805 /* Called from RCU critical section. */
2806 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2807 const void *buf, hwaddr len)
2809 hwaddr l;
2810 hwaddr addr1;
2811 MemoryRegion *mr;
2812 MemTxResult result = MEMTX_OK;
2814 l = len;
2815 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2816 result = flatview_write_continue(fv, addr, attrs, buf, len,
2817 addr1, l, mr);
2819 return result;
2822 /* Called within RCU critical section. */
2823 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2824 MemTxAttrs attrs, void *ptr,
2825 hwaddr len, hwaddr addr1, hwaddr l,
2826 MemoryRegion *mr)
2828 uint8_t *ram_ptr;
2829 uint64_t val;
2830 MemTxResult result = MEMTX_OK;
2831 bool release_lock = false;
2832 uint8_t *buf = ptr;
2834 for (;;) {
2835 if (!memory_access_is_direct(mr, false)) {
2836 /* I/O case */
2837 release_lock |= prepare_mmio_access(mr);
2838 l = memory_access_size(mr, l, addr1);
2839 result |= memory_region_dispatch_read(mr, addr1, &val,
2840 size_memop(l), attrs);
2841 stn_he_p(buf, l, val);
2842 } else {
2843 /* RAM case */
2844 fuzz_dma_read_cb(addr, len, mr);
2845 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2846 memcpy(buf, ram_ptr, l);
2849 if (release_lock) {
2850 qemu_mutex_unlock_iothread();
2851 release_lock = false;
2854 len -= l;
2855 buf += l;
2856 addr += l;
2858 if (!len) {
2859 break;
2862 l = len;
2863 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2866 return result;
2869 /* Called from RCU critical section. */
2870 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2871 MemTxAttrs attrs, void *buf, hwaddr len)
2873 hwaddr l;
2874 hwaddr addr1;
2875 MemoryRegion *mr;
2877 l = len;
2878 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2879 return flatview_read_continue(fv, addr, attrs, buf, len,
2880 addr1, l, mr);
2883 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2884 MemTxAttrs attrs, void *buf, hwaddr len)
2886 MemTxResult result = MEMTX_OK;
2887 FlatView *fv;
2889 if (len > 0) {
2890 RCU_READ_LOCK_GUARD();
2891 fv = address_space_to_flatview(as);
2892 result = flatview_read(fv, addr, attrs, buf, len);
2895 return result;
2898 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2899 MemTxAttrs attrs,
2900 const void *buf, hwaddr len)
2902 MemTxResult result = MEMTX_OK;
2903 FlatView *fv;
2905 if (len > 0) {
2906 RCU_READ_LOCK_GUARD();
2907 fv = address_space_to_flatview(as);
2908 result = flatview_write(fv, addr, attrs, buf, len);
2911 return result;
2914 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2915 void *buf, hwaddr len, bool is_write)
2917 if (is_write) {
2918 return address_space_write(as, addr, attrs, buf, len);
2919 } else {
2920 return address_space_read_full(as, addr, attrs, buf, len);
2924 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2925 hwaddr len, bool is_write)
2927 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2928 buf, len, is_write);
2931 enum write_rom_type {
2932 WRITE_DATA,
2933 FLUSH_CACHE,
2936 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2937 hwaddr addr,
2938 MemTxAttrs attrs,
2939 const void *ptr,
2940 hwaddr len,
2941 enum write_rom_type type)
2943 hwaddr l;
2944 uint8_t *ram_ptr;
2945 hwaddr addr1;
2946 MemoryRegion *mr;
2947 const uint8_t *buf = ptr;
2949 RCU_READ_LOCK_GUARD();
2950 while (len > 0) {
2951 l = len;
2952 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2954 if (!(memory_region_is_ram(mr) ||
2955 memory_region_is_romd(mr))) {
2956 l = memory_access_size(mr, l, addr1);
2957 } else {
2958 /* ROM/RAM case */
2959 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2960 switch (type) {
2961 case WRITE_DATA:
2962 memcpy(ram_ptr, buf, l);
2963 invalidate_and_set_dirty(mr, addr1, l);
2964 break;
2965 case FLUSH_CACHE:
2966 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2967 break;
2970 len -= l;
2971 buf += l;
2972 addr += l;
2974 return MEMTX_OK;
2977 /* used for ROM loading : can write in RAM and ROM */
2978 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2979 MemTxAttrs attrs,
2980 const void *buf, hwaddr len)
2982 return address_space_write_rom_internal(as, addr, attrs,
2983 buf, len, WRITE_DATA);
2986 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2989 * This function should do the same thing as an icache flush that was
2990 * triggered from within the guest. For TCG we are always cache coherent,
2991 * so there is no need to flush anything. For KVM / Xen we need to flush
2992 * the host's instruction cache at least.
2994 if (tcg_enabled()) {
2995 return;
2998 address_space_write_rom_internal(&address_space_memory,
2999 start, MEMTXATTRS_UNSPECIFIED,
3000 NULL, len, FLUSH_CACHE);
3003 typedef struct {
3004 MemoryRegion *mr;
3005 void *buffer;
3006 hwaddr addr;
3007 hwaddr len;
3008 bool in_use;
3009 } BounceBuffer;
3011 static BounceBuffer bounce;
3013 typedef struct MapClient {
3014 QEMUBH *bh;
3015 QLIST_ENTRY(MapClient) link;
3016 } MapClient;
3018 QemuMutex map_client_list_lock;
3019 static QLIST_HEAD(, MapClient) map_client_list
3020 = QLIST_HEAD_INITIALIZER(map_client_list);
3022 static void cpu_unregister_map_client_do(MapClient *client)
3024 QLIST_REMOVE(client, link);
3025 g_free(client);
3028 static void cpu_notify_map_clients_locked(void)
3030 MapClient *client;
3032 while (!QLIST_EMPTY(&map_client_list)) {
3033 client = QLIST_FIRST(&map_client_list);
3034 qemu_bh_schedule(client->bh);
3035 cpu_unregister_map_client_do(client);
3039 void cpu_register_map_client(QEMUBH *bh)
3041 MapClient *client = g_malloc(sizeof(*client));
3043 qemu_mutex_lock(&map_client_list_lock);
3044 client->bh = bh;
3045 QLIST_INSERT_HEAD(&map_client_list, client, link);
3046 if (!qatomic_read(&bounce.in_use)) {
3047 cpu_notify_map_clients_locked();
3049 qemu_mutex_unlock(&map_client_list_lock);
3052 void cpu_exec_init_all(void)
3054 qemu_mutex_init(&ram_list.mutex);
3055 /* The data structures we set up here depend on knowing the page size,
3056 * so no more changes can be made after this point.
3057 * In an ideal world, nothing we did before we had finished the
3058 * machine setup would care about the target page size, and we could
3059 * do this much later, rather than requiring board models to state
3060 * up front what their requirements are.
3062 finalize_target_page_bits();
3063 io_mem_init();
3064 memory_map_init();
3065 qemu_mutex_init(&map_client_list_lock);
3068 void cpu_unregister_map_client(QEMUBH *bh)
3070 MapClient *client;
3072 qemu_mutex_lock(&map_client_list_lock);
3073 QLIST_FOREACH(client, &map_client_list, link) {
3074 if (client->bh == bh) {
3075 cpu_unregister_map_client_do(client);
3076 break;
3079 qemu_mutex_unlock(&map_client_list_lock);
3082 static void cpu_notify_map_clients(void)
3084 qemu_mutex_lock(&map_client_list_lock);
3085 cpu_notify_map_clients_locked();
3086 qemu_mutex_unlock(&map_client_list_lock);
3089 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3090 bool is_write, MemTxAttrs attrs)
3092 MemoryRegion *mr;
3093 hwaddr l, xlat;
3095 while (len > 0) {
3096 l = len;
3097 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3098 if (!memory_access_is_direct(mr, is_write)) {
3099 l = memory_access_size(mr, l, addr);
3100 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3101 return false;
3105 len -= l;
3106 addr += l;
3108 return true;
3111 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3112 hwaddr len, bool is_write,
3113 MemTxAttrs attrs)
3115 FlatView *fv;
3116 bool result;
3118 RCU_READ_LOCK_GUARD();
3119 fv = address_space_to_flatview(as);
3120 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3121 return result;
3124 static hwaddr
3125 flatview_extend_translation(FlatView *fv, hwaddr addr,
3126 hwaddr target_len,
3127 MemoryRegion *mr, hwaddr base, hwaddr len,
3128 bool is_write, MemTxAttrs attrs)
3130 hwaddr done = 0;
3131 hwaddr xlat;
3132 MemoryRegion *this_mr;
3134 for (;;) {
3135 target_len -= len;
3136 addr += len;
3137 done += len;
3138 if (target_len == 0) {
3139 return done;
3142 len = target_len;
3143 this_mr = flatview_translate(fv, addr, &xlat,
3144 &len, is_write, attrs);
3145 if (this_mr != mr || xlat != base + done) {
3146 return done;
3151 /* Map a physical memory region into a host virtual address.
3152 * May map a subset of the requested range, given by and returned in *plen.
3153 * May return NULL if resources needed to perform the mapping are exhausted.
3154 * Use only for reads OR writes - not for read-modify-write operations.
3155 * Use cpu_register_map_client() to know when retrying the map operation is
3156 * likely to succeed.
3158 void *address_space_map(AddressSpace *as,
3159 hwaddr addr,
3160 hwaddr *plen,
3161 bool is_write,
3162 MemTxAttrs attrs)
3164 hwaddr len = *plen;
3165 hwaddr l, xlat;
3166 MemoryRegion *mr;
3167 void *ptr;
3168 FlatView *fv;
3170 if (len == 0) {
3171 return NULL;
3174 l = len;
3175 RCU_READ_LOCK_GUARD();
3176 fv = address_space_to_flatview(as);
3177 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3179 if (!memory_access_is_direct(mr, is_write)) {
3180 if (qatomic_xchg(&bounce.in_use, true)) {
3181 *plen = 0;
3182 return NULL;
3184 /* Avoid unbounded allocations */
3185 l = MIN(l, TARGET_PAGE_SIZE);
3186 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3187 bounce.addr = addr;
3188 bounce.len = l;
3190 memory_region_ref(mr);
3191 bounce.mr = mr;
3192 if (!is_write) {
3193 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3194 bounce.buffer, l);
3197 *plen = l;
3198 return bounce.buffer;
3202 memory_region_ref(mr);
3203 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3204 l, is_write, attrs);
3205 fuzz_dma_read_cb(addr, *plen, mr);
3206 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3208 return ptr;
3211 /* Unmaps a memory region previously mapped by address_space_map().
3212 * Will also mark the memory as dirty if is_write is true. access_len gives
3213 * the amount of memory that was actually read or written by the caller.
3215 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3216 bool is_write, hwaddr access_len)
3218 if (buffer != bounce.buffer) {
3219 MemoryRegion *mr;
3220 ram_addr_t addr1;
3222 mr = memory_region_from_host(buffer, &addr1);
3223 assert(mr != NULL);
3224 if (is_write) {
3225 invalidate_and_set_dirty(mr, addr1, access_len);
3227 if (xen_enabled()) {
3228 xen_invalidate_map_cache_entry(buffer);
3230 memory_region_unref(mr);
3231 return;
3233 if (is_write) {
3234 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3235 bounce.buffer, access_len);
3237 qemu_vfree(bounce.buffer);
3238 bounce.buffer = NULL;
3239 memory_region_unref(bounce.mr);
3240 qatomic_mb_set(&bounce.in_use, false);
3241 cpu_notify_map_clients();
3244 void *cpu_physical_memory_map(hwaddr addr,
3245 hwaddr *plen,
3246 bool is_write)
3248 return address_space_map(&address_space_memory, addr, plen, is_write,
3249 MEMTXATTRS_UNSPECIFIED);
3252 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3253 bool is_write, hwaddr access_len)
3255 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3258 #define ARG1_DECL AddressSpace *as
3259 #define ARG1 as
3260 #define SUFFIX
3261 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3262 #define RCU_READ_LOCK(...) rcu_read_lock()
3263 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3264 #include "memory_ldst.c.inc"
3266 int64_t address_space_cache_init(MemoryRegionCache *cache,
3267 AddressSpace *as,
3268 hwaddr addr,
3269 hwaddr len,
3270 bool is_write)
3272 AddressSpaceDispatch *d;
3273 hwaddr l;
3274 MemoryRegion *mr;
3275 Int128 diff;
3277 assert(len > 0);
3279 l = len;
3280 cache->fv = address_space_get_flatview(as);
3281 d = flatview_to_dispatch(cache->fv);
3282 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3285 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3286 * Take that into account to compute how many bytes are there between
3287 * cache->xlat and the end of the section.
3289 diff = int128_sub(cache->mrs.size,
3290 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3291 l = int128_get64(int128_min(diff, int128_make64(l)));
3293 mr = cache->mrs.mr;
3294 memory_region_ref(mr);
3295 if (memory_access_is_direct(mr, is_write)) {
3296 /* We don't care about the memory attributes here as we're only
3297 * doing this if we found actual RAM, which behaves the same
3298 * regardless of attributes; so UNSPECIFIED is fine.
3300 l = flatview_extend_translation(cache->fv, addr, len, mr,
3301 cache->xlat, l, is_write,
3302 MEMTXATTRS_UNSPECIFIED);
3303 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3304 } else {
3305 cache->ptr = NULL;
3308 cache->len = l;
3309 cache->is_write = is_write;
3310 return l;
3313 void address_space_cache_invalidate(MemoryRegionCache *cache,
3314 hwaddr addr,
3315 hwaddr access_len)
3317 assert(cache->is_write);
3318 if (likely(cache->ptr)) {
3319 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3323 void address_space_cache_destroy(MemoryRegionCache *cache)
3325 if (!cache->mrs.mr) {
3326 return;
3329 if (xen_enabled()) {
3330 xen_invalidate_map_cache_entry(cache->ptr);
3332 memory_region_unref(cache->mrs.mr);
3333 flatview_unref(cache->fv);
3334 cache->mrs.mr = NULL;
3335 cache->fv = NULL;
3338 /* Called from RCU critical section. This function has the same
3339 * semantics as address_space_translate, but it only works on a
3340 * predefined range of a MemoryRegion that was mapped with
3341 * address_space_cache_init.
3343 static inline MemoryRegion *address_space_translate_cached(
3344 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3345 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3347 MemoryRegionSection section;
3348 MemoryRegion *mr;
3349 IOMMUMemoryRegion *iommu_mr;
3350 AddressSpace *target_as;
3352 assert(!cache->ptr);
3353 *xlat = addr + cache->xlat;
3355 mr = cache->mrs.mr;
3356 iommu_mr = memory_region_get_iommu(mr);
3357 if (!iommu_mr) {
3358 /* MMIO region. */
3359 return mr;
3362 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3363 NULL, is_write, true,
3364 &target_as, attrs);
3365 return section.mr;
3368 /* Called from RCU critical section. address_space_read_cached uses this
3369 * out of line function when the target is an MMIO or IOMMU region.
3371 MemTxResult
3372 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3373 void *buf, hwaddr len)
3375 hwaddr addr1, l;
3376 MemoryRegion *mr;
3378 l = len;
3379 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3380 MEMTXATTRS_UNSPECIFIED);
3381 return flatview_read_continue(cache->fv,
3382 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3383 addr1, l, mr);
3386 /* Called from RCU critical section. address_space_write_cached uses this
3387 * out of line function when the target is an MMIO or IOMMU region.
3389 MemTxResult
3390 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3391 const void *buf, hwaddr len)
3393 hwaddr addr1, l;
3394 MemoryRegion *mr;
3396 l = len;
3397 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3398 MEMTXATTRS_UNSPECIFIED);
3399 return flatview_write_continue(cache->fv,
3400 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3401 addr1, l, mr);
3404 #define ARG1_DECL MemoryRegionCache *cache
3405 #define ARG1 cache
3406 #define SUFFIX _cached_slow
3407 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3408 #define RCU_READ_LOCK() ((void)0)
3409 #define RCU_READ_UNLOCK() ((void)0)
3410 #include "memory_ldst.c.inc"
3412 /* virtual memory access for debug (includes writing to ROM) */
3413 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3414 void *ptr, target_ulong len, bool is_write)
3416 hwaddr phys_addr;
3417 target_ulong l, page;
3418 uint8_t *buf = ptr;
3420 cpu_synchronize_state(cpu);
3421 while (len > 0) {
3422 int asidx;
3423 MemTxAttrs attrs;
3424 MemTxResult res;
3426 page = addr & TARGET_PAGE_MASK;
3427 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3428 asidx = cpu_asidx_from_attrs(cpu, attrs);
3429 /* if no physical page mapped, return an error */
3430 if (phys_addr == -1)
3431 return -1;
3432 l = (page + TARGET_PAGE_SIZE) - addr;
3433 if (l > len)
3434 l = len;
3435 phys_addr += (addr & ~TARGET_PAGE_MASK);
3436 if (is_write) {
3437 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3438 attrs, buf, l);
3439 } else {
3440 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3441 attrs, buf, l);
3443 if (res != MEMTX_OK) {
3444 return -1;
3446 len -= l;
3447 buf += l;
3448 addr += l;
3450 return 0;
3454 * Allows code that needs to deal with migration bitmaps etc to still be built
3455 * target independent.
3457 size_t qemu_target_page_size(void)
3459 return TARGET_PAGE_SIZE;
3462 int qemu_target_page_bits(void)
3464 return TARGET_PAGE_BITS;
3467 int qemu_target_page_bits_min(void)
3469 return TARGET_PAGE_BITS_MIN;
3472 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3474 MemoryRegion*mr;
3475 hwaddr l = 1;
3476 bool res;
3478 RCU_READ_LOCK_GUARD();
3479 mr = address_space_translate(&address_space_memory,
3480 phys_addr, &phys_addr, &l, false,
3481 MEMTXATTRS_UNSPECIFIED);
3483 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3484 return res;
3487 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3489 RAMBlock *block;
3490 int ret = 0;
3492 RCU_READ_LOCK_GUARD();
3493 RAMBLOCK_FOREACH(block) {
3494 ret = func(block, opaque);
3495 if (ret) {
3496 break;
3499 return ret;
3503 * Unmap pages of memory from start to start+length such that
3504 * they a) read as 0, b) Trigger whatever fault mechanism
3505 * the OS provides for postcopy.
3506 * The pages must be unmapped by the end of the function.
3507 * Returns: 0 on success, none-0 on failure
3510 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3512 int ret = -1;
3514 uint8_t *host_startaddr = rb->host + start;
3516 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3517 error_report("ram_block_discard_range: Unaligned start address: %p",
3518 host_startaddr);
3519 goto err;
3522 if ((start + length) <= rb->used_length) {
3523 bool need_madvise, need_fallocate;
3524 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3525 error_report("ram_block_discard_range: Unaligned length: %zx",
3526 length);
3527 goto err;
3530 errno = ENOTSUP; /* If we are missing MADVISE etc */
3532 /* The logic here is messy;
3533 * madvise DONTNEED fails for hugepages
3534 * fallocate works on hugepages and shmem
3536 need_madvise = (rb->page_size == qemu_host_page_size);
3537 need_fallocate = rb->fd != -1;
3538 if (need_fallocate) {
3539 /* For a file, this causes the area of the file to be zero'd
3540 * if read, and for hugetlbfs also causes it to be unmapped
3541 * so a userfault will trigger.
3543 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3544 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3545 start, length);
3546 if (ret) {
3547 ret = -errno;
3548 error_report("ram_block_discard_range: Failed to fallocate "
3549 "%s:%" PRIx64 " +%zx (%d)",
3550 rb->idstr, start, length, ret);
3551 goto err;
3553 #else
3554 ret = -ENOSYS;
3555 error_report("ram_block_discard_range: fallocate not available/file"
3556 "%s:%" PRIx64 " +%zx (%d)",
3557 rb->idstr, start, length, ret);
3558 goto err;
3559 #endif
3561 if (need_madvise) {
3562 /* For normal RAM this causes it to be unmapped,
3563 * for shared memory it causes the local mapping to disappear
3564 * and to fall back on the file contents (which we just
3565 * fallocate'd away).
3567 #if defined(CONFIG_MADVISE)
3568 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3569 if (ret) {
3570 ret = -errno;
3571 error_report("ram_block_discard_range: Failed to discard range "
3572 "%s:%" PRIx64 " +%zx (%d)",
3573 rb->idstr, start, length, ret);
3574 goto err;
3576 #else
3577 ret = -ENOSYS;
3578 error_report("ram_block_discard_range: MADVISE not available"
3579 "%s:%" PRIx64 " +%zx (%d)",
3580 rb->idstr, start, length, ret);
3581 goto err;
3582 #endif
3584 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3585 need_madvise, need_fallocate, ret);
3586 } else {
3587 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3588 "/%zx/" RAM_ADDR_FMT")",
3589 rb->idstr, start, length, rb->used_length);
3592 err:
3593 return ret;
3596 bool ramblock_is_pmem(RAMBlock *rb)
3598 return rb->flags & RAM_PMEM;
3601 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3603 if (start == end - 1) {
3604 qemu_printf("\t%3d ", start);
3605 } else {
3606 qemu_printf("\t%3d..%-3d ", start, end - 1);
3608 qemu_printf(" skip=%d ", skip);
3609 if (ptr == PHYS_MAP_NODE_NIL) {
3610 qemu_printf(" ptr=NIL");
3611 } else if (!skip) {
3612 qemu_printf(" ptr=#%d", ptr);
3613 } else {
3614 qemu_printf(" ptr=[%d]", ptr);
3616 qemu_printf("\n");
3619 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3620 int128_sub((size), int128_one())) : 0)
3622 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3624 int i;
3626 qemu_printf(" Dispatch\n");
3627 qemu_printf(" Physical sections\n");
3629 for (i = 0; i < d->map.sections_nb; ++i) {
3630 MemoryRegionSection *s = d->map.sections + i;
3631 const char *names[] = { " [unassigned]", " [not dirty]",
3632 " [ROM]", " [watch]" };
3634 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3635 " %s%s%s%s%s",
3637 s->offset_within_address_space,
3638 s->offset_within_address_space + MR_SIZE(s->mr->size),
3639 s->mr->name ? s->mr->name : "(noname)",
3640 i < ARRAY_SIZE(names) ? names[i] : "",
3641 s->mr == root ? " [ROOT]" : "",
3642 s == d->mru_section ? " [MRU]" : "",
3643 s->mr->is_iommu ? " [iommu]" : "");
3645 if (s->mr->alias) {
3646 qemu_printf(" alias=%s", s->mr->alias->name ?
3647 s->mr->alias->name : "noname");
3649 qemu_printf("\n");
3652 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3653 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3654 for (i = 0; i < d->map.nodes_nb; ++i) {
3655 int j, jprev;
3656 PhysPageEntry prev;
3657 Node *n = d->map.nodes + i;
3659 qemu_printf(" [%d]\n", i);
3661 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3662 PhysPageEntry *pe = *n + j;
3664 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3665 continue;
3668 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3670 jprev = j;
3671 prev = *pe;
3674 if (jprev != ARRAY_SIZE(*n)) {
3675 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3681 * If positive, discarding RAM is disabled. If negative, discarding RAM is
3682 * required to work and cannot be disabled.
3684 static int ram_block_discard_disabled;
3686 int ram_block_discard_disable(bool state)
3688 int old;
3690 if (!state) {
3691 qatomic_dec(&ram_block_discard_disabled);
3692 return 0;
3695 do {
3696 old = qatomic_read(&ram_block_discard_disabled);
3697 if (old < 0) {
3698 return -EBUSY;
3700 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3701 old, old + 1) != old);
3702 return 0;
3705 int ram_block_discard_require(bool state)
3707 int old;
3709 if (!state) {
3710 qatomic_inc(&ram_block_discard_disabled);
3711 return 0;
3714 do {
3715 old = qatomic_read(&ram_block_discard_disabled);
3716 if (old > 0) {
3717 return -EBUSY;
3719 } while (qatomic_cmpxchg(&ram_block_discard_disabled,
3720 old, old - 1) != old);
3721 return 0;
3724 bool ram_block_discard_is_disabled(void)
3726 return qatomic_read(&ram_block_discard_disabled) > 0;
3729 bool ram_block_discard_is_required(void)
3731 return qatomic_read(&ram_block_discard_disabled) < 0;