spapr_pci: Get rid of duplicate code for node name creation
[qemu/ar7.git] / exec.c
blob2646207661d489e2aacd4bd75de4747729a03940
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "qemu/qemu-print.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "sysemu/numa.h"
47 #include "sysemu/hw_accel.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace-root.h"
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
56 #endif
57 #include "qemu/rcu_queue.h"
58 #include "qemu/main-loop.h"
59 #include "translate-all.h"
60 #include "sysemu/replay.h"
62 #include "exec/memory-internal.h"
63 #include "exec/ram_addr.h"
64 #include "exec/log.h"
66 #include "migration/vmstate.h"
68 #include "qemu/range.h"
69 #ifndef _WIN32
70 #include "qemu/mmap-alloc.h"
71 #endif
73 #include "monitor/monitor.h"
75 //#define DEBUG_SUBPAGE
77 #if !defined(CONFIG_USER_ONLY)
78 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
79 * are protected by the ramlist lock.
81 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
83 static MemoryRegion *system_memory;
84 static MemoryRegion *system_io;
86 AddressSpace address_space_io;
87 AddressSpace address_space_memory;
89 MemoryRegion io_mem_rom, io_mem_notdirty;
90 static MemoryRegion io_mem_unassigned;
91 #endif
93 #ifdef TARGET_PAGE_BITS_VARY
94 int target_page_bits;
95 bool target_page_bits_decided;
96 #endif
98 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100 /* current CPU in the current thread. It is only valid inside
101 cpu_exec() */
102 __thread CPUState *current_cpu;
103 /* 0 = Do not count executed instructions.
104 1 = Precise instruction counting.
105 2 = Adaptive rate instruction counting. */
106 int use_icount;
108 uintptr_t qemu_host_page_size;
109 intptr_t qemu_host_page_mask;
111 bool set_preferred_target_page_bits(int bits)
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
124 target_page_bits = bits;
126 #endif
127 return true;
130 #if !defined(CONFIG_USER_ONLY)
132 static void finalize_target_page_bits(void)
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
138 target_page_bits_decided = true;
139 #endif
142 typedef struct PhysPageEntry PhysPageEntry;
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161 typedef PhysPageEntry Node[P_L2_SIZE];
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
174 struct AddressSpaceDispatch {
175 MemoryRegionSection *mru_section;
176 /* This is a multi-level map on the physical address space.
177 * The bottom level has pointers to MemoryRegionSections.
179 PhysPageEntry phys_map;
180 PhysPageMap map;
183 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
184 typedef struct subpage_t {
185 MemoryRegion iomem;
186 FlatView *fv;
187 hwaddr base;
188 uint16_t sub_section[];
189 } subpage_t;
191 #define PHYS_SECTION_UNASSIGNED 0
192 #define PHYS_SECTION_NOTDIRTY 1
193 #define PHYS_SECTION_ROM 2
194 #define PHYS_SECTION_WATCH 3
196 static void io_mem_init(void);
197 static void memory_map_init(void);
198 static void tcg_commit(MemoryListener *listener);
200 static MemoryRegion io_mem_watch;
203 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
204 * @cpu: the CPU whose AddressSpace this is
205 * @as: the AddressSpace itself
206 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
207 * @tcg_as_listener: listener for tracking changes to the AddressSpace
209 struct CPUAddressSpace {
210 CPUState *cpu;
211 AddressSpace *as;
212 struct AddressSpaceDispatch *memory_dispatch;
213 MemoryListener tcg_as_listener;
216 struct DirtyBitmapSnapshot {
217 ram_addr_t start;
218 ram_addr_t end;
219 unsigned long dirty[];
222 #endif
224 #if !defined(CONFIG_USER_ONLY)
226 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
228 static unsigned alloc_hint = 16;
229 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
231 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
232 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
233 alloc_hint = map->nodes_nb_alloc;
237 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
239 unsigned i;
240 uint32_t ret;
241 PhysPageEntry e;
242 PhysPageEntry *p;
244 ret = map->nodes_nb++;
245 p = map->nodes[ret];
246 assert(ret != PHYS_MAP_NODE_NIL);
247 assert(ret != map->nodes_nb_alloc);
249 e.skip = leaf ? 0 : 1;
250 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
251 for (i = 0; i < P_L2_SIZE; ++i) {
252 memcpy(&p[i], &e, sizeof(e));
254 return ret;
257 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
258 hwaddr *index, hwaddr *nb, uint16_t leaf,
259 int level)
261 PhysPageEntry *p;
262 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
264 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
265 lp->ptr = phys_map_node_alloc(map, level == 0);
267 p = map->nodes[lp->ptr];
268 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
270 while (*nb && lp < &p[P_L2_SIZE]) {
271 if ((*index & (step - 1)) == 0 && *nb >= step) {
272 lp->skip = 0;
273 lp->ptr = leaf;
274 *index += step;
275 *nb -= step;
276 } else {
277 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
279 ++lp;
283 static void phys_page_set(AddressSpaceDispatch *d,
284 hwaddr index, hwaddr nb,
285 uint16_t leaf)
287 /* Wildly overreserve - it doesn't matter much. */
288 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
290 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
293 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
294 * and update our entry so we can skip it and go directly to the destination.
296 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
298 unsigned valid_ptr = P_L2_SIZE;
299 int valid = 0;
300 PhysPageEntry *p;
301 int i;
303 if (lp->ptr == PHYS_MAP_NODE_NIL) {
304 return;
307 p = nodes[lp->ptr];
308 for (i = 0; i < P_L2_SIZE; i++) {
309 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
310 continue;
313 valid_ptr = i;
314 valid++;
315 if (p[i].skip) {
316 phys_page_compact(&p[i], nodes);
320 /* We can only compress if there's only one child. */
321 if (valid != 1) {
322 return;
325 assert(valid_ptr < P_L2_SIZE);
327 /* Don't compress if it won't fit in the # of bits we have. */
328 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
329 return;
332 lp->ptr = p[valid_ptr].ptr;
333 if (!p[valid_ptr].skip) {
334 /* If our only child is a leaf, make this a leaf. */
335 /* By design, we should have made this node a leaf to begin with so we
336 * should never reach here.
337 * But since it's so simple to handle this, let's do it just in case we
338 * change this rule.
340 lp->skip = 0;
341 } else {
342 lp->skip += p[valid_ptr].skip;
346 void address_space_dispatch_compact(AddressSpaceDispatch *d)
348 if (d->phys_map.skip) {
349 phys_page_compact(&d->phys_map, d->map.nodes);
353 static inline bool section_covers_addr(const MemoryRegionSection *section,
354 hwaddr addr)
356 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
357 * the section must cover the entire address space.
359 return int128_gethi(section->size) ||
360 range_covers_byte(section->offset_within_address_space,
361 int128_getlo(section->size), addr);
364 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
366 PhysPageEntry lp = d->phys_map, *p;
367 Node *nodes = d->map.nodes;
368 MemoryRegionSection *sections = d->map.sections;
369 hwaddr index = addr >> TARGET_PAGE_BITS;
370 int i;
372 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
373 if (lp.ptr == PHYS_MAP_NODE_NIL) {
374 return &sections[PHYS_SECTION_UNASSIGNED];
376 p = nodes[lp.ptr];
377 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380 if (section_covers_addr(&sections[lp.ptr], addr)) {
381 return &sections[lp.ptr];
382 } else {
383 return &sections[PHYS_SECTION_UNASSIGNED];
387 /* Called from RCU critical section */
388 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
389 hwaddr addr,
390 bool resolve_subpage)
392 MemoryRegionSection *section = atomic_read(&d->mru_section);
393 subpage_t *subpage;
395 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
396 !section_covers_addr(section, addr)) {
397 section = phys_page_find(d, addr);
398 atomic_set(&d->mru_section, section);
400 if (resolve_subpage && section->mr->subpage) {
401 subpage = container_of(section->mr, subpage_t, iomem);
402 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
404 return section;
407 /* Called from RCU critical section */
408 static MemoryRegionSection *
409 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
410 hwaddr *plen, bool resolve_subpage)
412 MemoryRegionSection *section;
413 MemoryRegion *mr;
414 Int128 diff;
416 section = address_space_lookup_region(d, addr, resolve_subpage);
417 /* Compute offset within MemoryRegionSection */
418 addr -= section->offset_within_address_space;
420 /* Compute offset within MemoryRegion */
421 *xlat = addr + section->offset_within_region;
423 mr = section->mr;
425 /* MMIO registers can be expected to perform full-width accesses based only
426 * on their address, without considering adjacent registers that could
427 * decode to completely different MemoryRegions. When such registers
428 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
429 * regions overlap wildly. For this reason we cannot clamp the accesses
430 * here.
432 * If the length is small (as is the case for address_space_ldl/stl),
433 * everything works fine. If the incoming length is large, however,
434 * the caller really has to do the clamping through memory_access_size.
436 if (memory_region_is_ram(mr)) {
437 diff = int128_sub(section->size, int128_make64(addr));
438 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
440 return section;
444 * address_space_translate_iommu - translate an address through an IOMMU
445 * memory region and then through the target address space.
447 * @iommu_mr: the IOMMU memory region that we start the translation from
448 * @addr: the address to be translated through the MMU
449 * @xlat: the translated address offset within the destination memory region.
450 * It cannot be %NULL.
451 * @plen_out: valid read/write length of the translated address. It
452 * cannot be %NULL.
453 * @page_mask_out: page mask for the translated address. This
454 * should only be meaningful for IOMMU translated
455 * addresses, since there may be huge pages that this bit
456 * would tell. It can be %NULL if we don't care about it.
457 * @is_write: whether the translation operation is for write
458 * @is_mmio: whether this can be MMIO, set true if it can
459 * @target_as: the address space targeted by the IOMMU
460 * @attrs: transaction attributes
462 * This function is called from RCU critical section. It is the common
463 * part of flatview_do_translate and address_space_translate_cached.
465 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
466 hwaddr *xlat,
467 hwaddr *plen_out,
468 hwaddr *page_mask_out,
469 bool is_write,
470 bool is_mmio,
471 AddressSpace **target_as,
472 MemTxAttrs attrs)
474 MemoryRegionSection *section;
475 hwaddr page_mask = (hwaddr)-1;
477 do {
478 hwaddr addr = *xlat;
479 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
480 int iommu_idx = 0;
481 IOMMUTLBEntry iotlb;
483 if (imrc->attrs_to_index) {
484 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
487 iotlb = imrc->translate(iommu_mr, addr, is_write ?
488 IOMMU_WO : IOMMU_RO, iommu_idx);
490 if (!(iotlb.perm & (1 << is_write))) {
491 goto unassigned;
494 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
495 | (addr & iotlb.addr_mask));
496 page_mask &= iotlb.addr_mask;
497 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
498 *target_as = iotlb.target_as;
500 section = address_space_translate_internal(
501 address_space_to_dispatch(iotlb.target_as), addr, xlat,
502 plen_out, is_mmio);
504 iommu_mr = memory_region_get_iommu(section->mr);
505 } while (unlikely(iommu_mr));
507 if (page_mask_out) {
508 *page_mask_out = page_mask;
510 return *section;
512 unassigned:
513 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517 * flatview_do_translate - translate an address in FlatView
519 * @fv: the flat view that we want to translate on
520 * @addr: the address to be translated in above address space
521 * @xlat: the translated address offset within memory region. It
522 * cannot be @NULL.
523 * @plen_out: valid read/write length of the translated address. It
524 * can be @NULL when we don't care about it.
525 * @page_mask_out: page mask for the translated address. This
526 * should only be meaningful for IOMMU translated
527 * addresses, since there may be huge pages that this bit
528 * would tell. It can be @NULL if we don't care about it.
529 * @is_write: whether the translation operation is for write
530 * @is_mmio: whether this can be MMIO, set true if it can
531 * @target_as: the address space targeted by the IOMMU
532 * @attrs: memory transaction attributes
534 * This function is called from RCU critical section
536 static MemoryRegionSection flatview_do_translate(FlatView *fv,
537 hwaddr addr,
538 hwaddr *xlat,
539 hwaddr *plen_out,
540 hwaddr *page_mask_out,
541 bool is_write,
542 bool is_mmio,
543 AddressSpace **target_as,
544 MemTxAttrs attrs)
546 MemoryRegionSection *section;
547 IOMMUMemoryRegion *iommu_mr;
548 hwaddr plen = (hwaddr)(-1);
550 if (!plen_out) {
551 plen_out = &plen;
554 section = address_space_translate_internal(
555 flatview_to_dispatch(fv), addr, xlat,
556 plen_out, is_mmio);
558 iommu_mr = memory_region_get_iommu(section->mr);
559 if (unlikely(iommu_mr)) {
560 return address_space_translate_iommu(iommu_mr, xlat,
561 plen_out, page_mask_out,
562 is_write, is_mmio,
563 target_as, attrs);
565 if (page_mask_out) {
566 /* Not behind an IOMMU, use default page size. */
567 *page_mask_out = ~TARGET_PAGE_MASK;
570 return *section;
573 /* Called from RCU critical section */
574 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
575 bool is_write, MemTxAttrs attrs)
577 MemoryRegionSection section;
578 hwaddr xlat, page_mask;
581 * This can never be MMIO, and we don't really care about plen,
582 * but page mask.
584 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
585 NULL, &page_mask, is_write, false, &as,
586 attrs);
588 /* Illegal translation */
589 if (section.mr == &io_mem_unassigned) {
590 goto iotlb_fail;
593 /* Convert memory region offset into address space offset */
594 xlat += section.offset_within_address_space -
595 section.offset_within_region;
597 return (IOMMUTLBEntry) {
598 .target_as = as,
599 .iova = addr & ~page_mask,
600 .translated_addr = xlat & ~page_mask,
601 .addr_mask = page_mask,
602 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
603 .perm = IOMMU_RW,
606 iotlb_fail:
607 return (IOMMUTLBEntry) {0};
610 /* Called from RCU critical section */
611 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
612 hwaddr *plen, bool is_write,
613 MemTxAttrs attrs)
615 MemoryRegion *mr;
616 MemoryRegionSection section;
617 AddressSpace *as = NULL;
619 /* This can be MMIO, so setup MMIO bit. */
620 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
621 is_write, true, &as, attrs);
622 mr = section.mr;
624 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
625 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
626 *plen = MIN(page, *plen);
629 return mr;
632 typedef struct TCGIOMMUNotifier {
633 IOMMUNotifier n;
634 MemoryRegion *mr;
635 CPUState *cpu;
636 int iommu_idx;
637 bool active;
638 } TCGIOMMUNotifier;
640 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
642 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
644 if (!notifier->active) {
645 return;
647 tlb_flush(notifier->cpu);
648 notifier->active = false;
649 /* We leave the notifier struct on the list to avoid reallocating it later.
650 * Generally the number of IOMMUs a CPU deals with will be small.
651 * In any case we can't unregister the iommu notifier from a notify
652 * callback.
656 static void tcg_register_iommu_notifier(CPUState *cpu,
657 IOMMUMemoryRegion *iommu_mr,
658 int iommu_idx)
660 /* Make sure this CPU has an IOMMU notifier registered for this
661 * IOMMU/IOMMU index combination, so that we can flush its TLB
662 * when the IOMMU tells us the mappings we've cached have changed.
664 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
665 TCGIOMMUNotifier *notifier;
666 int i;
668 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
669 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
670 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
671 break;
674 if (i == cpu->iommu_notifiers->len) {
675 /* Not found, add a new entry at the end of the array */
676 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
677 notifier = g_new0(TCGIOMMUNotifier, 1);
678 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
680 notifier->mr = mr;
681 notifier->iommu_idx = iommu_idx;
682 notifier->cpu = cpu;
683 /* Rather than trying to register interest in the specific part
684 * of the iommu's address space that we've accessed and then
685 * expand it later as subsequent accesses touch more of it, we
686 * just register interest in the whole thing, on the assumption
687 * that iommu reconfiguration will be rare.
689 iommu_notifier_init(&notifier->n,
690 tcg_iommu_unmap_notify,
691 IOMMU_NOTIFIER_UNMAP,
693 HWADDR_MAX,
694 iommu_idx);
695 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
698 if (!notifier->active) {
699 notifier->active = true;
703 static void tcg_iommu_free_notifier_list(CPUState *cpu)
705 /* Destroy the CPU's notifier list */
706 int i;
707 TCGIOMMUNotifier *notifier;
709 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
710 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
711 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
712 g_free(notifier);
714 g_array_free(cpu->iommu_notifiers, true);
717 /* Called from RCU critical section */
718 MemoryRegionSection *
719 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
720 hwaddr *xlat, hwaddr *plen,
721 MemTxAttrs attrs, int *prot)
723 MemoryRegionSection *section;
724 IOMMUMemoryRegion *iommu_mr;
725 IOMMUMemoryRegionClass *imrc;
726 IOMMUTLBEntry iotlb;
727 int iommu_idx;
728 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
730 for (;;) {
731 section = address_space_translate_internal(d, addr, &addr, plen, false);
733 iommu_mr = memory_region_get_iommu(section->mr);
734 if (!iommu_mr) {
735 break;
738 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
740 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
741 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
742 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
743 * doesn't short-cut its translation table walk.
745 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
746 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
747 | (addr & iotlb.addr_mask));
748 /* Update the caller's prot bits to remove permissions the IOMMU
749 * is giving us a failure response for. If we get down to no
750 * permissions left at all we can give up now.
752 if (!(iotlb.perm & IOMMU_RO)) {
753 *prot &= ~(PAGE_READ | PAGE_EXEC);
755 if (!(iotlb.perm & IOMMU_WO)) {
756 *prot &= ~PAGE_WRITE;
759 if (!*prot) {
760 goto translate_fail;
763 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 assert(!memory_region_is_iommu(section->mr));
767 *xlat = addr;
768 return section;
770 translate_fail:
771 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
773 #endif
775 #if !defined(CONFIG_USER_ONLY)
777 static int cpu_common_post_load(void *opaque, int version_id)
779 CPUState *cpu = opaque;
781 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
782 version_id is increased. */
783 cpu->interrupt_request &= ~0x01;
784 tlb_flush(cpu);
786 /* loadvm has just updated the content of RAM, bypassing the
787 * usual mechanisms that ensure we flush TBs for writes to
788 * memory we've translated code from. So we must flush all TBs,
789 * which will now be stale.
791 tb_flush(cpu);
793 return 0;
796 static int cpu_common_pre_load(void *opaque)
798 CPUState *cpu = opaque;
800 cpu->exception_index = -1;
802 return 0;
805 static bool cpu_common_exception_index_needed(void *opaque)
807 CPUState *cpu = opaque;
809 return tcg_enabled() && cpu->exception_index != -1;
812 static const VMStateDescription vmstate_cpu_common_exception_index = {
813 .name = "cpu_common/exception_index",
814 .version_id = 1,
815 .minimum_version_id = 1,
816 .needed = cpu_common_exception_index_needed,
817 .fields = (VMStateField[]) {
818 VMSTATE_INT32(exception_index, CPUState),
819 VMSTATE_END_OF_LIST()
823 static bool cpu_common_crash_occurred_needed(void *opaque)
825 CPUState *cpu = opaque;
827 return cpu->crash_occurred;
830 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
831 .name = "cpu_common/crash_occurred",
832 .version_id = 1,
833 .minimum_version_id = 1,
834 .needed = cpu_common_crash_occurred_needed,
835 .fields = (VMStateField[]) {
836 VMSTATE_BOOL(crash_occurred, CPUState),
837 VMSTATE_END_OF_LIST()
841 const VMStateDescription vmstate_cpu_common = {
842 .name = "cpu_common",
843 .version_id = 1,
844 .minimum_version_id = 1,
845 .pre_load = cpu_common_pre_load,
846 .post_load = cpu_common_post_load,
847 .fields = (VMStateField[]) {
848 VMSTATE_UINT32(halted, CPUState),
849 VMSTATE_UINT32(interrupt_request, CPUState),
850 VMSTATE_END_OF_LIST()
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_cpu_common_exception_index,
854 &vmstate_cpu_common_crash_occurred,
855 NULL
859 #endif
861 CPUState *qemu_get_cpu(int index)
863 CPUState *cpu;
865 CPU_FOREACH(cpu) {
866 if (cpu->cpu_index == index) {
867 return cpu;
871 return NULL;
874 #if !defined(CONFIG_USER_ONLY)
875 void cpu_address_space_init(CPUState *cpu, int asidx,
876 const char *prefix, MemoryRegion *mr)
878 CPUAddressSpace *newas;
879 AddressSpace *as = g_new0(AddressSpace, 1);
880 char *as_name;
882 assert(mr);
883 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
884 address_space_init(as, mr, as_name);
885 g_free(as_name);
887 /* Target code should have set num_ases before calling us */
888 assert(asidx < cpu->num_ases);
890 if (asidx == 0) {
891 /* address space 0 gets the convenience alias */
892 cpu->as = as;
895 /* KVM cannot currently support multiple address spaces. */
896 assert(asidx == 0 || !kvm_enabled());
898 if (!cpu->cpu_ases) {
899 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
902 newas = &cpu->cpu_ases[asidx];
903 newas->cpu = cpu;
904 newas->as = as;
905 if (tcg_enabled()) {
906 newas->tcg_as_listener.commit = tcg_commit;
907 memory_listener_register(&newas->tcg_as_listener, as);
911 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
913 /* Return the AddressSpace corresponding to the specified index */
914 return cpu->cpu_ases[asidx].as;
916 #endif
918 void cpu_exec_unrealizefn(CPUState *cpu)
920 CPUClass *cc = CPU_GET_CLASS(cpu);
922 cpu_list_remove(cpu);
924 if (cc->vmsd != NULL) {
925 vmstate_unregister(NULL, cc->vmsd, cpu);
927 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
928 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
930 #ifndef CONFIG_USER_ONLY
931 tcg_iommu_free_notifier_list(cpu);
932 #endif
935 Property cpu_common_props[] = {
936 #ifndef CONFIG_USER_ONLY
937 /* Create a memory property for softmmu CPU object,
938 * so users can wire up its memory. (This can't go in qom/cpu.c
939 * because that file is compiled only once for both user-mode
940 * and system builds.) The default if no link is set up is to use
941 * the system address space.
943 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
944 MemoryRegion *),
945 #endif
946 DEFINE_PROP_END_OF_LIST(),
949 void cpu_exec_initfn(CPUState *cpu)
951 cpu->as = NULL;
952 cpu->num_ases = 0;
954 #ifndef CONFIG_USER_ONLY
955 cpu->thread_id = qemu_get_thread_id();
956 cpu->memory = system_memory;
957 object_ref(OBJECT(cpu->memory));
958 #endif
961 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
963 CPUClass *cc = CPU_GET_CLASS(cpu);
964 static bool tcg_target_initialized;
966 cpu_list_add(cpu);
968 if (tcg_enabled() && !tcg_target_initialized) {
969 tcg_target_initialized = true;
970 cc->tcg_initialize();
972 tlb_init(cpu);
974 #ifndef CONFIG_USER_ONLY
975 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
976 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
978 if (cc->vmsd != NULL) {
979 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
982 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
983 #endif
986 const char *parse_cpu_model(const char *cpu_model)
988 ObjectClass *oc;
989 CPUClass *cc;
990 gchar **model_pieces;
991 const char *cpu_type;
993 model_pieces = g_strsplit(cpu_model, ",", 2);
995 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
996 if (oc == NULL) {
997 error_report("unable to find CPU model '%s'", model_pieces[0]);
998 g_strfreev(model_pieces);
999 exit(EXIT_FAILURE);
1002 cpu_type = object_class_get_name(oc);
1003 cc = CPU_CLASS(oc);
1004 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1005 g_strfreev(model_pieces);
1006 return cpu_type;
1009 #if defined(CONFIG_USER_ONLY)
1010 void tb_invalidate_phys_addr(target_ulong addr)
1012 mmap_lock();
1013 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1014 mmap_unlock();
1017 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1019 tb_invalidate_phys_addr(pc);
1021 #else
1022 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1024 ram_addr_t ram_addr;
1025 MemoryRegion *mr;
1026 hwaddr l = 1;
1028 if (!tcg_enabled()) {
1029 return;
1032 rcu_read_lock();
1033 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1034 if (!(memory_region_is_ram(mr)
1035 || memory_region_is_romd(mr))) {
1036 rcu_read_unlock();
1037 return;
1039 ram_addr = memory_region_get_ram_addr(mr) + addr;
1040 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1041 rcu_read_unlock();
1044 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1046 MemTxAttrs attrs;
1047 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1048 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1049 if (phys != -1) {
1050 /* Locks grabbed by tb_invalidate_phys_addr */
1051 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1052 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1055 #endif
1057 #if defined(CONFIG_USER_ONLY)
1058 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1063 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1064 int flags)
1066 return -ENOSYS;
1069 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1073 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1074 int flags, CPUWatchpoint **watchpoint)
1076 return -ENOSYS;
1078 #else
1079 /* Add a watchpoint. */
1080 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1081 int flags, CPUWatchpoint **watchpoint)
1083 CPUWatchpoint *wp;
1085 /* forbid ranges which are empty or run off the end of the address space */
1086 if (len == 0 || (addr + len - 1) < addr) {
1087 error_report("tried to set invalid watchpoint at %"
1088 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1089 return -EINVAL;
1091 wp = g_malloc(sizeof(*wp));
1093 wp->vaddr = addr;
1094 wp->len = len;
1095 wp->flags = flags;
1097 /* keep all GDB-injected watchpoints in front */
1098 if (flags & BP_GDB) {
1099 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1100 } else {
1101 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1104 tlb_flush_page(cpu, addr);
1106 if (watchpoint)
1107 *watchpoint = wp;
1108 return 0;
1111 /* Remove a specific watchpoint. */
1112 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1113 int flags)
1115 CPUWatchpoint *wp;
1117 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1118 if (addr == wp->vaddr && len == wp->len
1119 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1120 cpu_watchpoint_remove_by_ref(cpu, wp);
1121 return 0;
1124 return -ENOENT;
1127 /* Remove a specific watchpoint by reference. */
1128 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1130 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1132 tlb_flush_page(cpu, watchpoint->vaddr);
1134 g_free(watchpoint);
1137 /* Remove all matching watchpoints. */
1138 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1140 CPUWatchpoint *wp, *next;
1142 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1143 if (wp->flags & mask) {
1144 cpu_watchpoint_remove_by_ref(cpu, wp);
1149 /* Return true if this watchpoint address matches the specified
1150 * access (ie the address range covered by the watchpoint overlaps
1151 * partially or completely with the address range covered by the
1152 * access).
1154 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1155 vaddr addr,
1156 vaddr len)
1158 /* We know the lengths are non-zero, but a little caution is
1159 * required to avoid errors in the case where the range ends
1160 * exactly at the top of the address space and so addr + len
1161 * wraps round to zero.
1163 vaddr wpend = wp->vaddr + wp->len - 1;
1164 vaddr addrend = addr + len - 1;
1166 return !(addr > wpend || wp->vaddr > addrend);
1169 #endif
1171 /* Add a breakpoint. */
1172 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1173 CPUBreakpoint **breakpoint)
1175 CPUBreakpoint *bp;
1177 bp = g_malloc(sizeof(*bp));
1179 bp->pc = pc;
1180 bp->flags = flags;
1182 /* keep all GDB-injected breakpoints in front */
1183 if (flags & BP_GDB) {
1184 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1185 } else {
1186 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1189 breakpoint_invalidate(cpu, pc);
1191 if (breakpoint) {
1192 *breakpoint = bp;
1194 return 0;
1197 /* Remove a specific breakpoint. */
1198 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1200 CPUBreakpoint *bp;
1202 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1203 if (bp->pc == pc && bp->flags == flags) {
1204 cpu_breakpoint_remove_by_ref(cpu, bp);
1205 return 0;
1208 return -ENOENT;
1211 /* Remove a specific breakpoint by reference. */
1212 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1214 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1216 breakpoint_invalidate(cpu, breakpoint->pc);
1218 g_free(breakpoint);
1221 /* Remove all matching breakpoints. */
1222 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1224 CPUBreakpoint *bp, *next;
1226 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1227 if (bp->flags & mask) {
1228 cpu_breakpoint_remove_by_ref(cpu, bp);
1233 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1234 CPU loop after each instruction */
1235 void cpu_single_step(CPUState *cpu, int enabled)
1237 if (cpu->singlestep_enabled != enabled) {
1238 cpu->singlestep_enabled = enabled;
1239 if (kvm_enabled()) {
1240 kvm_update_guest_debug(cpu, 0);
1241 } else {
1242 /* must flush all the translated code to avoid inconsistencies */
1243 /* XXX: only flush what is necessary */
1244 tb_flush(cpu);
1249 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1251 va_list ap;
1252 va_list ap2;
1254 va_start(ap, fmt);
1255 va_copy(ap2, ap);
1256 fprintf(stderr, "qemu: fatal: ");
1257 vfprintf(stderr, fmt, ap);
1258 fprintf(stderr, "\n");
1259 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1260 if (qemu_log_separate()) {
1261 qemu_log_lock();
1262 qemu_log("qemu: fatal: ");
1263 qemu_log_vprintf(fmt, ap2);
1264 qemu_log("\n");
1265 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1266 qemu_log_flush();
1267 qemu_log_unlock();
1268 qemu_log_close();
1270 va_end(ap2);
1271 va_end(ap);
1272 replay_finish();
1273 #if defined(CONFIG_USER_ONLY)
1275 struct sigaction act;
1276 sigfillset(&act.sa_mask);
1277 act.sa_handler = SIG_DFL;
1278 act.sa_flags = 0;
1279 sigaction(SIGABRT, &act, NULL);
1281 #endif
1282 abort();
1285 #if !defined(CONFIG_USER_ONLY)
1286 /* Called from RCU critical section */
1287 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1289 RAMBlock *block;
1291 block = atomic_rcu_read(&ram_list.mru_block);
1292 if (block && addr - block->offset < block->max_length) {
1293 return block;
1295 RAMBLOCK_FOREACH(block) {
1296 if (addr - block->offset < block->max_length) {
1297 goto found;
1301 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1302 abort();
1304 found:
1305 /* It is safe to write mru_block outside the iothread lock. This
1306 * is what happens:
1308 * mru_block = xxx
1309 * rcu_read_unlock()
1310 * xxx removed from list
1311 * rcu_read_lock()
1312 * read mru_block
1313 * mru_block = NULL;
1314 * call_rcu(reclaim_ramblock, xxx);
1315 * rcu_read_unlock()
1317 * atomic_rcu_set is not needed here. The block was already published
1318 * when it was placed into the list. Here we're just making an extra
1319 * copy of the pointer.
1321 ram_list.mru_block = block;
1322 return block;
1325 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1327 CPUState *cpu;
1328 ram_addr_t start1;
1329 RAMBlock *block;
1330 ram_addr_t end;
1332 assert(tcg_enabled());
1333 end = TARGET_PAGE_ALIGN(start + length);
1334 start &= TARGET_PAGE_MASK;
1336 rcu_read_lock();
1337 block = qemu_get_ram_block(start);
1338 assert(block == qemu_get_ram_block(end - 1));
1339 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1340 CPU_FOREACH(cpu) {
1341 tlb_reset_dirty(cpu, start1, length);
1343 rcu_read_unlock();
1346 /* Note: start and end must be within the same ram block. */
1347 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1348 ram_addr_t length,
1349 unsigned client)
1351 DirtyMemoryBlocks *blocks;
1352 unsigned long end, page;
1353 bool dirty = false;
1355 if (length == 0) {
1356 return false;
1359 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1360 page = start >> TARGET_PAGE_BITS;
1362 rcu_read_lock();
1364 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1366 while (page < end) {
1367 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1371 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1372 offset, num);
1373 page += num;
1376 rcu_read_unlock();
1378 if (dirty && tcg_enabled()) {
1379 tlb_reset_dirty_range_all(start, length);
1382 return dirty;
1385 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1386 (ram_addr_t start, ram_addr_t length, unsigned client)
1388 DirtyMemoryBlocks *blocks;
1389 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1390 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1391 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1392 DirtyBitmapSnapshot *snap;
1393 unsigned long page, end, dest;
1395 snap = g_malloc0(sizeof(*snap) +
1396 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1397 snap->start = first;
1398 snap->end = last;
1400 page = first >> TARGET_PAGE_BITS;
1401 end = last >> TARGET_PAGE_BITS;
1402 dest = 0;
1404 rcu_read_lock();
1406 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1408 while (page < end) {
1409 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1411 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1413 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1414 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1415 offset >>= BITS_PER_LEVEL;
1417 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1418 blocks->blocks[idx] + offset,
1419 num);
1420 page += num;
1421 dest += num >> BITS_PER_LEVEL;
1424 rcu_read_unlock();
1426 if (tcg_enabled()) {
1427 tlb_reset_dirty_range_all(start, length);
1430 return snap;
1433 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1434 ram_addr_t start,
1435 ram_addr_t length)
1437 unsigned long page, end;
1439 assert(start >= snap->start);
1440 assert(start + length <= snap->end);
1442 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1443 page = (start - snap->start) >> TARGET_PAGE_BITS;
1445 while (page < end) {
1446 if (test_bit(page, snap->dirty)) {
1447 return true;
1449 page++;
1451 return false;
1454 /* Called from RCU critical section */
1455 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1456 MemoryRegionSection *section,
1457 target_ulong vaddr,
1458 hwaddr paddr, hwaddr xlat,
1459 int prot,
1460 target_ulong *address)
1462 hwaddr iotlb;
1463 CPUWatchpoint *wp;
1465 if (memory_region_is_ram(section->mr)) {
1466 /* Normal RAM. */
1467 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1468 if (!section->readonly) {
1469 iotlb |= PHYS_SECTION_NOTDIRTY;
1470 } else {
1471 iotlb |= PHYS_SECTION_ROM;
1473 } else {
1474 AddressSpaceDispatch *d;
1476 d = flatview_to_dispatch(section->fv);
1477 iotlb = section - d->map.sections;
1478 iotlb += xlat;
1481 /* Make accesses to pages with watchpoints go via the
1482 watchpoint trap routines. */
1483 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1484 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1485 /* Avoid trapping reads of pages with a write breakpoint. */
1486 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1487 iotlb = PHYS_SECTION_WATCH + paddr;
1488 *address |= TLB_MMIO;
1489 break;
1494 return iotlb;
1496 #endif /* defined(CONFIG_USER_ONLY) */
1498 #if !defined(CONFIG_USER_ONLY)
1500 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1501 uint16_t section);
1502 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1504 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1505 qemu_anon_ram_alloc;
1508 * Set a custom physical guest memory alloator.
1509 * Accelerators with unusual needs may need this. Hopefully, we can
1510 * get rid of it eventually.
1512 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1514 phys_mem_alloc = alloc;
1517 static uint16_t phys_section_add(PhysPageMap *map,
1518 MemoryRegionSection *section)
1520 /* The physical section number is ORed with a page-aligned
1521 * pointer to produce the iotlb entries. Thus it should
1522 * never overflow into the page-aligned value.
1524 assert(map->sections_nb < TARGET_PAGE_SIZE);
1526 if (map->sections_nb == map->sections_nb_alloc) {
1527 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1528 map->sections = g_renew(MemoryRegionSection, map->sections,
1529 map->sections_nb_alloc);
1531 map->sections[map->sections_nb] = *section;
1532 memory_region_ref(section->mr);
1533 return map->sections_nb++;
1536 static void phys_section_destroy(MemoryRegion *mr)
1538 bool have_sub_page = mr->subpage;
1540 memory_region_unref(mr);
1542 if (have_sub_page) {
1543 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1544 object_unref(OBJECT(&subpage->iomem));
1545 g_free(subpage);
1549 static void phys_sections_free(PhysPageMap *map)
1551 while (map->sections_nb > 0) {
1552 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1553 phys_section_destroy(section->mr);
1555 g_free(map->sections);
1556 g_free(map->nodes);
1559 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1561 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1562 subpage_t *subpage;
1563 hwaddr base = section->offset_within_address_space
1564 & TARGET_PAGE_MASK;
1565 MemoryRegionSection *existing = phys_page_find(d, base);
1566 MemoryRegionSection subsection = {
1567 .offset_within_address_space = base,
1568 .size = int128_make64(TARGET_PAGE_SIZE),
1570 hwaddr start, end;
1572 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1574 if (!(existing->mr->subpage)) {
1575 subpage = subpage_init(fv, base);
1576 subsection.fv = fv;
1577 subsection.mr = &subpage->iomem;
1578 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1579 phys_section_add(&d->map, &subsection));
1580 } else {
1581 subpage = container_of(existing->mr, subpage_t, iomem);
1583 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1584 end = start + int128_get64(section->size) - 1;
1585 subpage_register(subpage, start, end,
1586 phys_section_add(&d->map, section));
1590 static void register_multipage(FlatView *fv,
1591 MemoryRegionSection *section)
1593 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1594 hwaddr start_addr = section->offset_within_address_space;
1595 uint16_t section_index = phys_section_add(&d->map, section);
1596 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1597 TARGET_PAGE_BITS));
1599 assert(num_pages);
1600 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1604 * The range in *section* may look like this:
1606 * |s|PPPPPPP|s|
1608 * where s stands for subpage and P for page.
1610 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1612 MemoryRegionSection remain = *section;
1613 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1615 /* register first subpage */
1616 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1617 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1618 - remain.offset_within_address_space;
1620 MemoryRegionSection now = remain;
1621 now.size = int128_min(int128_make64(left), now.size);
1622 register_subpage(fv, &now);
1623 if (int128_eq(remain.size, now.size)) {
1624 return;
1626 remain.size = int128_sub(remain.size, now.size);
1627 remain.offset_within_address_space += int128_get64(now.size);
1628 remain.offset_within_region += int128_get64(now.size);
1631 /* register whole pages */
1632 if (int128_ge(remain.size, page_size)) {
1633 MemoryRegionSection now = remain;
1634 now.size = int128_and(now.size, int128_neg(page_size));
1635 register_multipage(fv, &now);
1636 if (int128_eq(remain.size, now.size)) {
1637 return;
1639 remain.size = int128_sub(remain.size, now.size);
1640 remain.offset_within_address_space += int128_get64(now.size);
1641 remain.offset_within_region += int128_get64(now.size);
1644 /* register last subpage */
1645 register_subpage(fv, &remain);
1648 void qemu_flush_coalesced_mmio_buffer(void)
1650 if (kvm_enabled())
1651 kvm_flush_coalesced_mmio_buffer();
1654 void qemu_mutex_lock_ramlist(void)
1656 qemu_mutex_lock(&ram_list.mutex);
1659 void qemu_mutex_unlock_ramlist(void)
1661 qemu_mutex_unlock(&ram_list.mutex);
1664 void ram_block_dump(Monitor *mon)
1666 RAMBlock *block;
1667 char *psize;
1669 rcu_read_lock();
1670 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1671 "Block Name", "PSize", "Offset", "Used", "Total");
1672 RAMBLOCK_FOREACH(block) {
1673 psize = size_to_str(block->page_size);
1674 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1675 " 0x%016" PRIx64 "\n", block->idstr, psize,
1676 (uint64_t)block->offset,
1677 (uint64_t)block->used_length,
1678 (uint64_t)block->max_length);
1679 g_free(psize);
1681 rcu_read_unlock();
1684 #ifdef __linux__
1686 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1687 * may or may not name the same files / on the same filesystem now as
1688 * when we actually open and map them. Iterate over the file
1689 * descriptors instead, and use qemu_fd_getpagesize().
1691 static int find_max_supported_pagesize(Object *obj, void *opaque)
1693 long *hpsize_min = opaque;
1695 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1696 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1697 long hpsize = host_memory_backend_pagesize(backend);
1699 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1700 *hpsize_min = hpsize;
1704 return 0;
1707 long qemu_getrampagesize(void)
1709 long hpsize = LONG_MAX;
1710 long mainrampagesize;
1711 Object *memdev_root;
1713 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1715 /* it's possible we have memory-backend objects with
1716 * hugepage-backed RAM. these may get mapped into system
1717 * address space via -numa parameters or memory hotplug
1718 * hooks. we want to take these into account, but we
1719 * also want to make sure these supported hugepage
1720 * sizes are applicable across the entire range of memory
1721 * we may boot from, so we take the min across all
1722 * backends, and assume normal pages in cases where a
1723 * backend isn't backed by hugepages.
1725 memdev_root = object_resolve_path("/objects", NULL);
1726 if (memdev_root) {
1727 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1729 if (hpsize == LONG_MAX) {
1730 /* No additional memory regions found ==> Report main RAM page size */
1731 return mainrampagesize;
1734 /* If NUMA is disabled or the NUMA nodes are not backed with a
1735 * memory-backend, then there is at least one node using "normal" RAM,
1736 * so if its page size is smaller we have got to report that size instead.
1738 if (hpsize > mainrampagesize &&
1739 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1740 static bool warned;
1741 if (!warned) {
1742 error_report("Huge page support disabled (n/a for main memory).");
1743 warned = true;
1745 return mainrampagesize;
1748 return hpsize;
1750 #else
1751 long qemu_getrampagesize(void)
1753 return getpagesize();
1755 #endif
1757 #ifdef CONFIG_POSIX
1758 static int64_t get_file_size(int fd)
1760 int64_t size = lseek(fd, 0, SEEK_END);
1761 if (size < 0) {
1762 return -errno;
1764 return size;
1767 static int file_ram_open(const char *path,
1768 const char *region_name,
1769 bool *created,
1770 Error **errp)
1772 char *filename;
1773 char *sanitized_name;
1774 char *c;
1775 int fd = -1;
1777 *created = false;
1778 for (;;) {
1779 fd = open(path, O_RDWR);
1780 if (fd >= 0) {
1781 /* @path names an existing file, use it */
1782 break;
1784 if (errno == ENOENT) {
1785 /* @path names a file that doesn't exist, create it */
1786 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1787 if (fd >= 0) {
1788 *created = true;
1789 break;
1791 } else if (errno == EISDIR) {
1792 /* @path names a directory, create a file there */
1793 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1794 sanitized_name = g_strdup(region_name);
1795 for (c = sanitized_name; *c != '\0'; c++) {
1796 if (*c == '/') {
1797 *c = '_';
1801 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1802 sanitized_name);
1803 g_free(sanitized_name);
1805 fd = mkstemp(filename);
1806 if (fd >= 0) {
1807 unlink(filename);
1808 g_free(filename);
1809 break;
1811 g_free(filename);
1813 if (errno != EEXIST && errno != EINTR) {
1814 error_setg_errno(errp, errno,
1815 "can't open backing store %s for guest RAM",
1816 path);
1817 return -1;
1820 * Try again on EINTR and EEXIST. The latter happens when
1821 * something else creates the file between our two open().
1825 return fd;
1828 static void *file_ram_alloc(RAMBlock *block,
1829 ram_addr_t memory,
1830 int fd,
1831 bool truncate,
1832 Error **errp)
1834 void *area;
1836 block->page_size = qemu_fd_getpagesize(fd);
1837 if (block->mr->align % block->page_size) {
1838 error_setg(errp, "alignment 0x%" PRIx64
1839 " must be multiples of page size 0x%zx",
1840 block->mr->align, block->page_size);
1841 return NULL;
1842 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1843 error_setg(errp, "alignment 0x%" PRIx64
1844 " must be a power of two", block->mr->align);
1845 return NULL;
1847 block->mr->align = MAX(block->page_size, block->mr->align);
1848 #if defined(__s390x__)
1849 if (kvm_enabled()) {
1850 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1852 #endif
1854 if (memory < block->page_size) {
1855 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1856 "or larger than page size 0x%zx",
1857 memory, block->page_size);
1858 return NULL;
1861 memory = ROUND_UP(memory, block->page_size);
1864 * ftruncate is not supported by hugetlbfs in older
1865 * hosts, so don't bother bailing out on errors.
1866 * If anything goes wrong with it under other filesystems,
1867 * mmap will fail.
1869 * Do not truncate the non-empty backend file to avoid corrupting
1870 * the existing data in the file. Disabling shrinking is not
1871 * enough. For example, the current vNVDIMM implementation stores
1872 * the guest NVDIMM labels at the end of the backend file. If the
1873 * backend file is later extended, QEMU will not be able to find
1874 * those labels. Therefore, extending the non-empty backend file
1875 * is disabled as well.
1877 if (truncate && ftruncate(fd, memory)) {
1878 perror("ftruncate");
1881 area = qemu_ram_mmap(fd, memory, block->mr->align,
1882 block->flags & RAM_SHARED);
1883 if (area == MAP_FAILED) {
1884 error_setg_errno(errp, errno,
1885 "unable to map backing store for guest RAM");
1886 return NULL;
1889 if (mem_prealloc) {
1890 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1891 if (errp && *errp) {
1892 qemu_ram_munmap(fd, area, memory);
1893 return NULL;
1897 block->fd = fd;
1898 return area;
1900 #endif
1902 /* Allocate space within the ram_addr_t space that governs the
1903 * dirty bitmaps.
1904 * Called with the ramlist lock held.
1906 static ram_addr_t find_ram_offset(ram_addr_t size)
1908 RAMBlock *block, *next_block;
1909 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1911 assert(size != 0); /* it would hand out same offset multiple times */
1913 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1914 return 0;
1917 RAMBLOCK_FOREACH(block) {
1918 ram_addr_t candidate, next = RAM_ADDR_MAX;
1920 /* Align blocks to start on a 'long' in the bitmap
1921 * which makes the bitmap sync'ing take the fast path.
1923 candidate = block->offset + block->max_length;
1924 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1926 /* Search for the closest following block
1927 * and find the gap.
1929 RAMBLOCK_FOREACH(next_block) {
1930 if (next_block->offset >= candidate) {
1931 next = MIN(next, next_block->offset);
1935 /* If it fits remember our place and remember the size
1936 * of gap, but keep going so that we might find a smaller
1937 * gap to fill so avoiding fragmentation.
1939 if (next - candidate >= size && next - candidate < mingap) {
1940 offset = candidate;
1941 mingap = next - candidate;
1944 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1947 if (offset == RAM_ADDR_MAX) {
1948 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1949 (uint64_t)size);
1950 abort();
1953 trace_find_ram_offset(size, offset);
1955 return offset;
1958 static unsigned long last_ram_page(void)
1960 RAMBlock *block;
1961 ram_addr_t last = 0;
1963 rcu_read_lock();
1964 RAMBLOCK_FOREACH(block) {
1965 last = MAX(last, block->offset + block->max_length);
1967 rcu_read_unlock();
1968 return last >> TARGET_PAGE_BITS;
1971 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1973 int ret;
1975 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1976 if (!machine_dump_guest_core(current_machine)) {
1977 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1978 if (ret) {
1979 perror("qemu_madvise");
1980 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1981 "but dump_guest_core=off specified\n");
1986 const char *qemu_ram_get_idstr(RAMBlock *rb)
1988 return rb->idstr;
1991 void *qemu_ram_get_host_addr(RAMBlock *rb)
1993 return rb->host;
1996 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1998 return rb->offset;
2001 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2003 return rb->used_length;
2006 bool qemu_ram_is_shared(RAMBlock *rb)
2008 return rb->flags & RAM_SHARED;
2011 /* Note: Only set at the start of postcopy */
2012 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2014 return rb->flags & RAM_UF_ZEROPAGE;
2017 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2019 rb->flags |= RAM_UF_ZEROPAGE;
2022 bool qemu_ram_is_migratable(RAMBlock *rb)
2024 return rb->flags & RAM_MIGRATABLE;
2027 void qemu_ram_set_migratable(RAMBlock *rb)
2029 rb->flags |= RAM_MIGRATABLE;
2032 void qemu_ram_unset_migratable(RAMBlock *rb)
2034 rb->flags &= ~RAM_MIGRATABLE;
2037 /* Called with iothread lock held. */
2038 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2040 RAMBlock *block;
2042 assert(new_block);
2043 assert(!new_block->idstr[0]);
2045 if (dev) {
2046 char *id = qdev_get_dev_path(dev);
2047 if (id) {
2048 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2049 g_free(id);
2052 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2054 rcu_read_lock();
2055 RAMBLOCK_FOREACH(block) {
2056 if (block != new_block &&
2057 !strcmp(block->idstr, new_block->idstr)) {
2058 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2059 new_block->idstr);
2060 abort();
2063 rcu_read_unlock();
2066 /* Called with iothread lock held. */
2067 void qemu_ram_unset_idstr(RAMBlock *block)
2069 /* FIXME: arch_init.c assumes that this is not called throughout
2070 * migration. Ignore the problem since hot-unplug during migration
2071 * does not work anyway.
2073 if (block) {
2074 memset(block->idstr, 0, sizeof(block->idstr));
2078 size_t qemu_ram_pagesize(RAMBlock *rb)
2080 return rb->page_size;
2083 /* Returns the largest size of page in use */
2084 size_t qemu_ram_pagesize_largest(void)
2086 RAMBlock *block;
2087 size_t largest = 0;
2089 RAMBLOCK_FOREACH(block) {
2090 largest = MAX(largest, qemu_ram_pagesize(block));
2093 return largest;
2096 static int memory_try_enable_merging(void *addr, size_t len)
2098 if (!machine_mem_merge(current_machine)) {
2099 /* disabled by the user */
2100 return 0;
2103 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2106 /* Only legal before guest might have detected the memory size: e.g. on
2107 * incoming migration, or right after reset.
2109 * As memory core doesn't know how is memory accessed, it is up to
2110 * resize callback to update device state and/or add assertions to detect
2111 * misuse, if necessary.
2113 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2115 assert(block);
2117 newsize = HOST_PAGE_ALIGN(newsize);
2119 if (block->used_length == newsize) {
2120 return 0;
2123 if (!(block->flags & RAM_RESIZEABLE)) {
2124 error_setg_errno(errp, EINVAL,
2125 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2126 " in != 0x" RAM_ADDR_FMT, block->idstr,
2127 newsize, block->used_length);
2128 return -EINVAL;
2131 if (block->max_length < newsize) {
2132 error_setg_errno(errp, EINVAL,
2133 "Length too large: %s: 0x" RAM_ADDR_FMT
2134 " > 0x" RAM_ADDR_FMT, block->idstr,
2135 newsize, block->max_length);
2136 return -EINVAL;
2139 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2140 block->used_length = newsize;
2141 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2142 DIRTY_CLIENTS_ALL);
2143 memory_region_set_size(block->mr, newsize);
2144 if (block->resized) {
2145 block->resized(block->idstr, newsize, block->host);
2147 return 0;
2150 /* Called with ram_list.mutex held */
2151 static void dirty_memory_extend(ram_addr_t old_ram_size,
2152 ram_addr_t new_ram_size)
2154 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2155 DIRTY_MEMORY_BLOCK_SIZE);
2156 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2157 DIRTY_MEMORY_BLOCK_SIZE);
2158 int i;
2160 /* Only need to extend if block count increased */
2161 if (new_num_blocks <= old_num_blocks) {
2162 return;
2165 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2166 DirtyMemoryBlocks *old_blocks;
2167 DirtyMemoryBlocks *new_blocks;
2168 int j;
2170 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2171 new_blocks = g_malloc(sizeof(*new_blocks) +
2172 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2174 if (old_num_blocks) {
2175 memcpy(new_blocks->blocks, old_blocks->blocks,
2176 old_num_blocks * sizeof(old_blocks->blocks[0]));
2179 for (j = old_num_blocks; j < new_num_blocks; j++) {
2180 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2183 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2185 if (old_blocks) {
2186 g_free_rcu(old_blocks, rcu);
2191 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2193 RAMBlock *block;
2194 RAMBlock *last_block = NULL;
2195 ram_addr_t old_ram_size, new_ram_size;
2196 Error *err = NULL;
2198 old_ram_size = last_ram_page();
2200 qemu_mutex_lock_ramlist();
2201 new_block->offset = find_ram_offset(new_block->max_length);
2203 if (!new_block->host) {
2204 if (xen_enabled()) {
2205 xen_ram_alloc(new_block->offset, new_block->max_length,
2206 new_block->mr, &err);
2207 if (err) {
2208 error_propagate(errp, err);
2209 qemu_mutex_unlock_ramlist();
2210 return;
2212 } else {
2213 new_block->host = phys_mem_alloc(new_block->max_length,
2214 &new_block->mr->align, shared);
2215 if (!new_block->host) {
2216 error_setg_errno(errp, errno,
2217 "cannot set up guest memory '%s'",
2218 memory_region_name(new_block->mr));
2219 qemu_mutex_unlock_ramlist();
2220 return;
2222 memory_try_enable_merging(new_block->host, new_block->max_length);
2226 new_ram_size = MAX(old_ram_size,
2227 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2228 if (new_ram_size > old_ram_size) {
2229 dirty_memory_extend(old_ram_size, new_ram_size);
2231 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2232 * QLIST (which has an RCU-friendly variant) does not have insertion at
2233 * tail, so save the last element in last_block.
2235 RAMBLOCK_FOREACH(block) {
2236 last_block = block;
2237 if (block->max_length < new_block->max_length) {
2238 break;
2241 if (block) {
2242 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2243 } else if (last_block) {
2244 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2245 } else { /* list is empty */
2246 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2248 ram_list.mru_block = NULL;
2250 /* Write list before version */
2251 smp_wmb();
2252 ram_list.version++;
2253 qemu_mutex_unlock_ramlist();
2255 cpu_physical_memory_set_dirty_range(new_block->offset,
2256 new_block->used_length,
2257 DIRTY_CLIENTS_ALL);
2259 if (new_block->host) {
2260 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2261 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2262 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2263 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2264 ram_block_notify_add(new_block->host, new_block->max_length);
2268 #ifdef CONFIG_POSIX
2269 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2270 uint32_t ram_flags, int fd,
2271 Error **errp)
2273 RAMBlock *new_block;
2274 Error *local_err = NULL;
2275 int64_t file_size;
2277 /* Just support these ram flags by now. */
2278 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2280 if (xen_enabled()) {
2281 error_setg(errp, "-mem-path not supported with Xen");
2282 return NULL;
2285 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2286 error_setg(errp,
2287 "host lacks kvm mmu notifiers, -mem-path unsupported");
2288 return NULL;
2291 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2293 * file_ram_alloc() needs to allocate just like
2294 * phys_mem_alloc, but we haven't bothered to provide
2295 * a hook there.
2297 error_setg(errp,
2298 "-mem-path not supported with this accelerator");
2299 return NULL;
2302 size = HOST_PAGE_ALIGN(size);
2303 file_size = get_file_size(fd);
2304 if (file_size > 0 && file_size < size) {
2305 error_setg(errp, "backing store %s size 0x%" PRIx64
2306 " does not match 'size' option 0x" RAM_ADDR_FMT,
2307 mem_path, file_size, size);
2308 return NULL;
2311 new_block = g_malloc0(sizeof(*new_block));
2312 new_block->mr = mr;
2313 new_block->used_length = size;
2314 new_block->max_length = size;
2315 new_block->flags = ram_flags;
2316 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2317 if (!new_block->host) {
2318 g_free(new_block);
2319 return NULL;
2322 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2323 if (local_err) {
2324 g_free(new_block);
2325 error_propagate(errp, local_err);
2326 return NULL;
2328 return new_block;
2333 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2334 uint32_t ram_flags, const char *mem_path,
2335 Error **errp)
2337 int fd;
2338 bool created;
2339 RAMBlock *block;
2341 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2342 if (fd < 0) {
2343 return NULL;
2346 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2347 if (!block) {
2348 if (created) {
2349 unlink(mem_path);
2351 close(fd);
2352 return NULL;
2355 return block;
2357 #endif
2359 static
2360 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2361 void (*resized)(const char*,
2362 uint64_t length,
2363 void *host),
2364 void *host, bool resizeable, bool share,
2365 MemoryRegion *mr, Error **errp)
2367 RAMBlock *new_block;
2368 Error *local_err = NULL;
2370 size = HOST_PAGE_ALIGN(size);
2371 max_size = HOST_PAGE_ALIGN(max_size);
2372 new_block = g_malloc0(sizeof(*new_block));
2373 new_block->mr = mr;
2374 new_block->resized = resized;
2375 new_block->used_length = size;
2376 new_block->max_length = max_size;
2377 assert(max_size >= size);
2378 new_block->fd = -1;
2379 new_block->page_size = getpagesize();
2380 new_block->host = host;
2381 if (host) {
2382 new_block->flags |= RAM_PREALLOC;
2384 if (resizeable) {
2385 new_block->flags |= RAM_RESIZEABLE;
2387 ram_block_add(new_block, &local_err, share);
2388 if (local_err) {
2389 g_free(new_block);
2390 error_propagate(errp, local_err);
2391 return NULL;
2393 return new_block;
2396 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2397 MemoryRegion *mr, Error **errp)
2399 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2400 false, mr, errp);
2403 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2404 MemoryRegion *mr, Error **errp)
2406 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2407 share, mr, errp);
2410 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2411 void (*resized)(const char*,
2412 uint64_t length,
2413 void *host),
2414 MemoryRegion *mr, Error **errp)
2416 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2417 false, mr, errp);
2420 static void reclaim_ramblock(RAMBlock *block)
2422 if (block->flags & RAM_PREALLOC) {
2424 } else if (xen_enabled()) {
2425 xen_invalidate_map_cache_entry(block->host);
2426 #ifndef _WIN32
2427 } else if (block->fd >= 0) {
2428 qemu_ram_munmap(block->fd, block->host, block->max_length);
2429 close(block->fd);
2430 #endif
2431 } else {
2432 qemu_anon_ram_free(block->host, block->max_length);
2434 g_free(block);
2437 void qemu_ram_free(RAMBlock *block)
2439 if (!block) {
2440 return;
2443 if (block->host) {
2444 ram_block_notify_remove(block->host, block->max_length);
2447 qemu_mutex_lock_ramlist();
2448 QLIST_REMOVE_RCU(block, next);
2449 ram_list.mru_block = NULL;
2450 /* Write list before version */
2451 smp_wmb();
2452 ram_list.version++;
2453 call_rcu(block, reclaim_ramblock, rcu);
2454 qemu_mutex_unlock_ramlist();
2457 #ifndef _WIN32
2458 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2460 RAMBlock *block;
2461 ram_addr_t offset;
2462 int flags;
2463 void *area, *vaddr;
2465 RAMBLOCK_FOREACH(block) {
2466 offset = addr - block->offset;
2467 if (offset < block->max_length) {
2468 vaddr = ramblock_ptr(block, offset);
2469 if (block->flags & RAM_PREALLOC) {
2471 } else if (xen_enabled()) {
2472 abort();
2473 } else {
2474 flags = MAP_FIXED;
2475 if (block->fd >= 0) {
2476 flags |= (block->flags & RAM_SHARED ?
2477 MAP_SHARED : MAP_PRIVATE);
2478 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2479 flags, block->fd, offset);
2480 } else {
2482 * Remap needs to match alloc. Accelerators that
2483 * set phys_mem_alloc never remap. If they did,
2484 * we'd need a remap hook here.
2486 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2488 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2489 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2490 flags, -1, 0);
2492 if (area != vaddr) {
2493 error_report("Could not remap addr: "
2494 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2495 length, addr);
2496 exit(1);
2498 memory_try_enable_merging(vaddr, length);
2499 qemu_ram_setup_dump(vaddr, length);
2504 #endif /* !_WIN32 */
2506 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2507 * This should not be used for general purpose DMA. Use address_space_map
2508 * or address_space_rw instead. For local memory (e.g. video ram) that the
2509 * device owns, use memory_region_get_ram_ptr.
2511 * Called within RCU critical section.
2513 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2515 RAMBlock *block = ram_block;
2517 if (block == NULL) {
2518 block = qemu_get_ram_block(addr);
2519 addr -= block->offset;
2522 if (xen_enabled() && block->host == NULL) {
2523 /* We need to check if the requested address is in the RAM
2524 * because we don't want to map the entire memory in QEMU.
2525 * In that case just map until the end of the page.
2527 if (block->offset == 0) {
2528 return xen_map_cache(addr, 0, 0, false);
2531 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2533 return ramblock_ptr(block, addr);
2536 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2537 * but takes a size argument.
2539 * Called within RCU critical section.
2541 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2542 hwaddr *size, bool lock)
2544 RAMBlock *block = ram_block;
2545 if (*size == 0) {
2546 return NULL;
2549 if (block == NULL) {
2550 block = qemu_get_ram_block(addr);
2551 addr -= block->offset;
2553 *size = MIN(*size, block->max_length - addr);
2555 if (xen_enabled() && block->host == NULL) {
2556 /* We need to check if the requested address is in the RAM
2557 * because we don't want to map the entire memory in QEMU.
2558 * In that case just map the requested area.
2560 if (block->offset == 0) {
2561 return xen_map_cache(addr, *size, lock, lock);
2564 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2567 return ramblock_ptr(block, addr);
2570 /* Return the offset of a hostpointer within a ramblock */
2571 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2573 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2574 assert((uintptr_t)host >= (uintptr_t)rb->host);
2575 assert(res < rb->max_length);
2577 return res;
2581 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2582 * in that RAMBlock.
2584 * ptr: Host pointer to look up
2585 * round_offset: If true round the result offset down to a page boundary
2586 * *ram_addr: set to result ram_addr
2587 * *offset: set to result offset within the RAMBlock
2589 * Returns: RAMBlock (or NULL if not found)
2591 * By the time this function returns, the returned pointer is not protected
2592 * by RCU anymore. If the caller is not within an RCU critical section and
2593 * does not hold the iothread lock, it must have other means of protecting the
2594 * pointer, such as a reference to the region that includes the incoming
2595 * ram_addr_t.
2597 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2598 ram_addr_t *offset)
2600 RAMBlock *block;
2601 uint8_t *host = ptr;
2603 if (xen_enabled()) {
2604 ram_addr_t ram_addr;
2605 rcu_read_lock();
2606 ram_addr = xen_ram_addr_from_mapcache(ptr);
2607 block = qemu_get_ram_block(ram_addr);
2608 if (block) {
2609 *offset = ram_addr - block->offset;
2611 rcu_read_unlock();
2612 return block;
2615 rcu_read_lock();
2616 block = atomic_rcu_read(&ram_list.mru_block);
2617 if (block && block->host && host - block->host < block->max_length) {
2618 goto found;
2621 RAMBLOCK_FOREACH(block) {
2622 /* This case append when the block is not mapped. */
2623 if (block->host == NULL) {
2624 continue;
2626 if (host - block->host < block->max_length) {
2627 goto found;
2631 rcu_read_unlock();
2632 return NULL;
2634 found:
2635 *offset = (host - block->host);
2636 if (round_offset) {
2637 *offset &= TARGET_PAGE_MASK;
2639 rcu_read_unlock();
2640 return block;
2644 * Finds the named RAMBlock
2646 * name: The name of RAMBlock to find
2648 * Returns: RAMBlock (or NULL if not found)
2650 RAMBlock *qemu_ram_block_by_name(const char *name)
2652 RAMBlock *block;
2654 RAMBLOCK_FOREACH(block) {
2655 if (!strcmp(name, block->idstr)) {
2656 return block;
2660 return NULL;
2663 /* Some of the softmmu routines need to translate from a host pointer
2664 (typically a TLB entry) back to a ram offset. */
2665 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2667 RAMBlock *block;
2668 ram_addr_t offset;
2670 block = qemu_ram_block_from_host(ptr, false, &offset);
2671 if (!block) {
2672 return RAM_ADDR_INVALID;
2675 return block->offset + offset;
2678 /* Called within RCU critical section. */
2679 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2680 CPUState *cpu,
2681 vaddr mem_vaddr,
2682 ram_addr_t ram_addr,
2683 unsigned size)
2685 ndi->cpu = cpu;
2686 ndi->ram_addr = ram_addr;
2687 ndi->mem_vaddr = mem_vaddr;
2688 ndi->size = size;
2689 ndi->pages = NULL;
2691 assert(tcg_enabled());
2692 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2693 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2694 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2698 /* Called within RCU critical section. */
2699 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2701 if (ndi->pages) {
2702 assert(tcg_enabled());
2703 page_collection_unlock(ndi->pages);
2704 ndi->pages = NULL;
2707 /* Set both VGA and migration bits for simplicity and to remove
2708 * the notdirty callback faster.
2710 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2711 DIRTY_CLIENTS_NOCODE);
2712 /* we remove the notdirty callback only if the code has been
2713 flushed */
2714 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2715 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2719 /* Called within RCU critical section. */
2720 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2721 uint64_t val, unsigned size)
2723 NotDirtyInfo ndi;
2725 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2726 ram_addr, size);
2728 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2729 memory_notdirty_write_complete(&ndi);
2732 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2733 unsigned size, bool is_write,
2734 MemTxAttrs attrs)
2736 return is_write;
2739 static const MemoryRegionOps notdirty_mem_ops = {
2740 .write = notdirty_mem_write,
2741 .valid.accepts = notdirty_mem_accepts,
2742 .endianness = DEVICE_NATIVE_ENDIAN,
2743 .valid = {
2744 .min_access_size = 1,
2745 .max_access_size = 8,
2746 .unaligned = false,
2748 .impl = {
2749 .min_access_size = 1,
2750 .max_access_size = 8,
2751 .unaligned = false,
2755 /* Generate a debug exception if a watchpoint has been hit. */
2756 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2758 CPUState *cpu = current_cpu;
2759 CPUClass *cc = CPU_GET_CLASS(cpu);
2760 target_ulong vaddr;
2761 CPUWatchpoint *wp;
2763 assert(tcg_enabled());
2764 if (cpu->watchpoint_hit) {
2765 /* We re-entered the check after replacing the TB. Now raise
2766 * the debug interrupt so that is will trigger after the
2767 * current instruction. */
2768 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2769 return;
2771 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2772 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2773 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2774 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2775 && (wp->flags & flags)) {
2776 if (flags == BP_MEM_READ) {
2777 wp->flags |= BP_WATCHPOINT_HIT_READ;
2778 } else {
2779 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2781 wp->hitaddr = vaddr;
2782 wp->hitattrs = attrs;
2783 if (!cpu->watchpoint_hit) {
2784 if (wp->flags & BP_CPU &&
2785 !cc->debug_check_watchpoint(cpu, wp)) {
2786 wp->flags &= ~BP_WATCHPOINT_HIT;
2787 continue;
2789 cpu->watchpoint_hit = wp;
2791 mmap_lock();
2792 tb_check_watchpoint(cpu);
2793 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2794 cpu->exception_index = EXCP_DEBUG;
2795 mmap_unlock();
2796 cpu_loop_exit(cpu);
2797 } else {
2798 /* Force execution of one insn next time. */
2799 cpu->cflags_next_tb = 1 | curr_cflags();
2800 mmap_unlock();
2801 cpu_loop_exit_noexc(cpu);
2804 } else {
2805 wp->flags &= ~BP_WATCHPOINT_HIT;
2810 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2811 so these check for a hit then pass through to the normal out-of-line
2812 phys routines. */
2813 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2814 unsigned size, MemTxAttrs attrs)
2816 MemTxResult res;
2817 uint64_t data;
2818 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2819 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2821 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2822 switch (size) {
2823 case 1:
2824 data = address_space_ldub(as, addr, attrs, &res);
2825 break;
2826 case 2:
2827 data = address_space_lduw(as, addr, attrs, &res);
2828 break;
2829 case 4:
2830 data = address_space_ldl(as, addr, attrs, &res);
2831 break;
2832 case 8:
2833 data = address_space_ldq(as, addr, attrs, &res);
2834 break;
2835 default: abort();
2837 *pdata = data;
2838 return res;
2841 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2842 uint64_t val, unsigned size,
2843 MemTxAttrs attrs)
2845 MemTxResult res;
2846 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2847 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2849 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2850 switch (size) {
2851 case 1:
2852 address_space_stb(as, addr, val, attrs, &res);
2853 break;
2854 case 2:
2855 address_space_stw(as, addr, val, attrs, &res);
2856 break;
2857 case 4:
2858 address_space_stl(as, addr, val, attrs, &res);
2859 break;
2860 case 8:
2861 address_space_stq(as, addr, val, attrs, &res);
2862 break;
2863 default: abort();
2865 return res;
2868 static const MemoryRegionOps watch_mem_ops = {
2869 .read_with_attrs = watch_mem_read,
2870 .write_with_attrs = watch_mem_write,
2871 .endianness = DEVICE_NATIVE_ENDIAN,
2872 .valid = {
2873 .min_access_size = 1,
2874 .max_access_size = 8,
2875 .unaligned = false,
2877 .impl = {
2878 .min_access_size = 1,
2879 .max_access_size = 8,
2880 .unaligned = false,
2884 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2885 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2886 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2887 const uint8_t *buf, hwaddr len);
2888 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2889 bool is_write, MemTxAttrs attrs);
2891 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2892 unsigned len, MemTxAttrs attrs)
2894 subpage_t *subpage = opaque;
2895 uint8_t buf[8];
2896 MemTxResult res;
2898 #if defined(DEBUG_SUBPAGE)
2899 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2900 subpage, len, addr);
2901 #endif
2902 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2903 if (res) {
2904 return res;
2906 *data = ldn_p(buf, len);
2907 return MEMTX_OK;
2910 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2911 uint64_t value, unsigned len, MemTxAttrs attrs)
2913 subpage_t *subpage = opaque;
2914 uint8_t buf[8];
2916 #if defined(DEBUG_SUBPAGE)
2917 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2918 " value %"PRIx64"\n",
2919 __func__, subpage, len, addr, value);
2920 #endif
2921 stn_p(buf, len, value);
2922 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2925 static bool subpage_accepts(void *opaque, hwaddr addr,
2926 unsigned len, bool is_write,
2927 MemTxAttrs attrs)
2929 subpage_t *subpage = opaque;
2930 #if defined(DEBUG_SUBPAGE)
2931 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2932 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2933 #endif
2935 return flatview_access_valid(subpage->fv, addr + subpage->base,
2936 len, is_write, attrs);
2939 static const MemoryRegionOps subpage_ops = {
2940 .read_with_attrs = subpage_read,
2941 .write_with_attrs = subpage_write,
2942 .impl.min_access_size = 1,
2943 .impl.max_access_size = 8,
2944 .valid.min_access_size = 1,
2945 .valid.max_access_size = 8,
2946 .valid.accepts = subpage_accepts,
2947 .endianness = DEVICE_NATIVE_ENDIAN,
2950 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2951 uint16_t section)
2953 int idx, eidx;
2955 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2956 return -1;
2957 idx = SUBPAGE_IDX(start);
2958 eidx = SUBPAGE_IDX(end);
2959 #if defined(DEBUG_SUBPAGE)
2960 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2961 __func__, mmio, start, end, idx, eidx, section);
2962 #endif
2963 for (; idx <= eidx; idx++) {
2964 mmio->sub_section[idx] = section;
2967 return 0;
2970 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2972 subpage_t *mmio;
2974 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2975 mmio->fv = fv;
2976 mmio->base = base;
2977 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2978 NULL, TARGET_PAGE_SIZE);
2979 mmio->iomem.subpage = true;
2980 #if defined(DEBUG_SUBPAGE)
2981 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2982 mmio, base, TARGET_PAGE_SIZE);
2983 #endif
2984 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2986 return mmio;
2989 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2991 assert(fv);
2992 MemoryRegionSection section = {
2993 .fv = fv,
2994 .mr = mr,
2995 .offset_within_address_space = 0,
2996 .offset_within_region = 0,
2997 .size = int128_2_64(),
3000 return phys_section_add(map, &section);
3003 static void readonly_mem_write(void *opaque, hwaddr addr,
3004 uint64_t val, unsigned size)
3006 /* Ignore any write to ROM. */
3009 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3010 unsigned size, bool is_write,
3011 MemTxAttrs attrs)
3013 return is_write;
3016 /* This will only be used for writes, because reads are special cased
3017 * to directly access the underlying host ram.
3019 static const MemoryRegionOps readonly_mem_ops = {
3020 .write = readonly_mem_write,
3021 .valid.accepts = readonly_mem_accepts,
3022 .endianness = DEVICE_NATIVE_ENDIAN,
3023 .valid = {
3024 .min_access_size = 1,
3025 .max_access_size = 8,
3026 .unaligned = false,
3028 .impl = {
3029 .min_access_size = 1,
3030 .max_access_size = 8,
3031 .unaligned = false,
3035 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3036 hwaddr index, MemTxAttrs attrs)
3038 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3039 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3040 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3041 MemoryRegionSection *sections = d->map.sections;
3043 return &sections[index & ~TARGET_PAGE_MASK];
3046 static void io_mem_init(void)
3048 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3049 NULL, NULL, UINT64_MAX);
3050 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3051 NULL, UINT64_MAX);
3053 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3054 * which can be called without the iothread mutex.
3056 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3057 NULL, UINT64_MAX);
3058 memory_region_clear_global_locking(&io_mem_notdirty);
3060 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3061 NULL, UINT64_MAX);
3064 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3066 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3067 uint16_t n;
3069 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3070 assert(n == PHYS_SECTION_UNASSIGNED);
3071 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3072 assert(n == PHYS_SECTION_NOTDIRTY);
3073 n = dummy_section(&d->map, fv, &io_mem_rom);
3074 assert(n == PHYS_SECTION_ROM);
3075 n = dummy_section(&d->map, fv, &io_mem_watch);
3076 assert(n == PHYS_SECTION_WATCH);
3078 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3080 return d;
3083 void address_space_dispatch_free(AddressSpaceDispatch *d)
3085 phys_sections_free(&d->map);
3086 g_free(d);
3089 static void tcg_commit(MemoryListener *listener)
3091 CPUAddressSpace *cpuas;
3092 AddressSpaceDispatch *d;
3094 assert(tcg_enabled());
3095 /* since each CPU stores ram addresses in its TLB cache, we must
3096 reset the modified entries */
3097 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3098 cpu_reloading_memory_map();
3099 /* The CPU and TLB are protected by the iothread lock.
3100 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3101 * may have split the RCU critical section.
3103 d = address_space_to_dispatch(cpuas->as);
3104 atomic_rcu_set(&cpuas->memory_dispatch, d);
3105 tlb_flush(cpuas->cpu);
3108 static void memory_map_init(void)
3110 system_memory = g_malloc(sizeof(*system_memory));
3112 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3113 address_space_init(&address_space_memory, system_memory, "memory");
3115 system_io = g_malloc(sizeof(*system_io));
3116 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3117 65536);
3118 address_space_init(&address_space_io, system_io, "I/O");
3121 MemoryRegion *get_system_memory(void)
3123 return system_memory;
3126 MemoryRegion *get_system_io(void)
3128 return system_io;
3131 #endif /* !defined(CONFIG_USER_ONLY) */
3133 /* physical memory access (slow version, mainly for debug) */
3134 #if defined(CONFIG_USER_ONLY)
3135 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3136 uint8_t *buf, target_ulong len, int is_write)
3138 int flags;
3139 target_ulong l, page;
3140 void * p;
3142 while (len > 0) {
3143 page = addr & TARGET_PAGE_MASK;
3144 l = (page + TARGET_PAGE_SIZE) - addr;
3145 if (l > len)
3146 l = len;
3147 flags = page_get_flags(page);
3148 if (!(flags & PAGE_VALID))
3149 return -1;
3150 if (is_write) {
3151 if (!(flags & PAGE_WRITE))
3152 return -1;
3153 /* XXX: this code should not depend on lock_user */
3154 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3155 return -1;
3156 memcpy(p, buf, l);
3157 unlock_user(p, addr, l);
3158 } else {
3159 if (!(flags & PAGE_READ))
3160 return -1;
3161 /* XXX: this code should not depend on lock_user */
3162 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3163 return -1;
3164 memcpy(buf, p, l);
3165 unlock_user(p, addr, 0);
3167 len -= l;
3168 buf += l;
3169 addr += l;
3171 return 0;
3174 #else
3176 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3177 hwaddr length)
3179 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3180 addr += memory_region_get_ram_addr(mr);
3182 /* No early return if dirty_log_mask is or becomes 0, because
3183 * cpu_physical_memory_set_dirty_range will still call
3184 * xen_modified_memory.
3186 if (dirty_log_mask) {
3187 dirty_log_mask =
3188 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3190 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3191 assert(tcg_enabled());
3192 tb_invalidate_phys_range(addr, addr + length);
3193 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3195 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3198 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3201 * In principle this function would work on other memory region types too,
3202 * but the ROM device use case is the only one where this operation is
3203 * necessary. Other memory regions should use the
3204 * address_space_read/write() APIs.
3206 assert(memory_region_is_romd(mr));
3208 invalidate_and_set_dirty(mr, addr, size);
3211 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3213 unsigned access_size_max = mr->ops->valid.max_access_size;
3215 /* Regions are assumed to support 1-4 byte accesses unless
3216 otherwise specified. */
3217 if (access_size_max == 0) {
3218 access_size_max = 4;
3221 /* Bound the maximum access by the alignment of the address. */
3222 if (!mr->ops->impl.unaligned) {
3223 unsigned align_size_max = addr & -addr;
3224 if (align_size_max != 0 && align_size_max < access_size_max) {
3225 access_size_max = align_size_max;
3229 /* Don't attempt accesses larger than the maximum. */
3230 if (l > access_size_max) {
3231 l = access_size_max;
3233 l = pow2floor(l);
3235 return l;
3238 static bool prepare_mmio_access(MemoryRegion *mr)
3240 bool unlocked = !qemu_mutex_iothread_locked();
3241 bool release_lock = false;
3243 if (unlocked && mr->global_locking) {
3244 qemu_mutex_lock_iothread();
3245 unlocked = false;
3246 release_lock = true;
3248 if (mr->flush_coalesced_mmio) {
3249 if (unlocked) {
3250 qemu_mutex_lock_iothread();
3252 qemu_flush_coalesced_mmio_buffer();
3253 if (unlocked) {
3254 qemu_mutex_unlock_iothread();
3258 return release_lock;
3261 /* Called within RCU critical section. */
3262 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3263 MemTxAttrs attrs,
3264 const uint8_t *buf,
3265 hwaddr len, hwaddr addr1,
3266 hwaddr l, MemoryRegion *mr)
3268 uint8_t *ptr;
3269 uint64_t val;
3270 MemTxResult result = MEMTX_OK;
3271 bool release_lock = false;
3273 for (;;) {
3274 if (!memory_access_is_direct(mr, true)) {
3275 release_lock |= prepare_mmio_access(mr);
3276 l = memory_access_size(mr, l, addr1);
3277 /* XXX: could force current_cpu to NULL to avoid
3278 potential bugs */
3279 val = ldn_p(buf, l);
3280 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3281 } else {
3282 /* RAM case */
3283 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3284 memcpy(ptr, buf, l);
3285 invalidate_and_set_dirty(mr, addr1, l);
3288 if (release_lock) {
3289 qemu_mutex_unlock_iothread();
3290 release_lock = false;
3293 len -= l;
3294 buf += l;
3295 addr += l;
3297 if (!len) {
3298 break;
3301 l = len;
3302 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3305 return result;
3308 /* Called from RCU critical section. */
3309 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3310 const uint8_t *buf, hwaddr len)
3312 hwaddr l;
3313 hwaddr addr1;
3314 MemoryRegion *mr;
3315 MemTxResult result = MEMTX_OK;
3317 l = len;
3318 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3319 result = flatview_write_continue(fv, addr, attrs, buf, len,
3320 addr1, l, mr);
3322 return result;
3325 /* Called within RCU critical section. */
3326 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3327 MemTxAttrs attrs, uint8_t *buf,
3328 hwaddr len, hwaddr addr1, hwaddr l,
3329 MemoryRegion *mr)
3331 uint8_t *ptr;
3332 uint64_t val;
3333 MemTxResult result = MEMTX_OK;
3334 bool release_lock = false;
3336 for (;;) {
3337 if (!memory_access_is_direct(mr, false)) {
3338 /* I/O case */
3339 release_lock |= prepare_mmio_access(mr);
3340 l = memory_access_size(mr, l, addr1);
3341 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3342 stn_p(buf, l, val);
3343 } else {
3344 /* RAM case */
3345 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3346 memcpy(buf, ptr, l);
3349 if (release_lock) {
3350 qemu_mutex_unlock_iothread();
3351 release_lock = false;
3354 len -= l;
3355 buf += l;
3356 addr += l;
3358 if (!len) {
3359 break;
3362 l = len;
3363 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3366 return result;
3369 /* Called from RCU critical section. */
3370 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3371 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3373 hwaddr l;
3374 hwaddr addr1;
3375 MemoryRegion *mr;
3377 l = len;
3378 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3379 return flatview_read_continue(fv, addr, attrs, buf, len,
3380 addr1, l, mr);
3383 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3384 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3386 MemTxResult result = MEMTX_OK;
3387 FlatView *fv;
3389 if (len > 0) {
3390 rcu_read_lock();
3391 fv = address_space_to_flatview(as);
3392 result = flatview_read(fv, addr, attrs, buf, len);
3393 rcu_read_unlock();
3396 return result;
3399 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3400 MemTxAttrs attrs,
3401 const uint8_t *buf, hwaddr len)
3403 MemTxResult result = MEMTX_OK;
3404 FlatView *fv;
3406 if (len > 0) {
3407 rcu_read_lock();
3408 fv = address_space_to_flatview(as);
3409 result = flatview_write(fv, addr, attrs, buf, len);
3410 rcu_read_unlock();
3413 return result;
3416 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3417 uint8_t *buf, hwaddr len, bool is_write)
3419 if (is_write) {
3420 return address_space_write(as, addr, attrs, buf, len);
3421 } else {
3422 return address_space_read_full(as, addr, attrs, buf, len);
3426 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3427 hwaddr len, int is_write)
3429 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3430 buf, len, is_write);
3433 enum write_rom_type {
3434 WRITE_DATA,
3435 FLUSH_CACHE,
3438 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3439 hwaddr addr,
3440 MemTxAttrs attrs,
3441 const uint8_t *buf,
3442 hwaddr len,
3443 enum write_rom_type type)
3445 hwaddr l;
3446 uint8_t *ptr;
3447 hwaddr addr1;
3448 MemoryRegion *mr;
3450 rcu_read_lock();
3451 while (len > 0) {
3452 l = len;
3453 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3455 if (!(memory_region_is_ram(mr) ||
3456 memory_region_is_romd(mr))) {
3457 l = memory_access_size(mr, l, addr1);
3458 } else {
3459 /* ROM/RAM case */
3460 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3461 switch (type) {
3462 case WRITE_DATA:
3463 memcpy(ptr, buf, l);
3464 invalidate_and_set_dirty(mr, addr1, l);
3465 break;
3466 case FLUSH_CACHE:
3467 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3468 break;
3471 len -= l;
3472 buf += l;
3473 addr += l;
3475 rcu_read_unlock();
3476 return MEMTX_OK;
3479 /* used for ROM loading : can write in RAM and ROM */
3480 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3481 MemTxAttrs attrs,
3482 const uint8_t *buf, hwaddr len)
3484 return address_space_write_rom_internal(as, addr, attrs,
3485 buf, len, WRITE_DATA);
3488 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3491 * This function should do the same thing as an icache flush that was
3492 * triggered from within the guest. For TCG we are always cache coherent,
3493 * so there is no need to flush anything. For KVM / Xen we need to flush
3494 * the host's instruction cache at least.
3496 if (tcg_enabled()) {
3497 return;
3500 address_space_write_rom_internal(&address_space_memory,
3501 start, MEMTXATTRS_UNSPECIFIED,
3502 NULL, len, FLUSH_CACHE);
3505 typedef struct {
3506 MemoryRegion *mr;
3507 void *buffer;
3508 hwaddr addr;
3509 hwaddr len;
3510 bool in_use;
3511 } BounceBuffer;
3513 static BounceBuffer bounce;
3515 typedef struct MapClient {
3516 QEMUBH *bh;
3517 QLIST_ENTRY(MapClient) link;
3518 } MapClient;
3520 QemuMutex map_client_list_lock;
3521 static QLIST_HEAD(, MapClient) map_client_list
3522 = QLIST_HEAD_INITIALIZER(map_client_list);
3524 static void cpu_unregister_map_client_do(MapClient *client)
3526 QLIST_REMOVE(client, link);
3527 g_free(client);
3530 static void cpu_notify_map_clients_locked(void)
3532 MapClient *client;
3534 while (!QLIST_EMPTY(&map_client_list)) {
3535 client = QLIST_FIRST(&map_client_list);
3536 qemu_bh_schedule(client->bh);
3537 cpu_unregister_map_client_do(client);
3541 void cpu_register_map_client(QEMUBH *bh)
3543 MapClient *client = g_malloc(sizeof(*client));
3545 qemu_mutex_lock(&map_client_list_lock);
3546 client->bh = bh;
3547 QLIST_INSERT_HEAD(&map_client_list, client, link);
3548 if (!atomic_read(&bounce.in_use)) {
3549 cpu_notify_map_clients_locked();
3551 qemu_mutex_unlock(&map_client_list_lock);
3554 void cpu_exec_init_all(void)
3556 qemu_mutex_init(&ram_list.mutex);
3557 /* The data structures we set up here depend on knowing the page size,
3558 * so no more changes can be made after this point.
3559 * In an ideal world, nothing we did before we had finished the
3560 * machine setup would care about the target page size, and we could
3561 * do this much later, rather than requiring board models to state
3562 * up front what their requirements are.
3564 finalize_target_page_bits();
3565 io_mem_init();
3566 memory_map_init();
3567 qemu_mutex_init(&map_client_list_lock);
3570 void cpu_unregister_map_client(QEMUBH *bh)
3572 MapClient *client;
3574 qemu_mutex_lock(&map_client_list_lock);
3575 QLIST_FOREACH(client, &map_client_list, link) {
3576 if (client->bh == bh) {
3577 cpu_unregister_map_client_do(client);
3578 break;
3581 qemu_mutex_unlock(&map_client_list_lock);
3584 static void cpu_notify_map_clients(void)
3586 qemu_mutex_lock(&map_client_list_lock);
3587 cpu_notify_map_clients_locked();
3588 qemu_mutex_unlock(&map_client_list_lock);
3591 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3592 bool is_write, MemTxAttrs attrs)
3594 MemoryRegion *mr;
3595 hwaddr l, xlat;
3597 while (len > 0) {
3598 l = len;
3599 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3600 if (!memory_access_is_direct(mr, is_write)) {
3601 l = memory_access_size(mr, l, addr);
3602 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3603 return false;
3607 len -= l;
3608 addr += l;
3610 return true;
3613 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3614 hwaddr len, bool is_write,
3615 MemTxAttrs attrs)
3617 FlatView *fv;
3618 bool result;
3620 rcu_read_lock();
3621 fv = address_space_to_flatview(as);
3622 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3623 rcu_read_unlock();
3624 return result;
3627 static hwaddr
3628 flatview_extend_translation(FlatView *fv, hwaddr addr,
3629 hwaddr target_len,
3630 MemoryRegion *mr, hwaddr base, hwaddr len,
3631 bool is_write, MemTxAttrs attrs)
3633 hwaddr done = 0;
3634 hwaddr xlat;
3635 MemoryRegion *this_mr;
3637 for (;;) {
3638 target_len -= len;
3639 addr += len;
3640 done += len;
3641 if (target_len == 0) {
3642 return done;
3645 len = target_len;
3646 this_mr = flatview_translate(fv, addr, &xlat,
3647 &len, is_write, attrs);
3648 if (this_mr != mr || xlat != base + done) {
3649 return done;
3654 /* Map a physical memory region into a host virtual address.
3655 * May map a subset of the requested range, given by and returned in *plen.
3656 * May return NULL if resources needed to perform the mapping are exhausted.
3657 * Use only for reads OR writes - not for read-modify-write operations.
3658 * Use cpu_register_map_client() to know when retrying the map operation is
3659 * likely to succeed.
3661 void *address_space_map(AddressSpace *as,
3662 hwaddr addr,
3663 hwaddr *plen,
3664 bool is_write,
3665 MemTxAttrs attrs)
3667 hwaddr len = *plen;
3668 hwaddr l, xlat;
3669 MemoryRegion *mr;
3670 void *ptr;
3671 FlatView *fv;
3673 if (len == 0) {
3674 return NULL;
3677 l = len;
3678 rcu_read_lock();
3679 fv = address_space_to_flatview(as);
3680 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3682 if (!memory_access_is_direct(mr, is_write)) {
3683 if (atomic_xchg(&bounce.in_use, true)) {
3684 rcu_read_unlock();
3685 return NULL;
3687 /* Avoid unbounded allocations */
3688 l = MIN(l, TARGET_PAGE_SIZE);
3689 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3690 bounce.addr = addr;
3691 bounce.len = l;
3693 memory_region_ref(mr);
3694 bounce.mr = mr;
3695 if (!is_write) {
3696 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3697 bounce.buffer, l);
3700 rcu_read_unlock();
3701 *plen = l;
3702 return bounce.buffer;
3706 memory_region_ref(mr);
3707 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3708 l, is_write, attrs);
3709 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3710 rcu_read_unlock();
3712 return ptr;
3715 /* Unmaps a memory region previously mapped by address_space_map().
3716 * Will also mark the memory as dirty if is_write == 1. access_len gives
3717 * the amount of memory that was actually read or written by the caller.
3719 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3720 int is_write, hwaddr access_len)
3722 if (buffer != bounce.buffer) {
3723 MemoryRegion *mr;
3724 ram_addr_t addr1;
3726 mr = memory_region_from_host(buffer, &addr1);
3727 assert(mr != NULL);
3728 if (is_write) {
3729 invalidate_and_set_dirty(mr, addr1, access_len);
3731 if (xen_enabled()) {
3732 xen_invalidate_map_cache_entry(buffer);
3734 memory_region_unref(mr);
3735 return;
3737 if (is_write) {
3738 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3739 bounce.buffer, access_len);
3741 qemu_vfree(bounce.buffer);
3742 bounce.buffer = NULL;
3743 memory_region_unref(bounce.mr);
3744 atomic_mb_set(&bounce.in_use, false);
3745 cpu_notify_map_clients();
3748 void *cpu_physical_memory_map(hwaddr addr,
3749 hwaddr *plen,
3750 int is_write)
3752 return address_space_map(&address_space_memory, addr, plen, is_write,
3753 MEMTXATTRS_UNSPECIFIED);
3756 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3757 int is_write, hwaddr access_len)
3759 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3762 #define ARG1_DECL AddressSpace *as
3763 #define ARG1 as
3764 #define SUFFIX
3765 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3766 #define RCU_READ_LOCK(...) rcu_read_lock()
3767 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3768 #include "memory_ldst.inc.c"
3770 int64_t address_space_cache_init(MemoryRegionCache *cache,
3771 AddressSpace *as,
3772 hwaddr addr,
3773 hwaddr len,
3774 bool is_write)
3776 AddressSpaceDispatch *d;
3777 hwaddr l;
3778 MemoryRegion *mr;
3780 assert(len > 0);
3782 l = len;
3783 cache->fv = address_space_get_flatview(as);
3784 d = flatview_to_dispatch(cache->fv);
3785 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3787 mr = cache->mrs.mr;
3788 memory_region_ref(mr);
3789 if (memory_access_is_direct(mr, is_write)) {
3790 /* We don't care about the memory attributes here as we're only
3791 * doing this if we found actual RAM, which behaves the same
3792 * regardless of attributes; so UNSPECIFIED is fine.
3794 l = flatview_extend_translation(cache->fv, addr, len, mr,
3795 cache->xlat, l, is_write,
3796 MEMTXATTRS_UNSPECIFIED);
3797 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3798 } else {
3799 cache->ptr = NULL;
3802 cache->len = l;
3803 cache->is_write = is_write;
3804 return l;
3807 void address_space_cache_invalidate(MemoryRegionCache *cache,
3808 hwaddr addr,
3809 hwaddr access_len)
3811 assert(cache->is_write);
3812 if (likely(cache->ptr)) {
3813 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3817 void address_space_cache_destroy(MemoryRegionCache *cache)
3819 if (!cache->mrs.mr) {
3820 return;
3823 if (xen_enabled()) {
3824 xen_invalidate_map_cache_entry(cache->ptr);
3826 memory_region_unref(cache->mrs.mr);
3827 flatview_unref(cache->fv);
3828 cache->mrs.mr = NULL;
3829 cache->fv = NULL;
3832 /* Called from RCU critical section. This function has the same
3833 * semantics as address_space_translate, but it only works on a
3834 * predefined range of a MemoryRegion that was mapped with
3835 * address_space_cache_init.
3837 static inline MemoryRegion *address_space_translate_cached(
3838 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3839 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3841 MemoryRegionSection section;
3842 MemoryRegion *mr;
3843 IOMMUMemoryRegion *iommu_mr;
3844 AddressSpace *target_as;
3846 assert(!cache->ptr);
3847 *xlat = addr + cache->xlat;
3849 mr = cache->mrs.mr;
3850 iommu_mr = memory_region_get_iommu(mr);
3851 if (!iommu_mr) {
3852 /* MMIO region. */
3853 return mr;
3856 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3857 NULL, is_write, true,
3858 &target_as, attrs);
3859 return section.mr;
3862 /* Called from RCU critical section. address_space_read_cached uses this
3863 * out of line function when the target is an MMIO or IOMMU region.
3865 void
3866 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3867 void *buf, hwaddr len)
3869 hwaddr addr1, l;
3870 MemoryRegion *mr;
3872 l = len;
3873 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3874 MEMTXATTRS_UNSPECIFIED);
3875 flatview_read_continue(cache->fv,
3876 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3877 addr1, l, mr);
3880 /* Called from RCU critical section. address_space_write_cached uses this
3881 * out of line function when the target is an MMIO or IOMMU region.
3883 void
3884 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3885 const void *buf, hwaddr len)
3887 hwaddr addr1, l;
3888 MemoryRegion *mr;
3890 l = len;
3891 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3892 MEMTXATTRS_UNSPECIFIED);
3893 flatview_write_continue(cache->fv,
3894 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3895 addr1, l, mr);
3898 #define ARG1_DECL MemoryRegionCache *cache
3899 #define ARG1 cache
3900 #define SUFFIX _cached_slow
3901 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3902 #define RCU_READ_LOCK() ((void)0)
3903 #define RCU_READ_UNLOCK() ((void)0)
3904 #include "memory_ldst.inc.c"
3906 /* virtual memory access for debug (includes writing to ROM) */
3907 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3908 uint8_t *buf, target_ulong len, int is_write)
3910 hwaddr phys_addr;
3911 target_ulong l, page;
3913 cpu_synchronize_state(cpu);
3914 while (len > 0) {
3915 int asidx;
3916 MemTxAttrs attrs;
3918 page = addr & TARGET_PAGE_MASK;
3919 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3920 asidx = cpu_asidx_from_attrs(cpu, attrs);
3921 /* if no physical page mapped, return an error */
3922 if (phys_addr == -1)
3923 return -1;
3924 l = (page + TARGET_PAGE_SIZE) - addr;
3925 if (l > len)
3926 l = len;
3927 phys_addr += (addr & ~TARGET_PAGE_MASK);
3928 if (is_write) {
3929 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3930 attrs, buf, l);
3931 } else {
3932 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3933 attrs, buf, l, 0);
3935 len -= l;
3936 buf += l;
3937 addr += l;
3939 return 0;
3943 * Allows code that needs to deal with migration bitmaps etc to still be built
3944 * target independent.
3946 size_t qemu_target_page_size(void)
3948 return TARGET_PAGE_SIZE;
3951 int qemu_target_page_bits(void)
3953 return TARGET_PAGE_BITS;
3956 int qemu_target_page_bits_min(void)
3958 return TARGET_PAGE_BITS_MIN;
3960 #endif
3962 bool target_words_bigendian(void)
3964 #if defined(TARGET_WORDS_BIGENDIAN)
3965 return true;
3966 #else
3967 return false;
3968 #endif
3971 #ifndef CONFIG_USER_ONLY
3972 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3974 MemoryRegion*mr;
3975 hwaddr l = 1;
3976 bool res;
3978 rcu_read_lock();
3979 mr = address_space_translate(&address_space_memory,
3980 phys_addr, &phys_addr, &l, false,
3981 MEMTXATTRS_UNSPECIFIED);
3983 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3984 rcu_read_unlock();
3985 return res;
3988 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3990 RAMBlock *block;
3991 int ret = 0;
3993 rcu_read_lock();
3994 RAMBLOCK_FOREACH(block) {
3995 ret = func(block, opaque);
3996 if (ret) {
3997 break;
4000 rcu_read_unlock();
4001 return ret;
4005 * Unmap pages of memory from start to start+length such that
4006 * they a) read as 0, b) Trigger whatever fault mechanism
4007 * the OS provides for postcopy.
4008 * The pages must be unmapped by the end of the function.
4009 * Returns: 0 on success, none-0 on failure
4012 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4014 int ret = -1;
4016 uint8_t *host_startaddr = rb->host + start;
4018 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4019 error_report("ram_block_discard_range: Unaligned start address: %p",
4020 host_startaddr);
4021 goto err;
4024 if ((start + length) <= rb->used_length) {
4025 bool need_madvise, need_fallocate;
4026 uint8_t *host_endaddr = host_startaddr + length;
4027 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4028 error_report("ram_block_discard_range: Unaligned end address: %p",
4029 host_endaddr);
4030 goto err;
4033 errno = ENOTSUP; /* If we are missing MADVISE etc */
4035 /* The logic here is messy;
4036 * madvise DONTNEED fails for hugepages
4037 * fallocate works on hugepages and shmem
4039 need_madvise = (rb->page_size == qemu_host_page_size);
4040 need_fallocate = rb->fd != -1;
4041 if (need_fallocate) {
4042 /* For a file, this causes the area of the file to be zero'd
4043 * if read, and for hugetlbfs also causes it to be unmapped
4044 * so a userfault will trigger.
4046 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4047 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4048 start, length);
4049 if (ret) {
4050 ret = -errno;
4051 error_report("ram_block_discard_range: Failed to fallocate "
4052 "%s:%" PRIx64 " +%zx (%d)",
4053 rb->idstr, start, length, ret);
4054 goto err;
4056 #else
4057 ret = -ENOSYS;
4058 error_report("ram_block_discard_range: fallocate not available/file"
4059 "%s:%" PRIx64 " +%zx (%d)",
4060 rb->idstr, start, length, ret);
4061 goto err;
4062 #endif
4064 if (need_madvise) {
4065 /* For normal RAM this causes it to be unmapped,
4066 * for shared memory it causes the local mapping to disappear
4067 * and to fall back on the file contents (which we just
4068 * fallocate'd away).
4070 #if defined(CONFIG_MADVISE)
4071 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4072 if (ret) {
4073 ret = -errno;
4074 error_report("ram_block_discard_range: Failed to discard range "
4075 "%s:%" PRIx64 " +%zx (%d)",
4076 rb->idstr, start, length, ret);
4077 goto err;
4079 #else
4080 ret = -ENOSYS;
4081 error_report("ram_block_discard_range: MADVISE not available"
4082 "%s:%" PRIx64 " +%zx (%d)",
4083 rb->idstr, start, length, ret);
4084 goto err;
4085 #endif
4087 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4088 need_madvise, need_fallocate, ret);
4089 } else {
4090 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4091 "/%zx/" RAM_ADDR_FMT")",
4092 rb->idstr, start, length, rb->used_length);
4095 err:
4096 return ret;
4099 bool ramblock_is_pmem(RAMBlock *rb)
4101 return rb->flags & RAM_PMEM;
4104 #endif
4106 void page_size_init(void)
4108 /* NOTE: we can always suppose that qemu_host_page_size >=
4109 TARGET_PAGE_SIZE */
4110 if (qemu_host_page_size == 0) {
4111 qemu_host_page_size = qemu_real_host_page_size;
4113 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4114 qemu_host_page_size = TARGET_PAGE_SIZE;
4116 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4119 #if !defined(CONFIG_USER_ONLY)
4121 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4123 if (start == end - 1) {
4124 qemu_printf("\t%3d ", start);
4125 } else {
4126 qemu_printf("\t%3d..%-3d ", start, end - 1);
4128 qemu_printf(" skip=%d ", skip);
4129 if (ptr == PHYS_MAP_NODE_NIL) {
4130 qemu_printf(" ptr=NIL");
4131 } else if (!skip) {
4132 qemu_printf(" ptr=#%d", ptr);
4133 } else {
4134 qemu_printf(" ptr=[%d]", ptr);
4136 qemu_printf("\n");
4139 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4140 int128_sub((size), int128_one())) : 0)
4142 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4144 int i;
4146 qemu_printf(" Dispatch\n");
4147 qemu_printf(" Physical sections\n");
4149 for (i = 0; i < d->map.sections_nb; ++i) {
4150 MemoryRegionSection *s = d->map.sections + i;
4151 const char *names[] = { " [unassigned]", " [not dirty]",
4152 " [ROM]", " [watch]" };
4154 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4155 " %s%s%s%s%s",
4157 s->offset_within_address_space,
4158 s->offset_within_address_space + MR_SIZE(s->mr->size),
4159 s->mr->name ? s->mr->name : "(noname)",
4160 i < ARRAY_SIZE(names) ? names[i] : "",
4161 s->mr == root ? " [ROOT]" : "",
4162 s == d->mru_section ? " [MRU]" : "",
4163 s->mr->is_iommu ? " [iommu]" : "");
4165 if (s->mr->alias) {
4166 qemu_printf(" alias=%s", s->mr->alias->name ?
4167 s->mr->alias->name : "noname");
4169 qemu_printf("\n");
4172 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4173 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4174 for (i = 0; i < d->map.nodes_nb; ++i) {
4175 int j, jprev;
4176 PhysPageEntry prev;
4177 Node *n = d->map.nodes + i;
4179 qemu_printf(" [%d]\n", i);
4181 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4182 PhysPageEntry *pe = *n + j;
4184 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4185 continue;
4188 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4190 jprev = j;
4191 prev = *pe;
4194 if (jprev != ARRAY_SIZE(*n)) {
4195 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4200 #endif