configure: Automatically select GTK+ 3.0 if GTK+ 2.0 is unavailable
[qemu/ar7.git] / translate-all.c
blob4d9c212ab477ccfccb965dd4d7f35e1eca76ca70
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "config.h"
30 #include "qemu-common.h"
31 #define NO_CPU_IO_DEFS
32 #include "cpu.h"
33 #include "disas/disas.h"
34 #include "tcg.h"
35 #if defined(CONFIG_USER_ONLY)
36 #include "qemu.h"
37 #if defined(TARGET_X86_64)
38 #include "vsyscall.h"
39 #endif
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else
56 #include "exec/address-spaces.h"
57 #endif
59 #include "exec/cputlb.h"
60 #include "translate-all.h"
61 #include "qemu/timer.h"
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 typedef struct PageDesc {
76 /* list of TBs intersecting this ram page */
77 TranslationBlock *first_tb;
78 /* in order to optimize self modifying code, we count the number
79 of lookups we do to a given page to use a bitmap */
80 unsigned int code_write_count;
81 uint8_t *code_bitmap;
82 #if defined(CONFIG_USER_ONLY)
83 unsigned long flags;
84 #endif
85 } PageDesc;
87 /* In system mode we want L1_MAP to be based on ram offsets,
88 while in user mode we want it to be based on virtual addresses. */
89 #if !defined(CONFIG_USER_ONLY)
90 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
91 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
94 #endif
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
97 #endif
99 /* Size of the L2 (and L3, etc) page tables. */
100 #define V_L2_BITS 10
101 #define V_L2_SIZE (1 << V_L2_BITS)
103 /* The bits remaining after N lower levels of page tables. */
104 #define V_L1_BITS_REM \
105 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
107 #if V_L1_BITS_REM < 4
108 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
109 #else
110 #define V_L1_BITS V_L1_BITS_REM
111 #endif
113 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
115 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
117 uintptr_t qemu_real_host_page_size;
118 uintptr_t qemu_host_page_size;
119 uintptr_t qemu_host_page_mask;
121 /* This is a multi-level map on the virtual address space.
122 The bottom level has pointers to PageDesc. */
123 static void *l1_map[V_L1_SIZE];
125 /* code generation context */
126 TCGContext tcg_ctx;
128 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
129 tb_page_addr_t phys_page2);
130 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
132 void cpu_gen_init(void)
134 tcg_context_init(&tcg_ctx);
137 /* return non zero if the very first instruction is invalid so that
138 the virtual CPU can trigger an exception.
140 '*gen_code_size_ptr' contains the size of the generated code (host
141 code).
143 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
145 TCGContext *s = &tcg_ctx;
146 tcg_insn_unit *gen_code_buf;
147 int gen_code_size;
148 #ifdef CONFIG_PROFILER
149 int64_t ti;
150 #endif
152 #ifdef CONFIG_PROFILER
153 s->tb_count1++; /* includes aborted translations because of
154 exceptions */
155 ti = profile_getclock();
156 #endif
157 tcg_func_start(s);
159 gen_intermediate_code(env, tb);
161 /* generate machine code */
162 gen_code_buf = tb->tc_ptr;
163 tb->tb_next_offset[0] = 0xffff;
164 tb->tb_next_offset[1] = 0xffff;
165 s->tb_next_offset = tb->tb_next_offset;
166 #ifdef USE_DIRECT_JUMP
167 s->tb_jmp_offset = tb->tb_jmp_offset;
168 s->tb_next = NULL;
169 #else
170 s->tb_jmp_offset = NULL;
171 s->tb_next = tb->tb_next;
172 #endif
174 #ifdef CONFIG_PROFILER
175 s->tb_count++;
176 s->interm_time += profile_getclock() - ti;
177 s->code_time -= profile_getclock();
178 #endif
179 gen_code_size = tcg_gen_code(s, gen_code_buf);
180 *gen_code_size_ptr = gen_code_size;
181 #ifdef CONFIG_PROFILER
182 s->code_time += profile_getclock();
183 s->code_in_len += tb->size;
184 s->code_out_len += gen_code_size;
185 #endif
187 #ifdef DEBUG_DISAS
188 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
189 qemu_log("OUT: [size=%d]\n", gen_code_size);
190 log_disas(tb->tc_ptr, gen_code_size);
191 qemu_log("\n");
192 qemu_log_flush();
194 #endif
195 return 0;
198 /* The cpu state corresponding to 'searched_pc' is restored.
200 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
201 uintptr_t searched_pc)
203 CPUArchState *env = cpu->env_ptr;
204 TCGContext *s = &tcg_ctx;
205 int j;
206 uintptr_t tc_ptr;
207 #ifdef CONFIG_PROFILER
208 int64_t ti;
209 #endif
211 #ifdef CONFIG_PROFILER
212 ti = profile_getclock();
213 #endif
214 tcg_func_start(s);
216 gen_intermediate_code_pc(env, tb);
218 if (use_icount) {
219 /* Reset the cycle counter to the start of the block. */
220 cpu->icount_decr.u16.low += tb->icount;
221 /* Clear the IO flag. */
222 cpu->can_do_io = 0;
225 /* find opc index corresponding to search_pc */
226 tc_ptr = (uintptr_t)tb->tc_ptr;
227 if (searched_pc < tc_ptr)
228 return -1;
230 s->tb_next_offset = tb->tb_next_offset;
231 #ifdef USE_DIRECT_JUMP
232 s->tb_jmp_offset = tb->tb_jmp_offset;
233 s->tb_next = NULL;
234 #else
235 s->tb_jmp_offset = NULL;
236 s->tb_next = tb->tb_next;
237 #endif
238 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
239 searched_pc - tc_ptr);
240 if (j < 0)
241 return -1;
242 /* now find start of instruction before */
243 while (s->gen_opc_instr_start[j] == 0) {
244 j--;
246 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
248 restore_state_to_opc(env, tb, j);
250 #ifdef CONFIG_PROFILER
251 s->restore_time += profile_getclock() - ti;
252 s->restore_count++;
253 #endif
254 return 0;
257 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
259 TranslationBlock *tb;
261 tb = tb_find_pc(retaddr);
262 if (tb) {
263 cpu_restore_state_from_tb(cpu, tb, retaddr);
264 return true;
266 return false;
269 #ifdef _WIN32
270 static inline void map_exec(void *addr, long size)
272 DWORD old_protect;
273 VirtualProtect(addr, size,
274 PAGE_EXECUTE_READWRITE, &old_protect);
276 #else
277 static inline void map_exec(void *addr, long size)
279 unsigned long start, end, page_size;
281 page_size = getpagesize();
282 start = (unsigned long)addr;
283 start &= ~(page_size - 1);
285 end = (unsigned long)addr + size;
286 end += page_size - 1;
287 end &= ~(page_size - 1);
289 mprotect((void *)start, end - start,
290 PROT_READ | PROT_WRITE | PROT_EXEC);
292 #endif
294 void page_size_init(void)
296 /* NOTE: we can always suppose that qemu_host_page_size >=
297 TARGET_PAGE_SIZE */
298 #ifdef _WIN32
299 SYSTEM_INFO system_info;
301 GetSystemInfo(&system_info);
302 qemu_real_host_page_size = system_info.dwPageSize;
303 #else
304 qemu_real_host_page_size = getpagesize();
305 #endif
306 if (qemu_host_page_size == 0) {
307 qemu_host_page_size = qemu_real_host_page_size;
309 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
310 qemu_host_page_size = TARGET_PAGE_SIZE;
312 qemu_host_page_mask = ~(qemu_host_page_size - 1);
315 static void page_init(void)
317 page_size_init();
318 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
320 #ifdef HAVE_KINFO_GETVMMAP
321 struct kinfo_vmentry *freep;
322 int i, cnt;
324 freep = kinfo_getvmmap(getpid(), &cnt);
325 if (freep) {
326 mmap_lock();
327 for (i = 0; i < cnt; i++) {
328 unsigned long startaddr, endaddr;
330 startaddr = freep[i].kve_start;
331 endaddr = freep[i].kve_end;
332 if (h2g_valid(startaddr)) {
333 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
335 if (h2g_valid(endaddr)) {
336 endaddr = h2g(endaddr);
337 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
338 } else {
339 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
340 endaddr = ~0ul;
341 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
342 #endif
346 free(freep);
347 mmap_unlock();
349 #else
350 FILE *f;
352 last_brk = (unsigned long)sbrk(0);
354 f = fopen("/compat/linux/proc/self/maps", "r");
355 if (f) {
356 mmap_lock();
358 do {
359 unsigned long startaddr, endaddr;
360 int n;
362 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
364 if (n == 2 && h2g_valid(startaddr)) {
365 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
367 if (h2g_valid(endaddr)) {
368 endaddr = h2g(endaddr);
369 } else {
370 endaddr = ~0ul;
372 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
374 } while (!feof(f));
376 fclose(f);
377 mmap_unlock();
379 #endif
381 #endif
384 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
386 PageDesc *pd;
387 void **lp;
388 int i;
390 #if defined(CONFIG_USER_ONLY)
391 /* We can't use g_malloc because it may recurse into a locked mutex. */
392 # define ALLOC(P, SIZE) \
393 do { \
394 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
395 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
396 } while (0)
397 #else
398 # define ALLOC(P, SIZE) \
399 do { P = g_malloc0(SIZE); } while (0)
400 #endif
402 /* Level 1. Always allocated. */
403 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
405 /* Level 2..N-1. */
406 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
407 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
413 ALLOC(p, sizeof(void *) * V_L2_SIZE);
414 *lp = p;
417 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
420 pd = *lp;
421 if (pd == NULL) {
422 if (!alloc) {
423 return NULL;
425 ALLOC(pd, sizeof(PageDesc) * V_L2_SIZE);
426 *lp = pd;
429 #undef ALLOC
431 return pd + (index & (V_L2_SIZE - 1));
434 static inline PageDesc *page_find(tb_page_addr_t index)
436 return page_find_alloc(index, 0);
439 #if !defined(CONFIG_USER_ONLY)
440 #define mmap_lock() do { } while (0)
441 #define mmap_unlock() do { } while (0)
442 #endif
444 #if defined(CONFIG_USER_ONLY)
445 /* Currently it is not recommended to allocate big chunks of data in
446 user mode. It will change when a dedicated libc will be used. */
447 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
448 region in which the guest needs to run. Revisit this. */
449 #define USE_STATIC_CODE_GEN_BUFFER
450 #endif
452 /* ??? Should configure for this, not list operating systems here. */
453 #if (defined(__linux__) \
454 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
455 || defined(__DragonFly__) || defined(__OpenBSD__) \
456 || defined(__NetBSD__))
457 # define USE_MMAP
458 #endif
460 /* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
464 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467 #if defined(__x86_64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469 #elif defined(__sparc__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__aarch64__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
473 #elif defined(__arm__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
475 #elif defined(__s390x__)
476 /* We have a +- 4GB range on the branches; leave some slop. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
478 #else
479 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480 #endif
482 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488 static inline size_t size_code_gen_buffer(size_t tb_size)
490 /* Size the buffer. */
491 if (tb_size == 0) {
492 #ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494 #else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500 #endif
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 tcg_ctx.code_gen_buffer_size = tb_size;
509 return tb_size;
512 #ifdef USE_STATIC_CODE_GEN_BUFFER
513 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
514 __attribute__((aligned(CODE_GEN_ALIGN)));
516 static inline void *alloc_code_gen_buffer(void)
518 map_exec(static_code_gen_buffer, tcg_ctx.code_gen_buffer_size);
519 return static_code_gen_buffer;
521 #elif defined(USE_MMAP)
522 static inline void *alloc_code_gen_buffer(void)
524 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
525 uintptr_t start = 0;
526 void *buf;
528 /* Constrain the position of the buffer based on the host cpu.
529 Note that these addresses are chosen in concert with the
530 addresses assigned in the relevant linker script file. */
531 # if defined(__PIE__) || defined(__PIC__)
532 /* Don't bother setting a preferred location if we're building
533 a position-independent executable. We're more likely to get
534 an address near the main executable if we let the kernel
535 choose the address. */
536 # elif defined(__x86_64__) && defined(MAP_32BIT)
537 /* Force the memory down into low memory with the executable.
538 Leave the choice of exact location with the kernel. */
539 flags |= MAP_32BIT;
540 /* Cannot expect to map more than 800MB in low memory. */
541 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
542 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
544 # elif defined(__sparc__)
545 start = 0x40000000ul;
546 # elif defined(__s390x__)
547 start = 0x90000000ul;
548 # endif
550 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
552 return buf == MAP_FAILED ? NULL : buf;
554 #else
555 static inline void *alloc_code_gen_buffer(void)
557 void *buf = g_malloc(tcg_ctx.code_gen_buffer_size);
559 if (buf) {
560 map_exec(buf, tcg_ctx.code_gen_buffer_size);
562 return buf;
564 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
566 static inline void code_gen_alloc(size_t tb_size)
568 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
569 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
570 if (tcg_ctx.code_gen_buffer == NULL) {
571 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
572 exit(1);
575 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
576 QEMU_MADV_HUGEPAGE);
578 /* Steal room for the prologue at the end of the buffer. This ensures
579 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
580 from TB's to the prologue are going to be in range. It also means
581 that we don't need to mark (additional) portions of the data segment
582 as executable. */
583 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
584 tcg_ctx.code_gen_buffer_size - 1024;
585 tcg_ctx.code_gen_buffer_size -= 1024;
587 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
588 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
589 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
590 CODE_GEN_AVG_BLOCK_SIZE;
591 tcg_ctx.tb_ctx.tbs =
592 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
595 /* Must be called before using the QEMU cpus. 'tb_size' is the size
596 (in bytes) allocated to the translation buffer. Zero means default
597 size. */
598 void tcg_exec_init(uintptr_t tb_size)
600 cpu_gen_init();
601 code_gen_alloc(tb_size);
602 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
603 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
604 page_init();
605 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
606 /* There's no guest base to take into account, so go ahead and
607 initialize the prologue now. */
608 tcg_prologue_init(&tcg_ctx);
609 #endif
612 bool tcg_enabled(void)
614 return tcg_ctx.code_gen_buffer != NULL;
617 /* Allocate a new translation block. Flush the translation buffer if
618 too many translation blocks or too much generated code. */
619 static TranslationBlock *tb_alloc(target_ulong pc)
621 TranslationBlock *tb;
623 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
624 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
625 tcg_ctx.code_gen_buffer_max_size) {
626 return NULL;
628 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
629 tb->pc = pc;
630 tb->cflags = 0;
631 return tb;
634 void tb_free(TranslationBlock *tb)
636 /* In practice this is mostly used for single use temporary TB
637 Ignore the hard cases and just back up if this TB happens to
638 be the last one generated. */
639 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
640 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
641 tcg_ctx.code_gen_ptr = tb->tc_ptr;
642 tcg_ctx.tb_ctx.nb_tbs--;
646 static inline void invalidate_page_bitmap(PageDesc *p)
648 if (p->code_bitmap) {
649 g_free(p->code_bitmap);
650 p->code_bitmap = NULL;
652 p->code_write_count = 0;
655 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
656 static void page_flush_tb_1(int level, void **lp)
658 int i;
660 if (*lp == NULL) {
661 return;
663 if (level == 0) {
664 PageDesc *pd = *lp;
666 for (i = 0; i < V_L2_SIZE; ++i) {
667 pd[i].first_tb = NULL;
668 invalidate_page_bitmap(pd + i);
670 } else {
671 void **pp = *lp;
673 for (i = 0; i < V_L2_SIZE; ++i) {
674 page_flush_tb_1(level - 1, pp + i);
679 static void page_flush_tb(void)
681 int i;
683 for (i = 0; i < V_L1_SIZE; i++) {
684 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
688 /* flush all the translation blocks */
689 /* XXX: tb_flush is currently not thread safe */
690 void tb_flush(CPUArchState *env1)
692 CPUState *cpu = ENV_GET_CPU(env1);
694 #if defined(DEBUG_FLUSH)
695 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
696 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
697 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
698 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
699 tcg_ctx.tb_ctx.nb_tbs : 0);
700 #endif
701 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
702 > tcg_ctx.code_gen_buffer_size) {
703 cpu_abort(cpu, "Internal error: code buffer overflow\n");
705 tcg_ctx.tb_ctx.nb_tbs = 0;
707 CPU_FOREACH(cpu) {
708 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
711 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
712 page_flush_tb();
714 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
715 /* XXX: flush processor icache at this point if cache flush is
716 expensive */
717 tcg_ctx.tb_ctx.tb_flush_count++;
720 #ifdef DEBUG_TB_CHECK
722 static void tb_invalidate_check(target_ulong address)
724 TranslationBlock *tb;
725 int i;
727 address &= TARGET_PAGE_MASK;
728 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
729 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
730 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
731 address >= tb->pc + tb->size)) {
732 printf("ERROR invalidate: address=" TARGET_FMT_lx
733 " PC=%08lx size=%04x\n",
734 address, (long)tb->pc, tb->size);
740 /* verify that all the pages have correct rights for code */
741 static void tb_page_check(void)
743 TranslationBlock *tb;
744 int i, flags1, flags2;
746 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
747 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
748 tb = tb->phys_hash_next) {
749 flags1 = page_get_flags(tb->pc);
750 flags2 = page_get_flags(tb->pc + tb->size - 1);
751 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
752 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
753 (long)tb->pc, tb->size, flags1, flags2);
759 #endif
761 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
763 TranslationBlock *tb1;
765 for (;;) {
766 tb1 = *ptb;
767 if (tb1 == tb) {
768 *ptb = tb1->phys_hash_next;
769 break;
771 ptb = &tb1->phys_hash_next;
775 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
777 TranslationBlock *tb1;
778 unsigned int n1;
780 for (;;) {
781 tb1 = *ptb;
782 n1 = (uintptr_t)tb1 & 3;
783 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
784 if (tb1 == tb) {
785 *ptb = tb1->page_next[n1];
786 break;
788 ptb = &tb1->page_next[n1];
792 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
794 TranslationBlock *tb1, **ptb;
795 unsigned int n1;
797 ptb = &tb->jmp_next[n];
798 tb1 = *ptb;
799 if (tb1) {
800 /* find tb(n) in circular list */
801 for (;;) {
802 tb1 = *ptb;
803 n1 = (uintptr_t)tb1 & 3;
804 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
805 if (n1 == n && tb1 == tb) {
806 break;
808 if (n1 == 2) {
809 ptb = &tb1->jmp_first;
810 } else {
811 ptb = &tb1->jmp_next[n1];
814 /* now we can suppress tb(n) from the list */
815 *ptb = tb->jmp_next[n];
817 tb->jmp_next[n] = NULL;
821 /* reset the jump entry 'n' of a TB so that it is not chained to
822 another TB */
823 static inline void tb_reset_jump(TranslationBlock *tb, int n)
825 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
828 /* invalidate one TB */
829 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
831 CPUState *cpu;
832 PageDesc *p;
833 unsigned int h, n1;
834 tb_page_addr_t phys_pc;
835 TranslationBlock *tb1, *tb2;
837 /* remove the TB from the hash list */
838 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
839 h = tb_phys_hash_func(phys_pc);
840 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
842 /* remove the TB from the page list */
843 if (tb->page_addr[0] != page_addr) {
844 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
845 tb_page_remove(&p->first_tb, tb);
846 invalidate_page_bitmap(p);
848 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
849 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
850 tb_page_remove(&p->first_tb, tb);
851 invalidate_page_bitmap(p);
854 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
856 /* remove the TB from the hash list */
857 h = tb_jmp_cache_hash_func(tb->pc);
858 CPU_FOREACH(cpu) {
859 if (cpu->tb_jmp_cache[h] == tb) {
860 cpu->tb_jmp_cache[h] = NULL;
864 /* suppress this TB from the two jump lists */
865 tb_jmp_remove(tb, 0);
866 tb_jmp_remove(tb, 1);
868 /* suppress any remaining jumps to this TB */
869 tb1 = tb->jmp_first;
870 for (;;) {
871 n1 = (uintptr_t)tb1 & 3;
872 if (n1 == 2) {
873 break;
875 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
876 tb2 = tb1->jmp_next[n1];
877 tb_reset_jump(tb1, n1);
878 tb1->jmp_next[n1] = NULL;
879 tb1 = tb2;
881 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
883 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
886 static inline void set_bits(uint8_t *tab, int start, int len)
888 int end, mask, end1;
890 end = start + len;
891 tab += start >> 3;
892 mask = 0xff << (start & 7);
893 if ((start & ~7) == (end & ~7)) {
894 if (start < end) {
895 mask &= ~(0xff << (end & 7));
896 *tab |= mask;
898 } else {
899 *tab++ |= mask;
900 start = (start + 8) & ~7;
901 end1 = end & ~7;
902 while (start < end1) {
903 *tab++ = 0xff;
904 start += 8;
906 if (start < end) {
907 mask = ~(0xff << (end & 7));
908 *tab |= mask;
913 static void build_page_bitmap(PageDesc *p)
915 int n, tb_start, tb_end;
916 TranslationBlock *tb;
918 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
920 tb = p->first_tb;
921 while (tb != NULL) {
922 n = (uintptr_t)tb & 3;
923 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
924 /* NOTE: this is subtle as a TB may span two physical pages */
925 if (n == 0) {
926 /* NOTE: tb_end may be after the end of the page, but
927 it is not a problem */
928 tb_start = tb->pc & ~TARGET_PAGE_MASK;
929 tb_end = tb_start + tb->size;
930 if (tb_end > TARGET_PAGE_SIZE) {
931 tb_end = TARGET_PAGE_SIZE;
933 } else {
934 tb_start = 0;
935 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
937 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
938 tb = tb->page_next[n];
942 TranslationBlock *tb_gen_code(CPUState *cpu,
943 target_ulong pc, target_ulong cs_base,
944 int flags, int cflags)
946 CPUArchState *env = cpu->env_ptr;
947 TranslationBlock *tb;
948 tb_page_addr_t phys_pc, phys_page2;
949 target_ulong virt_page2;
950 int code_gen_size;
952 phys_pc = get_page_addr_code(env, pc);
953 tb = tb_alloc(pc);
954 if (!tb) {
955 /* flush must be done */
956 tb_flush(env);
957 /* cannot fail at this point */
958 tb = tb_alloc(pc);
959 /* Don't forget to invalidate previous TB info. */
960 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
962 tb->tc_ptr = tcg_ctx.code_gen_ptr;
963 tb->cs_base = cs_base;
964 tb->flags = flags;
965 tb->cflags = cflags;
966 cpu_gen_code(env, tb, &code_gen_size);
967 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
968 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
970 #if defined(CONFIG_USER_ONLY) && defined(TARGET_X86_64)
971 /* if we are doing vsyscall don't link the page as it lies in high memory
972 and tb_alloc_page will abort due to page_l1_map returning NULL */
973 if (unlikely(phys_pc >= TARGET_VSYSCALL_START
974 && phys_pc < TARGET_VSYSCALL_END))
975 return tb;
976 #endif
978 /* check next page if needed */
979 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
980 phys_page2 = -1;
981 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
982 phys_page2 = get_page_addr_code(env, virt_page2);
984 tb_link_page(tb, phys_pc, phys_page2);
985 return tb;
989 * Invalidate all TBs which intersect with the target physical address range
990 * [start;end[. NOTE: start and end may refer to *different* physical pages.
991 * 'is_cpu_write_access' should be true if called from a real cpu write
992 * access: the virtual CPU will exit the current TB if code is modified inside
993 * this TB.
995 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
996 int is_cpu_write_access)
998 while (start < end) {
999 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1000 start &= TARGET_PAGE_MASK;
1001 start += TARGET_PAGE_SIZE;
1006 * Invalidate all TBs which intersect with the target physical address range
1007 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1008 * 'is_cpu_write_access' should be true if called from a real cpu write
1009 * access: the virtual CPU will exit the current TB if code is modified inside
1010 * this TB.
1012 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1013 int is_cpu_write_access)
1015 TranslationBlock *tb, *tb_next, *saved_tb;
1016 CPUState *cpu = current_cpu;
1017 #if defined(TARGET_HAS_PRECISE_SMC)
1018 CPUArchState *env = NULL;
1019 #endif
1020 tb_page_addr_t tb_start, tb_end;
1021 PageDesc *p;
1022 int n;
1023 #ifdef TARGET_HAS_PRECISE_SMC
1024 int current_tb_not_found = is_cpu_write_access;
1025 TranslationBlock *current_tb = NULL;
1026 int current_tb_modified = 0;
1027 target_ulong current_pc = 0;
1028 target_ulong current_cs_base = 0;
1029 int current_flags = 0;
1030 #endif /* TARGET_HAS_PRECISE_SMC */
1032 p = page_find(start >> TARGET_PAGE_BITS);
1033 if (!p) {
1034 return;
1036 if (!p->code_bitmap &&
1037 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1038 is_cpu_write_access) {
1039 /* build code bitmap */
1040 build_page_bitmap(p);
1042 #if defined(TARGET_HAS_PRECISE_SMC)
1043 if (cpu != NULL) {
1044 env = cpu->env_ptr;
1046 #endif
1048 /* we remove all the TBs in the range [start, end[ */
1049 /* XXX: see if in some cases it could be faster to invalidate all
1050 the code */
1051 tb = p->first_tb;
1052 while (tb != NULL) {
1053 n = (uintptr_t)tb & 3;
1054 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1055 tb_next = tb->page_next[n];
1056 /* NOTE: this is subtle as a TB may span two physical pages */
1057 if (n == 0) {
1058 /* NOTE: tb_end may be after the end of the page, but
1059 it is not a problem */
1060 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1061 tb_end = tb_start + tb->size;
1062 } else {
1063 tb_start = tb->page_addr[1];
1064 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1066 if (!(tb_end <= start || tb_start >= end)) {
1067 #ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_not_found) {
1069 current_tb_not_found = 0;
1070 current_tb = NULL;
1071 if (cpu->mem_io_pc) {
1072 /* now we have a real cpu fault */
1073 current_tb = tb_find_pc(cpu->mem_io_pc);
1076 if (current_tb == tb &&
1077 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1078 /* If we are modifying the current TB, we must stop
1079 its execution. We could be more precise by checking
1080 that the modification is after the current PC, but it
1081 would require a specialized function to partially
1082 restore the CPU state */
1084 current_tb_modified = 1;
1085 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1086 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1087 &current_flags);
1089 #endif /* TARGET_HAS_PRECISE_SMC */
1090 /* we need to do that to handle the case where a signal
1091 occurs while doing tb_phys_invalidate() */
1092 saved_tb = NULL;
1093 if (cpu != NULL) {
1094 saved_tb = cpu->current_tb;
1095 cpu->current_tb = NULL;
1097 tb_phys_invalidate(tb, -1);
1098 if (cpu != NULL) {
1099 cpu->current_tb = saved_tb;
1100 if (cpu->interrupt_request && cpu->current_tb) {
1101 cpu_interrupt(cpu, cpu->interrupt_request);
1105 tb = tb_next;
1107 #if !defined(CONFIG_USER_ONLY)
1108 /* if no code remaining, no need to continue to use slow writes */
1109 if (!p->first_tb) {
1110 invalidate_page_bitmap(p);
1111 if (is_cpu_write_access) {
1112 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
1115 #endif
1116 #ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb_modified) {
1118 /* we generate a block containing just the instruction
1119 modifying the memory. It will ensure that it cannot modify
1120 itself */
1121 cpu->current_tb = NULL;
1122 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1123 cpu_resume_from_signal(cpu, NULL);
1125 #endif
1128 /* len must be <= 8 and start must be a multiple of len */
1129 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1131 PageDesc *p;
1132 int offset, b;
1134 #if 0
1135 if (1) {
1136 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1137 cpu_single_env->mem_io_vaddr, len,
1138 cpu_single_env->eip,
1139 cpu_single_env->eip +
1140 (intptr_t)cpu_single_env->segs[R_CS].base);
1142 #endif
1143 p = page_find(start >> TARGET_PAGE_BITS);
1144 if (!p) {
1145 return;
1147 if (p->code_bitmap) {
1148 offset = start & ~TARGET_PAGE_MASK;
1149 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1150 if (b & ((1 << len) - 1)) {
1151 goto do_invalidate;
1153 } else {
1154 do_invalidate:
1155 tb_invalidate_phys_page_range(start, start + len, 1);
1159 #if !defined(CONFIG_SOFTMMU)
1160 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1161 uintptr_t pc, void *puc,
1162 bool locked)
1164 TranslationBlock *tb;
1165 PageDesc *p;
1166 int n;
1167 #ifdef TARGET_HAS_PRECISE_SMC
1168 TranslationBlock *current_tb = NULL;
1169 CPUState *cpu = current_cpu;
1170 CPUArchState *env = NULL;
1171 int current_tb_modified = 0;
1172 target_ulong current_pc = 0;
1173 target_ulong current_cs_base = 0;
1174 int current_flags = 0;
1175 #endif
1177 addr &= TARGET_PAGE_MASK;
1178 p = page_find(addr >> TARGET_PAGE_BITS);
1179 if (!p) {
1180 return;
1182 tb = p->first_tb;
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (tb && pc != 0) {
1185 current_tb = tb_find_pc(pc);
1187 if (cpu != NULL) {
1188 env = cpu->env_ptr;
1190 #endif
1191 while (tb != NULL) {
1192 n = (uintptr_t)tb & 3;
1193 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1194 #ifdef TARGET_HAS_PRECISE_SMC
1195 if (current_tb == tb &&
1196 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1197 /* If we are modifying the current TB, we must stop
1198 its execution. We could be more precise by checking
1199 that the modification is after the current PC, but it
1200 would require a specialized function to partially
1201 restore the CPU state */
1203 current_tb_modified = 1;
1204 cpu_restore_state_from_tb(cpu, current_tb, pc);
1205 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1206 &current_flags);
1208 #endif /* TARGET_HAS_PRECISE_SMC */
1209 tb_phys_invalidate(tb, addr);
1210 tb = tb->page_next[n];
1212 p->first_tb = NULL;
1213 #ifdef TARGET_HAS_PRECISE_SMC
1214 if (current_tb_modified) {
1215 /* we generate a block containing just the instruction
1216 modifying the memory. It will ensure that it cannot modify
1217 itself */
1218 cpu->current_tb = NULL;
1219 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1220 if (locked) {
1221 mmap_unlock();
1223 cpu_resume_from_signal(cpu, puc);
1225 #endif
1227 #endif
1229 /* add the tb in the target page and protect it if necessary */
1230 static inline void tb_alloc_page(TranslationBlock *tb,
1231 unsigned int n, tb_page_addr_t page_addr)
1233 PageDesc *p;
1234 #ifndef CONFIG_USER_ONLY
1235 bool page_already_protected;
1236 #endif
1238 tb->page_addr[n] = page_addr;
1239 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1240 tb->page_next[n] = p->first_tb;
1241 #ifndef CONFIG_USER_ONLY
1242 page_already_protected = p->first_tb != NULL;
1243 #endif
1244 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1245 invalidate_page_bitmap(p);
1247 #if defined(TARGET_HAS_SMC) || 1
1249 #if defined(CONFIG_USER_ONLY)
1250 if (p->flags & PAGE_WRITE) {
1251 target_ulong addr;
1252 PageDesc *p2;
1253 int prot;
1255 /* force the host page as non writable (writes will have a
1256 page fault + mprotect overhead) */
1257 page_addr &= qemu_host_page_mask;
1258 prot = 0;
1259 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1260 addr += TARGET_PAGE_SIZE) {
1262 p2 = page_find(addr >> TARGET_PAGE_BITS);
1263 if (!p2) {
1264 continue;
1266 prot |= p2->flags;
1267 p2->flags &= ~PAGE_WRITE;
1269 mprotect(g2h(page_addr), qemu_host_page_size,
1270 (prot & PAGE_BITS) & ~PAGE_WRITE);
1271 #ifdef DEBUG_TB_INVALIDATE
1272 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1273 page_addr);
1274 #endif
1276 #else
1277 /* if some code is already present, then the pages are already
1278 protected. So we handle the case where only the first TB is
1279 allocated in a physical page */
1280 if (!page_already_protected) {
1281 tlb_protect_code(page_addr);
1283 #endif
1285 #endif /* TARGET_HAS_SMC */
1288 /* add a new TB and link it to the physical page tables. phys_page2 is
1289 (-1) to indicate that only one page contains the TB. */
1290 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1291 tb_page_addr_t phys_page2)
1293 unsigned int h;
1294 TranslationBlock **ptb;
1296 /* Grab the mmap lock to stop another thread invalidating this TB
1297 before we are done. */
1298 mmap_lock();
1299 /* add in the physical hash table */
1300 h = tb_phys_hash_func(phys_pc);
1301 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1302 tb->phys_hash_next = *ptb;
1303 *ptb = tb;
1305 /* add in the page list */
1306 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1307 if (phys_page2 != -1) {
1308 tb_alloc_page(tb, 1, phys_page2);
1309 } else {
1310 tb->page_addr[1] = -1;
1313 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1314 tb->jmp_next[0] = NULL;
1315 tb->jmp_next[1] = NULL;
1317 /* init original jump addresses */
1318 if (tb->tb_next_offset[0] != 0xffff) {
1319 tb_reset_jump(tb, 0);
1321 if (tb->tb_next_offset[1] != 0xffff) {
1322 tb_reset_jump(tb, 1);
1325 #ifdef DEBUG_TB_CHECK
1326 tb_page_check();
1327 #endif
1328 mmap_unlock();
1331 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1332 tb[1].tc_ptr. Return NULL if not found */
1333 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1335 int m_min, m_max, m;
1336 uintptr_t v;
1337 TranslationBlock *tb;
1339 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1340 return NULL;
1342 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1343 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1344 return NULL;
1346 /* binary search (cf Knuth) */
1347 m_min = 0;
1348 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1349 while (m_min <= m_max) {
1350 m = (m_min + m_max) >> 1;
1351 tb = &tcg_ctx.tb_ctx.tbs[m];
1352 v = (uintptr_t)tb->tc_ptr;
1353 if (v == tc_ptr) {
1354 return tb;
1355 } else if (tc_ptr < v) {
1356 m_max = m - 1;
1357 } else {
1358 m_min = m + 1;
1361 return &tcg_ctx.tb_ctx.tbs[m_max];
1364 #if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
1365 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1367 ram_addr_t ram_addr;
1368 MemoryRegion *mr;
1369 hwaddr l = 1;
1371 mr = address_space_translate(as, addr, &addr, &l, false);
1372 if (!(memory_region_is_ram(mr)
1373 || memory_region_is_romd(mr))) {
1374 return;
1376 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1377 + addr;
1378 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1380 #endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
1382 void tb_check_watchpoint(CPUState *cpu)
1384 TranslationBlock *tb;
1386 tb = tb_find_pc(cpu->mem_io_pc);
1387 if (!tb) {
1388 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1389 (void *)cpu->mem_io_pc);
1391 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1392 tb_phys_invalidate(tb, -1);
1395 #ifndef CONFIG_USER_ONLY
1396 /* mask must never be zero, except for A20 change call */
1397 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1399 int old_mask;
1401 old_mask = cpu->interrupt_request;
1402 cpu->interrupt_request |= mask;
1405 * If called from iothread context, wake the target cpu in
1406 * case its halted.
1408 if (!qemu_cpu_is_self(cpu)) {
1409 qemu_cpu_kick(cpu);
1410 return;
1413 if (use_icount) {
1414 cpu->icount_decr.u16.high = 0xffff;
1415 if (!cpu_can_do_io(cpu)
1416 && (mask & ~old_mask) != 0) {
1417 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1419 } else {
1420 cpu->tcg_exit_req = 1;
1424 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1426 /* in deterministic execution mode, instructions doing device I/Os
1427 must be at the end of the TB */
1428 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1430 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1431 CPUArchState *env = cpu->env_ptr;
1432 #endif
1433 TranslationBlock *tb;
1434 uint32_t n, cflags;
1435 target_ulong pc, cs_base;
1436 uint64_t flags;
1438 tb = tb_find_pc(retaddr);
1439 if (!tb) {
1440 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1441 (void *)retaddr);
1443 n = cpu->icount_decr.u16.low + tb->icount;
1444 cpu_restore_state_from_tb(cpu, tb, retaddr);
1445 /* Calculate how many instructions had been executed before the fault
1446 occurred. */
1447 n = n - cpu->icount_decr.u16.low;
1448 /* Generate a new TB ending on the I/O insn. */
1449 n++;
1450 /* On MIPS and SH, delay slot instructions can only be restarted if
1451 they were already the first instruction in the TB. If this is not
1452 the first instruction in a TB then re-execute the preceding
1453 branch. */
1454 #if defined(TARGET_MIPS)
1455 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1456 env->active_tc.PC -= 4;
1457 cpu->icount_decr.u16.low++;
1458 env->hflags &= ~MIPS_HFLAG_BMASK;
1460 #elif defined(TARGET_SH4)
1461 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1462 && n > 1) {
1463 env->pc -= 2;
1464 cpu->icount_decr.u16.low++;
1465 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1467 #endif
1468 /* This should never happen. */
1469 if (n > CF_COUNT_MASK) {
1470 cpu_abort(cpu, "TB too big during recompile");
1473 cflags = n | CF_LAST_IO;
1474 pc = tb->pc;
1475 cs_base = tb->cs_base;
1476 flags = tb->flags;
1477 tb_phys_invalidate(tb, -1);
1478 /* FIXME: In theory this could raise an exception. In practice
1479 we have already translated the block once so it's probably ok. */
1480 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1481 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1482 the first in the TB) then we end up generating a whole new TB and
1483 repeating the fault, which is horribly inefficient.
1484 Better would be to execute just this insn uncached, or generate a
1485 second new TB. */
1486 cpu_resume_from_signal(cpu, NULL);
1489 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1491 unsigned int i;
1493 /* Discard jump cache entries for any tb which might potentially
1494 overlap the flushed page. */
1495 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1496 memset(&cpu->tb_jmp_cache[i], 0,
1497 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1499 i = tb_jmp_cache_hash_page(addr);
1500 memset(&cpu->tb_jmp_cache[i], 0,
1501 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1504 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1506 int i, target_code_size, max_target_code_size;
1507 int direct_jmp_count, direct_jmp2_count, cross_page;
1508 TranslationBlock *tb;
1510 target_code_size = 0;
1511 max_target_code_size = 0;
1512 cross_page = 0;
1513 direct_jmp_count = 0;
1514 direct_jmp2_count = 0;
1515 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1516 tb = &tcg_ctx.tb_ctx.tbs[i];
1517 target_code_size += tb->size;
1518 if (tb->size > max_target_code_size) {
1519 max_target_code_size = tb->size;
1521 if (tb->page_addr[1] != -1) {
1522 cross_page++;
1524 if (tb->tb_next_offset[0] != 0xffff) {
1525 direct_jmp_count++;
1526 if (tb->tb_next_offset[1] != 0xffff) {
1527 direct_jmp2_count++;
1531 /* XXX: avoid using doubles ? */
1532 cpu_fprintf(f, "Translation buffer state:\n");
1533 cpu_fprintf(f, "gen code size %td/%zd\n",
1534 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1535 tcg_ctx.code_gen_buffer_max_size);
1536 cpu_fprintf(f, "TB count %d/%d\n",
1537 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1538 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1539 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1540 tcg_ctx.tb_ctx.nb_tbs : 0,
1541 max_target_code_size);
1542 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1543 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1544 tcg_ctx.code_gen_buffer) /
1545 tcg_ctx.tb_ctx.nb_tbs : 0,
1546 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1547 tcg_ctx.code_gen_buffer) /
1548 target_code_size : 0);
1549 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1550 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1551 tcg_ctx.tb_ctx.nb_tbs : 0);
1552 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1553 direct_jmp_count,
1554 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1555 tcg_ctx.tb_ctx.nb_tbs : 0,
1556 direct_jmp2_count,
1557 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1558 tcg_ctx.tb_ctx.nb_tbs : 0);
1559 cpu_fprintf(f, "\nStatistics:\n");
1560 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1561 cpu_fprintf(f, "TB invalidate count %d\n",
1562 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1563 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1564 tcg_dump_info(f, cpu_fprintf);
1567 #else /* CONFIG_USER_ONLY */
1569 void cpu_interrupt(CPUState *cpu, int mask)
1571 cpu->interrupt_request |= mask;
1572 cpu->tcg_exit_req = 1;
1576 * Walks guest process memory "regions" one by one
1577 * and calls callback function 'fn' for each region.
1579 struct walk_memory_regions_data {
1580 walk_memory_regions_fn fn;
1581 void *priv;
1582 uintptr_t start;
1583 int prot;
1586 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1587 abi_ulong end, int new_prot)
1589 if (data->start != -1ul) {
1590 int rc = data->fn(data->priv, data->start, end, data->prot);
1591 if (rc != 0) {
1592 return rc;
1596 data->start = (new_prot ? end : -1ul);
1597 data->prot = new_prot;
1599 return 0;
1602 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1603 abi_ulong base, int level, void **lp)
1605 abi_ulong pa;
1606 int i, rc;
1608 if (*lp == NULL) {
1609 return walk_memory_regions_end(data, base, 0);
1612 if (level == 0) {
1613 PageDesc *pd = *lp;
1615 for (i = 0; i < V_L2_SIZE; ++i) {
1616 int prot = pd[i].flags;
1618 pa = base | (i << TARGET_PAGE_BITS);
1619 if (prot != data->prot) {
1620 rc = walk_memory_regions_end(data, pa, prot);
1621 if (rc != 0) {
1622 return rc;
1626 } else {
1627 void **pp = *lp;
1629 for (i = 0; i < V_L2_SIZE; ++i) {
1630 pa = base | ((abi_ulong)i <<
1631 (TARGET_PAGE_BITS + V_L2_BITS * level));
1632 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1633 if (rc != 0) {
1634 return rc;
1639 return 0;
1642 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1644 struct walk_memory_regions_data data;
1645 uintptr_t i;
1647 data.fn = fn;
1648 data.priv = priv;
1649 data.start = -1ul;
1650 data.prot = 0;
1652 for (i = 0; i < V_L1_SIZE; i++) {
1653 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1654 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1656 if (rc != 0) {
1657 return rc;
1661 return walk_memory_regions_end(&data, 0, 0);
1664 static int dump_region(void *priv, abi_ulong start,
1665 abi_ulong end, abi_ulong prot)
1667 FILE *f = (FILE *)priv;
1669 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
1670 " "TARGET_ABI_FMT_lx" %c%c%c\n",
1671 start, end, end - start,
1672 ((prot & PAGE_READ) ? 'r' : '-'),
1673 ((prot & PAGE_WRITE) ? 'w' : '-'),
1674 ((prot & PAGE_EXEC) ? 'x' : '-'));
1676 return 0;
1679 /* dump memory mappings */
1680 void page_dump(FILE *f)
1682 const int length = sizeof(abi_ulong) * 2;
1683 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1684 length, "start", length, "end", length, "size", "prot");
1685 walk_memory_regions(f, dump_region);
1688 int page_get_flags(target_ulong address)
1690 PageDesc *p;
1692 p = page_find(address >> TARGET_PAGE_BITS);
1693 if (!p) {
1694 return 0;
1696 return p->flags;
1699 /* Modify the flags of a page and invalidate the code if necessary.
1700 The flag PAGE_WRITE_ORG is positioned automatically depending
1701 on PAGE_WRITE. The mmap_lock should already be held. */
1702 void page_set_flags(target_ulong start, target_ulong end, int flags)
1704 target_ulong addr, len;
1706 /* This function should never be called with addresses outside the
1707 guest address space. If this assert fires, it probably indicates
1708 a missing call to h2g_valid. */
1709 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1710 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1711 #endif
1712 assert(start < end);
1714 start = start & TARGET_PAGE_MASK;
1715 end = TARGET_PAGE_ALIGN(end);
1717 if (flags & PAGE_WRITE) {
1718 flags |= PAGE_WRITE_ORG;
1721 for (addr = start, len = end - start;
1722 len != 0;
1723 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1724 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1726 /* If the write protection bit is set, then we invalidate
1727 the code inside. */
1728 if (!(p->flags & PAGE_WRITE) &&
1729 (flags & PAGE_WRITE) &&
1730 p->first_tb) {
1731 tb_invalidate_phys_page(addr, 0, NULL, false);
1733 p->flags = flags;
1737 int page_check_range(target_ulong start, target_ulong len, int flags)
1739 PageDesc *p;
1740 target_ulong end;
1741 target_ulong addr;
1743 /* This function should never be called with addresses outside the
1744 guest address space. If this assert fires, it probably indicates
1745 a missing call to h2g_valid. */
1746 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1747 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1748 #endif
1750 if (len == 0) {
1751 return 0;
1753 if (start + len - 1 < start) {
1754 /* We've wrapped around. */
1755 return -1;
1758 /* must do before we loose bits in the next step */
1759 end = TARGET_PAGE_ALIGN(start + len);
1760 start = start & TARGET_PAGE_MASK;
1762 for (addr = start, len = end - start;
1763 len != 0;
1764 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1765 p = page_find(addr >> TARGET_PAGE_BITS);
1766 if (!p) {
1767 return -1;
1769 if (!(p->flags & PAGE_VALID)) {
1770 return -1;
1773 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1774 return -1;
1776 if (flags & PAGE_WRITE) {
1777 if (!(p->flags & PAGE_WRITE_ORG)) {
1778 return -1;
1780 /* unprotect the page if it was put read-only because it
1781 contains translated code */
1782 if (!(p->flags & PAGE_WRITE)) {
1783 if (!page_unprotect(addr, 0, NULL)) {
1784 return -1;
1789 return 0;
1792 /* called from signal handler: invalidate the code and unprotect the
1793 page. Return TRUE if the fault was successfully handled. */
1794 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1796 unsigned int prot;
1797 PageDesc *p;
1798 target_ulong host_start, host_end, addr;
1800 /* Technically this isn't safe inside a signal handler. However we
1801 know this only ever happens in a synchronous SEGV handler, so in
1802 practice it seems to be ok. */
1803 mmap_lock();
1805 p = page_find(address >> TARGET_PAGE_BITS);
1806 if (!p) {
1807 mmap_unlock();
1808 return 0;
1811 /* if the page was really writable, then we change its
1812 protection back to writable */
1813 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1814 host_start = address & qemu_host_page_mask;
1815 host_end = host_start + qemu_host_page_size;
1817 prot = 0;
1818 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1819 p = page_find(addr >> TARGET_PAGE_BITS);
1820 p->flags |= PAGE_WRITE;
1821 prot |= p->flags;
1823 /* and since the content will be modified, we must invalidate
1824 the corresponding translated code. */
1825 tb_invalidate_phys_page(addr, pc, puc, true);
1826 #ifdef DEBUG_TB_CHECK
1827 tb_invalidate_check(addr);
1828 #endif
1830 mprotect((void *)g2h(host_start), qemu_host_page_size,
1831 prot & PAGE_BITS);
1833 mmap_unlock();
1834 return 1;
1836 mmap_unlock();
1837 return 0;
1839 #endif /* CONFIG_USER_ONLY */