Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / memory.c
blobb908cdc46354829306f0a59a8062040bcd69732c
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
29 static unsigned memory_region_transaction_depth;
30 static bool memory_region_update_pending;
31 static bool ioeventfd_update_pending;
32 static bool global_dirty_log = false;
34 /* flat_view_mutex is taken around reading as->current_map; the critical
35 * section is extremely short, so I'm using a single mutex for every AS.
36 * We could also RCU for the read-side.
38 * The BQL is taken around transaction commits, hence both locks are taken
39 * while writing to as->current_map (with the BQL taken outside).
41 static QemuMutex flat_view_mutex;
43 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46 static QTAILQ_HEAD(, AddressSpace) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49 static void memory_init(void)
51 qemu_mutex_init(&flat_view_mutex);
54 typedef struct AddrRange AddrRange;
57 * Note that signed integers are needed for negative offsetting in aliases
58 * (large MemoryRegion::alias_offset).
60 struct AddrRange {
61 Int128 start;
62 Int128 size;
65 static AddrRange addrrange_make(Int128 start, Int128 size)
67 return (AddrRange) { start, size };
70 static bool addrrange_equal(AddrRange r1, AddrRange r2)
72 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 static Int128 addrrange_end(AddrRange r)
77 return int128_add(r.start, r.size);
80 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
82 int128_addto(&range.start, delta);
83 return range;
86 static bool addrrange_contains(AddrRange range, Int128 addr)
88 return int128_ge(addr, range.start)
89 && int128_lt(addr, addrrange_end(range));
92 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
94 return addrrange_contains(r1, r2.start)
95 || addrrange_contains(r2, r1.start);
98 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
100 Int128 start = int128_max(r1.start, r2.start);
101 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
102 return addrrange_make(start, int128_sub(end, start));
105 enum ListenerDirection { Forward, Reverse };
107 static bool memory_listener_match(MemoryListener *listener,
108 MemoryRegionSection *section)
110 return !listener->address_space_filter
111 || listener->address_space_filter == section->address_space;
114 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
115 do { \
116 MemoryListener *_listener; \
118 switch (_direction) { \
119 case Forward: \
120 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
121 if (_listener->_callback) { \
122 _listener->_callback(_listener, ##_args); \
125 break; \
126 case Reverse: \
127 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
128 memory_listeners, link) { \
129 if (_listener->_callback) { \
130 _listener->_callback(_listener, ##_args); \
133 break; \
134 default: \
135 abort(); \
137 } while (0)
139 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
140 do { \
141 MemoryListener *_listener; \
143 switch (_direction) { \
144 case Forward: \
145 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
146 if (_listener->_callback \
147 && memory_listener_match(_listener, _section)) { \
148 _listener->_callback(_listener, _section, ##_args); \
151 break; \
152 case Reverse: \
153 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
154 memory_listeners, link) { \
155 if (_listener->_callback \
156 && memory_listener_match(_listener, _section)) { \
157 _listener->_callback(_listener, _section, ##_args); \
160 break; \
161 default: \
162 abort(); \
164 } while (0)
166 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
167 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
168 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
169 .mr = (fr)->mr, \
170 .address_space = (as), \
171 .offset_within_region = (fr)->offset_in_region, \
172 .size = (fr)->addr.size, \
173 .offset_within_address_space = int128_get64((fr)->addr.start), \
174 .readonly = (fr)->readonly, \
177 struct CoalescedMemoryRange {
178 AddrRange addr;
179 QTAILQ_ENTRY(CoalescedMemoryRange) link;
182 struct MemoryRegionIoeventfd {
183 AddrRange addr;
184 bool match_data;
185 uint64_t data;
186 EventNotifier *e;
189 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
190 MemoryRegionIoeventfd b)
192 if (int128_lt(a.addr.start, b.addr.start)) {
193 return true;
194 } else if (int128_gt(a.addr.start, b.addr.start)) {
195 return false;
196 } else if (int128_lt(a.addr.size, b.addr.size)) {
197 return true;
198 } else if (int128_gt(a.addr.size, b.addr.size)) {
199 return false;
200 } else if (a.match_data < b.match_data) {
201 return true;
202 } else if (a.match_data > b.match_data) {
203 return false;
204 } else if (a.match_data) {
205 if (a.data < b.data) {
206 return true;
207 } else if (a.data > b.data) {
208 return false;
211 if (a.e < b.e) {
212 return true;
213 } else if (a.e > b.e) {
214 return false;
216 return false;
219 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
220 MemoryRegionIoeventfd b)
222 return !memory_region_ioeventfd_before(a, b)
223 && !memory_region_ioeventfd_before(b, a);
226 typedef struct FlatRange FlatRange;
227 typedef struct FlatView FlatView;
229 /* Range of memory in the global map. Addresses are absolute. */
230 struct FlatRange {
231 MemoryRegion *mr;
232 hwaddr offset_in_region;
233 AddrRange addr;
234 uint8_t dirty_log_mask;
235 bool romd_mode;
236 bool readonly;
239 /* Flattened global view of current active memory hierarchy. Kept in sorted
240 * order.
242 struct FlatView {
243 unsigned ref;
244 FlatRange *ranges;
245 unsigned nr;
246 unsigned nr_allocated;
249 typedef struct AddressSpaceOps AddressSpaceOps;
251 #define FOR_EACH_FLAT_RANGE(var, view) \
252 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
254 static bool flatrange_equal(FlatRange *a, FlatRange *b)
256 return a->mr == b->mr
257 && addrrange_equal(a->addr, b->addr)
258 && a->offset_in_region == b->offset_in_region
259 && a->romd_mode == b->romd_mode
260 && a->readonly == b->readonly;
263 static void flatview_init(FlatView *view)
265 view->ref = 1;
266 view->ranges = NULL;
267 view->nr = 0;
268 view->nr_allocated = 0;
271 /* Insert a range into a given position. Caller is responsible for maintaining
272 * sorting order.
274 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 if (view->nr == view->nr_allocated) {
277 view->nr_allocated = MAX(2 * view->nr, 10);
278 view->ranges = g_realloc(view->ranges,
279 view->nr_allocated * sizeof(*view->ranges));
281 memmove(view->ranges + pos + 1, view->ranges + pos,
282 (view->nr - pos) * sizeof(FlatRange));
283 view->ranges[pos] = *range;
284 memory_region_ref(range->mr);
285 ++view->nr;
288 static void flatview_destroy(FlatView *view)
290 int i;
292 for (i = 0; i < view->nr; i++) {
293 memory_region_unref(view->ranges[i].mr);
295 g_free(view->ranges);
296 g_free(view);
299 static void flatview_ref(FlatView *view)
301 atomic_inc(&view->ref);
304 static void flatview_unref(FlatView *view)
306 if (atomic_fetch_dec(&view->ref) == 1) {
307 flatview_destroy(view);
311 static bool can_merge(FlatRange *r1, FlatRange *r2)
313 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
314 && r1->mr == r2->mr
315 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
316 r1->addr.size),
317 int128_make64(r2->offset_in_region))
318 && r1->dirty_log_mask == r2->dirty_log_mask
319 && r1->romd_mode == r2->romd_mode
320 && r1->readonly == r2->readonly;
323 /* Attempt to simplify a view by merging adjacent ranges */
324 static void flatview_simplify(FlatView *view)
326 unsigned i, j;
328 i = 0;
329 while (i < view->nr) {
330 j = i + 1;
331 while (j < view->nr
332 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
333 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
334 ++j;
336 ++i;
337 memmove(&view->ranges[i], &view->ranges[j],
338 (view->nr - j) * sizeof(view->ranges[j]));
339 view->nr -= j - i;
343 static bool memory_region_big_endian(MemoryRegion *mr)
345 #ifdef TARGET_WORDS_BIGENDIAN
346 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
347 #else
348 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
349 #endif
352 static bool memory_region_wrong_endianness(MemoryRegion *mr)
354 #ifdef TARGET_WORDS_BIGENDIAN
355 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
356 #else
357 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
358 #endif
361 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
363 if (memory_region_wrong_endianness(mr)) {
364 switch (size) {
365 case 1:
366 break;
367 case 2:
368 *data = bswap16(*data);
369 break;
370 case 4:
371 *data = bswap32(*data);
372 break;
373 case 8:
374 *data = bswap64(*data);
375 break;
376 default:
377 abort();
382 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
383 hwaddr addr,
384 uint64_t *value,
385 unsigned size,
386 unsigned shift,
387 uint64_t mask)
389 uint64_t tmp;
391 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
392 trace_memory_region_ops_read(mr, addr, tmp, size);
393 *value |= (tmp & mask) << shift;
396 static void memory_region_read_accessor(MemoryRegion *mr,
397 hwaddr addr,
398 uint64_t *value,
399 unsigned size,
400 unsigned shift,
401 uint64_t mask)
403 uint64_t tmp;
405 if (mr->flush_coalesced_mmio) {
406 qemu_flush_coalesced_mmio_buffer();
408 tmp = mr->ops->read(mr->opaque, addr, size);
409 trace_memory_region_ops_read(mr, addr, tmp, size);
410 *value |= (tmp & mask) << shift;
413 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
414 hwaddr addr,
415 uint64_t *value,
416 unsigned size,
417 unsigned shift,
418 uint64_t mask)
420 uint64_t tmp;
422 tmp = (*value >> shift) & mask;
423 trace_memory_region_ops_write(mr, addr, tmp, size);
424 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
427 static void memory_region_write_accessor(MemoryRegion *mr,
428 hwaddr addr,
429 uint64_t *value,
430 unsigned size,
431 unsigned shift,
432 uint64_t mask)
434 uint64_t tmp;
436 if (mr->flush_coalesced_mmio) {
437 qemu_flush_coalesced_mmio_buffer();
439 tmp = (*value >> shift) & mask;
440 trace_memory_region_ops_write(mr, addr, tmp, size);
441 mr->ops->write(mr->opaque, addr, tmp, size);
444 static void access_with_adjusted_size(hwaddr addr,
445 uint64_t *value,
446 unsigned size,
447 unsigned access_size_min,
448 unsigned access_size_max,
449 void (*access)(MemoryRegion *mr,
450 hwaddr addr,
451 uint64_t *value,
452 unsigned size,
453 unsigned shift,
454 uint64_t mask),
455 MemoryRegion *mr)
457 uint64_t access_mask;
458 unsigned access_size;
459 unsigned i;
461 if (!access_size_min) {
462 access_size_min = 1;
464 if (!access_size_max) {
465 access_size_max = 4;
468 /* FIXME: support unaligned access? */
469 access_size = MAX(MIN(size, access_size_max), access_size_min);
470 access_mask = -1ULL >> (64 - access_size * 8);
471 if (memory_region_big_endian(mr)) {
472 for (i = 0; i < size; i += access_size) {
473 access(mr, addr + i, value, access_size,
474 (size - access_size - i) * 8, access_mask);
476 } else {
477 for (i = 0; i < size; i += access_size) {
478 access(mr, addr + i, value, access_size, i * 8, access_mask);
483 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
485 AddressSpace *as;
487 while (mr->container) {
488 mr = mr->container;
490 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
491 if (mr == as->root) {
492 return as;
495 return NULL;
498 /* Render a memory region into the global view. Ranges in @view obscure
499 * ranges in @mr.
501 static void render_memory_region(FlatView *view,
502 MemoryRegion *mr,
503 Int128 base,
504 AddrRange clip,
505 bool readonly)
507 MemoryRegion *subregion;
508 unsigned i;
509 hwaddr offset_in_region;
510 Int128 remain;
511 Int128 now;
512 FlatRange fr;
513 AddrRange tmp;
515 if (!mr->enabled) {
516 return;
519 int128_addto(&base, int128_make64(mr->addr));
520 readonly |= mr->readonly;
522 tmp = addrrange_make(base, mr->size);
524 if (!addrrange_intersects(tmp, clip)) {
525 return;
528 clip = addrrange_intersection(tmp, clip);
530 if (mr->alias) {
531 int128_subfrom(&base, int128_make64(mr->alias->addr));
532 int128_subfrom(&base, int128_make64(mr->alias_offset));
533 render_memory_region(view, mr->alias, base, clip, readonly);
534 return;
537 /* Render subregions in priority order. */
538 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
539 render_memory_region(view, subregion, base, clip, readonly);
542 if (!mr->terminates) {
543 return;
546 offset_in_region = int128_get64(int128_sub(clip.start, base));
547 base = clip.start;
548 remain = clip.size;
550 fr.mr = mr;
551 fr.dirty_log_mask = mr->dirty_log_mask;
552 fr.romd_mode = mr->romd_mode;
553 fr.readonly = readonly;
555 /* Render the region itself into any gaps left by the current view. */
556 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
557 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
558 continue;
560 if (int128_lt(base, view->ranges[i].addr.start)) {
561 now = int128_min(remain,
562 int128_sub(view->ranges[i].addr.start, base));
563 fr.offset_in_region = offset_in_region;
564 fr.addr = addrrange_make(base, now);
565 flatview_insert(view, i, &fr);
566 ++i;
567 int128_addto(&base, now);
568 offset_in_region += int128_get64(now);
569 int128_subfrom(&remain, now);
571 now = int128_sub(int128_min(int128_add(base, remain),
572 addrrange_end(view->ranges[i].addr)),
573 base);
574 int128_addto(&base, now);
575 offset_in_region += int128_get64(now);
576 int128_subfrom(&remain, now);
578 if (int128_nz(remain)) {
579 fr.offset_in_region = offset_in_region;
580 fr.addr = addrrange_make(base, remain);
581 flatview_insert(view, i, &fr);
585 /* Render a memory topology into a list of disjoint absolute ranges. */
586 static FlatView *generate_memory_topology(MemoryRegion *mr)
588 FlatView *view;
590 view = g_new(FlatView, 1);
591 flatview_init(view);
593 if (mr) {
594 render_memory_region(view, mr, int128_zero(),
595 addrrange_make(int128_zero(), int128_2_64()), false);
597 flatview_simplify(view);
599 return view;
602 static void address_space_add_del_ioeventfds(AddressSpace *as,
603 MemoryRegionIoeventfd *fds_new,
604 unsigned fds_new_nb,
605 MemoryRegionIoeventfd *fds_old,
606 unsigned fds_old_nb)
608 unsigned iold, inew;
609 MemoryRegionIoeventfd *fd;
610 MemoryRegionSection section;
612 /* Generate a symmetric difference of the old and new fd sets, adding
613 * and deleting as necessary.
616 iold = inew = 0;
617 while (iold < fds_old_nb || inew < fds_new_nb) {
618 if (iold < fds_old_nb
619 && (inew == fds_new_nb
620 || memory_region_ioeventfd_before(fds_old[iold],
621 fds_new[inew]))) {
622 fd = &fds_old[iold];
623 section = (MemoryRegionSection) {
624 .address_space = as,
625 .offset_within_address_space = int128_get64(fd->addr.start),
626 .size = fd->addr.size,
628 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
629 fd->match_data, fd->data, fd->e);
630 ++iold;
631 } else if (inew < fds_new_nb
632 && (iold == fds_old_nb
633 || memory_region_ioeventfd_before(fds_new[inew],
634 fds_old[iold]))) {
635 fd = &fds_new[inew];
636 section = (MemoryRegionSection) {
637 .address_space = as,
638 .offset_within_address_space = int128_get64(fd->addr.start),
639 .size = fd->addr.size,
641 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
642 fd->match_data, fd->data, fd->e);
643 ++inew;
644 } else {
645 ++iold;
646 ++inew;
651 static FlatView *address_space_get_flatview(AddressSpace *as)
653 FlatView *view;
655 qemu_mutex_lock(&flat_view_mutex);
656 view = as->current_map;
657 flatview_ref(view);
658 qemu_mutex_unlock(&flat_view_mutex);
659 return view;
662 static void address_space_update_ioeventfds(AddressSpace *as)
664 FlatView *view;
665 FlatRange *fr;
666 unsigned ioeventfd_nb = 0;
667 MemoryRegionIoeventfd *ioeventfds = NULL;
668 AddrRange tmp;
669 unsigned i;
671 view = address_space_get_flatview(as);
672 FOR_EACH_FLAT_RANGE(fr, view) {
673 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
674 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
675 int128_sub(fr->addr.start,
676 int128_make64(fr->offset_in_region)));
677 if (addrrange_intersects(fr->addr, tmp)) {
678 ++ioeventfd_nb;
679 ioeventfds = g_realloc(ioeventfds,
680 ioeventfd_nb * sizeof(*ioeventfds));
681 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
682 ioeventfds[ioeventfd_nb-1].addr = tmp;
687 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
688 as->ioeventfds, as->ioeventfd_nb);
690 g_free(as->ioeventfds);
691 as->ioeventfds = ioeventfds;
692 as->ioeventfd_nb = ioeventfd_nb;
693 flatview_unref(view);
696 static void address_space_update_topology_pass(AddressSpace *as,
697 const FlatView *old_view,
698 const FlatView *new_view,
699 bool adding)
701 unsigned iold, inew;
702 FlatRange *frold, *frnew;
704 /* Generate a symmetric difference of the old and new memory maps.
705 * Kill ranges in the old map, and instantiate ranges in the new map.
707 iold = inew = 0;
708 while (iold < old_view->nr || inew < new_view->nr) {
709 if (iold < old_view->nr) {
710 frold = &old_view->ranges[iold];
711 } else {
712 frold = NULL;
714 if (inew < new_view->nr) {
715 frnew = &new_view->ranges[inew];
716 } else {
717 frnew = NULL;
720 if (frold
721 && (!frnew
722 || int128_lt(frold->addr.start, frnew->addr.start)
723 || (int128_eq(frold->addr.start, frnew->addr.start)
724 && !flatrange_equal(frold, frnew)))) {
725 /* In old but not in new, or in both but attributes changed. */
727 if (!adding) {
728 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
731 ++iold;
732 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
733 /* In both and unchanged (except logging may have changed) */
735 if (adding) {
736 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
737 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
738 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
739 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
740 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
744 ++iold;
745 ++inew;
746 } else {
747 /* In new */
749 if (adding) {
750 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
753 ++inew;
759 static void address_space_update_topology(AddressSpace *as)
761 FlatView *old_view = address_space_get_flatview(as);
762 FlatView *new_view = generate_memory_topology(as->root);
764 address_space_update_topology_pass(as, old_view, new_view, false);
765 address_space_update_topology_pass(as, old_view, new_view, true);
767 qemu_mutex_lock(&flat_view_mutex);
768 flatview_unref(as->current_map);
769 as->current_map = new_view;
770 qemu_mutex_unlock(&flat_view_mutex);
772 /* Note that all the old MemoryRegions are still alive up to this
773 * point. This relieves most MemoryListeners from the need to
774 * ref/unref the MemoryRegions they get---unless they use them
775 * outside the iothread mutex, in which case precise reference
776 * counting is necessary.
778 flatview_unref(old_view);
780 address_space_update_ioeventfds(as);
783 void memory_region_transaction_begin(void)
785 qemu_flush_coalesced_mmio_buffer();
786 ++memory_region_transaction_depth;
789 static void memory_region_clear_pending(void)
791 memory_region_update_pending = false;
792 ioeventfd_update_pending = false;
795 void memory_region_transaction_commit(void)
797 AddressSpace *as;
799 assert(memory_region_transaction_depth);
800 --memory_region_transaction_depth;
801 if (!memory_region_transaction_depth) {
802 if (memory_region_update_pending) {
803 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
805 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
806 address_space_update_topology(as);
809 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
810 } else if (ioeventfd_update_pending) {
811 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
812 address_space_update_ioeventfds(as);
815 memory_region_clear_pending();
819 static void memory_region_destructor_none(MemoryRegion *mr)
823 static void memory_region_destructor_ram(MemoryRegion *mr)
825 qemu_ram_free(mr->ram_addr);
828 static void memory_region_destructor_alias(MemoryRegion *mr)
830 memory_region_unref(mr->alias);
833 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
835 qemu_ram_free_from_ptr(mr->ram_addr);
838 static void memory_region_destructor_rom_device(MemoryRegion *mr)
840 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
843 static bool memory_region_need_escape(char c)
845 return c == '/' || c == '[' || c == '\\' || c == ']';
848 static char *memory_region_escape_name(const char *name)
850 const char *p;
851 char *escaped, *q;
852 uint8_t c;
853 size_t bytes = 0;
855 for (p = name; *p; p++) {
856 bytes += memory_region_need_escape(*p) ? 4 : 1;
858 if (bytes == p - name) {
859 return g_memdup(name, bytes + 1);
862 escaped = g_malloc(bytes + 1);
863 for (p = name, q = escaped; *p; p++) {
864 c = *p;
865 if (unlikely(memory_region_need_escape(c))) {
866 *q++ = '\\';
867 *q++ = 'x';
868 *q++ = "0123456789abcdef"[c >> 4];
869 c = "0123456789abcdef"[c & 15];
871 *q++ = c;
873 *q = 0;
874 return escaped;
877 void memory_region_init(MemoryRegion *mr,
878 Object *owner,
879 const char *name,
880 uint64_t size)
882 if (!owner) {
883 owner = qdev_get_machine();
886 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
887 mr->size = int128_make64(size);
888 if (size == UINT64_MAX) {
889 mr->size = int128_2_64();
891 mr->name = g_strdup(name);
893 if (name) {
894 char *escaped_name = memory_region_escape_name(name);
895 char *name_array = g_strdup_printf("%s[*]", escaped_name);
896 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
897 object_unref(OBJECT(mr));
898 g_free(name_array);
899 g_free(escaped_name);
903 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
904 const char *name, Error **errp)
906 MemoryRegion *mr = MEMORY_REGION(obj);
907 uint64_t value = mr->addr;
909 visit_type_uint64(v, &value, name, errp);
912 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
913 const char *name, Error **errp)
915 MemoryRegion *mr = MEMORY_REGION(obj);
916 gchar *path = (gchar *)"";
918 if (mr->container) {
919 path = object_get_canonical_path(OBJECT(mr->container));
921 visit_type_str(v, &path, name, errp);
922 if (mr->container) {
923 g_free(path);
927 static Object *memory_region_resolve_container(Object *obj, void *opaque,
928 const char *part)
930 MemoryRegion *mr = MEMORY_REGION(obj);
932 return OBJECT(mr->container);
935 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
936 const char *name, Error **errp)
938 MemoryRegion *mr = MEMORY_REGION(obj);
939 int32_t value = mr->priority;
941 visit_type_int32(v, &value, name, errp);
944 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
946 MemoryRegion *mr = MEMORY_REGION(obj);
948 return mr->may_overlap;
951 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
952 const char *name, Error **errp)
954 MemoryRegion *mr = MEMORY_REGION(obj);
955 uint64_t value = memory_region_size(mr);
957 visit_type_uint64(v, &value, name, errp);
960 static void memory_region_initfn(Object *obj)
962 MemoryRegion *mr = MEMORY_REGION(obj);
963 ObjectProperty *op;
965 mr->ops = &unassigned_mem_ops;
966 mr->enabled = true;
967 mr->romd_mode = true;
968 mr->destructor = memory_region_destructor_none;
969 QTAILQ_INIT(&mr->subregions);
970 QTAILQ_INIT(&mr->coalesced);
972 op = object_property_add(OBJECT(mr), "container",
973 "link<" TYPE_MEMORY_REGION ">",
974 memory_region_get_container,
975 NULL, /* memory_region_set_container */
976 NULL, NULL, &error_abort);
977 op->resolve = memory_region_resolve_container;
979 object_property_add(OBJECT(mr), "addr", "uint64",
980 memory_region_get_addr,
981 NULL, /* memory_region_set_addr */
982 NULL, NULL, &error_abort);
983 object_property_add(OBJECT(mr), "priority", "uint32",
984 memory_region_get_priority,
985 NULL, /* memory_region_set_priority */
986 NULL, NULL, &error_abort);
987 object_property_add_bool(OBJECT(mr), "may-overlap",
988 memory_region_get_may_overlap,
989 NULL, /* memory_region_set_may_overlap */
990 &error_abort);
991 object_property_add(OBJECT(mr), "size", "uint64",
992 memory_region_get_size,
993 NULL, /* memory_region_set_size, */
994 NULL, NULL, &error_abort);
997 static int qemu_target_backtrace(target_ulong *array, size_t size)
999 int n = 0;
1000 if (size >= 2) {
1001 #if defined(TARGET_ARM)
1002 CPUArchState *env = current_cpu->env_ptr;
1003 array[0] = env->regs[15];
1004 array[1] = env->regs[14];
1005 #elif defined(TARGET_MIPS)
1006 CPUArchState *env = current_cpu->env_ptr;
1007 array[0] = env->active_tc.PC;
1008 array[1] = env->active_tc.gpr[31];
1009 #else
1010 array[0] = 0;
1011 array[1] = 0;
1012 #endif
1013 n = 2;
1015 return n;
1018 #include "disas/disas.h"
1019 const char *qemu_sprint_backtrace(char *buffer, size_t length)
1021 char *p = buffer;
1022 if (current_cpu) {
1023 target_ulong caller[2];
1024 const char *symbol;
1025 qemu_target_backtrace(caller, 2);
1026 symbol = lookup_symbol(caller[0]);
1027 p += sprintf(p, "[%s]", symbol);
1028 symbol = lookup_symbol(caller[1]);
1029 p += sprintf(p, "[%s]", symbol);
1030 } else {
1031 p += sprintf(p, "[cpu not running]");
1033 assert((p - buffer) < length);
1034 return buffer;
1037 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1038 unsigned size)
1040 if (trace_unassigned) {
1041 char buffer[256];
1042 fprintf(stderr, "Unassigned mem read " TARGET_FMT_plx " %s\n",
1043 addr, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1045 //~ vm_stop(0);
1046 if (current_cpu != NULL) {
1047 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1049 return 0;
1052 static void unassigned_mem_write(void *opaque, hwaddr addr,
1053 uint64_t val, unsigned size)
1055 if (trace_unassigned) {
1056 char buffer[256];
1057 fprintf(stderr, "Unassigned mem write " TARGET_FMT_plx
1058 " = 0x%" PRIx64 " %s\n",
1059 addr, val, qemu_sprint_backtrace(buffer, sizeof(buffer)));
1061 if (current_cpu != NULL) {
1062 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1066 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1067 unsigned size, bool is_write)
1069 return false;
1072 const MemoryRegionOps unassigned_mem_ops = {
1073 .valid.accepts = unassigned_mem_accepts,
1074 .endianness = DEVICE_NATIVE_ENDIAN,
1077 bool memory_region_access_valid(MemoryRegion *mr,
1078 hwaddr addr,
1079 unsigned size,
1080 bool is_write)
1082 int access_size_min, access_size_max;
1083 int access_size, i;
1085 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1086 fprintf(stderr, "Misaligned i/o with size %u for memory region %s\n",
1087 size, mr->name);
1088 return false;
1091 if (!mr->ops->valid.accepts) {
1092 return true;
1095 access_size_min = mr->ops->valid.min_access_size;
1096 if (!mr->ops->valid.min_access_size) {
1097 access_size_min = 1;
1100 access_size_max = mr->ops->valid.max_access_size;
1101 if (!mr->ops->valid.max_access_size) {
1102 access_size_max = 4;
1105 access_size = MAX(MIN(size, access_size_max), access_size_min);
1106 for (i = 0; i < size; i += access_size) {
1107 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1108 is_write)) {
1109 return false;
1113 return true;
1116 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1117 hwaddr addr,
1118 unsigned size)
1120 uint64_t data = 0;
1122 if (mr->ops->read) {
1123 access_with_adjusted_size(addr, &data, size,
1124 mr->ops->impl.min_access_size,
1125 mr->ops->impl.max_access_size,
1126 memory_region_read_accessor, mr);
1127 } else {
1128 access_with_adjusted_size(addr, &data, size, 1, 4,
1129 memory_region_oldmmio_read_accessor, mr);
1132 return data;
1135 static bool memory_region_dispatch_read(MemoryRegion *mr,
1136 hwaddr addr,
1137 uint64_t *pval,
1138 unsigned size)
1140 if (!memory_region_access_valid(mr, addr, size, false)) {
1141 *pval = unassigned_mem_read(mr, addr, size);
1142 return true;
1145 *pval = memory_region_dispatch_read1(mr, addr, size);
1146 adjust_endianness(mr, pval, size);
1147 return false;
1150 static bool memory_region_dispatch_write(MemoryRegion *mr,
1151 hwaddr addr,
1152 uint64_t data,
1153 unsigned size)
1155 if (!memory_region_access_valid(mr, addr, size, true)) {
1156 unassigned_mem_write(mr, addr, data, size);
1157 return true;
1160 adjust_endianness(mr, &data, size);
1162 if (mr->ops->write) {
1163 access_with_adjusted_size(addr, &data, size,
1164 mr->ops->impl.min_access_size,
1165 mr->ops->impl.max_access_size,
1166 memory_region_write_accessor, mr);
1167 } else {
1168 access_with_adjusted_size(addr, &data, size, 1, 4,
1169 memory_region_oldmmio_write_accessor, mr);
1171 return false;
1174 void memory_region_init_io(MemoryRegion *mr,
1175 Object *owner,
1176 const MemoryRegionOps *ops,
1177 void *opaque,
1178 const char *name,
1179 uint64_t size)
1181 memory_region_init(mr, owner, name, size);
1182 mr->ops = ops;
1183 mr->opaque = opaque;
1184 mr->terminates = true;
1185 mr->ram_addr = ~(ram_addr_t)0;
1188 void memory_region_init_ram(MemoryRegion *mr,
1189 Object *owner,
1190 const char *name,
1191 uint64_t size,
1192 Error **errp)
1194 memory_region_init(mr, owner, name, size);
1195 mr->ram = true;
1196 mr->terminates = true;
1197 mr->destructor = memory_region_destructor_ram;
1198 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1201 #ifdef __linux__
1202 void memory_region_init_ram_from_file(MemoryRegion *mr,
1203 struct Object *owner,
1204 const char *name,
1205 uint64_t size,
1206 bool share,
1207 const char *path,
1208 Error **errp)
1210 memory_region_init(mr, owner, name, size);
1211 mr->ram = true;
1212 mr->terminates = true;
1213 mr->destructor = memory_region_destructor_ram;
1214 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1216 #endif
1218 void memory_region_init_ram_ptr(MemoryRegion *mr,
1219 Object *owner,
1220 const char *name,
1221 uint64_t size,
1222 void *ptr)
1224 memory_region_init(mr, owner, name, size);
1225 mr->ram = true;
1226 mr->terminates = true;
1227 mr->destructor = memory_region_destructor_ram_from_ptr;
1229 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1230 assert(ptr != NULL);
1231 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1234 void memory_region_set_skip_dump(MemoryRegion *mr)
1236 mr->skip_dump = true;
1239 void memory_region_init_alias(MemoryRegion *mr,
1240 Object *owner,
1241 const char *name,
1242 MemoryRegion *orig,
1243 hwaddr offset,
1244 uint64_t size)
1246 memory_region_init(mr, owner, name, size);
1247 memory_region_ref(orig);
1248 mr->destructor = memory_region_destructor_alias;
1249 mr->alias = orig;
1250 mr->alias_offset = offset;
1253 void memory_region_init_rom_device(MemoryRegion *mr,
1254 Object *owner,
1255 const MemoryRegionOps *ops,
1256 void *opaque,
1257 const char *name,
1258 uint64_t size,
1259 Error **errp)
1261 memory_region_init(mr, owner, name, size);
1262 mr->ops = ops;
1263 mr->opaque = opaque;
1264 mr->terminates = true;
1265 mr->rom_device = true;
1266 mr->destructor = memory_region_destructor_rom_device;
1267 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1270 void memory_region_init_iommu(MemoryRegion *mr,
1271 Object *owner,
1272 const MemoryRegionIOMMUOps *ops,
1273 const char *name,
1274 uint64_t size)
1276 memory_region_init(mr, owner, name, size);
1277 mr->iommu_ops = ops,
1278 mr->terminates = true; /* then re-forwards */
1279 notifier_list_init(&mr->iommu_notify);
1282 void memory_region_init_reservation(MemoryRegion *mr,
1283 Object *owner,
1284 const char *name,
1285 uint64_t size)
1287 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1290 static void memory_region_finalize(Object *obj)
1292 MemoryRegion *mr = MEMORY_REGION(obj);
1294 assert(QTAILQ_EMPTY(&mr->subregions));
1295 assert(memory_region_transaction_depth == 0);
1296 mr->destructor(mr);
1297 memory_region_clear_coalescing(mr);
1298 g_free((char *)mr->name);
1299 g_free(mr->ioeventfds);
1302 Object *memory_region_owner(MemoryRegion *mr)
1304 Object *obj = OBJECT(mr);
1305 return obj->parent;
1308 void memory_region_ref(MemoryRegion *mr)
1310 /* MMIO callbacks most likely will access data that belongs
1311 * to the owner, hence the need to ref/unref the owner whenever
1312 * the memory region is in use.
1314 * The memory region is a child of its owner. As long as the
1315 * owner doesn't call unparent itself on the memory region,
1316 * ref-ing the owner will also keep the memory region alive.
1317 * Memory regions without an owner are supposed to never go away,
1318 * but we still ref/unref them for debugging purposes.
1320 Object *obj = OBJECT(mr);
1321 if (obj && obj->parent) {
1322 object_ref(obj->parent);
1323 } else {
1324 object_ref(obj);
1328 void memory_region_unref(MemoryRegion *mr)
1330 Object *obj = OBJECT(mr);
1331 if (obj && obj->parent) {
1332 object_unref(obj->parent);
1333 } else {
1334 object_unref(obj);
1338 uint64_t memory_region_size(MemoryRegion *mr)
1340 if (int128_eq(mr->size, int128_2_64())) {
1341 return UINT64_MAX;
1343 return int128_get64(mr->size);
1346 const char *memory_region_name(const MemoryRegion *mr)
1348 if (!mr->name) {
1349 ((MemoryRegion *)mr)->name =
1350 object_get_canonical_path_component(OBJECT(mr));
1352 return mr->name;
1355 bool memory_region_is_ram(MemoryRegion *mr)
1357 return mr->ram;
1360 bool memory_region_is_skip_dump(MemoryRegion *mr)
1362 return mr->skip_dump;
1365 bool memory_region_is_logging(MemoryRegion *mr)
1367 return mr->dirty_log_mask;
1370 bool memory_region_is_rom(MemoryRegion *mr)
1372 return mr->ram && mr->readonly;
1375 bool memory_region_is_iommu(MemoryRegion *mr)
1377 return mr->iommu_ops;
1380 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1382 notifier_list_add(&mr->iommu_notify, n);
1385 void memory_region_unregister_iommu_notifier(Notifier *n)
1387 notifier_remove(n);
1390 void memory_region_notify_iommu(MemoryRegion *mr,
1391 IOMMUTLBEntry entry)
1393 assert(memory_region_is_iommu(mr));
1394 notifier_list_notify(&mr->iommu_notify, &entry);
1397 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1399 uint8_t mask = 1 << client;
1401 memory_region_transaction_begin();
1402 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1403 memory_region_update_pending |= mr->enabled;
1404 memory_region_transaction_commit();
1407 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1408 hwaddr size, unsigned client)
1410 assert(mr->terminates);
1411 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1414 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1415 hwaddr size)
1417 assert(mr->terminates);
1418 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1421 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1422 hwaddr size, unsigned client)
1424 bool ret;
1425 assert(mr->terminates);
1426 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1427 if (ret) {
1428 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1430 return ret;
1434 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1436 AddressSpace *as;
1437 FlatRange *fr;
1439 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1440 FlatView *view = address_space_get_flatview(as);
1441 FOR_EACH_FLAT_RANGE(fr, view) {
1442 if (fr->mr == mr) {
1443 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1446 flatview_unref(view);
1450 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1452 if (mr->readonly != readonly) {
1453 memory_region_transaction_begin();
1454 mr->readonly = readonly;
1455 memory_region_update_pending |= mr->enabled;
1456 memory_region_transaction_commit();
1460 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1462 if (mr->romd_mode != romd_mode) {
1463 memory_region_transaction_begin();
1464 mr->romd_mode = romd_mode;
1465 memory_region_update_pending |= mr->enabled;
1466 memory_region_transaction_commit();
1470 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1471 hwaddr size, unsigned client)
1473 assert(mr->terminates);
1474 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1477 int memory_region_get_fd(MemoryRegion *mr)
1479 if (mr->alias) {
1480 return memory_region_get_fd(mr->alias);
1483 assert(mr->terminates);
1485 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1488 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1490 if (mr->alias) {
1491 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1494 assert(mr->terminates);
1496 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1499 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1501 FlatView *view;
1502 FlatRange *fr;
1503 CoalescedMemoryRange *cmr;
1504 AddrRange tmp;
1505 MemoryRegionSection section;
1507 view = address_space_get_flatview(as);
1508 FOR_EACH_FLAT_RANGE(fr, view) {
1509 if (fr->mr == mr) {
1510 section = (MemoryRegionSection) {
1511 .address_space = as,
1512 .offset_within_address_space = int128_get64(fr->addr.start),
1513 .size = fr->addr.size,
1516 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1517 int128_get64(fr->addr.start),
1518 int128_get64(fr->addr.size));
1519 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1520 tmp = addrrange_shift(cmr->addr,
1521 int128_sub(fr->addr.start,
1522 int128_make64(fr->offset_in_region)));
1523 if (!addrrange_intersects(tmp, fr->addr)) {
1524 continue;
1526 tmp = addrrange_intersection(tmp, fr->addr);
1527 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1528 int128_get64(tmp.start),
1529 int128_get64(tmp.size));
1533 flatview_unref(view);
1536 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1538 AddressSpace *as;
1540 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1541 memory_region_update_coalesced_range_as(mr, as);
1545 void memory_region_set_coalescing(MemoryRegion *mr)
1547 memory_region_clear_coalescing(mr);
1548 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1551 void memory_region_add_coalescing(MemoryRegion *mr,
1552 hwaddr offset,
1553 uint64_t size)
1555 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1557 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1558 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1559 memory_region_update_coalesced_range(mr);
1560 memory_region_set_flush_coalesced(mr);
1563 void memory_region_clear_coalescing(MemoryRegion *mr)
1565 CoalescedMemoryRange *cmr;
1566 bool updated = false;
1568 qemu_flush_coalesced_mmio_buffer();
1569 mr->flush_coalesced_mmio = false;
1571 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1572 cmr = QTAILQ_FIRST(&mr->coalesced);
1573 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1574 g_free(cmr);
1575 updated = true;
1578 if (updated) {
1579 memory_region_update_coalesced_range(mr);
1583 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1585 mr->flush_coalesced_mmio = true;
1588 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1590 qemu_flush_coalesced_mmio_buffer();
1591 if (QTAILQ_EMPTY(&mr->coalesced)) {
1592 mr->flush_coalesced_mmio = false;
1596 void memory_region_add_eventfd(MemoryRegion *mr,
1597 hwaddr addr,
1598 unsigned size,
1599 bool match_data,
1600 uint64_t data,
1601 EventNotifier *e)
1603 MemoryRegionIoeventfd mrfd = {
1604 .addr.start = int128_make64(addr),
1605 .addr.size = int128_make64(size),
1606 .match_data = match_data,
1607 .data = data,
1608 .e = e,
1610 unsigned i;
1612 adjust_endianness(mr, &mrfd.data, size);
1613 memory_region_transaction_begin();
1614 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1615 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1616 break;
1619 ++mr->ioeventfd_nb;
1620 mr->ioeventfds = g_realloc(mr->ioeventfds,
1621 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1622 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1623 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1624 mr->ioeventfds[i] = mrfd;
1625 ioeventfd_update_pending |= mr->enabled;
1626 memory_region_transaction_commit();
1629 void memory_region_del_eventfd(MemoryRegion *mr,
1630 hwaddr addr,
1631 unsigned size,
1632 bool match_data,
1633 uint64_t data,
1634 EventNotifier *e)
1636 MemoryRegionIoeventfd mrfd = {
1637 .addr.start = int128_make64(addr),
1638 .addr.size = int128_make64(size),
1639 .match_data = match_data,
1640 .data = data,
1641 .e = e,
1643 unsigned i;
1645 adjust_endianness(mr, &mrfd.data, size);
1646 memory_region_transaction_begin();
1647 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1648 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1649 break;
1652 assert(i != mr->ioeventfd_nb);
1653 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1654 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1655 --mr->ioeventfd_nb;
1656 mr->ioeventfds = g_realloc(mr->ioeventfds,
1657 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1658 ioeventfd_update_pending |= mr->enabled;
1659 memory_region_transaction_commit();
1662 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1664 hwaddr offset = subregion->addr;
1665 MemoryRegion *mr = subregion->container;
1666 MemoryRegion *other;
1668 memory_region_transaction_begin();
1670 memory_region_ref(subregion);
1671 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1672 if (subregion->may_overlap || other->may_overlap) {
1673 continue;
1675 if (int128_ge(int128_make64(offset),
1676 int128_add(int128_make64(other->addr), other->size))
1677 || int128_le(int128_add(int128_make64(offset), subregion->size),
1678 int128_make64(other->addr))) {
1679 continue;
1681 #if 0
1682 printf("warning: subregion collision %llx/%llx (%s) "
1683 "vs %llx/%llx (%s)\n",
1684 (unsigned long long)offset,
1685 (unsigned long long)int128_get64(subregion->size),
1686 subregion->name,
1687 (unsigned long long)other->addr,
1688 (unsigned long long)int128_get64(other->size),
1689 other->name);
1690 #endif
1692 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1693 if (subregion->priority >= other->priority) {
1694 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1695 goto done;
1698 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1699 done:
1700 memory_region_update_pending |= mr->enabled && subregion->enabled;
1701 memory_region_transaction_commit();
1704 static void memory_region_add_subregion_common(MemoryRegion *mr,
1705 hwaddr offset,
1706 MemoryRegion *subregion)
1708 assert(!subregion->container);
1709 subregion->container = mr;
1710 subregion->addr = offset;
1711 memory_region_update_container_subregions(subregion);
1714 void memory_region_add_subregion(MemoryRegion *mr,
1715 hwaddr offset,
1716 MemoryRegion *subregion)
1718 subregion->may_overlap = false;
1719 subregion->priority = 0;
1720 memory_region_add_subregion_common(mr, offset, subregion);
1723 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1724 hwaddr offset,
1725 MemoryRegion *subregion,
1726 int priority)
1728 subregion->may_overlap = true;
1729 subregion->priority = priority;
1730 memory_region_add_subregion_common(mr, offset, subregion);
1733 void memory_region_del_subregion(MemoryRegion *mr,
1734 MemoryRegion *subregion)
1736 memory_region_transaction_begin();
1737 assert(subregion->container == mr);
1738 subregion->container = NULL;
1739 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1740 memory_region_unref(subregion);
1741 memory_region_update_pending |= mr->enabled && subregion->enabled;
1742 memory_region_transaction_commit();
1745 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1747 if (enabled == mr->enabled) {
1748 return;
1750 memory_region_transaction_begin();
1751 mr->enabled = enabled;
1752 memory_region_update_pending = true;
1753 memory_region_transaction_commit();
1756 static void memory_region_readd_subregion(MemoryRegion *mr)
1758 MemoryRegion *container = mr->container;
1760 if (container) {
1761 memory_region_transaction_begin();
1762 memory_region_ref(mr);
1763 memory_region_del_subregion(container, mr);
1764 mr->container = container;
1765 memory_region_update_container_subregions(mr);
1766 memory_region_unref(mr);
1767 memory_region_transaction_commit();
1771 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1773 if (addr != mr->addr) {
1774 mr->addr = addr;
1775 memory_region_readd_subregion(mr);
1779 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1781 assert(mr->alias);
1783 if (offset == mr->alias_offset) {
1784 return;
1787 memory_region_transaction_begin();
1788 mr->alias_offset = offset;
1789 memory_region_update_pending |= mr->enabled;
1790 memory_region_transaction_commit();
1793 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1795 return mr->ram_addr;
1798 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1800 return mr->align;
1803 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1805 const AddrRange *addr = addr_;
1806 const FlatRange *fr = fr_;
1808 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1809 return -1;
1810 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1811 return 1;
1813 return 0;
1816 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1818 return bsearch(&addr, view->ranges, view->nr,
1819 sizeof(FlatRange), cmp_flatrange_addr);
1822 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1824 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1825 if (!mr || (mr == container)) {
1826 return false;
1828 memory_region_unref(mr);
1829 return true;
1832 bool memory_region_is_mapped(MemoryRegion *mr)
1834 return mr->container ? true : false;
1837 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1838 hwaddr addr, uint64_t size)
1840 MemoryRegionSection ret = { .mr = NULL };
1841 MemoryRegion *root;
1842 AddressSpace *as;
1843 AddrRange range;
1844 FlatView *view;
1845 FlatRange *fr;
1847 addr += mr->addr;
1848 for (root = mr; root->container; ) {
1849 root = root->container;
1850 addr += root->addr;
1853 as = memory_region_to_address_space(root);
1854 if (!as) {
1855 return ret;
1857 range = addrrange_make(int128_make64(addr), int128_make64(size));
1859 view = address_space_get_flatview(as);
1860 fr = flatview_lookup(view, range);
1861 if (!fr) {
1862 flatview_unref(view);
1863 return ret;
1866 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1867 --fr;
1870 ret.mr = fr->mr;
1871 ret.address_space = as;
1872 range = addrrange_intersection(range, fr->addr);
1873 ret.offset_within_region = fr->offset_in_region;
1874 ret.offset_within_region += int128_get64(int128_sub(range.start,
1875 fr->addr.start));
1876 ret.size = range.size;
1877 ret.offset_within_address_space = int128_get64(range.start);
1878 ret.readonly = fr->readonly;
1879 memory_region_ref(ret.mr);
1881 flatview_unref(view);
1882 return ret;
1885 void address_space_sync_dirty_bitmap(AddressSpace *as)
1887 FlatView *view;
1888 FlatRange *fr;
1890 view = address_space_get_flatview(as);
1891 FOR_EACH_FLAT_RANGE(fr, view) {
1892 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1894 flatview_unref(view);
1897 void memory_global_dirty_log_start(void)
1899 global_dirty_log = true;
1900 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1903 void memory_global_dirty_log_stop(void)
1905 global_dirty_log = false;
1906 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1909 static void listener_add_address_space(MemoryListener *listener,
1910 AddressSpace *as)
1912 FlatView *view;
1913 FlatRange *fr;
1915 if (listener->address_space_filter
1916 && listener->address_space_filter != as) {
1917 return;
1920 if (global_dirty_log) {
1921 if (listener->log_global_start) {
1922 listener->log_global_start(listener);
1926 view = address_space_get_flatview(as);
1927 FOR_EACH_FLAT_RANGE(fr, view) {
1928 MemoryRegionSection section = {
1929 .mr = fr->mr,
1930 .address_space = as,
1931 .offset_within_region = fr->offset_in_region,
1932 .size = fr->addr.size,
1933 .offset_within_address_space = int128_get64(fr->addr.start),
1934 .readonly = fr->readonly,
1936 if (listener->region_add) {
1937 listener->region_add(listener, &section);
1940 flatview_unref(view);
1943 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1945 MemoryListener *other = NULL;
1946 AddressSpace *as;
1948 listener->address_space_filter = filter;
1949 if (QTAILQ_EMPTY(&memory_listeners)
1950 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1951 memory_listeners)->priority) {
1952 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1953 } else {
1954 QTAILQ_FOREACH(other, &memory_listeners, link) {
1955 if (listener->priority < other->priority) {
1956 break;
1959 QTAILQ_INSERT_BEFORE(other, listener, link);
1962 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1963 listener_add_address_space(listener, as);
1967 void memory_listener_unregister(MemoryListener *listener)
1969 QTAILQ_REMOVE(&memory_listeners, listener, link);
1972 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1974 if (QTAILQ_EMPTY(&address_spaces)) {
1975 memory_init();
1978 memory_region_transaction_begin();
1979 as->root = root;
1980 as->current_map = g_new(FlatView, 1);
1981 flatview_init(as->current_map);
1982 as->ioeventfd_nb = 0;
1983 as->ioeventfds = NULL;
1984 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1985 as->name = g_strdup(name ? name : "anonymous");
1986 address_space_init_dispatch(as);
1987 memory_region_update_pending |= root->enabled;
1988 memory_region_transaction_commit();
1991 void address_space_destroy(AddressSpace *as)
1993 MemoryListener *listener;
1995 /* Flush out anything from MemoryListeners listening in on this */
1996 memory_region_transaction_begin();
1997 as->root = NULL;
1998 memory_region_transaction_commit();
1999 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2000 address_space_destroy_dispatch(as);
2002 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2003 assert(listener->address_space_filter != as);
2006 flatview_unref(as->current_map);
2007 g_free(as->name);
2008 g_free(as->ioeventfds);
2011 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
2013 return memory_region_dispatch_read(mr, addr, pval, size);
2016 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
2017 uint64_t val, unsigned size)
2019 return memory_region_dispatch_write(mr, addr, val, size);
2022 typedef struct MemoryRegionList MemoryRegionList;
2024 struct MemoryRegionList {
2025 const MemoryRegion *mr;
2026 QTAILQ_ENTRY(MemoryRegionList) queue;
2029 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2031 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2032 const MemoryRegion *mr, unsigned int level,
2033 hwaddr base,
2034 MemoryRegionListHead *alias_print_queue)
2036 MemoryRegionList *new_ml, *ml, *next_ml;
2037 MemoryRegionListHead submr_print_queue;
2038 const MemoryRegion *submr;
2039 unsigned int i;
2041 if (!mr || !mr->enabled) {
2042 return;
2045 for (i = 0; i < level; i++) {
2046 mon_printf(f, " ");
2049 if (mr->alias) {
2050 MemoryRegionList *ml;
2051 bool found = false;
2053 /* check if the alias is already in the queue */
2054 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2055 if (ml->mr == mr->alias) {
2056 found = true;
2060 if (!found) {
2061 ml = g_new(MemoryRegionList, 1);
2062 ml->mr = mr->alias;
2063 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2065 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2066 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2067 "-" TARGET_FMT_plx "\n",
2068 base + mr->addr,
2069 base + mr->addr
2070 + (int128_nz(mr->size) ?
2071 (hwaddr)int128_get64(int128_sub(mr->size,
2072 int128_one())) : 0),
2073 mr->priority,
2074 mr->romd_mode ? 'R' : '-',
2075 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2076 : '-',
2077 memory_region_name(mr),
2078 memory_region_name(mr->alias),
2079 mr->alias_offset,
2080 mr->alias_offset
2081 + (int128_nz(mr->size) ?
2082 (hwaddr)int128_get64(int128_sub(mr->size,
2083 int128_one())) : 0));
2084 } else {
2085 mon_printf(f,
2086 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2087 base + mr->addr,
2088 base + mr->addr
2089 + (int128_nz(mr->size) ?
2090 (hwaddr)int128_get64(int128_sub(mr->size,
2091 int128_one())) : 0),
2092 mr->priority,
2093 mr->romd_mode ? 'R' : '-',
2094 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2095 : '-',
2096 memory_region_name(mr));
2099 QTAILQ_INIT(&submr_print_queue);
2101 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2102 new_ml = g_new(MemoryRegionList, 1);
2103 new_ml->mr = submr;
2104 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2105 if (new_ml->mr->addr < ml->mr->addr ||
2106 (new_ml->mr->addr == ml->mr->addr &&
2107 new_ml->mr->priority > ml->mr->priority)) {
2108 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2109 new_ml = NULL;
2110 break;
2113 if (new_ml) {
2114 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2118 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2119 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2120 alias_print_queue);
2123 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2124 g_free(ml);
2128 void mtree_info(fprintf_function mon_printf, void *f)
2130 MemoryRegionListHead ml_head;
2131 MemoryRegionList *ml, *ml2;
2132 AddressSpace *as;
2134 QTAILQ_INIT(&ml_head);
2136 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2137 mon_printf(f, "%s\n", as->name);
2138 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2141 mon_printf(f, "aliases\n");
2142 /* print aliased regions */
2143 QTAILQ_FOREACH(ml, &ml_head, queue) {
2144 mon_printf(f, "%s\n", memory_region_name(ml->mr));
2145 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2148 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2149 g_free(ml);
2153 static const TypeInfo memory_region_info = {
2154 .parent = TYPE_OBJECT,
2155 .name = TYPE_MEMORY_REGION,
2156 .instance_size = sizeof(MemoryRegion),
2157 .instance_init = memory_region_initfn,
2158 .instance_finalize = memory_region_finalize,
2161 static void memory_register_types(void)
2163 type_register_static(&memory_region_info);
2166 type_init(memory_register_types)