hw/arm/mps2-tz: Correct the OSCCLK settings for mps2-an505 and mps2-an511
[qemu/ar7.git] / hw / arm / mps2-tz.c
blob976f5f5c682d357e04c34aef895c0c924abc2e9f
1 /*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qemu/cutils.h"
43 #include "qapi/error.h"
44 #include "qemu/error-report.h"
45 #include "hw/arm/boot.h"
46 #include "hw/arm/armv7m.h"
47 #include "hw/or-irq.h"
48 #include "hw/boards.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/sysemu.h"
51 #include "hw/misc/unimp.h"
52 #include "hw/char/cmsdk-apb-uart.h"
53 #include "hw/timer/cmsdk-apb-timer.h"
54 #include "hw/misc/mps2-scc.h"
55 #include "hw/misc/mps2-fpgaio.h"
56 #include "hw/misc/tz-mpc.h"
57 #include "hw/misc/tz-msc.h"
58 #include "hw/arm/armsse.h"
59 #include "hw/dma/pl080.h"
60 #include "hw/ssi/pl022.h"
61 #include "hw/i2c/arm_sbcon_i2c.h"
62 #include "hw/net/lan9118.h"
63 #include "net/net.h"
64 #include "hw/core/split-irq.h"
65 #include "hw/qdev-clock.h"
66 #include "qom/object.h"
68 #define MPS2TZ_NUMIRQ 92
70 typedef enum MPS2TZFPGAType {
71 FPGA_AN505,
72 FPGA_AN521,
73 } MPS2TZFPGAType;
75 struct MPS2TZMachineClass {
76 MachineClass parent;
77 MPS2TZFPGAType fpga_type;
78 uint32_t scc_id;
79 uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */
80 const char *armsse_type;
83 struct MPS2TZMachineState {
84 MachineState parent;
86 ARMSSE iotkit;
87 MemoryRegion ssram[3];
88 MemoryRegion ssram1_m;
89 MPS2SCC scc;
90 MPS2FPGAIO fpgaio;
91 TZPPC ppc[5];
92 TZMPC ssram_mpc[3];
93 PL022State spi[5];
94 ArmSbconI2CState i2c[4];
95 UnimplementedDeviceState i2s_audio;
96 UnimplementedDeviceState gpio[4];
97 UnimplementedDeviceState gfx;
98 PL080State dma[4];
99 TZMSC msc[4];
100 CMSDKAPBUART uart[5];
101 SplitIRQ sec_resp_splitter;
102 qemu_or_irq uart_irq_orgate;
103 DeviceState *lan9118;
104 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
105 Clock *sysclk;
106 Clock *s32kclk;
109 #define TYPE_MPS2TZ_MACHINE "mps2tz"
110 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
111 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
113 OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE)
115 /* Slow 32Khz S32KCLK frequency in Hz */
116 #define S32KCLK_FRQ (32 * 1000)
118 /* Create an alias of an entire original MemoryRegion @orig
119 * located at @base in the memory map.
121 static void make_ram_alias(MemoryRegion *mr, const char *name,
122 MemoryRegion *orig, hwaddr base)
124 memory_region_init_alias(mr, NULL, name, orig, 0,
125 memory_region_size(orig));
126 memory_region_add_subregion(get_system_memory(), base, mr);
129 static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
131 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
132 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
134 assert(irqno < MPS2TZ_NUMIRQ);
136 switch (mmc->fpga_type) {
137 case FPGA_AN505:
138 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
139 case FPGA_AN521:
140 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
141 default:
142 g_assert_not_reached();
146 /* Most of the devices in the AN505 FPGA image sit behind
147 * Peripheral Protection Controllers. These data structures
148 * define the layout of which devices sit behind which PPCs.
149 * The devfn for each port is a function which creates, configures
150 * and initializes the device, returning the MemoryRegion which
151 * needs to be plugged into the downstream end of the PPC port.
153 typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
154 const char *name, hwaddr size);
156 typedef struct PPCPortInfo {
157 const char *name;
158 MakeDevFn *devfn;
159 void *opaque;
160 hwaddr addr;
161 hwaddr size;
162 } PPCPortInfo;
164 typedef struct PPCInfo {
165 const char *name;
166 PPCPortInfo ports[TZ_NUM_PORTS];
167 } PPCInfo;
169 static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
170 void *opaque,
171 const char *name, hwaddr size)
173 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
174 * and return a pointer to its MemoryRegion.
176 UnimplementedDeviceState *uds = opaque;
178 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
179 qdev_prop_set_string(DEVICE(uds), "name", name);
180 qdev_prop_set_uint64(DEVICE(uds), "size", size);
181 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
185 static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186 const char *name, hwaddr size)
188 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
189 CMSDKAPBUART *uart = opaque;
190 int i = uart - &mms->uart[0];
191 int rxirqno = i * 2;
192 int txirqno = i * 2 + 1;
193 int combirqno = i + 10;
194 SysBusDevice *s;
195 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
197 object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART);
198 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
199 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->sysclk_frq);
200 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
201 s = SYS_BUS_DEVICE(uart);
202 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
204 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
206 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
210 static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211 const char *name, hwaddr size)
213 MPS2SCC *scc = opaque;
214 DeviceState *sccdev;
215 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
217 object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC);
218 sccdev = DEVICE(scc);
219 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
220 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
221 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
222 /* This will need to be per-FPGA image eventually */
223 qdev_prop_set_uint32(sccdev, "len-oscclk", 3);
224 qdev_prop_set_uint32(sccdev, "oscclk[0]", 40000000);
225 qdev_prop_set_uint32(sccdev, "oscclk[1]", 24580000);
226 qdev_prop_set_uint32(sccdev, "oscclk[2]", 25000000);
227 sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal);
228 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
231 static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
232 const char *name, hwaddr size)
234 MPS2FPGAIO *fpgaio = opaque;
236 object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO);
237 sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal);
238 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
241 static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
242 const char *name, hwaddr size)
244 SysBusDevice *s;
245 NICInfo *nd = &nd_table[0];
247 /* In hardware this is a LAN9220; the LAN9118 is software compatible
248 * except that it doesn't support the checksum-offload feature.
250 qemu_check_nic_model(nd, "lan9118");
251 mms->lan9118 = qdev_new(TYPE_LAN9118);
252 qdev_set_nic_properties(mms->lan9118, nd);
254 s = SYS_BUS_DEVICE(mms->lan9118);
255 sysbus_realize_and_unref(s, &error_fatal);
256 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
257 return sysbus_mmio_get_region(s, 0);
260 static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
261 const char *name, hwaddr size)
263 TZMPC *mpc = opaque;
264 int i = mpc - &mms->ssram_mpc[0];
265 MemoryRegion *ssram = &mms->ssram[i];
266 MemoryRegion *upstream;
267 char *mpcname = g_strdup_printf("%s-mpc", name);
268 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
269 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
271 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
273 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
274 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ssram),
275 &error_fatal);
276 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
277 /* Map the upstream end of the MPC into system memory */
278 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
279 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
280 /* and connect its interrupt to the IoTKit */
281 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
282 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
283 "mpcexp_status", i));
285 /* The first SSRAM is a special case as it has an alias; accesses to
286 * the alias region at 0x00400000 must also go to the MPC upstream.
288 if (i == 0) {
289 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
292 g_free(mpcname);
293 /* Return the register interface MR for our caller to map behind the PPC */
294 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
297 static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
298 const char *name, hwaddr size)
300 PL080State *dma = opaque;
301 int i = dma - &mms->dma[0];
302 SysBusDevice *s;
303 char *mscname = g_strdup_printf("%s-msc", name);
304 TZMSC *msc = &mms->msc[i];
305 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
306 MemoryRegion *msc_upstream;
307 MemoryRegion *msc_downstream;
310 * Each DMA device is a PL081 whose transaction master interface
311 * is guarded by a Master Security Controller. The downstream end of
312 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
313 * DMA devices can see all devices and memory that the CPU does.
315 object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC);
316 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
317 object_property_set_link(OBJECT(msc), "downstream",
318 OBJECT(msc_downstream), &error_fatal);
319 object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal);
320 sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal);
322 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
323 qdev_get_gpio_in_named(iotkitdev,
324 "mscexp_status", i));
325 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
326 qdev_get_gpio_in_named(DEVICE(msc),
327 "irq_clear", 0));
328 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
329 qdev_get_gpio_in_named(DEVICE(msc),
330 "cfg_nonsec", 0));
331 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
332 ARRAY_SIZE(mms->ppc) + i,
333 qdev_get_gpio_in_named(DEVICE(msc),
334 "cfg_sec_resp", 0));
335 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
337 object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081);
338 object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream),
339 &error_fatal);
340 sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal);
342 s = SYS_BUS_DEVICE(dma);
343 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
344 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
345 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
346 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
348 g_free(mscname);
349 return sysbus_mmio_get_region(s, 0);
352 static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
353 const char *name, hwaddr size)
356 * The AN505 has five PL022 SPI controllers.
357 * One of these should have the LCD controller behind it; the others
358 * are connected only to the FPGA's "general purpose SPI connector"
359 * or "shield" expansion connectors.
360 * Note that if we do implement devices behind SPI, the chip select
361 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
363 PL022State *spi = opaque;
364 int i = spi - &mms->spi[0];
365 SysBusDevice *s;
367 object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022);
368 sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal);
369 s = SYS_BUS_DEVICE(spi);
370 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
371 return sysbus_mmio_get_region(s, 0);
374 static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque,
375 const char *name, hwaddr size)
377 ArmSbconI2CState *i2c = opaque;
378 SysBusDevice *s;
380 object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C);
381 s = SYS_BUS_DEVICE(i2c);
382 sysbus_realize(s, &error_fatal);
383 return sysbus_mmio_get_region(s, 0);
386 static void mps2tz_common_init(MachineState *machine)
388 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
389 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
390 MachineClass *mc = MACHINE_GET_CLASS(machine);
391 MemoryRegion *system_memory = get_system_memory();
392 DeviceState *iotkitdev;
393 DeviceState *dev_splitter;
394 int i;
396 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
397 error_report("This board can only be used with CPU %s",
398 mc->default_cpu_type);
399 exit(1);
402 if (machine->ram_size != mc->default_ram_size) {
403 char *sz = size_to_str(mc->default_ram_size);
404 error_report("Invalid RAM size, should be %s", sz);
405 g_free(sz);
406 exit(EXIT_FAILURE);
409 /* These clocks don't need migration because they are fixed-frequency */
410 mms->sysclk = clock_new(OBJECT(machine), "SYSCLK");
411 clock_set_hz(mms->sysclk, mmc->sysclk_frq);
412 mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK");
413 clock_set_hz(mms->s32kclk, S32KCLK_FRQ);
415 object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
416 mmc->armsse_type);
417 iotkitdev = DEVICE(&mms->iotkit);
418 object_property_set_link(OBJECT(&mms->iotkit), "memory",
419 OBJECT(system_memory), &error_abort);
420 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
421 qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk);
422 qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk);
423 sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal);
426 * The AN521 needs us to create splitters to feed the IRQ inputs
427 * for each CPU in the SSE-200 from each device in the board.
429 if (mmc->fpga_type == FPGA_AN521) {
430 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
431 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
432 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
434 object_initialize_child_with_props(OBJECT(machine), name,
435 splitter, sizeof(*splitter),
436 TYPE_SPLIT_IRQ, &error_fatal,
437 NULL);
438 g_free(name);
440 object_property_set_int(OBJECT(splitter), "num-lines", 2,
441 &error_fatal);
442 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
443 qdev_connect_gpio_out(DEVICE(splitter), 0,
444 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
445 "EXP_IRQ", i));
446 qdev_connect_gpio_out(DEVICE(splitter), 1,
447 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
448 "EXP_CPU1_IRQ", i));
452 /* The sec_resp_cfg output from the IoTKit must be split into multiple
453 * lines, one for each of the PPCs we create here, plus one per MSC.
455 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
456 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
457 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
458 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
459 &error_fatal);
460 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
461 dev_splitter = DEVICE(&mms->sec_resp_splitter);
462 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
463 qdev_get_gpio_in(dev_splitter, 0));
465 /* The IoTKit sets up much of the memory layout, including
466 * the aliases between secure and non-secure regions in the
467 * address space. The FPGA itself contains:
469 * 0x00000000..0x003fffff SSRAM1
470 * 0x00400000..0x007fffff alias of SSRAM1
471 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
472 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
473 * 0x80000000..0x80ffffff 16MB PSRAM
476 /* The FPGA images have an odd combination of different RAMs,
477 * because in hardware they are different implementations and
478 * connected to different buses, giving varying performance/size
479 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
480 * call the 16MB our "system memory", as it's the largest lump.
482 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
484 /* The overflow IRQs for all UARTs are ORed together.
485 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
486 * Create the OR gate for this.
488 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
489 &mms->uart_irq_orgate, TYPE_OR_IRQ);
490 object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", 10,
491 &error_fatal);
492 qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal);
493 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
494 get_sse_irq_in(mms, 15));
496 /* Most of the devices in the FPGA are behind Peripheral Protection
497 * Controllers. The required order for initializing things is:
498 * + initialize the PPC
499 * + initialize, configure and realize downstream devices
500 * + connect downstream device MemoryRegions to the PPC
501 * + realize the PPC
502 * + map the PPC's MemoryRegions to the places in the address map
503 * where the downstream devices should appear
504 * + wire up the PPC's control lines to the IoTKit object
507 const PPCInfo ppcs[] = { {
508 .name = "apb_ppcexp0",
509 .ports = {
510 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
511 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
512 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
514 }, {
515 .name = "apb_ppcexp1",
516 .ports = {
517 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
518 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
519 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
520 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
521 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
522 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
523 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
524 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
525 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
526 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
527 { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 },
528 { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 },
529 { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 },
530 { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 },
532 }, {
533 .name = "apb_ppcexp2",
534 .ports = {
535 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
536 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
537 0x40301000, 0x1000 },
538 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
540 }, {
541 .name = "ahb_ppcexp0",
542 .ports = {
543 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
544 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
545 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
546 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
547 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
548 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
550 }, {
551 .name = "ahb_ppcexp1",
552 .ports = {
553 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
554 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
555 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
556 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
561 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
562 const PPCInfo *ppcinfo = &ppcs[i];
563 TZPPC *ppc = &mms->ppc[i];
564 DeviceState *ppcdev;
565 int port;
566 char *gpioname;
568 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
569 TYPE_TZ_PPC);
570 ppcdev = DEVICE(ppc);
572 for (port = 0; port < TZ_NUM_PORTS; port++) {
573 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
574 MemoryRegion *mr;
575 char *portname;
577 if (!pinfo->devfn) {
578 continue;
581 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
582 portname = g_strdup_printf("port[%d]", port);
583 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
584 &error_fatal);
585 g_free(portname);
588 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
590 for (port = 0; port < TZ_NUM_PORTS; port++) {
591 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
593 if (!pinfo->devfn) {
594 continue;
596 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
598 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
599 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
600 qdev_get_gpio_in_named(ppcdev,
601 "cfg_nonsec",
602 port));
603 g_free(gpioname);
604 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
605 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
606 qdev_get_gpio_in_named(ppcdev,
607 "cfg_ap", port));
608 g_free(gpioname);
611 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
612 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
613 qdev_get_gpio_in_named(ppcdev,
614 "irq_enable", 0));
615 g_free(gpioname);
616 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
617 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
618 qdev_get_gpio_in_named(ppcdev,
619 "irq_clear", 0));
620 g_free(gpioname);
621 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
622 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
623 qdev_get_gpio_in_named(iotkitdev,
624 gpioname, 0));
625 g_free(gpioname);
627 qdev_connect_gpio_out(dev_splitter, i,
628 qdev_get_gpio_in_named(ppcdev,
629 "cfg_sec_resp", 0));
632 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
634 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
637 static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
638 int *iregion, bool *exempt, bool *ns, bool *nsc)
641 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
642 * the Master Security Controllers. Thes have the same logic as
643 * is used by the IoTKit for the IDAU connected to the CPU, except
644 * that MSCs don't care about the NSC attribute.
646 int region = extract32(address, 28, 4);
648 *ns = !(region & 1);
649 *nsc = false;
650 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
651 *exempt = (address & 0xeff00000) == 0xe0000000;
652 *iregion = region;
655 static void mps2tz_class_init(ObjectClass *oc, void *data)
657 MachineClass *mc = MACHINE_CLASS(oc);
658 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
660 mc->init = mps2tz_common_init;
661 iic->check = mps2_tz_idau_check;
662 mc->default_ram_size = 16 * MiB;
663 mc->default_ram_id = "mps.ram";
666 static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
668 MachineClass *mc = MACHINE_CLASS(oc);
669 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
671 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
672 mc->default_cpus = 1;
673 mc->min_cpus = mc->default_cpus;
674 mc->max_cpus = mc->default_cpus;
675 mmc->fpga_type = FPGA_AN505;
676 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
677 mmc->scc_id = 0x41045050;
678 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
679 mmc->armsse_type = TYPE_IOTKIT;
682 static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
684 MachineClass *mc = MACHINE_CLASS(oc);
685 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
687 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
688 mc->default_cpus = 2;
689 mc->min_cpus = mc->default_cpus;
690 mc->max_cpus = mc->default_cpus;
691 mmc->fpga_type = FPGA_AN521;
692 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
693 mmc->scc_id = 0x41045210;
694 mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */
695 mmc->armsse_type = TYPE_SSE200;
698 static const TypeInfo mps2tz_info = {
699 .name = TYPE_MPS2TZ_MACHINE,
700 .parent = TYPE_MACHINE,
701 .abstract = true,
702 .instance_size = sizeof(MPS2TZMachineState),
703 .class_size = sizeof(MPS2TZMachineClass),
704 .class_init = mps2tz_class_init,
705 .interfaces = (InterfaceInfo[]) {
706 { TYPE_IDAU_INTERFACE },
711 static const TypeInfo mps2tz_an505_info = {
712 .name = TYPE_MPS2TZ_AN505_MACHINE,
713 .parent = TYPE_MPS2TZ_MACHINE,
714 .class_init = mps2tz_an505_class_init,
717 static const TypeInfo mps2tz_an521_info = {
718 .name = TYPE_MPS2TZ_AN521_MACHINE,
719 .parent = TYPE_MPS2TZ_MACHINE,
720 .class_init = mps2tz_an521_class_init,
723 static void mps2tz_machine_init(void)
725 type_register_static(&mps2tz_info);
726 type_register_static(&mps2tz_an505_info);
727 type_register_static(&mps2tz_an521_info);
730 type_init(mps2tz_machine_init);