target/arm: Add support for MTE to HCR_EL2 and SCR_EL3
[qemu/ar7.git] / target / arm / helper.c
blobd6c326b58e8a415cdff0079c581616f92ef8896b
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #ifndef CONFIG_USER_ONLY
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43 MMUAccessType access_type, ARMMMUIdx mmu_idx,
44 bool s1_is_el0,
45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46 target_ulong *page_size_ptr,
47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
48 #endif
50 static void switch_mode(CPUARMState *env, int mode);
52 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
54 ARMCPU *cpu = env_archcpu(env);
55 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
57 /* VFP data registers are always little-endian. */
58 if (reg < nregs) {
59 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
61 if (arm_feature(env, ARM_FEATURE_NEON)) {
62 /* Aliases for Q regs. */
63 nregs += 16;
64 if (reg < nregs) {
65 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
66 return gdb_get_reg128(buf, q[0], q[1]);
69 switch (reg - nregs) {
70 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
71 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
72 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
74 return 0;
77 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 ARMCPU *cpu = env_archcpu(env);
80 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
82 if (reg < nregs) {
83 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
84 return 8;
86 if (arm_feature(env, ARM_FEATURE_NEON)) {
87 nregs += 16;
88 if (reg < nregs) {
89 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
90 q[0] = ldq_le_p(buf);
91 q[1] = ldq_le_p(buf + 8);
92 return 16;
95 switch (reg - nregs) {
96 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
97 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
98 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100 return 0;
103 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
105 switch (reg) {
106 case 0 ... 31:
108 /* 128 bit FP register - quads are in LE order */
109 uint64_t *q = aa64_vfp_qreg(env, reg);
110 return gdb_get_reg128(buf, q[1], q[0]);
112 case 32:
113 /* FPSR */
114 return gdb_get_reg32(buf, vfp_get_fpsr(env));
115 case 33:
116 /* FPCR */
117 return gdb_get_reg32(buf,vfp_get_fpcr(env));
118 default:
119 return 0;
123 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
125 switch (reg) {
126 case 0 ... 31:
127 /* 128 bit FP register */
129 uint64_t *q = aa64_vfp_qreg(env, reg);
130 q[0] = ldq_le_p(buf);
131 q[1] = ldq_le_p(buf + 8);
132 return 16;
134 case 32:
135 /* FPSR */
136 vfp_set_fpsr(env, ldl_p(buf));
137 return 4;
138 case 33:
139 /* FPCR */
140 vfp_set_fpcr(env, ldl_p(buf));
141 return 4;
142 default:
143 return 0;
147 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
149 assert(ri->fieldoffset);
150 if (cpreg_field_is_64bit(ri)) {
151 return CPREG_FIELD64(env, ri);
152 } else {
153 return CPREG_FIELD32(env, ri);
157 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
158 uint64_t value)
160 assert(ri->fieldoffset);
161 if (cpreg_field_is_64bit(ri)) {
162 CPREG_FIELD64(env, ri) = value;
163 } else {
164 CPREG_FIELD32(env, ri) = value;
168 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
170 return (char *)env + ri->fieldoffset;
173 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
175 /* Raw read of a coprocessor register (as needed for migration, etc). */
176 if (ri->type & ARM_CP_CONST) {
177 return ri->resetvalue;
178 } else if (ri->raw_readfn) {
179 return ri->raw_readfn(env, ri);
180 } else if (ri->readfn) {
181 return ri->readfn(env, ri);
182 } else {
183 return raw_read(env, ri);
187 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
188 uint64_t v)
190 /* Raw write of a coprocessor register (as needed for migration, etc).
191 * Note that constant registers are treated as write-ignored; the
192 * caller should check for success by whether a readback gives the
193 * value written.
195 if (ri->type & ARM_CP_CONST) {
196 return;
197 } else if (ri->raw_writefn) {
198 ri->raw_writefn(env, ri, v);
199 } else if (ri->writefn) {
200 ri->writefn(env, ri, v);
201 } else {
202 raw_write(env, ri, v);
207 * arm_get/set_gdb_*: get/set a gdb register
208 * @env: the CPU state
209 * @buf: a buffer to copy to/from
210 * @reg: register number (offset from start of group)
212 * We return the number of bytes copied
215 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
217 ARMCPU *cpu = env_archcpu(env);
218 const ARMCPRegInfo *ri;
219 uint32_t key;
221 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
222 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
223 if (ri) {
224 if (cpreg_field_is_64bit(ri)) {
225 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
226 } else {
227 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
230 return 0;
233 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
235 return 0;
238 #ifdef TARGET_AARCH64
239 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
241 ARMCPU *cpu = env_archcpu(env);
243 switch (reg) {
244 /* The first 32 registers are the zregs */
245 case 0 ... 31:
247 int vq, len = 0;
248 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
249 len += gdb_get_reg128(buf,
250 env->vfp.zregs[reg].d[vq * 2 + 1],
251 env->vfp.zregs[reg].d[vq * 2]);
253 return len;
255 case 32:
256 return gdb_get_reg32(buf, vfp_get_fpsr(env));
257 case 33:
258 return gdb_get_reg32(buf, vfp_get_fpcr(env));
259 /* then 16 predicates and the ffr */
260 case 34 ... 50:
262 int preg = reg - 34;
263 int vq, len = 0;
264 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
265 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
267 return len;
269 case 51:
272 * We report in Vector Granules (VG) which is 64bit in a Z reg
273 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
275 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
276 return gdb_get_reg32(buf, vq * 2);
278 default:
279 /* gdbstub asked for something out our range */
280 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
281 break;
284 return 0;
287 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
289 ARMCPU *cpu = env_archcpu(env);
291 /* The first 32 registers are the zregs */
292 switch (reg) {
293 /* The first 32 registers are the zregs */
294 case 0 ... 31:
296 int vq, len = 0;
297 uint64_t *p = (uint64_t *) buf;
298 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
299 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
300 env->vfp.zregs[reg].d[vq * 2] = *p++;
301 len += 16;
303 return len;
305 case 32:
306 vfp_set_fpsr(env, *(uint32_t *)buf);
307 return 4;
308 case 33:
309 vfp_set_fpcr(env, *(uint32_t *)buf);
310 return 4;
311 case 34 ... 50:
313 int preg = reg - 34;
314 int vq, len = 0;
315 uint64_t *p = (uint64_t *) buf;
316 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
317 env->vfp.pregs[preg].p[vq / 4] = *p++;
318 len += 8;
320 return len;
322 case 51:
323 /* cannot set vg via gdbstub */
324 return 0;
325 default:
326 /* gdbstub asked for something out our range */
327 break;
330 return 0;
332 #endif /* TARGET_AARCH64 */
334 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
336 /* Return true if the regdef would cause an assertion if you called
337 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
338 * program bug for it not to have the NO_RAW flag).
339 * NB that returning false here doesn't necessarily mean that calling
340 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
341 * read/write access functions which are safe for raw use" from "has
342 * read/write access functions which have side effects but has forgotten
343 * to provide raw access functions".
344 * The tests here line up with the conditions in read/write_raw_cp_reg()
345 * and assertions in raw_read()/raw_write().
347 if ((ri->type & ARM_CP_CONST) ||
348 ri->fieldoffset ||
349 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
350 return false;
352 return true;
355 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
357 /* Write the coprocessor state from cpu->env to the (index,value) list. */
358 int i;
359 bool ok = true;
361 for (i = 0; i < cpu->cpreg_array_len; i++) {
362 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
363 const ARMCPRegInfo *ri;
364 uint64_t newval;
366 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
367 if (!ri) {
368 ok = false;
369 continue;
371 if (ri->type & ARM_CP_NO_RAW) {
372 continue;
375 newval = read_raw_cp_reg(&cpu->env, ri);
376 if (kvm_sync) {
378 * Only sync if the previous list->cpustate sync succeeded.
379 * Rather than tracking the success/failure state for every
380 * item in the list, we just recheck "does the raw write we must
381 * have made in write_list_to_cpustate() read back OK" here.
383 uint64_t oldval = cpu->cpreg_values[i];
385 if (oldval == newval) {
386 continue;
389 write_raw_cp_reg(&cpu->env, ri, oldval);
390 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
391 continue;
394 write_raw_cp_reg(&cpu->env, ri, newval);
396 cpu->cpreg_values[i] = newval;
398 return ok;
401 bool write_list_to_cpustate(ARMCPU *cpu)
403 int i;
404 bool ok = true;
406 for (i = 0; i < cpu->cpreg_array_len; i++) {
407 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
408 uint64_t v = cpu->cpreg_values[i];
409 const ARMCPRegInfo *ri;
411 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
412 if (!ri) {
413 ok = false;
414 continue;
416 if (ri->type & ARM_CP_NO_RAW) {
417 continue;
419 /* Write value and confirm it reads back as written
420 * (to catch read-only registers and partially read-only
421 * registers where the incoming migration value doesn't match)
423 write_raw_cp_reg(&cpu->env, ri, v);
424 if (read_raw_cp_reg(&cpu->env, ri) != v) {
425 ok = false;
428 return ok;
431 static void add_cpreg_to_list(gpointer key, gpointer opaque)
433 ARMCPU *cpu = opaque;
434 uint64_t regidx;
435 const ARMCPRegInfo *ri;
437 regidx = *(uint32_t *)key;
438 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
440 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
441 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
442 /* The value array need not be initialized at this point */
443 cpu->cpreg_array_len++;
447 static void count_cpreg(gpointer key, gpointer opaque)
449 ARMCPU *cpu = opaque;
450 uint64_t regidx;
451 const ARMCPRegInfo *ri;
453 regidx = *(uint32_t *)key;
454 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
456 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
457 cpu->cpreg_array_len++;
461 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
463 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
464 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
466 if (aidx > bidx) {
467 return 1;
469 if (aidx < bidx) {
470 return -1;
472 return 0;
475 void init_cpreg_list(ARMCPU *cpu)
477 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
478 * Note that we require cpreg_tuples[] to be sorted by key ID.
480 GList *keys;
481 int arraylen;
483 keys = g_hash_table_get_keys(cpu->cp_regs);
484 keys = g_list_sort(keys, cpreg_key_compare);
486 cpu->cpreg_array_len = 0;
488 g_list_foreach(keys, count_cpreg, cpu);
490 arraylen = cpu->cpreg_array_len;
491 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
492 cpu->cpreg_values = g_new(uint64_t, arraylen);
493 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
494 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
495 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
496 cpu->cpreg_array_len = 0;
498 g_list_foreach(keys, add_cpreg_to_list, cpu);
500 assert(cpu->cpreg_array_len == arraylen);
502 g_list_free(keys);
506 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
508 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
509 const ARMCPRegInfo *ri,
510 bool isread)
512 if (!is_a64(env) && arm_current_el(env) == 3 &&
513 arm_is_secure_below_el3(env)) {
514 return CP_ACCESS_TRAP_UNCATEGORIZED;
516 return CP_ACCESS_OK;
519 /* Some secure-only AArch32 registers trap to EL3 if used from
520 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
521 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
522 * We assume that the .access field is set to PL1_RW.
524 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
525 const ARMCPRegInfo *ri,
526 bool isread)
528 if (arm_current_el(env) == 3) {
529 return CP_ACCESS_OK;
531 if (arm_is_secure_below_el3(env)) {
532 return CP_ACCESS_TRAP_EL3;
534 /* This will be EL1 NS and EL2 NS, which just UNDEF */
535 return CP_ACCESS_TRAP_UNCATEGORIZED;
538 /* Check for traps to "powerdown debug" registers, which are controlled
539 * by MDCR.TDOSA
541 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
542 bool isread)
544 int el = arm_current_el(env);
545 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
546 (env->cp15.mdcr_el2 & MDCR_TDE) ||
547 (arm_hcr_el2_eff(env) & HCR_TGE);
549 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
550 return CP_ACCESS_TRAP_EL2;
552 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
553 return CP_ACCESS_TRAP_EL3;
555 return CP_ACCESS_OK;
558 /* Check for traps to "debug ROM" registers, which are controlled
559 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
561 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
562 bool isread)
564 int el = arm_current_el(env);
565 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
566 (env->cp15.mdcr_el2 & MDCR_TDE) ||
567 (arm_hcr_el2_eff(env) & HCR_TGE);
569 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
570 return CP_ACCESS_TRAP_EL2;
572 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
573 return CP_ACCESS_TRAP_EL3;
575 return CP_ACCESS_OK;
578 /* Check for traps to general debug registers, which are controlled
579 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
581 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
582 bool isread)
584 int el = arm_current_el(env);
585 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
586 (env->cp15.mdcr_el2 & MDCR_TDE) ||
587 (arm_hcr_el2_eff(env) & HCR_TGE);
589 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
590 return CP_ACCESS_TRAP_EL2;
592 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
593 return CP_ACCESS_TRAP_EL3;
595 return CP_ACCESS_OK;
598 /* Check for traps to performance monitor registers, which are controlled
599 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
601 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
602 bool isread)
604 int el = arm_current_el(env);
606 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
607 && !arm_is_secure_below_el3(env)) {
608 return CP_ACCESS_TRAP_EL2;
610 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
611 return CP_ACCESS_TRAP_EL3;
613 return CP_ACCESS_OK;
616 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
617 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
618 bool isread)
620 if (arm_current_el(env) == 1) {
621 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
622 if (arm_hcr_el2_eff(env) & trap) {
623 return CP_ACCESS_TRAP_EL2;
626 return CP_ACCESS_OK;
629 /* Check for traps from EL1 due to HCR_EL2.TSW. */
630 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
631 bool isread)
633 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
634 return CP_ACCESS_TRAP_EL2;
636 return CP_ACCESS_OK;
639 /* Check for traps from EL1 due to HCR_EL2.TACR. */
640 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
641 bool isread)
643 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
644 return CP_ACCESS_TRAP_EL2;
646 return CP_ACCESS_OK;
649 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
650 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
651 bool isread)
653 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
654 return CP_ACCESS_TRAP_EL2;
656 return CP_ACCESS_OK;
659 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
661 ARMCPU *cpu = env_archcpu(env);
663 raw_write(env, ri, value);
664 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
667 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
669 ARMCPU *cpu = env_archcpu(env);
671 if (raw_read(env, ri) != value) {
672 /* Unlike real hardware the qemu TLB uses virtual addresses,
673 * not modified virtual addresses, so this causes a TLB flush.
675 tlb_flush(CPU(cpu));
676 raw_write(env, ri, value);
680 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
681 uint64_t value)
683 ARMCPU *cpu = env_archcpu(env);
685 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
686 && !extended_addresses_enabled(env)) {
687 /* For VMSA (when not using the LPAE long descriptor page table
688 * format) this register includes the ASID, so do a TLB flush.
689 * For PMSA it is purely a process ID and no action is needed.
691 tlb_flush(CPU(cpu));
693 raw_write(env, ri, value);
696 /* IS variants of TLB operations must affect all cores */
697 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
698 uint64_t value)
700 CPUState *cs = env_cpu(env);
702 tlb_flush_all_cpus_synced(cs);
705 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
706 uint64_t value)
708 CPUState *cs = env_cpu(env);
710 tlb_flush_all_cpus_synced(cs);
713 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
714 uint64_t value)
716 CPUState *cs = env_cpu(env);
718 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
721 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
722 uint64_t value)
724 CPUState *cs = env_cpu(env);
726 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
730 * Non-IS variants of TLB operations are upgraded to
731 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
732 * force broadcast of these operations.
734 static bool tlb_force_broadcast(CPUARMState *env)
736 return (env->cp15.hcr_el2 & HCR_FB) &&
737 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
740 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
741 uint64_t value)
743 /* Invalidate all (TLBIALL) */
744 CPUState *cs = env_cpu(env);
746 if (tlb_force_broadcast(env)) {
747 tlb_flush_all_cpus_synced(cs);
748 } else {
749 tlb_flush(cs);
753 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t value)
756 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
757 CPUState *cs = env_cpu(env);
759 value &= TARGET_PAGE_MASK;
760 if (tlb_force_broadcast(env)) {
761 tlb_flush_page_all_cpus_synced(cs, value);
762 } else {
763 tlb_flush_page(cs, value);
767 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
768 uint64_t value)
770 /* Invalidate by ASID (TLBIASID) */
771 CPUState *cs = env_cpu(env);
773 if (tlb_force_broadcast(env)) {
774 tlb_flush_all_cpus_synced(cs);
775 } else {
776 tlb_flush(cs);
780 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
781 uint64_t value)
783 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
784 CPUState *cs = env_cpu(env);
786 value &= TARGET_PAGE_MASK;
787 if (tlb_force_broadcast(env)) {
788 tlb_flush_page_all_cpus_synced(cs, value);
789 } else {
790 tlb_flush_page(cs, value);
794 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
795 uint64_t value)
797 CPUState *cs = env_cpu(env);
799 tlb_flush_by_mmuidx(cs,
800 ARMMMUIdxBit_E10_1 |
801 ARMMMUIdxBit_E10_1_PAN |
802 ARMMMUIdxBit_E10_0);
805 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
806 uint64_t value)
808 CPUState *cs = env_cpu(env);
810 tlb_flush_by_mmuidx_all_cpus_synced(cs,
811 ARMMMUIdxBit_E10_1 |
812 ARMMMUIdxBit_E10_1_PAN |
813 ARMMMUIdxBit_E10_0);
817 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 uint64_t value)
820 CPUState *cs = env_cpu(env);
822 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
825 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
826 uint64_t value)
828 CPUState *cs = env_cpu(env);
830 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
833 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
834 uint64_t value)
836 CPUState *cs = env_cpu(env);
837 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
839 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
842 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
843 uint64_t value)
845 CPUState *cs = env_cpu(env);
846 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
848 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
849 ARMMMUIdxBit_E2);
852 static const ARMCPRegInfo cp_reginfo[] = {
853 /* Define the secure and non-secure FCSE identifier CP registers
854 * separately because there is no secure bank in V8 (no _EL3). This allows
855 * the secure register to be properly reset and migrated. There is also no
856 * v8 EL1 version of the register so the non-secure instance stands alone.
858 { .name = "FCSEIDR",
859 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
860 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
861 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
862 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
863 { .name = "FCSEIDR_S",
864 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
865 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
866 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
867 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
868 /* Define the secure and non-secure context identifier CP registers
869 * separately because there is no secure bank in V8 (no _EL3). This allows
870 * the secure register to be properly reset and migrated. In the
871 * non-secure case, the 32-bit register will have reset and migration
872 * disabled during registration as it is handled by the 64-bit instance.
874 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
875 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
876 .access = PL1_RW, .accessfn = access_tvm_trvm,
877 .secure = ARM_CP_SECSTATE_NS,
878 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
879 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
880 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
881 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
882 .access = PL1_RW, .accessfn = access_tvm_trvm,
883 .secure = ARM_CP_SECSTATE_S,
884 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
885 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
886 REGINFO_SENTINEL
889 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
890 /* NB: Some of these registers exist in v8 but with more precise
891 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
893 /* MMU Domain access control / MPU write buffer control */
894 { .name = "DACR",
895 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
896 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
897 .writefn = dacr_write, .raw_writefn = raw_write,
898 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
899 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
900 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
901 * For v6 and v5, these mappings are overly broad.
903 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
904 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
911 /* Cache maintenance ops; some of this space may be overridden later. */
912 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
913 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
914 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
915 REGINFO_SENTINEL
918 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
919 /* Not all pre-v6 cores implemented this WFI, so this is slightly
920 * over-broad.
922 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
923 .access = PL1_W, .type = ARM_CP_WFI },
924 REGINFO_SENTINEL
927 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
928 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
929 * is UNPREDICTABLE; we choose to NOP as most implementations do).
931 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
932 .access = PL1_W, .type = ARM_CP_WFI },
933 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
934 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
935 * OMAPCP will override this space.
937 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
939 .resetvalue = 0 },
940 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
942 .resetvalue = 0 },
943 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
944 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
945 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
946 .resetvalue = 0 },
947 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
948 * implementing it as RAZ means the "debug architecture version" bits
949 * will read as a reserved value, which should cause Linux to not try
950 * to use the debug hardware.
952 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
953 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
954 /* MMU TLB control. Note that the wildcarding means we cover not just
955 * the unified TLB ops but also the dside/iside/inner-shareable variants.
957 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
958 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
959 .type = ARM_CP_NO_RAW },
960 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
961 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
962 .type = ARM_CP_NO_RAW },
963 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
964 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
965 .type = ARM_CP_NO_RAW },
966 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
967 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
968 .type = ARM_CP_NO_RAW },
969 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
970 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
971 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
972 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
973 REGINFO_SENTINEL
976 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
977 uint64_t value)
979 uint32_t mask = 0;
981 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
982 if (!arm_feature(env, ARM_FEATURE_V8)) {
983 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
984 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
985 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
987 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
988 /* VFP coprocessor: cp10 & cp11 [23:20] */
989 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
991 if (!arm_feature(env, ARM_FEATURE_NEON)) {
992 /* ASEDIS [31] bit is RAO/WI */
993 value |= (1 << 31);
996 /* VFPv3 and upwards with NEON implement 32 double precision
997 * registers (D0-D31).
999 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1000 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1001 value |= (1 << 30);
1004 value &= mask;
1008 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1009 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1011 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1012 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1013 value &= ~(0xf << 20);
1014 value |= env->cp15.cpacr_el1 & (0xf << 20);
1017 env->cp15.cpacr_el1 = value;
1020 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1023 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1024 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1026 uint64_t value = env->cp15.cpacr_el1;
1028 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1029 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1030 value &= ~(0xf << 20);
1032 return value;
1036 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1038 /* Call cpacr_write() so that we reset with the correct RAO bits set
1039 * for our CPU features.
1041 cpacr_write(env, ri, 0);
1044 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1045 bool isread)
1047 if (arm_feature(env, ARM_FEATURE_V8)) {
1048 /* Check if CPACR accesses are to be trapped to EL2 */
1049 if (arm_current_el(env) == 1 &&
1050 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1051 return CP_ACCESS_TRAP_EL2;
1052 /* Check if CPACR accesses are to be trapped to EL3 */
1053 } else if (arm_current_el(env) < 3 &&
1054 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1055 return CP_ACCESS_TRAP_EL3;
1059 return CP_ACCESS_OK;
1062 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1063 bool isread)
1065 /* Check if CPTR accesses are set to trap to EL3 */
1066 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067 return CP_ACCESS_TRAP_EL3;
1070 return CP_ACCESS_OK;
1073 static const ARMCPRegInfo v6_cp_reginfo[] = {
1074 /* prefetch by MVA in v6, NOP in v7 */
1075 { .name = "MVA_prefetch",
1076 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1077 .access = PL1_W, .type = ARM_CP_NOP },
1078 /* We need to break the TB after ISB to execute self-modifying code
1079 * correctly and also to take any pending interrupts immediately.
1080 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1082 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1083 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1084 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1085 .access = PL0_W, .type = ARM_CP_NOP },
1086 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1087 .access = PL0_W, .type = ARM_CP_NOP },
1088 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1089 .access = PL1_RW, .accessfn = access_tvm_trvm,
1090 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1091 offsetof(CPUARMState, cp15.ifar_ns) },
1092 .resetvalue = 0, },
1093 /* Watchpoint Fault Address Register : should actually only be present
1094 * for 1136, 1176, 11MPCore.
1096 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1097 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1098 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1099 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1100 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1101 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1102 REGINFO_SENTINEL
1105 /* Definitions for the PMU registers */
1106 #define PMCRN_MASK 0xf800
1107 #define PMCRN_SHIFT 11
1108 #define PMCRLC 0x40
1109 #define PMCRDP 0x20
1110 #define PMCRX 0x10
1111 #define PMCRD 0x8
1112 #define PMCRC 0x4
1113 #define PMCRP 0x2
1114 #define PMCRE 0x1
1116 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1117 * which can be written as 1 to trigger behaviour but which stay RAZ).
1119 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1121 #define PMXEVTYPER_P 0x80000000
1122 #define PMXEVTYPER_U 0x40000000
1123 #define PMXEVTYPER_NSK 0x20000000
1124 #define PMXEVTYPER_NSU 0x10000000
1125 #define PMXEVTYPER_NSH 0x08000000
1126 #define PMXEVTYPER_M 0x04000000
1127 #define PMXEVTYPER_MT 0x02000000
1128 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1129 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1130 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1131 PMXEVTYPER_M | PMXEVTYPER_MT | \
1132 PMXEVTYPER_EVTCOUNT)
1134 #define PMCCFILTR 0xf8000000
1135 #define PMCCFILTR_M PMXEVTYPER_M
1136 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1138 static inline uint32_t pmu_num_counters(CPUARMState *env)
1140 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1143 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1144 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1146 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1149 typedef struct pm_event {
1150 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1151 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1152 bool (*supported)(CPUARMState *);
1154 * Retrieve the current count of the underlying event. The programmed
1155 * counters hold a difference from the return value from this function
1157 uint64_t (*get_count)(CPUARMState *);
1159 * Return how many nanoseconds it will take (at a minimum) for count events
1160 * to occur. A negative value indicates the counter will never overflow, or
1161 * that the counter has otherwise arranged for the overflow bit to be set
1162 * and the PMU interrupt to be raised on overflow.
1164 int64_t (*ns_per_count)(uint64_t);
1165 } pm_event;
1167 static bool event_always_supported(CPUARMState *env)
1169 return true;
1172 static uint64_t swinc_get_count(CPUARMState *env)
1175 * SW_INCR events are written directly to the pmevcntr's by writes to
1176 * PMSWINC, so there is no underlying count maintained by the PMU itself
1178 return 0;
1181 static int64_t swinc_ns_per(uint64_t ignored)
1183 return -1;
1187 * Return the underlying cycle count for the PMU cycle counters. If we're in
1188 * usermode, simply return 0.
1190 static uint64_t cycles_get_count(CPUARMState *env)
1192 #ifndef CONFIG_USER_ONLY
1193 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1194 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1195 #else
1196 return cpu_get_host_ticks();
1197 #endif
1200 #ifndef CONFIG_USER_ONLY
1201 static int64_t cycles_ns_per(uint64_t cycles)
1203 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1206 static bool instructions_supported(CPUARMState *env)
1208 return use_icount == 1 /* Precise instruction counting */;
1211 static uint64_t instructions_get_count(CPUARMState *env)
1213 return (uint64_t)cpu_get_icount_raw();
1216 static int64_t instructions_ns_per(uint64_t icount)
1218 return cpu_icount_to_ns((int64_t)icount);
1220 #endif
1222 static bool pmu_8_1_events_supported(CPUARMState *env)
1224 /* For events which are supported in any v8.1 PMU */
1225 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1228 static bool pmu_8_4_events_supported(CPUARMState *env)
1230 /* For events which are supported in any v8.1 PMU */
1231 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1234 static uint64_t zero_event_get_count(CPUARMState *env)
1236 /* For events which on QEMU never fire, so their count is always zero */
1237 return 0;
1240 static int64_t zero_event_ns_per(uint64_t cycles)
1242 /* An event which never fires can never overflow */
1243 return -1;
1246 static const pm_event pm_events[] = {
1247 { .number = 0x000, /* SW_INCR */
1248 .supported = event_always_supported,
1249 .get_count = swinc_get_count,
1250 .ns_per_count = swinc_ns_per,
1252 #ifndef CONFIG_USER_ONLY
1253 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1254 .supported = instructions_supported,
1255 .get_count = instructions_get_count,
1256 .ns_per_count = instructions_ns_per,
1258 { .number = 0x011, /* CPU_CYCLES, Cycle */
1259 .supported = event_always_supported,
1260 .get_count = cycles_get_count,
1261 .ns_per_count = cycles_ns_per,
1263 #endif
1264 { .number = 0x023, /* STALL_FRONTEND */
1265 .supported = pmu_8_1_events_supported,
1266 .get_count = zero_event_get_count,
1267 .ns_per_count = zero_event_ns_per,
1269 { .number = 0x024, /* STALL_BACKEND */
1270 .supported = pmu_8_1_events_supported,
1271 .get_count = zero_event_get_count,
1272 .ns_per_count = zero_event_ns_per,
1274 { .number = 0x03c, /* STALL */
1275 .supported = pmu_8_4_events_supported,
1276 .get_count = zero_event_get_count,
1277 .ns_per_count = zero_event_ns_per,
1282 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1283 * events (i.e. the statistical profiling extension), this implementation
1284 * should first be updated to something sparse instead of the current
1285 * supported_event_map[] array.
1287 #define MAX_EVENT_ID 0x3c
1288 #define UNSUPPORTED_EVENT UINT16_MAX
1289 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1292 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1293 * of ARM event numbers to indices in our pm_events array.
1295 * Note: Events in the 0x40XX range are not currently supported.
1297 void pmu_init(ARMCPU *cpu)
1299 unsigned int i;
1302 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1303 * events to them
1305 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1306 supported_event_map[i] = UNSUPPORTED_EVENT;
1308 cpu->pmceid0 = 0;
1309 cpu->pmceid1 = 0;
1311 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1312 const pm_event *cnt = &pm_events[i];
1313 assert(cnt->number <= MAX_EVENT_ID);
1314 /* We do not currently support events in the 0x40xx range */
1315 assert(cnt->number <= 0x3f);
1317 if (cnt->supported(&cpu->env)) {
1318 supported_event_map[cnt->number] = i;
1319 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1320 if (cnt->number & 0x20) {
1321 cpu->pmceid1 |= event_mask;
1322 } else {
1323 cpu->pmceid0 |= event_mask;
1330 * Check at runtime whether a PMU event is supported for the current machine
1332 static bool event_supported(uint16_t number)
1334 if (number > MAX_EVENT_ID) {
1335 return false;
1337 return supported_event_map[number] != UNSUPPORTED_EVENT;
1340 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1341 bool isread)
1343 /* Performance monitor registers user accessibility is controlled
1344 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1345 * trapping to EL2 or EL3 for other accesses.
1347 int el = arm_current_el(env);
1349 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1350 return CP_ACCESS_TRAP;
1352 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1353 && !arm_is_secure_below_el3(env)) {
1354 return CP_ACCESS_TRAP_EL2;
1356 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1357 return CP_ACCESS_TRAP_EL3;
1360 return CP_ACCESS_OK;
1363 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1364 const ARMCPRegInfo *ri,
1365 bool isread)
1367 /* ER: event counter read trap control */
1368 if (arm_feature(env, ARM_FEATURE_V8)
1369 && arm_current_el(env) == 0
1370 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1371 && isread) {
1372 return CP_ACCESS_OK;
1375 return pmreg_access(env, ri, isread);
1378 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1379 const ARMCPRegInfo *ri,
1380 bool isread)
1382 /* SW: software increment write trap control */
1383 if (arm_feature(env, ARM_FEATURE_V8)
1384 && arm_current_el(env) == 0
1385 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1386 && !isread) {
1387 return CP_ACCESS_OK;
1390 return pmreg_access(env, ri, isread);
1393 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1394 const ARMCPRegInfo *ri,
1395 bool isread)
1397 /* ER: event counter read trap control */
1398 if (arm_feature(env, ARM_FEATURE_V8)
1399 && arm_current_el(env) == 0
1400 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1401 return CP_ACCESS_OK;
1404 return pmreg_access(env, ri, isread);
1407 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1408 const ARMCPRegInfo *ri,
1409 bool isread)
1411 /* CR: cycle counter read trap control */
1412 if (arm_feature(env, ARM_FEATURE_V8)
1413 && arm_current_el(env) == 0
1414 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1415 && isread) {
1416 return CP_ACCESS_OK;
1419 return pmreg_access(env, ri, isread);
1422 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1423 * the current EL, security state, and register configuration.
1425 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1427 uint64_t filter;
1428 bool e, p, u, nsk, nsu, nsh, m;
1429 bool enabled, prohibited, filtered;
1430 bool secure = arm_is_secure(env);
1431 int el = arm_current_el(env);
1432 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1434 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1435 return false;
1438 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1439 (counter < hpmn || counter == 31)) {
1440 e = env->cp15.c9_pmcr & PMCRE;
1441 } else {
1442 e = env->cp15.mdcr_el2 & MDCR_HPME;
1444 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1446 if (!secure) {
1447 if (el == 2 && (counter < hpmn || counter == 31)) {
1448 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1449 } else {
1450 prohibited = false;
1452 } else {
1453 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1454 (env->cp15.mdcr_el3 & MDCR_SPME);
1457 if (prohibited && counter == 31) {
1458 prohibited = env->cp15.c9_pmcr & PMCRDP;
1461 if (counter == 31) {
1462 filter = env->cp15.pmccfiltr_el0;
1463 } else {
1464 filter = env->cp15.c14_pmevtyper[counter];
1467 p = filter & PMXEVTYPER_P;
1468 u = filter & PMXEVTYPER_U;
1469 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1470 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1471 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1472 m = arm_el_is_aa64(env, 1) &&
1473 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1475 if (el == 0) {
1476 filtered = secure ? u : u != nsu;
1477 } else if (el == 1) {
1478 filtered = secure ? p : p != nsk;
1479 } else if (el == 2) {
1480 filtered = !nsh;
1481 } else { /* EL3 */
1482 filtered = m != p;
1485 if (counter != 31) {
1487 * If not checking PMCCNTR, ensure the counter is setup to an event we
1488 * support
1490 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1491 if (!event_supported(event)) {
1492 return false;
1496 return enabled && !prohibited && !filtered;
1499 static void pmu_update_irq(CPUARMState *env)
1501 ARMCPU *cpu = env_archcpu(env);
1502 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1503 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1507 * Ensure c15_ccnt is the guest-visible count so that operations such as
1508 * enabling/disabling the counter or filtering, modifying the count itself,
1509 * etc. can be done logically. This is essentially a no-op if the counter is
1510 * not enabled at the time of the call.
1512 static void pmccntr_op_start(CPUARMState *env)
1514 uint64_t cycles = cycles_get_count(env);
1516 if (pmu_counter_enabled(env, 31)) {
1517 uint64_t eff_cycles = cycles;
1518 if (env->cp15.c9_pmcr & PMCRD) {
1519 /* Increment once every 64 processor clock cycles */
1520 eff_cycles /= 64;
1523 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1525 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1526 1ull << 63 : 1ull << 31;
1527 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1528 env->cp15.c9_pmovsr |= (1 << 31);
1529 pmu_update_irq(env);
1532 env->cp15.c15_ccnt = new_pmccntr;
1534 env->cp15.c15_ccnt_delta = cycles;
1538 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1539 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1540 * pmccntr_op_start.
1542 static void pmccntr_op_finish(CPUARMState *env)
1544 if (pmu_counter_enabled(env, 31)) {
1545 #ifndef CONFIG_USER_ONLY
1546 /* Calculate when the counter will next overflow */
1547 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1548 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1549 remaining_cycles = (uint32_t)remaining_cycles;
1551 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1553 if (overflow_in > 0) {
1554 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1555 overflow_in;
1556 ARMCPU *cpu = env_archcpu(env);
1557 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1559 #endif
1561 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1562 if (env->cp15.c9_pmcr & PMCRD) {
1563 /* Increment once every 64 processor clock cycles */
1564 prev_cycles /= 64;
1566 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1570 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1573 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1574 uint64_t count = 0;
1575 if (event_supported(event)) {
1576 uint16_t event_idx = supported_event_map[event];
1577 count = pm_events[event_idx].get_count(env);
1580 if (pmu_counter_enabled(env, counter)) {
1581 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1583 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1584 env->cp15.c9_pmovsr |= (1 << counter);
1585 pmu_update_irq(env);
1587 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1589 env->cp15.c14_pmevcntr_delta[counter] = count;
1592 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1594 if (pmu_counter_enabled(env, counter)) {
1595 #ifndef CONFIG_USER_ONLY
1596 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1597 uint16_t event_idx = supported_event_map[event];
1598 uint64_t delta = UINT32_MAX -
1599 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1600 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1602 if (overflow_in > 0) {
1603 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1604 overflow_in;
1605 ARMCPU *cpu = env_archcpu(env);
1606 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1608 #endif
1610 env->cp15.c14_pmevcntr_delta[counter] -=
1611 env->cp15.c14_pmevcntr[counter];
1615 void pmu_op_start(CPUARMState *env)
1617 unsigned int i;
1618 pmccntr_op_start(env);
1619 for (i = 0; i < pmu_num_counters(env); i++) {
1620 pmevcntr_op_start(env, i);
1624 void pmu_op_finish(CPUARMState *env)
1626 unsigned int i;
1627 pmccntr_op_finish(env);
1628 for (i = 0; i < pmu_num_counters(env); i++) {
1629 pmevcntr_op_finish(env, i);
1633 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1635 pmu_op_start(&cpu->env);
1638 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1640 pmu_op_finish(&cpu->env);
1643 void arm_pmu_timer_cb(void *opaque)
1645 ARMCPU *cpu = opaque;
1648 * Update all the counter values based on the current underlying counts,
1649 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1650 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1651 * counter may expire.
1653 pmu_op_start(&cpu->env);
1654 pmu_op_finish(&cpu->env);
1657 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658 uint64_t value)
1660 pmu_op_start(env);
1662 if (value & PMCRC) {
1663 /* The counter has been reset */
1664 env->cp15.c15_ccnt = 0;
1667 if (value & PMCRP) {
1668 unsigned int i;
1669 for (i = 0; i < pmu_num_counters(env); i++) {
1670 env->cp15.c14_pmevcntr[i] = 0;
1674 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1675 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1677 pmu_op_finish(env);
1680 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1681 uint64_t value)
1683 unsigned int i;
1684 for (i = 0; i < pmu_num_counters(env); i++) {
1685 /* Increment a counter's count iff: */
1686 if ((value & (1 << i)) && /* counter's bit is set */
1687 /* counter is enabled and not filtered */
1688 pmu_counter_enabled(env, i) &&
1689 /* counter is SW_INCR */
1690 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1691 pmevcntr_op_start(env, i);
1694 * Detect if this write causes an overflow since we can't predict
1695 * PMSWINC overflows like we can for other events
1697 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1699 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1700 env->cp15.c9_pmovsr |= (1 << i);
1701 pmu_update_irq(env);
1704 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1706 pmevcntr_op_finish(env, i);
1711 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1713 uint64_t ret;
1714 pmccntr_op_start(env);
1715 ret = env->cp15.c15_ccnt;
1716 pmccntr_op_finish(env);
1717 return ret;
1720 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1721 uint64_t value)
1723 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1724 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1725 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1726 * accessed.
1728 env->cp15.c9_pmselr = value & 0x1f;
1731 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1732 uint64_t value)
1734 pmccntr_op_start(env);
1735 env->cp15.c15_ccnt = value;
1736 pmccntr_op_finish(env);
1739 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1740 uint64_t value)
1742 uint64_t cur_val = pmccntr_read(env, NULL);
1744 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1747 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748 uint64_t value)
1750 pmccntr_op_start(env);
1751 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1752 pmccntr_op_finish(env);
1755 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value)
1758 pmccntr_op_start(env);
1759 /* M is not accessible from AArch32 */
1760 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1761 (value & PMCCFILTR);
1762 pmccntr_op_finish(env);
1765 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1767 /* M is not visible in AArch32 */
1768 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1771 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1772 uint64_t value)
1774 value &= pmu_counter_mask(env);
1775 env->cp15.c9_pmcnten |= value;
1778 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1779 uint64_t value)
1781 value &= pmu_counter_mask(env);
1782 env->cp15.c9_pmcnten &= ~value;
1785 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786 uint64_t value)
1788 value &= pmu_counter_mask(env);
1789 env->cp15.c9_pmovsr &= ~value;
1790 pmu_update_irq(env);
1793 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1794 uint64_t value)
1796 value &= pmu_counter_mask(env);
1797 env->cp15.c9_pmovsr |= value;
1798 pmu_update_irq(env);
1801 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1802 uint64_t value, const uint8_t counter)
1804 if (counter == 31) {
1805 pmccfiltr_write(env, ri, value);
1806 } else if (counter < pmu_num_counters(env)) {
1807 pmevcntr_op_start(env, counter);
1810 * If this counter's event type is changing, store the current
1811 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1812 * pmevcntr_op_finish has the correct baseline when it converts back to
1813 * a delta.
1815 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1816 PMXEVTYPER_EVTCOUNT;
1817 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1818 if (old_event != new_event) {
1819 uint64_t count = 0;
1820 if (event_supported(new_event)) {
1821 uint16_t event_idx = supported_event_map[new_event];
1822 count = pm_events[event_idx].get_count(env);
1824 env->cp15.c14_pmevcntr_delta[counter] = count;
1827 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1828 pmevcntr_op_finish(env, counter);
1830 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1831 * PMSELR value is equal to or greater than the number of implemented
1832 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1836 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1837 const uint8_t counter)
1839 if (counter == 31) {
1840 return env->cp15.pmccfiltr_el0;
1841 } else if (counter < pmu_num_counters(env)) {
1842 return env->cp15.c14_pmevtyper[counter];
1843 } else {
1845 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1846 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1848 return 0;
1852 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1853 uint64_t value)
1855 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1856 pmevtyper_write(env, ri, value, counter);
1859 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1860 uint64_t value)
1862 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1863 env->cp15.c14_pmevtyper[counter] = value;
1866 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1867 * pmu_op_finish calls when loading saved state for a migration. Because
1868 * we're potentially updating the type of event here, the value written to
1869 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1870 * different counter type. Therefore, we need to set this value to the
1871 * current count for the counter type we're writing so that pmu_op_finish
1872 * has the correct count for its calculation.
1874 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1875 if (event_supported(event)) {
1876 uint16_t event_idx = supported_event_map[event];
1877 env->cp15.c14_pmevcntr_delta[counter] =
1878 pm_events[event_idx].get_count(env);
1882 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1884 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1885 return pmevtyper_read(env, ri, counter);
1888 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889 uint64_t value)
1891 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1894 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1896 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1899 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1900 uint64_t value, uint8_t counter)
1902 if (counter < pmu_num_counters(env)) {
1903 pmevcntr_op_start(env, counter);
1904 env->cp15.c14_pmevcntr[counter] = value;
1905 pmevcntr_op_finish(env, counter);
1908 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1909 * are CONSTRAINED UNPREDICTABLE.
1913 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1914 uint8_t counter)
1916 if (counter < pmu_num_counters(env)) {
1917 uint64_t ret;
1918 pmevcntr_op_start(env, counter);
1919 ret = env->cp15.c14_pmevcntr[counter];
1920 pmevcntr_op_finish(env, counter);
1921 return ret;
1922 } else {
1923 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1924 * are CONSTRAINED UNPREDICTABLE. */
1925 return 0;
1929 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1930 uint64_t value)
1932 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1933 pmevcntr_write(env, ri, value, counter);
1936 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1938 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1939 return pmevcntr_read(env, ri, counter);
1942 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1943 uint64_t value)
1945 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946 assert(counter < pmu_num_counters(env));
1947 env->cp15.c14_pmevcntr[counter] = value;
1948 pmevcntr_write(env, ri, value, counter);
1951 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1953 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1954 assert(counter < pmu_num_counters(env));
1955 return env->cp15.c14_pmevcntr[counter];
1958 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1959 uint64_t value)
1961 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1964 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1966 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1969 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970 uint64_t value)
1972 if (arm_feature(env, ARM_FEATURE_V8)) {
1973 env->cp15.c9_pmuserenr = value & 0xf;
1974 } else {
1975 env->cp15.c9_pmuserenr = value & 1;
1979 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1980 uint64_t value)
1982 /* We have no event counters so only the C bit can be changed */
1983 value &= pmu_counter_mask(env);
1984 env->cp15.c9_pminten |= value;
1985 pmu_update_irq(env);
1988 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1989 uint64_t value)
1991 value &= pmu_counter_mask(env);
1992 env->cp15.c9_pminten &= ~value;
1993 pmu_update_irq(env);
1996 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1997 uint64_t value)
1999 /* Note that even though the AArch64 view of this register has bits
2000 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2001 * architectural requirements for bits which are RES0 only in some
2002 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2003 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2005 raw_write(env, ri, value & ~0x1FULL);
2008 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2010 /* Begin with base v8.0 state. */
2011 uint32_t valid_mask = 0x3fff;
2012 ARMCPU *cpu = env_archcpu(env);
2014 if (ri->state == ARM_CP_STATE_AA64) {
2015 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2016 valid_mask &= ~SCR_NET;
2018 if (cpu_isar_feature(aa64_lor, cpu)) {
2019 valid_mask |= SCR_TLOR;
2021 if (cpu_isar_feature(aa64_pauth, cpu)) {
2022 valid_mask |= SCR_API | SCR_APK;
2024 if (cpu_isar_feature(aa64_mte, cpu)) {
2025 valid_mask |= SCR_ATA;
2027 } else {
2028 valid_mask &= ~(SCR_RW | SCR_ST);
2031 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2032 valid_mask &= ~SCR_HCE;
2034 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2035 * supported if EL2 exists. The bit is UNK/SBZP when
2036 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2037 * when EL2 is unavailable.
2038 * On ARMv8, this bit is always available.
2040 if (arm_feature(env, ARM_FEATURE_V7) &&
2041 !arm_feature(env, ARM_FEATURE_V8)) {
2042 valid_mask &= ~SCR_SMD;
2046 /* Clear all-context RES0 bits. */
2047 value &= valid_mask;
2048 raw_write(env, ri, value);
2051 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2052 const ARMCPRegInfo *ri,
2053 bool isread)
2055 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2056 return CP_ACCESS_TRAP_EL2;
2059 return CP_ACCESS_OK;
2062 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2064 ARMCPU *cpu = env_archcpu(env);
2066 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2067 * bank
2069 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2070 ri->secure & ARM_CP_SECSTATE_S);
2072 return cpu->ccsidr[index];
2075 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2076 uint64_t value)
2078 raw_write(env, ri, value & 0xf);
2081 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2083 CPUState *cs = env_cpu(env);
2084 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2085 uint64_t ret = 0;
2086 bool allow_virt = (arm_current_el(env) == 1 &&
2087 (!arm_is_secure_below_el3(env) ||
2088 (env->cp15.scr_el3 & SCR_EEL2)));
2090 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2091 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2092 ret |= CPSR_I;
2094 } else {
2095 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2096 ret |= CPSR_I;
2100 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2101 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2102 ret |= CPSR_F;
2104 } else {
2105 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2106 ret |= CPSR_F;
2110 /* External aborts are not possible in QEMU so A bit is always clear */
2111 return ret;
2114 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2115 bool isread)
2117 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2118 return CP_ACCESS_TRAP_EL2;
2121 return CP_ACCESS_OK;
2124 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2125 bool isread)
2127 if (arm_feature(env, ARM_FEATURE_V8)) {
2128 return access_aa64_tid1(env, ri, isread);
2131 return CP_ACCESS_OK;
2134 static const ARMCPRegInfo v7_cp_reginfo[] = {
2135 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2136 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2137 .access = PL1_W, .type = ARM_CP_NOP },
2138 /* Performance monitors are implementation defined in v7,
2139 * but with an ARM recommended set of registers, which we
2140 * follow.
2142 * Performance registers fall into three categories:
2143 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2144 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2145 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2146 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2147 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2149 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2150 .access = PL0_RW, .type = ARM_CP_ALIAS,
2151 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2152 .writefn = pmcntenset_write,
2153 .accessfn = pmreg_access,
2154 .raw_writefn = raw_write },
2155 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2156 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2157 .access = PL0_RW, .accessfn = pmreg_access,
2158 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2159 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2160 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2161 .access = PL0_RW,
2162 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2163 .accessfn = pmreg_access,
2164 .writefn = pmcntenclr_write,
2165 .type = ARM_CP_ALIAS },
2166 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2168 .access = PL0_RW, .accessfn = pmreg_access,
2169 .type = ARM_CP_ALIAS,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2171 .writefn = pmcntenclr_write },
2172 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2173 .access = PL0_RW, .type = ARM_CP_IO,
2174 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2175 .accessfn = pmreg_access,
2176 .writefn = pmovsr_write,
2177 .raw_writefn = raw_write },
2178 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2179 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2180 .access = PL0_RW, .accessfn = pmreg_access,
2181 .type = ARM_CP_ALIAS | ARM_CP_IO,
2182 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2183 .writefn = pmovsr_write,
2184 .raw_writefn = raw_write },
2185 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2186 .access = PL0_W, .accessfn = pmreg_access_swinc,
2187 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2188 .writefn = pmswinc_write },
2189 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2190 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2191 .access = PL0_W, .accessfn = pmreg_access_swinc,
2192 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2193 .writefn = pmswinc_write },
2194 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2195 .access = PL0_RW, .type = ARM_CP_ALIAS,
2196 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2197 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2198 .raw_writefn = raw_write},
2199 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2200 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2201 .access = PL0_RW, .accessfn = pmreg_access_selr,
2202 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2203 .writefn = pmselr_write, .raw_writefn = raw_write, },
2204 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2205 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2206 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2207 .accessfn = pmreg_access_ccntr },
2208 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2209 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2210 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2211 .type = ARM_CP_IO,
2212 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2213 .readfn = pmccntr_read, .writefn = pmccntr_write,
2214 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2215 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2216 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2217 .access = PL0_RW, .accessfn = pmreg_access,
2218 .type = ARM_CP_ALIAS | ARM_CP_IO,
2219 .resetvalue = 0, },
2220 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2222 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2223 .access = PL0_RW, .accessfn = pmreg_access,
2224 .type = ARM_CP_IO,
2225 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2226 .resetvalue = 0, },
2227 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2228 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2229 .accessfn = pmreg_access,
2230 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2231 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2232 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2233 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2234 .accessfn = pmreg_access,
2235 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2236 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2237 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2238 .accessfn = pmreg_access_xevcntr,
2239 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2240 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2241 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2242 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2243 .accessfn = pmreg_access_xevcntr,
2244 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2245 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2246 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2248 .resetvalue = 0,
2249 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2250 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2251 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2252 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2253 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2254 .resetvalue = 0,
2255 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2256 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2257 .access = PL1_RW, .accessfn = access_tpm,
2258 .type = ARM_CP_ALIAS | ARM_CP_IO,
2259 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2260 .resetvalue = 0,
2261 .writefn = pmintenset_write, .raw_writefn = raw_write },
2262 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2263 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2264 .access = PL1_RW, .accessfn = access_tpm,
2265 .type = ARM_CP_IO,
2266 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2267 .writefn = pmintenset_write, .raw_writefn = raw_write,
2268 .resetvalue = 0x0 },
2269 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2270 .access = PL1_RW, .accessfn = access_tpm,
2271 .type = ARM_CP_ALIAS | ARM_CP_IO,
2272 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2273 .writefn = pmintenclr_write, },
2274 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2275 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2276 .access = PL1_RW, .accessfn = access_tpm,
2277 .type = ARM_CP_ALIAS | ARM_CP_IO,
2278 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2279 .writefn = pmintenclr_write },
2280 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2281 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2282 .access = PL1_R,
2283 .accessfn = access_aa64_tid2,
2284 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2285 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2286 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2287 .access = PL1_RW,
2288 .accessfn = access_aa64_tid2,
2289 .writefn = csselr_write, .resetvalue = 0,
2290 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2291 offsetof(CPUARMState, cp15.csselr_ns) } },
2292 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2293 * just RAZ for all cores:
2295 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2296 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2297 .access = PL1_R, .type = ARM_CP_CONST,
2298 .accessfn = access_aa64_tid1,
2299 .resetvalue = 0 },
2300 /* Auxiliary fault status registers: these also are IMPDEF, and we
2301 * choose to RAZ/WI for all cores.
2303 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2304 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2305 .access = PL1_RW, .accessfn = access_tvm_trvm,
2306 .type = ARM_CP_CONST, .resetvalue = 0 },
2307 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2308 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2309 .access = PL1_RW, .accessfn = access_tvm_trvm,
2310 .type = ARM_CP_CONST, .resetvalue = 0 },
2311 /* MAIR can just read-as-written because we don't implement caches
2312 * and so don't need to care about memory attributes.
2314 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2315 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2316 .access = PL1_RW, .accessfn = access_tvm_trvm,
2317 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2318 .resetvalue = 0 },
2319 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2320 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2321 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2322 .resetvalue = 0 },
2323 /* For non-long-descriptor page tables these are PRRR and NMRR;
2324 * regardless they still act as reads-as-written for QEMU.
2326 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2327 * allows them to assign the correct fieldoffset based on the endianness
2328 * handled in the field definitions.
2330 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2331 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2332 .access = PL1_RW, .accessfn = access_tvm_trvm,
2333 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2334 offsetof(CPUARMState, cp15.mair0_ns) },
2335 .resetfn = arm_cp_reset_ignore },
2336 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2337 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2338 .access = PL1_RW, .accessfn = access_tvm_trvm,
2339 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2340 offsetof(CPUARMState, cp15.mair1_ns) },
2341 .resetfn = arm_cp_reset_ignore },
2342 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2343 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2344 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2345 /* 32 bit ITLB invalidates */
2346 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2347 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2348 .writefn = tlbiall_write },
2349 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2350 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2351 .writefn = tlbimva_write },
2352 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2354 .writefn = tlbiasid_write },
2355 /* 32 bit DTLB invalidates */
2356 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2357 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2358 .writefn = tlbiall_write },
2359 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2360 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2361 .writefn = tlbimva_write },
2362 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2363 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2364 .writefn = tlbiasid_write },
2365 /* 32 bit TLB invalidates */
2366 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2367 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2368 .writefn = tlbiall_write },
2369 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2370 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2371 .writefn = tlbimva_write },
2372 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2373 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374 .writefn = tlbiasid_write },
2375 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2376 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377 .writefn = tlbimvaa_write },
2378 REGINFO_SENTINEL
2381 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2382 /* 32 bit TLB invalidates, Inner Shareable */
2383 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2384 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2385 .writefn = tlbiall_is_write },
2386 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2387 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2388 .writefn = tlbimva_is_write },
2389 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2390 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2391 .writefn = tlbiasid_is_write },
2392 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2393 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394 .writefn = tlbimvaa_is_write },
2395 REGINFO_SENTINEL
2398 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2399 /* PMOVSSET is not implemented in v7 before v7ve */
2400 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2401 .access = PL0_RW, .accessfn = pmreg_access,
2402 .type = ARM_CP_ALIAS | ARM_CP_IO,
2403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2404 .writefn = pmovsset_write,
2405 .raw_writefn = raw_write },
2406 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2408 .access = PL0_RW, .accessfn = pmreg_access,
2409 .type = ARM_CP_ALIAS | ARM_CP_IO,
2410 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2411 .writefn = pmovsset_write,
2412 .raw_writefn = raw_write },
2413 REGINFO_SENTINEL
2416 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2417 uint64_t value)
2419 value &= 1;
2420 env->teecr = value;
2423 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2424 bool isread)
2426 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2427 return CP_ACCESS_TRAP;
2429 return CP_ACCESS_OK;
2432 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2433 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2434 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2435 .resetvalue = 0,
2436 .writefn = teecr_write },
2437 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2438 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2439 .accessfn = teehbr_access, .resetvalue = 0 },
2440 REGINFO_SENTINEL
2443 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2444 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2445 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2446 .access = PL0_RW,
2447 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2448 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2449 .access = PL0_RW,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2452 .resetfn = arm_cp_reset_ignore },
2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2455 .access = PL0_R|PL1_W,
2456 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2457 .resetvalue = 0},
2458 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2459 .access = PL0_R|PL1_W,
2460 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2461 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2462 .resetfn = arm_cp_reset_ignore },
2463 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2464 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2465 .access = PL1_RW,
2466 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2467 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2468 .access = PL1_RW,
2469 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2470 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2471 .resetvalue = 0 },
2472 REGINFO_SENTINEL
2475 #ifndef CONFIG_USER_ONLY
2477 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2478 bool isread)
2480 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2481 * Writable only at the highest implemented exception level.
2483 int el = arm_current_el(env);
2484 uint64_t hcr;
2485 uint32_t cntkctl;
2487 switch (el) {
2488 case 0:
2489 hcr = arm_hcr_el2_eff(env);
2490 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2491 cntkctl = env->cp15.cnthctl_el2;
2492 } else {
2493 cntkctl = env->cp15.c14_cntkctl;
2495 if (!extract32(cntkctl, 0, 2)) {
2496 return CP_ACCESS_TRAP;
2498 break;
2499 case 1:
2500 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2501 arm_is_secure_below_el3(env)) {
2502 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2503 return CP_ACCESS_TRAP_UNCATEGORIZED;
2505 break;
2506 case 2:
2507 case 3:
2508 break;
2511 if (!isread && el < arm_highest_el(env)) {
2512 return CP_ACCESS_TRAP_UNCATEGORIZED;
2515 return CP_ACCESS_OK;
2518 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2519 bool isread)
2521 unsigned int cur_el = arm_current_el(env);
2522 bool secure = arm_is_secure(env);
2523 uint64_t hcr = arm_hcr_el2_eff(env);
2525 switch (cur_el) {
2526 case 0:
2527 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2528 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2529 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2530 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2533 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2534 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2535 return CP_ACCESS_TRAP;
2538 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2539 if (hcr & HCR_E2H) {
2540 if (timeridx == GTIMER_PHYS &&
2541 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2542 return CP_ACCESS_TRAP_EL2;
2544 } else {
2545 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2546 if (arm_feature(env, ARM_FEATURE_EL2) &&
2547 timeridx == GTIMER_PHYS && !secure &&
2548 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2549 return CP_ACCESS_TRAP_EL2;
2552 break;
2554 case 1:
2555 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2556 if (arm_feature(env, ARM_FEATURE_EL2) &&
2557 timeridx == GTIMER_PHYS && !secure &&
2558 (hcr & HCR_E2H
2559 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2560 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2561 return CP_ACCESS_TRAP_EL2;
2563 break;
2565 return CP_ACCESS_OK;
2568 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2569 bool isread)
2571 unsigned int cur_el = arm_current_el(env);
2572 bool secure = arm_is_secure(env);
2573 uint64_t hcr = arm_hcr_el2_eff(env);
2575 switch (cur_el) {
2576 case 0:
2577 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2578 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2579 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2580 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2584 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2585 * EL0 if EL0[PV]TEN is zero.
2587 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2588 return CP_ACCESS_TRAP;
2590 /* fall through */
2592 case 1:
2593 if (arm_feature(env, ARM_FEATURE_EL2) &&
2594 timeridx == GTIMER_PHYS && !secure) {
2595 if (hcr & HCR_E2H) {
2596 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2597 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2598 return CP_ACCESS_TRAP_EL2;
2600 } else {
2601 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2602 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2603 return CP_ACCESS_TRAP_EL2;
2607 break;
2609 return CP_ACCESS_OK;
2612 static CPAccessResult gt_pct_access(CPUARMState *env,
2613 const ARMCPRegInfo *ri,
2614 bool isread)
2616 return gt_counter_access(env, GTIMER_PHYS, isread);
2619 static CPAccessResult gt_vct_access(CPUARMState *env,
2620 const ARMCPRegInfo *ri,
2621 bool isread)
2623 return gt_counter_access(env, GTIMER_VIRT, isread);
2626 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2627 bool isread)
2629 return gt_timer_access(env, GTIMER_PHYS, isread);
2632 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2633 bool isread)
2635 return gt_timer_access(env, GTIMER_VIRT, isread);
2638 static CPAccessResult gt_stimer_access(CPUARMState *env,
2639 const ARMCPRegInfo *ri,
2640 bool isread)
2642 /* The AArch64 register view of the secure physical timer is
2643 * always accessible from EL3, and configurably accessible from
2644 * Secure EL1.
2646 switch (arm_current_el(env)) {
2647 case 1:
2648 if (!arm_is_secure(env)) {
2649 return CP_ACCESS_TRAP;
2651 if (!(env->cp15.scr_el3 & SCR_ST)) {
2652 return CP_ACCESS_TRAP_EL3;
2654 return CP_ACCESS_OK;
2655 case 0:
2656 case 2:
2657 return CP_ACCESS_TRAP;
2658 case 3:
2659 return CP_ACCESS_OK;
2660 default:
2661 g_assert_not_reached();
2665 static uint64_t gt_get_countervalue(CPUARMState *env)
2667 ARMCPU *cpu = env_archcpu(env);
2669 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2672 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2674 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2676 if (gt->ctl & 1) {
2677 /* Timer enabled: calculate and set current ISTATUS, irq, and
2678 * reset timer to when ISTATUS next has to change
2680 uint64_t offset = timeridx == GTIMER_VIRT ?
2681 cpu->env.cp15.cntvoff_el2 : 0;
2682 uint64_t count = gt_get_countervalue(&cpu->env);
2683 /* Note that this must be unsigned 64 bit arithmetic: */
2684 int istatus = count - offset >= gt->cval;
2685 uint64_t nexttick;
2686 int irqstate;
2688 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2690 irqstate = (istatus && !(gt->ctl & 2));
2691 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2693 if (istatus) {
2694 /* Next transition is when count rolls back over to zero */
2695 nexttick = UINT64_MAX;
2696 } else {
2697 /* Next transition is when we hit cval */
2698 nexttick = gt->cval + offset;
2700 /* Note that the desired next expiry time might be beyond the
2701 * signed-64-bit range of a QEMUTimer -- in this case we just
2702 * set the timer for as far in the future as possible. When the
2703 * timer expires we will reset the timer for any remaining period.
2705 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2706 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2707 } else {
2708 timer_mod(cpu->gt_timer[timeridx], nexttick);
2710 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2711 } else {
2712 /* Timer disabled: ISTATUS and timer output always clear */
2713 gt->ctl &= ~4;
2714 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2715 timer_del(cpu->gt_timer[timeridx]);
2716 trace_arm_gt_recalc_disabled(timeridx);
2720 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2721 int timeridx)
2723 ARMCPU *cpu = env_archcpu(env);
2725 timer_del(cpu->gt_timer[timeridx]);
2728 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2730 return gt_get_countervalue(env);
2733 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2735 uint64_t hcr;
2737 switch (arm_current_el(env)) {
2738 case 2:
2739 hcr = arm_hcr_el2_eff(env);
2740 if (hcr & HCR_E2H) {
2741 return 0;
2743 break;
2744 case 0:
2745 hcr = arm_hcr_el2_eff(env);
2746 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2747 return 0;
2749 break;
2752 return env->cp15.cntvoff_el2;
2755 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2757 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2760 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761 int timeridx,
2762 uint64_t value)
2764 trace_arm_gt_cval_write(timeridx, value);
2765 env->cp15.c14_timer[timeridx].cval = value;
2766 gt_recalc_timer(env_archcpu(env), timeridx);
2769 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2770 int timeridx)
2772 uint64_t offset = 0;
2774 switch (timeridx) {
2775 case GTIMER_VIRT:
2776 case GTIMER_HYPVIRT:
2777 offset = gt_virt_cnt_offset(env);
2778 break;
2781 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2782 (gt_get_countervalue(env) - offset));
2785 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786 int timeridx,
2787 uint64_t value)
2789 uint64_t offset = 0;
2791 switch (timeridx) {
2792 case GTIMER_VIRT:
2793 case GTIMER_HYPVIRT:
2794 offset = gt_virt_cnt_offset(env);
2795 break;
2798 trace_arm_gt_tval_write(timeridx, value);
2799 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2800 sextract64(value, 0, 32);
2801 gt_recalc_timer(env_archcpu(env), timeridx);
2804 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805 int timeridx,
2806 uint64_t value)
2808 ARMCPU *cpu = env_archcpu(env);
2809 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2811 trace_arm_gt_ctl_write(timeridx, value);
2812 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2813 if ((oldval ^ value) & 1) {
2814 /* Enable toggled */
2815 gt_recalc_timer(cpu, timeridx);
2816 } else if ((oldval ^ value) & 2) {
2817 /* IMASK toggled: don't need to recalculate,
2818 * just set the interrupt line based on ISTATUS
2820 int irqstate = (oldval & 4) && !(value & 2);
2822 trace_arm_gt_imask_toggle(timeridx, irqstate);
2823 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2827 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2829 gt_timer_reset(env, ri, GTIMER_PHYS);
2832 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2833 uint64_t value)
2835 gt_cval_write(env, ri, GTIMER_PHYS, value);
2838 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2840 return gt_tval_read(env, ri, GTIMER_PHYS);
2843 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2844 uint64_t value)
2846 gt_tval_write(env, ri, GTIMER_PHYS, value);
2849 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850 uint64_t value)
2852 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2855 static int gt_phys_redir_timeridx(CPUARMState *env)
2857 switch (arm_mmu_idx(env)) {
2858 case ARMMMUIdx_E20_0:
2859 case ARMMMUIdx_E20_2:
2860 case ARMMMUIdx_E20_2_PAN:
2861 return GTIMER_HYP;
2862 default:
2863 return GTIMER_PHYS;
2867 static int gt_virt_redir_timeridx(CPUARMState *env)
2869 switch (arm_mmu_idx(env)) {
2870 case ARMMMUIdx_E20_0:
2871 case ARMMMUIdx_E20_2:
2872 case ARMMMUIdx_E20_2_PAN:
2873 return GTIMER_HYPVIRT;
2874 default:
2875 return GTIMER_VIRT;
2879 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2880 const ARMCPRegInfo *ri)
2882 int timeridx = gt_phys_redir_timeridx(env);
2883 return env->cp15.c14_timer[timeridx].cval;
2886 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887 uint64_t value)
2889 int timeridx = gt_phys_redir_timeridx(env);
2890 gt_cval_write(env, ri, timeridx, value);
2893 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2894 const ARMCPRegInfo *ri)
2896 int timeridx = gt_phys_redir_timeridx(env);
2897 return gt_tval_read(env, ri, timeridx);
2900 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2903 int timeridx = gt_phys_redir_timeridx(env);
2904 gt_tval_write(env, ri, timeridx, value);
2907 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2908 const ARMCPRegInfo *ri)
2910 int timeridx = gt_phys_redir_timeridx(env);
2911 return env->cp15.c14_timer[timeridx].ctl;
2914 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915 uint64_t value)
2917 int timeridx = gt_phys_redir_timeridx(env);
2918 gt_ctl_write(env, ri, timeridx, value);
2921 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2923 gt_timer_reset(env, ri, GTIMER_VIRT);
2926 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927 uint64_t value)
2929 gt_cval_write(env, ri, GTIMER_VIRT, value);
2932 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2934 return gt_tval_read(env, ri, GTIMER_VIRT);
2937 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2938 uint64_t value)
2940 gt_tval_write(env, ri, GTIMER_VIRT, value);
2943 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944 uint64_t value)
2946 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2949 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950 uint64_t value)
2952 ARMCPU *cpu = env_archcpu(env);
2954 trace_arm_gt_cntvoff_write(value);
2955 raw_write(env, ri, value);
2956 gt_recalc_timer(cpu, GTIMER_VIRT);
2959 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2960 const ARMCPRegInfo *ri)
2962 int timeridx = gt_virt_redir_timeridx(env);
2963 return env->cp15.c14_timer[timeridx].cval;
2966 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967 uint64_t value)
2969 int timeridx = gt_virt_redir_timeridx(env);
2970 gt_cval_write(env, ri, timeridx, value);
2973 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2974 const ARMCPRegInfo *ri)
2976 int timeridx = gt_virt_redir_timeridx(env);
2977 return gt_tval_read(env, ri, timeridx);
2980 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2981 uint64_t value)
2983 int timeridx = gt_virt_redir_timeridx(env);
2984 gt_tval_write(env, ri, timeridx, value);
2987 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2988 const ARMCPRegInfo *ri)
2990 int timeridx = gt_virt_redir_timeridx(env);
2991 return env->cp15.c14_timer[timeridx].ctl;
2994 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2995 uint64_t value)
2997 int timeridx = gt_virt_redir_timeridx(env);
2998 gt_ctl_write(env, ri, timeridx, value);
3001 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3003 gt_timer_reset(env, ri, GTIMER_HYP);
3006 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3007 uint64_t value)
3009 gt_cval_write(env, ri, GTIMER_HYP, value);
3012 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3014 return gt_tval_read(env, ri, GTIMER_HYP);
3017 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3018 uint64_t value)
3020 gt_tval_write(env, ri, GTIMER_HYP, value);
3023 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024 uint64_t value)
3026 gt_ctl_write(env, ri, GTIMER_HYP, value);
3029 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 gt_timer_reset(env, ri, GTIMER_SEC);
3034 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035 uint64_t value)
3037 gt_cval_write(env, ri, GTIMER_SEC, value);
3040 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 return gt_tval_read(env, ri, GTIMER_SEC);
3045 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3046 uint64_t value)
3048 gt_tval_write(env, ri, GTIMER_SEC, value);
3051 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3052 uint64_t value)
3054 gt_ctl_write(env, ri, GTIMER_SEC, value);
3057 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3062 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3063 uint64_t value)
3065 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3068 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3073 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3076 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3079 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3080 uint64_t value)
3082 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3085 void arm_gt_ptimer_cb(void *opaque)
3087 ARMCPU *cpu = opaque;
3089 gt_recalc_timer(cpu, GTIMER_PHYS);
3092 void arm_gt_vtimer_cb(void *opaque)
3094 ARMCPU *cpu = opaque;
3096 gt_recalc_timer(cpu, GTIMER_VIRT);
3099 void arm_gt_htimer_cb(void *opaque)
3101 ARMCPU *cpu = opaque;
3103 gt_recalc_timer(cpu, GTIMER_HYP);
3106 void arm_gt_stimer_cb(void *opaque)
3108 ARMCPU *cpu = opaque;
3110 gt_recalc_timer(cpu, GTIMER_SEC);
3113 void arm_gt_hvtimer_cb(void *opaque)
3115 ARMCPU *cpu = opaque;
3117 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3120 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3122 ARMCPU *cpu = env_archcpu(env);
3124 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3127 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3128 /* Note that CNTFRQ is purely reads-as-written for the benefit
3129 * of software; writing it doesn't actually change the timer frequency.
3130 * Our reset value matches the fixed frequency we implement the timer at.
3132 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3133 .type = ARM_CP_ALIAS,
3134 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3135 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3137 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3138 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3139 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3140 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3141 .resetfn = arm_gt_cntfrq_reset,
3143 /* overall control: mostly access permissions */
3144 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3145 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3146 .access = PL1_RW,
3147 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3148 .resetvalue = 0,
3150 /* per-timer control */
3151 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3152 .secure = ARM_CP_SECSTATE_NS,
3153 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3154 .accessfn = gt_ptimer_access,
3155 .fieldoffset = offsetoflow32(CPUARMState,
3156 cp15.c14_timer[GTIMER_PHYS].ctl),
3157 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3158 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3160 { .name = "CNTP_CTL_S",
3161 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3162 .secure = ARM_CP_SECSTATE_S,
3163 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3164 .accessfn = gt_ptimer_access,
3165 .fieldoffset = offsetoflow32(CPUARMState,
3166 cp15.c14_timer[GTIMER_SEC].ctl),
3167 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3169 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3171 .type = ARM_CP_IO, .access = PL0_RW,
3172 .accessfn = gt_ptimer_access,
3173 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3174 .resetvalue = 0,
3175 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3176 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3178 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3179 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3180 .accessfn = gt_vtimer_access,
3181 .fieldoffset = offsetoflow32(CPUARMState,
3182 cp15.c14_timer[GTIMER_VIRT].ctl),
3183 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3184 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3186 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3187 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3188 .type = ARM_CP_IO, .access = PL0_RW,
3189 .accessfn = gt_vtimer_access,
3190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3191 .resetvalue = 0,
3192 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3193 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3195 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3196 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3197 .secure = ARM_CP_SECSTATE_NS,
3198 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3199 .accessfn = gt_ptimer_access,
3200 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3202 { .name = "CNTP_TVAL_S",
3203 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3204 .secure = ARM_CP_SECSTATE_S,
3205 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3206 .accessfn = gt_ptimer_access,
3207 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3209 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3210 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3211 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3212 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3213 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3215 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3216 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3217 .accessfn = gt_vtimer_access,
3218 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3220 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3222 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3223 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3224 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3226 /* The counter itself */
3227 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3228 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3229 .accessfn = gt_pct_access,
3230 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3232 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3233 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3234 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3235 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3237 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3238 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3239 .accessfn = gt_vct_access,
3240 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3242 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3244 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3245 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3247 /* Comparison value, indicating when the timer goes off */
3248 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3249 .secure = ARM_CP_SECSTATE_NS,
3250 .access = PL0_RW,
3251 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3253 .accessfn = gt_ptimer_access,
3254 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3255 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3257 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3258 .secure = ARM_CP_SECSTATE_S,
3259 .access = PL0_RW,
3260 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3261 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3262 .accessfn = gt_ptimer_access,
3263 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3265 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3266 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3267 .access = PL0_RW,
3268 .type = ARM_CP_IO,
3269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3270 .resetvalue = 0, .accessfn = gt_ptimer_access,
3271 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3272 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3274 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3275 .access = PL0_RW,
3276 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3277 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3278 .accessfn = gt_vtimer_access,
3279 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3280 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3282 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3283 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3284 .access = PL0_RW,
3285 .type = ARM_CP_IO,
3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3287 .resetvalue = 0, .accessfn = gt_vtimer_access,
3288 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3289 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3291 /* Secure timer -- this is actually restricted to only EL3
3292 * and configurably Secure-EL1 via the accessfn.
3294 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3296 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3297 .accessfn = gt_stimer_access,
3298 .readfn = gt_sec_tval_read,
3299 .writefn = gt_sec_tval_write,
3300 .resetfn = gt_sec_timer_reset,
3302 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3304 .type = ARM_CP_IO, .access = PL1_RW,
3305 .accessfn = gt_stimer_access,
3306 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3307 .resetvalue = 0,
3308 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3310 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3312 .type = ARM_CP_IO, .access = PL1_RW,
3313 .accessfn = gt_stimer_access,
3314 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3315 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3317 REGINFO_SENTINEL
3320 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3321 bool isread)
3323 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3324 return CP_ACCESS_TRAP;
3326 return CP_ACCESS_OK;
3329 #else
3331 /* In user-mode most of the generic timer registers are inaccessible
3332 * however modern kernels (4.12+) allow access to cntvct_el0
3335 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3337 ARMCPU *cpu = env_archcpu(env);
3339 /* Currently we have no support for QEMUTimer in linux-user so we
3340 * can't call gt_get_countervalue(env), instead we directly
3341 * call the lower level functions.
3343 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3346 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3347 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3348 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3349 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3350 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3351 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3353 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3354 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3355 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3356 .readfn = gt_virt_cnt_read,
3358 REGINFO_SENTINEL
3361 #endif
3363 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3365 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3366 raw_write(env, ri, value);
3367 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3368 raw_write(env, ri, value & 0xfffff6ff);
3369 } else {
3370 raw_write(env, ri, value & 0xfffff1ff);
3374 #ifndef CONFIG_USER_ONLY
3375 /* get_phys_addr() isn't present for user-mode-only targets */
3377 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3378 bool isread)
3380 if (ri->opc2 & 4) {
3381 /* The ATS12NSO* operations must trap to EL3 if executed in
3382 * Secure EL1 (which can only happen if EL3 is AArch64).
3383 * They are simply UNDEF if executed from NS EL1.
3384 * They function normally from EL2 or EL3.
3386 if (arm_current_el(env) == 1) {
3387 if (arm_is_secure_below_el3(env)) {
3388 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3390 return CP_ACCESS_TRAP_UNCATEGORIZED;
3393 return CP_ACCESS_OK;
3396 #ifdef CONFIG_TCG
3397 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3398 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3400 hwaddr phys_addr;
3401 target_ulong page_size;
3402 int prot;
3403 bool ret;
3404 uint64_t par64;
3405 bool format64 = false;
3406 MemTxAttrs attrs = {};
3407 ARMMMUFaultInfo fi = {};
3408 ARMCacheAttrs cacheattrs = {};
3410 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3411 &prot, &page_size, &fi, &cacheattrs);
3413 if (ret) {
3415 * Some kinds of translation fault must cause exceptions rather
3416 * than being reported in the PAR.
3418 int current_el = arm_current_el(env);
3419 int target_el;
3420 uint32_t syn, fsr, fsc;
3421 bool take_exc = false;
3423 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3424 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3426 * Synchronous stage 2 fault on an access made as part of the
3427 * translation table walk for AT S1E0* or AT S1E1* insn
3428 * executed from NS EL1. If this is a synchronous external abort
3429 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3430 * to EL3. Otherwise the fault is taken as an exception to EL2,
3431 * and HPFAR_EL2 holds the faulting IPA.
3433 if (fi.type == ARMFault_SyncExternalOnWalk &&
3434 (env->cp15.scr_el3 & SCR_EA)) {
3435 target_el = 3;
3436 } else {
3437 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3438 target_el = 2;
3440 take_exc = true;
3441 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3443 * Synchronous external aborts during a translation table walk
3444 * are taken as Data Abort exceptions.
3446 if (fi.stage2) {
3447 if (current_el == 3) {
3448 target_el = 3;
3449 } else {
3450 target_el = 2;
3452 } else {
3453 target_el = exception_target_el(env);
3455 take_exc = true;
3458 if (take_exc) {
3459 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3460 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3461 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3462 fsr = arm_fi_to_lfsc(&fi);
3463 fsc = extract32(fsr, 0, 6);
3464 } else {
3465 fsr = arm_fi_to_sfsc(&fi);
3466 fsc = 0x3f;
3469 * Report exception with ESR indicating a fault due to a
3470 * translation table walk for a cache maintenance instruction.
3472 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3473 fi.ea, 1, fi.s1ptw, 1, fsc);
3474 env->exception.vaddress = value;
3475 env->exception.fsr = fsr;
3476 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3480 if (is_a64(env)) {
3481 format64 = true;
3482 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3484 * ATS1Cxx:
3485 * * TTBCR.EAE determines whether the result is returned using the
3486 * 32-bit or the 64-bit PAR format
3487 * * Instructions executed in Hyp mode always use the 64bit format
3489 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3490 * * The Non-secure TTBCR.EAE bit is set to 1
3491 * * The implementation includes EL2, and the value of HCR.VM is 1
3493 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3495 * ATS1Hx always uses the 64bit format.
3497 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3499 if (arm_feature(env, ARM_FEATURE_EL2)) {
3500 if (mmu_idx == ARMMMUIdx_E10_0 ||
3501 mmu_idx == ARMMMUIdx_E10_1 ||
3502 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3503 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3504 } else {
3505 format64 |= arm_current_el(env) == 2;
3510 if (format64) {
3511 /* Create a 64-bit PAR */
3512 par64 = (1 << 11); /* LPAE bit always set */
3513 if (!ret) {
3514 par64 |= phys_addr & ~0xfffULL;
3515 if (!attrs.secure) {
3516 par64 |= (1 << 9); /* NS */
3518 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3519 par64 |= cacheattrs.shareability << 7; /* SH */
3520 } else {
3521 uint32_t fsr = arm_fi_to_lfsc(&fi);
3523 par64 |= 1; /* F */
3524 par64 |= (fsr & 0x3f) << 1; /* FS */
3525 if (fi.stage2) {
3526 par64 |= (1 << 9); /* S */
3528 if (fi.s1ptw) {
3529 par64 |= (1 << 8); /* PTW */
3532 } else {
3533 /* fsr is a DFSR/IFSR value for the short descriptor
3534 * translation table format (with WnR always clear).
3535 * Convert it to a 32-bit PAR.
3537 if (!ret) {
3538 /* We do not set any attribute bits in the PAR */
3539 if (page_size == (1 << 24)
3540 && arm_feature(env, ARM_FEATURE_V7)) {
3541 par64 = (phys_addr & 0xff000000) | (1 << 1);
3542 } else {
3543 par64 = phys_addr & 0xfffff000;
3545 if (!attrs.secure) {
3546 par64 |= (1 << 9); /* NS */
3548 } else {
3549 uint32_t fsr = arm_fi_to_sfsc(&fi);
3551 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3552 ((fsr & 0xf) << 1) | 1;
3555 return par64;
3557 #endif /* CONFIG_TCG */
3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3561 #ifdef CONFIG_TCG
3562 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3563 uint64_t par64;
3564 ARMMMUIdx mmu_idx;
3565 int el = arm_current_el(env);
3566 bool secure = arm_is_secure_below_el3(env);
3568 switch (ri->opc2 & 6) {
3569 case 0:
3570 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3571 switch (el) {
3572 case 3:
3573 mmu_idx = ARMMMUIdx_SE3;
3574 break;
3575 case 2:
3576 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3577 /* fall through */
3578 case 1:
3579 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3580 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3581 : ARMMMUIdx_Stage1_E1_PAN);
3582 } else {
3583 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3585 break;
3586 default:
3587 g_assert_not_reached();
3589 break;
3590 case 2:
3591 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3592 switch (el) {
3593 case 3:
3594 mmu_idx = ARMMMUIdx_SE10_0;
3595 break;
3596 case 2:
3597 mmu_idx = ARMMMUIdx_Stage1_E0;
3598 break;
3599 case 1:
3600 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3601 break;
3602 default:
3603 g_assert_not_reached();
3605 break;
3606 case 4:
3607 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3608 mmu_idx = ARMMMUIdx_E10_1;
3609 break;
3610 case 6:
3611 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3612 mmu_idx = ARMMMUIdx_E10_0;
3613 break;
3614 default:
3615 g_assert_not_reached();
3618 par64 = do_ats_write(env, value, access_type, mmu_idx);
3620 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3621 #else
3622 /* Handled by hardware accelerator. */
3623 g_assert_not_reached();
3624 #endif /* CONFIG_TCG */
3627 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3628 uint64_t value)
3630 #ifdef CONFIG_TCG
3631 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3632 uint64_t par64;
3634 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3636 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3637 #else
3638 /* Handled by hardware accelerator. */
3639 g_assert_not_reached();
3640 #endif /* CONFIG_TCG */
3643 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3644 bool isread)
3646 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3647 return CP_ACCESS_TRAP;
3649 return CP_ACCESS_OK;
3652 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3653 uint64_t value)
3655 #ifdef CONFIG_TCG
3656 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3657 ARMMMUIdx mmu_idx;
3658 int secure = arm_is_secure_below_el3(env);
3660 switch (ri->opc2 & 6) {
3661 case 0:
3662 switch (ri->opc1) {
3663 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3664 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3665 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3666 : ARMMMUIdx_Stage1_E1_PAN);
3667 } else {
3668 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3670 break;
3671 case 4: /* AT S1E2R, AT S1E2W */
3672 mmu_idx = ARMMMUIdx_E2;
3673 break;
3674 case 6: /* AT S1E3R, AT S1E3W */
3675 mmu_idx = ARMMMUIdx_SE3;
3676 break;
3677 default:
3678 g_assert_not_reached();
3680 break;
3681 case 2: /* AT S1E0R, AT S1E0W */
3682 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3683 break;
3684 case 4: /* AT S12E1R, AT S12E1W */
3685 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3686 break;
3687 case 6: /* AT S12E0R, AT S12E0W */
3688 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3689 break;
3690 default:
3691 g_assert_not_reached();
3694 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3695 #else
3696 /* Handled by hardware accelerator. */
3697 g_assert_not_reached();
3698 #endif /* CONFIG_TCG */
3700 #endif
3702 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3703 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3704 .access = PL1_RW, .resetvalue = 0,
3705 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3706 offsetoflow32(CPUARMState, cp15.par_ns) },
3707 .writefn = par_write },
3708 #ifndef CONFIG_USER_ONLY
3709 /* This underdecoding is safe because the reginfo is NO_RAW. */
3710 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3711 .access = PL1_W, .accessfn = ats_access,
3712 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3713 #endif
3714 REGINFO_SENTINEL
3717 /* Return basic MPU access permission bits. */
3718 static uint32_t simple_mpu_ap_bits(uint32_t val)
3720 uint32_t ret;
3721 uint32_t mask;
3722 int i;
3723 ret = 0;
3724 mask = 3;
3725 for (i = 0; i < 16; i += 2) {
3726 ret |= (val >> i) & mask;
3727 mask <<= 2;
3729 return ret;
3732 /* Pad basic MPU access permission bits to extended format. */
3733 static uint32_t extended_mpu_ap_bits(uint32_t val)
3735 uint32_t ret;
3736 uint32_t mask;
3737 int i;
3738 ret = 0;
3739 mask = 3;
3740 for (i = 0; i < 16; i += 2) {
3741 ret |= (val & mask) << i;
3742 mask <<= 2;
3744 return ret;
3747 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748 uint64_t value)
3750 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3753 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3755 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3758 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3759 uint64_t value)
3761 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3764 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3766 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3769 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3771 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3773 if (!u32p) {
3774 return 0;
3777 u32p += env->pmsav7.rnr[M_REG_NS];
3778 return *u32p;
3781 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3782 uint64_t value)
3784 ARMCPU *cpu = env_archcpu(env);
3785 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3787 if (!u32p) {
3788 return;
3791 u32p += env->pmsav7.rnr[M_REG_NS];
3792 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3793 *u32p = value;
3796 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3797 uint64_t value)
3799 ARMCPU *cpu = env_archcpu(env);
3800 uint32_t nrgs = cpu->pmsav7_dregion;
3802 if (value >= nrgs) {
3803 qemu_log_mask(LOG_GUEST_ERROR,
3804 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3805 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3806 return;
3809 raw_write(env, ri, value);
3812 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3813 /* Reset for all these registers is handled in arm_cpu_reset(),
3814 * because the PMSAv7 is also used by M-profile CPUs, which do
3815 * not register cpregs but still need the state to be reset.
3817 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3818 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3819 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3820 .readfn = pmsav7_read, .writefn = pmsav7_write,
3821 .resetfn = arm_cp_reset_ignore },
3822 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3823 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3824 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3825 .readfn = pmsav7_read, .writefn = pmsav7_write,
3826 .resetfn = arm_cp_reset_ignore },
3827 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3828 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3829 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3830 .readfn = pmsav7_read, .writefn = pmsav7_write,
3831 .resetfn = arm_cp_reset_ignore },
3832 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3833 .access = PL1_RW,
3834 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3835 .writefn = pmsav7_rgnr_write,
3836 .resetfn = arm_cp_reset_ignore },
3837 REGINFO_SENTINEL
3840 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3841 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3842 .access = PL1_RW, .type = ARM_CP_ALIAS,
3843 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3844 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3845 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3846 .access = PL1_RW, .type = ARM_CP_ALIAS,
3847 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3848 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3849 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3850 .access = PL1_RW,
3851 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3852 .resetvalue = 0, },
3853 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3854 .access = PL1_RW,
3855 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3856 .resetvalue = 0, },
3857 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3858 .access = PL1_RW,
3859 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3860 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3861 .access = PL1_RW,
3862 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3863 /* Protection region base and size registers */
3864 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3865 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3866 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3867 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3868 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3869 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3870 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3871 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3872 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3873 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3874 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3875 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3876 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3877 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3878 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3879 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3880 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3881 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3882 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3883 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3884 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3885 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3886 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3887 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3888 REGINFO_SENTINEL
3891 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892 uint64_t value)
3894 TCR *tcr = raw_ptr(env, ri);
3895 int maskshift = extract32(value, 0, 3);
3897 if (!arm_feature(env, ARM_FEATURE_V8)) {
3898 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3899 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3900 * using Long-desciptor translation table format */
3901 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3902 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3903 /* In an implementation that includes the Security Extensions
3904 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3905 * Short-descriptor translation table format.
3907 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3908 } else {
3909 value &= TTBCR_N;
3913 /* Update the masks corresponding to the TCR bank being written
3914 * Note that we always calculate mask and base_mask, but
3915 * they are only used for short-descriptor tables (ie if EAE is 0);
3916 * for long-descriptor tables the TCR fields are used differently
3917 * and the mask and base_mask values are meaningless.
3919 tcr->raw_tcr = value;
3920 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3921 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3924 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3925 uint64_t value)
3927 ARMCPU *cpu = env_archcpu(env);
3928 TCR *tcr = raw_ptr(env, ri);
3930 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3931 /* With LPAE the TTBCR could result in a change of ASID
3932 * via the TTBCR.A1 bit, so do a TLB flush.
3934 tlb_flush(CPU(cpu));
3936 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3937 value = deposit64(tcr->raw_tcr, 0, 32, value);
3938 vmsa_ttbcr_raw_write(env, ri, value);
3941 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3943 TCR *tcr = raw_ptr(env, ri);
3945 /* Reset both the TCR as well as the masks corresponding to the bank of
3946 * the TCR being reset.
3948 tcr->raw_tcr = 0;
3949 tcr->mask = 0;
3950 tcr->base_mask = 0xffffc000u;
3953 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3954 uint64_t value)
3956 ARMCPU *cpu = env_archcpu(env);
3957 TCR *tcr = raw_ptr(env, ri);
3959 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3960 tlb_flush(CPU(cpu));
3961 tcr->raw_tcr = value;
3964 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3965 uint64_t value)
3967 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3968 if (cpreg_field_is_64bit(ri) &&
3969 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3970 ARMCPU *cpu = env_archcpu(env);
3971 tlb_flush(CPU(cpu));
3973 raw_write(env, ri, value);
3976 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3977 uint64_t value)
3980 * If we are running with E2&0 regime, then an ASID is active.
3981 * Flush if that might be changing. Note we're not checking
3982 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3983 * holds the active ASID, only checking the field that might.
3985 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3986 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3987 tlb_flush_by_mmuidx(env_cpu(env),
3988 ARMMMUIdxBit_E20_2 |
3989 ARMMMUIdxBit_E20_2_PAN |
3990 ARMMMUIdxBit_E20_0);
3992 raw_write(env, ri, value);
3995 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3996 uint64_t value)
3998 ARMCPU *cpu = env_archcpu(env);
3999 CPUState *cs = CPU(cpu);
4002 * A change in VMID to the stage2 page table (Stage2) invalidates
4003 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4005 if (raw_read(env, ri) != value) {
4006 tlb_flush_by_mmuidx(cs,
4007 ARMMMUIdxBit_E10_1 |
4008 ARMMMUIdxBit_E10_1_PAN |
4009 ARMMMUIdxBit_E10_0);
4010 raw_write(env, ri, value);
4014 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4015 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4016 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4017 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4018 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4019 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4020 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4021 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4022 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4023 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4024 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4025 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4026 offsetof(CPUARMState, cp15.dfar_ns) } },
4027 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4028 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4029 .access = PL1_RW, .accessfn = access_tvm_trvm,
4030 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4031 .resetvalue = 0, },
4032 REGINFO_SENTINEL
4035 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4036 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4037 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4038 .access = PL1_RW, .accessfn = access_tvm_trvm,
4039 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4040 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4041 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4042 .access = PL1_RW, .accessfn = access_tvm_trvm,
4043 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4044 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4045 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4046 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4047 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4048 .access = PL1_RW, .accessfn = access_tvm_trvm,
4049 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4051 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4052 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4053 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4054 .access = PL1_RW, .accessfn = access_tvm_trvm,
4055 .writefn = vmsa_tcr_el12_write,
4056 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4057 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4058 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4059 .access = PL1_RW, .accessfn = access_tvm_trvm,
4060 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4061 .raw_writefn = vmsa_ttbcr_raw_write,
4062 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4063 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4064 REGINFO_SENTINEL
4067 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4068 * qemu tlbs nor adjusting cached masks.
4070 static const ARMCPRegInfo ttbcr2_reginfo = {
4071 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4072 .access = PL1_RW, .accessfn = access_tvm_trvm,
4073 .type = ARM_CP_ALIAS,
4074 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4075 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4078 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4079 uint64_t value)
4081 env->cp15.c15_ticonfig = value & 0xe7;
4082 /* The OS_TYPE bit in this register changes the reported CPUID! */
4083 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4084 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4087 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4088 uint64_t value)
4090 env->cp15.c15_threadid = value & 0xffff;
4093 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4094 uint64_t value)
4096 /* Wait-for-interrupt (deprecated) */
4097 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4100 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4101 uint64_t value)
4103 /* On OMAP there are registers indicating the max/min index of dcache lines
4104 * containing a dirty line; cache flush operations have to reset these.
4106 env->cp15.c15_i_max = 0x000;
4107 env->cp15.c15_i_min = 0xff0;
4110 static const ARMCPRegInfo omap_cp_reginfo[] = {
4111 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4112 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4113 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4114 .resetvalue = 0, },
4115 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4116 .access = PL1_RW, .type = ARM_CP_NOP },
4117 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4118 .access = PL1_RW,
4119 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4120 .writefn = omap_ticonfig_write },
4121 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4122 .access = PL1_RW,
4123 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4124 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4125 .access = PL1_RW, .resetvalue = 0xff0,
4126 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4127 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4128 .access = PL1_RW,
4129 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4130 .writefn = omap_threadid_write },
4131 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4132 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4133 .type = ARM_CP_NO_RAW,
4134 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4135 /* TODO: Peripheral port remap register:
4136 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4137 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4138 * when MMU is off.
4140 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4141 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4142 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4143 .writefn = omap_cachemaint_write },
4144 { .name = "C9", .cp = 15, .crn = 9,
4145 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4146 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4147 REGINFO_SENTINEL
4150 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4151 uint64_t value)
4153 env->cp15.c15_cpar = value & 0x3fff;
4156 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4157 { .name = "XSCALE_CPAR",
4158 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4159 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4160 .writefn = xscale_cpar_write, },
4161 { .name = "XSCALE_AUXCR",
4162 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4163 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4164 .resetvalue = 0, },
4165 /* XScale specific cache-lockdown: since we have no cache we NOP these
4166 * and hope the guest does not really rely on cache behaviour.
4168 { .name = "XSCALE_LOCK_ICACHE_LINE",
4169 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4170 .access = PL1_W, .type = ARM_CP_NOP },
4171 { .name = "XSCALE_UNLOCK_ICACHE",
4172 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4173 .access = PL1_W, .type = ARM_CP_NOP },
4174 { .name = "XSCALE_DCACHE_LOCK",
4175 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4176 .access = PL1_RW, .type = ARM_CP_NOP },
4177 { .name = "XSCALE_UNLOCK_DCACHE",
4178 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4179 .access = PL1_W, .type = ARM_CP_NOP },
4180 REGINFO_SENTINEL
4183 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4184 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4185 * implementation of this implementation-defined space.
4186 * Ideally this should eventually disappear in favour of actually
4187 * implementing the correct behaviour for all cores.
4189 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4190 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4191 .access = PL1_RW,
4192 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4193 .resetvalue = 0 },
4194 REGINFO_SENTINEL
4197 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4198 /* Cache status: RAZ because we have no cache so it's always clean */
4199 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4200 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4201 .resetvalue = 0 },
4202 REGINFO_SENTINEL
4205 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4206 /* We never have a a block transfer operation in progress */
4207 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4208 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4209 .resetvalue = 0 },
4210 /* The cache ops themselves: these all NOP for QEMU */
4211 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4212 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4213 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4214 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4215 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4216 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4217 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4218 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4219 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4220 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4221 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4222 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4223 REGINFO_SENTINEL
4226 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4227 /* The cache test-and-clean instructions always return (1 << 30)
4228 * to indicate that there are no dirty cache lines.
4230 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4231 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4232 .resetvalue = (1 << 30) },
4233 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4234 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4235 .resetvalue = (1 << 30) },
4236 REGINFO_SENTINEL
4239 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4240 /* Ignore ReadBuffer accesses */
4241 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4242 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4243 .access = PL1_RW, .resetvalue = 0,
4244 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4245 REGINFO_SENTINEL
4248 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4250 ARMCPU *cpu = env_archcpu(env);
4251 unsigned int cur_el = arm_current_el(env);
4252 bool secure = arm_is_secure(env);
4254 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4255 return env->cp15.vpidr_el2;
4257 return raw_read(env, ri);
4260 static uint64_t mpidr_read_val(CPUARMState *env)
4262 ARMCPU *cpu = env_archcpu(env);
4263 uint64_t mpidr = cpu->mp_affinity;
4265 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4266 mpidr |= (1U << 31);
4267 /* Cores which are uniprocessor (non-coherent)
4268 * but still implement the MP extensions set
4269 * bit 30. (For instance, Cortex-R5).
4271 if (cpu->mp_is_up) {
4272 mpidr |= (1u << 30);
4275 return mpidr;
4278 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4280 unsigned int cur_el = arm_current_el(env);
4281 bool secure = arm_is_secure(env);
4283 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4284 return env->cp15.vmpidr_el2;
4286 return mpidr_read_val(env);
4289 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4290 /* NOP AMAIR0/1 */
4291 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4292 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4293 .access = PL1_RW, .accessfn = access_tvm_trvm,
4294 .type = ARM_CP_CONST, .resetvalue = 0 },
4295 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4296 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4297 .access = PL1_RW, .accessfn = access_tvm_trvm,
4298 .type = ARM_CP_CONST, .resetvalue = 0 },
4299 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4300 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4301 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4302 offsetof(CPUARMState, cp15.par_ns)} },
4303 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4304 .access = PL1_RW, .accessfn = access_tvm_trvm,
4305 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4306 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4307 offsetof(CPUARMState, cp15.ttbr0_ns) },
4308 .writefn = vmsa_ttbr_write, },
4309 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4310 .access = PL1_RW, .accessfn = access_tvm_trvm,
4311 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4312 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4313 offsetof(CPUARMState, cp15.ttbr1_ns) },
4314 .writefn = vmsa_ttbr_write, },
4315 REGINFO_SENTINEL
4318 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4320 return vfp_get_fpcr(env);
4323 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324 uint64_t value)
4326 vfp_set_fpcr(env, value);
4329 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4331 return vfp_get_fpsr(env);
4334 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4335 uint64_t value)
4337 vfp_set_fpsr(env, value);
4340 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4341 bool isread)
4343 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4344 return CP_ACCESS_TRAP;
4346 return CP_ACCESS_OK;
4349 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4350 uint64_t value)
4352 env->daif = value & PSTATE_DAIF;
4355 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4357 return env->pstate & PSTATE_PAN;
4360 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4361 uint64_t value)
4363 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4366 static const ARMCPRegInfo pan_reginfo = {
4367 .name = "PAN", .state = ARM_CP_STATE_AA64,
4368 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4369 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4370 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4373 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4375 return env->pstate & PSTATE_UAO;
4378 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4379 uint64_t value)
4381 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4384 static const ARMCPRegInfo uao_reginfo = {
4385 .name = "UAO", .state = ARM_CP_STATE_AA64,
4386 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4387 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4388 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4391 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4392 const ARMCPRegInfo *ri,
4393 bool isread)
4395 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4396 switch (arm_current_el(env)) {
4397 case 0:
4398 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4399 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4400 return CP_ACCESS_TRAP;
4402 /* fall through */
4403 case 1:
4404 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4405 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4406 return CP_ACCESS_TRAP_EL2;
4408 break;
4410 return CP_ACCESS_OK;
4413 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4414 const ARMCPRegInfo *ri,
4415 bool isread)
4417 /* Cache invalidate/clean to Point of Unification... */
4418 switch (arm_current_el(env)) {
4419 case 0:
4420 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4421 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4422 return CP_ACCESS_TRAP;
4424 /* fall through */
4425 case 1:
4426 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4427 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4428 return CP_ACCESS_TRAP_EL2;
4430 break;
4432 return CP_ACCESS_OK;
4435 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4436 * Page D4-1736 (DDI0487A.b)
4439 static int vae1_tlbmask(CPUARMState *env)
4441 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4442 if (arm_is_secure_below_el3(env)) {
4443 return ARMMMUIdxBit_SE10_1 |
4444 ARMMMUIdxBit_SE10_1_PAN |
4445 ARMMMUIdxBit_SE10_0;
4446 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4447 == (HCR_E2H | HCR_TGE)) {
4448 return ARMMMUIdxBit_E20_2 |
4449 ARMMMUIdxBit_E20_2_PAN |
4450 ARMMMUIdxBit_E20_0;
4451 } else {
4452 return ARMMMUIdxBit_E10_1 |
4453 ARMMMUIdxBit_E10_1_PAN |
4454 ARMMMUIdxBit_E10_0;
4458 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459 uint64_t value)
4461 CPUState *cs = env_cpu(env);
4462 int mask = vae1_tlbmask(env);
4464 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4467 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468 uint64_t value)
4470 CPUState *cs = env_cpu(env);
4471 int mask = vae1_tlbmask(env);
4473 if (tlb_force_broadcast(env)) {
4474 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4475 } else {
4476 tlb_flush_by_mmuidx(cs, mask);
4480 static int alle1_tlbmask(CPUARMState *env)
4483 * Note that the 'ALL' scope must invalidate both stage 1 and
4484 * stage 2 translations, whereas most other scopes only invalidate
4485 * stage 1 translations.
4487 if (arm_is_secure_below_el3(env)) {
4488 return ARMMMUIdxBit_SE10_1 |
4489 ARMMMUIdxBit_SE10_1_PAN |
4490 ARMMMUIdxBit_SE10_0;
4491 } else {
4492 return ARMMMUIdxBit_E10_1 |
4493 ARMMMUIdxBit_E10_1_PAN |
4494 ARMMMUIdxBit_E10_0;
4498 static int e2_tlbmask(CPUARMState *env)
4500 /* TODO: ARMv8.4-SecEL2 */
4501 return ARMMMUIdxBit_E20_0 |
4502 ARMMMUIdxBit_E20_2 |
4503 ARMMMUIdxBit_E20_2_PAN |
4504 ARMMMUIdxBit_E2;
4507 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4508 uint64_t value)
4510 CPUState *cs = env_cpu(env);
4511 int mask = alle1_tlbmask(env);
4513 tlb_flush_by_mmuidx(cs, mask);
4516 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4517 uint64_t value)
4519 CPUState *cs = env_cpu(env);
4520 int mask = e2_tlbmask(env);
4522 tlb_flush_by_mmuidx(cs, mask);
4525 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4526 uint64_t value)
4528 ARMCPU *cpu = env_archcpu(env);
4529 CPUState *cs = CPU(cpu);
4531 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4534 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4535 uint64_t value)
4537 CPUState *cs = env_cpu(env);
4538 int mask = alle1_tlbmask(env);
4540 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4543 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4544 uint64_t value)
4546 CPUState *cs = env_cpu(env);
4547 int mask = e2_tlbmask(env);
4549 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4552 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4553 uint64_t value)
4555 CPUState *cs = env_cpu(env);
4557 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4560 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4561 uint64_t value)
4563 /* Invalidate by VA, EL2
4564 * Currently handles both VAE2 and VALE2, since we don't support
4565 * flush-last-level-only.
4567 CPUState *cs = env_cpu(env);
4568 int mask = e2_tlbmask(env);
4569 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4571 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4574 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4575 uint64_t value)
4577 /* Invalidate by VA, EL3
4578 * Currently handles both VAE3 and VALE3, since we don't support
4579 * flush-last-level-only.
4581 ARMCPU *cpu = env_archcpu(env);
4582 CPUState *cs = CPU(cpu);
4583 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4585 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4588 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4589 uint64_t value)
4591 CPUState *cs = env_cpu(env);
4592 int mask = vae1_tlbmask(env);
4593 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4595 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4598 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4599 uint64_t value)
4601 /* Invalidate by VA, EL1&0 (AArch64 version).
4602 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4603 * since we don't support flush-for-specific-ASID-only or
4604 * flush-last-level-only.
4606 CPUState *cs = env_cpu(env);
4607 int mask = vae1_tlbmask(env);
4608 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4610 if (tlb_force_broadcast(env)) {
4611 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4612 } else {
4613 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4617 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4618 uint64_t value)
4620 CPUState *cs = env_cpu(env);
4621 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4624 ARMMMUIdxBit_E2);
4627 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4628 uint64_t value)
4630 CPUState *cs = env_cpu(env);
4631 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4633 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4634 ARMMMUIdxBit_SE3);
4637 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4638 bool isread)
4640 int cur_el = arm_current_el(env);
4642 if (cur_el < 2) {
4643 uint64_t hcr = arm_hcr_el2_eff(env);
4645 if (cur_el == 0) {
4646 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4647 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4648 return CP_ACCESS_TRAP_EL2;
4650 } else {
4651 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4652 return CP_ACCESS_TRAP;
4654 if (hcr & HCR_TDZ) {
4655 return CP_ACCESS_TRAP_EL2;
4658 } else if (hcr & HCR_TDZ) {
4659 return CP_ACCESS_TRAP_EL2;
4662 return CP_ACCESS_OK;
4665 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4667 ARMCPU *cpu = env_archcpu(env);
4668 int dzp_bit = 1 << 4;
4670 /* DZP indicates whether DC ZVA access is allowed */
4671 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4672 dzp_bit = 0;
4674 return cpu->dcz_blocksize | dzp_bit;
4677 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4678 bool isread)
4680 if (!(env->pstate & PSTATE_SP)) {
4681 /* Access to SP_EL0 is undefined if it's being used as
4682 * the stack pointer.
4684 return CP_ACCESS_TRAP_UNCATEGORIZED;
4686 return CP_ACCESS_OK;
4689 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4691 return env->pstate & PSTATE_SP;
4694 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4696 update_spsel(env, val);
4699 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4700 uint64_t value)
4702 ARMCPU *cpu = env_archcpu(env);
4704 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4705 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4706 value &= ~SCTLR_M;
4709 /* ??? Lots of these bits are not implemented. */
4711 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4712 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4713 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4714 } else {
4715 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4716 SCTLR_ATA0 | SCTLR_ATA);
4720 if (raw_read(env, ri) == value) {
4721 /* Skip the TLB flush if nothing actually changed; Linux likes
4722 * to do a lot of pointless SCTLR writes.
4724 return;
4727 raw_write(env, ri, value);
4729 /* This may enable/disable the MMU, so do a TLB flush. */
4730 tlb_flush(CPU(cpu));
4732 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4734 * Normally we would always end the TB on an SCTLR write; see the
4735 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4736 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4737 * of hflags from the translator, so do it here.
4739 arm_rebuild_hflags(env);
4743 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4744 bool isread)
4746 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4747 return CP_ACCESS_TRAP_FP_EL2;
4749 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4750 return CP_ACCESS_TRAP_FP_EL3;
4752 return CP_ACCESS_OK;
4755 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4756 uint64_t value)
4758 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4761 static const ARMCPRegInfo v8_cp_reginfo[] = {
4762 /* Minimal set of EL0-visible registers. This will need to be expanded
4763 * significantly for system emulation of AArch64 CPUs.
4765 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4766 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4767 .access = PL0_RW, .type = ARM_CP_NZCV },
4768 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4769 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4770 .type = ARM_CP_NO_RAW,
4771 .access = PL0_RW, .accessfn = aa64_daif_access,
4772 .fieldoffset = offsetof(CPUARMState, daif),
4773 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4774 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4775 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4776 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4777 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4778 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4779 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4780 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4781 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4782 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4783 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4784 .access = PL0_R, .type = ARM_CP_NO_RAW,
4785 .readfn = aa64_dczid_read },
4786 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4787 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4788 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4789 #ifndef CONFIG_USER_ONLY
4790 /* Avoid overhead of an access check that always passes in user-mode */
4791 .accessfn = aa64_zva_access,
4792 #endif
4794 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4795 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4796 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4797 /* Cache ops: all NOPs since we don't emulate caches */
4798 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4799 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4800 .access = PL1_W, .type = ARM_CP_NOP,
4801 .accessfn = aa64_cacheop_pou_access },
4802 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4803 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4804 .access = PL1_W, .type = ARM_CP_NOP,
4805 .accessfn = aa64_cacheop_pou_access },
4806 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4807 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4808 .access = PL0_W, .type = ARM_CP_NOP,
4809 .accessfn = aa64_cacheop_pou_access },
4810 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4811 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4812 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4813 .type = ARM_CP_NOP },
4814 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4815 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4816 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4817 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4818 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4819 .access = PL0_W, .type = ARM_CP_NOP,
4820 .accessfn = aa64_cacheop_poc_access },
4821 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4822 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4823 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4824 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4825 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4826 .access = PL0_W, .type = ARM_CP_NOP,
4827 .accessfn = aa64_cacheop_pou_access },
4828 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4829 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4830 .access = PL0_W, .type = ARM_CP_NOP,
4831 .accessfn = aa64_cacheop_poc_access },
4832 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4833 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4834 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4835 /* TLBI operations */
4836 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4838 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4839 .writefn = tlbi_aa64_vmalle1is_write },
4840 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4841 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4842 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4843 .writefn = tlbi_aa64_vae1is_write },
4844 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4846 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4847 .writefn = tlbi_aa64_vmalle1is_write },
4848 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4850 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4851 .writefn = tlbi_aa64_vae1is_write },
4852 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4853 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4854 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4855 .writefn = tlbi_aa64_vae1is_write },
4856 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4858 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4859 .writefn = tlbi_aa64_vae1is_write },
4860 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4861 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4862 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4863 .writefn = tlbi_aa64_vmalle1_write },
4864 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4865 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4866 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4867 .writefn = tlbi_aa64_vae1_write },
4868 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4870 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4871 .writefn = tlbi_aa64_vmalle1_write },
4872 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4875 .writefn = tlbi_aa64_vae1_write },
4876 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4879 .writefn = tlbi_aa64_vae1_write },
4880 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883 .writefn = tlbi_aa64_vae1_write },
4884 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4885 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4886 .access = PL2_W, .type = ARM_CP_NOP },
4887 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4888 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4889 .access = PL2_W, .type = ARM_CP_NOP },
4890 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4892 .access = PL2_W, .type = ARM_CP_NO_RAW,
4893 .writefn = tlbi_aa64_alle1is_write },
4894 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4896 .access = PL2_W, .type = ARM_CP_NO_RAW,
4897 .writefn = tlbi_aa64_alle1is_write },
4898 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4900 .access = PL2_W, .type = ARM_CP_NOP },
4901 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4903 .access = PL2_W, .type = ARM_CP_NOP },
4904 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4905 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4906 .access = PL2_W, .type = ARM_CP_NO_RAW,
4907 .writefn = tlbi_aa64_alle1_write },
4908 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4909 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4910 .access = PL2_W, .type = ARM_CP_NO_RAW,
4911 .writefn = tlbi_aa64_alle1is_write },
4912 #ifndef CONFIG_USER_ONLY
4913 /* 64 bit address translation operations */
4914 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4915 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4916 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4917 .writefn = ats_write64 },
4918 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4919 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4920 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4921 .writefn = ats_write64 },
4922 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4923 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4924 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4925 .writefn = ats_write64 },
4926 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4927 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4928 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4929 .writefn = ats_write64 },
4930 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4931 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4932 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4933 .writefn = ats_write64 },
4934 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4935 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4936 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4937 .writefn = ats_write64 },
4938 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4939 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4940 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4941 .writefn = ats_write64 },
4942 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4943 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4945 .writefn = ats_write64 },
4946 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4947 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4948 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4949 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4950 .writefn = ats_write64 },
4951 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4952 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4953 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4954 .writefn = ats_write64 },
4955 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4956 .type = ARM_CP_ALIAS,
4957 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4958 .access = PL1_RW, .resetvalue = 0,
4959 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4960 .writefn = par_write },
4961 #endif
4962 /* TLB invalidate last level of translation table walk */
4963 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4964 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4965 .writefn = tlbimva_is_write },
4966 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4967 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4968 .writefn = tlbimvaa_is_write },
4969 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4970 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4971 .writefn = tlbimva_write },
4972 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4973 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4974 .writefn = tlbimvaa_write },
4975 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4976 .type = ARM_CP_NO_RAW, .access = PL2_W,
4977 .writefn = tlbimva_hyp_write },
4978 { .name = "TLBIMVALHIS",
4979 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4980 .type = ARM_CP_NO_RAW, .access = PL2_W,
4981 .writefn = tlbimva_hyp_is_write },
4982 { .name = "TLBIIPAS2",
4983 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4984 .type = ARM_CP_NOP, .access = PL2_W },
4985 { .name = "TLBIIPAS2IS",
4986 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4987 .type = ARM_CP_NOP, .access = PL2_W },
4988 { .name = "TLBIIPAS2L",
4989 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4990 .type = ARM_CP_NOP, .access = PL2_W },
4991 { .name = "TLBIIPAS2LIS",
4992 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4993 .type = ARM_CP_NOP, .access = PL2_W },
4994 /* 32 bit cache operations */
4995 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4996 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4997 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4998 .type = ARM_CP_NOP, .access = PL1_W },
4999 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5000 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5001 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5002 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5003 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5004 .type = ARM_CP_NOP, .access = PL1_W },
5005 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5006 .type = ARM_CP_NOP, .access = PL1_W },
5007 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5008 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5009 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5011 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5013 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5015 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5017 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5019 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5021 /* MMU Domain access control / MPU write buffer control */
5022 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5023 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5024 .writefn = dacr_write, .raw_writefn = raw_write,
5025 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5026 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5027 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5028 .type = ARM_CP_ALIAS,
5029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5030 .access = PL1_RW,
5031 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5032 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5033 .type = ARM_CP_ALIAS,
5034 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5035 .access = PL1_RW,
5036 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5037 /* We rely on the access checks not allowing the guest to write to the
5038 * state field when SPSel indicates that it's being used as the stack
5039 * pointer.
5041 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5043 .access = PL1_RW, .accessfn = sp_el0_access,
5044 .type = ARM_CP_ALIAS,
5045 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5046 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5047 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5048 .access = PL2_RW, .type = ARM_CP_ALIAS,
5049 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5050 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5051 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5052 .type = ARM_CP_NO_RAW,
5053 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5054 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5055 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5056 .type = ARM_CP_ALIAS,
5057 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5058 .access = PL2_RW, .accessfn = fpexc32_access },
5059 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5060 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5061 .access = PL2_RW, .resetvalue = 0,
5062 .writefn = dacr_write, .raw_writefn = raw_write,
5063 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5064 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5065 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5066 .access = PL2_RW, .resetvalue = 0,
5067 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5068 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5069 .type = ARM_CP_ALIAS,
5070 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5071 .access = PL2_RW,
5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5073 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5074 .type = ARM_CP_ALIAS,
5075 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5076 .access = PL2_RW,
5077 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5078 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5079 .type = ARM_CP_ALIAS,
5080 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5081 .access = PL2_RW,
5082 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5083 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5084 .type = ARM_CP_ALIAS,
5085 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5086 .access = PL2_RW,
5087 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5088 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5089 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5090 .resetvalue = 0,
5091 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5092 { .name = "SDCR", .type = ARM_CP_ALIAS,
5093 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5094 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5095 .writefn = sdcr_write,
5096 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5097 REGINFO_SENTINEL
5100 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5101 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5102 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5103 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5104 .access = PL2_RW,
5105 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5106 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5107 .type = ARM_CP_NO_RAW,
5108 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5109 .access = PL2_RW,
5110 .type = ARM_CP_CONST, .resetvalue = 0 },
5111 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5112 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5113 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5114 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5115 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5116 .access = PL2_RW,
5117 .type = ARM_CP_CONST, .resetvalue = 0 },
5118 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5119 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5120 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5121 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5122 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5123 .access = PL2_RW, .type = ARM_CP_CONST,
5124 .resetvalue = 0 },
5125 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5126 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5127 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5128 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5129 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5130 .access = PL2_RW, .type = ARM_CP_CONST,
5131 .resetvalue = 0 },
5132 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5133 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5134 .access = PL2_RW, .type = ARM_CP_CONST,
5135 .resetvalue = 0 },
5136 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5137 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5138 .access = PL2_RW, .type = ARM_CP_CONST,
5139 .resetvalue = 0 },
5140 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5142 .access = PL2_RW, .type = ARM_CP_CONST,
5143 .resetvalue = 0 },
5144 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5145 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5148 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5149 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5150 .type = ARM_CP_CONST, .resetvalue = 0 },
5151 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5152 .cp = 15, .opc1 = 6, .crm = 2,
5153 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5154 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5155 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5158 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5159 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5161 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5162 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5163 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5164 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5168 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5169 .resetvalue = 0 },
5170 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5172 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5173 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5176 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5177 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5178 .resetvalue = 0 },
5179 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5180 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5181 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5182 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5183 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5184 .resetvalue = 0 },
5185 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5186 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5188 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5189 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5191 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5193 .access = PL2_RW, .accessfn = access_tda,
5194 .type = ARM_CP_CONST, .resetvalue = 0 },
5195 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5196 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5197 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5198 .type = ARM_CP_CONST, .resetvalue = 0 },
5199 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5202 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5203 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5205 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5206 .type = ARM_CP_CONST,
5207 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5208 .access = PL2_RW, .resetvalue = 0 },
5209 REGINFO_SENTINEL
5212 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5213 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5214 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5215 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5216 .access = PL2_RW,
5217 .type = ARM_CP_CONST, .resetvalue = 0 },
5218 REGINFO_SENTINEL
5221 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5223 ARMCPU *cpu = env_archcpu(env);
5225 if (arm_feature(env, ARM_FEATURE_V8)) {
5226 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5227 } else {
5228 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5231 if (arm_feature(env, ARM_FEATURE_EL3)) {
5232 valid_mask &= ~HCR_HCD;
5233 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5234 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5235 * However, if we're using the SMC PSCI conduit then QEMU is
5236 * effectively acting like EL3 firmware and so the guest at
5237 * EL2 should retain the ability to prevent EL1 from being
5238 * able to make SMC calls into the ersatz firmware, so in
5239 * that case HCR.TSC should be read/write.
5241 valid_mask &= ~HCR_TSC;
5244 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5245 if (cpu_isar_feature(aa64_vh, cpu)) {
5246 valid_mask |= HCR_E2H;
5248 if (cpu_isar_feature(aa64_lor, cpu)) {
5249 valid_mask |= HCR_TLOR;
5251 if (cpu_isar_feature(aa64_pauth, cpu)) {
5252 valid_mask |= HCR_API | HCR_APK;
5254 if (cpu_isar_feature(aa64_mte, cpu)) {
5255 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5259 /* Clear RES0 bits. */
5260 value &= valid_mask;
5263 * These bits change the MMU setup:
5264 * HCR_VM enables stage 2 translation
5265 * HCR_PTW forbids certain page-table setups
5266 * HCR_DC disables stage1 and enables stage2 translation
5267 * HCR_DCT enables tagging on (disabled) stage1 translation
5269 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5270 tlb_flush(CPU(cpu));
5272 env->cp15.hcr_el2 = value;
5275 * Updates to VI and VF require us to update the status of
5276 * virtual interrupts, which are the logical OR of these bits
5277 * and the state of the input lines from the GIC. (This requires
5278 * that we have the iothread lock, which is done by marking the
5279 * reginfo structs as ARM_CP_IO.)
5280 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5281 * possible for it to be taken immediately, because VIRQ and
5282 * VFIQ are masked unless running at EL0 or EL1, and HCR
5283 * can only be written at EL2.
5285 g_assert(qemu_mutex_iothread_locked());
5286 arm_cpu_update_virq(cpu);
5287 arm_cpu_update_vfiq(cpu);
5290 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5292 do_hcr_write(env, value, 0);
5295 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5296 uint64_t value)
5298 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5299 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5300 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5303 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5304 uint64_t value)
5306 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5307 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5308 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5312 * Return the effective value of HCR_EL2.
5313 * Bits that are not included here:
5314 * RW (read from SCR_EL3.RW as needed)
5316 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5318 uint64_t ret = env->cp15.hcr_el2;
5320 if (arm_is_secure_below_el3(env)) {
5322 * "This register has no effect if EL2 is not enabled in the
5323 * current Security state". This is ARMv8.4-SecEL2 speak for
5324 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5326 * Prior to that, the language was "In an implementation that
5327 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5328 * as if this field is 0 for all purposes other than a direct
5329 * read or write access of HCR_EL2". With lots of enumeration
5330 * on a per-field basis. In current QEMU, this is condition
5331 * is arm_is_secure_below_el3.
5333 * Since the v8.4 language applies to the entire register, and
5334 * appears to be backward compatible, use that.
5336 return 0;
5340 * For a cpu that supports both aarch64 and aarch32, we can set bits
5341 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5342 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5344 if (!arm_el_is_aa64(env, 2)) {
5345 uint64_t aa32_valid;
5348 * These bits are up-to-date as of ARMv8.6.
5349 * For HCR, it's easiest to list just the 2 bits that are invalid.
5350 * For HCR2, list those that are valid.
5352 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5353 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5354 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5355 ret &= aa32_valid;
5358 if (ret & HCR_TGE) {
5359 /* These bits are up-to-date as of ARMv8.6. */
5360 if (ret & HCR_E2H) {
5361 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5362 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5363 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5364 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5365 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5366 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5367 } else {
5368 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5370 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5371 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5372 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5373 HCR_TLOR);
5376 return ret;
5379 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5380 uint64_t value)
5383 * For A-profile AArch32 EL3, if NSACR.CP10
5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5386 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5387 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5388 value &= ~(0x3 << 10);
5389 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5391 env->cp15.cptr_el[2] = value;
5394 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5397 * For A-profile AArch32 EL3, if NSACR.CP10
5398 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5400 uint64_t value = env->cp15.cptr_el[2];
5402 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5403 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5404 value |= 0x3 << 10;
5406 return value;
5409 static const ARMCPRegInfo el2_cp_reginfo[] = {
5410 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5411 .type = ARM_CP_IO,
5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5414 .writefn = hcr_write },
5415 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5416 .type = ARM_CP_ALIAS | ARM_CP_IO,
5417 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5419 .writefn = hcr_writelow },
5420 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5421 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5422 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5423 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5424 .type = ARM_CP_ALIAS,
5425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5426 .access = PL2_RW,
5427 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5428 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5429 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5431 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5432 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5434 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5435 .type = ARM_CP_ALIAS,
5436 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5437 .access = PL2_RW,
5438 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5439 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5440 .type = ARM_CP_ALIAS,
5441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5442 .access = PL2_RW,
5443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5446 .access = PL2_RW, .writefn = vbar_write,
5447 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5448 .resetvalue = 0 },
5449 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5451 .access = PL3_RW, .type = ARM_CP_ALIAS,
5452 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5453 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5455 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5456 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5457 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5458 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5459 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5461 .resetvalue = 0 },
5462 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5463 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5464 .access = PL2_RW, .type = ARM_CP_ALIAS,
5465 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5466 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5467 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5468 .access = PL2_RW, .type = ARM_CP_CONST,
5469 .resetvalue = 0 },
5470 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5471 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5472 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5473 .access = PL2_RW, .type = ARM_CP_CONST,
5474 .resetvalue = 0 },
5475 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5477 .access = PL2_RW, .type = ARM_CP_CONST,
5478 .resetvalue = 0 },
5479 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5481 .access = PL2_RW, .type = ARM_CP_CONST,
5482 .resetvalue = 0 },
5483 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5485 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5486 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5487 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5488 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5489 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5490 .type = ARM_CP_ALIAS,
5491 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5492 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5493 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5494 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5495 .access = PL2_RW,
5496 /* no .writefn needed as this can't cause an ASID change;
5497 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5499 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5500 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5501 .cp = 15, .opc1 = 6, .crm = 2,
5502 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5503 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5504 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5505 .writefn = vttbr_write },
5506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5508 .access = PL2_RW, .writefn = vttbr_write,
5509 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5510 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5512 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5513 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5514 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5515 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5516 .access = PL2_RW, .resetvalue = 0,
5517 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5518 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5519 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5520 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5521 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5522 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5523 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5524 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5525 { .name = "TLBIALLNSNH",
5526 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5527 .type = ARM_CP_NO_RAW, .access = PL2_W,
5528 .writefn = tlbiall_nsnh_write },
5529 { .name = "TLBIALLNSNHIS",
5530 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5531 .type = ARM_CP_NO_RAW, .access = PL2_W,
5532 .writefn = tlbiall_nsnh_is_write },
5533 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5534 .type = ARM_CP_NO_RAW, .access = PL2_W,
5535 .writefn = tlbiall_hyp_write },
5536 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5537 .type = ARM_CP_NO_RAW, .access = PL2_W,
5538 .writefn = tlbiall_hyp_is_write },
5539 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5540 .type = ARM_CP_NO_RAW, .access = PL2_W,
5541 .writefn = tlbimva_hyp_write },
5542 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5543 .type = ARM_CP_NO_RAW, .access = PL2_W,
5544 .writefn = tlbimva_hyp_is_write },
5545 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5547 .type = ARM_CP_NO_RAW, .access = PL2_W,
5548 .writefn = tlbi_aa64_alle2_write },
5549 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5550 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5551 .type = ARM_CP_NO_RAW, .access = PL2_W,
5552 .writefn = tlbi_aa64_vae2_write },
5553 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5554 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5555 .access = PL2_W, .type = ARM_CP_NO_RAW,
5556 .writefn = tlbi_aa64_vae2_write },
5557 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5559 .access = PL2_W, .type = ARM_CP_NO_RAW,
5560 .writefn = tlbi_aa64_alle2is_write },
5561 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5563 .type = ARM_CP_NO_RAW, .access = PL2_W,
5564 .writefn = tlbi_aa64_vae2is_write },
5565 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5567 .access = PL2_W, .type = ARM_CP_NO_RAW,
5568 .writefn = tlbi_aa64_vae2is_write },
5569 #ifndef CONFIG_USER_ONLY
5570 /* Unlike the other EL2-related AT operations, these must
5571 * UNDEF from EL3 if EL2 is not implemented, which is why we
5572 * define them here rather than with the rest of the AT ops.
5574 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5576 .access = PL2_W, .accessfn = at_s1e2_access,
5577 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5578 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5579 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5580 .access = PL2_W, .accessfn = at_s1e2_access,
5581 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5582 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5583 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5584 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5585 * to behave as if SCR.NS was 1.
5587 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5588 .access = PL2_W,
5589 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5590 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5591 .access = PL2_W,
5592 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5593 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5594 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5595 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5596 * reset values as IMPDEF. We choose to reset to 3 to comply with
5597 * both ARMv7 and ARMv8.
5599 .access = PL2_RW, .resetvalue = 3,
5600 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5601 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5603 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5604 .writefn = gt_cntvoff_write,
5605 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5606 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5607 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5608 .writefn = gt_cntvoff_write,
5609 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5610 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5611 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5612 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5613 .type = ARM_CP_IO, .access = PL2_RW,
5614 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5615 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5616 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5617 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5618 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5619 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5621 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5622 .resetfn = gt_hyp_timer_reset,
5623 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5624 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5625 .type = ARM_CP_IO,
5626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5627 .access = PL2_RW,
5628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5629 .resetvalue = 0,
5630 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5631 #endif
5632 /* The only field of MDCR_EL2 that has a defined architectural reset value
5633 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5634 * don't implement any PMU event counters, so using zero as a reset
5635 * value for MDCR_EL2 is okay
5637 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5639 .access = PL2_RW, .resetvalue = 0,
5640 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5641 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5642 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5643 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5644 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5645 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5646 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5647 .access = PL2_RW,
5648 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5649 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5650 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5651 .access = PL2_RW,
5652 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5653 REGINFO_SENTINEL
5656 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5657 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5658 .type = ARM_CP_ALIAS | ARM_CP_IO,
5659 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5660 .access = PL2_RW,
5661 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5662 .writefn = hcr_writehigh },
5663 REGINFO_SENTINEL
5666 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5667 bool isread)
5669 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5670 * At Secure EL1 it traps to EL3.
5672 if (arm_current_el(env) == 3) {
5673 return CP_ACCESS_OK;
5675 if (arm_is_secure_below_el3(env)) {
5676 return CP_ACCESS_TRAP_EL3;
5678 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5679 if (isread) {
5680 return CP_ACCESS_OK;
5682 return CP_ACCESS_TRAP_UNCATEGORIZED;
5685 static const ARMCPRegInfo el3_cp_reginfo[] = {
5686 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5688 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5689 .resetvalue = 0, .writefn = scr_write },
5690 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5692 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5693 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5694 .writefn = scr_write },
5695 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5696 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5697 .access = PL3_RW, .resetvalue = 0,
5698 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5699 { .name = "SDER",
5700 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5701 .access = PL3_RW, .resetvalue = 0,
5702 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5703 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5704 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5705 .writefn = vbar_write, .resetvalue = 0,
5706 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5707 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5708 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5709 .access = PL3_RW, .resetvalue = 0,
5710 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5711 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5712 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5713 .access = PL3_RW,
5714 /* no .writefn needed as this can't cause an ASID change;
5715 * we must provide a .raw_writefn and .resetfn because we handle
5716 * reset and migration for the AArch32 TTBCR(S), which might be
5717 * using mask and base_mask.
5719 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5720 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5721 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5722 .type = ARM_CP_ALIAS,
5723 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5724 .access = PL3_RW,
5725 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5726 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5727 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5729 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5731 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5732 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5733 .type = ARM_CP_ALIAS,
5734 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5735 .access = PL3_RW,
5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5737 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5739 .access = PL3_RW, .writefn = vbar_write,
5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5741 .resetvalue = 0 },
5742 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5744 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5745 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5746 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5748 .access = PL3_RW, .resetvalue = 0,
5749 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5750 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5752 .access = PL3_RW, .type = ARM_CP_CONST,
5753 .resetvalue = 0 },
5754 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5755 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5756 .access = PL3_RW, .type = ARM_CP_CONST,
5757 .resetvalue = 0 },
5758 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5759 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5760 .access = PL3_RW, .type = ARM_CP_CONST,
5761 .resetvalue = 0 },
5762 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5764 .access = PL3_W, .type = ARM_CP_NO_RAW,
5765 .writefn = tlbi_aa64_alle3is_write },
5766 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5767 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5768 .access = PL3_W, .type = ARM_CP_NO_RAW,
5769 .writefn = tlbi_aa64_vae3is_write },
5770 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5771 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5772 .access = PL3_W, .type = ARM_CP_NO_RAW,
5773 .writefn = tlbi_aa64_vae3is_write },
5774 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5775 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5776 .access = PL3_W, .type = ARM_CP_NO_RAW,
5777 .writefn = tlbi_aa64_alle3_write },
5778 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5779 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5780 .access = PL3_W, .type = ARM_CP_NO_RAW,
5781 .writefn = tlbi_aa64_vae3_write },
5782 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5784 .access = PL3_W, .type = ARM_CP_NO_RAW,
5785 .writefn = tlbi_aa64_vae3_write },
5786 REGINFO_SENTINEL
5789 #ifndef CONFIG_USER_ONLY
5790 /* Test if system register redirection is to occur in the current state. */
5791 static bool redirect_for_e2h(CPUARMState *env)
5793 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5796 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5798 CPReadFn *readfn;
5800 if (redirect_for_e2h(env)) {
5801 /* Switch to the saved EL2 version of the register. */
5802 ri = ri->opaque;
5803 readfn = ri->readfn;
5804 } else {
5805 readfn = ri->orig_readfn;
5807 if (readfn == NULL) {
5808 readfn = raw_read;
5810 return readfn(env, ri);
5813 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5814 uint64_t value)
5816 CPWriteFn *writefn;
5818 if (redirect_for_e2h(env)) {
5819 /* Switch to the saved EL2 version of the register. */
5820 ri = ri->opaque;
5821 writefn = ri->writefn;
5822 } else {
5823 writefn = ri->orig_writefn;
5825 if (writefn == NULL) {
5826 writefn = raw_write;
5828 writefn(env, ri, value);
5831 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5833 struct E2HAlias {
5834 uint32_t src_key, dst_key, new_key;
5835 const char *src_name, *dst_name, *new_name;
5836 bool (*feature)(const ARMISARegisters *id);
5839 #define K(op0, op1, crn, crm, op2) \
5840 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5842 static const struct E2HAlias aliases[] = {
5843 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5844 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5845 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5846 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5847 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5848 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5849 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5850 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5851 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5852 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5853 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5854 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5855 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5856 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5857 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5858 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5859 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5860 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5861 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5862 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5863 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5864 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5865 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5866 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5867 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5868 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5869 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5870 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5871 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5872 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5873 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5874 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5877 * Note that redirection of ZCR is mentioned in the description
5878 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5879 * not in the summary table.
5881 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5882 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5884 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5885 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5887 #undef K
5889 size_t i;
5891 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5892 const struct E2HAlias *a = &aliases[i];
5893 ARMCPRegInfo *src_reg, *dst_reg;
5895 if (a->feature && !a->feature(&cpu->isar)) {
5896 continue;
5899 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5900 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5901 g_assert(src_reg != NULL);
5902 g_assert(dst_reg != NULL);
5904 /* Cross-compare names to detect typos in the keys. */
5905 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5906 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5908 /* None of the core system registers use opaque; we will. */
5909 g_assert(src_reg->opaque == NULL);
5911 /* Create alias before redirection so we dup the right data. */
5912 if (a->new_key) {
5913 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5914 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5915 bool ok;
5917 new_reg->name = a->new_name;
5918 new_reg->type |= ARM_CP_ALIAS;
5919 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5920 new_reg->access &= PL2_RW | PL3_RW;
5922 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5923 g_assert(ok);
5926 src_reg->opaque = dst_reg;
5927 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5928 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5929 if (!src_reg->raw_readfn) {
5930 src_reg->raw_readfn = raw_read;
5932 if (!src_reg->raw_writefn) {
5933 src_reg->raw_writefn = raw_write;
5935 src_reg->readfn = el2_e2h_read;
5936 src_reg->writefn = el2_e2h_write;
5939 #endif
5941 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5942 bool isread)
5944 int cur_el = arm_current_el(env);
5946 if (cur_el < 2) {
5947 uint64_t hcr = arm_hcr_el2_eff(env);
5949 if (cur_el == 0) {
5950 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5951 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5952 return CP_ACCESS_TRAP_EL2;
5954 } else {
5955 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5956 return CP_ACCESS_TRAP;
5958 if (hcr & HCR_TID2) {
5959 return CP_ACCESS_TRAP_EL2;
5962 } else if (hcr & HCR_TID2) {
5963 return CP_ACCESS_TRAP_EL2;
5967 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5968 return CP_ACCESS_TRAP_EL2;
5971 return CP_ACCESS_OK;
5974 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5975 uint64_t value)
5977 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5978 * read via a bit in OSLSR_EL1.
5980 int oslock;
5982 if (ri->state == ARM_CP_STATE_AA32) {
5983 oslock = (value == 0xC5ACCE55);
5984 } else {
5985 oslock = value & 1;
5988 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5991 static const ARMCPRegInfo debug_cp_reginfo[] = {
5992 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5993 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5994 * unlike DBGDRAR it is never accessible from EL0.
5995 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5996 * accessor.
5998 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5999 .access = PL0_R, .accessfn = access_tdra,
6000 .type = ARM_CP_CONST, .resetvalue = 0 },
6001 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6002 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6003 .access = PL1_R, .accessfn = access_tdra,
6004 .type = ARM_CP_CONST, .resetvalue = 0 },
6005 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6006 .access = PL0_R, .accessfn = access_tdra,
6007 .type = ARM_CP_CONST, .resetvalue = 0 },
6008 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6009 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6010 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6011 .access = PL1_RW, .accessfn = access_tda,
6012 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6013 .resetvalue = 0 },
6014 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6015 * We don't implement the configurable EL0 access.
6017 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6018 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6019 .type = ARM_CP_ALIAS,
6020 .access = PL1_R, .accessfn = access_tda,
6021 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6022 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6023 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6024 .access = PL1_W, .type = ARM_CP_NO_RAW,
6025 .accessfn = access_tdosa,
6026 .writefn = oslar_write },
6027 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6028 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6029 .access = PL1_R, .resetvalue = 10,
6030 .accessfn = access_tdosa,
6031 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6032 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6033 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6034 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6035 .access = PL1_RW, .accessfn = access_tdosa,
6036 .type = ARM_CP_NOP },
6037 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6038 * implement vector catch debug events yet.
6040 { .name = "DBGVCR",
6041 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6042 .access = PL1_RW, .accessfn = access_tda,
6043 .type = ARM_CP_NOP },
6044 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6045 * to save and restore a 32-bit guest's DBGVCR)
6047 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6048 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6049 .access = PL2_RW, .accessfn = access_tda,
6050 .type = ARM_CP_NOP },
6051 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6052 * Channel but Linux may try to access this register. The 32-bit
6053 * alias is DBGDCCINT.
6055 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6056 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6057 .access = PL1_RW, .accessfn = access_tda,
6058 .type = ARM_CP_NOP },
6059 REGINFO_SENTINEL
6062 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6063 /* 64 bit access versions of the (dummy) debug registers */
6064 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6065 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6066 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6067 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6068 REGINFO_SENTINEL
6071 /* Return the exception level to which exceptions should be taken
6072 * via SVEAccessTrap. If an exception should be routed through
6073 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6074 * take care of raising that exception.
6075 * C.f. the ARM pseudocode function CheckSVEEnabled.
6077 int sve_exception_el(CPUARMState *env, int el)
6079 #ifndef CONFIG_USER_ONLY
6080 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6082 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6083 bool disabled = false;
6085 /* The CPACR.ZEN controls traps to EL1:
6086 * 0, 2 : trap EL0 and EL1 accesses
6087 * 1 : trap only EL0 accesses
6088 * 3 : trap no accesses
6090 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6091 disabled = true;
6092 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6093 disabled = el == 0;
6095 if (disabled) {
6096 /* route_to_el2 */
6097 return hcr_el2 & HCR_TGE ? 2 : 1;
6100 /* Check CPACR.FPEN. */
6101 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6102 disabled = true;
6103 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6104 disabled = el == 0;
6106 if (disabled) {
6107 return 0;
6111 /* CPTR_EL2. Since TZ and TFP are positive,
6112 * they will be zero when EL2 is not present.
6114 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6115 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6116 return 2;
6118 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6119 return 0;
6123 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6124 if (arm_feature(env, ARM_FEATURE_EL3)
6125 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6126 return 3;
6128 #endif
6129 return 0;
6132 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6134 uint32_t end_len;
6136 end_len = start_len &= 0xf;
6137 if (!test_bit(start_len, cpu->sve_vq_map)) {
6138 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6139 assert(end_len < start_len);
6141 return end_len;
6145 * Given that SVE is enabled, return the vector length for EL.
6147 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6149 ARMCPU *cpu = env_archcpu(env);
6150 uint32_t zcr_len = cpu->sve_max_vq - 1;
6152 if (el <= 1) {
6153 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6155 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6156 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6158 if (arm_feature(env, ARM_FEATURE_EL3)) {
6159 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6162 return sve_zcr_get_valid_len(cpu, zcr_len);
6165 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6166 uint64_t value)
6168 int cur_el = arm_current_el(env);
6169 int old_len = sve_zcr_len_for_el(env, cur_el);
6170 int new_len;
6172 /* Bits other than [3:0] are RAZ/WI. */
6173 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6174 raw_write(env, ri, value & 0xf);
6177 * Because we arrived here, we know both FP and SVE are enabled;
6178 * otherwise we would have trapped access to the ZCR_ELn register.
6180 new_len = sve_zcr_len_for_el(env, cur_el);
6181 if (new_len < old_len) {
6182 aarch64_sve_narrow_vq(env, new_len + 1);
6186 static const ARMCPRegInfo zcr_el1_reginfo = {
6187 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6188 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6189 .access = PL1_RW, .type = ARM_CP_SVE,
6190 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6191 .writefn = zcr_write, .raw_writefn = raw_write
6194 static const ARMCPRegInfo zcr_el2_reginfo = {
6195 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6196 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6197 .access = PL2_RW, .type = ARM_CP_SVE,
6198 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6199 .writefn = zcr_write, .raw_writefn = raw_write
6202 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6203 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6204 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6205 .access = PL2_RW, .type = ARM_CP_SVE,
6206 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6209 static const ARMCPRegInfo zcr_el3_reginfo = {
6210 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6211 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6212 .access = PL3_RW, .type = ARM_CP_SVE,
6213 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6214 .writefn = zcr_write, .raw_writefn = raw_write
6217 void hw_watchpoint_update(ARMCPU *cpu, int n)
6219 CPUARMState *env = &cpu->env;
6220 vaddr len = 0;
6221 vaddr wvr = env->cp15.dbgwvr[n];
6222 uint64_t wcr = env->cp15.dbgwcr[n];
6223 int mask;
6224 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6226 if (env->cpu_watchpoint[n]) {
6227 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6228 env->cpu_watchpoint[n] = NULL;
6231 if (!extract64(wcr, 0, 1)) {
6232 /* E bit clear : watchpoint disabled */
6233 return;
6236 switch (extract64(wcr, 3, 2)) {
6237 case 0:
6238 /* LSC 00 is reserved and must behave as if the wp is disabled */
6239 return;
6240 case 1:
6241 flags |= BP_MEM_READ;
6242 break;
6243 case 2:
6244 flags |= BP_MEM_WRITE;
6245 break;
6246 case 3:
6247 flags |= BP_MEM_ACCESS;
6248 break;
6251 /* Attempts to use both MASK and BAS fields simultaneously are
6252 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6253 * thus generating a watchpoint for every byte in the masked region.
6255 mask = extract64(wcr, 24, 4);
6256 if (mask == 1 || mask == 2) {
6257 /* Reserved values of MASK; we must act as if the mask value was
6258 * some non-reserved value, or as if the watchpoint were disabled.
6259 * We choose the latter.
6261 return;
6262 } else if (mask) {
6263 /* Watchpoint covers an aligned area up to 2GB in size */
6264 len = 1ULL << mask;
6265 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6266 * whether the watchpoint fires when the unmasked bits match; we opt
6267 * to generate the exceptions.
6269 wvr &= ~(len - 1);
6270 } else {
6271 /* Watchpoint covers bytes defined by the byte address select bits */
6272 int bas = extract64(wcr, 5, 8);
6273 int basstart;
6275 if (extract64(wvr, 2, 1)) {
6276 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6277 * ignored, and BAS[3:0] define which bytes to watch.
6279 bas &= 0xf;
6282 if (bas == 0) {
6283 /* This must act as if the watchpoint is disabled */
6284 return;
6287 /* The BAS bits are supposed to be programmed to indicate a contiguous
6288 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6289 * we fire for each byte in the word/doubleword addressed by the WVR.
6290 * We choose to ignore any non-zero bits after the first range of 1s.
6292 basstart = ctz32(bas);
6293 len = cto32(bas >> basstart);
6294 wvr += basstart;
6297 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6298 &env->cpu_watchpoint[n]);
6301 void hw_watchpoint_update_all(ARMCPU *cpu)
6303 int i;
6304 CPUARMState *env = &cpu->env;
6306 /* Completely clear out existing QEMU watchpoints and our array, to
6307 * avoid possible stale entries following migration load.
6309 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6310 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6312 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6313 hw_watchpoint_update(cpu, i);
6317 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6318 uint64_t value)
6320 ARMCPU *cpu = env_archcpu(env);
6321 int i = ri->crm;
6323 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6324 * register reads and behaves as if values written are sign extended.
6325 * Bits [1:0] are RES0.
6327 value = sextract64(value, 0, 49) & ~3ULL;
6329 raw_write(env, ri, value);
6330 hw_watchpoint_update(cpu, i);
6333 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6334 uint64_t value)
6336 ARMCPU *cpu = env_archcpu(env);
6337 int i = ri->crm;
6339 raw_write(env, ri, value);
6340 hw_watchpoint_update(cpu, i);
6343 void hw_breakpoint_update(ARMCPU *cpu, int n)
6345 CPUARMState *env = &cpu->env;
6346 uint64_t bvr = env->cp15.dbgbvr[n];
6347 uint64_t bcr = env->cp15.dbgbcr[n];
6348 vaddr addr;
6349 int bt;
6350 int flags = BP_CPU;
6352 if (env->cpu_breakpoint[n]) {
6353 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6354 env->cpu_breakpoint[n] = NULL;
6357 if (!extract64(bcr, 0, 1)) {
6358 /* E bit clear : watchpoint disabled */
6359 return;
6362 bt = extract64(bcr, 20, 4);
6364 switch (bt) {
6365 case 4: /* unlinked address mismatch (reserved if AArch64) */
6366 case 5: /* linked address mismatch (reserved if AArch64) */
6367 qemu_log_mask(LOG_UNIMP,
6368 "arm: address mismatch breakpoint types not implemented\n");
6369 return;
6370 case 0: /* unlinked address match */
6371 case 1: /* linked address match */
6373 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6374 * we behave as if the register was sign extended. Bits [1:0] are
6375 * RES0. The BAS field is used to allow setting breakpoints on 16
6376 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6377 * a bp will fire if the addresses covered by the bp and the addresses
6378 * covered by the insn overlap but the insn doesn't start at the
6379 * start of the bp address range. We choose to require the insn and
6380 * the bp to have the same address. The constraints on writing to
6381 * BAS enforced in dbgbcr_write mean we have only four cases:
6382 * 0b0000 => no breakpoint
6383 * 0b0011 => breakpoint on addr
6384 * 0b1100 => breakpoint on addr + 2
6385 * 0b1111 => breakpoint on addr
6386 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6388 int bas = extract64(bcr, 5, 4);
6389 addr = sextract64(bvr, 0, 49) & ~3ULL;
6390 if (bas == 0) {
6391 return;
6393 if (bas == 0xc) {
6394 addr += 2;
6396 break;
6398 case 2: /* unlinked context ID match */
6399 case 8: /* unlinked VMID match (reserved if no EL2) */
6400 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6401 qemu_log_mask(LOG_UNIMP,
6402 "arm: unlinked context breakpoint types not implemented\n");
6403 return;
6404 case 9: /* linked VMID match (reserved if no EL2) */
6405 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6406 case 3: /* linked context ID match */
6407 default:
6408 /* We must generate no events for Linked context matches (unless
6409 * they are linked to by some other bp/wp, which is handled in
6410 * updates for the linking bp/wp). We choose to also generate no events
6411 * for reserved values.
6413 return;
6416 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6419 void hw_breakpoint_update_all(ARMCPU *cpu)
6421 int i;
6422 CPUARMState *env = &cpu->env;
6424 /* Completely clear out existing QEMU breakpoints and our array, to
6425 * avoid possible stale entries following migration load.
6427 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6428 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6430 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6431 hw_breakpoint_update(cpu, i);
6435 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6436 uint64_t value)
6438 ARMCPU *cpu = env_archcpu(env);
6439 int i = ri->crm;
6441 raw_write(env, ri, value);
6442 hw_breakpoint_update(cpu, i);
6445 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6446 uint64_t value)
6448 ARMCPU *cpu = env_archcpu(env);
6449 int i = ri->crm;
6451 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6452 * copy of BAS[0].
6454 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6455 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6457 raw_write(env, ri, value);
6458 hw_breakpoint_update(cpu, i);
6461 static void define_debug_regs(ARMCPU *cpu)
6463 /* Define v7 and v8 architectural debug registers.
6464 * These are just dummy implementations for now.
6466 int i;
6467 int wrps, brps, ctx_cmps;
6468 ARMCPRegInfo dbgdidr = {
6469 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6470 .access = PL0_R, .accessfn = access_tda,
6471 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6474 /* Note that all these register fields hold "number of Xs minus 1". */
6475 brps = arm_num_brps(cpu);
6476 wrps = arm_num_wrps(cpu);
6477 ctx_cmps = arm_num_ctx_cmps(cpu);
6479 assert(ctx_cmps <= brps);
6481 define_one_arm_cp_reg(cpu, &dbgdidr);
6482 define_arm_cp_regs(cpu, debug_cp_reginfo);
6484 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6485 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6488 for (i = 0; i < brps; i++) {
6489 ARMCPRegInfo dbgregs[] = {
6490 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6491 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6492 .access = PL1_RW, .accessfn = access_tda,
6493 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6494 .writefn = dbgbvr_write, .raw_writefn = raw_write
6496 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6497 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6498 .access = PL1_RW, .accessfn = access_tda,
6499 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6500 .writefn = dbgbcr_write, .raw_writefn = raw_write
6502 REGINFO_SENTINEL
6504 define_arm_cp_regs(cpu, dbgregs);
6507 for (i = 0; i < wrps; i++) {
6508 ARMCPRegInfo dbgregs[] = {
6509 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6510 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6511 .access = PL1_RW, .accessfn = access_tda,
6512 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6513 .writefn = dbgwvr_write, .raw_writefn = raw_write
6515 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6517 .access = PL1_RW, .accessfn = access_tda,
6518 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6519 .writefn = dbgwcr_write, .raw_writefn = raw_write
6521 REGINFO_SENTINEL
6523 define_arm_cp_regs(cpu, dbgregs);
6527 static void define_pmu_regs(ARMCPU *cpu)
6530 * v7 performance monitor control register: same implementor
6531 * field as main ID register, and we implement four counters in
6532 * addition to the cycle count register.
6534 unsigned int i, pmcrn = 4;
6535 ARMCPRegInfo pmcr = {
6536 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6537 .access = PL0_RW,
6538 .type = ARM_CP_IO | ARM_CP_ALIAS,
6539 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6540 .accessfn = pmreg_access, .writefn = pmcr_write,
6541 .raw_writefn = raw_write,
6543 ARMCPRegInfo pmcr64 = {
6544 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6545 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6546 .access = PL0_RW, .accessfn = pmreg_access,
6547 .type = ARM_CP_IO,
6548 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6549 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6550 PMCRLC,
6551 .writefn = pmcr_write, .raw_writefn = raw_write,
6553 define_one_arm_cp_reg(cpu, &pmcr);
6554 define_one_arm_cp_reg(cpu, &pmcr64);
6555 for (i = 0; i < pmcrn; i++) {
6556 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6557 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6558 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6559 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6560 ARMCPRegInfo pmev_regs[] = {
6561 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6562 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6563 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6564 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6565 .accessfn = pmreg_access },
6566 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6567 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6568 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6569 .type = ARM_CP_IO,
6570 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6571 .raw_readfn = pmevcntr_rawread,
6572 .raw_writefn = pmevcntr_rawwrite },
6573 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6574 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6575 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6576 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6577 .accessfn = pmreg_access },
6578 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6579 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6580 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6581 .type = ARM_CP_IO,
6582 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6583 .raw_writefn = pmevtyper_rawwrite },
6584 REGINFO_SENTINEL
6586 define_arm_cp_regs(cpu, pmev_regs);
6587 g_free(pmevcntr_name);
6588 g_free(pmevcntr_el0_name);
6589 g_free(pmevtyper_name);
6590 g_free(pmevtyper_el0_name);
6592 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6593 ARMCPRegInfo v81_pmu_regs[] = {
6594 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6595 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6596 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6597 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6598 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6601 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6602 REGINFO_SENTINEL
6604 define_arm_cp_regs(cpu, v81_pmu_regs);
6606 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6607 static const ARMCPRegInfo v84_pmmir = {
6608 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6609 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6610 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6611 .resetvalue = 0
6613 define_one_arm_cp_reg(cpu, &v84_pmmir);
6617 /* We don't know until after realize whether there's a GICv3
6618 * attached, and that is what registers the gicv3 sysregs.
6619 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6620 * at runtime.
6622 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6624 ARMCPU *cpu = env_archcpu(env);
6625 uint64_t pfr1 = cpu->id_pfr1;
6627 if (env->gicv3state) {
6628 pfr1 |= 1 << 28;
6630 return pfr1;
6633 #ifndef CONFIG_USER_ONLY
6634 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6636 ARMCPU *cpu = env_archcpu(env);
6637 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6639 if (env->gicv3state) {
6640 pfr0 |= 1 << 24;
6642 return pfr0;
6644 #endif
6646 /* Shared logic between LORID and the rest of the LOR* registers.
6647 * Secure state has already been delt with.
6649 static CPAccessResult access_lor_ns(CPUARMState *env)
6651 int el = arm_current_el(env);
6653 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6654 return CP_ACCESS_TRAP_EL2;
6656 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6657 return CP_ACCESS_TRAP_EL3;
6659 return CP_ACCESS_OK;
6662 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6663 bool isread)
6665 if (arm_is_secure_below_el3(env)) {
6666 /* Access ok in secure mode. */
6667 return CP_ACCESS_OK;
6669 return access_lor_ns(env);
6672 static CPAccessResult access_lor_other(CPUARMState *env,
6673 const ARMCPRegInfo *ri, bool isread)
6675 if (arm_is_secure_below_el3(env)) {
6676 /* Access denied in secure mode. */
6677 return CP_ACCESS_TRAP;
6679 return access_lor_ns(env);
6683 * A trivial implementation of ARMv8.1-LOR leaves all of these
6684 * registers fixed at 0, which indicates that there are zero
6685 * supported Limited Ordering regions.
6687 static const ARMCPRegInfo lor_reginfo[] = {
6688 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6689 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6690 .access = PL1_RW, .accessfn = access_lor_other,
6691 .type = ARM_CP_CONST, .resetvalue = 0 },
6692 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6693 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6694 .access = PL1_RW, .accessfn = access_lor_other,
6695 .type = ARM_CP_CONST, .resetvalue = 0 },
6696 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6697 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6698 .access = PL1_RW, .accessfn = access_lor_other,
6699 .type = ARM_CP_CONST, .resetvalue = 0 },
6700 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6701 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6702 .access = PL1_RW, .accessfn = access_lor_other,
6703 .type = ARM_CP_CONST, .resetvalue = 0 },
6704 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6705 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6706 .access = PL1_R, .accessfn = access_lorid,
6707 .type = ARM_CP_CONST, .resetvalue = 0 },
6708 REGINFO_SENTINEL
6711 #ifdef TARGET_AARCH64
6712 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6713 bool isread)
6715 int el = arm_current_el(env);
6717 if (el < 2 &&
6718 arm_feature(env, ARM_FEATURE_EL2) &&
6719 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6720 return CP_ACCESS_TRAP_EL2;
6722 if (el < 3 &&
6723 arm_feature(env, ARM_FEATURE_EL3) &&
6724 !(env->cp15.scr_el3 & SCR_APK)) {
6725 return CP_ACCESS_TRAP_EL3;
6727 return CP_ACCESS_OK;
6730 static const ARMCPRegInfo pauth_reginfo[] = {
6731 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6732 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6733 .access = PL1_RW, .accessfn = access_pauth,
6734 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6735 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6737 .access = PL1_RW, .accessfn = access_pauth,
6738 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6739 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6741 .access = PL1_RW, .accessfn = access_pauth,
6742 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6743 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6745 .access = PL1_RW, .accessfn = access_pauth,
6746 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6747 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6749 .access = PL1_RW, .accessfn = access_pauth,
6750 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6751 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6753 .access = PL1_RW, .accessfn = access_pauth,
6754 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6755 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6757 .access = PL1_RW, .accessfn = access_pauth,
6758 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6759 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6761 .access = PL1_RW, .accessfn = access_pauth,
6762 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6763 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6764 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6765 .access = PL1_RW, .accessfn = access_pauth,
6766 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6767 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6769 .access = PL1_RW, .accessfn = access_pauth,
6770 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6771 REGINFO_SENTINEL
6774 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6776 Error *err = NULL;
6777 uint64_t ret;
6779 /* Success sets NZCV = 0000. */
6780 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6782 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6784 * ??? Failed, for unknown reasons in the crypto subsystem.
6785 * The best we can do is log the reason and return the
6786 * timed-out indication to the guest. There is no reason
6787 * we know to expect this failure to be transitory, so the
6788 * guest may well hang retrying the operation.
6790 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6791 ri->name, error_get_pretty(err));
6792 error_free(err);
6794 env->ZF = 0; /* NZCF = 0100 */
6795 return 0;
6797 return ret;
6800 /* We do not support re-seeding, so the two registers operate the same. */
6801 static const ARMCPRegInfo rndr_reginfo[] = {
6802 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6803 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6804 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6805 .access = PL0_R, .readfn = rndr_readfn },
6806 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6807 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6808 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6809 .access = PL0_R, .readfn = rndr_readfn },
6810 REGINFO_SENTINEL
6813 #ifndef CONFIG_USER_ONLY
6814 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6815 uint64_t value)
6817 ARMCPU *cpu = env_archcpu(env);
6818 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6819 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6820 uint64_t vaddr_in = (uint64_t) value;
6821 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6822 void *haddr;
6823 int mem_idx = cpu_mmu_index(env, false);
6825 /* This won't be crossing page boundaries */
6826 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6827 if (haddr) {
6829 ram_addr_t offset;
6830 MemoryRegion *mr;
6832 /* RCU lock is already being held */
6833 mr = memory_region_from_host(haddr, &offset);
6835 if (mr) {
6836 memory_region_writeback(mr, offset, dline_size);
6841 static const ARMCPRegInfo dcpop_reg[] = {
6842 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6844 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6845 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6846 REGINFO_SENTINEL
6849 static const ARMCPRegInfo dcpodp_reg[] = {
6850 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6851 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6852 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6853 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6854 REGINFO_SENTINEL
6856 #endif /*CONFIG_USER_ONLY*/
6858 #endif
6860 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6861 bool isread)
6863 int el = arm_current_el(env);
6865 if (el == 0) {
6866 uint64_t sctlr = arm_sctlr(env, el);
6867 if (!(sctlr & SCTLR_EnRCTX)) {
6868 return CP_ACCESS_TRAP;
6870 } else if (el == 1) {
6871 uint64_t hcr = arm_hcr_el2_eff(env);
6872 if (hcr & HCR_NV) {
6873 return CP_ACCESS_TRAP_EL2;
6876 return CP_ACCESS_OK;
6879 static const ARMCPRegInfo predinv_reginfo[] = {
6880 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6881 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6882 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6883 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6884 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6885 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6886 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6887 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6888 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6890 * Note the AArch32 opcodes have a different OPC1.
6892 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6893 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6894 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6895 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6896 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6897 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6898 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6899 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6900 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6901 REGINFO_SENTINEL
6904 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6906 /* Read the high 32 bits of the current CCSIDR */
6907 return extract64(ccsidr_read(env, ri), 32, 32);
6910 static const ARMCPRegInfo ccsidr2_reginfo[] = {
6911 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
6912 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
6913 .access = PL1_R,
6914 .accessfn = access_aa64_tid2,
6915 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
6916 REGINFO_SENTINEL
6919 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6920 bool isread)
6922 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6923 return CP_ACCESS_TRAP_EL2;
6926 return CP_ACCESS_OK;
6929 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6930 bool isread)
6932 if (arm_feature(env, ARM_FEATURE_V8)) {
6933 return access_aa64_tid3(env, ri, isread);
6936 return CP_ACCESS_OK;
6939 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6940 bool isread)
6942 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6943 return CP_ACCESS_TRAP_EL2;
6946 return CP_ACCESS_OK;
6949 static const ARMCPRegInfo jazelle_regs[] = {
6950 { .name = "JIDR",
6951 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6952 .access = PL1_R, .accessfn = access_jazelle,
6953 .type = ARM_CP_CONST, .resetvalue = 0 },
6954 { .name = "JOSCR",
6955 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6956 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6957 { .name = "JMCR",
6958 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6959 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6960 REGINFO_SENTINEL
6963 static const ARMCPRegInfo vhe_reginfo[] = {
6964 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6965 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6966 .access = PL2_RW,
6967 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6968 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6969 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6970 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6971 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6972 #ifndef CONFIG_USER_ONLY
6973 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6975 .fieldoffset =
6976 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6977 .type = ARM_CP_IO, .access = PL2_RW,
6978 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6979 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6980 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6981 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6982 .resetfn = gt_hv_timer_reset,
6983 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6984 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6985 .type = ARM_CP_IO,
6986 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6987 .access = PL2_RW,
6988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6989 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6990 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6991 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6992 .type = ARM_CP_IO | ARM_CP_ALIAS,
6993 .access = PL2_RW, .accessfn = e2h_access,
6994 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6995 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6996 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6997 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6998 .type = ARM_CP_IO | ARM_CP_ALIAS,
6999 .access = PL2_RW, .accessfn = e2h_access,
7000 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7001 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7002 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7003 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7004 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7005 .access = PL2_RW, .accessfn = e2h_access,
7006 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7007 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7008 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7009 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7010 .access = PL2_RW, .accessfn = e2h_access,
7011 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7012 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7013 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7014 .type = ARM_CP_IO | ARM_CP_ALIAS,
7015 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7016 .access = PL2_RW, .accessfn = e2h_access,
7017 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7018 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7019 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7020 .type = ARM_CP_IO | ARM_CP_ALIAS,
7021 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7022 .access = PL2_RW, .accessfn = e2h_access,
7023 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7024 #endif
7025 REGINFO_SENTINEL
7028 #ifndef CONFIG_USER_ONLY
7029 static const ARMCPRegInfo ats1e1_reginfo[] = {
7030 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7031 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7032 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7033 .writefn = ats_write64 },
7034 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7035 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7036 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7037 .writefn = ats_write64 },
7038 REGINFO_SENTINEL
7041 static const ARMCPRegInfo ats1cp_reginfo[] = {
7042 { .name = "ATS1CPRP",
7043 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7044 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7045 .writefn = ats_write },
7046 { .name = "ATS1CPWP",
7047 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7048 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7049 .writefn = ats_write },
7050 REGINFO_SENTINEL
7052 #endif
7055 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7056 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7057 * is non-zero, which is never for ARMv7, optionally in ARMv8
7058 * and mandatorily for ARMv8.2 and up.
7059 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7060 * implementation is RAZ/WI we can ignore this detail, as we
7061 * do for ACTLR.
7063 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7064 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7065 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7066 .access = PL1_RW, .accessfn = access_tacr,
7067 .type = ARM_CP_CONST, .resetvalue = 0 },
7068 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7069 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7070 .access = PL2_RW, .type = ARM_CP_CONST,
7071 .resetvalue = 0 },
7072 REGINFO_SENTINEL
7075 void register_cp_regs_for_features(ARMCPU *cpu)
7077 /* Register all the coprocessor registers based on feature bits */
7078 CPUARMState *env = &cpu->env;
7079 if (arm_feature(env, ARM_FEATURE_M)) {
7080 /* M profile has no coprocessor registers */
7081 return;
7084 define_arm_cp_regs(cpu, cp_reginfo);
7085 if (!arm_feature(env, ARM_FEATURE_V8)) {
7086 /* Must go early as it is full of wildcards that may be
7087 * overridden by later definitions.
7089 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7092 if (arm_feature(env, ARM_FEATURE_V6)) {
7093 /* The ID registers all have impdef reset values */
7094 ARMCPRegInfo v6_idregs[] = {
7095 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7096 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7097 .access = PL1_R, .type = ARM_CP_CONST,
7098 .accessfn = access_aa32_tid3,
7099 .resetvalue = cpu->id_pfr0 },
7100 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7101 * the value of the GIC field until after we define these regs.
7103 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7104 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7105 .access = PL1_R, .type = ARM_CP_NO_RAW,
7106 .accessfn = access_aa32_tid3,
7107 .readfn = id_pfr1_read,
7108 .writefn = arm_cp_write_ignore },
7109 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7111 .access = PL1_R, .type = ARM_CP_CONST,
7112 .accessfn = access_aa32_tid3,
7113 .resetvalue = cpu->isar.id_dfr0 },
7114 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7115 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7116 .access = PL1_R, .type = ARM_CP_CONST,
7117 .accessfn = access_aa32_tid3,
7118 .resetvalue = cpu->id_afr0 },
7119 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7121 .access = PL1_R, .type = ARM_CP_CONST,
7122 .accessfn = access_aa32_tid3,
7123 .resetvalue = cpu->isar.id_mmfr0 },
7124 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7126 .access = PL1_R, .type = ARM_CP_CONST,
7127 .accessfn = access_aa32_tid3,
7128 .resetvalue = cpu->isar.id_mmfr1 },
7129 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7130 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7131 .access = PL1_R, .type = ARM_CP_CONST,
7132 .accessfn = access_aa32_tid3,
7133 .resetvalue = cpu->isar.id_mmfr2 },
7134 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7135 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7136 .access = PL1_R, .type = ARM_CP_CONST,
7137 .accessfn = access_aa32_tid3,
7138 .resetvalue = cpu->isar.id_mmfr3 },
7139 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7140 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7141 .access = PL1_R, .type = ARM_CP_CONST,
7142 .accessfn = access_aa32_tid3,
7143 .resetvalue = cpu->isar.id_isar0 },
7144 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7146 .access = PL1_R, .type = ARM_CP_CONST,
7147 .accessfn = access_aa32_tid3,
7148 .resetvalue = cpu->isar.id_isar1 },
7149 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7150 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7151 .access = PL1_R, .type = ARM_CP_CONST,
7152 .accessfn = access_aa32_tid3,
7153 .resetvalue = cpu->isar.id_isar2 },
7154 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7155 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7156 .access = PL1_R, .type = ARM_CP_CONST,
7157 .accessfn = access_aa32_tid3,
7158 .resetvalue = cpu->isar.id_isar3 },
7159 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7161 .access = PL1_R, .type = ARM_CP_CONST,
7162 .accessfn = access_aa32_tid3,
7163 .resetvalue = cpu->isar.id_isar4 },
7164 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7166 .access = PL1_R, .type = ARM_CP_CONST,
7167 .accessfn = access_aa32_tid3,
7168 .resetvalue = cpu->isar.id_isar5 },
7169 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7171 .access = PL1_R, .type = ARM_CP_CONST,
7172 .accessfn = access_aa32_tid3,
7173 .resetvalue = cpu->isar.id_mmfr4 },
7174 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7176 .access = PL1_R, .type = ARM_CP_CONST,
7177 .accessfn = access_aa32_tid3,
7178 .resetvalue = cpu->isar.id_isar6 },
7179 REGINFO_SENTINEL
7181 define_arm_cp_regs(cpu, v6_idregs);
7182 define_arm_cp_regs(cpu, v6_cp_reginfo);
7183 } else {
7184 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7186 if (arm_feature(env, ARM_FEATURE_V6K)) {
7187 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7189 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7190 !arm_feature(env, ARM_FEATURE_PMSA)) {
7191 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7193 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7194 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7196 if (arm_feature(env, ARM_FEATURE_V7)) {
7197 ARMCPRegInfo clidr = {
7198 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7199 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7200 .access = PL1_R, .type = ARM_CP_CONST,
7201 .accessfn = access_aa64_tid2,
7202 .resetvalue = cpu->clidr
7204 define_one_arm_cp_reg(cpu, &clidr);
7205 define_arm_cp_regs(cpu, v7_cp_reginfo);
7206 define_debug_regs(cpu);
7207 define_pmu_regs(cpu);
7208 } else {
7209 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7211 if (arm_feature(env, ARM_FEATURE_V8)) {
7212 /* AArch64 ID registers, which all have impdef reset values.
7213 * Note that within the ID register ranges the unused slots
7214 * must all RAZ, not UNDEF; future architecture versions may
7215 * define new registers here.
7217 ARMCPRegInfo v8_idregs[] = {
7219 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7220 * emulation because we don't know the right value for the
7221 * GIC field until after we define these regs.
7223 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7225 .access = PL1_R,
7226 #ifdef CONFIG_USER_ONLY
7227 .type = ARM_CP_CONST,
7228 .resetvalue = cpu->isar.id_aa64pfr0
7229 #else
7230 .type = ARM_CP_NO_RAW,
7231 .accessfn = access_aa64_tid3,
7232 .readfn = id_aa64pfr0_read,
7233 .writefn = arm_cp_write_ignore
7234 #endif
7236 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7238 .access = PL1_R, .type = ARM_CP_CONST,
7239 .accessfn = access_aa64_tid3,
7240 .resetvalue = cpu->isar.id_aa64pfr1},
7241 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7243 .access = PL1_R, .type = ARM_CP_CONST,
7244 .accessfn = access_aa64_tid3,
7245 .resetvalue = 0 },
7246 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7248 .access = PL1_R, .type = ARM_CP_CONST,
7249 .accessfn = access_aa64_tid3,
7250 .resetvalue = 0 },
7251 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7253 .access = PL1_R, .type = ARM_CP_CONST,
7254 .accessfn = access_aa64_tid3,
7255 /* At present, only SVEver == 0 is defined anyway. */
7256 .resetvalue = 0 },
7257 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7259 .access = PL1_R, .type = ARM_CP_CONST,
7260 .accessfn = access_aa64_tid3,
7261 .resetvalue = 0 },
7262 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7263 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7264 .access = PL1_R, .type = ARM_CP_CONST,
7265 .accessfn = access_aa64_tid3,
7266 .resetvalue = 0 },
7267 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7268 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7269 .access = PL1_R, .type = ARM_CP_CONST,
7270 .accessfn = access_aa64_tid3,
7271 .resetvalue = 0 },
7272 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7274 .access = PL1_R, .type = ARM_CP_CONST,
7275 .accessfn = access_aa64_tid3,
7276 .resetvalue = cpu->isar.id_aa64dfr0 },
7277 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7279 .access = PL1_R, .type = ARM_CP_CONST,
7280 .accessfn = access_aa64_tid3,
7281 .resetvalue = cpu->isar.id_aa64dfr1 },
7282 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7284 .access = PL1_R, .type = ARM_CP_CONST,
7285 .accessfn = access_aa64_tid3,
7286 .resetvalue = 0 },
7287 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7289 .access = PL1_R, .type = ARM_CP_CONST,
7290 .accessfn = access_aa64_tid3,
7291 .resetvalue = 0 },
7292 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7294 .access = PL1_R, .type = ARM_CP_CONST,
7295 .accessfn = access_aa64_tid3,
7296 .resetvalue = cpu->id_aa64afr0 },
7297 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7299 .access = PL1_R, .type = ARM_CP_CONST,
7300 .accessfn = access_aa64_tid3,
7301 .resetvalue = cpu->id_aa64afr1 },
7302 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7304 .access = PL1_R, .type = ARM_CP_CONST,
7305 .accessfn = access_aa64_tid3,
7306 .resetvalue = 0 },
7307 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7309 .access = PL1_R, .type = ARM_CP_CONST,
7310 .accessfn = access_aa64_tid3,
7311 .resetvalue = 0 },
7312 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7314 .access = PL1_R, .type = ARM_CP_CONST,
7315 .accessfn = access_aa64_tid3,
7316 .resetvalue = cpu->isar.id_aa64isar0 },
7317 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7319 .access = PL1_R, .type = ARM_CP_CONST,
7320 .accessfn = access_aa64_tid3,
7321 .resetvalue = cpu->isar.id_aa64isar1 },
7322 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7324 .access = PL1_R, .type = ARM_CP_CONST,
7325 .accessfn = access_aa64_tid3,
7326 .resetvalue = 0 },
7327 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7329 .access = PL1_R, .type = ARM_CP_CONST,
7330 .accessfn = access_aa64_tid3,
7331 .resetvalue = 0 },
7332 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7334 .access = PL1_R, .type = ARM_CP_CONST,
7335 .accessfn = access_aa64_tid3,
7336 .resetvalue = 0 },
7337 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7339 .access = PL1_R, .type = ARM_CP_CONST,
7340 .accessfn = access_aa64_tid3,
7341 .resetvalue = 0 },
7342 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7344 .access = PL1_R, .type = ARM_CP_CONST,
7345 .accessfn = access_aa64_tid3,
7346 .resetvalue = 0 },
7347 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7349 .access = PL1_R, .type = ARM_CP_CONST,
7350 .accessfn = access_aa64_tid3,
7351 .resetvalue = 0 },
7352 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7354 .access = PL1_R, .type = ARM_CP_CONST,
7355 .accessfn = access_aa64_tid3,
7356 .resetvalue = cpu->isar.id_aa64mmfr0 },
7357 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7358 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7359 .access = PL1_R, .type = ARM_CP_CONST,
7360 .accessfn = access_aa64_tid3,
7361 .resetvalue = cpu->isar.id_aa64mmfr1 },
7362 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7363 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7364 .access = PL1_R, .type = ARM_CP_CONST,
7365 .accessfn = access_aa64_tid3,
7366 .resetvalue = cpu->isar.id_aa64mmfr2 },
7367 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7369 .access = PL1_R, .type = ARM_CP_CONST,
7370 .accessfn = access_aa64_tid3,
7371 .resetvalue = 0 },
7372 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7374 .access = PL1_R, .type = ARM_CP_CONST,
7375 .accessfn = access_aa64_tid3,
7376 .resetvalue = 0 },
7377 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7378 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7379 .access = PL1_R, .type = ARM_CP_CONST,
7380 .accessfn = access_aa64_tid3,
7381 .resetvalue = 0 },
7382 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7383 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7384 .access = PL1_R, .type = ARM_CP_CONST,
7385 .accessfn = access_aa64_tid3,
7386 .resetvalue = 0 },
7387 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7388 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7389 .access = PL1_R, .type = ARM_CP_CONST,
7390 .accessfn = access_aa64_tid3,
7391 .resetvalue = 0 },
7392 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7393 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7394 .access = PL1_R, .type = ARM_CP_CONST,
7395 .accessfn = access_aa64_tid3,
7396 .resetvalue = cpu->isar.mvfr0 },
7397 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7398 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7399 .access = PL1_R, .type = ARM_CP_CONST,
7400 .accessfn = access_aa64_tid3,
7401 .resetvalue = cpu->isar.mvfr1 },
7402 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7403 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7404 .access = PL1_R, .type = ARM_CP_CONST,
7405 .accessfn = access_aa64_tid3,
7406 .resetvalue = cpu->isar.mvfr2 },
7407 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7408 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7409 .access = PL1_R, .type = ARM_CP_CONST,
7410 .accessfn = access_aa64_tid3,
7411 .resetvalue = 0 },
7412 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7413 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7414 .access = PL1_R, .type = ARM_CP_CONST,
7415 .accessfn = access_aa64_tid3,
7416 .resetvalue = 0 },
7417 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7418 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7419 .access = PL1_R, .type = ARM_CP_CONST,
7420 .accessfn = access_aa64_tid3,
7421 .resetvalue = 0 },
7422 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7424 .access = PL1_R, .type = ARM_CP_CONST,
7425 .accessfn = access_aa64_tid3,
7426 .resetvalue = 0 },
7427 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7428 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7429 .access = PL1_R, .type = ARM_CP_CONST,
7430 .accessfn = access_aa64_tid3,
7431 .resetvalue = 0 },
7432 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7433 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7434 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7435 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7436 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7437 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7438 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7439 .resetvalue = cpu->pmceid0 },
7440 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7441 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7442 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7443 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7444 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7445 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7446 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7447 .resetvalue = cpu->pmceid1 },
7448 REGINFO_SENTINEL
7450 #ifdef CONFIG_USER_ONLY
7451 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7452 { .name = "ID_AA64PFR0_EL1",
7453 .exported_bits = 0x000f000f00ff0000,
7454 .fixed_bits = 0x0000000000000011 },
7455 { .name = "ID_AA64PFR1_EL1",
7456 .exported_bits = 0x00000000000000f0 },
7457 { .name = "ID_AA64PFR*_EL1_RESERVED",
7458 .is_glob = true },
7459 { .name = "ID_AA64ZFR0_EL1" },
7460 { .name = "ID_AA64MMFR0_EL1",
7461 .fixed_bits = 0x00000000ff000000 },
7462 { .name = "ID_AA64MMFR1_EL1" },
7463 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7464 .is_glob = true },
7465 { .name = "ID_AA64DFR0_EL1",
7466 .fixed_bits = 0x0000000000000006 },
7467 { .name = "ID_AA64DFR1_EL1" },
7468 { .name = "ID_AA64DFR*_EL1_RESERVED",
7469 .is_glob = true },
7470 { .name = "ID_AA64AFR*",
7471 .is_glob = true },
7472 { .name = "ID_AA64ISAR0_EL1",
7473 .exported_bits = 0x00fffffff0fffff0 },
7474 { .name = "ID_AA64ISAR1_EL1",
7475 .exported_bits = 0x000000f0ffffffff },
7476 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7477 .is_glob = true },
7478 REGUSERINFO_SENTINEL
7480 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7481 #endif
7482 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7483 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7484 !arm_feature(env, ARM_FEATURE_EL2)) {
7485 ARMCPRegInfo rvbar = {
7486 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7487 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7488 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7490 define_one_arm_cp_reg(cpu, &rvbar);
7492 define_arm_cp_regs(cpu, v8_idregs);
7493 define_arm_cp_regs(cpu, v8_cp_reginfo);
7495 if (arm_feature(env, ARM_FEATURE_EL2)) {
7496 uint64_t vmpidr_def = mpidr_read_val(env);
7497 ARMCPRegInfo vpidr_regs[] = {
7498 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7499 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7500 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7501 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7502 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7503 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7504 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7505 .access = PL2_RW, .resetvalue = cpu->midr,
7506 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7507 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7508 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7509 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7510 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7511 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7512 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7513 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7514 .access = PL2_RW,
7515 .resetvalue = vmpidr_def,
7516 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7517 REGINFO_SENTINEL
7519 define_arm_cp_regs(cpu, vpidr_regs);
7520 define_arm_cp_regs(cpu, el2_cp_reginfo);
7521 if (arm_feature(env, ARM_FEATURE_V8)) {
7522 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7524 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7525 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7526 ARMCPRegInfo rvbar = {
7527 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7528 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7529 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7531 define_one_arm_cp_reg(cpu, &rvbar);
7533 } else {
7534 /* If EL2 is missing but higher ELs are enabled, we need to
7535 * register the no_el2 reginfos.
7537 if (arm_feature(env, ARM_FEATURE_EL3)) {
7538 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7539 * of MIDR_EL1 and MPIDR_EL1.
7541 ARMCPRegInfo vpidr_regs[] = {
7542 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7543 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7544 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7545 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7546 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7547 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7548 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7549 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7550 .type = ARM_CP_NO_RAW,
7551 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7552 REGINFO_SENTINEL
7554 define_arm_cp_regs(cpu, vpidr_regs);
7555 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7556 if (arm_feature(env, ARM_FEATURE_V8)) {
7557 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7561 if (arm_feature(env, ARM_FEATURE_EL3)) {
7562 define_arm_cp_regs(cpu, el3_cp_reginfo);
7563 ARMCPRegInfo el3_regs[] = {
7564 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7565 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7566 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7567 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7568 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7569 .access = PL3_RW,
7570 .raw_writefn = raw_write, .writefn = sctlr_write,
7571 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7572 .resetvalue = cpu->reset_sctlr },
7573 REGINFO_SENTINEL
7576 define_arm_cp_regs(cpu, el3_regs);
7578 /* The behaviour of NSACR is sufficiently various that we don't
7579 * try to describe it in a single reginfo:
7580 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7581 * reads as constant 0xc00 from NS EL1 and NS EL2
7582 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7583 * if v7 without EL3, register doesn't exist
7584 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7586 if (arm_feature(env, ARM_FEATURE_EL3)) {
7587 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7588 ARMCPRegInfo nsacr = {
7589 .name = "NSACR", .type = ARM_CP_CONST,
7590 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7591 .access = PL1_RW, .accessfn = nsacr_access,
7592 .resetvalue = 0xc00
7594 define_one_arm_cp_reg(cpu, &nsacr);
7595 } else {
7596 ARMCPRegInfo nsacr = {
7597 .name = "NSACR",
7598 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7599 .access = PL3_RW | PL1_R,
7600 .resetvalue = 0,
7601 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7603 define_one_arm_cp_reg(cpu, &nsacr);
7605 } else {
7606 if (arm_feature(env, ARM_FEATURE_V8)) {
7607 ARMCPRegInfo nsacr = {
7608 .name = "NSACR", .type = ARM_CP_CONST,
7609 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7610 .access = PL1_R,
7611 .resetvalue = 0xc00
7613 define_one_arm_cp_reg(cpu, &nsacr);
7617 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7618 if (arm_feature(env, ARM_FEATURE_V6)) {
7619 /* PMSAv6 not implemented */
7620 assert(arm_feature(env, ARM_FEATURE_V7));
7621 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7622 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7623 } else {
7624 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7626 } else {
7627 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7628 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7629 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7630 if (cpu_isar_feature(aa32_hpd, cpu)) {
7631 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7634 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7635 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7637 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7638 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7640 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7641 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7643 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7644 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7646 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7647 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7649 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7650 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7652 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7653 define_arm_cp_regs(cpu, omap_cp_reginfo);
7655 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7656 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7658 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7659 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7661 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7662 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7664 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7665 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7667 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7668 define_arm_cp_regs(cpu, jazelle_regs);
7670 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7671 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7672 * be read-only (ie write causes UNDEF exception).
7675 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7676 /* Pre-v8 MIDR space.
7677 * Note that the MIDR isn't a simple constant register because
7678 * of the TI925 behaviour where writes to another register can
7679 * cause the MIDR value to change.
7681 * Unimplemented registers in the c15 0 0 0 space default to
7682 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7683 * and friends override accordingly.
7685 { .name = "MIDR",
7686 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7687 .access = PL1_R, .resetvalue = cpu->midr,
7688 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7689 .readfn = midr_read,
7690 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7691 .type = ARM_CP_OVERRIDE },
7692 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7693 { .name = "DUMMY",
7694 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7695 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7696 { .name = "DUMMY",
7697 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7698 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7699 { .name = "DUMMY",
7700 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7701 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7702 { .name = "DUMMY",
7703 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7704 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7705 { .name = "DUMMY",
7706 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7707 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7708 REGINFO_SENTINEL
7710 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7711 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7713 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7714 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7715 .readfn = midr_read },
7716 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7717 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7718 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7719 .access = PL1_R, .resetvalue = cpu->midr },
7720 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7721 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7722 .access = PL1_R, .resetvalue = cpu->midr },
7723 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7725 .access = PL1_R,
7726 .accessfn = access_aa64_tid1,
7727 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7728 REGINFO_SENTINEL
7730 ARMCPRegInfo id_cp_reginfo[] = {
7731 /* These are common to v8 and pre-v8 */
7732 { .name = "CTR",
7733 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7734 .access = PL1_R, .accessfn = ctr_el0_access,
7735 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7736 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7737 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7738 .access = PL0_R, .accessfn = ctr_el0_access,
7739 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7740 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7741 { .name = "TCMTR",
7742 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7743 .access = PL1_R,
7744 .accessfn = access_aa32_tid1,
7745 .type = ARM_CP_CONST, .resetvalue = 0 },
7746 REGINFO_SENTINEL
7748 /* TLBTR is specific to VMSA */
7749 ARMCPRegInfo id_tlbtr_reginfo = {
7750 .name = "TLBTR",
7751 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7752 .access = PL1_R,
7753 .accessfn = access_aa32_tid1,
7754 .type = ARM_CP_CONST, .resetvalue = 0,
7756 /* MPUIR is specific to PMSA V6+ */
7757 ARMCPRegInfo id_mpuir_reginfo = {
7758 .name = "MPUIR",
7759 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7760 .access = PL1_R, .type = ARM_CP_CONST,
7761 .resetvalue = cpu->pmsav7_dregion << 8
7763 ARMCPRegInfo crn0_wi_reginfo = {
7764 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7765 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7766 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7768 #ifdef CONFIG_USER_ONLY
7769 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7770 { .name = "MIDR_EL1",
7771 .exported_bits = 0x00000000ffffffff },
7772 { .name = "REVIDR_EL1" },
7773 REGUSERINFO_SENTINEL
7775 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7776 #endif
7777 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7778 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7779 ARMCPRegInfo *r;
7780 /* Register the blanket "writes ignored" value first to cover the
7781 * whole space. Then update the specific ID registers to allow write
7782 * access, so that they ignore writes rather than causing them to
7783 * UNDEF.
7785 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7786 for (r = id_pre_v8_midr_cp_reginfo;
7787 r->type != ARM_CP_SENTINEL; r++) {
7788 r->access = PL1_RW;
7790 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7791 r->access = PL1_RW;
7793 id_mpuir_reginfo.access = PL1_RW;
7794 id_tlbtr_reginfo.access = PL1_RW;
7796 if (arm_feature(env, ARM_FEATURE_V8)) {
7797 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7798 } else {
7799 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7801 define_arm_cp_regs(cpu, id_cp_reginfo);
7802 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7803 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7804 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7805 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7809 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7810 ARMCPRegInfo mpidr_cp_reginfo[] = {
7811 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7812 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7813 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7814 REGINFO_SENTINEL
7816 #ifdef CONFIG_USER_ONLY
7817 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7818 { .name = "MPIDR_EL1",
7819 .fixed_bits = 0x0000000080000000 },
7820 REGUSERINFO_SENTINEL
7822 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7823 #endif
7824 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7827 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7828 ARMCPRegInfo auxcr_reginfo[] = {
7829 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7830 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7831 .access = PL1_RW, .accessfn = access_tacr,
7832 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7833 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7834 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7835 .access = PL2_RW, .type = ARM_CP_CONST,
7836 .resetvalue = 0 },
7837 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7838 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7839 .access = PL3_RW, .type = ARM_CP_CONST,
7840 .resetvalue = 0 },
7841 REGINFO_SENTINEL
7843 define_arm_cp_regs(cpu, auxcr_reginfo);
7844 if (cpu_isar_feature(aa32_ac2, cpu)) {
7845 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7849 if (arm_feature(env, ARM_FEATURE_CBAR)) {
7851 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7852 * There are two flavours:
7853 * (1) older 32-bit only cores have a simple 32-bit CBAR
7854 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7855 * 32-bit register visible to AArch32 at a different encoding
7856 * to the "flavour 1" register and with the bits rearranged to
7857 * be able to squash a 64-bit address into the 32-bit view.
7858 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7859 * in future if we support AArch32-only configs of some of the
7860 * AArch64 cores we might need to add a specific feature flag
7861 * to indicate cores with "flavour 2" CBAR.
7863 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7864 /* 32 bit view is [31:18] 0...0 [43:32]. */
7865 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7866 | extract64(cpu->reset_cbar, 32, 12);
7867 ARMCPRegInfo cbar_reginfo[] = {
7868 { .name = "CBAR",
7869 .type = ARM_CP_CONST,
7870 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7871 .access = PL1_R, .resetvalue = cbar32 },
7872 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7873 .type = ARM_CP_CONST,
7874 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7875 .access = PL1_R, .resetvalue = cpu->reset_cbar },
7876 REGINFO_SENTINEL
7878 /* We don't implement a r/w 64 bit CBAR currently */
7879 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7880 define_arm_cp_regs(cpu, cbar_reginfo);
7881 } else {
7882 ARMCPRegInfo cbar = {
7883 .name = "CBAR",
7884 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7885 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7886 .fieldoffset = offsetof(CPUARMState,
7887 cp15.c15_config_base_address)
7889 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7890 cbar.access = PL1_R;
7891 cbar.fieldoffset = 0;
7892 cbar.type = ARM_CP_CONST;
7894 define_one_arm_cp_reg(cpu, &cbar);
7898 if (arm_feature(env, ARM_FEATURE_VBAR)) {
7899 ARMCPRegInfo vbar_cp_reginfo[] = {
7900 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7901 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7902 .access = PL1_RW, .writefn = vbar_write,
7903 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7904 offsetof(CPUARMState, cp15.vbar_ns) },
7905 .resetvalue = 0 },
7906 REGINFO_SENTINEL
7908 define_arm_cp_regs(cpu, vbar_cp_reginfo);
7911 /* Generic registers whose values depend on the implementation */
7913 ARMCPRegInfo sctlr = {
7914 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7915 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7916 .access = PL1_RW, .accessfn = access_tvm_trvm,
7917 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7918 offsetof(CPUARMState, cp15.sctlr_ns) },
7919 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7920 .raw_writefn = raw_write,
7922 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7923 /* Normally we would always end the TB on an SCTLR write, but Linux
7924 * arch/arm/mach-pxa/sleep.S expects two instructions following
7925 * an MMU enable to execute from cache. Imitate this behaviour.
7927 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7929 define_one_arm_cp_reg(cpu, &sctlr);
7932 if (cpu_isar_feature(aa64_lor, cpu)) {
7933 define_arm_cp_regs(cpu, lor_reginfo);
7935 if (cpu_isar_feature(aa64_pan, cpu)) {
7936 define_one_arm_cp_reg(cpu, &pan_reginfo);
7938 #ifndef CONFIG_USER_ONLY
7939 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
7940 define_arm_cp_regs(cpu, ats1e1_reginfo);
7942 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
7943 define_arm_cp_regs(cpu, ats1cp_reginfo);
7945 #endif
7946 if (cpu_isar_feature(aa64_uao, cpu)) {
7947 define_one_arm_cp_reg(cpu, &uao_reginfo);
7950 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7951 define_arm_cp_regs(cpu, vhe_reginfo);
7954 if (cpu_isar_feature(aa64_sve, cpu)) {
7955 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7956 if (arm_feature(env, ARM_FEATURE_EL2)) {
7957 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7958 } else {
7959 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7961 if (arm_feature(env, ARM_FEATURE_EL3)) {
7962 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7966 #ifdef TARGET_AARCH64
7967 if (cpu_isar_feature(aa64_pauth, cpu)) {
7968 define_arm_cp_regs(cpu, pauth_reginfo);
7970 if (cpu_isar_feature(aa64_rndr, cpu)) {
7971 define_arm_cp_regs(cpu, rndr_reginfo);
7973 #ifndef CONFIG_USER_ONLY
7974 /* Data Cache clean instructions up to PoP */
7975 if (cpu_isar_feature(aa64_dcpop, cpu)) {
7976 define_one_arm_cp_reg(cpu, dcpop_reg);
7978 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7979 define_one_arm_cp_reg(cpu, dcpodp_reg);
7982 #endif /*CONFIG_USER_ONLY*/
7983 #endif
7985 if (cpu_isar_feature(any_predinv, cpu)) {
7986 define_arm_cp_regs(cpu, predinv_reginfo);
7989 if (cpu_isar_feature(any_ccidx, cpu)) {
7990 define_arm_cp_regs(cpu, ccsidr2_reginfo);
7993 #ifndef CONFIG_USER_ONLY
7995 * Register redirections and aliases must be done last,
7996 * after the registers from the other extensions have been defined.
7998 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7999 define_arm_vh_e2h_redirects_aliases(cpu);
8001 #endif
8004 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8006 CPUState *cs = CPU(cpu);
8007 CPUARMState *env = &cpu->env;
8009 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8011 * The lower part of each SVE register aliases to the FPU
8012 * registers so we don't need to include both.
8014 #ifdef TARGET_AARCH64
8015 if (isar_feature_aa64_sve(&cpu->isar)) {
8016 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8017 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8018 "sve-registers.xml", 0);
8019 } else
8020 #endif
8022 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8023 aarch64_fpu_gdb_set_reg,
8024 34, "aarch64-fpu.xml", 0);
8026 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8027 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8028 51, "arm-neon.xml", 0);
8029 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8030 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8031 35, "arm-vfp3.xml", 0);
8032 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8033 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8034 19, "arm-vfp.xml", 0);
8036 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8037 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8038 "system-registers.xml", 0);
8042 /* Sort alphabetically by type name, except for "any". */
8043 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8045 ObjectClass *class_a = (ObjectClass *)a;
8046 ObjectClass *class_b = (ObjectClass *)b;
8047 const char *name_a, *name_b;
8049 name_a = object_class_get_name(class_a);
8050 name_b = object_class_get_name(class_b);
8051 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8052 return 1;
8053 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8054 return -1;
8055 } else {
8056 return strcmp(name_a, name_b);
8060 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8062 ObjectClass *oc = data;
8063 const char *typename;
8064 char *name;
8066 typename = object_class_get_name(oc);
8067 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8068 qemu_printf(" %s\n", name);
8069 g_free(name);
8072 void arm_cpu_list(void)
8074 GSList *list;
8076 list = object_class_get_list(TYPE_ARM_CPU, false);
8077 list = g_slist_sort(list, arm_cpu_list_compare);
8078 qemu_printf("Available CPUs:\n");
8079 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8080 g_slist_free(list);
8083 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8085 ObjectClass *oc = data;
8086 CpuDefinitionInfoList **cpu_list = user_data;
8087 CpuDefinitionInfoList *entry;
8088 CpuDefinitionInfo *info;
8089 const char *typename;
8091 typename = object_class_get_name(oc);
8092 info = g_malloc0(sizeof(*info));
8093 info->name = g_strndup(typename,
8094 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8095 info->q_typename = g_strdup(typename);
8097 entry = g_malloc0(sizeof(*entry));
8098 entry->value = info;
8099 entry->next = *cpu_list;
8100 *cpu_list = entry;
8103 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8105 CpuDefinitionInfoList *cpu_list = NULL;
8106 GSList *list;
8108 list = object_class_get_list(TYPE_ARM_CPU, false);
8109 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8110 g_slist_free(list);
8112 return cpu_list;
8115 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8116 void *opaque, int state, int secstate,
8117 int crm, int opc1, int opc2,
8118 const char *name)
8120 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8121 * add a single reginfo struct to the hash table.
8123 uint32_t *key = g_new(uint32_t, 1);
8124 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8125 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8126 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8128 r2->name = g_strdup(name);
8129 /* Reset the secure state to the specific incoming state. This is
8130 * necessary as the register may have been defined with both states.
8132 r2->secure = secstate;
8134 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8135 /* Register is banked (using both entries in array).
8136 * Overwriting fieldoffset as the array is only used to define
8137 * banked registers but later only fieldoffset is used.
8139 r2->fieldoffset = r->bank_fieldoffsets[ns];
8142 if (state == ARM_CP_STATE_AA32) {
8143 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8144 /* If the register is banked then we don't need to migrate or
8145 * reset the 32-bit instance in certain cases:
8147 * 1) If the register has both 32-bit and 64-bit instances then we
8148 * can count on the 64-bit instance taking care of the
8149 * non-secure bank.
8150 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8151 * taking care of the secure bank. This requires that separate
8152 * 32 and 64-bit definitions are provided.
8154 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8155 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8156 r2->type |= ARM_CP_ALIAS;
8158 } else if ((secstate != r->secure) && !ns) {
8159 /* The register is not banked so we only want to allow migration of
8160 * the non-secure instance.
8162 r2->type |= ARM_CP_ALIAS;
8165 if (r->state == ARM_CP_STATE_BOTH) {
8166 /* We assume it is a cp15 register if the .cp field is left unset.
8168 if (r2->cp == 0) {
8169 r2->cp = 15;
8172 #ifdef HOST_WORDS_BIGENDIAN
8173 if (r2->fieldoffset) {
8174 r2->fieldoffset += sizeof(uint32_t);
8176 #endif
8179 if (state == ARM_CP_STATE_AA64) {
8180 /* To allow abbreviation of ARMCPRegInfo
8181 * definitions, we treat cp == 0 as equivalent to
8182 * the value for "standard guest-visible sysreg".
8183 * STATE_BOTH definitions are also always "standard
8184 * sysreg" in their AArch64 view (the .cp value may
8185 * be non-zero for the benefit of the AArch32 view).
8187 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8188 r2->cp = CP_REG_ARM64_SYSREG_CP;
8190 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8191 r2->opc0, opc1, opc2);
8192 } else {
8193 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8195 if (opaque) {
8196 r2->opaque = opaque;
8198 /* reginfo passed to helpers is correct for the actual access,
8199 * and is never ARM_CP_STATE_BOTH:
8201 r2->state = state;
8202 /* Make sure reginfo passed to helpers for wildcarded regs
8203 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8205 r2->crm = crm;
8206 r2->opc1 = opc1;
8207 r2->opc2 = opc2;
8208 /* By convention, for wildcarded registers only the first
8209 * entry is used for migration; the others are marked as
8210 * ALIAS so we don't try to transfer the register
8211 * multiple times. Special registers (ie NOP/WFI) are
8212 * never migratable and not even raw-accessible.
8214 if ((r->type & ARM_CP_SPECIAL)) {
8215 r2->type |= ARM_CP_NO_RAW;
8217 if (((r->crm == CP_ANY) && crm != 0) ||
8218 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8219 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8220 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8223 /* Check that raw accesses are either forbidden or handled. Note that
8224 * we can't assert this earlier because the setup of fieldoffset for
8225 * banked registers has to be done first.
8227 if (!(r2->type & ARM_CP_NO_RAW)) {
8228 assert(!raw_accessors_invalid(r2));
8231 /* Overriding of an existing definition must be explicitly
8232 * requested.
8234 if (!(r->type & ARM_CP_OVERRIDE)) {
8235 ARMCPRegInfo *oldreg;
8236 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8237 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8238 fprintf(stderr, "Register redefined: cp=%d %d bit "
8239 "crn=%d crm=%d opc1=%d opc2=%d, "
8240 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8241 r2->crn, r2->crm, r2->opc1, r2->opc2,
8242 oldreg->name, r2->name);
8243 g_assert_not_reached();
8246 g_hash_table_insert(cpu->cp_regs, key, r2);
8250 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8251 const ARMCPRegInfo *r, void *opaque)
8253 /* Define implementations of coprocessor registers.
8254 * We store these in a hashtable because typically
8255 * there are less than 150 registers in a space which
8256 * is 16*16*16*8*8 = 262144 in size.
8257 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8258 * If a register is defined twice then the second definition is
8259 * used, so this can be used to define some generic registers and
8260 * then override them with implementation specific variations.
8261 * At least one of the original and the second definition should
8262 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8263 * against accidental use.
8265 * The state field defines whether the register is to be
8266 * visible in the AArch32 or AArch64 execution state. If the
8267 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8268 * reginfo structure for the AArch32 view, which sees the lower
8269 * 32 bits of the 64 bit register.
8271 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8272 * be wildcarded. AArch64 registers are always considered to be 64
8273 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8274 * the register, if any.
8276 int crm, opc1, opc2, state;
8277 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8278 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8279 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8280 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8281 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8282 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8283 /* 64 bit registers have only CRm and Opc1 fields */
8284 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8285 /* op0 only exists in the AArch64 encodings */
8286 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8287 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8288 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8289 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8290 * encodes a minimum access level for the register. We roll this
8291 * runtime check into our general permission check code, so check
8292 * here that the reginfo's specified permissions are strict enough
8293 * to encompass the generic architectural permission check.
8295 if (r->state != ARM_CP_STATE_AA32) {
8296 int mask = 0;
8297 switch (r->opc1) {
8298 case 0:
8299 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8300 mask = PL0U_R | PL1_RW;
8301 break;
8302 case 1: case 2:
8303 /* min_EL EL1 */
8304 mask = PL1_RW;
8305 break;
8306 case 3:
8307 /* min_EL EL0 */
8308 mask = PL0_RW;
8309 break;
8310 case 4:
8311 case 5:
8312 /* min_EL EL2 */
8313 mask = PL2_RW;
8314 break;
8315 case 6:
8316 /* min_EL EL3 */
8317 mask = PL3_RW;
8318 break;
8319 case 7:
8320 /* min_EL EL1, secure mode only (we don't check the latter) */
8321 mask = PL1_RW;
8322 break;
8323 default:
8324 /* broken reginfo with out-of-range opc1 */
8325 assert(false);
8326 break;
8328 /* assert our permissions are not too lax (stricter is fine) */
8329 assert((r->access & ~mask) == 0);
8332 /* Check that the register definition has enough info to handle
8333 * reads and writes if they are permitted.
8335 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8336 if (r->access & PL3_R) {
8337 assert((r->fieldoffset ||
8338 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8339 r->readfn);
8341 if (r->access & PL3_W) {
8342 assert((r->fieldoffset ||
8343 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8344 r->writefn);
8347 /* Bad type field probably means missing sentinel at end of reg list */
8348 assert(cptype_valid(r->type));
8349 for (crm = crmmin; crm <= crmmax; crm++) {
8350 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8351 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8352 for (state = ARM_CP_STATE_AA32;
8353 state <= ARM_CP_STATE_AA64; state++) {
8354 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8355 continue;
8357 if (state == ARM_CP_STATE_AA32) {
8358 /* Under AArch32 CP registers can be common
8359 * (same for secure and non-secure world) or banked.
8361 char *name;
8363 switch (r->secure) {
8364 case ARM_CP_SECSTATE_S:
8365 case ARM_CP_SECSTATE_NS:
8366 add_cpreg_to_hashtable(cpu, r, opaque, state,
8367 r->secure, crm, opc1, opc2,
8368 r->name);
8369 break;
8370 default:
8371 name = g_strdup_printf("%s_S", r->name);
8372 add_cpreg_to_hashtable(cpu, r, opaque, state,
8373 ARM_CP_SECSTATE_S,
8374 crm, opc1, opc2, name);
8375 g_free(name);
8376 add_cpreg_to_hashtable(cpu, r, opaque, state,
8377 ARM_CP_SECSTATE_NS,
8378 crm, opc1, opc2, r->name);
8379 break;
8381 } else {
8382 /* AArch64 registers get mapped to non-secure instance
8383 * of AArch32 */
8384 add_cpreg_to_hashtable(cpu, r, opaque, state,
8385 ARM_CP_SECSTATE_NS,
8386 crm, opc1, opc2, r->name);
8394 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8395 const ARMCPRegInfo *regs, void *opaque)
8397 /* Define a whole list of registers */
8398 const ARMCPRegInfo *r;
8399 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8400 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8405 * Modify ARMCPRegInfo for access from userspace.
8407 * This is a data driven modification directed by
8408 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8409 * user-space cannot alter any values and dynamic values pertaining to
8410 * execution state are hidden from user space view anyway.
8412 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8414 const ARMCPRegUserSpaceInfo *m;
8415 ARMCPRegInfo *r;
8417 for (m = mods; m->name; m++) {
8418 GPatternSpec *pat = NULL;
8419 if (m->is_glob) {
8420 pat = g_pattern_spec_new(m->name);
8422 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8423 if (pat && g_pattern_match_string(pat, r->name)) {
8424 r->type = ARM_CP_CONST;
8425 r->access = PL0U_R;
8426 r->resetvalue = 0;
8427 /* continue */
8428 } else if (strcmp(r->name, m->name) == 0) {
8429 r->type = ARM_CP_CONST;
8430 r->access = PL0U_R;
8431 r->resetvalue &= m->exported_bits;
8432 r->resetvalue |= m->fixed_bits;
8433 break;
8436 if (pat) {
8437 g_pattern_spec_free(pat);
8442 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8444 return g_hash_table_lookup(cpregs, &encoded_cp);
8447 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8448 uint64_t value)
8450 /* Helper coprocessor write function for write-ignore registers */
8453 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8455 /* Helper coprocessor write function for read-as-zero registers */
8456 return 0;
8459 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8461 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8464 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8466 /* Return true if it is not valid for us to switch to
8467 * this CPU mode (ie all the UNPREDICTABLE cases in
8468 * the ARM ARM CPSRWriteByInstr pseudocode).
8471 /* Changes to or from Hyp via MSR and CPS are illegal. */
8472 if (write_type == CPSRWriteByInstr &&
8473 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8474 mode == ARM_CPU_MODE_HYP)) {
8475 return 1;
8478 switch (mode) {
8479 case ARM_CPU_MODE_USR:
8480 return 0;
8481 case ARM_CPU_MODE_SYS:
8482 case ARM_CPU_MODE_SVC:
8483 case ARM_CPU_MODE_ABT:
8484 case ARM_CPU_MODE_UND:
8485 case ARM_CPU_MODE_IRQ:
8486 case ARM_CPU_MODE_FIQ:
8487 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8488 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8490 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8491 * and CPS are treated as illegal mode changes.
8493 if (write_type == CPSRWriteByInstr &&
8494 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8495 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8496 return 1;
8498 return 0;
8499 case ARM_CPU_MODE_HYP:
8500 return !arm_feature(env, ARM_FEATURE_EL2)
8501 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8502 case ARM_CPU_MODE_MON:
8503 return arm_current_el(env) < 3;
8504 default:
8505 return 1;
8509 uint32_t cpsr_read(CPUARMState *env)
8511 int ZF;
8512 ZF = (env->ZF == 0);
8513 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8514 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8515 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8516 | ((env->condexec_bits & 0xfc) << 8)
8517 | (env->GE << 16) | (env->daif & CPSR_AIF);
8520 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8521 CPSRWriteType write_type)
8523 uint32_t changed_daif;
8525 if (mask & CPSR_NZCV) {
8526 env->ZF = (~val) & CPSR_Z;
8527 env->NF = val;
8528 env->CF = (val >> 29) & 1;
8529 env->VF = (val << 3) & 0x80000000;
8531 if (mask & CPSR_Q)
8532 env->QF = ((val & CPSR_Q) != 0);
8533 if (mask & CPSR_T)
8534 env->thumb = ((val & CPSR_T) != 0);
8535 if (mask & CPSR_IT_0_1) {
8536 env->condexec_bits &= ~3;
8537 env->condexec_bits |= (val >> 25) & 3;
8539 if (mask & CPSR_IT_2_7) {
8540 env->condexec_bits &= 3;
8541 env->condexec_bits |= (val >> 8) & 0xfc;
8543 if (mask & CPSR_GE) {
8544 env->GE = (val >> 16) & 0xf;
8547 /* In a V7 implementation that includes the security extensions but does
8548 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8549 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8550 * bits respectively.
8552 * In a V8 implementation, it is permitted for privileged software to
8553 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8555 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8556 arm_feature(env, ARM_FEATURE_EL3) &&
8557 !arm_feature(env, ARM_FEATURE_EL2) &&
8558 !arm_is_secure(env)) {
8560 changed_daif = (env->daif ^ val) & mask;
8562 if (changed_daif & CPSR_A) {
8563 /* Check to see if we are allowed to change the masking of async
8564 * abort exceptions from a non-secure state.
8566 if (!(env->cp15.scr_el3 & SCR_AW)) {
8567 qemu_log_mask(LOG_GUEST_ERROR,
8568 "Ignoring attempt to switch CPSR_A flag from "
8569 "non-secure world with SCR.AW bit clear\n");
8570 mask &= ~CPSR_A;
8574 if (changed_daif & CPSR_F) {
8575 /* Check to see if we are allowed to change the masking of FIQ
8576 * exceptions from a non-secure state.
8578 if (!(env->cp15.scr_el3 & SCR_FW)) {
8579 qemu_log_mask(LOG_GUEST_ERROR,
8580 "Ignoring attempt to switch CPSR_F flag from "
8581 "non-secure world with SCR.FW bit clear\n");
8582 mask &= ~CPSR_F;
8585 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8586 * If this bit is set software is not allowed to mask
8587 * FIQs, but is allowed to set CPSR_F to 0.
8589 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8590 (val & CPSR_F)) {
8591 qemu_log_mask(LOG_GUEST_ERROR,
8592 "Ignoring attempt to enable CPSR_F flag "
8593 "(non-maskable FIQ [NMFI] support enabled)\n");
8594 mask &= ~CPSR_F;
8599 env->daif &= ~(CPSR_AIF & mask);
8600 env->daif |= val & CPSR_AIF & mask;
8602 if (write_type != CPSRWriteRaw &&
8603 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8604 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8605 /* Note that we can only get here in USR mode if this is a
8606 * gdb stub write; for this case we follow the architectural
8607 * behaviour for guest writes in USR mode of ignoring an attempt
8608 * to switch mode. (Those are caught by translate.c for writes
8609 * triggered by guest instructions.)
8611 mask &= ~CPSR_M;
8612 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8613 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8614 * v7, and has defined behaviour in v8:
8615 * + leave CPSR.M untouched
8616 * + allow changes to the other CPSR fields
8617 * + set PSTATE.IL
8618 * For user changes via the GDB stub, we don't set PSTATE.IL,
8619 * as this would be unnecessarily harsh for a user error.
8621 mask &= ~CPSR_M;
8622 if (write_type != CPSRWriteByGDBStub &&
8623 arm_feature(env, ARM_FEATURE_V8)) {
8624 mask |= CPSR_IL;
8625 val |= CPSR_IL;
8627 qemu_log_mask(LOG_GUEST_ERROR,
8628 "Illegal AArch32 mode switch attempt from %s to %s\n",
8629 aarch32_mode_name(env->uncached_cpsr),
8630 aarch32_mode_name(val));
8631 } else {
8632 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8633 write_type == CPSRWriteExceptionReturn ?
8634 "Exception return from AArch32" :
8635 "AArch32 mode switch from",
8636 aarch32_mode_name(env->uncached_cpsr),
8637 aarch32_mode_name(val), env->regs[15]);
8638 switch_mode(env, val & CPSR_M);
8641 mask &= ~CACHED_CPSR_BITS;
8642 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8645 /* Sign/zero extend */
8646 uint32_t HELPER(sxtb16)(uint32_t x)
8648 uint32_t res;
8649 res = (uint16_t)(int8_t)x;
8650 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8651 return res;
8654 uint32_t HELPER(uxtb16)(uint32_t x)
8656 uint32_t res;
8657 res = (uint16_t)(uint8_t)x;
8658 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8659 return res;
8662 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8664 if (den == 0)
8665 return 0;
8666 if (num == INT_MIN && den == -1)
8667 return INT_MIN;
8668 return num / den;
8671 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8673 if (den == 0)
8674 return 0;
8675 return num / den;
8678 uint32_t HELPER(rbit)(uint32_t x)
8680 return revbit32(x);
8683 #ifdef CONFIG_USER_ONLY
8685 static void switch_mode(CPUARMState *env, int mode)
8687 ARMCPU *cpu = env_archcpu(env);
8689 if (mode != ARM_CPU_MODE_USR) {
8690 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8694 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8695 uint32_t cur_el, bool secure)
8697 return 1;
8700 void aarch64_sync_64_to_32(CPUARMState *env)
8702 g_assert_not_reached();
8705 #else
8707 static void switch_mode(CPUARMState *env, int mode)
8709 int old_mode;
8710 int i;
8712 old_mode = env->uncached_cpsr & CPSR_M;
8713 if (mode == old_mode)
8714 return;
8716 if (old_mode == ARM_CPU_MODE_FIQ) {
8717 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8718 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8719 } else if (mode == ARM_CPU_MODE_FIQ) {
8720 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8721 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8724 i = bank_number(old_mode);
8725 env->banked_r13[i] = env->regs[13];
8726 env->banked_spsr[i] = env->spsr;
8728 i = bank_number(mode);
8729 env->regs[13] = env->banked_r13[i];
8730 env->spsr = env->banked_spsr[i];
8732 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8733 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8736 /* Physical Interrupt Target EL Lookup Table
8738 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8740 * The below multi-dimensional table is used for looking up the target
8741 * exception level given numerous condition criteria. Specifically, the
8742 * target EL is based on SCR and HCR routing controls as well as the
8743 * currently executing EL and secure state.
8745 * Dimensions:
8746 * target_el_table[2][2][2][2][2][4]
8747 * | | | | | +--- Current EL
8748 * | | | | +------ Non-secure(0)/Secure(1)
8749 * | | | +--------- HCR mask override
8750 * | | +------------ SCR exec state control
8751 * | +--------------- SCR mask override
8752 * +------------------ 32-bit(0)/64-bit(1) EL3
8754 * The table values are as such:
8755 * 0-3 = EL0-EL3
8756 * -1 = Cannot occur
8758 * The ARM ARM target EL table includes entries indicating that an "exception
8759 * is not taken". The two cases where this is applicable are:
8760 * 1) An exception is taken from EL3 but the SCR does not have the exception
8761 * routed to EL3.
8762 * 2) An exception is taken from EL2 but the HCR does not have the exception
8763 * routed to EL2.
8764 * In these two cases, the below table contain a target of EL1. This value is
8765 * returned as it is expected that the consumer of the table data will check
8766 * for "target EL >= current EL" to ensure the exception is not taken.
8768 * SCR HCR
8769 * 64 EA AMO From
8770 * BIT IRQ IMO Non-secure Secure
8771 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8773 static const int8_t target_el_table[2][2][2][2][2][4] = {
8774 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8775 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8776 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8777 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8778 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8779 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8780 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8781 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8782 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8783 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8784 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8785 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8786 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8787 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8788 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8789 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8793 * Determine the target EL for physical exceptions
8795 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8796 uint32_t cur_el, bool secure)
8798 CPUARMState *env = cs->env_ptr;
8799 bool rw;
8800 bool scr;
8801 bool hcr;
8802 int target_el;
8803 /* Is the highest EL AArch64? */
8804 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8805 uint64_t hcr_el2;
8807 if (arm_feature(env, ARM_FEATURE_EL3)) {
8808 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8809 } else {
8810 /* Either EL2 is the highest EL (and so the EL2 register width
8811 * is given by is64); or there is no EL2 or EL3, in which case
8812 * the value of 'rw' does not affect the table lookup anyway.
8814 rw = is64;
8817 hcr_el2 = arm_hcr_el2_eff(env);
8818 switch (excp_idx) {
8819 case EXCP_IRQ:
8820 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8821 hcr = hcr_el2 & HCR_IMO;
8822 break;
8823 case EXCP_FIQ:
8824 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8825 hcr = hcr_el2 & HCR_FMO;
8826 break;
8827 default:
8828 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8829 hcr = hcr_el2 & HCR_AMO;
8830 break;
8834 * For these purposes, TGE and AMO/IMO/FMO both force the
8835 * interrupt to EL2. Fold TGE into the bit extracted above.
8837 hcr |= (hcr_el2 & HCR_TGE) != 0;
8839 /* Perform a table-lookup for the target EL given the current state */
8840 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8842 assert(target_el > 0);
8844 return target_el;
8847 void arm_log_exception(int idx)
8849 if (qemu_loglevel_mask(CPU_LOG_INT)) {
8850 const char *exc = NULL;
8851 static const char * const excnames[] = {
8852 [EXCP_UDEF] = "Undefined Instruction",
8853 [EXCP_SWI] = "SVC",
8854 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8855 [EXCP_DATA_ABORT] = "Data Abort",
8856 [EXCP_IRQ] = "IRQ",
8857 [EXCP_FIQ] = "FIQ",
8858 [EXCP_BKPT] = "Breakpoint",
8859 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8860 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8861 [EXCP_HVC] = "Hypervisor Call",
8862 [EXCP_HYP_TRAP] = "Hypervisor Trap",
8863 [EXCP_SMC] = "Secure Monitor Call",
8864 [EXCP_VIRQ] = "Virtual IRQ",
8865 [EXCP_VFIQ] = "Virtual FIQ",
8866 [EXCP_SEMIHOST] = "Semihosting call",
8867 [EXCP_NOCP] = "v7M NOCP UsageFault",
8868 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8869 [EXCP_STKOF] = "v8M STKOF UsageFault",
8870 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8871 [EXCP_LSERR] = "v8M LSERR UsageFault",
8872 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8875 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8876 exc = excnames[idx];
8878 if (!exc) {
8879 exc = "unknown";
8881 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8886 * Function used to synchronize QEMU's AArch64 register set with AArch32
8887 * register set. This is necessary when switching between AArch32 and AArch64
8888 * execution state.
8890 void aarch64_sync_32_to_64(CPUARMState *env)
8892 int i;
8893 uint32_t mode = env->uncached_cpsr & CPSR_M;
8895 /* We can blanket copy R[0:7] to X[0:7] */
8896 for (i = 0; i < 8; i++) {
8897 env->xregs[i] = env->regs[i];
8901 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8902 * Otherwise, they come from the banked user regs.
8904 if (mode == ARM_CPU_MODE_FIQ) {
8905 for (i = 8; i < 13; i++) {
8906 env->xregs[i] = env->usr_regs[i - 8];
8908 } else {
8909 for (i = 8; i < 13; i++) {
8910 env->xregs[i] = env->regs[i];
8915 * Registers x13-x23 are the various mode SP and FP registers. Registers
8916 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8917 * from the mode banked register.
8919 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8920 env->xregs[13] = env->regs[13];
8921 env->xregs[14] = env->regs[14];
8922 } else {
8923 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8924 /* HYP is an exception in that it is copied from r14 */
8925 if (mode == ARM_CPU_MODE_HYP) {
8926 env->xregs[14] = env->regs[14];
8927 } else {
8928 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8932 if (mode == ARM_CPU_MODE_HYP) {
8933 env->xregs[15] = env->regs[13];
8934 } else {
8935 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8938 if (mode == ARM_CPU_MODE_IRQ) {
8939 env->xregs[16] = env->regs[14];
8940 env->xregs[17] = env->regs[13];
8941 } else {
8942 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8943 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8946 if (mode == ARM_CPU_MODE_SVC) {
8947 env->xregs[18] = env->regs[14];
8948 env->xregs[19] = env->regs[13];
8949 } else {
8950 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8951 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8954 if (mode == ARM_CPU_MODE_ABT) {
8955 env->xregs[20] = env->regs[14];
8956 env->xregs[21] = env->regs[13];
8957 } else {
8958 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8959 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8962 if (mode == ARM_CPU_MODE_UND) {
8963 env->xregs[22] = env->regs[14];
8964 env->xregs[23] = env->regs[13];
8965 } else {
8966 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8967 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8971 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8972 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8973 * FIQ bank for r8-r14.
8975 if (mode == ARM_CPU_MODE_FIQ) {
8976 for (i = 24; i < 31; i++) {
8977 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
8979 } else {
8980 for (i = 24; i < 29; i++) {
8981 env->xregs[i] = env->fiq_regs[i - 24];
8983 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8984 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8987 env->pc = env->regs[15];
8991 * Function used to synchronize QEMU's AArch32 register set with AArch64
8992 * register set. This is necessary when switching between AArch32 and AArch64
8993 * execution state.
8995 void aarch64_sync_64_to_32(CPUARMState *env)
8997 int i;
8998 uint32_t mode = env->uncached_cpsr & CPSR_M;
9000 /* We can blanket copy X[0:7] to R[0:7] */
9001 for (i = 0; i < 8; i++) {
9002 env->regs[i] = env->xregs[i];
9006 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9007 * Otherwise, we copy x8-x12 into the banked user regs.
9009 if (mode == ARM_CPU_MODE_FIQ) {
9010 for (i = 8; i < 13; i++) {
9011 env->usr_regs[i - 8] = env->xregs[i];
9013 } else {
9014 for (i = 8; i < 13; i++) {
9015 env->regs[i] = env->xregs[i];
9020 * Registers r13 & r14 depend on the current mode.
9021 * If we are in a given mode, we copy the corresponding x registers to r13
9022 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9023 * for the mode.
9025 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9026 env->regs[13] = env->xregs[13];
9027 env->regs[14] = env->xregs[14];
9028 } else {
9029 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9032 * HYP is an exception in that it does not have its own banked r14 but
9033 * shares the USR r14
9035 if (mode == ARM_CPU_MODE_HYP) {
9036 env->regs[14] = env->xregs[14];
9037 } else {
9038 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9042 if (mode == ARM_CPU_MODE_HYP) {
9043 env->regs[13] = env->xregs[15];
9044 } else {
9045 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9048 if (mode == ARM_CPU_MODE_IRQ) {
9049 env->regs[14] = env->xregs[16];
9050 env->regs[13] = env->xregs[17];
9051 } else {
9052 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9053 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9056 if (mode == ARM_CPU_MODE_SVC) {
9057 env->regs[14] = env->xregs[18];
9058 env->regs[13] = env->xregs[19];
9059 } else {
9060 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9061 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9064 if (mode == ARM_CPU_MODE_ABT) {
9065 env->regs[14] = env->xregs[20];
9066 env->regs[13] = env->xregs[21];
9067 } else {
9068 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9069 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9072 if (mode == ARM_CPU_MODE_UND) {
9073 env->regs[14] = env->xregs[22];
9074 env->regs[13] = env->xregs[23];
9075 } else {
9076 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9077 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9080 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9081 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9082 * FIQ bank for r8-r14.
9084 if (mode == ARM_CPU_MODE_FIQ) {
9085 for (i = 24; i < 31; i++) {
9086 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9088 } else {
9089 for (i = 24; i < 29; i++) {
9090 env->fiq_regs[i - 24] = env->xregs[i];
9092 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9093 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9096 env->regs[15] = env->pc;
9099 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9100 uint32_t mask, uint32_t offset,
9101 uint32_t newpc)
9103 int new_el;
9105 /* Change the CPU state so as to actually take the exception. */
9106 switch_mode(env, new_mode);
9109 * For exceptions taken to AArch32 we must clear the SS bit in both
9110 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9112 env->uncached_cpsr &= ~PSTATE_SS;
9113 env->spsr = cpsr_read(env);
9114 /* Clear IT bits. */
9115 env->condexec_bits = 0;
9116 /* Switch to the new mode, and to the correct instruction set. */
9117 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9119 /* This must be after mode switching. */
9120 new_el = arm_current_el(env);
9122 /* Set new mode endianness */
9123 env->uncached_cpsr &= ~CPSR_E;
9124 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9125 env->uncached_cpsr |= CPSR_E;
9127 /* J and IL must always be cleared for exception entry */
9128 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9129 env->daif |= mask;
9131 if (new_mode == ARM_CPU_MODE_HYP) {
9132 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9133 env->elr_el[2] = env->regs[15];
9134 } else {
9135 /* CPSR.PAN is normally preserved preserved unless... */
9136 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9137 switch (new_el) {
9138 case 3:
9139 if (!arm_is_secure_below_el3(env)) {
9140 /* ... the target is EL3, from non-secure state. */
9141 env->uncached_cpsr &= ~CPSR_PAN;
9142 break;
9144 /* ... the target is EL3, from secure state ... */
9145 /* fall through */
9146 case 1:
9147 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9148 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9149 env->uncached_cpsr |= CPSR_PAN;
9151 break;
9155 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9156 * and we should just guard the thumb mode on V4
9158 if (arm_feature(env, ARM_FEATURE_V4T)) {
9159 env->thumb =
9160 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9162 env->regs[14] = env->regs[15] + offset;
9164 env->regs[15] = newpc;
9165 arm_rebuild_hflags(env);
9168 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9171 * Handle exception entry to Hyp mode; this is sufficiently
9172 * different to entry to other AArch32 modes that we handle it
9173 * separately here.
9175 * The vector table entry used is always the 0x14 Hyp mode entry point,
9176 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9177 * The offset applied to the preferred return address is always zero
9178 * (see DDI0487C.a section G1.12.3).
9179 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9181 uint32_t addr, mask;
9182 ARMCPU *cpu = ARM_CPU(cs);
9183 CPUARMState *env = &cpu->env;
9185 switch (cs->exception_index) {
9186 case EXCP_UDEF:
9187 addr = 0x04;
9188 break;
9189 case EXCP_SWI:
9190 addr = 0x14;
9191 break;
9192 case EXCP_BKPT:
9193 /* Fall through to prefetch abort. */
9194 case EXCP_PREFETCH_ABORT:
9195 env->cp15.ifar_s = env->exception.vaddress;
9196 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9197 (uint32_t)env->exception.vaddress);
9198 addr = 0x0c;
9199 break;
9200 case EXCP_DATA_ABORT:
9201 env->cp15.dfar_s = env->exception.vaddress;
9202 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9203 (uint32_t)env->exception.vaddress);
9204 addr = 0x10;
9205 break;
9206 case EXCP_IRQ:
9207 addr = 0x18;
9208 break;
9209 case EXCP_FIQ:
9210 addr = 0x1c;
9211 break;
9212 case EXCP_HVC:
9213 addr = 0x08;
9214 break;
9215 case EXCP_HYP_TRAP:
9216 addr = 0x14;
9217 break;
9218 default:
9219 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9222 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9223 if (!arm_feature(env, ARM_FEATURE_V8)) {
9225 * QEMU syndrome values are v8-style. v7 has the IL bit
9226 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9227 * If this is a v7 CPU, squash the IL bit in those cases.
9229 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9230 (cs->exception_index == EXCP_DATA_ABORT &&
9231 !(env->exception.syndrome & ARM_EL_ISV)) ||
9232 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9233 env->exception.syndrome &= ~ARM_EL_IL;
9236 env->cp15.esr_el[2] = env->exception.syndrome;
9239 if (arm_current_el(env) != 2 && addr < 0x14) {
9240 addr = 0x14;
9243 mask = 0;
9244 if (!(env->cp15.scr_el3 & SCR_EA)) {
9245 mask |= CPSR_A;
9247 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9248 mask |= CPSR_I;
9250 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9251 mask |= CPSR_F;
9254 addr += env->cp15.hvbar;
9256 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9259 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9261 ARMCPU *cpu = ARM_CPU(cs);
9262 CPUARMState *env = &cpu->env;
9263 uint32_t addr;
9264 uint32_t mask;
9265 int new_mode;
9266 uint32_t offset;
9267 uint32_t moe;
9269 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9270 switch (syn_get_ec(env->exception.syndrome)) {
9271 case EC_BREAKPOINT:
9272 case EC_BREAKPOINT_SAME_EL:
9273 moe = 1;
9274 break;
9275 case EC_WATCHPOINT:
9276 case EC_WATCHPOINT_SAME_EL:
9277 moe = 10;
9278 break;
9279 case EC_AA32_BKPT:
9280 moe = 3;
9281 break;
9282 case EC_VECTORCATCH:
9283 moe = 5;
9284 break;
9285 default:
9286 moe = 0;
9287 break;
9290 if (moe) {
9291 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9294 if (env->exception.target_el == 2) {
9295 arm_cpu_do_interrupt_aarch32_hyp(cs);
9296 return;
9299 switch (cs->exception_index) {
9300 case EXCP_UDEF:
9301 new_mode = ARM_CPU_MODE_UND;
9302 addr = 0x04;
9303 mask = CPSR_I;
9304 if (env->thumb)
9305 offset = 2;
9306 else
9307 offset = 4;
9308 break;
9309 case EXCP_SWI:
9310 new_mode = ARM_CPU_MODE_SVC;
9311 addr = 0x08;
9312 mask = CPSR_I;
9313 /* The PC already points to the next instruction. */
9314 offset = 0;
9315 break;
9316 case EXCP_BKPT:
9317 /* Fall through to prefetch abort. */
9318 case EXCP_PREFETCH_ABORT:
9319 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9320 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9321 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9322 env->exception.fsr, (uint32_t)env->exception.vaddress);
9323 new_mode = ARM_CPU_MODE_ABT;
9324 addr = 0x0c;
9325 mask = CPSR_A | CPSR_I;
9326 offset = 4;
9327 break;
9328 case EXCP_DATA_ABORT:
9329 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9330 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9331 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9332 env->exception.fsr,
9333 (uint32_t)env->exception.vaddress);
9334 new_mode = ARM_CPU_MODE_ABT;
9335 addr = 0x10;
9336 mask = CPSR_A | CPSR_I;
9337 offset = 8;
9338 break;
9339 case EXCP_IRQ:
9340 new_mode = ARM_CPU_MODE_IRQ;
9341 addr = 0x18;
9342 /* Disable IRQ and imprecise data aborts. */
9343 mask = CPSR_A | CPSR_I;
9344 offset = 4;
9345 if (env->cp15.scr_el3 & SCR_IRQ) {
9346 /* IRQ routed to monitor mode */
9347 new_mode = ARM_CPU_MODE_MON;
9348 mask |= CPSR_F;
9350 break;
9351 case EXCP_FIQ:
9352 new_mode = ARM_CPU_MODE_FIQ;
9353 addr = 0x1c;
9354 /* Disable FIQ, IRQ and imprecise data aborts. */
9355 mask = CPSR_A | CPSR_I | CPSR_F;
9356 if (env->cp15.scr_el3 & SCR_FIQ) {
9357 /* FIQ routed to monitor mode */
9358 new_mode = ARM_CPU_MODE_MON;
9360 offset = 4;
9361 break;
9362 case EXCP_VIRQ:
9363 new_mode = ARM_CPU_MODE_IRQ;
9364 addr = 0x18;
9365 /* Disable IRQ and imprecise data aborts. */
9366 mask = CPSR_A | CPSR_I;
9367 offset = 4;
9368 break;
9369 case EXCP_VFIQ:
9370 new_mode = ARM_CPU_MODE_FIQ;
9371 addr = 0x1c;
9372 /* Disable FIQ, IRQ and imprecise data aborts. */
9373 mask = CPSR_A | CPSR_I | CPSR_F;
9374 offset = 4;
9375 break;
9376 case EXCP_SMC:
9377 new_mode = ARM_CPU_MODE_MON;
9378 addr = 0x08;
9379 mask = CPSR_A | CPSR_I | CPSR_F;
9380 offset = 0;
9381 break;
9382 default:
9383 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9384 return; /* Never happens. Keep compiler happy. */
9387 if (new_mode == ARM_CPU_MODE_MON) {
9388 addr += env->cp15.mvbar;
9389 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9390 /* High vectors. When enabled, base address cannot be remapped. */
9391 addr += 0xffff0000;
9392 } else {
9393 /* ARM v7 architectures provide a vector base address register to remap
9394 * the interrupt vector table.
9395 * This register is only followed in non-monitor mode, and is banked.
9396 * Note: only bits 31:5 are valid.
9398 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9401 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9402 env->cp15.scr_el3 &= ~SCR_NS;
9405 take_aarch32_exception(env, new_mode, mask, offset, addr);
9408 /* Handle exception entry to a target EL which is using AArch64 */
9409 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9411 ARMCPU *cpu = ARM_CPU(cs);
9412 CPUARMState *env = &cpu->env;
9413 unsigned int new_el = env->exception.target_el;
9414 target_ulong addr = env->cp15.vbar_el[new_el];
9415 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9416 unsigned int old_mode;
9417 unsigned int cur_el = arm_current_el(env);
9420 * Note that new_el can never be 0. If cur_el is 0, then
9421 * el0_a64 is is_a64(), else el0_a64 is ignored.
9423 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9425 if (cur_el < new_el) {
9426 /* Entry vector offset depends on whether the implemented EL
9427 * immediately lower than the target level is using AArch32 or AArch64
9429 bool is_aa64;
9430 uint64_t hcr;
9432 switch (new_el) {
9433 case 3:
9434 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9435 break;
9436 case 2:
9437 hcr = arm_hcr_el2_eff(env);
9438 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9439 is_aa64 = (hcr & HCR_RW) != 0;
9440 break;
9442 /* fall through */
9443 case 1:
9444 is_aa64 = is_a64(env);
9445 break;
9446 default:
9447 g_assert_not_reached();
9450 if (is_aa64) {
9451 addr += 0x400;
9452 } else {
9453 addr += 0x600;
9455 } else if (pstate_read(env) & PSTATE_SP) {
9456 addr += 0x200;
9459 switch (cs->exception_index) {
9460 case EXCP_PREFETCH_ABORT:
9461 case EXCP_DATA_ABORT:
9462 env->cp15.far_el[new_el] = env->exception.vaddress;
9463 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9464 env->cp15.far_el[new_el]);
9465 /* fall through */
9466 case EXCP_BKPT:
9467 case EXCP_UDEF:
9468 case EXCP_SWI:
9469 case EXCP_HVC:
9470 case EXCP_HYP_TRAP:
9471 case EXCP_SMC:
9472 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9474 * QEMU internal FP/SIMD syndromes from AArch32 include the
9475 * TA and coproc fields which are only exposed if the exception
9476 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9477 * AArch64 format syndrome.
9479 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9481 env->cp15.esr_el[new_el] = env->exception.syndrome;
9482 break;
9483 case EXCP_IRQ:
9484 case EXCP_VIRQ:
9485 addr += 0x80;
9486 break;
9487 case EXCP_FIQ:
9488 case EXCP_VFIQ:
9489 addr += 0x100;
9490 break;
9491 default:
9492 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9495 if (is_a64(env)) {
9496 old_mode = pstate_read(env);
9497 aarch64_save_sp(env, arm_current_el(env));
9498 env->elr_el[new_el] = env->pc;
9499 } else {
9500 old_mode = cpsr_read(env);
9501 env->elr_el[new_el] = env->regs[15];
9503 aarch64_sync_32_to_64(env);
9505 env->condexec_bits = 0;
9507 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9509 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9510 env->elr_el[new_el]);
9512 if (cpu_isar_feature(aa64_pan, cpu)) {
9513 /* The value of PSTATE.PAN is normally preserved, except when ... */
9514 new_mode |= old_mode & PSTATE_PAN;
9515 switch (new_el) {
9516 case 2:
9517 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9518 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9519 != (HCR_E2H | HCR_TGE)) {
9520 break;
9522 /* fall through */
9523 case 1:
9524 /* ... the target is EL1 ... */
9525 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9526 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9527 new_mode |= PSTATE_PAN;
9529 break;
9533 pstate_write(env, PSTATE_DAIF | new_mode);
9534 env->aarch64 = 1;
9535 aarch64_restore_sp(env, new_el);
9536 helper_rebuild_hflags_a64(env, new_el);
9538 env->pc = addr;
9540 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9541 new_el, env->pc, pstate_read(env));
9545 * Do semihosting call and set the appropriate return value. All the
9546 * permission and validity checks have been done at translate time.
9548 * We only see semihosting exceptions in TCG only as they are not
9549 * trapped to the hypervisor in KVM.
9551 #ifdef CONFIG_TCG
9552 static void handle_semihosting(CPUState *cs)
9554 ARMCPU *cpu = ARM_CPU(cs);
9555 CPUARMState *env = &cpu->env;
9557 if (is_a64(env)) {
9558 qemu_log_mask(CPU_LOG_INT,
9559 "...handling as semihosting call 0x%" PRIx64 "\n",
9560 env->xregs[0]);
9561 env->xregs[0] = do_arm_semihosting(env);
9562 env->pc += 4;
9563 } else {
9564 qemu_log_mask(CPU_LOG_INT,
9565 "...handling as semihosting call 0x%x\n",
9566 env->regs[0]);
9567 env->regs[0] = do_arm_semihosting(env);
9568 env->regs[15] += env->thumb ? 2 : 4;
9571 #endif
9573 /* Handle a CPU exception for A and R profile CPUs.
9574 * Do any appropriate logging, handle PSCI calls, and then hand off
9575 * to the AArch64-entry or AArch32-entry function depending on the
9576 * target exception level's register width.
9578 void arm_cpu_do_interrupt(CPUState *cs)
9580 ARMCPU *cpu = ARM_CPU(cs);
9581 CPUARMState *env = &cpu->env;
9582 unsigned int new_el = env->exception.target_el;
9584 assert(!arm_feature(env, ARM_FEATURE_M));
9586 arm_log_exception(cs->exception_index);
9587 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9588 new_el);
9589 if (qemu_loglevel_mask(CPU_LOG_INT)
9590 && !excp_is_internal(cs->exception_index)) {
9591 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9592 syn_get_ec(env->exception.syndrome),
9593 env->exception.syndrome);
9596 if (arm_is_psci_call(cpu, cs->exception_index)) {
9597 arm_handle_psci_call(cpu);
9598 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9599 return;
9603 * Semihosting semantics depend on the register width of the code
9604 * that caused the exception, not the target exception level, so
9605 * must be handled here.
9607 #ifdef CONFIG_TCG
9608 if (cs->exception_index == EXCP_SEMIHOST) {
9609 handle_semihosting(cs);
9610 return;
9612 #endif
9614 /* Hooks may change global state so BQL should be held, also the
9615 * BQL needs to be held for any modification of
9616 * cs->interrupt_request.
9618 g_assert(qemu_mutex_iothread_locked());
9620 arm_call_pre_el_change_hook(cpu);
9622 assert(!excp_is_internal(cs->exception_index));
9623 if (arm_el_is_aa64(env, new_el)) {
9624 arm_cpu_do_interrupt_aarch64(cs);
9625 } else {
9626 arm_cpu_do_interrupt_aarch32(cs);
9629 arm_call_el_change_hook(cpu);
9631 if (!kvm_enabled()) {
9632 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9635 #endif /* !CONFIG_USER_ONLY */
9637 /* Return the exception level which controls this address translation regime */
9638 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9640 switch (mmu_idx) {
9641 case ARMMMUIdx_E20_0:
9642 case ARMMMUIdx_E20_2:
9643 case ARMMMUIdx_E20_2_PAN:
9644 case ARMMMUIdx_Stage2:
9645 case ARMMMUIdx_E2:
9646 return 2;
9647 case ARMMMUIdx_SE3:
9648 return 3;
9649 case ARMMMUIdx_SE10_0:
9650 return arm_el_is_aa64(env, 3) ? 1 : 3;
9651 case ARMMMUIdx_SE10_1:
9652 case ARMMMUIdx_SE10_1_PAN:
9653 case ARMMMUIdx_Stage1_E0:
9654 case ARMMMUIdx_Stage1_E1:
9655 case ARMMMUIdx_Stage1_E1_PAN:
9656 case ARMMMUIdx_E10_0:
9657 case ARMMMUIdx_E10_1:
9658 case ARMMMUIdx_E10_1_PAN:
9659 case ARMMMUIdx_MPrivNegPri:
9660 case ARMMMUIdx_MUserNegPri:
9661 case ARMMMUIdx_MPriv:
9662 case ARMMMUIdx_MUser:
9663 case ARMMMUIdx_MSPrivNegPri:
9664 case ARMMMUIdx_MSUserNegPri:
9665 case ARMMMUIdx_MSPriv:
9666 case ARMMMUIdx_MSUser:
9667 return 1;
9668 default:
9669 g_assert_not_reached();
9673 uint64_t arm_sctlr(CPUARMState *env, int el)
9675 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9676 if (el == 0) {
9677 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9678 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9680 return env->cp15.sctlr_el[el];
9683 /* Return the SCTLR value which controls this address translation regime */
9684 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9686 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9689 #ifndef CONFIG_USER_ONLY
9691 /* Return true if the specified stage of address translation is disabled */
9692 static inline bool regime_translation_disabled(CPUARMState *env,
9693 ARMMMUIdx mmu_idx)
9695 if (arm_feature(env, ARM_FEATURE_M)) {
9696 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9697 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9698 case R_V7M_MPU_CTRL_ENABLE_MASK:
9699 /* Enabled, but not for HardFault and NMI */
9700 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9701 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9702 /* Enabled for all cases */
9703 return false;
9704 case 0:
9705 default:
9706 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9707 * we warned about that in armv7m_nvic.c when the guest set it.
9709 return true;
9713 if (mmu_idx == ARMMMUIdx_Stage2) {
9714 /* HCR.DC means HCR.VM behaves as 1 */
9715 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9718 if (env->cp15.hcr_el2 & HCR_TGE) {
9719 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9720 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9721 return true;
9725 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9726 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9727 return true;
9730 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9733 static inline bool regime_translation_big_endian(CPUARMState *env,
9734 ARMMMUIdx mmu_idx)
9736 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9739 /* Return the TTBR associated with this translation regime */
9740 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9741 int ttbrn)
9743 if (mmu_idx == ARMMMUIdx_Stage2) {
9744 return env->cp15.vttbr_el2;
9746 if (ttbrn == 0) {
9747 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9748 } else {
9749 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9753 #endif /* !CONFIG_USER_ONLY */
9755 /* Return the TCR controlling this translation regime */
9756 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9758 if (mmu_idx == ARMMMUIdx_Stage2) {
9759 return &env->cp15.vtcr_el2;
9761 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9764 /* Convert a possible stage1+2 MMU index into the appropriate
9765 * stage 1 MMU index
9767 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9769 switch (mmu_idx) {
9770 case ARMMMUIdx_E10_0:
9771 return ARMMMUIdx_Stage1_E0;
9772 case ARMMMUIdx_E10_1:
9773 return ARMMMUIdx_Stage1_E1;
9774 case ARMMMUIdx_E10_1_PAN:
9775 return ARMMMUIdx_Stage1_E1_PAN;
9776 default:
9777 return mmu_idx;
9781 /* Return true if the translation regime is using LPAE format page tables */
9782 static inline bool regime_using_lpae_format(CPUARMState *env,
9783 ARMMMUIdx mmu_idx)
9785 int el = regime_el(env, mmu_idx);
9786 if (el == 2 || arm_el_is_aa64(env, el)) {
9787 return true;
9789 if (arm_feature(env, ARM_FEATURE_LPAE)
9790 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9791 return true;
9793 return false;
9796 /* Returns true if the stage 1 translation regime is using LPAE format page
9797 * tables. Used when raising alignment exceptions, whose FSR changes depending
9798 * on whether the long or short descriptor format is in use. */
9799 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9801 mmu_idx = stage_1_mmu_idx(mmu_idx);
9803 return regime_using_lpae_format(env, mmu_idx);
9806 #ifndef CONFIG_USER_ONLY
9807 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9809 switch (mmu_idx) {
9810 case ARMMMUIdx_SE10_0:
9811 case ARMMMUIdx_E20_0:
9812 case ARMMMUIdx_Stage1_E0:
9813 case ARMMMUIdx_MUser:
9814 case ARMMMUIdx_MSUser:
9815 case ARMMMUIdx_MUserNegPri:
9816 case ARMMMUIdx_MSUserNegPri:
9817 return true;
9818 default:
9819 return false;
9820 case ARMMMUIdx_E10_0:
9821 case ARMMMUIdx_E10_1:
9822 case ARMMMUIdx_E10_1_PAN:
9823 g_assert_not_reached();
9827 /* Translate section/page access permissions to page
9828 * R/W protection flags
9830 * @env: CPUARMState
9831 * @mmu_idx: MMU index indicating required translation regime
9832 * @ap: The 3-bit access permissions (AP[2:0])
9833 * @domain_prot: The 2-bit domain access permissions
9835 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9836 int ap, int domain_prot)
9838 bool is_user = regime_is_user(env, mmu_idx);
9840 if (domain_prot == 3) {
9841 return PAGE_READ | PAGE_WRITE;
9844 switch (ap) {
9845 case 0:
9846 if (arm_feature(env, ARM_FEATURE_V7)) {
9847 return 0;
9849 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9850 case SCTLR_S:
9851 return is_user ? 0 : PAGE_READ;
9852 case SCTLR_R:
9853 return PAGE_READ;
9854 default:
9855 return 0;
9857 case 1:
9858 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9859 case 2:
9860 if (is_user) {
9861 return PAGE_READ;
9862 } else {
9863 return PAGE_READ | PAGE_WRITE;
9865 case 3:
9866 return PAGE_READ | PAGE_WRITE;
9867 case 4: /* Reserved. */
9868 return 0;
9869 case 5:
9870 return is_user ? 0 : PAGE_READ;
9871 case 6:
9872 return PAGE_READ;
9873 case 7:
9874 if (!arm_feature(env, ARM_FEATURE_V6K)) {
9875 return 0;
9877 return PAGE_READ;
9878 default:
9879 g_assert_not_reached();
9883 /* Translate section/page access permissions to page
9884 * R/W protection flags.
9886 * @ap: The 2-bit simple AP (AP[2:1])
9887 * @is_user: TRUE if accessing from PL0
9889 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9891 switch (ap) {
9892 case 0:
9893 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9894 case 1:
9895 return PAGE_READ | PAGE_WRITE;
9896 case 2:
9897 return is_user ? 0 : PAGE_READ;
9898 case 3:
9899 return PAGE_READ;
9900 default:
9901 g_assert_not_reached();
9905 static inline int
9906 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9908 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9911 /* Translate S2 section/page access permissions to protection flags
9913 * @env: CPUARMState
9914 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9915 * @xn: XN (execute-never) bits
9916 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
9918 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
9920 int prot = 0;
9922 if (s2ap & 1) {
9923 prot |= PAGE_READ;
9925 if (s2ap & 2) {
9926 prot |= PAGE_WRITE;
9929 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
9930 switch (xn) {
9931 case 0:
9932 prot |= PAGE_EXEC;
9933 break;
9934 case 1:
9935 if (s1_is_el0) {
9936 prot |= PAGE_EXEC;
9938 break;
9939 case 2:
9940 break;
9941 case 3:
9942 if (!s1_is_el0) {
9943 prot |= PAGE_EXEC;
9945 break;
9946 default:
9947 g_assert_not_reached();
9949 } else {
9950 if (!extract32(xn, 1, 1)) {
9951 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9952 prot |= PAGE_EXEC;
9956 return prot;
9959 /* Translate section/page access permissions to protection flags
9961 * @env: CPUARMState
9962 * @mmu_idx: MMU index indicating required translation regime
9963 * @is_aa64: TRUE if AArch64
9964 * @ap: The 2-bit simple AP (AP[2:1])
9965 * @ns: NS (non-secure) bit
9966 * @xn: XN (execute-never) bit
9967 * @pxn: PXN (privileged execute-never) bit
9969 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9970 int ap, int ns, int xn, int pxn)
9972 bool is_user = regime_is_user(env, mmu_idx);
9973 int prot_rw, user_rw;
9974 bool have_wxn;
9975 int wxn = 0;
9977 assert(mmu_idx != ARMMMUIdx_Stage2);
9979 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9980 if (is_user) {
9981 prot_rw = user_rw;
9982 } else {
9983 if (user_rw && regime_is_pan(env, mmu_idx)) {
9984 /* PAN forbids data accesses but doesn't affect insn fetch */
9985 prot_rw = 0;
9986 } else {
9987 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9991 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9992 return prot_rw;
9995 /* TODO have_wxn should be replaced with
9996 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9997 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9998 * compatible processors have EL2, which is required for [U]WXN.
10000 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10002 if (have_wxn) {
10003 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10006 if (is_aa64) {
10007 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10008 xn = pxn || (user_rw & PAGE_WRITE);
10010 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10011 switch (regime_el(env, mmu_idx)) {
10012 case 1:
10013 case 3:
10014 if (is_user) {
10015 xn = xn || !(user_rw & PAGE_READ);
10016 } else {
10017 int uwxn = 0;
10018 if (have_wxn) {
10019 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10021 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10022 (uwxn && (user_rw & PAGE_WRITE));
10024 break;
10025 case 2:
10026 break;
10028 } else {
10029 xn = wxn = 0;
10032 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10033 return prot_rw;
10035 return prot_rw | PAGE_EXEC;
10038 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10039 uint32_t *table, uint32_t address)
10041 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10042 TCR *tcr = regime_tcr(env, mmu_idx);
10044 if (address & tcr->mask) {
10045 if (tcr->raw_tcr & TTBCR_PD1) {
10046 /* Translation table walk disabled for TTBR1 */
10047 return false;
10049 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10050 } else {
10051 if (tcr->raw_tcr & TTBCR_PD0) {
10052 /* Translation table walk disabled for TTBR0 */
10053 return false;
10055 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10057 *table |= (address >> 18) & 0x3ffc;
10058 return true;
10061 /* Translate a S1 pagetable walk through S2 if needed. */
10062 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10063 hwaddr addr, MemTxAttrs txattrs,
10064 ARMMMUFaultInfo *fi)
10066 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10067 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10068 target_ulong s2size;
10069 hwaddr s2pa;
10070 int s2prot;
10071 int ret;
10072 ARMCacheAttrs cacheattrs = {};
10073 ARMCacheAttrs *pcacheattrs = NULL;
10075 if (env->cp15.hcr_el2 & HCR_PTW) {
10077 * PTW means we must fault if this S1 walk touches S2 Device
10078 * memory; otherwise we don't care about the attributes and can
10079 * save the S2 translation the effort of computing them.
10081 pcacheattrs = &cacheattrs;
10084 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10085 false,
10086 &s2pa, &txattrs, &s2prot, &s2size, fi,
10087 pcacheattrs);
10088 if (ret) {
10089 assert(fi->type != ARMFault_None);
10090 fi->s2addr = addr;
10091 fi->stage2 = true;
10092 fi->s1ptw = true;
10093 return ~0;
10095 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10096 /* Access was to Device memory: generate Permission fault */
10097 fi->type = ARMFault_Permission;
10098 fi->s2addr = addr;
10099 fi->stage2 = true;
10100 fi->s1ptw = true;
10101 return ~0;
10103 addr = s2pa;
10105 return addr;
10108 /* All loads done in the course of a page table walk go through here. */
10109 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10110 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10112 ARMCPU *cpu = ARM_CPU(cs);
10113 CPUARMState *env = &cpu->env;
10114 MemTxAttrs attrs = {};
10115 MemTxResult result = MEMTX_OK;
10116 AddressSpace *as;
10117 uint32_t data;
10119 attrs.secure = is_secure;
10120 as = arm_addressspace(cs, attrs);
10121 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10122 if (fi->s1ptw) {
10123 return 0;
10125 if (regime_translation_big_endian(env, mmu_idx)) {
10126 data = address_space_ldl_be(as, addr, attrs, &result);
10127 } else {
10128 data = address_space_ldl_le(as, addr, attrs, &result);
10130 if (result == MEMTX_OK) {
10131 return data;
10133 fi->type = ARMFault_SyncExternalOnWalk;
10134 fi->ea = arm_extabort_type(result);
10135 return 0;
10138 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10139 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10141 ARMCPU *cpu = ARM_CPU(cs);
10142 CPUARMState *env = &cpu->env;
10143 MemTxAttrs attrs = {};
10144 MemTxResult result = MEMTX_OK;
10145 AddressSpace *as;
10146 uint64_t data;
10148 attrs.secure = is_secure;
10149 as = arm_addressspace(cs, attrs);
10150 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10151 if (fi->s1ptw) {
10152 return 0;
10154 if (regime_translation_big_endian(env, mmu_idx)) {
10155 data = address_space_ldq_be(as, addr, attrs, &result);
10156 } else {
10157 data = address_space_ldq_le(as, addr, attrs, &result);
10159 if (result == MEMTX_OK) {
10160 return data;
10162 fi->type = ARMFault_SyncExternalOnWalk;
10163 fi->ea = arm_extabort_type(result);
10164 return 0;
10167 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10168 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10169 hwaddr *phys_ptr, int *prot,
10170 target_ulong *page_size,
10171 ARMMMUFaultInfo *fi)
10173 CPUState *cs = env_cpu(env);
10174 int level = 1;
10175 uint32_t table;
10176 uint32_t desc;
10177 int type;
10178 int ap;
10179 int domain = 0;
10180 int domain_prot;
10181 hwaddr phys_addr;
10182 uint32_t dacr;
10184 /* Pagetable walk. */
10185 /* Lookup l1 descriptor. */
10186 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10187 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10188 fi->type = ARMFault_Translation;
10189 goto do_fault;
10191 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10192 mmu_idx, fi);
10193 if (fi->type != ARMFault_None) {
10194 goto do_fault;
10196 type = (desc & 3);
10197 domain = (desc >> 5) & 0x0f;
10198 if (regime_el(env, mmu_idx) == 1) {
10199 dacr = env->cp15.dacr_ns;
10200 } else {
10201 dacr = env->cp15.dacr_s;
10203 domain_prot = (dacr >> (domain * 2)) & 3;
10204 if (type == 0) {
10205 /* Section translation fault. */
10206 fi->type = ARMFault_Translation;
10207 goto do_fault;
10209 if (type != 2) {
10210 level = 2;
10212 if (domain_prot == 0 || domain_prot == 2) {
10213 fi->type = ARMFault_Domain;
10214 goto do_fault;
10216 if (type == 2) {
10217 /* 1Mb section. */
10218 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10219 ap = (desc >> 10) & 3;
10220 *page_size = 1024 * 1024;
10221 } else {
10222 /* Lookup l2 entry. */
10223 if (type == 1) {
10224 /* Coarse pagetable. */
10225 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10226 } else {
10227 /* Fine pagetable. */
10228 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10230 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10231 mmu_idx, fi);
10232 if (fi->type != ARMFault_None) {
10233 goto do_fault;
10235 switch (desc & 3) {
10236 case 0: /* Page translation fault. */
10237 fi->type = ARMFault_Translation;
10238 goto do_fault;
10239 case 1: /* 64k page. */
10240 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10241 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10242 *page_size = 0x10000;
10243 break;
10244 case 2: /* 4k page. */
10245 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10246 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10247 *page_size = 0x1000;
10248 break;
10249 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10250 if (type == 1) {
10251 /* ARMv6/XScale extended small page format */
10252 if (arm_feature(env, ARM_FEATURE_XSCALE)
10253 || arm_feature(env, ARM_FEATURE_V6)) {
10254 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10255 *page_size = 0x1000;
10256 } else {
10257 /* UNPREDICTABLE in ARMv5; we choose to take a
10258 * page translation fault.
10260 fi->type = ARMFault_Translation;
10261 goto do_fault;
10263 } else {
10264 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10265 *page_size = 0x400;
10267 ap = (desc >> 4) & 3;
10268 break;
10269 default:
10270 /* Never happens, but compiler isn't smart enough to tell. */
10271 abort();
10274 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10275 *prot |= *prot ? PAGE_EXEC : 0;
10276 if (!(*prot & (1 << access_type))) {
10277 /* Access permission fault. */
10278 fi->type = ARMFault_Permission;
10279 goto do_fault;
10281 *phys_ptr = phys_addr;
10282 return false;
10283 do_fault:
10284 fi->domain = domain;
10285 fi->level = level;
10286 return true;
10289 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10290 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10291 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10292 target_ulong *page_size, ARMMMUFaultInfo *fi)
10294 CPUState *cs = env_cpu(env);
10295 int level = 1;
10296 uint32_t table;
10297 uint32_t desc;
10298 uint32_t xn;
10299 uint32_t pxn = 0;
10300 int type;
10301 int ap;
10302 int domain = 0;
10303 int domain_prot;
10304 hwaddr phys_addr;
10305 uint32_t dacr;
10306 bool ns;
10308 /* Pagetable walk. */
10309 /* Lookup l1 descriptor. */
10310 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10311 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10312 fi->type = ARMFault_Translation;
10313 goto do_fault;
10315 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10316 mmu_idx, fi);
10317 if (fi->type != ARMFault_None) {
10318 goto do_fault;
10320 type = (desc & 3);
10321 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10322 /* Section translation fault, or attempt to use the encoding
10323 * which is Reserved on implementations without PXN.
10325 fi->type = ARMFault_Translation;
10326 goto do_fault;
10328 if ((type == 1) || !(desc & (1 << 18))) {
10329 /* Page or Section. */
10330 domain = (desc >> 5) & 0x0f;
10332 if (regime_el(env, mmu_idx) == 1) {
10333 dacr = env->cp15.dacr_ns;
10334 } else {
10335 dacr = env->cp15.dacr_s;
10337 if (type == 1) {
10338 level = 2;
10340 domain_prot = (dacr >> (domain * 2)) & 3;
10341 if (domain_prot == 0 || domain_prot == 2) {
10342 /* Section or Page domain fault */
10343 fi->type = ARMFault_Domain;
10344 goto do_fault;
10346 if (type != 1) {
10347 if (desc & (1 << 18)) {
10348 /* Supersection. */
10349 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10350 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10351 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10352 *page_size = 0x1000000;
10353 } else {
10354 /* Section. */
10355 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10356 *page_size = 0x100000;
10358 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10359 xn = desc & (1 << 4);
10360 pxn = desc & 1;
10361 ns = extract32(desc, 19, 1);
10362 } else {
10363 if (arm_feature(env, ARM_FEATURE_PXN)) {
10364 pxn = (desc >> 2) & 1;
10366 ns = extract32(desc, 3, 1);
10367 /* Lookup l2 entry. */
10368 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10369 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10370 mmu_idx, fi);
10371 if (fi->type != ARMFault_None) {
10372 goto do_fault;
10374 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10375 switch (desc & 3) {
10376 case 0: /* Page translation fault. */
10377 fi->type = ARMFault_Translation;
10378 goto do_fault;
10379 case 1: /* 64k page. */
10380 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10381 xn = desc & (1 << 15);
10382 *page_size = 0x10000;
10383 break;
10384 case 2: case 3: /* 4k page. */
10385 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10386 xn = desc & 1;
10387 *page_size = 0x1000;
10388 break;
10389 default:
10390 /* Never happens, but compiler isn't smart enough to tell. */
10391 abort();
10394 if (domain_prot == 3) {
10395 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10396 } else {
10397 if (pxn && !regime_is_user(env, mmu_idx)) {
10398 xn = 1;
10400 if (xn && access_type == MMU_INST_FETCH) {
10401 fi->type = ARMFault_Permission;
10402 goto do_fault;
10405 if (arm_feature(env, ARM_FEATURE_V6K) &&
10406 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10407 /* The simplified model uses AP[0] as an access control bit. */
10408 if ((ap & 1) == 0) {
10409 /* Access flag fault. */
10410 fi->type = ARMFault_AccessFlag;
10411 goto do_fault;
10413 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10414 } else {
10415 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10417 if (*prot && !xn) {
10418 *prot |= PAGE_EXEC;
10420 if (!(*prot & (1 << access_type))) {
10421 /* Access permission fault. */
10422 fi->type = ARMFault_Permission;
10423 goto do_fault;
10426 if (ns) {
10427 /* The NS bit will (as required by the architecture) have no effect if
10428 * the CPU doesn't support TZ or this is a non-secure translation
10429 * regime, because the attribute will already be non-secure.
10431 attrs->secure = false;
10433 *phys_ptr = phys_addr;
10434 return false;
10435 do_fault:
10436 fi->domain = domain;
10437 fi->level = level;
10438 return true;
10442 * check_s2_mmu_setup
10443 * @cpu: ARMCPU
10444 * @is_aa64: True if the translation regime is in AArch64 state
10445 * @startlevel: Suggested starting level
10446 * @inputsize: Bitsize of IPAs
10447 * @stride: Page-table stride (See the ARM ARM)
10449 * Returns true if the suggested S2 translation parameters are OK and
10450 * false otherwise.
10452 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10453 int inputsize, int stride)
10455 const int grainsize = stride + 3;
10456 int startsizecheck;
10458 /* Negative levels are never allowed. */
10459 if (level < 0) {
10460 return false;
10463 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10464 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10465 return false;
10468 if (is_aa64) {
10469 CPUARMState *env = &cpu->env;
10470 unsigned int pamax = arm_pamax(cpu);
10472 switch (stride) {
10473 case 13: /* 64KB Pages. */
10474 if (level == 0 || (level == 1 && pamax <= 42)) {
10475 return false;
10477 break;
10478 case 11: /* 16KB Pages. */
10479 if (level == 0 || (level == 1 && pamax <= 40)) {
10480 return false;
10482 break;
10483 case 9: /* 4KB Pages. */
10484 if (level == 0 && pamax <= 42) {
10485 return false;
10487 break;
10488 default:
10489 g_assert_not_reached();
10492 /* Inputsize checks. */
10493 if (inputsize > pamax &&
10494 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10495 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10496 return false;
10498 } else {
10499 /* AArch32 only supports 4KB pages. Assert on that. */
10500 assert(stride == 9);
10502 if (level == 0) {
10503 return false;
10506 return true;
10509 /* Translate from the 4-bit stage 2 representation of
10510 * memory attributes (without cache-allocation hints) to
10511 * the 8-bit representation of the stage 1 MAIR registers
10512 * (which includes allocation hints).
10514 * ref: shared/translation/attrs/S2AttrDecode()
10515 * .../S2ConvertAttrsHints()
10517 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10519 uint8_t hiattr = extract32(s2attrs, 2, 2);
10520 uint8_t loattr = extract32(s2attrs, 0, 2);
10521 uint8_t hihint = 0, lohint = 0;
10523 if (hiattr != 0) { /* normal memory */
10524 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10525 hiattr = loattr = 1; /* non-cacheable */
10526 } else {
10527 if (hiattr != 1) { /* Write-through or write-back */
10528 hihint = 3; /* RW allocate */
10530 if (loattr != 1) { /* Write-through or write-back */
10531 lohint = 3; /* RW allocate */
10536 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10538 #endif /* !CONFIG_USER_ONLY */
10540 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10542 if (regime_has_2_ranges(mmu_idx)) {
10543 return extract64(tcr, 37, 2);
10544 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10545 return 0; /* VTCR_EL2 */
10546 } else {
10547 /* Replicate the single TBI bit so we always have 2 bits. */
10548 return extract32(tcr, 20, 1) * 3;
10552 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10554 if (regime_has_2_ranges(mmu_idx)) {
10555 return extract64(tcr, 51, 2);
10556 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10557 return 0; /* VTCR_EL2 */
10558 } else {
10559 /* Replicate the single TBID bit so we always have 2 bits. */
10560 return extract32(tcr, 29, 1) * 3;
10564 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10565 ARMMMUIdx mmu_idx, bool data)
10567 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10568 bool epd, hpd, using16k, using64k;
10569 int select, tsz, tbi;
10571 if (!regime_has_2_ranges(mmu_idx)) {
10572 select = 0;
10573 tsz = extract32(tcr, 0, 6);
10574 using64k = extract32(tcr, 14, 1);
10575 using16k = extract32(tcr, 15, 1);
10576 if (mmu_idx == ARMMMUIdx_Stage2) {
10577 /* VTCR_EL2 */
10578 hpd = false;
10579 } else {
10580 hpd = extract32(tcr, 24, 1);
10582 epd = false;
10583 } else {
10585 * Bit 55 is always between the two regions, and is canonical for
10586 * determining if address tagging is enabled.
10588 select = extract64(va, 55, 1);
10589 if (!select) {
10590 tsz = extract32(tcr, 0, 6);
10591 epd = extract32(tcr, 7, 1);
10592 using64k = extract32(tcr, 14, 1);
10593 using16k = extract32(tcr, 15, 1);
10594 hpd = extract64(tcr, 41, 1);
10595 } else {
10596 int tg = extract32(tcr, 30, 2);
10597 using16k = tg == 1;
10598 using64k = tg == 3;
10599 tsz = extract32(tcr, 16, 6);
10600 epd = extract32(tcr, 23, 1);
10601 hpd = extract64(tcr, 42, 1);
10604 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10605 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10607 /* Present TBI as a composite with TBID. */
10608 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10609 if (!data) {
10610 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10612 tbi = (tbi >> select) & 1;
10614 return (ARMVAParameters) {
10615 .tsz = tsz,
10616 .select = select,
10617 .tbi = tbi,
10618 .epd = epd,
10619 .hpd = hpd,
10620 .using16k = using16k,
10621 .using64k = using64k,
10625 #ifndef CONFIG_USER_ONLY
10626 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10627 ARMMMUIdx mmu_idx)
10629 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10630 uint32_t el = regime_el(env, mmu_idx);
10631 int select, tsz;
10632 bool epd, hpd;
10634 if (mmu_idx == ARMMMUIdx_Stage2) {
10635 /* VTCR */
10636 bool sext = extract32(tcr, 4, 1);
10637 bool sign = extract32(tcr, 3, 1);
10640 * If the sign-extend bit is not the same as t0sz[3], the result
10641 * is unpredictable. Flag this as a guest error.
10643 if (sign != sext) {
10644 qemu_log_mask(LOG_GUEST_ERROR,
10645 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10647 tsz = sextract32(tcr, 0, 4) + 8;
10648 select = 0;
10649 hpd = false;
10650 epd = false;
10651 } else if (el == 2) {
10652 /* HTCR */
10653 tsz = extract32(tcr, 0, 3);
10654 select = 0;
10655 hpd = extract64(tcr, 24, 1);
10656 epd = false;
10657 } else {
10658 int t0sz = extract32(tcr, 0, 3);
10659 int t1sz = extract32(tcr, 16, 3);
10661 if (t1sz == 0) {
10662 select = va > (0xffffffffu >> t0sz);
10663 } else {
10664 /* Note that we will detect errors later. */
10665 select = va >= ~(0xffffffffu >> t1sz);
10667 if (!select) {
10668 tsz = t0sz;
10669 epd = extract32(tcr, 7, 1);
10670 hpd = extract64(tcr, 41, 1);
10671 } else {
10672 tsz = t1sz;
10673 epd = extract32(tcr, 23, 1);
10674 hpd = extract64(tcr, 42, 1);
10676 /* For aarch32, hpd0 is not enabled without t2e as well. */
10677 hpd &= extract32(tcr, 6, 1);
10680 return (ARMVAParameters) {
10681 .tsz = tsz,
10682 .select = select,
10683 .epd = epd,
10684 .hpd = hpd,
10689 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10691 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10692 * prot and page_size may not be filled in, and the populated fsr value provides
10693 * information on why the translation aborted, in the format of a long-format
10694 * DFSR/IFSR fault register, with the following caveats:
10695 * * the WnR bit is never set (the caller must do this).
10697 * @env: CPUARMState
10698 * @address: virtual address to get physical address for
10699 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10700 * @mmu_idx: MMU index indicating required translation regime
10701 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10702 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
10703 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10704 * @phys_ptr: set to the physical address corresponding to the virtual address
10705 * @attrs: set to the memory transaction attributes to use
10706 * @prot: set to the permissions for the page containing phys_ptr
10707 * @page_size_ptr: set to the size of the page containing phys_ptr
10708 * @fi: set to fault info if the translation fails
10709 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10711 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10712 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10713 bool s1_is_el0,
10714 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10715 target_ulong *page_size_ptr,
10716 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10718 ARMCPU *cpu = env_archcpu(env);
10719 CPUState *cs = CPU(cpu);
10720 /* Read an LPAE long-descriptor translation table. */
10721 ARMFaultType fault_type = ARMFault_Translation;
10722 uint32_t level;
10723 ARMVAParameters param;
10724 uint64_t ttbr;
10725 hwaddr descaddr, indexmask, indexmask_grainsize;
10726 uint32_t tableattrs;
10727 target_ulong page_size;
10728 uint32_t attrs;
10729 int32_t stride;
10730 int addrsize, inputsize;
10731 TCR *tcr = regime_tcr(env, mmu_idx);
10732 int ap, ns, xn, pxn;
10733 uint32_t el = regime_el(env, mmu_idx);
10734 uint64_t descaddrmask;
10735 bool aarch64 = arm_el_is_aa64(env, el);
10736 bool guarded = false;
10738 /* TODO: This code does not support shareability levels. */
10739 if (aarch64) {
10740 param = aa64_va_parameters(env, address, mmu_idx,
10741 access_type != MMU_INST_FETCH);
10742 level = 0;
10743 addrsize = 64 - 8 * param.tbi;
10744 inputsize = 64 - param.tsz;
10745 } else {
10746 param = aa32_va_parameters(env, address, mmu_idx);
10747 level = 1;
10748 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10749 inputsize = addrsize - param.tsz;
10753 * We determined the region when collecting the parameters, but we
10754 * have not yet validated that the address is valid for the region.
10755 * Extract the top bits and verify that they all match select.
10757 * For aa32, if inputsize == addrsize, then we have selected the
10758 * region by exclusion in aa32_va_parameters and there is no more
10759 * validation to do here.
10761 if (inputsize < addrsize) {
10762 target_ulong top_bits = sextract64(address, inputsize,
10763 addrsize - inputsize);
10764 if (-top_bits != param.select) {
10765 /* The gap between the two regions is a Translation fault */
10766 fault_type = ARMFault_Translation;
10767 goto do_fault;
10771 if (param.using64k) {
10772 stride = 13;
10773 } else if (param.using16k) {
10774 stride = 11;
10775 } else {
10776 stride = 9;
10779 /* Note that QEMU ignores shareability and cacheability attributes,
10780 * so we don't need to do anything with the SH, ORGN, IRGN fields
10781 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10782 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10783 * implement any ASID-like capability so we can ignore it (instead
10784 * we will always flush the TLB any time the ASID is changed).
10786 ttbr = regime_ttbr(env, mmu_idx, param.select);
10788 /* Here we should have set up all the parameters for the translation:
10789 * inputsize, ttbr, epd, stride, tbi
10792 if (param.epd) {
10793 /* Translation table walk disabled => Translation fault on TLB miss
10794 * Note: This is always 0 on 64-bit EL2 and EL3.
10796 goto do_fault;
10799 if (mmu_idx != ARMMMUIdx_Stage2) {
10800 /* The starting level depends on the virtual address size (which can
10801 * be up to 48 bits) and the translation granule size. It indicates
10802 * the number of strides (stride bits at a time) needed to
10803 * consume the bits of the input address. In the pseudocode this is:
10804 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10805 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10806 * our 'stride + 3' and 'stride' is our 'stride'.
10807 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10808 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10809 * = 4 - (inputsize - 4) / stride;
10811 level = 4 - (inputsize - 4) / stride;
10812 } else {
10813 /* For stage 2 translations the starting level is specified by the
10814 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10816 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10817 uint32_t startlevel;
10818 bool ok;
10820 if (!aarch64 || stride == 9) {
10821 /* AArch32 or 4KB pages */
10822 startlevel = 2 - sl0;
10823 } else {
10824 /* 16KB or 64KB pages */
10825 startlevel = 3 - sl0;
10828 /* Check that the starting level is valid. */
10829 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10830 inputsize, stride);
10831 if (!ok) {
10832 fault_type = ARMFault_Translation;
10833 goto do_fault;
10835 level = startlevel;
10838 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10839 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10841 /* Now we can extract the actual base address from the TTBR */
10842 descaddr = extract64(ttbr, 0, 48);
10844 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
10845 * and also to mask out CnP (bit 0) which could validly be non-zero.
10847 descaddr &= ~indexmask;
10849 /* The address field in the descriptor goes up to bit 39 for ARMv7
10850 * but up to bit 47 for ARMv8, but we use the descaddrmask
10851 * up to bit 39 for AArch32, because we don't need other bits in that case
10852 * to construct next descriptor address (anyway they should be all zeroes).
10854 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10855 ~indexmask_grainsize;
10857 /* Secure accesses start with the page table in secure memory and
10858 * can be downgraded to non-secure at any step. Non-secure accesses
10859 * remain non-secure. We implement this by just ORing in the NSTable/NS
10860 * bits at each step.
10862 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10863 for (;;) {
10864 uint64_t descriptor;
10865 bool nstable;
10867 descaddr |= (address >> (stride * (4 - level))) & indexmask;
10868 descaddr &= ~7ULL;
10869 nstable = extract32(tableattrs, 4, 1);
10870 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10871 if (fi->type != ARMFault_None) {
10872 goto do_fault;
10875 if (!(descriptor & 1) ||
10876 (!(descriptor & 2) && (level == 3))) {
10877 /* Invalid, or the Reserved level 3 encoding */
10878 goto do_fault;
10880 descaddr = descriptor & descaddrmask;
10882 if ((descriptor & 2) && (level < 3)) {
10883 /* Table entry. The top five bits are attributes which may
10884 * propagate down through lower levels of the table (and
10885 * which are all arranged so that 0 means "no effect", so
10886 * we can gather them up by ORing in the bits at each level).
10888 tableattrs |= extract64(descriptor, 59, 5);
10889 level++;
10890 indexmask = indexmask_grainsize;
10891 continue;
10893 /* Block entry at level 1 or 2, or page entry at level 3.
10894 * These are basically the same thing, although the number
10895 * of bits we pull in from the vaddr varies.
10897 page_size = (1ULL << ((stride * (4 - level)) + 3));
10898 descaddr |= (address & (page_size - 1));
10899 /* Extract attributes from the descriptor */
10900 attrs = extract64(descriptor, 2, 10)
10901 | (extract64(descriptor, 52, 12) << 10);
10903 if (mmu_idx == ARMMMUIdx_Stage2) {
10904 /* Stage 2 table descriptors do not include any attribute fields */
10905 break;
10907 /* Merge in attributes from table descriptors */
10908 attrs |= nstable << 3; /* NS */
10909 guarded = extract64(descriptor, 50, 1); /* GP */
10910 if (param.hpd) {
10911 /* HPD disables all the table attributes except NSTable. */
10912 break;
10914 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
10915 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10916 * means "force PL1 access only", which means forcing AP[1] to 0.
10918 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
10919 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
10920 break;
10922 /* Here descaddr is the final physical address, and attributes
10923 * are all in attrs.
10925 fault_type = ARMFault_AccessFlag;
10926 if ((attrs & (1 << 8)) == 0) {
10927 /* Access flag */
10928 goto do_fault;
10931 ap = extract32(attrs, 4, 2);
10933 if (mmu_idx == ARMMMUIdx_Stage2) {
10934 ns = true;
10935 xn = extract32(attrs, 11, 2);
10936 *prot = get_S2prot(env, ap, xn, s1_is_el0);
10937 } else {
10938 ns = extract32(attrs, 3, 1);
10939 xn = extract32(attrs, 12, 1);
10940 pxn = extract32(attrs, 11, 1);
10941 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10944 fault_type = ARMFault_Permission;
10945 if (!(*prot & (1 << access_type))) {
10946 goto do_fault;
10949 if (ns) {
10950 /* The NS bit will (as required by the architecture) have no effect if
10951 * the CPU doesn't support TZ or this is a non-secure translation
10952 * regime, because the attribute will already be non-secure.
10954 txattrs->secure = false;
10956 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10957 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10958 txattrs->target_tlb_bit0 = true;
10961 if (cacheattrs != NULL) {
10962 if (mmu_idx == ARMMMUIdx_Stage2) {
10963 cacheattrs->attrs = convert_stage2_attrs(env,
10964 extract32(attrs, 0, 4));
10965 } else {
10966 /* Index into MAIR registers for cache attributes */
10967 uint8_t attrindx = extract32(attrs, 0, 3);
10968 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10969 assert(attrindx <= 7);
10970 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10972 cacheattrs->shareability = extract32(attrs, 6, 2);
10975 *phys_ptr = descaddr;
10976 *page_size_ptr = page_size;
10977 return false;
10979 do_fault:
10980 fi->type = fault_type;
10981 fi->level = level;
10982 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10983 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10984 return true;
10987 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10988 ARMMMUIdx mmu_idx,
10989 int32_t address, int *prot)
10991 if (!arm_feature(env, ARM_FEATURE_M)) {
10992 *prot = PAGE_READ | PAGE_WRITE;
10993 switch (address) {
10994 case 0xF0000000 ... 0xFFFFFFFF:
10995 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10996 /* hivecs execing is ok */
10997 *prot |= PAGE_EXEC;
10999 break;
11000 case 0x00000000 ... 0x7FFFFFFF:
11001 *prot |= PAGE_EXEC;
11002 break;
11004 } else {
11005 /* Default system address map for M profile cores.
11006 * The architecture specifies which regions are execute-never;
11007 * at the MPU level no other checks are defined.
11009 switch (address) {
11010 case 0x00000000 ... 0x1fffffff: /* ROM */
11011 case 0x20000000 ... 0x3fffffff: /* SRAM */
11012 case 0x60000000 ... 0x7fffffff: /* RAM */
11013 case 0x80000000 ... 0x9fffffff: /* RAM */
11014 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11015 break;
11016 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11017 case 0xa0000000 ... 0xbfffffff: /* Device */
11018 case 0xc0000000 ... 0xdfffffff: /* Device */
11019 case 0xe0000000 ... 0xffffffff: /* System */
11020 *prot = PAGE_READ | PAGE_WRITE;
11021 break;
11022 default:
11023 g_assert_not_reached();
11028 static bool pmsav7_use_background_region(ARMCPU *cpu,
11029 ARMMMUIdx mmu_idx, bool is_user)
11031 /* Return true if we should use the default memory map as a
11032 * "background" region if there are no hits against any MPU regions.
11034 CPUARMState *env = &cpu->env;
11036 if (is_user) {
11037 return false;
11040 if (arm_feature(env, ARM_FEATURE_M)) {
11041 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11042 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11043 } else {
11044 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11048 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11050 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11051 return arm_feature(env, ARM_FEATURE_M) &&
11052 extract32(address, 20, 12) == 0xe00;
11055 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11057 /* True if address is in the M profile system region
11058 * 0xe0000000 - 0xffffffff
11060 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11063 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11064 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11065 hwaddr *phys_ptr, int *prot,
11066 target_ulong *page_size,
11067 ARMMMUFaultInfo *fi)
11069 ARMCPU *cpu = env_archcpu(env);
11070 int n;
11071 bool is_user = regime_is_user(env, mmu_idx);
11073 *phys_ptr = address;
11074 *page_size = TARGET_PAGE_SIZE;
11075 *prot = 0;
11077 if (regime_translation_disabled(env, mmu_idx) ||
11078 m_is_ppb_region(env, address)) {
11079 /* MPU disabled or M profile PPB access: use default memory map.
11080 * The other case which uses the default memory map in the
11081 * v7M ARM ARM pseudocode is exception vector reads from the vector
11082 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11083 * which always does a direct read using address_space_ldl(), rather
11084 * than going via this function, so we don't need to check that here.
11086 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11087 } else { /* MPU enabled */
11088 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11089 /* region search */
11090 uint32_t base = env->pmsav7.drbar[n];
11091 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11092 uint32_t rmask;
11093 bool srdis = false;
11095 if (!(env->pmsav7.drsr[n] & 0x1)) {
11096 continue;
11099 if (!rsize) {
11100 qemu_log_mask(LOG_GUEST_ERROR,
11101 "DRSR[%d]: Rsize field cannot be 0\n", n);
11102 continue;
11104 rsize++;
11105 rmask = (1ull << rsize) - 1;
11107 if (base & rmask) {
11108 qemu_log_mask(LOG_GUEST_ERROR,
11109 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11110 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11111 n, base, rmask);
11112 continue;
11115 if (address < base || address > base + rmask) {
11117 * Address not in this region. We must check whether the
11118 * region covers addresses in the same page as our address.
11119 * In that case we must not report a size that covers the
11120 * whole page for a subsequent hit against a different MPU
11121 * region or the background region, because it would result in
11122 * incorrect TLB hits for subsequent accesses to addresses that
11123 * are in this MPU region.
11125 if (ranges_overlap(base, rmask,
11126 address & TARGET_PAGE_MASK,
11127 TARGET_PAGE_SIZE)) {
11128 *page_size = 1;
11130 continue;
11133 /* Region matched */
11135 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11136 int i, snd;
11137 uint32_t srdis_mask;
11139 rsize -= 3; /* sub region size (power of 2) */
11140 snd = ((address - base) >> rsize) & 0x7;
11141 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11143 srdis_mask = srdis ? 0x3 : 0x0;
11144 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11145 /* This will check in groups of 2, 4 and then 8, whether
11146 * the subregion bits are consistent. rsize is incremented
11147 * back up to give the region size, considering consistent
11148 * adjacent subregions as one region. Stop testing if rsize
11149 * is already big enough for an entire QEMU page.
11151 int snd_rounded = snd & ~(i - 1);
11152 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11153 snd_rounded + 8, i);
11154 if (srdis_mask ^ srdis_multi) {
11155 break;
11157 srdis_mask = (srdis_mask << i) | srdis_mask;
11158 rsize++;
11161 if (srdis) {
11162 continue;
11164 if (rsize < TARGET_PAGE_BITS) {
11165 *page_size = 1 << rsize;
11167 break;
11170 if (n == -1) { /* no hits */
11171 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11172 /* background fault */
11173 fi->type = ARMFault_Background;
11174 return true;
11176 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11177 } else { /* a MPU hit! */
11178 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11179 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11181 if (m_is_system_region(env, address)) {
11182 /* System space is always execute never */
11183 xn = 1;
11186 if (is_user) { /* User mode AP bit decoding */
11187 switch (ap) {
11188 case 0:
11189 case 1:
11190 case 5:
11191 break; /* no access */
11192 case 3:
11193 *prot |= PAGE_WRITE;
11194 /* fall through */
11195 case 2:
11196 case 6:
11197 *prot |= PAGE_READ | PAGE_EXEC;
11198 break;
11199 case 7:
11200 /* for v7M, same as 6; for R profile a reserved value */
11201 if (arm_feature(env, ARM_FEATURE_M)) {
11202 *prot |= PAGE_READ | PAGE_EXEC;
11203 break;
11205 /* fall through */
11206 default:
11207 qemu_log_mask(LOG_GUEST_ERROR,
11208 "DRACR[%d]: Bad value for AP bits: 0x%"
11209 PRIx32 "\n", n, ap);
11211 } else { /* Priv. mode AP bits decoding */
11212 switch (ap) {
11213 case 0:
11214 break; /* no access */
11215 case 1:
11216 case 2:
11217 case 3:
11218 *prot |= PAGE_WRITE;
11219 /* fall through */
11220 case 5:
11221 case 6:
11222 *prot |= PAGE_READ | PAGE_EXEC;
11223 break;
11224 case 7:
11225 /* for v7M, same as 6; for R profile a reserved value */
11226 if (arm_feature(env, ARM_FEATURE_M)) {
11227 *prot |= PAGE_READ | PAGE_EXEC;
11228 break;
11230 /* fall through */
11231 default:
11232 qemu_log_mask(LOG_GUEST_ERROR,
11233 "DRACR[%d]: Bad value for AP bits: 0x%"
11234 PRIx32 "\n", n, ap);
11238 /* execute never */
11239 if (xn) {
11240 *prot &= ~PAGE_EXEC;
11245 fi->type = ARMFault_Permission;
11246 fi->level = 1;
11247 return !(*prot & (1 << access_type));
11250 static bool v8m_is_sau_exempt(CPUARMState *env,
11251 uint32_t address, MMUAccessType access_type)
11253 /* The architecture specifies that certain address ranges are
11254 * exempt from v8M SAU/IDAU checks.
11256 return
11257 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11258 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11259 (address >= 0xe000e000 && address <= 0xe000efff) ||
11260 (address >= 0xe002e000 && address <= 0xe002efff) ||
11261 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11262 (address >= 0xe00ff000 && address <= 0xe00fffff);
11265 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11266 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11267 V8M_SAttributes *sattrs)
11269 /* Look up the security attributes for this address. Compare the
11270 * pseudocode SecurityCheck() function.
11271 * We assume the caller has zero-initialized *sattrs.
11273 ARMCPU *cpu = env_archcpu(env);
11274 int r;
11275 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11276 int idau_region = IREGION_NOTVALID;
11277 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11278 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11280 if (cpu->idau) {
11281 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11282 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11284 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11285 &idau_nsc);
11288 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11289 /* 0xf0000000..0xffffffff is always S for insn fetches */
11290 return;
11293 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11294 sattrs->ns = !regime_is_secure(env, mmu_idx);
11295 return;
11298 if (idau_region != IREGION_NOTVALID) {
11299 sattrs->irvalid = true;
11300 sattrs->iregion = idau_region;
11303 switch (env->sau.ctrl & 3) {
11304 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11305 break;
11306 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11307 sattrs->ns = true;
11308 break;
11309 default: /* SAU.ENABLE == 1 */
11310 for (r = 0; r < cpu->sau_sregion; r++) {
11311 if (env->sau.rlar[r] & 1) {
11312 uint32_t base = env->sau.rbar[r] & ~0x1f;
11313 uint32_t limit = env->sau.rlar[r] | 0x1f;
11315 if (base <= address && limit >= address) {
11316 if (base > addr_page_base || limit < addr_page_limit) {
11317 sattrs->subpage = true;
11319 if (sattrs->srvalid) {
11320 /* If we hit in more than one region then we must report
11321 * as Secure, not NS-Callable, with no valid region
11322 * number info.
11324 sattrs->ns = false;
11325 sattrs->nsc = false;
11326 sattrs->sregion = 0;
11327 sattrs->srvalid = false;
11328 break;
11329 } else {
11330 if (env->sau.rlar[r] & 2) {
11331 sattrs->nsc = true;
11332 } else {
11333 sattrs->ns = true;
11335 sattrs->srvalid = true;
11336 sattrs->sregion = r;
11338 } else {
11340 * Address not in this region. We must check whether the
11341 * region covers addresses in the same page as our address.
11342 * In that case we must not report a size that covers the
11343 * whole page for a subsequent hit against a different MPU
11344 * region or the background region, because it would result
11345 * in incorrect TLB hits for subsequent accesses to
11346 * addresses that are in this MPU region.
11348 if (limit >= base &&
11349 ranges_overlap(base, limit - base + 1,
11350 addr_page_base,
11351 TARGET_PAGE_SIZE)) {
11352 sattrs->subpage = true;
11357 break;
11361 * The IDAU will override the SAU lookup results if it specifies
11362 * higher security than the SAU does.
11364 if (!idau_ns) {
11365 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11366 sattrs->ns = false;
11367 sattrs->nsc = idau_nsc;
11372 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11373 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11374 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11375 int *prot, bool *is_subpage,
11376 ARMMMUFaultInfo *fi, uint32_t *mregion)
11378 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11379 * that a full phys-to-virt translation does).
11380 * mregion is (if not NULL) set to the region number which matched,
11381 * or -1 if no region number is returned (MPU off, address did not
11382 * hit a region, address hit in multiple regions).
11383 * We set is_subpage to true if the region hit doesn't cover the
11384 * entire TARGET_PAGE the address is within.
11386 ARMCPU *cpu = env_archcpu(env);
11387 bool is_user = regime_is_user(env, mmu_idx);
11388 uint32_t secure = regime_is_secure(env, mmu_idx);
11389 int n;
11390 int matchregion = -1;
11391 bool hit = false;
11392 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11393 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11395 *is_subpage = false;
11396 *phys_ptr = address;
11397 *prot = 0;
11398 if (mregion) {
11399 *mregion = -1;
11402 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11403 * was an exception vector read from the vector table (which is always
11404 * done using the default system address map), because those accesses
11405 * are done in arm_v7m_load_vector(), which always does a direct
11406 * read using address_space_ldl(), rather than going via this function.
11408 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11409 hit = true;
11410 } else if (m_is_ppb_region(env, address)) {
11411 hit = true;
11412 } else {
11413 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11414 hit = true;
11417 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11418 /* region search */
11419 /* Note that the base address is bits [31:5] from the register
11420 * with bits [4:0] all zeroes, but the limit address is bits
11421 * [31:5] from the register with bits [4:0] all ones.
11423 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11424 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11426 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11427 /* Region disabled */
11428 continue;
11431 if (address < base || address > limit) {
11433 * Address not in this region. We must check whether the
11434 * region covers addresses in the same page as our address.
11435 * In that case we must not report a size that covers the
11436 * whole page for a subsequent hit against a different MPU
11437 * region or the background region, because it would result in
11438 * incorrect TLB hits for subsequent accesses to addresses that
11439 * are in this MPU region.
11441 if (limit >= base &&
11442 ranges_overlap(base, limit - base + 1,
11443 addr_page_base,
11444 TARGET_PAGE_SIZE)) {
11445 *is_subpage = true;
11447 continue;
11450 if (base > addr_page_base || limit < addr_page_limit) {
11451 *is_subpage = true;
11454 if (matchregion != -1) {
11455 /* Multiple regions match -- always a failure (unlike
11456 * PMSAv7 where highest-numbered-region wins)
11458 fi->type = ARMFault_Permission;
11459 fi->level = 1;
11460 return true;
11463 matchregion = n;
11464 hit = true;
11468 if (!hit) {
11469 /* background fault */
11470 fi->type = ARMFault_Background;
11471 return true;
11474 if (matchregion == -1) {
11475 /* hit using the background region */
11476 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11477 } else {
11478 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11479 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11481 if (m_is_system_region(env, address)) {
11482 /* System space is always execute never */
11483 xn = 1;
11486 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11487 if (*prot && !xn) {
11488 *prot |= PAGE_EXEC;
11490 /* We don't need to look the attribute up in the MAIR0/MAIR1
11491 * registers because that only tells us about cacheability.
11493 if (mregion) {
11494 *mregion = matchregion;
11498 fi->type = ARMFault_Permission;
11499 fi->level = 1;
11500 return !(*prot & (1 << access_type));
11504 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11505 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11506 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11507 int *prot, target_ulong *page_size,
11508 ARMMMUFaultInfo *fi)
11510 uint32_t secure = regime_is_secure(env, mmu_idx);
11511 V8M_SAttributes sattrs = {};
11512 bool ret;
11513 bool mpu_is_subpage;
11515 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11516 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11517 if (access_type == MMU_INST_FETCH) {
11518 /* Instruction fetches always use the MMU bank and the
11519 * transaction attribute determined by the fetch address,
11520 * regardless of CPU state. This is painful for QEMU
11521 * to handle, because it would mean we need to encode
11522 * into the mmu_idx not just the (user, negpri) information
11523 * for the current security state but also that for the
11524 * other security state, which would balloon the number
11525 * of mmu_idx values needed alarmingly.
11526 * Fortunately we can avoid this because it's not actually
11527 * possible to arbitrarily execute code from memory with
11528 * the wrong security attribute: it will always generate
11529 * an exception of some kind or another, apart from the
11530 * special case of an NS CPU executing an SG instruction
11531 * in S&NSC memory. So we always just fail the translation
11532 * here and sort things out in the exception handler
11533 * (including possibly emulating an SG instruction).
11535 if (sattrs.ns != !secure) {
11536 if (sattrs.nsc) {
11537 fi->type = ARMFault_QEMU_NSCExec;
11538 } else {
11539 fi->type = ARMFault_QEMU_SFault;
11541 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11542 *phys_ptr = address;
11543 *prot = 0;
11544 return true;
11546 } else {
11547 /* For data accesses we always use the MMU bank indicated
11548 * by the current CPU state, but the security attributes
11549 * might downgrade a secure access to nonsecure.
11551 if (sattrs.ns) {
11552 txattrs->secure = false;
11553 } else if (!secure) {
11554 /* NS access to S memory must fault.
11555 * Architecturally we should first check whether the
11556 * MPU information for this address indicates that we
11557 * are doing an unaligned access to Device memory, which
11558 * should generate a UsageFault instead. QEMU does not
11559 * currently check for that kind of unaligned access though.
11560 * If we added it we would need to do so as a special case
11561 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11563 fi->type = ARMFault_QEMU_SFault;
11564 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11565 *phys_ptr = address;
11566 *prot = 0;
11567 return true;
11572 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11573 txattrs, prot, &mpu_is_subpage, fi, NULL);
11574 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11575 return ret;
11578 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11579 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11580 hwaddr *phys_ptr, int *prot,
11581 ARMMMUFaultInfo *fi)
11583 int n;
11584 uint32_t mask;
11585 uint32_t base;
11586 bool is_user = regime_is_user(env, mmu_idx);
11588 if (regime_translation_disabled(env, mmu_idx)) {
11589 /* MPU disabled. */
11590 *phys_ptr = address;
11591 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11592 return false;
11595 *phys_ptr = address;
11596 for (n = 7; n >= 0; n--) {
11597 base = env->cp15.c6_region[n];
11598 if ((base & 1) == 0) {
11599 continue;
11601 mask = 1 << ((base >> 1) & 0x1f);
11602 /* Keep this shift separate from the above to avoid an
11603 (undefined) << 32. */
11604 mask = (mask << 1) - 1;
11605 if (((base ^ address) & ~mask) == 0) {
11606 break;
11609 if (n < 0) {
11610 fi->type = ARMFault_Background;
11611 return true;
11614 if (access_type == MMU_INST_FETCH) {
11615 mask = env->cp15.pmsav5_insn_ap;
11616 } else {
11617 mask = env->cp15.pmsav5_data_ap;
11619 mask = (mask >> (n * 4)) & 0xf;
11620 switch (mask) {
11621 case 0:
11622 fi->type = ARMFault_Permission;
11623 fi->level = 1;
11624 return true;
11625 case 1:
11626 if (is_user) {
11627 fi->type = ARMFault_Permission;
11628 fi->level = 1;
11629 return true;
11631 *prot = PAGE_READ | PAGE_WRITE;
11632 break;
11633 case 2:
11634 *prot = PAGE_READ;
11635 if (!is_user) {
11636 *prot |= PAGE_WRITE;
11638 break;
11639 case 3:
11640 *prot = PAGE_READ | PAGE_WRITE;
11641 break;
11642 case 5:
11643 if (is_user) {
11644 fi->type = ARMFault_Permission;
11645 fi->level = 1;
11646 return true;
11648 *prot = PAGE_READ;
11649 break;
11650 case 6:
11651 *prot = PAGE_READ;
11652 break;
11653 default:
11654 /* Bad permission. */
11655 fi->type = ARMFault_Permission;
11656 fi->level = 1;
11657 return true;
11659 *prot |= PAGE_EXEC;
11660 return false;
11663 /* Combine either inner or outer cacheability attributes for normal
11664 * memory, according to table D4-42 and pseudocode procedure
11665 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11667 * NB: only stage 1 includes allocation hints (RW bits), leading to
11668 * some asymmetry.
11670 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11672 if (s1 == 4 || s2 == 4) {
11673 /* non-cacheable has precedence */
11674 return 4;
11675 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11676 /* stage 1 write-through takes precedence */
11677 return s1;
11678 } else if (extract32(s2, 2, 2) == 2) {
11679 /* stage 2 write-through takes precedence, but the allocation hint
11680 * is still taken from stage 1
11682 return (2 << 2) | extract32(s1, 0, 2);
11683 } else { /* write-back */
11684 return s1;
11688 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11689 * and CombineS1S2Desc()
11691 * @s1: Attributes from stage 1 walk
11692 * @s2: Attributes from stage 2 walk
11694 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11696 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11697 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11698 ARMCacheAttrs ret;
11700 /* Combine shareability attributes (table D4-43) */
11701 if (s1.shareability == 2 || s2.shareability == 2) {
11702 /* if either are outer-shareable, the result is outer-shareable */
11703 ret.shareability = 2;
11704 } else if (s1.shareability == 3 || s2.shareability == 3) {
11705 /* if either are inner-shareable, the result is inner-shareable */
11706 ret.shareability = 3;
11707 } else {
11708 /* both non-shareable */
11709 ret.shareability = 0;
11712 /* Combine memory type and cacheability attributes */
11713 if (s1hi == 0 || s2hi == 0) {
11714 /* Device has precedence over normal */
11715 if (s1lo == 0 || s2lo == 0) {
11716 /* nGnRnE has precedence over anything */
11717 ret.attrs = 0;
11718 } else if (s1lo == 4 || s2lo == 4) {
11719 /* non-Reordering has precedence over Reordering */
11720 ret.attrs = 4; /* nGnRE */
11721 } else if (s1lo == 8 || s2lo == 8) {
11722 /* non-Gathering has precedence over Gathering */
11723 ret.attrs = 8; /* nGRE */
11724 } else {
11725 ret.attrs = 0xc; /* GRE */
11728 /* Any location for which the resultant memory type is any
11729 * type of Device memory is always treated as Outer Shareable.
11731 ret.shareability = 2;
11732 } else { /* Normal memory */
11733 /* Outer/inner cacheability combine independently */
11734 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11735 | combine_cacheattr_nibble(s1lo, s2lo);
11737 if (ret.attrs == 0x44) {
11738 /* Any location for which the resultant memory type is Normal
11739 * Inner Non-cacheable, Outer Non-cacheable is always treated
11740 * as Outer Shareable.
11742 ret.shareability = 2;
11746 return ret;
11750 /* get_phys_addr - get the physical address for this virtual address
11752 * Find the physical address corresponding to the given virtual address,
11753 * by doing a translation table walk on MMU based systems or using the
11754 * MPU state on MPU based systems.
11756 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11757 * prot and page_size may not be filled in, and the populated fsr value provides
11758 * information on why the translation aborted, in the format of a
11759 * DFSR/IFSR fault register, with the following caveats:
11760 * * we honour the short vs long DFSR format differences.
11761 * * the WnR bit is never set (the caller must do this).
11762 * * for PSMAv5 based systems we don't bother to return a full FSR format
11763 * value.
11765 * @env: CPUARMState
11766 * @address: virtual address to get physical address for
11767 * @access_type: 0 for read, 1 for write, 2 for execute
11768 * @mmu_idx: MMU index indicating required translation regime
11769 * @phys_ptr: set to the physical address corresponding to the virtual address
11770 * @attrs: set to the memory transaction attributes to use
11771 * @prot: set to the permissions for the page containing phys_ptr
11772 * @page_size: set to the size of the page containing phys_ptr
11773 * @fi: set to fault info if the translation fails
11774 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11776 bool get_phys_addr(CPUARMState *env, target_ulong address,
11777 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11778 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11779 target_ulong *page_size,
11780 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11782 if (mmu_idx == ARMMMUIdx_E10_0 ||
11783 mmu_idx == ARMMMUIdx_E10_1 ||
11784 mmu_idx == ARMMMUIdx_E10_1_PAN) {
11785 /* Call ourselves recursively to do the stage 1 and then stage 2
11786 * translations.
11788 if (arm_feature(env, ARM_FEATURE_EL2)) {
11789 hwaddr ipa;
11790 int s2_prot;
11791 int ret;
11792 ARMCacheAttrs cacheattrs2 = {};
11794 ret = get_phys_addr(env, address, access_type,
11795 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11796 prot, page_size, fi, cacheattrs);
11798 /* If S1 fails or S2 is disabled, return early. */
11799 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11800 *phys_ptr = ipa;
11801 return ret;
11804 /* S1 is done. Now do S2 translation. */
11805 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11806 mmu_idx == ARMMMUIdx_E10_0,
11807 phys_ptr, attrs, &s2_prot,
11808 page_size, fi,
11809 cacheattrs != NULL ? &cacheattrs2 : NULL);
11810 fi->s2addr = ipa;
11811 /* Combine the S1 and S2 perms. */
11812 *prot &= s2_prot;
11814 /* Combine the S1 and S2 cache attributes, if needed */
11815 if (!ret && cacheattrs != NULL) {
11816 if (env->cp15.hcr_el2 & HCR_DC) {
11818 * HCR.DC forces the first stage attributes to
11819 * Normal Non-Shareable,
11820 * Inner Write-Back Read-Allocate Write-Allocate,
11821 * Outer Write-Back Read-Allocate Write-Allocate.
11823 cacheattrs->attrs = 0xff;
11824 cacheattrs->shareability = 0;
11826 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11829 return ret;
11830 } else {
11832 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11834 mmu_idx = stage_1_mmu_idx(mmu_idx);
11838 /* The page table entries may downgrade secure to non-secure, but
11839 * cannot upgrade an non-secure translation regime's attributes
11840 * to secure.
11842 attrs->secure = regime_is_secure(env, mmu_idx);
11843 attrs->user = regime_is_user(env, mmu_idx);
11845 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11846 * In v7 and earlier it affects all stage 1 translations.
11848 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11849 && !arm_feature(env, ARM_FEATURE_V8)) {
11850 if (regime_el(env, mmu_idx) == 3) {
11851 address += env->cp15.fcseidr_s;
11852 } else {
11853 address += env->cp15.fcseidr_ns;
11857 if (arm_feature(env, ARM_FEATURE_PMSA)) {
11858 bool ret;
11859 *page_size = TARGET_PAGE_SIZE;
11861 if (arm_feature(env, ARM_FEATURE_V8)) {
11862 /* PMSAv8 */
11863 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11864 phys_ptr, attrs, prot, page_size, fi);
11865 } else if (arm_feature(env, ARM_FEATURE_V7)) {
11866 /* PMSAv7 */
11867 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11868 phys_ptr, prot, page_size, fi);
11869 } else {
11870 /* Pre-v7 MPU */
11871 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11872 phys_ptr, prot, fi);
11874 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11875 " mmu_idx %u -> %s (prot %c%c%c)\n",
11876 access_type == MMU_DATA_LOAD ? "reading" :
11877 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11878 (uint32_t)address, mmu_idx,
11879 ret ? "Miss" : "Hit",
11880 *prot & PAGE_READ ? 'r' : '-',
11881 *prot & PAGE_WRITE ? 'w' : '-',
11882 *prot & PAGE_EXEC ? 'x' : '-');
11884 return ret;
11887 /* Definitely a real MMU, not an MPU */
11889 if (regime_translation_disabled(env, mmu_idx)) {
11891 * MMU disabled. S1 addresses within aa64 translation regimes are
11892 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
11894 if (mmu_idx != ARMMMUIdx_Stage2) {
11895 int r_el = regime_el(env, mmu_idx);
11896 if (arm_el_is_aa64(env, r_el)) {
11897 int pamax = arm_pamax(env_archcpu(env));
11898 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
11899 int addrtop, tbi;
11901 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11902 if (access_type == MMU_INST_FETCH) {
11903 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11905 tbi = (tbi >> extract64(address, 55, 1)) & 1;
11906 addrtop = (tbi ? 55 : 63);
11908 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
11909 fi->type = ARMFault_AddressSize;
11910 fi->level = 0;
11911 fi->stage2 = false;
11912 return 1;
11916 * When TBI is disabled, we've just validated that all of the
11917 * bits above PAMax are zero, so logically we only need to
11918 * clear the top byte for TBI. But it's clearer to follow
11919 * the pseudocode set of addrdesc.paddress.
11921 address = extract64(address, 0, 52);
11924 *phys_ptr = address;
11925 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11926 *page_size = TARGET_PAGE_SIZE;
11927 return 0;
11930 if (regime_using_lpae_format(env, mmu_idx)) {
11931 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
11932 phys_ptr, attrs, prot, page_size,
11933 fi, cacheattrs);
11934 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11935 return get_phys_addr_v6(env, address, access_type, mmu_idx,
11936 phys_ptr, attrs, prot, page_size, fi);
11937 } else {
11938 return get_phys_addr_v5(env, address, access_type, mmu_idx,
11939 phys_ptr, prot, page_size, fi);
11943 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11944 MemTxAttrs *attrs)
11946 ARMCPU *cpu = ARM_CPU(cs);
11947 CPUARMState *env = &cpu->env;
11948 hwaddr phys_addr;
11949 target_ulong page_size;
11950 int prot;
11951 bool ret;
11952 ARMMMUFaultInfo fi = {};
11953 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11955 *attrs = (MemTxAttrs) {};
11957 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11958 attrs, &prot, &page_size, &fi, NULL);
11960 if (ret) {
11961 return -1;
11963 return phys_addr;
11966 #endif
11968 /* Note that signed overflow is undefined in C. The following routines are
11969 careful to use unsigned types where modulo arithmetic is required.
11970 Failure to do so _will_ break on newer gcc. */
11972 /* Signed saturating arithmetic. */
11974 /* Perform 16-bit signed saturating addition. */
11975 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11977 uint16_t res;
11979 res = a + b;
11980 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11981 if (a & 0x8000)
11982 res = 0x8000;
11983 else
11984 res = 0x7fff;
11986 return res;
11989 /* Perform 8-bit signed saturating addition. */
11990 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11992 uint8_t res;
11994 res = a + b;
11995 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11996 if (a & 0x80)
11997 res = 0x80;
11998 else
11999 res = 0x7f;
12001 return res;
12004 /* Perform 16-bit signed saturating subtraction. */
12005 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12007 uint16_t res;
12009 res = a - b;
12010 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12011 if (a & 0x8000)
12012 res = 0x8000;
12013 else
12014 res = 0x7fff;
12016 return res;
12019 /* Perform 8-bit signed saturating subtraction. */
12020 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12022 uint8_t res;
12024 res = a - b;
12025 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12026 if (a & 0x80)
12027 res = 0x80;
12028 else
12029 res = 0x7f;
12031 return res;
12034 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12035 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12036 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12037 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12038 #define PFX q
12040 #include "op_addsub.h"
12042 /* Unsigned saturating arithmetic. */
12043 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12045 uint16_t res;
12046 res = a + b;
12047 if (res < a)
12048 res = 0xffff;
12049 return res;
12052 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12054 if (a > b)
12055 return a - b;
12056 else
12057 return 0;
12060 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12062 uint8_t res;
12063 res = a + b;
12064 if (res < a)
12065 res = 0xff;
12066 return res;
12069 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12071 if (a > b)
12072 return a - b;
12073 else
12074 return 0;
12077 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12078 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12079 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12080 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12081 #define PFX uq
12083 #include "op_addsub.h"
12085 /* Signed modulo arithmetic. */
12086 #define SARITH16(a, b, n, op) do { \
12087 int32_t sum; \
12088 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12089 RESULT(sum, n, 16); \
12090 if (sum >= 0) \
12091 ge |= 3 << (n * 2); \
12092 } while(0)
12094 #define SARITH8(a, b, n, op) do { \
12095 int32_t sum; \
12096 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12097 RESULT(sum, n, 8); \
12098 if (sum >= 0) \
12099 ge |= 1 << n; \
12100 } while(0)
12103 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12104 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12105 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12106 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12107 #define PFX s
12108 #define ARITH_GE
12110 #include "op_addsub.h"
12112 /* Unsigned modulo arithmetic. */
12113 #define ADD16(a, b, n) do { \
12114 uint32_t sum; \
12115 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12116 RESULT(sum, n, 16); \
12117 if ((sum >> 16) == 1) \
12118 ge |= 3 << (n * 2); \
12119 } while(0)
12121 #define ADD8(a, b, n) do { \
12122 uint32_t sum; \
12123 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12124 RESULT(sum, n, 8); \
12125 if ((sum >> 8) == 1) \
12126 ge |= 1 << n; \
12127 } while(0)
12129 #define SUB16(a, b, n) do { \
12130 uint32_t sum; \
12131 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12132 RESULT(sum, n, 16); \
12133 if ((sum >> 16) == 0) \
12134 ge |= 3 << (n * 2); \
12135 } while(0)
12137 #define SUB8(a, b, n) do { \
12138 uint32_t sum; \
12139 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12140 RESULT(sum, n, 8); \
12141 if ((sum >> 8) == 0) \
12142 ge |= 1 << n; \
12143 } while(0)
12145 #define PFX u
12146 #define ARITH_GE
12148 #include "op_addsub.h"
12150 /* Halved signed arithmetic. */
12151 #define ADD16(a, b, n) \
12152 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12153 #define SUB16(a, b, n) \
12154 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12155 #define ADD8(a, b, n) \
12156 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12157 #define SUB8(a, b, n) \
12158 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12159 #define PFX sh
12161 #include "op_addsub.h"
12163 /* Halved unsigned arithmetic. */
12164 #define ADD16(a, b, n) \
12165 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12166 #define SUB16(a, b, n) \
12167 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12168 #define ADD8(a, b, n) \
12169 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12170 #define SUB8(a, b, n) \
12171 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12172 #define PFX uh
12174 #include "op_addsub.h"
12176 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12178 if (a > b)
12179 return a - b;
12180 else
12181 return b - a;
12184 /* Unsigned sum of absolute byte differences. */
12185 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12187 uint32_t sum;
12188 sum = do_usad(a, b);
12189 sum += do_usad(a >> 8, b >> 8);
12190 sum += do_usad(a >> 16, b >>16);
12191 sum += do_usad(a >> 24, b >> 24);
12192 return sum;
12195 /* For ARMv6 SEL instruction. */
12196 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12198 uint32_t mask;
12200 mask = 0;
12201 if (flags & 1)
12202 mask |= 0xff;
12203 if (flags & 2)
12204 mask |= 0xff00;
12205 if (flags & 4)
12206 mask |= 0xff0000;
12207 if (flags & 8)
12208 mask |= 0xff000000;
12209 return (a & mask) | (b & ~mask);
12212 /* CRC helpers.
12213 * The upper bytes of val (above the number specified by 'bytes') must have
12214 * been zeroed out by the caller.
12216 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12218 uint8_t buf[4];
12220 stl_le_p(buf, val);
12222 /* zlib crc32 converts the accumulator and output to one's complement. */
12223 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12226 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12228 uint8_t buf[4];
12230 stl_le_p(buf, val);
12232 /* Linux crc32c converts the output to one's complement. */
12233 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12236 /* Return the exception level to which FP-disabled exceptions should
12237 * be taken, or 0 if FP is enabled.
12239 int fp_exception_el(CPUARMState *env, int cur_el)
12241 #ifndef CONFIG_USER_ONLY
12242 /* CPACR and the CPTR registers don't exist before v6, so FP is
12243 * always accessible
12245 if (!arm_feature(env, ARM_FEATURE_V6)) {
12246 return 0;
12249 if (arm_feature(env, ARM_FEATURE_M)) {
12250 /* CPACR can cause a NOCP UsageFault taken to current security state */
12251 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12252 return 1;
12255 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12256 if (!extract32(env->v7m.nsacr, 10, 1)) {
12257 /* FP insns cause a NOCP UsageFault taken to Secure */
12258 return 3;
12262 return 0;
12265 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12266 * 0, 2 : trap EL0 and EL1/PL1 accesses
12267 * 1 : trap only EL0 accesses
12268 * 3 : trap no accesses
12269 * This register is ignored if E2H+TGE are both set.
12271 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12272 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12274 switch (fpen) {
12275 case 0:
12276 case 2:
12277 if (cur_el == 0 || cur_el == 1) {
12278 /* Trap to PL1, which might be EL1 or EL3 */
12279 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12280 return 3;
12282 return 1;
12284 if (cur_el == 3 && !is_a64(env)) {
12285 /* Secure PL1 running at EL3 */
12286 return 3;
12288 break;
12289 case 1:
12290 if (cur_el == 0) {
12291 return 1;
12293 break;
12294 case 3:
12295 break;
12300 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12301 * to control non-secure access to the FPU. It doesn't have any
12302 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12304 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12305 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12306 if (!extract32(env->cp15.nsacr, 10, 1)) {
12307 /* FP insns act as UNDEF */
12308 return cur_el == 2 ? 2 : 1;
12312 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12313 * check because zero bits in the registers mean "don't trap".
12316 /* CPTR_EL2 : present in v7VE or v8 */
12317 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12318 && !arm_is_secure_below_el3(env)) {
12319 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12320 return 2;
12323 /* CPTR_EL3 : present in v8 */
12324 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12325 /* Trap all FP ops to EL3 */
12326 return 3;
12328 #endif
12329 return 0;
12332 /* Return the exception level we're running at if this is our mmu_idx */
12333 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12335 if (mmu_idx & ARM_MMU_IDX_M) {
12336 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12339 switch (mmu_idx) {
12340 case ARMMMUIdx_E10_0:
12341 case ARMMMUIdx_E20_0:
12342 case ARMMMUIdx_SE10_0:
12343 return 0;
12344 case ARMMMUIdx_E10_1:
12345 case ARMMMUIdx_E10_1_PAN:
12346 case ARMMMUIdx_SE10_1:
12347 case ARMMMUIdx_SE10_1_PAN:
12348 return 1;
12349 case ARMMMUIdx_E2:
12350 case ARMMMUIdx_E20_2:
12351 case ARMMMUIdx_E20_2_PAN:
12352 return 2;
12353 case ARMMMUIdx_SE3:
12354 return 3;
12355 default:
12356 g_assert_not_reached();
12360 #ifndef CONFIG_TCG
12361 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12363 g_assert_not_reached();
12365 #endif
12367 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12369 if (arm_feature(env, ARM_FEATURE_M)) {
12370 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12373 /* See ARM pseudo-function ELIsInHost. */
12374 switch (el) {
12375 case 0:
12376 if (arm_is_secure_below_el3(env)) {
12377 return ARMMMUIdx_SE10_0;
12379 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12380 && arm_el_is_aa64(env, 2)) {
12381 return ARMMMUIdx_E20_0;
12383 return ARMMMUIdx_E10_0;
12384 case 1:
12385 if (arm_is_secure_below_el3(env)) {
12386 if (env->pstate & PSTATE_PAN) {
12387 return ARMMMUIdx_SE10_1_PAN;
12389 return ARMMMUIdx_SE10_1;
12391 if (env->pstate & PSTATE_PAN) {
12392 return ARMMMUIdx_E10_1_PAN;
12394 return ARMMMUIdx_E10_1;
12395 case 2:
12396 /* TODO: ARMv8.4-SecEL2 */
12397 /* Note that TGE does not apply at EL2. */
12398 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12399 if (env->pstate & PSTATE_PAN) {
12400 return ARMMMUIdx_E20_2_PAN;
12402 return ARMMMUIdx_E20_2;
12404 return ARMMMUIdx_E2;
12405 case 3:
12406 return ARMMMUIdx_SE3;
12407 default:
12408 g_assert_not_reached();
12412 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12414 return arm_mmu_idx_el(env, arm_current_el(env));
12417 #ifndef CONFIG_USER_ONLY
12418 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12420 return stage_1_mmu_idx(arm_mmu_idx(env));
12422 #endif
12424 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12425 ARMMMUIdx mmu_idx, uint32_t flags)
12427 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12428 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12429 arm_to_core_mmu_idx(mmu_idx));
12431 if (arm_singlestep_active(env)) {
12432 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12434 return flags;
12437 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12438 ARMMMUIdx mmu_idx, uint32_t flags)
12440 bool sctlr_b = arm_sctlr_b(env);
12442 if (sctlr_b) {
12443 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12445 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12446 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12448 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12450 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12453 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12454 ARMMMUIdx mmu_idx)
12456 uint32_t flags = 0;
12458 if (arm_v7m_is_handler_mode(env)) {
12459 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12463 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12464 * is suppressing them because the requested execution priority
12465 * is less than 0.
12467 if (arm_feature(env, ARM_FEATURE_V8) &&
12468 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12469 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12470 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12473 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12476 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12478 int flags = 0;
12480 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12481 arm_debug_target_el(env));
12482 return flags;
12485 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12486 ARMMMUIdx mmu_idx)
12488 uint32_t flags = rebuild_hflags_aprofile(env);
12490 if (arm_el_is_aa64(env, 1)) {
12491 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12494 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12495 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12496 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12499 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12502 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12503 ARMMMUIdx mmu_idx)
12505 uint32_t flags = rebuild_hflags_aprofile(env);
12506 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12507 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12508 uint64_t sctlr;
12509 int tbii, tbid;
12511 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12513 /* Get control bits for tagged addresses. */
12514 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12515 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12517 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12518 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12520 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12521 int sve_el = sve_exception_el(env, el);
12522 uint32_t zcr_len;
12525 * If SVE is disabled, but FP is enabled,
12526 * then the effective len is 0.
12528 if (sve_el != 0 && fp_el == 0) {
12529 zcr_len = 0;
12530 } else {
12531 zcr_len = sve_zcr_len_for_el(env, el);
12533 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12534 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12537 sctlr = regime_sctlr(env, stage1);
12539 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12540 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12543 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12545 * In order to save space in flags, we record only whether
12546 * pauth is "inactive", meaning all insns are implemented as
12547 * a nop, or "active" when some action must be performed.
12548 * The decision of which action to take is left to a helper.
12550 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12551 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12555 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12556 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12557 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12558 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12562 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12563 if (!(env->pstate & PSTATE_UAO)) {
12564 switch (mmu_idx) {
12565 case ARMMMUIdx_E10_1:
12566 case ARMMMUIdx_E10_1_PAN:
12567 case ARMMMUIdx_SE10_1:
12568 case ARMMMUIdx_SE10_1_PAN:
12569 /* TODO: ARMv8.3-NV */
12570 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12571 break;
12572 case ARMMMUIdx_E20_2:
12573 case ARMMMUIdx_E20_2_PAN:
12574 /* TODO: ARMv8.4-SecEL2 */
12576 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12577 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12579 if (env->cp15.hcr_el2 & HCR_TGE) {
12580 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12582 break;
12583 default:
12584 break;
12588 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12591 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12593 int el = arm_current_el(env);
12594 int fp_el = fp_exception_el(env, el);
12595 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12597 if (is_a64(env)) {
12598 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12599 } else if (arm_feature(env, ARM_FEATURE_M)) {
12600 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12601 } else {
12602 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12606 void arm_rebuild_hflags(CPUARMState *env)
12608 env->hflags = rebuild_hflags_internal(env);
12612 * If we have triggered a EL state change we can't rely on the
12613 * translator having passed it to us, we need to recompute.
12615 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12617 int el = arm_current_el(env);
12618 int fp_el = fp_exception_el(env, el);
12619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12620 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12623 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12625 int fp_el = fp_exception_el(env, el);
12626 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12628 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12632 * If we have triggered a EL state change we can't rely on the
12633 * translator having passed it to us, we need to recompute.
12635 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12637 int el = arm_current_el(env);
12638 int fp_el = fp_exception_el(env, el);
12639 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12640 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12643 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12645 int fp_el = fp_exception_el(env, el);
12646 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12648 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12651 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12653 int fp_el = fp_exception_el(env, el);
12654 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12656 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12659 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12661 #ifdef CONFIG_DEBUG_TCG
12662 uint32_t env_flags_current = env->hflags;
12663 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12665 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12666 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12667 env_flags_current, env_flags_rebuilt);
12668 abort();
12670 #endif
12673 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12674 target_ulong *cs_base, uint32_t *pflags)
12676 uint32_t flags = env->hflags;
12677 uint32_t pstate_for_ss;
12679 *cs_base = 0;
12680 assert_hflags_rebuild_correctly(env);
12682 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12683 *pc = env->pc;
12684 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12685 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12687 pstate_for_ss = env->pstate;
12688 } else {
12689 *pc = env->regs[15];
12691 if (arm_feature(env, ARM_FEATURE_M)) {
12692 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12693 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12694 != env->v7m.secure) {
12695 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12698 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12699 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12700 (env->v7m.secure &&
12701 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12703 * ASPEN is set, but FPCA/SFPA indicate that there is no
12704 * active FP context; we must create a new FP context before
12705 * executing any FP insn.
12707 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12710 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12711 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12712 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12714 } else {
12716 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12717 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12719 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12720 flags = FIELD_DP32(flags, TBFLAG_A32,
12721 XSCALE_CPAR, env->cp15.c15_cpar);
12722 } else {
12723 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12724 env->vfp.vec_len);
12725 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12726 env->vfp.vec_stride);
12728 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12729 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12733 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12734 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12735 pstate_for_ss = env->uncached_cpsr;
12739 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12740 * states defined in the ARM ARM for software singlestep:
12741 * SS_ACTIVE PSTATE.SS State
12742 * 0 x Inactive (the TB flag for SS is always 0)
12743 * 1 0 Active-pending
12744 * 1 1 Active-not-pending
12745 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12747 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12748 (pstate_for_ss & PSTATE_SS)) {
12749 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12752 *pflags = flags;
12755 #ifdef TARGET_AARCH64
12757 * The manual says that when SVE is enabled and VQ is widened the
12758 * implementation is allowed to zero the previously inaccessible
12759 * portion of the registers. The corollary to that is that when
12760 * SVE is enabled and VQ is narrowed we are also allowed to zero
12761 * the now inaccessible portion of the registers.
12763 * The intent of this is that no predicate bit beyond VQ is ever set.
12764 * Which means that some operations on predicate registers themselves
12765 * may operate on full uint64_t or even unrolled across the maximum
12766 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
12767 * may well be cheaper than conditionals to restrict the operation
12768 * to the relevant portion of a uint16_t[16].
12770 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12772 int i, j;
12773 uint64_t pmask;
12775 assert(vq >= 1 && vq <= ARM_MAX_VQ);
12776 assert(vq <= env_archcpu(env)->sve_max_vq);
12778 /* Zap the high bits of the zregs. */
12779 for (i = 0; i < 32; i++) {
12780 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12783 /* Zap the high bits of the pregs and ffr. */
12784 pmask = 0;
12785 if (vq & 3) {
12786 pmask = ~(-1ULL << (16 * (vq & 3)));
12788 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12789 for (i = 0; i < 17; ++i) {
12790 env->vfp.pregs[i].p[j] &= pmask;
12792 pmask = 0;
12797 * Notice a change in SVE vector size when changing EL.
12799 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12800 int new_el, bool el0_a64)
12802 ARMCPU *cpu = env_archcpu(env);
12803 int old_len, new_len;
12804 bool old_a64, new_a64;
12806 /* Nothing to do if no SVE. */
12807 if (!cpu_isar_feature(aa64_sve, cpu)) {
12808 return;
12811 /* Nothing to do if FP is disabled in either EL. */
12812 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12813 return;
12817 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12818 * at ELx, or not available because the EL is in AArch32 state, then
12819 * for all purposes other than a direct read, the ZCR_ELx.LEN field
12820 * has an effective value of 0".
12822 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12823 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12824 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
12825 * we already have the correct register contents when encountering the
12826 * vq0->vq0 transition between EL0->EL1.
12828 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12829 old_len = (old_a64 && !sve_exception_el(env, old_el)
12830 ? sve_zcr_len_for_el(env, old_el) : 0);
12831 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12832 new_len = (new_a64 && !sve_exception_el(env, new_el)
12833 ? sve_zcr_len_for_el(env, new_el) : 0);
12835 /* When changing vector length, clear inaccessible state. */
12836 if (new_len < old_len) {
12837 aarch64_sve_narrow_vq(env, new_len + 1);
12840 #endif