audio: Rename hw/audio/audio.h to hw/audio/soundhw.h
[qemu/ar7.git] / hw / block / nvme.c
blob7428db9f0c91287db3d98b609830e59a190ff034
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
17 /**
18 * Usage: add options:
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
23 #include "qemu/osdep.h"
24 #include "hw/block/block.h"
25 #include "hw/hw.h"
26 #include "hw/pci/msix.h"
27 #include "hw/pci/pci.h"
28 #include "sysemu/sysemu.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/block-backend.h"
33 #include "nvme.h"
35 static void nvme_process_sq(void *opaque);
37 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
39 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
42 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
44 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
47 static void nvme_inc_cq_tail(NvmeCQueue *cq)
49 cq->tail++;
50 if (cq->tail >= cq->size) {
51 cq->tail = 0;
52 cq->phase = !cq->phase;
56 static void nvme_inc_sq_head(NvmeSQueue *sq)
58 sq->head = (sq->head + 1) % sq->size;
61 static uint8_t nvme_cq_full(NvmeCQueue *cq)
63 return (cq->tail + 1) % cq->size == cq->head;
66 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
68 return sq->head == sq->tail;
71 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
73 if (cq->irq_enabled) {
74 if (msix_enabled(&(n->parent_obj))) {
75 msix_notify(&(n->parent_obj), cq->vector);
76 } else {
77 pci_irq_pulse(&n->parent_obj);
82 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
83 uint32_t len, NvmeCtrl *n)
85 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
86 trans_len = MIN(len, trans_len);
87 int num_prps = (len >> n->page_bits) + 1;
89 if (!prp1) {
90 return NVME_INVALID_FIELD | NVME_DNR;
93 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
94 qemu_sglist_add(qsg, prp1, trans_len);
95 len -= trans_len;
96 if (len) {
97 if (!prp2) {
98 goto unmap;
100 if (len > n->page_size) {
101 uint64_t prp_list[n->max_prp_ents];
102 uint32_t nents, prp_trans;
103 int i = 0;
105 nents = (len + n->page_size - 1) >> n->page_bits;
106 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
107 pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
108 while (len != 0) {
109 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
111 if (i == n->max_prp_ents - 1 && len > n->page_size) {
112 if (!prp_ent || prp_ent & (n->page_size - 1)) {
113 goto unmap;
116 i = 0;
117 nents = (len + n->page_size - 1) >> n->page_bits;
118 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
119 pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
120 prp_trans);
121 prp_ent = le64_to_cpu(prp_list[i]);
124 if (!prp_ent || prp_ent & (n->page_size - 1)) {
125 goto unmap;
128 trans_len = MIN(len, n->page_size);
129 qemu_sglist_add(qsg, prp_ent, trans_len);
130 len -= trans_len;
131 i++;
133 } else {
134 if (prp2 & (n->page_size - 1)) {
135 goto unmap;
137 qemu_sglist_add(qsg, prp2, len);
140 return NVME_SUCCESS;
142 unmap:
143 qemu_sglist_destroy(qsg);
144 return NVME_INVALID_FIELD | NVME_DNR;
147 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
148 uint64_t prp1, uint64_t prp2)
150 QEMUSGList qsg;
152 if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
153 return NVME_INVALID_FIELD | NVME_DNR;
155 if (dma_buf_read(ptr, len, &qsg)) {
156 qemu_sglist_destroy(&qsg);
157 return NVME_INVALID_FIELD | NVME_DNR;
159 qemu_sglist_destroy(&qsg);
160 return NVME_SUCCESS;
163 static void nvme_post_cqes(void *opaque)
165 NvmeCQueue *cq = opaque;
166 NvmeCtrl *n = cq->ctrl;
167 NvmeRequest *req, *next;
169 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
170 NvmeSQueue *sq;
171 hwaddr addr;
173 if (nvme_cq_full(cq)) {
174 break;
177 QTAILQ_REMOVE(&cq->req_list, req, entry);
178 sq = req->sq;
179 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
180 req->cqe.sq_id = cpu_to_le16(sq->sqid);
181 req->cqe.sq_head = cpu_to_le16(sq->head);
182 addr = cq->dma_addr + cq->tail * n->cqe_size;
183 nvme_inc_cq_tail(cq);
184 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
185 sizeof(req->cqe));
186 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
188 nvme_isr_notify(n, cq);
191 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
193 assert(cq->cqid == req->sq->cqid);
194 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
195 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
196 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
199 static void nvme_rw_cb(void *opaque, int ret)
201 NvmeRequest *req = opaque;
202 NvmeSQueue *sq = req->sq;
203 NvmeCtrl *n = sq->ctrl;
204 NvmeCQueue *cq = n->cq[sq->cqid];
206 if (!ret) {
207 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
208 req->status = NVME_SUCCESS;
209 } else {
210 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
211 req->status = NVME_INTERNAL_DEV_ERROR;
213 if (req->has_sg) {
214 qemu_sglist_destroy(&req->qsg);
216 nvme_enqueue_req_completion(cq, req);
219 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
220 NvmeRequest *req)
222 req->has_sg = false;
223 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
224 BLOCK_ACCT_FLUSH);
225 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
227 return NVME_NO_COMPLETE;
230 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
231 NvmeRequest *req)
233 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
234 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
235 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
236 uint64_t slba = le64_to_cpu(rw->slba);
237 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
238 uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
239 uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
241 if (slba + nlb > ns->id_ns.nsze) {
242 return NVME_LBA_RANGE | NVME_DNR;
245 req->has_sg = false;
246 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
247 BLOCK_ACCT_WRITE);
248 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
249 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
250 return NVME_NO_COMPLETE;
253 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
254 NvmeRequest *req)
256 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
257 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
258 uint64_t slba = le64_to_cpu(rw->slba);
259 uint64_t prp1 = le64_to_cpu(rw->prp1);
260 uint64_t prp2 = le64_to_cpu(rw->prp2);
262 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
263 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
264 uint64_t data_size = (uint64_t)nlb << data_shift;
265 uint64_t data_offset = slba << data_shift;
266 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
267 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
269 if ((slba + nlb) > ns->id_ns.nsze) {
270 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
271 return NVME_LBA_RANGE | NVME_DNR;
274 if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
275 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
276 return NVME_INVALID_FIELD | NVME_DNR;
279 assert((nlb << data_shift) == req->qsg.size);
281 req->has_sg = true;
282 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
283 req->aiocb = is_write ?
284 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
285 nvme_rw_cb, req) :
286 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
287 nvme_rw_cb, req);
289 return NVME_NO_COMPLETE;
292 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
294 NvmeNamespace *ns;
295 uint32_t nsid = le32_to_cpu(cmd->nsid);
297 if (nsid == 0 || nsid > n->num_namespaces) {
298 return NVME_INVALID_NSID | NVME_DNR;
301 ns = &n->namespaces[nsid - 1];
302 switch (cmd->opcode) {
303 case NVME_CMD_FLUSH:
304 return nvme_flush(n, ns, cmd, req);
305 case NVME_CMD_WRITE_ZEROS:
306 return nvme_write_zeros(n, ns, cmd, req);
307 case NVME_CMD_WRITE:
308 case NVME_CMD_READ:
309 return nvme_rw(n, ns, cmd, req);
310 default:
311 return NVME_INVALID_OPCODE | NVME_DNR;
315 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
317 n->sq[sq->sqid] = NULL;
318 timer_del(sq->timer);
319 timer_free(sq->timer);
320 g_free(sq->io_req);
321 if (sq->sqid) {
322 g_free(sq);
326 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
328 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
329 NvmeRequest *req, *next;
330 NvmeSQueue *sq;
331 NvmeCQueue *cq;
332 uint16_t qid = le16_to_cpu(c->qid);
334 if (!qid || nvme_check_sqid(n, qid)) {
335 return NVME_INVALID_QID | NVME_DNR;
338 sq = n->sq[qid];
339 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
340 req = QTAILQ_FIRST(&sq->out_req_list);
341 assert(req->aiocb);
342 blk_aio_cancel(req->aiocb);
344 if (!nvme_check_cqid(n, sq->cqid)) {
345 cq = n->cq[sq->cqid];
346 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
348 nvme_post_cqes(cq);
349 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
350 if (req->sq == sq) {
351 QTAILQ_REMOVE(&cq->req_list, req, entry);
352 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
357 nvme_free_sq(sq, n);
358 return NVME_SUCCESS;
361 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
362 uint16_t sqid, uint16_t cqid, uint16_t size)
364 int i;
365 NvmeCQueue *cq;
367 sq->ctrl = n;
368 sq->dma_addr = dma_addr;
369 sq->sqid = sqid;
370 sq->size = size;
371 sq->cqid = cqid;
372 sq->head = sq->tail = 0;
373 sq->io_req = g_new(NvmeRequest, sq->size);
375 QTAILQ_INIT(&sq->req_list);
376 QTAILQ_INIT(&sq->out_req_list);
377 for (i = 0; i < sq->size; i++) {
378 sq->io_req[i].sq = sq;
379 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
381 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
383 assert(n->cq[cqid]);
384 cq = n->cq[cqid];
385 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
386 n->sq[sqid] = sq;
389 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
391 NvmeSQueue *sq;
392 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
394 uint16_t cqid = le16_to_cpu(c->cqid);
395 uint16_t sqid = le16_to_cpu(c->sqid);
396 uint16_t qsize = le16_to_cpu(c->qsize);
397 uint16_t qflags = le16_to_cpu(c->sq_flags);
398 uint64_t prp1 = le64_to_cpu(c->prp1);
400 if (!cqid || nvme_check_cqid(n, cqid)) {
401 return NVME_INVALID_CQID | NVME_DNR;
403 if (!sqid || !nvme_check_sqid(n, sqid)) {
404 return NVME_INVALID_QID | NVME_DNR;
406 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
407 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
409 if (!prp1 || prp1 & (n->page_size - 1)) {
410 return NVME_INVALID_FIELD | NVME_DNR;
412 if (!(NVME_SQ_FLAGS_PC(qflags))) {
413 return NVME_INVALID_FIELD | NVME_DNR;
415 sq = g_malloc0(sizeof(*sq));
416 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
417 return NVME_SUCCESS;
420 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
422 n->cq[cq->cqid] = NULL;
423 timer_del(cq->timer);
424 timer_free(cq->timer);
425 msix_vector_unuse(&n->parent_obj, cq->vector);
426 if (cq->cqid) {
427 g_free(cq);
431 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
433 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
434 NvmeCQueue *cq;
435 uint16_t qid = le16_to_cpu(c->qid);
437 if (!qid || nvme_check_cqid(n, qid)) {
438 return NVME_INVALID_CQID | NVME_DNR;
441 cq = n->cq[qid];
442 if (!QTAILQ_EMPTY(&cq->sq_list)) {
443 return NVME_INVALID_QUEUE_DEL;
445 nvme_free_cq(cq, n);
446 return NVME_SUCCESS;
449 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
450 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
452 cq->ctrl = n;
453 cq->cqid = cqid;
454 cq->size = size;
455 cq->dma_addr = dma_addr;
456 cq->phase = 1;
457 cq->irq_enabled = irq_enabled;
458 cq->vector = vector;
459 cq->head = cq->tail = 0;
460 QTAILQ_INIT(&cq->req_list);
461 QTAILQ_INIT(&cq->sq_list);
462 msix_vector_use(&n->parent_obj, cq->vector);
463 n->cq[cqid] = cq;
464 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
467 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
469 NvmeCQueue *cq;
470 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
471 uint16_t cqid = le16_to_cpu(c->cqid);
472 uint16_t vector = le16_to_cpu(c->irq_vector);
473 uint16_t qsize = le16_to_cpu(c->qsize);
474 uint16_t qflags = le16_to_cpu(c->cq_flags);
475 uint64_t prp1 = le64_to_cpu(c->prp1);
477 if (!cqid || !nvme_check_cqid(n, cqid)) {
478 return NVME_INVALID_CQID | NVME_DNR;
480 if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
481 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
483 if (!prp1) {
484 return NVME_INVALID_FIELD | NVME_DNR;
486 if (vector > n->num_queues) {
487 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
489 if (!(NVME_CQ_FLAGS_PC(qflags))) {
490 return NVME_INVALID_FIELD | NVME_DNR;
493 cq = g_malloc0(sizeof(*cq));
494 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
495 NVME_CQ_FLAGS_IEN(qflags));
496 return NVME_SUCCESS;
499 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
501 uint64_t prp1 = le64_to_cpu(c->prp1);
502 uint64_t prp2 = le64_to_cpu(c->prp2);
504 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
505 prp1, prp2);
508 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
510 NvmeNamespace *ns;
511 uint32_t nsid = le32_to_cpu(c->nsid);
512 uint64_t prp1 = le64_to_cpu(c->prp1);
513 uint64_t prp2 = le64_to_cpu(c->prp2);
515 if (nsid == 0 || nsid > n->num_namespaces) {
516 return NVME_INVALID_NSID | NVME_DNR;
519 ns = &n->namespaces[nsid - 1];
520 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
521 prp1, prp2);
524 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
526 static const int data_len = 4096;
527 uint32_t min_nsid = le32_to_cpu(c->nsid);
528 uint64_t prp1 = le64_to_cpu(c->prp1);
529 uint64_t prp2 = le64_to_cpu(c->prp2);
530 uint32_t *list;
531 uint16_t ret;
532 int i, j = 0;
534 list = g_malloc0(data_len);
535 for (i = 0; i < n->num_namespaces; i++) {
536 if (i < min_nsid) {
537 continue;
539 list[j++] = cpu_to_le32(i + 1);
540 if (j == data_len / sizeof(uint32_t)) {
541 break;
544 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
545 g_free(list);
546 return ret;
550 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
552 NvmeIdentify *c = (NvmeIdentify *)cmd;
554 switch (le32_to_cpu(c->cns)) {
555 case 0x00:
556 return nvme_identify_ns(n, c);
557 case 0x01:
558 return nvme_identify_ctrl(n, c);
559 case 0x02:
560 return nvme_identify_nslist(n, c);
561 default:
562 return NVME_INVALID_FIELD | NVME_DNR;
566 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
568 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
569 uint32_t result;
571 switch (dw10) {
572 case NVME_VOLATILE_WRITE_CACHE:
573 result = blk_enable_write_cache(n->conf.blk);
574 break;
575 case NVME_NUMBER_OF_QUEUES:
576 result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
577 break;
578 default:
579 return NVME_INVALID_FIELD | NVME_DNR;
582 req->cqe.result = result;
583 return NVME_SUCCESS;
586 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
588 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
589 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
591 switch (dw10) {
592 case NVME_VOLATILE_WRITE_CACHE:
593 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
594 break;
595 case NVME_NUMBER_OF_QUEUES:
596 req->cqe.result =
597 cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
598 break;
599 default:
600 return NVME_INVALID_FIELD | NVME_DNR;
602 return NVME_SUCCESS;
605 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
607 switch (cmd->opcode) {
608 case NVME_ADM_CMD_DELETE_SQ:
609 return nvme_del_sq(n, cmd);
610 case NVME_ADM_CMD_CREATE_SQ:
611 return nvme_create_sq(n, cmd);
612 case NVME_ADM_CMD_DELETE_CQ:
613 return nvme_del_cq(n, cmd);
614 case NVME_ADM_CMD_CREATE_CQ:
615 return nvme_create_cq(n, cmd);
616 case NVME_ADM_CMD_IDENTIFY:
617 return nvme_identify(n, cmd);
618 case NVME_ADM_CMD_SET_FEATURES:
619 return nvme_set_feature(n, cmd, req);
620 case NVME_ADM_CMD_GET_FEATURES:
621 return nvme_get_feature(n, cmd, req);
622 default:
623 return NVME_INVALID_OPCODE | NVME_DNR;
627 static void nvme_process_sq(void *opaque)
629 NvmeSQueue *sq = opaque;
630 NvmeCtrl *n = sq->ctrl;
631 NvmeCQueue *cq = n->cq[sq->cqid];
633 uint16_t status;
634 hwaddr addr;
635 NvmeCmd cmd;
636 NvmeRequest *req;
638 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
639 addr = sq->dma_addr + sq->head * n->sqe_size;
640 pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
641 nvme_inc_sq_head(sq);
643 req = QTAILQ_FIRST(&sq->req_list);
644 QTAILQ_REMOVE(&sq->req_list, req, entry);
645 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
646 memset(&req->cqe, 0, sizeof(req->cqe));
647 req->cqe.cid = cmd.cid;
649 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
650 nvme_admin_cmd(n, &cmd, req);
651 if (status != NVME_NO_COMPLETE) {
652 req->status = status;
653 nvme_enqueue_req_completion(cq, req);
658 static void nvme_clear_ctrl(NvmeCtrl *n)
660 int i;
662 for (i = 0; i < n->num_queues; i++) {
663 if (n->sq[i] != NULL) {
664 nvme_free_sq(n->sq[i], n);
667 for (i = 0; i < n->num_queues; i++) {
668 if (n->cq[i] != NULL) {
669 nvme_free_cq(n->cq[i], n);
673 blk_flush(n->conf.blk);
674 n->bar.cc = 0;
677 static int nvme_start_ctrl(NvmeCtrl *n)
679 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
680 uint32_t page_size = 1 << page_bits;
682 if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
683 n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
684 NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
685 NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
686 NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
687 NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
688 NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
689 NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
690 !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
691 return -1;
694 n->page_bits = page_bits;
695 n->page_size = page_size;
696 n->max_prp_ents = n->page_size / sizeof(uint64_t);
697 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
698 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
699 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
700 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
701 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
702 NVME_AQA_ASQS(n->bar.aqa) + 1);
704 return 0;
707 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
708 unsigned size)
710 switch (offset) {
711 case 0xc:
712 n->bar.intms |= data & 0xffffffff;
713 n->bar.intmc = n->bar.intms;
714 break;
715 case 0x10:
716 n->bar.intms &= ~(data & 0xffffffff);
717 n->bar.intmc = n->bar.intms;
718 break;
719 case 0x14:
720 /* Windows first sends data, then sends enable bit */
721 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
722 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
724 n->bar.cc = data;
727 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
728 n->bar.cc = data;
729 if (nvme_start_ctrl(n)) {
730 n->bar.csts = NVME_CSTS_FAILED;
731 } else {
732 n->bar.csts = NVME_CSTS_READY;
734 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
735 nvme_clear_ctrl(n);
736 n->bar.csts &= ~NVME_CSTS_READY;
738 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
739 nvme_clear_ctrl(n);
740 n->bar.cc = data;
741 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
742 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
743 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
744 n->bar.cc = data;
746 break;
747 case 0x24:
748 n->bar.aqa = data & 0xffffffff;
749 break;
750 case 0x28:
751 n->bar.asq = data;
752 break;
753 case 0x2c:
754 n->bar.asq |= data << 32;
755 break;
756 case 0x30:
757 n->bar.acq = data;
758 break;
759 case 0x34:
760 n->bar.acq |= data << 32;
761 break;
762 default:
763 break;
767 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
769 NvmeCtrl *n = (NvmeCtrl *)opaque;
770 uint8_t *ptr = (uint8_t *)&n->bar;
771 uint64_t val = 0;
773 if (addr < sizeof(n->bar)) {
774 memcpy(&val, ptr + addr, size);
776 return val;
779 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
781 uint32_t qid;
783 if (addr & ((1 << 2) - 1)) {
784 return;
787 if (((addr - 0x1000) >> 2) & 1) {
788 uint16_t new_head = val & 0xffff;
789 int start_sqs;
790 NvmeCQueue *cq;
792 qid = (addr - (0x1000 + (1 << 2))) >> 3;
793 if (nvme_check_cqid(n, qid)) {
794 return;
797 cq = n->cq[qid];
798 if (new_head >= cq->size) {
799 return;
802 start_sqs = nvme_cq_full(cq) ? 1 : 0;
803 cq->head = new_head;
804 if (start_sqs) {
805 NvmeSQueue *sq;
806 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
807 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
809 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
812 if (cq->tail != cq->head) {
813 nvme_isr_notify(n, cq);
815 } else {
816 uint16_t new_tail = val & 0xffff;
817 NvmeSQueue *sq;
819 qid = (addr - 0x1000) >> 3;
820 if (nvme_check_sqid(n, qid)) {
821 return;
824 sq = n->sq[qid];
825 if (new_tail >= sq->size) {
826 return;
829 sq->tail = new_tail;
830 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
834 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
835 unsigned size)
837 NvmeCtrl *n = (NvmeCtrl *)opaque;
838 if (addr < sizeof(n->bar)) {
839 nvme_write_bar(n, addr, data, size);
840 } else if (addr >= 0x1000) {
841 nvme_process_db(n, addr, data);
845 static const MemoryRegionOps nvme_mmio_ops = {
846 .read = nvme_mmio_read,
847 .write = nvme_mmio_write,
848 .endianness = DEVICE_LITTLE_ENDIAN,
849 .impl = {
850 .min_access_size = 2,
851 .max_access_size = 8,
855 static int nvme_init(PCIDevice *pci_dev)
857 NvmeCtrl *n = NVME(pci_dev);
858 NvmeIdCtrl *id = &n->id_ctrl;
860 int i;
861 int64_t bs_size;
862 uint8_t *pci_conf;
863 Error *local_err = NULL;
865 if (!n->conf.blk) {
866 return -1;
869 bs_size = blk_getlength(n->conf.blk);
870 if (bs_size < 0) {
871 return -1;
874 blkconf_serial(&n->conf, &n->serial);
875 if (!n->serial) {
876 return -1;
878 blkconf_blocksizes(&n->conf);
879 blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
880 false, &local_err);
881 if (local_err) {
882 error_report_err(local_err);
883 return -1;
886 pci_conf = pci_dev->config;
887 pci_conf[PCI_INTERRUPT_PIN] = 1;
888 pci_config_set_prog_interface(pci_dev->config, 0x2);
889 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
890 pcie_endpoint_cap_init(&n->parent_obj, 0x80);
892 n->num_namespaces = 1;
893 n->num_queues = 64;
894 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
895 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
897 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
898 n->sq = g_new0(NvmeSQueue *, n->num_queues);
899 n->cq = g_new0(NvmeCQueue *, n->num_queues);
901 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
902 "nvme", n->reg_size);
903 pci_register_bar(&n->parent_obj, 0,
904 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
905 &n->iomem);
906 msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
908 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
909 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
910 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
911 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
912 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
913 id->rab = 6;
914 id->ieee[0] = 0x00;
915 id->ieee[1] = 0x02;
916 id->ieee[2] = 0xb3;
917 id->oacs = cpu_to_le16(0);
918 id->frmw = 7 << 1;
919 id->lpa = 1 << 0;
920 id->sqes = (0x6 << 4) | 0x6;
921 id->cqes = (0x4 << 4) | 0x4;
922 id->nn = cpu_to_le32(n->num_namespaces);
923 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
924 id->psd[0].mp = cpu_to_le16(0x9c4);
925 id->psd[0].enlat = cpu_to_le32(0x10);
926 id->psd[0].exlat = cpu_to_le32(0x4);
927 if (blk_enable_write_cache(n->conf.blk)) {
928 id->vwc = 1;
931 n->bar.cap = 0;
932 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
933 NVME_CAP_SET_CQR(n->bar.cap, 1);
934 NVME_CAP_SET_AMS(n->bar.cap, 1);
935 NVME_CAP_SET_TO(n->bar.cap, 0xf);
936 NVME_CAP_SET_CSS(n->bar.cap, 1);
937 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
939 n->bar.vs = 0x00010100;
940 n->bar.intmc = n->bar.intms = 0;
942 for (i = 0; i < n->num_namespaces; i++) {
943 NvmeNamespace *ns = &n->namespaces[i];
944 NvmeIdNs *id_ns = &ns->id_ns;
945 id_ns->nsfeat = 0;
946 id_ns->nlbaf = 0;
947 id_ns->flbas = 0;
948 id_ns->mc = 0;
949 id_ns->dpc = 0;
950 id_ns->dps = 0;
951 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
952 id_ns->ncap = id_ns->nuse = id_ns->nsze =
953 cpu_to_le64(n->ns_size >>
954 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
956 return 0;
959 static void nvme_exit(PCIDevice *pci_dev)
961 NvmeCtrl *n = NVME(pci_dev);
963 nvme_clear_ctrl(n);
964 g_free(n->namespaces);
965 g_free(n->cq);
966 g_free(n->sq);
967 msix_uninit_exclusive_bar(pci_dev);
970 static Property nvme_props[] = {
971 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
972 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
973 DEFINE_PROP_END_OF_LIST(),
976 static const VMStateDescription nvme_vmstate = {
977 .name = "nvme",
978 .unmigratable = 1,
981 static void nvme_class_init(ObjectClass *oc, void *data)
983 DeviceClass *dc = DEVICE_CLASS(oc);
984 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
986 pc->init = nvme_init;
987 pc->exit = nvme_exit;
988 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
989 pc->vendor_id = PCI_VENDOR_ID_INTEL;
990 pc->device_id = 0x5845;
991 pc->revision = 2;
992 pc->is_express = 1;
994 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
995 dc->desc = "Non-Volatile Memory Express";
996 dc->props = nvme_props;
997 dc->vmsd = &nvme_vmstate;
1000 static void nvme_instance_init(Object *obj)
1002 NvmeCtrl *s = NVME(obj);
1004 device_add_bootindex_property(obj, &s->conf.bootindex,
1005 "bootindex", "/namespace@1,0",
1006 DEVICE(obj), &error_abort);
1009 static const TypeInfo nvme_info = {
1010 .name = "nvme",
1011 .parent = TYPE_PCI_DEVICE,
1012 .instance_size = sizeof(NvmeCtrl),
1013 .class_init = nvme_class_init,
1014 .instance_init = nvme_instance_init,
1017 static void nvme_register_types(void)
1019 type_register_static(&nvme_info);
1022 type_init(nvme_register_types)