Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20170109' into...
[qemu/ar7.git] / target / arm / translate-a64.c
blobf673d939e1adec9d14f2dc6b5e38f8be5018e630
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg-op.h"
24 #include "qemu/log.h"
25 #include "arm_ldst.h"
26 #include "translate.h"
27 #include "internals.h"
28 #include "qemu/host-utils.h"
30 #include "exec/semihost.h"
31 #include "exec/gen-icount.h"
33 #include "exec/helper-proto.h"
34 #include "exec/helper-gen.h"
35 #include "exec/log.h"
37 #include "trace-tcg.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
44 static TCGv_i64 cpu_reg(DisasContext *s, int reg);
46 static const char *regnames[] = {
47 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
48 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
49 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
50 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
53 enum a64_shift_type {
54 A64_SHIFT_TYPE_LSL = 0,
55 A64_SHIFT_TYPE_LSR = 1,
56 A64_SHIFT_TYPE_ASR = 2,
57 A64_SHIFT_TYPE_ROR = 3
60 /* Table based decoder typedefs - used when the relevant bits for decode
61 * are too awkwardly scattered across the instruction (eg SIMD).
63 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
65 typedef struct AArch64DecodeTable {
66 uint32_t pattern;
67 uint32_t mask;
68 AArch64DecodeFn *disas_fn;
69 } AArch64DecodeTable;
71 /* Function prototype for gen_ functions for calling Neon helpers */
72 typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32);
73 typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
74 typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
75 typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64);
76 typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64);
77 typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
78 typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
79 typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32);
80 typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
81 typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
82 typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64);
83 typedef void CryptoTwoOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32);
84 typedef void CryptoThreeOpEnvFn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
86 /* initialize TCG globals. */
87 void a64_translate_init(void)
89 int i;
91 cpu_pc = tcg_global_mem_new_i64(cpu_env,
92 offsetof(CPUARMState, pc),
93 "pc");
94 for (i = 0; i < 32; i++) {
95 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
96 offsetof(CPUARMState, xregs[i]),
97 regnames[i]);
100 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
101 offsetof(CPUARMState, exclusive_high), "exclusive_high");
104 static inline ARMMMUIdx get_a64_user_mem_index(DisasContext *s)
106 /* Return the mmu_idx to use for A64 "unprivileged load/store" insns:
107 * if EL1, access as if EL0; otherwise access at current EL
109 switch (s->mmu_idx) {
110 case ARMMMUIdx_S12NSE1:
111 return ARMMMUIdx_S12NSE0;
112 case ARMMMUIdx_S1SE1:
113 return ARMMMUIdx_S1SE0;
114 case ARMMMUIdx_S2NS:
115 g_assert_not_reached();
116 default:
117 return s->mmu_idx;
121 void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
122 fprintf_function cpu_fprintf, int flags)
124 ARMCPU *cpu = ARM_CPU(cs);
125 CPUARMState *env = &cpu->env;
126 uint32_t psr = pstate_read(env);
127 int i;
128 int el = arm_current_el(env);
129 const char *ns_status;
131 cpu_fprintf(f, "PC=%016"PRIx64" SP=%016"PRIx64"\n",
132 env->pc, env->xregs[31]);
133 for (i = 0; i < 31; i++) {
134 cpu_fprintf(f, "X%02d=%016"PRIx64, i, env->xregs[i]);
135 if ((i % 4) == 3) {
136 cpu_fprintf(f, "\n");
137 } else {
138 cpu_fprintf(f, " ");
142 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
143 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
144 } else {
145 ns_status = "";
148 cpu_fprintf(f, "\nPSTATE=%08x %c%c%c%c %sEL%d%c\n",
149 psr,
150 psr & PSTATE_N ? 'N' : '-',
151 psr & PSTATE_Z ? 'Z' : '-',
152 psr & PSTATE_C ? 'C' : '-',
153 psr & PSTATE_V ? 'V' : '-',
154 ns_status,
156 psr & PSTATE_SP ? 'h' : 't');
158 if (flags & CPU_DUMP_FPU) {
159 int numvfpregs = 32;
160 for (i = 0; i < numvfpregs; i += 2) {
161 uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
162 uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
163 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
164 i, vhi, vlo);
165 vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
166 vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
167 cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
168 i + 1, vhi, vlo);
170 cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
171 vfp_get_fpcr(env), vfp_get_fpsr(env));
175 void gen_a64_set_pc_im(uint64_t val)
177 tcg_gen_movi_i64(cpu_pc, val);
180 /* Load the PC from a generic TCG variable.
182 * If address tagging is enabled via the TCR TBI bits, then loading
183 * an address into the PC will clear out any tag in the it:
184 * + for EL2 and EL3 there is only one TBI bit, and if it is set
185 * then the address is zero-extended, clearing bits [63:56]
186 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
187 * and TBI1 controls addressses with bit 55 == 1.
188 * If the appropriate TBI bit is set for the address then
189 * the address is sign-extended from bit 55 into bits [63:56]
191 * We can avoid doing this for relative-branches, because the
192 * PC + offset can never overflow into the tag bits (assuming
193 * that virtual addresses are less than 56 bits wide, as they
194 * are currently), but we must handle it for branch-to-register.
196 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
199 if (s->current_el <= 1) {
200 /* Test if NEITHER or BOTH TBI values are set. If so, no need to
201 * examine bit 55 of address, can just generate code.
202 * If mixed, then test via generated code
204 if (s->tbi0 && s->tbi1) {
205 TCGv_i64 tmp_reg = tcg_temp_new_i64();
206 /* Both bits set, sign extension from bit 55 into [63:56] will
207 * cover both cases
209 tcg_gen_shli_i64(tmp_reg, src, 8);
210 tcg_gen_sari_i64(cpu_pc, tmp_reg, 8);
211 tcg_temp_free_i64(tmp_reg);
212 } else if (!s->tbi0 && !s->tbi1) {
213 /* Neither bit set, just load it as-is */
214 tcg_gen_mov_i64(cpu_pc, src);
215 } else {
216 TCGv_i64 tcg_tmpval = tcg_temp_new_i64();
217 TCGv_i64 tcg_bit55 = tcg_temp_new_i64();
218 TCGv_i64 tcg_zero = tcg_const_i64(0);
220 tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55));
222 if (s->tbi0) {
223 /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */
224 tcg_gen_andi_i64(tcg_tmpval, src,
225 0x00FFFFFFFFFFFFFFull);
226 tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero,
227 tcg_tmpval, src);
228 } else {
229 /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */
230 tcg_gen_ori_i64(tcg_tmpval, src,
231 0xFF00000000000000ull);
232 tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero,
233 tcg_tmpval, src);
235 tcg_temp_free_i64(tcg_zero);
236 tcg_temp_free_i64(tcg_bit55);
237 tcg_temp_free_i64(tcg_tmpval);
239 } else { /* EL > 1 */
240 if (s->tbi0) {
241 /* Force tag byte to all zero */
242 tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull);
243 } else {
244 /* Load unmodified address */
245 tcg_gen_mov_i64(cpu_pc, src);
250 typedef struct DisasCompare64 {
251 TCGCond cond;
252 TCGv_i64 value;
253 } DisasCompare64;
255 static void a64_test_cc(DisasCompare64 *c64, int cc)
257 DisasCompare c32;
259 arm_test_cc(&c32, cc);
261 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
262 * properly. The NE/EQ comparisons are also fine with this choice. */
263 c64->cond = c32.cond;
264 c64->value = tcg_temp_new_i64();
265 tcg_gen_ext_i32_i64(c64->value, c32.value);
267 arm_free_cc(&c32);
270 static void a64_free_cc(DisasCompare64 *c64)
272 tcg_temp_free_i64(c64->value);
275 static void gen_exception_internal(int excp)
277 TCGv_i32 tcg_excp = tcg_const_i32(excp);
279 assert(excp_is_internal(excp));
280 gen_helper_exception_internal(cpu_env, tcg_excp);
281 tcg_temp_free_i32(tcg_excp);
284 static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el)
286 TCGv_i32 tcg_excp = tcg_const_i32(excp);
287 TCGv_i32 tcg_syn = tcg_const_i32(syndrome);
288 TCGv_i32 tcg_el = tcg_const_i32(target_el);
290 gen_helper_exception_with_syndrome(cpu_env, tcg_excp,
291 tcg_syn, tcg_el);
292 tcg_temp_free_i32(tcg_el);
293 tcg_temp_free_i32(tcg_syn);
294 tcg_temp_free_i32(tcg_excp);
297 static void gen_exception_internal_insn(DisasContext *s, int offset, int excp)
299 gen_a64_set_pc_im(s->pc - offset);
300 gen_exception_internal(excp);
301 s->is_jmp = DISAS_EXC;
304 static void gen_exception_insn(DisasContext *s, int offset, int excp,
305 uint32_t syndrome, uint32_t target_el)
307 gen_a64_set_pc_im(s->pc - offset);
308 gen_exception(excp, syndrome, target_el);
309 s->is_jmp = DISAS_EXC;
312 static void gen_ss_advance(DisasContext *s)
314 /* If the singlestep state is Active-not-pending, advance to
315 * Active-pending.
317 if (s->ss_active) {
318 s->pstate_ss = 0;
319 gen_helper_clear_pstate_ss(cpu_env);
323 static void gen_step_complete_exception(DisasContext *s)
325 /* We just completed step of an insn. Move from Active-not-pending
326 * to Active-pending, and then also take the swstep exception.
327 * This corresponds to making the (IMPDEF) choice to prioritize
328 * swstep exceptions over asynchronous exceptions taken to an exception
329 * level where debug is disabled. This choice has the advantage that
330 * we do not need to maintain internal state corresponding to the
331 * ISV/EX syndrome bits between completion of the step and generation
332 * of the exception, and our syndrome information is always correct.
334 gen_ss_advance(s);
335 gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex),
336 default_exception_el(s));
337 s->is_jmp = DISAS_EXC;
340 static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest)
342 /* No direct tb linking with singlestep (either QEMU's or the ARM
343 * debug architecture kind) or deterministic io
345 if (s->singlestep_enabled || s->ss_active || (s->tb->cflags & CF_LAST_IO)) {
346 return false;
349 #ifndef CONFIG_USER_ONLY
350 /* Only link tbs from inside the same guest page */
351 if ((s->tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) {
352 return false;
354 #endif
356 return true;
359 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
361 TranslationBlock *tb;
363 tb = s->tb;
364 if (use_goto_tb(s, n, dest)) {
365 tcg_gen_goto_tb(n);
366 gen_a64_set_pc_im(dest);
367 tcg_gen_exit_tb((intptr_t)tb + n);
368 s->is_jmp = DISAS_TB_JUMP;
369 } else {
370 gen_a64_set_pc_im(dest);
371 if (s->ss_active) {
372 gen_step_complete_exception(s);
373 } else if (s->singlestep_enabled) {
374 gen_exception_internal(EXCP_DEBUG);
375 } else {
376 tcg_gen_exit_tb(0);
377 s->is_jmp = DISAS_TB_JUMP;
382 static void disas_set_insn_syndrome(DisasContext *s, uint32_t syn)
384 /* We don't need to save all of the syndrome so we mask and shift
385 * out uneeded bits to help the sleb128 encoder do a better job.
387 syn &= ARM_INSN_START_WORD2_MASK;
388 syn >>= ARM_INSN_START_WORD2_SHIFT;
390 /* We check and clear insn_start_idx to catch multiple updates. */
391 assert(s->insn_start_idx != 0);
392 tcg_set_insn_param(s->insn_start_idx, 2, syn);
393 s->insn_start_idx = 0;
396 static void unallocated_encoding(DisasContext *s)
398 /* Unallocated and reserved encodings are uncategorized */
399 gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
400 default_exception_el(s));
403 #define unsupported_encoding(s, insn) \
404 do { \
405 qemu_log_mask(LOG_UNIMP, \
406 "%s:%d: unsupported instruction encoding 0x%08x " \
407 "at pc=%016" PRIx64 "\n", \
408 __FILE__, __LINE__, insn, s->pc - 4); \
409 unallocated_encoding(s); \
410 } while (0);
412 static void init_tmp_a64_array(DisasContext *s)
414 #ifdef CONFIG_DEBUG_TCG
415 int i;
416 for (i = 0; i < ARRAY_SIZE(s->tmp_a64); i++) {
417 TCGV_UNUSED_I64(s->tmp_a64[i]);
419 #endif
420 s->tmp_a64_count = 0;
423 static void free_tmp_a64(DisasContext *s)
425 int i;
426 for (i = 0; i < s->tmp_a64_count; i++) {
427 tcg_temp_free_i64(s->tmp_a64[i]);
429 init_tmp_a64_array(s);
432 static TCGv_i64 new_tmp_a64(DisasContext *s)
434 assert(s->tmp_a64_count < TMP_A64_MAX);
435 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
438 static TCGv_i64 new_tmp_a64_zero(DisasContext *s)
440 TCGv_i64 t = new_tmp_a64(s);
441 tcg_gen_movi_i64(t, 0);
442 return t;
446 * Register access functions
448 * These functions are used for directly accessing a register in where
449 * changes to the final register value are likely to be made. If you
450 * need to use a register for temporary calculation (e.g. index type
451 * operations) use the read_* form.
453 * B1.2.1 Register mappings
455 * In instruction register encoding 31 can refer to ZR (zero register) or
456 * the SP (stack pointer) depending on context. In QEMU's case we map SP
457 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
458 * This is the point of the _sp forms.
460 static TCGv_i64 cpu_reg(DisasContext *s, int reg)
462 if (reg == 31) {
463 return new_tmp_a64_zero(s);
464 } else {
465 return cpu_X[reg];
469 /* register access for when 31 == SP */
470 static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
472 return cpu_X[reg];
475 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
476 * representing the register contents. This TCGv is an auto-freed
477 * temporary so it need not be explicitly freed, and may be modified.
479 static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
481 TCGv_i64 v = new_tmp_a64(s);
482 if (reg != 31) {
483 if (sf) {
484 tcg_gen_mov_i64(v, cpu_X[reg]);
485 } else {
486 tcg_gen_ext32u_i64(v, cpu_X[reg]);
488 } else {
489 tcg_gen_movi_i64(v, 0);
491 return v;
494 static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
496 TCGv_i64 v = new_tmp_a64(s);
497 if (sf) {
498 tcg_gen_mov_i64(v, cpu_X[reg]);
499 } else {
500 tcg_gen_ext32u_i64(v, cpu_X[reg]);
502 return v;
505 /* We should have at some point before trying to access an FP register
506 * done the necessary access check, so assert that
507 * (a) we did the check and
508 * (b) we didn't then just plough ahead anyway if it failed.
509 * Print the instruction pattern in the abort message so we can figure
510 * out what we need to fix if a user encounters this problem in the wild.
512 static inline void assert_fp_access_checked(DisasContext *s)
514 #ifdef CONFIG_DEBUG_TCG
515 if (unlikely(!s->fp_access_checked || s->fp_excp_el)) {
516 fprintf(stderr, "target-arm: FP access check missing for "
517 "instruction 0x%08x\n", s->insn);
518 abort();
520 #endif
523 /* Return the offset into CPUARMState of an element of specified
524 * size, 'element' places in from the least significant end of
525 * the FP/vector register Qn.
527 static inline int vec_reg_offset(DisasContext *s, int regno,
528 int element, TCGMemOp size)
530 int offs = 0;
531 #ifdef HOST_WORDS_BIGENDIAN
532 /* This is complicated slightly because vfp.regs[2n] is
533 * still the low half and vfp.regs[2n+1] the high half
534 * of the 128 bit vector, even on big endian systems.
535 * Calculate the offset assuming a fully bigendian 128 bits,
536 * then XOR to account for the order of the two 64 bit halves.
538 offs += (16 - ((element + 1) * (1 << size)));
539 offs ^= 8;
540 #else
541 offs += element * (1 << size);
542 #endif
543 offs += offsetof(CPUARMState, vfp.regs[regno * 2]);
544 assert_fp_access_checked(s);
545 return offs;
548 /* Return the offset into CPUARMState of a slice (from
549 * the least significant end) of FP register Qn (ie
550 * Dn, Sn, Hn or Bn).
551 * (Note that this is not the same mapping as for A32; see cpu.h)
553 static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size)
555 int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
556 #ifdef HOST_WORDS_BIGENDIAN
557 offs += (8 - (1 << size));
558 #endif
559 assert_fp_access_checked(s);
560 return offs;
563 /* Offset of the high half of the 128 bit vector Qn */
564 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
566 assert_fp_access_checked(s);
567 return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
570 /* Convenience accessors for reading and writing single and double
571 * FP registers. Writing clears the upper parts of the associated
572 * 128 bit vector register, as required by the architecture.
573 * Note that unlike the GP register accessors, the values returned
574 * by the read functions must be manually freed.
576 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
578 TCGv_i64 v = tcg_temp_new_i64();
580 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
581 return v;
584 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
586 TCGv_i32 v = tcg_temp_new_i32();
588 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
589 return v;
592 static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
594 TCGv_i64 tcg_zero = tcg_const_i64(0);
596 tcg_gen_st_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
597 tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(s, reg));
598 tcg_temp_free_i64(tcg_zero);
601 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
603 TCGv_i64 tmp = tcg_temp_new_i64();
605 tcg_gen_extu_i32_i64(tmp, v);
606 write_fp_dreg(s, reg, tmp);
607 tcg_temp_free_i64(tmp);
610 static TCGv_ptr get_fpstatus_ptr(void)
612 TCGv_ptr statusptr = tcg_temp_new_ptr();
613 int offset;
615 /* In A64 all instructions (both FP and Neon) use the FPCR;
616 * there is no equivalent of the A32 Neon "standard FPSCR value"
617 * and all operations use vfp.fp_status.
619 offset = offsetof(CPUARMState, vfp.fp_status);
620 tcg_gen_addi_ptr(statusptr, cpu_env, offset);
621 return statusptr;
624 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
625 * than the 32 bit equivalent.
627 static inline void gen_set_NZ64(TCGv_i64 result)
629 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
630 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
633 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
634 static inline void gen_logic_CC(int sf, TCGv_i64 result)
636 if (sf) {
637 gen_set_NZ64(result);
638 } else {
639 tcg_gen_extrl_i64_i32(cpu_ZF, result);
640 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
642 tcg_gen_movi_i32(cpu_CF, 0);
643 tcg_gen_movi_i32(cpu_VF, 0);
646 /* dest = T0 + T1; compute C, N, V and Z flags */
647 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
649 if (sf) {
650 TCGv_i64 result, flag, tmp;
651 result = tcg_temp_new_i64();
652 flag = tcg_temp_new_i64();
653 tmp = tcg_temp_new_i64();
655 tcg_gen_movi_i64(tmp, 0);
656 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
658 tcg_gen_extrl_i64_i32(cpu_CF, flag);
660 gen_set_NZ64(result);
662 tcg_gen_xor_i64(flag, result, t0);
663 tcg_gen_xor_i64(tmp, t0, t1);
664 tcg_gen_andc_i64(flag, flag, tmp);
665 tcg_temp_free_i64(tmp);
666 tcg_gen_extrh_i64_i32(cpu_VF, flag);
668 tcg_gen_mov_i64(dest, result);
669 tcg_temp_free_i64(result);
670 tcg_temp_free_i64(flag);
671 } else {
672 /* 32 bit arithmetic */
673 TCGv_i32 t0_32 = tcg_temp_new_i32();
674 TCGv_i32 t1_32 = tcg_temp_new_i32();
675 TCGv_i32 tmp = tcg_temp_new_i32();
677 tcg_gen_movi_i32(tmp, 0);
678 tcg_gen_extrl_i64_i32(t0_32, t0);
679 tcg_gen_extrl_i64_i32(t1_32, t1);
680 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
681 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
682 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
683 tcg_gen_xor_i32(tmp, t0_32, t1_32);
684 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
685 tcg_gen_extu_i32_i64(dest, cpu_NF);
687 tcg_temp_free_i32(tmp);
688 tcg_temp_free_i32(t0_32);
689 tcg_temp_free_i32(t1_32);
693 /* dest = T0 - T1; compute C, N, V and Z flags */
694 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
696 if (sf) {
697 /* 64 bit arithmetic */
698 TCGv_i64 result, flag, tmp;
700 result = tcg_temp_new_i64();
701 flag = tcg_temp_new_i64();
702 tcg_gen_sub_i64(result, t0, t1);
704 gen_set_NZ64(result);
706 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
707 tcg_gen_extrl_i64_i32(cpu_CF, flag);
709 tcg_gen_xor_i64(flag, result, t0);
710 tmp = tcg_temp_new_i64();
711 tcg_gen_xor_i64(tmp, t0, t1);
712 tcg_gen_and_i64(flag, flag, tmp);
713 tcg_temp_free_i64(tmp);
714 tcg_gen_extrh_i64_i32(cpu_VF, flag);
715 tcg_gen_mov_i64(dest, result);
716 tcg_temp_free_i64(flag);
717 tcg_temp_free_i64(result);
718 } else {
719 /* 32 bit arithmetic */
720 TCGv_i32 t0_32 = tcg_temp_new_i32();
721 TCGv_i32 t1_32 = tcg_temp_new_i32();
722 TCGv_i32 tmp;
724 tcg_gen_extrl_i64_i32(t0_32, t0);
725 tcg_gen_extrl_i64_i32(t1_32, t1);
726 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
727 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
728 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
729 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
730 tmp = tcg_temp_new_i32();
731 tcg_gen_xor_i32(tmp, t0_32, t1_32);
732 tcg_temp_free_i32(t0_32);
733 tcg_temp_free_i32(t1_32);
734 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
735 tcg_temp_free_i32(tmp);
736 tcg_gen_extu_i32_i64(dest, cpu_NF);
740 /* dest = T0 + T1 + CF; do not compute flags. */
741 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
743 TCGv_i64 flag = tcg_temp_new_i64();
744 tcg_gen_extu_i32_i64(flag, cpu_CF);
745 tcg_gen_add_i64(dest, t0, t1);
746 tcg_gen_add_i64(dest, dest, flag);
747 tcg_temp_free_i64(flag);
749 if (!sf) {
750 tcg_gen_ext32u_i64(dest, dest);
754 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
755 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
757 if (sf) {
758 TCGv_i64 result, cf_64, vf_64, tmp;
759 result = tcg_temp_new_i64();
760 cf_64 = tcg_temp_new_i64();
761 vf_64 = tcg_temp_new_i64();
762 tmp = tcg_const_i64(0);
764 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
765 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
766 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
767 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
768 gen_set_NZ64(result);
770 tcg_gen_xor_i64(vf_64, result, t0);
771 tcg_gen_xor_i64(tmp, t0, t1);
772 tcg_gen_andc_i64(vf_64, vf_64, tmp);
773 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
775 tcg_gen_mov_i64(dest, result);
777 tcg_temp_free_i64(tmp);
778 tcg_temp_free_i64(vf_64);
779 tcg_temp_free_i64(cf_64);
780 tcg_temp_free_i64(result);
781 } else {
782 TCGv_i32 t0_32, t1_32, tmp;
783 t0_32 = tcg_temp_new_i32();
784 t1_32 = tcg_temp_new_i32();
785 tmp = tcg_const_i32(0);
787 tcg_gen_extrl_i64_i32(t0_32, t0);
788 tcg_gen_extrl_i64_i32(t1_32, t1);
789 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
790 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
792 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
793 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
794 tcg_gen_xor_i32(tmp, t0_32, t1_32);
795 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
796 tcg_gen_extu_i32_i64(dest, cpu_NF);
798 tcg_temp_free_i32(tmp);
799 tcg_temp_free_i32(t1_32);
800 tcg_temp_free_i32(t0_32);
805 * Load/Store generators
809 * Store from GPR register to memory.
811 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
812 TCGv_i64 tcg_addr, int size, int memidx,
813 bool iss_valid,
814 unsigned int iss_srt,
815 bool iss_sf, bool iss_ar)
817 g_assert(size <= 3);
818 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size);
820 if (iss_valid) {
821 uint32_t syn;
823 syn = syn_data_abort_with_iss(0,
824 size,
825 false,
826 iss_srt,
827 iss_sf,
828 iss_ar,
829 0, 0, 0, 0, 0, false);
830 disas_set_insn_syndrome(s, syn);
834 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
835 TCGv_i64 tcg_addr, int size,
836 bool iss_valid,
837 unsigned int iss_srt,
838 bool iss_sf, bool iss_ar)
840 do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s),
841 iss_valid, iss_srt, iss_sf, iss_ar);
845 * Load from memory to GPR register
847 static void do_gpr_ld_memidx(DisasContext *s,
848 TCGv_i64 dest, TCGv_i64 tcg_addr,
849 int size, bool is_signed,
850 bool extend, int memidx,
851 bool iss_valid, unsigned int iss_srt,
852 bool iss_sf, bool iss_ar)
854 TCGMemOp memop = s->be_data + size;
856 g_assert(size <= 3);
858 if (is_signed) {
859 memop += MO_SIGN;
862 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
864 if (extend && is_signed) {
865 g_assert(size < 3);
866 tcg_gen_ext32u_i64(dest, dest);
869 if (iss_valid) {
870 uint32_t syn;
872 syn = syn_data_abort_with_iss(0,
873 size,
874 is_signed,
875 iss_srt,
876 iss_sf,
877 iss_ar,
878 0, 0, 0, 0, 0, false);
879 disas_set_insn_syndrome(s, syn);
883 static void do_gpr_ld(DisasContext *s,
884 TCGv_i64 dest, TCGv_i64 tcg_addr,
885 int size, bool is_signed, bool extend,
886 bool iss_valid, unsigned int iss_srt,
887 bool iss_sf, bool iss_ar)
889 do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend,
890 get_mem_index(s),
891 iss_valid, iss_srt, iss_sf, iss_ar);
895 * Store from FP register to memory
897 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
899 /* This writes the bottom N bits of a 128 bit wide vector to memory */
900 TCGv_i64 tmp = tcg_temp_new_i64();
901 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64));
902 if (size < 4) {
903 tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s),
904 s->be_data + size);
905 } else {
906 bool be = s->be_data == MO_BE;
907 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
909 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
910 tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
911 s->be_data | MO_Q);
912 tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx));
913 tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
914 s->be_data | MO_Q);
915 tcg_temp_free_i64(tcg_hiaddr);
918 tcg_temp_free_i64(tmp);
922 * Load from memory to FP register
924 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
926 /* This always zero-extends and writes to a full 128 bit wide vector */
927 TCGv_i64 tmplo = tcg_temp_new_i64();
928 TCGv_i64 tmphi;
930 if (size < 4) {
931 TCGMemOp memop = s->be_data + size;
932 tmphi = tcg_const_i64(0);
933 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop);
934 } else {
935 bool be = s->be_data == MO_BE;
936 TCGv_i64 tcg_hiaddr;
938 tmphi = tcg_temp_new_i64();
939 tcg_hiaddr = tcg_temp_new_i64();
941 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
942 tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s),
943 s->be_data | MO_Q);
944 tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s),
945 s->be_data | MO_Q);
946 tcg_temp_free_i64(tcg_hiaddr);
949 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
950 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
952 tcg_temp_free_i64(tmplo);
953 tcg_temp_free_i64(tmphi);
957 * Vector load/store helpers.
959 * The principal difference between this and a FP load is that we don't
960 * zero extend as we are filling a partial chunk of the vector register.
961 * These functions don't support 128 bit loads/stores, which would be
962 * normal load/store operations.
964 * The _i32 versions are useful when operating on 32 bit quantities
965 * (eg for floating point single or using Neon helper functions).
968 /* Get value of an element within a vector register */
969 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
970 int element, TCGMemOp memop)
972 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
973 switch (memop) {
974 case MO_8:
975 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
976 break;
977 case MO_16:
978 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
979 break;
980 case MO_32:
981 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
982 break;
983 case MO_8|MO_SIGN:
984 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
985 break;
986 case MO_16|MO_SIGN:
987 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
988 break;
989 case MO_32|MO_SIGN:
990 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
991 break;
992 case MO_64:
993 case MO_64|MO_SIGN:
994 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
995 break;
996 default:
997 g_assert_not_reached();
1001 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1002 int element, TCGMemOp memop)
1004 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1005 switch (memop) {
1006 case MO_8:
1007 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1008 break;
1009 case MO_16:
1010 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1011 break;
1012 case MO_8|MO_SIGN:
1013 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1014 break;
1015 case MO_16|MO_SIGN:
1016 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1017 break;
1018 case MO_32:
1019 case MO_32|MO_SIGN:
1020 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1021 break;
1022 default:
1023 g_assert_not_reached();
1027 /* Set value of an element within a vector register */
1028 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1029 int element, TCGMemOp memop)
1031 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1032 switch (memop) {
1033 case MO_8:
1034 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1035 break;
1036 case MO_16:
1037 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1038 break;
1039 case MO_32:
1040 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1041 break;
1042 case MO_64:
1043 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1044 break;
1045 default:
1046 g_assert_not_reached();
1050 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1051 int destidx, int element, TCGMemOp memop)
1053 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1054 switch (memop) {
1055 case MO_8:
1056 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1057 break;
1058 case MO_16:
1059 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1060 break;
1061 case MO_32:
1062 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1063 break;
1064 default:
1065 g_assert_not_reached();
1069 /* Clear the high 64 bits of a 128 bit vector (in general non-quad
1070 * vector ops all need to do this).
1072 static void clear_vec_high(DisasContext *s, int rd)
1074 TCGv_i64 tcg_zero = tcg_const_i64(0);
1076 write_vec_element(s, tcg_zero, rd, 1, MO_64);
1077 tcg_temp_free_i64(tcg_zero);
1080 /* Store from vector register to memory */
1081 static void do_vec_st(DisasContext *s, int srcidx, int element,
1082 TCGv_i64 tcg_addr, int size)
1084 TCGMemOp memop = s->be_data + size;
1085 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1087 read_vec_element(s, tcg_tmp, srcidx, element, size);
1088 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1090 tcg_temp_free_i64(tcg_tmp);
1093 /* Load from memory to vector register */
1094 static void do_vec_ld(DisasContext *s, int destidx, int element,
1095 TCGv_i64 tcg_addr, int size)
1097 TCGMemOp memop = s->be_data + size;
1098 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1100 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
1101 write_vec_element(s, tcg_tmp, destidx, element, size);
1103 tcg_temp_free_i64(tcg_tmp);
1106 /* Check that FP/Neon access is enabled. If it is, return
1107 * true. If not, emit code to generate an appropriate exception,
1108 * and return false; the caller should not emit any code for
1109 * the instruction. Note that this check must happen after all
1110 * unallocated-encoding checks (otherwise the syndrome information
1111 * for the resulting exception will be incorrect).
1113 static inline bool fp_access_check(DisasContext *s)
1115 assert(!s->fp_access_checked);
1116 s->fp_access_checked = true;
1118 if (!s->fp_excp_el) {
1119 return true;
1122 gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false),
1123 s->fp_excp_el);
1124 return false;
1128 * This utility function is for doing register extension with an
1129 * optional shift. You will likely want to pass a temporary for the
1130 * destination register. See DecodeRegExtend() in the ARM ARM.
1132 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1133 int option, unsigned int shift)
1135 int extsize = extract32(option, 0, 2);
1136 bool is_signed = extract32(option, 2, 1);
1138 if (is_signed) {
1139 switch (extsize) {
1140 case 0:
1141 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1142 break;
1143 case 1:
1144 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1145 break;
1146 case 2:
1147 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1148 break;
1149 case 3:
1150 tcg_gen_mov_i64(tcg_out, tcg_in);
1151 break;
1153 } else {
1154 switch (extsize) {
1155 case 0:
1156 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1157 break;
1158 case 1:
1159 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1160 break;
1161 case 2:
1162 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1163 break;
1164 case 3:
1165 tcg_gen_mov_i64(tcg_out, tcg_in);
1166 break;
1170 if (shift) {
1171 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1175 static inline void gen_check_sp_alignment(DisasContext *s)
1177 /* The AArch64 architecture mandates that (if enabled via PSTATE
1178 * or SCTLR bits) there is a check that SP is 16-aligned on every
1179 * SP-relative load or store (with an exception generated if it is not).
1180 * In line with general QEMU practice regarding misaligned accesses,
1181 * we omit these checks for the sake of guest program performance.
1182 * This function is provided as a hook so we can more easily add these
1183 * checks in future (possibly as a "favour catching guest program bugs
1184 * over speed" user selectable option).
1189 * This provides a simple table based table lookup decoder. It is
1190 * intended to be used when the relevant bits for decode are too
1191 * awkwardly placed and switch/if based logic would be confusing and
1192 * deeply nested. Since it's a linear search through the table, tables
1193 * should be kept small.
1195 * It returns the first handler where insn & mask == pattern, or
1196 * NULL if there is no match.
1197 * The table is terminated by an empty mask (i.e. 0)
1199 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1200 uint32_t insn)
1202 const AArch64DecodeTable *tptr = table;
1204 while (tptr->mask) {
1205 if ((insn & tptr->mask) == tptr->pattern) {
1206 return tptr->disas_fn;
1208 tptr++;
1210 return NULL;
1214 * the instruction disassembly implemented here matches
1215 * the instruction encoding classifications in chapter 3 (C3)
1216 * of the ARM Architecture Reference Manual (DDI0487A_a)
1219 /* C3.2.7 Unconditional branch (immediate)
1220 * 31 30 26 25 0
1221 * +----+-----------+-------------------------------------+
1222 * | op | 0 0 1 0 1 | imm26 |
1223 * +----+-----------+-------------------------------------+
1225 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1227 uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4;
1229 if (insn & (1U << 31)) {
1230 /* C5.6.26 BL Branch with link */
1231 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1234 /* C5.6.20 B Branch / C5.6.26 BL Branch with link */
1235 gen_goto_tb(s, 0, addr);
1238 /* C3.2.1 Compare & branch (immediate)
1239 * 31 30 25 24 23 5 4 0
1240 * +----+-------------+----+---------------------+--------+
1241 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1242 * +----+-------------+----+---------------------+--------+
1244 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1246 unsigned int sf, op, rt;
1247 uint64_t addr;
1248 TCGLabel *label_match;
1249 TCGv_i64 tcg_cmp;
1251 sf = extract32(insn, 31, 1);
1252 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1253 rt = extract32(insn, 0, 5);
1254 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1256 tcg_cmp = read_cpu_reg(s, rt, sf);
1257 label_match = gen_new_label();
1259 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1260 tcg_cmp, 0, label_match);
1262 gen_goto_tb(s, 0, s->pc);
1263 gen_set_label(label_match);
1264 gen_goto_tb(s, 1, addr);
1267 /* C3.2.5 Test & branch (immediate)
1268 * 31 30 25 24 23 19 18 5 4 0
1269 * +----+-------------+----+-------+-------------+------+
1270 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1271 * +----+-------------+----+-------+-------------+------+
1273 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1275 unsigned int bit_pos, op, rt;
1276 uint64_t addr;
1277 TCGLabel *label_match;
1278 TCGv_i64 tcg_cmp;
1280 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1281 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1282 addr = s->pc + sextract32(insn, 5, 14) * 4 - 4;
1283 rt = extract32(insn, 0, 5);
1285 tcg_cmp = tcg_temp_new_i64();
1286 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1287 label_match = gen_new_label();
1288 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1289 tcg_cmp, 0, label_match);
1290 tcg_temp_free_i64(tcg_cmp);
1291 gen_goto_tb(s, 0, s->pc);
1292 gen_set_label(label_match);
1293 gen_goto_tb(s, 1, addr);
1296 /* C3.2.2 / C5.6.19 Conditional branch (immediate)
1297 * 31 25 24 23 5 4 3 0
1298 * +---------------+----+---------------------+----+------+
1299 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1300 * +---------------+----+---------------------+----+------+
1302 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1304 unsigned int cond;
1305 uint64_t addr;
1307 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1308 unallocated_encoding(s);
1309 return;
1311 addr = s->pc + sextract32(insn, 5, 19) * 4 - 4;
1312 cond = extract32(insn, 0, 4);
1314 if (cond < 0x0e) {
1315 /* genuinely conditional branches */
1316 TCGLabel *label_match = gen_new_label();
1317 arm_gen_test_cc(cond, label_match);
1318 gen_goto_tb(s, 0, s->pc);
1319 gen_set_label(label_match);
1320 gen_goto_tb(s, 1, addr);
1321 } else {
1322 /* 0xe and 0xf are both "always" conditions */
1323 gen_goto_tb(s, 0, addr);
1327 /* C5.6.68 HINT */
1328 static void handle_hint(DisasContext *s, uint32_t insn,
1329 unsigned int op1, unsigned int op2, unsigned int crm)
1331 unsigned int selector = crm << 3 | op2;
1333 if (op1 != 3) {
1334 unallocated_encoding(s);
1335 return;
1338 switch (selector) {
1339 case 0: /* NOP */
1340 return;
1341 case 3: /* WFI */
1342 s->is_jmp = DISAS_WFI;
1343 return;
1344 case 1: /* YIELD */
1345 s->is_jmp = DISAS_YIELD;
1346 return;
1347 case 2: /* WFE */
1348 s->is_jmp = DISAS_WFE;
1349 return;
1350 case 4: /* SEV */
1351 case 5: /* SEVL */
1352 /* we treat all as NOP at least for now */
1353 return;
1354 default:
1355 /* default specified as NOP equivalent */
1356 return;
1360 static void gen_clrex(DisasContext *s, uint32_t insn)
1362 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1365 /* CLREX, DSB, DMB, ISB */
1366 static void handle_sync(DisasContext *s, uint32_t insn,
1367 unsigned int op1, unsigned int op2, unsigned int crm)
1369 TCGBar bar;
1371 if (op1 != 3) {
1372 unallocated_encoding(s);
1373 return;
1376 switch (op2) {
1377 case 2: /* CLREX */
1378 gen_clrex(s, insn);
1379 return;
1380 case 4: /* DSB */
1381 case 5: /* DMB */
1382 switch (crm & 3) {
1383 case 1: /* MBReqTypes_Reads */
1384 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1385 break;
1386 case 2: /* MBReqTypes_Writes */
1387 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1388 break;
1389 default: /* MBReqTypes_All */
1390 bar = TCG_BAR_SC | TCG_MO_ALL;
1391 break;
1393 tcg_gen_mb(bar);
1394 return;
1395 case 6: /* ISB */
1396 /* We need to break the TB after this insn to execute
1397 * a self-modified code correctly and also to take
1398 * any pending interrupts immediately.
1400 s->is_jmp = DISAS_UPDATE;
1401 return;
1402 default:
1403 unallocated_encoding(s);
1404 return;
1408 /* C5.6.130 MSR (immediate) - move immediate to processor state field */
1409 static void handle_msr_i(DisasContext *s, uint32_t insn,
1410 unsigned int op1, unsigned int op2, unsigned int crm)
1412 int op = op1 << 3 | op2;
1413 switch (op) {
1414 case 0x05: /* SPSel */
1415 if (s->current_el == 0) {
1416 unallocated_encoding(s);
1417 return;
1419 /* fall through */
1420 case 0x1e: /* DAIFSet */
1421 case 0x1f: /* DAIFClear */
1423 TCGv_i32 tcg_imm = tcg_const_i32(crm);
1424 TCGv_i32 tcg_op = tcg_const_i32(op);
1425 gen_a64_set_pc_im(s->pc - 4);
1426 gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm);
1427 tcg_temp_free_i32(tcg_imm);
1428 tcg_temp_free_i32(tcg_op);
1429 s->is_jmp = DISAS_UPDATE;
1430 break;
1432 default:
1433 unallocated_encoding(s);
1434 return;
1438 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1440 TCGv_i32 tmp = tcg_temp_new_i32();
1441 TCGv_i32 nzcv = tcg_temp_new_i32();
1443 /* build bit 31, N */
1444 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1445 /* build bit 30, Z */
1446 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1447 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1448 /* build bit 29, C */
1449 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1450 /* build bit 28, V */
1451 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1452 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1453 /* generate result */
1454 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1456 tcg_temp_free_i32(nzcv);
1457 tcg_temp_free_i32(tmp);
1460 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1463 TCGv_i32 nzcv = tcg_temp_new_i32();
1465 /* take NZCV from R[t] */
1466 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1468 /* bit 31, N */
1469 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1470 /* bit 30, Z */
1471 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1472 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1473 /* bit 29, C */
1474 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1475 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1476 /* bit 28, V */
1477 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1478 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1479 tcg_temp_free_i32(nzcv);
1482 /* C5.6.129 MRS - move from system register
1483 * C5.6.131 MSR (register) - move to system register
1484 * C5.6.204 SYS
1485 * C5.6.205 SYSL
1486 * These are all essentially the same insn in 'read' and 'write'
1487 * versions, with varying op0 fields.
1489 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1490 unsigned int op0, unsigned int op1, unsigned int op2,
1491 unsigned int crn, unsigned int crm, unsigned int rt)
1493 const ARMCPRegInfo *ri;
1494 TCGv_i64 tcg_rt;
1496 ri = get_arm_cp_reginfo(s->cp_regs,
1497 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1498 crn, crm, op0, op1, op2));
1500 if (!ri) {
1501 /* Unknown register; this might be a guest error or a QEMU
1502 * unimplemented feature.
1504 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1505 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1506 isread ? "read" : "write", op0, op1, crn, crm, op2);
1507 unallocated_encoding(s);
1508 return;
1511 /* Check access permissions */
1512 if (!cp_access_ok(s->current_el, ri, isread)) {
1513 unallocated_encoding(s);
1514 return;
1517 if (ri->accessfn) {
1518 /* Emit code to perform further access permissions checks at
1519 * runtime; this may result in an exception.
1521 TCGv_ptr tmpptr;
1522 TCGv_i32 tcg_syn, tcg_isread;
1523 uint32_t syndrome;
1525 gen_a64_set_pc_im(s->pc - 4);
1526 tmpptr = tcg_const_ptr(ri);
1527 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1528 tcg_syn = tcg_const_i32(syndrome);
1529 tcg_isread = tcg_const_i32(isread);
1530 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1531 tcg_temp_free_ptr(tmpptr);
1532 tcg_temp_free_i32(tcg_syn);
1533 tcg_temp_free_i32(tcg_isread);
1536 /* Handle special cases first */
1537 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1538 case ARM_CP_NOP:
1539 return;
1540 case ARM_CP_NZCV:
1541 tcg_rt = cpu_reg(s, rt);
1542 if (isread) {
1543 gen_get_nzcv(tcg_rt);
1544 } else {
1545 gen_set_nzcv(tcg_rt);
1547 return;
1548 case ARM_CP_CURRENTEL:
1549 /* Reads as current EL value from pstate, which is
1550 * guaranteed to be constant by the tb flags.
1552 tcg_rt = cpu_reg(s, rt);
1553 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1554 return;
1555 case ARM_CP_DC_ZVA:
1556 /* Writes clear the aligned block of memory which rt points into. */
1557 tcg_rt = cpu_reg(s, rt);
1558 gen_helper_dc_zva(cpu_env, tcg_rt);
1559 return;
1560 default:
1561 break;
1564 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1565 gen_io_start();
1568 tcg_rt = cpu_reg(s, rt);
1570 if (isread) {
1571 if (ri->type & ARM_CP_CONST) {
1572 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1573 } else if (ri->readfn) {
1574 TCGv_ptr tmpptr;
1575 tmpptr = tcg_const_ptr(ri);
1576 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1577 tcg_temp_free_ptr(tmpptr);
1578 } else {
1579 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1581 } else {
1582 if (ri->type & ARM_CP_CONST) {
1583 /* If not forbidden by access permissions, treat as WI */
1584 return;
1585 } else if (ri->writefn) {
1586 TCGv_ptr tmpptr;
1587 tmpptr = tcg_const_ptr(ri);
1588 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1589 tcg_temp_free_ptr(tmpptr);
1590 } else {
1591 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1595 if ((s->tb->cflags & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1596 /* I/O operations must end the TB here (whether read or write) */
1597 gen_io_end();
1598 s->is_jmp = DISAS_UPDATE;
1599 } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1600 /* We default to ending the TB on a coprocessor register write,
1601 * but allow this to be suppressed by the register definition
1602 * (usually only necessary to work around guest bugs).
1604 s->is_jmp = DISAS_UPDATE;
1608 /* C3.2.4 System
1609 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
1610 * +---------------------+---+-----+-----+-------+-------+-----+------+
1611 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
1612 * +---------------------+---+-----+-----+-------+-------+-----+------+
1614 static void disas_system(DisasContext *s, uint32_t insn)
1616 unsigned int l, op0, op1, crn, crm, op2, rt;
1617 l = extract32(insn, 21, 1);
1618 op0 = extract32(insn, 19, 2);
1619 op1 = extract32(insn, 16, 3);
1620 crn = extract32(insn, 12, 4);
1621 crm = extract32(insn, 8, 4);
1622 op2 = extract32(insn, 5, 3);
1623 rt = extract32(insn, 0, 5);
1625 if (op0 == 0) {
1626 if (l || rt != 31) {
1627 unallocated_encoding(s);
1628 return;
1630 switch (crn) {
1631 case 2: /* C5.6.68 HINT */
1632 handle_hint(s, insn, op1, op2, crm);
1633 break;
1634 case 3: /* CLREX, DSB, DMB, ISB */
1635 handle_sync(s, insn, op1, op2, crm);
1636 break;
1637 case 4: /* C5.6.130 MSR (immediate) */
1638 handle_msr_i(s, insn, op1, op2, crm);
1639 break;
1640 default:
1641 unallocated_encoding(s);
1642 break;
1644 return;
1646 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
1649 /* C3.2.3 Exception generation
1651 * 31 24 23 21 20 5 4 2 1 0
1652 * +-----------------+-----+------------------------+-----+----+
1653 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
1654 * +-----------------------+------------------------+----------+
1656 static void disas_exc(DisasContext *s, uint32_t insn)
1658 int opc = extract32(insn, 21, 3);
1659 int op2_ll = extract32(insn, 0, 5);
1660 int imm16 = extract32(insn, 5, 16);
1661 TCGv_i32 tmp;
1663 switch (opc) {
1664 case 0:
1665 /* For SVC, HVC and SMC we advance the single-step state
1666 * machine before taking the exception. This is architecturally
1667 * mandated, to ensure that single-stepping a system call
1668 * instruction works properly.
1670 switch (op2_ll) {
1671 case 1: /* SVC */
1672 gen_ss_advance(s);
1673 gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16),
1674 default_exception_el(s));
1675 break;
1676 case 2: /* HVC */
1677 if (s->current_el == 0) {
1678 unallocated_encoding(s);
1679 break;
1681 /* The pre HVC helper handles cases when HVC gets trapped
1682 * as an undefined insn by runtime configuration.
1684 gen_a64_set_pc_im(s->pc - 4);
1685 gen_helper_pre_hvc(cpu_env);
1686 gen_ss_advance(s);
1687 gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2);
1688 break;
1689 case 3: /* SMC */
1690 if (s->current_el == 0) {
1691 unallocated_encoding(s);
1692 break;
1694 gen_a64_set_pc_im(s->pc - 4);
1695 tmp = tcg_const_i32(syn_aa64_smc(imm16));
1696 gen_helper_pre_smc(cpu_env, tmp);
1697 tcg_temp_free_i32(tmp);
1698 gen_ss_advance(s);
1699 gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3);
1700 break;
1701 default:
1702 unallocated_encoding(s);
1703 break;
1705 break;
1706 case 1:
1707 if (op2_ll != 0) {
1708 unallocated_encoding(s);
1709 break;
1711 /* BRK */
1712 gen_exception_insn(s, 4, EXCP_BKPT, syn_aa64_bkpt(imm16),
1713 default_exception_el(s));
1714 break;
1715 case 2:
1716 if (op2_ll != 0) {
1717 unallocated_encoding(s);
1718 break;
1720 /* HLT. This has two purposes.
1721 * Architecturally, it is an external halting debug instruction.
1722 * Since QEMU doesn't implement external debug, we treat this as
1723 * it is required for halting debug disabled: it will UNDEF.
1724 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
1726 if (semihosting_enabled() && imm16 == 0xf000) {
1727 #ifndef CONFIG_USER_ONLY
1728 /* In system mode, don't allow userspace access to semihosting,
1729 * to provide some semblance of security (and for consistency
1730 * with our 32-bit semihosting).
1732 if (s->current_el == 0) {
1733 unsupported_encoding(s, insn);
1734 break;
1736 #endif
1737 gen_exception_internal_insn(s, 0, EXCP_SEMIHOST);
1738 } else {
1739 unsupported_encoding(s, insn);
1741 break;
1742 case 5:
1743 if (op2_ll < 1 || op2_ll > 3) {
1744 unallocated_encoding(s);
1745 break;
1747 /* DCPS1, DCPS2, DCPS3 */
1748 unsupported_encoding(s, insn);
1749 break;
1750 default:
1751 unallocated_encoding(s);
1752 break;
1756 /* C3.2.7 Unconditional branch (register)
1757 * 31 25 24 21 20 16 15 10 9 5 4 0
1758 * +---------------+-------+-------+-------+------+-------+
1759 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
1760 * +---------------+-------+-------+-------+------+-------+
1762 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
1764 unsigned int opc, op2, op3, rn, op4;
1766 opc = extract32(insn, 21, 4);
1767 op2 = extract32(insn, 16, 5);
1768 op3 = extract32(insn, 10, 6);
1769 rn = extract32(insn, 5, 5);
1770 op4 = extract32(insn, 0, 5);
1772 if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) {
1773 unallocated_encoding(s);
1774 return;
1777 switch (opc) {
1778 case 0: /* BR */
1779 case 1: /* BLR */
1780 case 2: /* RET */
1781 gen_a64_set_pc(s, cpu_reg(s, rn));
1782 /* BLR also needs to load return address */
1783 if (opc == 1) {
1784 tcg_gen_movi_i64(cpu_reg(s, 30), s->pc);
1786 break;
1787 case 4: /* ERET */
1788 if (s->current_el == 0) {
1789 unallocated_encoding(s);
1790 return;
1792 gen_helper_exception_return(cpu_env);
1793 s->is_jmp = DISAS_JUMP;
1794 return;
1795 case 5: /* DRPS */
1796 if (rn != 0x1f) {
1797 unallocated_encoding(s);
1798 } else {
1799 unsupported_encoding(s, insn);
1801 return;
1802 default:
1803 unallocated_encoding(s);
1804 return;
1807 s->is_jmp = DISAS_JUMP;
1810 /* C3.2 Branches, exception generating and system instructions */
1811 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
1813 switch (extract32(insn, 25, 7)) {
1814 case 0x0a: case 0x0b:
1815 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
1816 disas_uncond_b_imm(s, insn);
1817 break;
1818 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
1819 disas_comp_b_imm(s, insn);
1820 break;
1821 case 0x1b: case 0x5b: /* Test & branch (immediate) */
1822 disas_test_b_imm(s, insn);
1823 break;
1824 case 0x2a: /* Conditional branch (immediate) */
1825 disas_cond_b_imm(s, insn);
1826 break;
1827 case 0x6a: /* Exception generation / System */
1828 if (insn & (1 << 24)) {
1829 disas_system(s, insn);
1830 } else {
1831 disas_exc(s, insn);
1833 break;
1834 case 0x6b: /* Unconditional branch (register) */
1835 disas_uncond_b_reg(s, insn);
1836 break;
1837 default:
1838 unallocated_encoding(s);
1839 break;
1844 * Load/Store exclusive instructions are implemented by remembering
1845 * the value/address loaded, and seeing if these are the same
1846 * when the store is performed. This is not actually the architecturally
1847 * mandated semantics, but it works for typical guest code sequences
1848 * and avoids having to monitor regular stores.
1850 * The store exclusive uses the atomic cmpxchg primitives to avoid
1851 * races in multi-threaded linux-user and when MTTCG softmmu is
1852 * enabled.
1854 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
1855 TCGv_i64 addr, int size, bool is_pair)
1857 TCGv_i64 tmp = tcg_temp_new_i64();
1858 TCGMemOp memop = s->be_data + size;
1860 g_assert(size <= 3);
1861 tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
1863 if (is_pair) {
1864 TCGv_i64 addr2 = tcg_temp_new_i64();
1865 TCGv_i64 hitmp = tcg_temp_new_i64();
1867 g_assert(size >= 2);
1868 tcg_gen_addi_i64(addr2, addr, 1 << size);
1869 tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
1870 tcg_temp_free_i64(addr2);
1871 tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
1872 tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
1873 tcg_temp_free_i64(hitmp);
1876 tcg_gen_mov_i64(cpu_exclusive_val, tmp);
1877 tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
1879 tcg_temp_free_i64(tmp);
1880 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
1883 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
1884 TCGv_i64 inaddr, int size, int is_pair)
1886 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
1887 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
1888 * [addr] = {Rt};
1889 * if (is_pair) {
1890 * [addr + datasize] = {Rt2};
1892 * {Rd} = 0;
1893 * } else {
1894 * {Rd} = 1;
1896 * env->exclusive_addr = -1;
1898 TCGLabel *fail_label = gen_new_label();
1899 TCGLabel *done_label = gen_new_label();
1900 TCGv_i64 addr = tcg_temp_local_new_i64();
1901 TCGv_i64 tmp;
1903 /* Copy input into a local temp so it is not trashed when the
1904 * basic block ends at the branch insn.
1906 tcg_gen_mov_i64(addr, inaddr);
1907 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
1909 tmp = tcg_temp_new_i64();
1910 if (is_pair) {
1911 if (size == 2) {
1912 TCGv_i64 val = tcg_temp_new_i64();
1913 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
1914 tcg_gen_concat32_i64(val, cpu_exclusive_val, cpu_exclusive_high);
1915 tcg_gen_atomic_cmpxchg_i64(tmp, addr, val, tmp,
1916 get_mem_index(s),
1917 size | MO_ALIGN | s->be_data);
1918 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, val);
1919 tcg_temp_free_i64(val);
1920 } else if (s->be_data == MO_LE) {
1921 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, addr, cpu_reg(s, rt),
1922 cpu_reg(s, rt2));
1923 } else {
1924 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, addr, cpu_reg(s, rt),
1925 cpu_reg(s, rt2));
1927 } else {
1928 TCGv_i64 val = cpu_reg(s, rt);
1929 tcg_gen_atomic_cmpxchg_i64(tmp, addr, cpu_exclusive_val, val,
1930 get_mem_index(s),
1931 size | MO_ALIGN | s->be_data);
1932 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
1935 tcg_temp_free_i64(addr);
1937 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
1938 tcg_temp_free_i64(tmp);
1939 tcg_gen_br(done_label);
1941 gen_set_label(fail_label);
1942 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
1943 gen_set_label(done_label);
1944 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1947 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
1948 * from the ARMv8 specs for LDR (Shared decode for all encodings).
1950 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
1952 int opc0 = extract32(opc, 0, 1);
1953 int regsize;
1955 if (is_signed) {
1956 regsize = opc0 ? 32 : 64;
1957 } else {
1958 regsize = size == 3 ? 64 : 32;
1960 return regsize == 64;
1963 /* C3.3.6 Load/store exclusive
1965 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
1966 * +-----+-------------+----+---+----+------+----+-------+------+------+
1967 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
1968 * +-----+-------------+----+---+----+------+----+-------+------+------+
1970 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
1971 * L: 0 -> store, 1 -> load
1972 * o2: 0 -> exclusive, 1 -> not
1973 * o1: 0 -> single register, 1 -> register pair
1974 * o0: 1 -> load-acquire/store-release, 0 -> not
1976 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
1978 int rt = extract32(insn, 0, 5);
1979 int rn = extract32(insn, 5, 5);
1980 int rt2 = extract32(insn, 10, 5);
1981 int is_lasr = extract32(insn, 15, 1);
1982 int rs = extract32(insn, 16, 5);
1983 int is_pair = extract32(insn, 21, 1);
1984 int is_store = !extract32(insn, 22, 1);
1985 int is_excl = !extract32(insn, 23, 1);
1986 int size = extract32(insn, 30, 2);
1987 TCGv_i64 tcg_addr;
1989 if ((!is_excl && !is_pair && !is_lasr) ||
1990 (!is_excl && is_pair) ||
1991 (is_pair && size < 2)) {
1992 unallocated_encoding(s);
1993 return;
1996 if (rn == 31) {
1997 gen_check_sp_alignment(s);
1999 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2001 /* Note that since TCG is single threaded load-acquire/store-release
2002 * semantics require no extra if (is_lasr) { ... } handling.
2005 if (is_excl) {
2006 if (!is_store) {
2007 s->is_ldex = true;
2008 gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
2009 if (is_lasr) {
2010 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2012 } else {
2013 if (is_lasr) {
2014 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2016 gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
2018 } else {
2019 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2020 bool iss_sf = disas_ldst_compute_iss_sf(size, false, 0);
2022 /* Generate ISS for non-exclusive accesses including LASR. */
2023 if (is_store) {
2024 if (is_lasr) {
2025 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2027 do_gpr_st(s, tcg_rt, tcg_addr, size,
2028 true, rt, iss_sf, is_lasr);
2029 } else {
2030 do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false,
2031 true, rt, iss_sf, is_lasr);
2032 if (is_lasr) {
2033 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2040 * C3.3.5 Load register (literal)
2042 * 31 30 29 27 26 25 24 23 5 4 0
2043 * +-----+-------+---+-----+-------------------+-------+
2044 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2045 * +-----+-------+---+-----+-------------------+-------+
2047 * V: 1 -> vector (simd/fp)
2048 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2049 * 10-> 32 bit signed, 11 -> prefetch
2050 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2052 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2054 int rt = extract32(insn, 0, 5);
2055 int64_t imm = sextract32(insn, 5, 19) << 2;
2056 bool is_vector = extract32(insn, 26, 1);
2057 int opc = extract32(insn, 30, 2);
2058 bool is_signed = false;
2059 int size = 2;
2060 TCGv_i64 tcg_rt, tcg_addr;
2062 if (is_vector) {
2063 if (opc == 3) {
2064 unallocated_encoding(s);
2065 return;
2067 size = 2 + opc;
2068 if (!fp_access_check(s)) {
2069 return;
2071 } else {
2072 if (opc == 3) {
2073 /* PRFM (literal) : prefetch */
2074 return;
2076 size = 2 + extract32(opc, 0, 1);
2077 is_signed = extract32(opc, 1, 1);
2080 tcg_rt = cpu_reg(s, rt);
2082 tcg_addr = tcg_const_i64((s->pc - 4) + imm);
2083 if (is_vector) {
2084 do_fp_ld(s, rt, tcg_addr, size);
2085 } else {
2086 /* Only unsigned 32bit loads target 32bit registers. */
2087 bool iss_sf = opc != 0;
2089 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2090 true, rt, iss_sf, false);
2092 tcg_temp_free_i64(tcg_addr);
2096 * C5.6.80 LDNP (Load Pair - non-temporal hint)
2097 * C5.6.81 LDP (Load Pair - non vector)
2098 * C5.6.82 LDPSW (Load Pair Signed Word - non vector)
2099 * C5.6.176 STNP (Store Pair - non-temporal hint)
2100 * C5.6.177 STP (Store Pair - non vector)
2101 * C6.3.165 LDNP (Load Pair of SIMD&FP - non-temporal hint)
2102 * C6.3.165 LDP (Load Pair of SIMD&FP)
2103 * C6.3.284 STNP (Store Pair of SIMD&FP - non-temporal hint)
2104 * C6.3.284 STP (Store Pair of SIMD&FP)
2106 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2107 * +-----+-------+---+---+-------+---+-----------------------------+
2108 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2109 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2111 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2112 * LDPSW 01
2113 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2114 * V: 0 -> GPR, 1 -> Vector
2115 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2116 * 10 -> signed offset, 11 -> pre-index
2117 * L: 0 -> Store 1 -> Load
2119 * Rt, Rt2 = GPR or SIMD registers to be stored
2120 * Rn = general purpose register containing address
2121 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2123 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2125 int rt = extract32(insn, 0, 5);
2126 int rn = extract32(insn, 5, 5);
2127 int rt2 = extract32(insn, 10, 5);
2128 uint64_t offset = sextract64(insn, 15, 7);
2129 int index = extract32(insn, 23, 2);
2130 bool is_vector = extract32(insn, 26, 1);
2131 bool is_load = extract32(insn, 22, 1);
2132 int opc = extract32(insn, 30, 2);
2134 bool is_signed = false;
2135 bool postindex = false;
2136 bool wback = false;
2138 TCGv_i64 tcg_addr; /* calculated address */
2139 int size;
2141 if (opc == 3) {
2142 unallocated_encoding(s);
2143 return;
2146 if (is_vector) {
2147 size = 2 + opc;
2148 } else {
2149 size = 2 + extract32(opc, 1, 1);
2150 is_signed = extract32(opc, 0, 1);
2151 if (!is_load && is_signed) {
2152 unallocated_encoding(s);
2153 return;
2157 switch (index) {
2158 case 1: /* post-index */
2159 postindex = true;
2160 wback = true;
2161 break;
2162 case 0:
2163 /* signed offset with "non-temporal" hint. Since we don't emulate
2164 * caches we don't care about hints to the cache system about
2165 * data access patterns, and handle this identically to plain
2166 * signed offset.
2168 if (is_signed) {
2169 /* There is no non-temporal-hint version of LDPSW */
2170 unallocated_encoding(s);
2171 return;
2173 postindex = false;
2174 break;
2175 case 2: /* signed offset, rn not updated */
2176 postindex = false;
2177 break;
2178 case 3: /* pre-index */
2179 postindex = false;
2180 wback = true;
2181 break;
2184 if (is_vector && !fp_access_check(s)) {
2185 return;
2188 offset <<= size;
2190 if (rn == 31) {
2191 gen_check_sp_alignment(s);
2194 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2196 if (!postindex) {
2197 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2200 if (is_vector) {
2201 if (is_load) {
2202 do_fp_ld(s, rt, tcg_addr, size);
2203 } else {
2204 do_fp_st(s, rt, tcg_addr, size);
2206 } else {
2207 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2208 if (is_load) {
2209 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false,
2210 false, 0, false, false);
2211 } else {
2212 do_gpr_st(s, tcg_rt, tcg_addr, size,
2213 false, 0, false, false);
2216 tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
2217 if (is_vector) {
2218 if (is_load) {
2219 do_fp_ld(s, rt2, tcg_addr, size);
2220 } else {
2221 do_fp_st(s, rt2, tcg_addr, size);
2223 } else {
2224 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2225 if (is_load) {
2226 do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false,
2227 false, 0, false, false);
2228 } else {
2229 do_gpr_st(s, tcg_rt2, tcg_addr, size,
2230 false, 0, false, false);
2234 if (wback) {
2235 if (postindex) {
2236 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size));
2237 } else {
2238 tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size);
2240 tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr);
2245 * C3.3.8 Load/store (immediate post-indexed)
2246 * C3.3.9 Load/store (immediate pre-indexed)
2247 * C3.3.12 Load/store (unscaled immediate)
2249 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
2250 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2251 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
2252 * +----+-------+---+-----+-----+---+--------+-----+------+------+
2254 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
2255 10 -> unprivileged
2256 * V = 0 -> non-vector
2257 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
2258 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2260 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
2261 int opc,
2262 int size,
2263 int rt,
2264 bool is_vector)
2266 int rn = extract32(insn, 5, 5);
2267 int imm9 = sextract32(insn, 12, 9);
2268 int idx = extract32(insn, 10, 2);
2269 bool is_signed = false;
2270 bool is_store = false;
2271 bool is_extended = false;
2272 bool is_unpriv = (idx == 2);
2273 bool iss_valid = !is_vector;
2274 bool post_index;
2275 bool writeback;
2277 TCGv_i64 tcg_addr;
2279 if (is_vector) {
2280 size |= (opc & 2) << 1;
2281 if (size > 4 || is_unpriv) {
2282 unallocated_encoding(s);
2283 return;
2285 is_store = ((opc & 1) == 0);
2286 if (!fp_access_check(s)) {
2287 return;
2289 } else {
2290 if (size == 3 && opc == 2) {
2291 /* PRFM - prefetch */
2292 if (is_unpriv) {
2293 unallocated_encoding(s);
2294 return;
2296 return;
2298 if (opc == 3 && size > 1) {
2299 unallocated_encoding(s);
2300 return;
2302 is_store = (opc == 0);
2303 is_signed = extract32(opc, 1, 1);
2304 is_extended = (size < 3) && extract32(opc, 0, 1);
2307 switch (idx) {
2308 case 0:
2309 case 2:
2310 post_index = false;
2311 writeback = false;
2312 break;
2313 case 1:
2314 post_index = true;
2315 writeback = true;
2316 break;
2317 case 3:
2318 post_index = false;
2319 writeback = true;
2320 break;
2323 if (rn == 31) {
2324 gen_check_sp_alignment(s);
2326 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2328 if (!post_index) {
2329 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2332 if (is_vector) {
2333 if (is_store) {
2334 do_fp_st(s, rt, tcg_addr, size);
2335 } else {
2336 do_fp_ld(s, rt, tcg_addr, size);
2338 } else {
2339 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2340 int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
2341 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2343 if (is_store) {
2344 do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx,
2345 iss_valid, rt, iss_sf, false);
2346 } else {
2347 do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size,
2348 is_signed, is_extended, memidx,
2349 iss_valid, rt, iss_sf, false);
2353 if (writeback) {
2354 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2355 if (post_index) {
2356 tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9);
2358 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2363 * C3.3.10 Load/store (register offset)
2365 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2366 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2367 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
2368 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
2370 * For non-vector:
2371 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2372 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2373 * For vector:
2374 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2375 * opc<0>: 0 -> store, 1 -> load
2376 * V: 1 -> vector/simd
2377 * opt: extend encoding (see DecodeRegExtend)
2378 * S: if S=1 then scale (essentially index by sizeof(size))
2379 * Rt: register to transfer into/out of
2380 * Rn: address register or SP for base
2381 * Rm: offset register or ZR for offset
2383 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
2384 int opc,
2385 int size,
2386 int rt,
2387 bool is_vector)
2389 int rn = extract32(insn, 5, 5);
2390 int shift = extract32(insn, 12, 1);
2391 int rm = extract32(insn, 16, 5);
2392 int opt = extract32(insn, 13, 3);
2393 bool is_signed = false;
2394 bool is_store = false;
2395 bool is_extended = false;
2397 TCGv_i64 tcg_rm;
2398 TCGv_i64 tcg_addr;
2400 if (extract32(opt, 1, 1) == 0) {
2401 unallocated_encoding(s);
2402 return;
2405 if (is_vector) {
2406 size |= (opc & 2) << 1;
2407 if (size > 4) {
2408 unallocated_encoding(s);
2409 return;
2411 is_store = !extract32(opc, 0, 1);
2412 if (!fp_access_check(s)) {
2413 return;
2415 } else {
2416 if (size == 3 && opc == 2) {
2417 /* PRFM - prefetch */
2418 return;
2420 if (opc == 3 && size > 1) {
2421 unallocated_encoding(s);
2422 return;
2424 is_store = (opc == 0);
2425 is_signed = extract32(opc, 1, 1);
2426 is_extended = (size < 3) && extract32(opc, 0, 1);
2429 if (rn == 31) {
2430 gen_check_sp_alignment(s);
2432 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2434 tcg_rm = read_cpu_reg(s, rm, 1);
2435 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
2437 tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm);
2439 if (is_vector) {
2440 if (is_store) {
2441 do_fp_st(s, rt, tcg_addr, size);
2442 } else {
2443 do_fp_ld(s, rt, tcg_addr, size);
2445 } else {
2446 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2447 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2448 if (is_store) {
2449 do_gpr_st(s, tcg_rt, tcg_addr, size,
2450 true, rt, iss_sf, false);
2451 } else {
2452 do_gpr_ld(s, tcg_rt, tcg_addr, size,
2453 is_signed, is_extended,
2454 true, rt, iss_sf, false);
2460 * C3.3.13 Load/store (unsigned immediate)
2462 * 31 30 29 27 26 25 24 23 22 21 10 9 5
2463 * +----+-------+---+-----+-----+------------+-------+------+
2464 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
2465 * +----+-------+---+-----+-----+------------+-------+------+
2467 * For non-vector:
2468 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
2469 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
2470 * For vector:
2471 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
2472 * opc<0>: 0 -> store, 1 -> load
2473 * Rn: base address register (inc SP)
2474 * Rt: target register
2476 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
2477 int opc,
2478 int size,
2479 int rt,
2480 bool is_vector)
2482 int rn = extract32(insn, 5, 5);
2483 unsigned int imm12 = extract32(insn, 10, 12);
2484 unsigned int offset;
2486 TCGv_i64 tcg_addr;
2488 bool is_store;
2489 bool is_signed = false;
2490 bool is_extended = false;
2492 if (is_vector) {
2493 size |= (opc & 2) << 1;
2494 if (size > 4) {
2495 unallocated_encoding(s);
2496 return;
2498 is_store = !extract32(opc, 0, 1);
2499 if (!fp_access_check(s)) {
2500 return;
2502 } else {
2503 if (size == 3 && opc == 2) {
2504 /* PRFM - prefetch */
2505 return;
2507 if (opc == 3 && size > 1) {
2508 unallocated_encoding(s);
2509 return;
2511 is_store = (opc == 0);
2512 is_signed = extract32(opc, 1, 1);
2513 is_extended = (size < 3) && extract32(opc, 0, 1);
2516 if (rn == 31) {
2517 gen_check_sp_alignment(s);
2519 tcg_addr = read_cpu_reg_sp(s, rn, 1);
2520 offset = imm12 << size;
2521 tcg_gen_addi_i64(tcg_addr, tcg_addr, offset);
2523 if (is_vector) {
2524 if (is_store) {
2525 do_fp_st(s, rt, tcg_addr, size);
2526 } else {
2527 do_fp_ld(s, rt, tcg_addr, size);
2529 } else {
2530 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2531 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
2532 if (is_store) {
2533 do_gpr_st(s, tcg_rt, tcg_addr, size,
2534 true, rt, iss_sf, false);
2535 } else {
2536 do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended,
2537 true, rt, iss_sf, false);
2542 /* Load/store register (all forms) */
2543 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
2545 int rt = extract32(insn, 0, 5);
2546 int opc = extract32(insn, 22, 2);
2547 bool is_vector = extract32(insn, 26, 1);
2548 int size = extract32(insn, 30, 2);
2550 switch (extract32(insn, 24, 2)) {
2551 case 0:
2552 if (extract32(insn, 21, 1) == 1 && extract32(insn, 10, 2) == 2) {
2553 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
2554 } else {
2555 /* Load/store register (unscaled immediate)
2556 * Load/store immediate pre/post-indexed
2557 * Load/store register unprivileged
2559 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
2561 break;
2562 case 1:
2563 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
2564 break;
2565 default:
2566 unallocated_encoding(s);
2567 break;
2571 /* C3.3.1 AdvSIMD load/store multiple structures
2573 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
2574 * +---+---+---------------+---+-------------+--------+------+------+------+
2575 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
2576 * +---+---+---------------+---+-------------+--------+------+------+------+
2578 * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
2580 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
2581 * +---+---+---------------+---+---+---------+--------+------+------+------+
2582 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
2583 * +---+---+---------------+---+---+---------+--------+------+------+------+
2585 * Rt: first (or only) SIMD&FP register to be transferred
2586 * Rn: base address or SP
2587 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2589 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
2591 int rt = extract32(insn, 0, 5);
2592 int rn = extract32(insn, 5, 5);
2593 int size = extract32(insn, 10, 2);
2594 int opcode = extract32(insn, 12, 4);
2595 bool is_store = !extract32(insn, 22, 1);
2596 bool is_postidx = extract32(insn, 23, 1);
2597 bool is_q = extract32(insn, 30, 1);
2598 TCGv_i64 tcg_addr, tcg_rn;
2600 int ebytes = 1 << size;
2601 int elements = (is_q ? 128 : 64) / (8 << size);
2602 int rpt; /* num iterations */
2603 int selem; /* structure elements */
2604 int r;
2606 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
2607 unallocated_encoding(s);
2608 return;
2611 /* From the shared decode logic */
2612 switch (opcode) {
2613 case 0x0:
2614 rpt = 1;
2615 selem = 4;
2616 break;
2617 case 0x2:
2618 rpt = 4;
2619 selem = 1;
2620 break;
2621 case 0x4:
2622 rpt = 1;
2623 selem = 3;
2624 break;
2625 case 0x6:
2626 rpt = 3;
2627 selem = 1;
2628 break;
2629 case 0x7:
2630 rpt = 1;
2631 selem = 1;
2632 break;
2633 case 0x8:
2634 rpt = 1;
2635 selem = 2;
2636 break;
2637 case 0xa:
2638 rpt = 2;
2639 selem = 1;
2640 break;
2641 default:
2642 unallocated_encoding(s);
2643 return;
2646 if (size == 3 && !is_q && selem != 1) {
2647 /* reserved */
2648 unallocated_encoding(s);
2649 return;
2652 if (!fp_access_check(s)) {
2653 return;
2656 if (rn == 31) {
2657 gen_check_sp_alignment(s);
2660 tcg_rn = cpu_reg_sp(s, rn);
2661 tcg_addr = tcg_temp_new_i64();
2662 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2664 for (r = 0; r < rpt; r++) {
2665 int e;
2666 for (e = 0; e < elements; e++) {
2667 int tt = (rt + r) % 32;
2668 int xs;
2669 for (xs = 0; xs < selem; xs++) {
2670 if (is_store) {
2671 do_vec_st(s, tt, e, tcg_addr, size);
2672 } else {
2673 do_vec_ld(s, tt, e, tcg_addr, size);
2675 /* For non-quad operations, setting a slice of the low
2676 * 64 bits of the register clears the high 64 bits (in
2677 * the ARM ARM pseudocode this is implicit in the fact
2678 * that 'rval' is a 64 bit wide variable). We optimize
2679 * by noticing that we only need to do this the first
2680 * time we touch a register.
2682 if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
2683 clear_vec_high(s, tt);
2686 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2687 tt = (tt + 1) % 32;
2692 if (is_postidx) {
2693 int rm = extract32(insn, 16, 5);
2694 if (rm == 31) {
2695 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2696 } else {
2697 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2700 tcg_temp_free_i64(tcg_addr);
2703 /* C3.3.3 AdvSIMD load/store single structure
2705 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2706 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2707 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
2708 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2710 * C3.3.4 AdvSIMD load/store single structure (post-indexed)
2712 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
2713 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2714 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
2715 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
2717 * Rt: first (or only) SIMD&FP register to be transferred
2718 * Rn: base address or SP
2719 * Rm (post-index only): post-index register (when !31) or size dependent #imm
2720 * index = encoded in Q:S:size dependent on size
2722 * lane_size = encoded in R, opc
2723 * transfer width = encoded in opc, S, size
2725 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
2727 int rt = extract32(insn, 0, 5);
2728 int rn = extract32(insn, 5, 5);
2729 int size = extract32(insn, 10, 2);
2730 int S = extract32(insn, 12, 1);
2731 int opc = extract32(insn, 13, 3);
2732 int R = extract32(insn, 21, 1);
2733 int is_load = extract32(insn, 22, 1);
2734 int is_postidx = extract32(insn, 23, 1);
2735 int is_q = extract32(insn, 30, 1);
2737 int scale = extract32(opc, 1, 2);
2738 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
2739 bool replicate = false;
2740 int index = is_q << 3 | S << 2 | size;
2741 int ebytes, xs;
2742 TCGv_i64 tcg_addr, tcg_rn;
2744 switch (scale) {
2745 case 3:
2746 if (!is_load || S) {
2747 unallocated_encoding(s);
2748 return;
2750 scale = size;
2751 replicate = true;
2752 break;
2753 case 0:
2754 break;
2755 case 1:
2756 if (extract32(size, 0, 1)) {
2757 unallocated_encoding(s);
2758 return;
2760 index >>= 1;
2761 break;
2762 case 2:
2763 if (extract32(size, 1, 1)) {
2764 unallocated_encoding(s);
2765 return;
2767 if (!extract32(size, 0, 1)) {
2768 index >>= 2;
2769 } else {
2770 if (S) {
2771 unallocated_encoding(s);
2772 return;
2774 index >>= 3;
2775 scale = 3;
2777 break;
2778 default:
2779 g_assert_not_reached();
2782 if (!fp_access_check(s)) {
2783 return;
2786 ebytes = 1 << scale;
2788 if (rn == 31) {
2789 gen_check_sp_alignment(s);
2792 tcg_rn = cpu_reg_sp(s, rn);
2793 tcg_addr = tcg_temp_new_i64();
2794 tcg_gen_mov_i64(tcg_addr, tcg_rn);
2796 for (xs = 0; xs < selem; xs++) {
2797 if (replicate) {
2798 /* Load and replicate to all elements */
2799 uint64_t mulconst;
2800 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
2802 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
2803 get_mem_index(s), s->be_data + scale);
2804 switch (scale) {
2805 case 0:
2806 mulconst = 0x0101010101010101ULL;
2807 break;
2808 case 1:
2809 mulconst = 0x0001000100010001ULL;
2810 break;
2811 case 2:
2812 mulconst = 0x0000000100000001ULL;
2813 break;
2814 case 3:
2815 mulconst = 0;
2816 break;
2817 default:
2818 g_assert_not_reached();
2820 if (mulconst) {
2821 tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
2823 write_vec_element(s, tcg_tmp, rt, 0, MO_64);
2824 if (is_q) {
2825 write_vec_element(s, tcg_tmp, rt, 1, MO_64);
2826 } else {
2827 clear_vec_high(s, rt);
2829 tcg_temp_free_i64(tcg_tmp);
2830 } else {
2831 /* Load/store one element per register */
2832 if (is_load) {
2833 do_vec_ld(s, rt, index, tcg_addr, scale);
2834 } else {
2835 do_vec_st(s, rt, index, tcg_addr, scale);
2838 tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
2839 rt = (rt + 1) % 32;
2842 if (is_postidx) {
2843 int rm = extract32(insn, 16, 5);
2844 if (rm == 31) {
2845 tcg_gen_mov_i64(tcg_rn, tcg_addr);
2846 } else {
2847 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
2850 tcg_temp_free_i64(tcg_addr);
2853 /* C3.3 Loads and stores */
2854 static void disas_ldst(DisasContext *s, uint32_t insn)
2856 switch (extract32(insn, 24, 6)) {
2857 case 0x08: /* Load/store exclusive */
2858 disas_ldst_excl(s, insn);
2859 break;
2860 case 0x18: case 0x1c: /* Load register (literal) */
2861 disas_ld_lit(s, insn);
2862 break;
2863 case 0x28: case 0x29:
2864 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
2865 disas_ldst_pair(s, insn);
2866 break;
2867 case 0x38: case 0x39:
2868 case 0x3c: case 0x3d: /* Load/store register (all forms) */
2869 disas_ldst_reg(s, insn);
2870 break;
2871 case 0x0c: /* AdvSIMD load/store multiple structures */
2872 disas_ldst_multiple_struct(s, insn);
2873 break;
2874 case 0x0d: /* AdvSIMD load/store single structure */
2875 disas_ldst_single_struct(s, insn);
2876 break;
2877 default:
2878 unallocated_encoding(s);
2879 break;
2883 /* C3.4.6 PC-rel. addressing
2884 * 31 30 29 28 24 23 5 4 0
2885 * +----+-------+-----------+-------------------+------+
2886 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
2887 * +----+-------+-----------+-------------------+------+
2889 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
2891 unsigned int page, rd;
2892 uint64_t base;
2893 uint64_t offset;
2895 page = extract32(insn, 31, 1);
2896 /* SignExtend(immhi:immlo) -> offset */
2897 offset = sextract64(insn, 5, 19);
2898 offset = offset << 2 | extract32(insn, 29, 2);
2899 rd = extract32(insn, 0, 5);
2900 base = s->pc - 4;
2902 if (page) {
2903 /* ADRP (page based) */
2904 base &= ~0xfff;
2905 offset <<= 12;
2908 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
2912 * C3.4.1 Add/subtract (immediate)
2914 * 31 30 29 28 24 23 22 21 10 9 5 4 0
2915 * +--+--+--+-----------+-----+-------------+-----+-----+
2916 * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd |
2917 * +--+--+--+-----------+-----+-------------+-----+-----+
2919 * sf: 0 -> 32bit, 1 -> 64bit
2920 * op: 0 -> add , 1 -> sub
2921 * S: 1 -> set flags
2922 * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12
2924 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
2926 int rd = extract32(insn, 0, 5);
2927 int rn = extract32(insn, 5, 5);
2928 uint64_t imm = extract32(insn, 10, 12);
2929 int shift = extract32(insn, 22, 2);
2930 bool setflags = extract32(insn, 29, 1);
2931 bool sub_op = extract32(insn, 30, 1);
2932 bool is_64bit = extract32(insn, 31, 1);
2934 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
2935 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
2936 TCGv_i64 tcg_result;
2938 switch (shift) {
2939 case 0x0:
2940 break;
2941 case 0x1:
2942 imm <<= 12;
2943 break;
2944 default:
2945 unallocated_encoding(s);
2946 return;
2949 tcg_result = tcg_temp_new_i64();
2950 if (!setflags) {
2951 if (sub_op) {
2952 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
2953 } else {
2954 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
2956 } else {
2957 TCGv_i64 tcg_imm = tcg_const_i64(imm);
2958 if (sub_op) {
2959 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2960 } else {
2961 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
2963 tcg_temp_free_i64(tcg_imm);
2966 if (is_64bit) {
2967 tcg_gen_mov_i64(tcg_rd, tcg_result);
2968 } else {
2969 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
2972 tcg_temp_free_i64(tcg_result);
2975 /* The input should be a value in the bottom e bits (with higher
2976 * bits zero); returns that value replicated into every element
2977 * of size e in a 64 bit integer.
2979 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
2981 assert(e != 0);
2982 while (e < 64) {
2983 mask |= mask << e;
2984 e *= 2;
2986 return mask;
2989 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
2990 static inline uint64_t bitmask64(unsigned int length)
2992 assert(length > 0 && length <= 64);
2993 return ~0ULL >> (64 - length);
2996 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
2997 * only require the wmask. Returns false if the imms/immr/immn are a reserved
2998 * value (ie should cause a guest UNDEF exception), and true if they are
2999 * valid, in which case the decoded bit pattern is written to result.
3001 static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
3002 unsigned int imms, unsigned int immr)
3004 uint64_t mask;
3005 unsigned e, levels, s, r;
3006 int len;
3008 assert(immn < 2 && imms < 64 && immr < 64);
3010 /* The bit patterns we create here are 64 bit patterns which
3011 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
3012 * 64 bits each. Each element contains the same value: a run
3013 * of between 1 and e-1 non-zero bits, rotated within the
3014 * element by between 0 and e-1 bits.
3016 * The element size and run length are encoded into immn (1 bit)
3017 * and imms (6 bits) as follows:
3018 * 64 bit elements: immn = 1, imms = <length of run - 1>
3019 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
3020 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
3021 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
3022 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
3023 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
3024 * Notice that immn = 0, imms = 11111x is the only combination
3025 * not covered by one of the above options; this is reserved.
3026 * Further, <length of run - 1> all-ones is a reserved pattern.
3028 * In all cases the rotation is by immr % e (and immr is 6 bits).
3031 /* First determine the element size */
3032 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
3033 if (len < 1) {
3034 /* This is the immn == 0, imms == 0x11111x case */
3035 return false;
3037 e = 1 << len;
3039 levels = e - 1;
3040 s = imms & levels;
3041 r = immr & levels;
3043 if (s == levels) {
3044 /* <length of run - 1> mustn't be all-ones. */
3045 return false;
3048 /* Create the value of one element: s+1 set bits rotated
3049 * by r within the element (which is e bits wide)...
3051 mask = bitmask64(s + 1);
3052 if (r) {
3053 mask = (mask >> r) | (mask << (e - r));
3054 mask &= bitmask64(e);
3056 /* ...then replicate the element over the whole 64 bit value */
3057 mask = bitfield_replicate(mask, e);
3058 *result = mask;
3059 return true;
3062 /* C3.4.4 Logical (immediate)
3063 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3064 * +----+-----+-------------+---+------+------+------+------+
3065 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
3066 * +----+-----+-------------+---+------+------+------+------+
3068 static void disas_logic_imm(DisasContext *s, uint32_t insn)
3070 unsigned int sf, opc, is_n, immr, imms, rn, rd;
3071 TCGv_i64 tcg_rd, tcg_rn;
3072 uint64_t wmask;
3073 bool is_and = false;
3075 sf = extract32(insn, 31, 1);
3076 opc = extract32(insn, 29, 2);
3077 is_n = extract32(insn, 22, 1);
3078 immr = extract32(insn, 16, 6);
3079 imms = extract32(insn, 10, 6);
3080 rn = extract32(insn, 5, 5);
3081 rd = extract32(insn, 0, 5);
3083 if (!sf && is_n) {
3084 unallocated_encoding(s);
3085 return;
3088 if (opc == 0x3) { /* ANDS */
3089 tcg_rd = cpu_reg(s, rd);
3090 } else {
3091 tcg_rd = cpu_reg_sp(s, rd);
3093 tcg_rn = cpu_reg(s, rn);
3095 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
3096 /* some immediate field values are reserved */
3097 unallocated_encoding(s);
3098 return;
3101 if (!sf) {
3102 wmask &= 0xffffffff;
3105 switch (opc) {
3106 case 0x3: /* ANDS */
3107 case 0x0: /* AND */
3108 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
3109 is_and = true;
3110 break;
3111 case 0x1: /* ORR */
3112 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
3113 break;
3114 case 0x2: /* EOR */
3115 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
3116 break;
3117 default:
3118 assert(FALSE); /* must handle all above */
3119 break;
3122 if (!sf && !is_and) {
3123 /* zero extend final result; we know we can skip this for AND
3124 * since the immediate had the high 32 bits clear.
3126 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3129 if (opc == 3) { /* ANDS */
3130 gen_logic_CC(sf, tcg_rd);
3135 * C3.4.5 Move wide (immediate)
3137 * 31 30 29 28 23 22 21 20 5 4 0
3138 * +--+-----+-------------+-----+----------------+------+
3139 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
3140 * +--+-----+-------------+-----+----------------+------+
3142 * sf: 0 -> 32 bit, 1 -> 64 bit
3143 * opc: 00 -> N, 10 -> Z, 11 -> K
3144 * hw: shift/16 (0,16, and sf only 32, 48)
3146 static void disas_movw_imm(DisasContext *s, uint32_t insn)
3148 int rd = extract32(insn, 0, 5);
3149 uint64_t imm = extract32(insn, 5, 16);
3150 int sf = extract32(insn, 31, 1);
3151 int opc = extract32(insn, 29, 2);
3152 int pos = extract32(insn, 21, 2) << 4;
3153 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3154 TCGv_i64 tcg_imm;
3156 if (!sf && (pos >= 32)) {
3157 unallocated_encoding(s);
3158 return;
3161 switch (opc) {
3162 case 0: /* MOVN */
3163 case 2: /* MOVZ */
3164 imm <<= pos;
3165 if (opc == 0) {
3166 imm = ~imm;
3168 if (!sf) {
3169 imm &= 0xffffffffu;
3171 tcg_gen_movi_i64(tcg_rd, imm);
3172 break;
3173 case 3: /* MOVK */
3174 tcg_imm = tcg_const_i64(imm);
3175 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
3176 tcg_temp_free_i64(tcg_imm);
3177 if (!sf) {
3178 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3180 break;
3181 default:
3182 unallocated_encoding(s);
3183 break;
3187 /* C3.4.2 Bitfield
3188 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
3189 * +----+-----+-------------+---+------+------+------+------+
3190 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
3191 * +----+-----+-------------+---+------+------+------+------+
3193 static void disas_bitfield(DisasContext *s, uint32_t insn)
3195 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
3196 TCGv_i64 tcg_rd, tcg_tmp;
3198 sf = extract32(insn, 31, 1);
3199 opc = extract32(insn, 29, 2);
3200 n = extract32(insn, 22, 1);
3201 ri = extract32(insn, 16, 6);
3202 si = extract32(insn, 10, 6);
3203 rn = extract32(insn, 5, 5);
3204 rd = extract32(insn, 0, 5);
3205 bitsize = sf ? 64 : 32;
3207 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
3208 unallocated_encoding(s);
3209 return;
3212 tcg_rd = cpu_reg(s, rd);
3214 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
3215 to be smaller than bitsize, we'll never reference data outside the
3216 low 32-bits anyway. */
3217 tcg_tmp = read_cpu_reg(s, rn, 1);
3219 /* Recognize the common aliases. */
3220 if (opc == 0) { /* SBFM */
3221 if (ri == 0) {
3222 if (si == 7) { /* SXTB */
3223 tcg_gen_ext8s_i64(tcg_rd, tcg_tmp);
3224 goto done;
3225 } else if (si == 15) { /* SXTH */
3226 tcg_gen_ext16s_i64(tcg_rd, tcg_tmp);
3227 goto done;
3228 } else if (si == 31) { /* SXTW */
3229 tcg_gen_ext32s_i64(tcg_rd, tcg_tmp);
3230 goto done;
3233 if (si == 63 || (si == 31 && ri <= si)) { /* ASR */
3234 if (si == 31) {
3235 tcg_gen_ext32s_i64(tcg_tmp, tcg_tmp);
3237 tcg_gen_sari_i64(tcg_rd, tcg_tmp, ri);
3238 goto done;
3240 } else if (opc == 2) { /* UBFM */
3241 if (ri == 0) { /* UXTB, UXTH, plus non-canonical AND */
3242 tcg_gen_andi_i64(tcg_rd, tcg_tmp, bitmask64(si + 1));
3243 return;
3245 if (si == 63 || (si == 31 && ri <= si)) { /* LSR */
3246 if (si == 31) {
3247 tcg_gen_ext32u_i64(tcg_tmp, tcg_tmp);
3249 tcg_gen_shri_i64(tcg_rd, tcg_tmp, ri);
3250 return;
3252 if (si + 1 == ri && si != bitsize - 1) { /* LSL */
3253 int shift = bitsize - 1 - si;
3254 tcg_gen_shli_i64(tcg_rd, tcg_tmp, shift);
3255 goto done;
3259 if (opc != 1) { /* SBFM or UBFM */
3260 tcg_gen_movi_i64(tcg_rd, 0);
3263 /* do the bit move operation */
3264 if (si >= ri) {
3265 /* Wd<s-r:0> = Wn<s:r> */
3266 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
3267 pos = 0;
3268 len = (si - ri) + 1;
3269 } else {
3270 /* Wd<32+s-r,32-r> = Wn<s:0> */
3271 pos = bitsize - ri;
3272 len = si + 1;
3275 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
3277 if (opc == 0) { /* SBFM - sign extend the destination field */
3278 tcg_gen_shli_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3279 tcg_gen_sari_i64(tcg_rd, tcg_rd, 64 - (pos + len));
3282 done:
3283 if (!sf) { /* zero extend final result */
3284 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3288 /* C3.4.3 Extract
3289 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
3290 * +----+------+-------------+---+----+------+--------+------+------+
3291 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
3292 * +----+------+-------------+---+----+------+--------+------+------+
3294 static void disas_extract(DisasContext *s, uint32_t insn)
3296 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
3298 sf = extract32(insn, 31, 1);
3299 n = extract32(insn, 22, 1);
3300 rm = extract32(insn, 16, 5);
3301 imm = extract32(insn, 10, 6);
3302 rn = extract32(insn, 5, 5);
3303 rd = extract32(insn, 0, 5);
3304 op21 = extract32(insn, 29, 2);
3305 op0 = extract32(insn, 21, 1);
3306 bitsize = sf ? 64 : 32;
3308 if (sf != n || op21 || op0 || imm >= bitsize) {
3309 unallocated_encoding(s);
3310 } else {
3311 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
3313 tcg_rd = cpu_reg(s, rd);
3315 if (unlikely(imm == 0)) {
3316 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
3317 * so an extract from bit 0 is a special case.
3319 if (sf) {
3320 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
3321 } else {
3322 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
3324 } else if (rm == rn) { /* ROR */
3325 tcg_rm = cpu_reg(s, rm);
3326 if (sf) {
3327 tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm);
3328 } else {
3329 TCGv_i32 tmp = tcg_temp_new_i32();
3330 tcg_gen_extrl_i64_i32(tmp, tcg_rm);
3331 tcg_gen_rotri_i32(tmp, tmp, imm);
3332 tcg_gen_extu_i32_i64(tcg_rd, tmp);
3333 tcg_temp_free_i32(tmp);
3335 } else {
3336 tcg_rm = read_cpu_reg(s, rm, sf);
3337 tcg_rn = read_cpu_reg(s, rn, sf);
3338 tcg_gen_shri_i64(tcg_rm, tcg_rm, imm);
3339 tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm);
3340 tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn);
3341 if (!sf) {
3342 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3348 /* C3.4 Data processing - immediate */
3349 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
3351 switch (extract32(insn, 23, 6)) {
3352 case 0x20: case 0x21: /* PC-rel. addressing */
3353 disas_pc_rel_adr(s, insn);
3354 break;
3355 case 0x22: case 0x23: /* Add/subtract (immediate) */
3356 disas_add_sub_imm(s, insn);
3357 break;
3358 case 0x24: /* Logical (immediate) */
3359 disas_logic_imm(s, insn);
3360 break;
3361 case 0x25: /* Move wide (immediate) */
3362 disas_movw_imm(s, insn);
3363 break;
3364 case 0x26: /* Bitfield */
3365 disas_bitfield(s, insn);
3366 break;
3367 case 0x27: /* Extract */
3368 disas_extract(s, insn);
3369 break;
3370 default:
3371 unallocated_encoding(s);
3372 break;
3376 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
3377 * Note that it is the caller's responsibility to ensure that the
3378 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
3379 * mandated semantics for out of range shifts.
3381 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
3382 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
3384 switch (shift_type) {
3385 case A64_SHIFT_TYPE_LSL:
3386 tcg_gen_shl_i64(dst, src, shift_amount);
3387 break;
3388 case A64_SHIFT_TYPE_LSR:
3389 tcg_gen_shr_i64(dst, src, shift_amount);
3390 break;
3391 case A64_SHIFT_TYPE_ASR:
3392 if (!sf) {
3393 tcg_gen_ext32s_i64(dst, src);
3395 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
3396 break;
3397 case A64_SHIFT_TYPE_ROR:
3398 if (sf) {
3399 tcg_gen_rotr_i64(dst, src, shift_amount);
3400 } else {
3401 TCGv_i32 t0, t1;
3402 t0 = tcg_temp_new_i32();
3403 t1 = tcg_temp_new_i32();
3404 tcg_gen_extrl_i64_i32(t0, src);
3405 tcg_gen_extrl_i64_i32(t1, shift_amount);
3406 tcg_gen_rotr_i32(t0, t0, t1);
3407 tcg_gen_extu_i32_i64(dst, t0);
3408 tcg_temp_free_i32(t0);
3409 tcg_temp_free_i32(t1);
3411 break;
3412 default:
3413 assert(FALSE); /* all shift types should be handled */
3414 break;
3417 if (!sf) { /* zero extend final result */
3418 tcg_gen_ext32u_i64(dst, dst);
3422 /* Shift a TCGv src by immediate, put result in dst.
3423 * The shift amount must be in range (this should always be true as the
3424 * relevant instructions will UNDEF on bad shift immediates).
3426 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
3427 enum a64_shift_type shift_type, unsigned int shift_i)
3429 assert(shift_i < (sf ? 64 : 32));
3431 if (shift_i == 0) {
3432 tcg_gen_mov_i64(dst, src);
3433 } else {
3434 TCGv_i64 shift_const;
3436 shift_const = tcg_const_i64(shift_i);
3437 shift_reg(dst, src, sf, shift_type, shift_const);
3438 tcg_temp_free_i64(shift_const);
3442 /* C3.5.10 Logical (shifted register)
3443 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3444 * +----+-----+-----------+-------+---+------+--------+------+------+
3445 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
3446 * +----+-----+-----------+-------+---+------+--------+------+------+
3448 static void disas_logic_reg(DisasContext *s, uint32_t insn)
3450 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
3451 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
3453 sf = extract32(insn, 31, 1);
3454 opc = extract32(insn, 29, 2);
3455 shift_type = extract32(insn, 22, 2);
3456 invert = extract32(insn, 21, 1);
3457 rm = extract32(insn, 16, 5);
3458 shift_amount = extract32(insn, 10, 6);
3459 rn = extract32(insn, 5, 5);
3460 rd = extract32(insn, 0, 5);
3462 if (!sf && (shift_amount & (1 << 5))) {
3463 unallocated_encoding(s);
3464 return;
3467 tcg_rd = cpu_reg(s, rd);
3469 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
3470 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
3471 * register-register MOV and MVN, so it is worth special casing.
3473 tcg_rm = cpu_reg(s, rm);
3474 if (invert) {
3475 tcg_gen_not_i64(tcg_rd, tcg_rm);
3476 if (!sf) {
3477 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3479 } else {
3480 if (sf) {
3481 tcg_gen_mov_i64(tcg_rd, tcg_rm);
3482 } else {
3483 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
3486 return;
3489 tcg_rm = read_cpu_reg(s, rm, sf);
3491 if (shift_amount) {
3492 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
3495 tcg_rn = cpu_reg(s, rn);
3497 switch (opc | (invert << 2)) {
3498 case 0: /* AND */
3499 case 3: /* ANDS */
3500 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
3501 break;
3502 case 1: /* ORR */
3503 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
3504 break;
3505 case 2: /* EOR */
3506 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
3507 break;
3508 case 4: /* BIC */
3509 case 7: /* BICS */
3510 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
3511 break;
3512 case 5: /* ORN */
3513 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
3514 break;
3515 case 6: /* EON */
3516 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
3517 break;
3518 default:
3519 assert(FALSE);
3520 break;
3523 if (!sf) {
3524 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3527 if (opc == 3) {
3528 gen_logic_CC(sf, tcg_rd);
3533 * C3.5.1 Add/subtract (extended register)
3535 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
3536 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3537 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
3538 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
3540 * sf: 0 -> 32bit, 1 -> 64bit
3541 * op: 0 -> add , 1 -> sub
3542 * S: 1 -> set flags
3543 * opt: 00
3544 * option: extension type (see DecodeRegExtend)
3545 * imm3: optional shift to Rm
3547 * Rd = Rn + LSL(extend(Rm), amount)
3549 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
3551 int rd = extract32(insn, 0, 5);
3552 int rn = extract32(insn, 5, 5);
3553 int imm3 = extract32(insn, 10, 3);
3554 int option = extract32(insn, 13, 3);
3555 int rm = extract32(insn, 16, 5);
3556 bool setflags = extract32(insn, 29, 1);
3557 bool sub_op = extract32(insn, 30, 1);
3558 bool sf = extract32(insn, 31, 1);
3560 TCGv_i64 tcg_rm, tcg_rn; /* temps */
3561 TCGv_i64 tcg_rd;
3562 TCGv_i64 tcg_result;
3564 if (imm3 > 4) {
3565 unallocated_encoding(s);
3566 return;
3569 /* non-flag setting ops may use SP */
3570 if (!setflags) {
3571 tcg_rd = cpu_reg_sp(s, rd);
3572 } else {
3573 tcg_rd = cpu_reg(s, rd);
3575 tcg_rn = read_cpu_reg_sp(s, rn, sf);
3577 tcg_rm = read_cpu_reg(s, rm, sf);
3578 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
3580 tcg_result = tcg_temp_new_i64();
3582 if (!setflags) {
3583 if (sub_op) {
3584 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3585 } else {
3586 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3588 } else {
3589 if (sub_op) {
3590 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3591 } else {
3592 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3596 if (sf) {
3597 tcg_gen_mov_i64(tcg_rd, tcg_result);
3598 } else {
3599 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3602 tcg_temp_free_i64(tcg_result);
3606 * C3.5.2 Add/subtract (shifted register)
3608 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
3609 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3610 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
3611 * +--+--+--+-----------+-----+--+-------+---------+------+------+
3613 * sf: 0 -> 32bit, 1 -> 64bit
3614 * op: 0 -> add , 1 -> sub
3615 * S: 1 -> set flags
3616 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
3617 * imm6: Shift amount to apply to Rm before the add/sub
3619 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
3621 int rd = extract32(insn, 0, 5);
3622 int rn = extract32(insn, 5, 5);
3623 int imm6 = extract32(insn, 10, 6);
3624 int rm = extract32(insn, 16, 5);
3625 int shift_type = extract32(insn, 22, 2);
3626 bool setflags = extract32(insn, 29, 1);
3627 bool sub_op = extract32(insn, 30, 1);
3628 bool sf = extract32(insn, 31, 1);
3630 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3631 TCGv_i64 tcg_rn, tcg_rm;
3632 TCGv_i64 tcg_result;
3634 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
3635 unallocated_encoding(s);
3636 return;
3639 tcg_rn = read_cpu_reg(s, rn, sf);
3640 tcg_rm = read_cpu_reg(s, rm, sf);
3642 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
3644 tcg_result = tcg_temp_new_i64();
3646 if (!setflags) {
3647 if (sub_op) {
3648 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
3649 } else {
3650 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
3652 } else {
3653 if (sub_op) {
3654 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
3655 } else {
3656 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
3660 if (sf) {
3661 tcg_gen_mov_i64(tcg_rd, tcg_result);
3662 } else {
3663 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
3666 tcg_temp_free_i64(tcg_result);
3669 /* C3.5.9 Data-processing (3 source)
3671 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
3672 +--+------+-----------+------+------+----+------+------+------+
3673 |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
3674 +--+------+-----------+------+------+----+------+------+------+
3677 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
3679 int rd = extract32(insn, 0, 5);
3680 int rn = extract32(insn, 5, 5);
3681 int ra = extract32(insn, 10, 5);
3682 int rm = extract32(insn, 16, 5);
3683 int op_id = (extract32(insn, 29, 3) << 4) |
3684 (extract32(insn, 21, 3) << 1) |
3685 extract32(insn, 15, 1);
3686 bool sf = extract32(insn, 31, 1);
3687 bool is_sub = extract32(op_id, 0, 1);
3688 bool is_high = extract32(op_id, 2, 1);
3689 bool is_signed = false;
3690 TCGv_i64 tcg_op1;
3691 TCGv_i64 tcg_op2;
3692 TCGv_i64 tcg_tmp;
3694 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
3695 switch (op_id) {
3696 case 0x42: /* SMADDL */
3697 case 0x43: /* SMSUBL */
3698 case 0x44: /* SMULH */
3699 is_signed = true;
3700 break;
3701 case 0x0: /* MADD (32bit) */
3702 case 0x1: /* MSUB (32bit) */
3703 case 0x40: /* MADD (64bit) */
3704 case 0x41: /* MSUB (64bit) */
3705 case 0x4a: /* UMADDL */
3706 case 0x4b: /* UMSUBL */
3707 case 0x4c: /* UMULH */
3708 break;
3709 default:
3710 unallocated_encoding(s);
3711 return;
3714 if (is_high) {
3715 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
3716 TCGv_i64 tcg_rd = cpu_reg(s, rd);
3717 TCGv_i64 tcg_rn = cpu_reg(s, rn);
3718 TCGv_i64 tcg_rm = cpu_reg(s, rm);
3720 if (is_signed) {
3721 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3722 } else {
3723 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
3726 tcg_temp_free_i64(low_bits);
3727 return;
3730 tcg_op1 = tcg_temp_new_i64();
3731 tcg_op2 = tcg_temp_new_i64();
3732 tcg_tmp = tcg_temp_new_i64();
3734 if (op_id < 0x42) {
3735 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
3736 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
3737 } else {
3738 if (is_signed) {
3739 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
3740 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
3741 } else {
3742 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
3743 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
3747 if (ra == 31 && !is_sub) {
3748 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
3749 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
3750 } else {
3751 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
3752 if (is_sub) {
3753 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3754 } else {
3755 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
3759 if (!sf) {
3760 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
3763 tcg_temp_free_i64(tcg_op1);
3764 tcg_temp_free_i64(tcg_op2);
3765 tcg_temp_free_i64(tcg_tmp);
3768 /* C3.5.3 - Add/subtract (with carry)
3769 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
3770 * +--+--+--+------------------------+------+---------+------+-----+
3771 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd |
3772 * +--+--+--+------------------------+------+---------+------+-----+
3773 * [000000]
3776 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
3778 unsigned int sf, op, setflags, rm, rn, rd;
3779 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
3781 if (extract32(insn, 10, 6) != 0) {
3782 unallocated_encoding(s);
3783 return;
3786 sf = extract32(insn, 31, 1);
3787 op = extract32(insn, 30, 1);
3788 setflags = extract32(insn, 29, 1);
3789 rm = extract32(insn, 16, 5);
3790 rn = extract32(insn, 5, 5);
3791 rd = extract32(insn, 0, 5);
3793 tcg_rd = cpu_reg(s, rd);
3794 tcg_rn = cpu_reg(s, rn);
3796 if (op) {
3797 tcg_y = new_tmp_a64(s);
3798 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
3799 } else {
3800 tcg_y = cpu_reg(s, rm);
3803 if (setflags) {
3804 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
3805 } else {
3806 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
3810 /* C3.5.4 - C3.5.5 Conditional compare (immediate / register)
3811 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
3812 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3813 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
3814 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
3815 * [1] y [0] [0]
3817 static void disas_cc(DisasContext *s, uint32_t insn)
3819 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
3820 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
3821 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
3822 DisasCompare c;
3824 if (!extract32(insn, 29, 1)) {
3825 unallocated_encoding(s);
3826 return;
3828 if (insn & (1 << 10 | 1 << 4)) {
3829 unallocated_encoding(s);
3830 return;
3832 sf = extract32(insn, 31, 1);
3833 op = extract32(insn, 30, 1);
3834 is_imm = extract32(insn, 11, 1);
3835 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
3836 cond = extract32(insn, 12, 4);
3837 rn = extract32(insn, 5, 5);
3838 nzcv = extract32(insn, 0, 4);
3840 /* Set T0 = !COND. */
3841 tcg_t0 = tcg_temp_new_i32();
3842 arm_test_cc(&c, cond);
3843 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
3844 arm_free_cc(&c);
3846 /* Load the arguments for the new comparison. */
3847 if (is_imm) {
3848 tcg_y = new_tmp_a64(s);
3849 tcg_gen_movi_i64(tcg_y, y);
3850 } else {
3851 tcg_y = cpu_reg(s, y);
3853 tcg_rn = cpu_reg(s, rn);
3855 /* Set the flags for the new comparison. */
3856 tcg_tmp = tcg_temp_new_i64();
3857 if (op) {
3858 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3859 } else {
3860 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
3862 tcg_temp_free_i64(tcg_tmp);
3864 /* If COND was false, force the flags to #nzcv. Compute two masks
3865 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
3866 * For tcg hosts that support ANDC, we can make do with just T1.
3867 * In either case, allow the tcg optimizer to delete any unused mask.
3869 tcg_t1 = tcg_temp_new_i32();
3870 tcg_t2 = tcg_temp_new_i32();
3871 tcg_gen_neg_i32(tcg_t1, tcg_t0);
3872 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
3874 if (nzcv & 8) { /* N */
3875 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
3876 } else {
3877 if (TCG_TARGET_HAS_andc_i32) {
3878 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
3879 } else {
3880 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
3883 if (nzcv & 4) { /* Z */
3884 if (TCG_TARGET_HAS_andc_i32) {
3885 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
3886 } else {
3887 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
3889 } else {
3890 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
3892 if (nzcv & 2) { /* C */
3893 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
3894 } else {
3895 if (TCG_TARGET_HAS_andc_i32) {
3896 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
3897 } else {
3898 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
3901 if (nzcv & 1) { /* V */
3902 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
3903 } else {
3904 if (TCG_TARGET_HAS_andc_i32) {
3905 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
3906 } else {
3907 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
3910 tcg_temp_free_i32(tcg_t0);
3911 tcg_temp_free_i32(tcg_t1);
3912 tcg_temp_free_i32(tcg_t2);
3915 /* C3.5.6 Conditional select
3916 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
3917 * +----+----+---+-----------------+------+------+-----+------+------+
3918 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
3919 * +----+----+---+-----------------+------+------+-----+------+------+
3921 static void disas_cond_select(DisasContext *s, uint32_t insn)
3923 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
3924 TCGv_i64 tcg_rd, zero;
3925 DisasCompare64 c;
3927 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
3928 /* S == 1 or op2<1> == 1 */
3929 unallocated_encoding(s);
3930 return;
3932 sf = extract32(insn, 31, 1);
3933 else_inv = extract32(insn, 30, 1);
3934 rm = extract32(insn, 16, 5);
3935 cond = extract32(insn, 12, 4);
3936 else_inc = extract32(insn, 10, 1);
3937 rn = extract32(insn, 5, 5);
3938 rd = extract32(insn, 0, 5);
3940 tcg_rd = cpu_reg(s, rd);
3942 a64_test_cc(&c, cond);
3943 zero = tcg_const_i64(0);
3945 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
3946 /* CSET & CSETM. */
3947 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
3948 if (else_inv) {
3949 tcg_gen_neg_i64(tcg_rd, tcg_rd);
3951 } else {
3952 TCGv_i64 t_true = cpu_reg(s, rn);
3953 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
3954 if (else_inv && else_inc) {
3955 tcg_gen_neg_i64(t_false, t_false);
3956 } else if (else_inv) {
3957 tcg_gen_not_i64(t_false, t_false);
3958 } else if (else_inc) {
3959 tcg_gen_addi_i64(t_false, t_false, 1);
3961 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
3964 tcg_temp_free_i64(zero);
3965 a64_free_cc(&c);
3967 if (!sf) {
3968 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
3972 static void handle_clz(DisasContext *s, unsigned int sf,
3973 unsigned int rn, unsigned int rd)
3975 TCGv_i64 tcg_rd, tcg_rn;
3976 tcg_rd = cpu_reg(s, rd);
3977 tcg_rn = cpu_reg(s, rn);
3979 if (sf) {
3980 gen_helper_clz64(tcg_rd, tcg_rn);
3981 } else {
3982 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
3983 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
3984 gen_helper_clz(tcg_tmp32, tcg_tmp32);
3985 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
3986 tcg_temp_free_i32(tcg_tmp32);
3990 static void handle_cls(DisasContext *s, unsigned int sf,
3991 unsigned int rn, unsigned int rd)
3993 TCGv_i64 tcg_rd, tcg_rn;
3994 tcg_rd = cpu_reg(s, rd);
3995 tcg_rn = cpu_reg(s, rn);
3997 if (sf) {
3998 gen_helper_cls64(tcg_rd, tcg_rn);
3999 } else {
4000 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4001 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4002 gen_helper_cls32(tcg_tmp32, tcg_tmp32);
4003 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4004 tcg_temp_free_i32(tcg_tmp32);
4008 static void handle_rbit(DisasContext *s, unsigned int sf,
4009 unsigned int rn, unsigned int rd)
4011 TCGv_i64 tcg_rd, tcg_rn;
4012 tcg_rd = cpu_reg(s, rd);
4013 tcg_rn = cpu_reg(s, rn);
4015 if (sf) {
4016 gen_helper_rbit64(tcg_rd, tcg_rn);
4017 } else {
4018 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
4019 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
4020 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
4021 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
4022 tcg_temp_free_i32(tcg_tmp32);
4026 /* C5.6.149 REV with sf==1, opcode==3 ("REV64") */
4027 static void handle_rev64(DisasContext *s, unsigned int sf,
4028 unsigned int rn, unsigned int rd)
4030 if (!sf) {
4031 unallocated_encoding(s);
4032 return;
4034 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
4037 /* C5.6.149 REV with sf==0, opcode==2
4038 * C5.6.151 REV32 (sf==1, opcode==2)
4040 static void handle_rev32(DisasContext *s, unsigned int sf,
4041 unsigned int rn, unsigned int rd)
4043 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4045 if (sf) {
4046 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4047 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4049 /* bswap32_i64 requires zero high word */
4050 tcg_gen_ext32u_i64(tcg_tmp, tcg_rn);
4051 tcg_gen_bswap32_i64(tcg_rd, tcg_tmp);
4052 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4053 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
4054 tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp);
4056 tcg_temp_free_i64(tcg_tmp);
4057 } else {
4058 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn));
4059 tcg_gen_bswap32_i64(tcg_rd, tcg_rd);
4063 /* C5.6.150 REV16 (opcode==1) */
4064 static void handle_rev16(DisasContext *s, unsigned int sf,
4065 unsigned int rn, unsigned int rd)
4067 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4068 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4069 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4071 tcg_gen_andi_i64(tcg_tmp, tcg_rn, 0xffff);
4072 tcg_gen_bswap16_i64(tcg_rd, tcg_tmp);
4074 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 16);
4075 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
4076 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4077 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 16, 16);
4079 if (sf) {
4080 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32);
4081 tcg_gen_andi_i64(tcg_tmp, tcg_tmp, 0xffff);
4082 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4083 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 32, 16);
4085 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 48);
4086 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
4087 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, 48, 16);
4090 tcg_temp_free_i64(tcg_tmp);
4093 /* C3.5.7 Data-processing (1 source)
4094 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4095 * +----+---+---+-----------------+---------+--------+------+------+
4096 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
4097 * +----+---+---+-----------------+---------+--------+------+------+
4099 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
4101 unsigned int sf, opcode, rn, rd;
4103 if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) {
4104 unallocated_encoding(s);
4105 return;
4108 sf = extract32(insn, 31, 1);
4109 opcode = extract32(insn, 10, 6);
4110 rn = extract32(insn, 5, 5);
4111 rd = extract32(insn, 0, 5);
4113 switch (opcode) {
4114 case 0: /* RBIT */
4115 handle_rbit(s, sf, rn, rd);
4116 break;
4117 case 1: /* REV16 */
4118 handle_rev16(s, sf, rn, rd);
4119 break;
4120 case 2: /* REV32 */
4121 handle_rev32(s, sf, rn, rd);
4122 break;
4123 case 3: /* REV64 */
4124 handle_rev64(s, sf, rn, rd);
4125 break;
4126 case 4: /* CLZ */
4127 handle_clz(s, sf, rn, rd);
4128 break;
4129 case 5: /* CLS */
4130 handle_cls(s, sf, rn, rd);
4131 break;
4135 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
4136 unsigned int rm, unsigned int rn, unsigned int rd)
4138 TCGv_i64 tcg_n, tcg_m, tcg_rd;
4139 tcg_rd = cpu_reg(s, rd);
4141 if (!sf && is_signed) {
4142 tcg_n = new_tmp_a64(s);
4143 tcg_m = new_tmp_a64(s);
4144 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
4145 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
4146 } else {
4147 tcg_n = read_cpu_reg(s, rn, sf);
4148 tcg_m = read_cpu_reg(s, rm, sf);
4151 if (is_signed) {
4152 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
4153 } else {
4154 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
4157 if (!sf) { /* zero extend final result */
4158 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4162 /* C5.6.115 LSLV, C5.6.118 LSRV, C5.6.17 ASRV, C5.6.154 RORV */
4163 static void handle_shift_reg(DisasContext *s,
4164 enum a64_shift_type shift_type, unsigned int sf,
4165 unsigned int rm, unsigned int rn, unsigned int rd)
4167 TCGv_i64 tcg_shift = tcg_temp_new_i64();
4168 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4169 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
4171 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
4172 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
4173 tcg_temp_free_i64(tcg_shift);
4176 /* CRC32[BHWX], CRC32C[BHWX] */
4177 static void handle_crc32(DisasContext *s,
4178 unsigned int sf, unsigned int sz, bool crc32c,
4179 unsigned int rm, unsigned int rn, unsigned int rd)
4181 TCGv_i64 tcg_acc, tcg_val;
4182 TCGv_i32 tcg_bytes;
4184 if (!arm_dc_feature(s, ARM_FEATURE_CRC)
4185 || (sf == 1 && sz != 3)
4186 || (sf == 0 && sz == 3)) {
4187 unallocated_encoding(s);
4188 return;
4191 if (sz == 3) {
4192 tcg_val = cpu_reg(s, rm);
4193 } else {
4194 uint64_t mask;
4195 switch (sz) {
4196 case 0:
4197 mask = 0xFF;
4198 break;
4199 case 1:
4200 mask = 0xFFFF;
4201 break;
4202 case 2:
4203 mask = 0xFFFFFFFF;
4204 break;
4205 default:
4206 g_assert_not_reached();
4208 tcg_val = new_tmp_a64(s);
4209 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
4212 tcg_acc = cpu_reg(s, rn);
4213 tcg_bytes = tcg_const_i32(1 << sz);
4215 if (crc32c) {
4216 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4217 } else {
4218 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
4221 tcg_temp_free_i32(tcg_bytes);
4224 /* C3.5.8 Data-processing (2 source)
4225 * 31 30 29 28 21 20 16 15 10 9 5 4 0
4226 * +----+---+---+-----------------+------+--------+------+------+
4227 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
4228 * +----+---+---+-----------------+------+--------+------+------+
4230 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
4232 unsigned int sf, rm, opcode, rn, rd;
4233 sf = extract32(insn, 31, 1);
4234 rm = extract32(insn, 16, 5);
4235 opcode = extract32(insn, 10, 6);
4236 rn = extract32(insn, 5, 5);
4237 rd = extract32(insn, 0, 5);
4239 if (extract32(insn, 29, 1)) {
4240 unallocated_encoding(s);
4241 return;
4244 switch (opcode) {
4245 case 2: /* UDIV */
4246 handle_div(s, false, sf, rm, rn, rd);
4247 break;
4248 case 3: /* SDIV */
4249 handle_div(s, true, sf, rm, rn, rd);
4250 break;
4251 case 8: /* LSLV */
4252 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
4253 break;
4254 case 9: /* LSRV */
4255 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
4256 break;
4257 case 10: /* ASRV */
4258 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
4259 break;
4260 case 11: /* RORV */
4261 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
4262 break;
4263 case 16:
4264 case 17:
4265 case 18:
4266 case 19:
4267 case 20:
4268 case 21:
4269 case 22:
4270 case 23: /* CRC32 */
4272 int sz = extract32(opcode, 0, 2);
4273 bool crc32c = extract32(opcode, 2, 1);
4274 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
4275 break;
4277 default:
4278 unallocated_encoding(s);
4279 break;
4283 /* C3.5 Data processing - register */
4284 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
4286 switch (extract32(insn, 24, 5)) {
4287 case 0x0a: /* Logical (shifted register) */
4288 disas_logic_reg(s, insn);
4289 break;
4290 case 0x0b: /* Add/subtract */
4291 if (insn & (1 << 21)) { /* (extended register) */
4292 disas_add_sub_ext_reg(s, insn);
4293 } else {
4294 disas_add_sub_reg(s, insn);
4296 break;
4297 case 0x1b: /* Data-processing (3 source) */
4298 disas_data_proc_3src(s, insn);
4299 break;
4300 case 0x1a:
4301 switch (extract32(insn, 21, 3)) {
4302 case 0x0: /* Add/subtract (with carry) */
4303 disas_adc_sbc(s, insn);
4304 break;
4305 case 0x2: /* Conditional compare */
4306 disas_cc(s, insn); /* both imm and reg forms */
4307 break;
4308 case 0x4: /* Conditional select */
4309 disas_cond_select(s, insn);
4310 break;
4311 case 0x6: /* Data-processing */
4312 if (insn & (1 << 30)) { /* (1 source) */
4313 disas_data_proc_1src(s, insn);
4314 } else { /* (2 source) */
4315 disas_data_proc_2src(s, insn);
4317 break;
4318 default:
4319 unallocated_encoding(s);
4320 break;
4322 break;
4323 default:
4324 unallocated_encoding(s);
4325 break;
4329 static void handle_fp_compare(DisasContext *s, bool is_double,
4330 unsigned int rn, unsigned int rm,
4331 bool cmp_with_zero, bool signal_all_nans)
4333 TCGv_i64 tcg_flags = tcg_temp_new_i64();
4334 TCGv_ptr fpst = get_fpstatus_ptr();
4336 if (is_double) {
4337 TCGv_i64 tcg_vn, tcg_vm;
4339 tcg_vn = read_fp_dreg(s, rn);
4340 if (cmp_with_zero) {
4341 tcg_vm = tcg_const_i64(0);
4342 } else {
4343 tcg_vm = read_fp_dreg(s, rm);
4345 if (signal_all_nans) {
4346 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4347 } else {
4348 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4350 tcg_temp_free_i64(tcg_vn);
4351 tcg_temp_free_i64(tcg_vm);
4352 } else {
4353 TCGv_i32 tcg_vn, tcg_vm;
4355 tcg_vn = read_fp_sreg(s, rn);
4356 if (cmp_with_zero) {
4357 tcg_vm = tcg_const_i32(0);
4358 } else {
4359 tcg_vm = read_fp_sreg(s, rm);
4361 if (signal_all_nans) {
4362 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4363 } else {
4364 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
4366 tcg_temp_free_i32(tcg_vn);
4367 tcg_temp_free_i32(tcg_vm);
4370 tcg_temp_free_ptr(fpst);
4372 gen_set_nzcv(tcg_flags);
4374 tcg_temp_free_i64(tcg_flags);
4377 /* C3.6.22 Floating point compare
4378 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
4379 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4380 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
4381 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
4383 static void disas_fp_compare(DisasContext *s, uint32_t insn)
4385 unsigned int mos, type, rm, op, rn, opc, op2r;
4387 mos = extract32(insn, 29, 3);
4388 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4389 rm = extract32(insn, 16, 5);
4390 op = extract32(insn, 14, 2);
4391 rn = extract32(insn, 5, 5);
4392 opc = extract32(insn, 3, 2);
4393 op2r = extract32(insn, 0, 3);
4395 if (mos || op || op2r || type > 1) {
4396 unallocated_encoding(s);
4397 return;
4400 if (!fp_access_check(s)) {
4401 return;
4404 handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
4407 /* C3.6.23 Floating point conditional compare
4408 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
4409 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4410 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
4411 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
4413 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
4415 unsigned int mos, type, rm, cond, rn, op, nzcv;
4416 TCGv_i64 tcg_flags;
4417 TCGLabel *label_continue = NULL;
4419 mos = extract32(insn, 29, 3);
4420 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4421 rm = extract32(insn, 16, 5);
4422 cond = extract32(insn, 12, 4);
4423 rn = extract32(insn, 5, 5);
4424 op = extract32(insn, 4, 1);
4425 nzcv = extract32(insn, 0, 4);
4427 if (mos || type > 1) {
4428 unallocated_encoding(s);
4429 return;
4432 if (!fp_access_check(s)) {
4433 return;
4436 if (cond < 0x0e) { /* not always */
4437 TCGLabel *label_match = gen_new_label();
4438 label_continue = gen_new_label();
4439 arm_gen_test_cc(cond, label_match);
4440 /* nomatch: */
4441 tcg_flags = tcg_const_i64(nzcv << 28);
4442 gen_set_nzcv(tcg_flags);
4443 tcg_temp_free_i64(tcg_flags);
4444 tcg_gen_br(label_continue);
4445 gen_set_label(label_match);
4448 handle_fp_compare(s, type, rn, rm, false, op);
4450 if (cond < 0x0e) {
4451 gen_set_label(label_continue);
4455 /* C3.6.24 Floating point conditional select
4456 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4457 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4458 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
4459 * +---+---+---+-----------+------+---+------+------+-----+------+------+
4461 static void disas_fp_csel(DisasContext *s, uint32_t insn)
4463 unsigned int mos, type, rm, cond, rn, rd;
4464 TCGv_i64 t_true, t_false, t_zero;
4465 DisasCompare64 c;
4467 mos = extract32(insn, 29, 3);
4468 type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
4469 rm = extract32(insn, 16, 5);
4470 cond = extract32(insn, 12, 4);
4471 rn = extract32(insn, 5, 5);
4472 rd = extract32(insn, 0, 5);
4474 if (mos || type > 1) {
4475 unallocated_encoding(s);
4476 return;
4479 if (!fp_access_check(s)) {
4480 return;
4483 /* Zero extend sreg inputs to 64 bits now. */
4484 t_true = tcg_temp_new_i64();
4485 t_false = tcg_temp_new_i64();
4486 read_vec_element(s, t_true, rn, 0, type ? MO_64 : MO_32);
4487 read_vec_element(s, t_false, rm, 0, type ? MO_64 : MO_32);
4489 a64_test_cc(&c, cond);
4490 t_zero = tcg_const_i64(0);
4491 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
4492 tcg_temp_free_i64(t_zero);
4493 tcg_temp_free_i64(t_false);
4494 a64_free_cc(&c);
4496 /* Note that sregs write back zeros to the high bits,
4497 and we've already done the zero-extension. */
4498 write_fp_dreg(s, rd, t_true);
4499 tcg_temp_free_i64(t_true);
4502 /* C3.6.25 Floating-point data-processing (1 source) - single precision */
4503 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
4505 TCGv_ptr fpst;
4506 TCGv_i32 tcg_op;
4507 TCGv_i32 tcg_res;
4509 fpst = get_fpstatus_ptr();
4510 tcg_op = read_fp_sreg(s, rn);
4511 tcg_res = tcg_temp_new_i32();
4513 switch (opcode) {
4514 case 0x0: /* FMOV */
4515 tcg_gen_mov_i32(tcg_res, tcg_op);
4516 break;
4517 case 0x1: /* FABS */
4518 gen_helper_vfp_abss(tcg_res, tcg_op);
4519 break;
4520 case 0x2: /* FNEG */
4521 gen_helper_vfp_negs(tcg_res, tcg_op);
4522 break;
4523 case 0x3: /* FSQRT */
4524 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
4525 break;
4526 case 0x8: /* FRINTN */
4527 case 0x9: /* FRINTP */
4528 case 0xa: /* FRINTM */
4529 case 0xb: /* FRINTZ */
4530 case 0xc: /* FRINTA */
4532 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4534 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4535 gen_helper_rints(tcg_res, tcg_op, fpst);
4537 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4538 tcg_temp_free_i32(tcg_rmode);
4539 break;
4541 case 0xe: /* FRINTX */
4542 gen_helper_rints_exact(tcg_res, tcg_op, fpst);
4543 break;
4544 case 0xf: /* FRINTI */
4545 gen_helper_rints(tcg_res, tcg_op, fpst);
4546 break;
4547 default:
4548 abort();
4551 write_fp_sreg(s, rd, tcg_res);
4553 tcg_temp_free_ptr(fpst);
4554 tcg_temp_free_i32(tcg_op);
4555 tcg_temp_free_i32(tcg_res);
4558 /* C3.6.25 Floating-point data-processing (1 source) - double precision */
4559 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
4561 TCGv_ptr fpst;
4562 TCGv_i64 tcg_op;
4563 TCGv_i64 tcg_res;
4565 fpst = get_fpstatus_ptr();
4566 tcg_op = read_fp_dreg(s, rn);
4567 tcg_res = tcg_temp_new_i64();
4569 switch (opcode) {
4570 case 0x0: /* FMOV */
4571 tcg_gen_mov_i64(tcg_res, tcg_op);
4572 break;
4573 case 0x1: /* FABS */
4574 gen_helper_vfp_absd(tcg_res, tcg_op);
4575 break;
4576 case 0x2: /* FNEG */
4577 gen_helper_vfp_negd(tcg_res, tcg_op);
4578 break;
4579 case 0x3: /* FSQRT */
4580 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
4581 break;
4582 case 0x8: /* FRINTN */
4583 case 0x9: /* FRINTP */
4584 case 0xa: /* FRINTM */
4585 case 0xb: /* FRINTZ */
4586 case 0xc: /* FRINTA */
4588 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
4590 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4591 gen_helper_rintd(tcg_res, tcg_op, fpst);
4593 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
4594 tcg_temp_free_i32(tcg_rmode);
4595 break;
4597 case 0xe: /* FRINTX */
4598 gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
4599 break;
4600 case 0xf: /* FRINTI */
4601 gen_helper_rintd(tcg_res, tcg_op, fpst);
4602 break;
4603 default:
4604 abort();
4607 write_fp_dreg(s, rd, tcg_res);
4609 tcg_temp_free_ptr(fpst);
4610 tcg_temp_free_i64(tcg_op);
4611 tcg_temp_free_i64(tcg_res);
4614 static void handle_fp_fcvt(DisasContext *s, int opcode,
4615 int rd, int rn, int dtype, int ntype)
4617 switch (ntype) {
4618 case 0x0:
4620 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4621 if (dtype == 1) {
4622 /* Single to double */
4623 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4624 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
4625 write_fp_dreg(s, rd, tcg_rd);
4626 tcg_temp_free_i64(tcg_rd);
4627 } else {
4628 /* Single to half */
4629 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4630 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
4631 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4632 write_fp_sreg(s, rd, tcg_rd);
4633 tcg_temp_free_i32(tcg_rd);
4635 tcg_temp_free_i32(tcg_rn);
4636 break;
4638 case 0x1:
4640 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
4641 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4642 if (dtype == 0) {
4643 /* Double to single */
4644 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
4645 } else {
4646 /* Double to half */
4647 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
4648 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
4650 write_fp_sreg(s, rd, tcg_rd);
4651 tcg_temp_free_i32(tcg_rd);
4652 tcg_temp_free_i64(tcg_rn);
4653 break;
4655 case 0x3:
4657 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
4658 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
4659 if (dtype == 0) {
4660 /* Half to single */
4661 TCGv_i32 tcg_rd = tcg_temp_new_i32();
4662 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
4663 write_fp_sreg(s, rd, tcg_rd);
4664 tcg_temp_free_i32(tcg_rd);
4665 } else {
4666 /* Half to double */
4667 TCGv_i64 tcg_rd = tcg_temp_new_i64();
4668 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
4669 write_fp_dreg(s, rd, tcg_rd);
4670 tcg_temp_free_i64(tcg_rd);
4672 tcg_temp_free_i32(tcg_rn);
4673 break;
4675 default:
4676 abort();
4680 /* C3.6.25 Floating point data-processing (1 source)
4681 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
4682 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4683 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
4684 * +---+---+---+-----------+------+---+--------+-----------+------+------+
4686 static void disas_fp_1src(DisasContext *s, uint32_t insn)
4688 int type = extract32(insn, 22, 2);
4689 int opcode = extract32(insn, 15, 6);
4690 int rn = extract32(insn, 5, 5);
4691 int rd = extract32(insn, 0, 5);
4693 switch (opcode) {
4694 case 0x4: case 0x5: case 0x7:
4696 /* FCVT between half, single and double precision */
4697 int dtype = extract32(opcode, 0, 2);
4698 if (type == 2 || dtype == type) {
4699 unallocated_encoding(s);
4700 return;
4702 if (!fp_access_check(s)) {
4703 return;
4706 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
4707 break;
4709 case 0x0 ... 0x3:
4710 case 0x8 ... 0xc:
4711 case 0xe ... 0xf:
4712 /* 32-to-32 and 64-to-64 ops */
4713 switch (type) {
4714 case 0:
4715 if (!fp_access_check(s)) {
4716 return;
4719 handle_fp_1src_single(s, opcode, rd, rn);
4720 break;
4721 case 1:
4722 if (!fp_access_check(s)) {
4723 return;
4726 handle_fp_1src_double(s, opcode, rd, rn);
4727 break;
4728 default:
4729 unallocated_encoding(s);
4731 break;
4732 default:
4733 unallocated_encoding(s);
4734 break;
4738 /* C3.6.26 Floating-point data-processing (2 source) - single precision */
4739 static void handle_fp_2src_single(DisasContext *s, int opcode,
4740 int rd, int rn, int rm)
4742 TCGv_i32 tcg_op1;
4743 TCGv_i32 tcg_op2;
4744 TCGv_i32 tcg_res;
4745 TCGv_ptr fpst;
4747 tcg_res = tcg_temp_new_i32();
4748 fpst = get_fpstatus_ptr();
4749 tcg_op1 = read_fp_sreg(s, rn);
4750 tcg_op2 = read_fp_sreg(s, rm);
4752 switch (opcode) {
4753 case 0x0: /* FMUL */
4754 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4755 break;
4756 case 0x1: /* FDIV */
4757 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
4758 break;
4759 case 0x2: /* FADD */
4760 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
4761 break;
4762 case 0x3: /* FSUB */
4763 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
4764 break;
4765 case 0x4: /* FMAX */
4766 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
4767 break;
4768 case 0x5: /* FMIN */
4769 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
4770 break;
4771 case 0x6: /* FMAXNM */
4772 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
4773 break;
4774 case 0x7: /* FMINNM */
4775 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
4776 break;
4777 case 0x8: /* FNMUL */
4778 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
4779 gen_helper_vfp_negs(tcg_res, tcg_res);
4780 break;
4783 write_fp_sreg(s, rd, tcg_res);
4785 tcg_temp_free_ptr(fpst);
4786 tcg_temp_free_i32(tcg_op1);
4787 tcg_temp_free_i32(tcg_op2);
4788 tcg_temp_free_i32(tcg_res);
4791 /* C3.6.26 Floating-point data-processing (2 source) - double precision */
4792 static void handle_fp_2src_double(DisasContext *s, int opcode,
4793 int rd, int rn, int rm)
4795 TCGv_i64 tcg_op1;
4796 TCGv_i64 tcg_op2;
4797 TCGv_i64 tcg_res;
4798 TCGv_ptr fpst;
4800 tcg_res = tcg_temp_new_i64();
4801 fpst = get_fpstatus_ptr();
4802 tcg_op1 = read_fp_dreg(s, rn);
4803 tcg_op2 = read_fp_dreg(s, rm);
4805 switch (opcode) {
4806 case 0x0: /* FMUL */
4807 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4808 break;
4809 case 0x1: /* FDIV */
4810 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
4811 break;
4812 case 0x2: /* FADD */
4813 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
4814 break;
4815 case 0x3: /* FSUB */
4816 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
4817 break;
4818 case 0x4: /* FMAX */
4819 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
4820 break;
4821 case 0x5: /* FMIN */
4822 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
4823 break;
4824 case 0x6: /* FMAXNM */
4825 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4826 break;
4827 case 0x7: /* FMINNM */
4828 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
4829 break;
4830 case 0x8: /* FNMUL */
4831 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
4832 gen_helper_vfp_negd(tcg_res, tcg_res);
4833 break;
4836 write_fp_dreg(s, rd, tcg_res);
4838 tcg_temp_free_ptr(fpst);
4839 tcg_temp_free_i64(tcg_op1);
4840 tcg_temp_free_i64(tcg_op2);
4841 tcg_temp_free_i64(tcg_res);
4844 /* C3.6.26 Floating point data-processing (2 source)
4845 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
4846 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4847 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
4848 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
4850 static void disas_fp_2src(DisasContext *s, uint32_t insn)
4852 int type = extract32(insn, 22, 2);
4853 int rd = extract32(insn, 0, 5);
4854 int rn = extract32(insn, 5, 5);
4855 int rm = extract32(insn, 16, 5);
4856 int opcode = extract32(insn, 12, 4);
4858 if (opcode > 8) {
4859 unallocated_encoding(s);
4860 return;
4863 switch (type) {
4864 case 0:
4865 if (!fp_access_check(s)) {
4866 return;
4868 handle_fp_2src_single(s, opcode, rd, rn, rm);
4869 break;
4870 case 1:
4871 if (!fp_access_check(s)) {
4872 return;
4874 handle_fp_2src_double(s, opcode, rd, rn, rm);
4875 break;
4876 default:
4877 unallocated_encoding(s);
4881 /* C3.6.27 Floating-point data-processing (3 source) - single precision */
4882 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
4883 int rd, int rn, int rm, int ra)
4885 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
4886 TCGv_i32 tcg_res = tcg_temp_new_i32();
4887 TCGv_ptr fpst = get_fpstatus_ptr();
4889 tcg_op1 = read_fp_sreg(s, rn);
4890 tcg_op2 = read_fp_sreg(s, rm);
4891 tcg_op3 = read_fp_sreg(s, ra);
4893 /* These are fused multiply-add, and must be done as one
4894 * floating point operation with no rounding between the
4895 * multiplication and addition steps.
4896 * NB that doing the negations here as separate steps is
4897 * correct : an input NaN should come out with its sign bit
4898 * flipped if it is a negated-input.
4900 if (o1 == true) {
4901 gen_helper_vfp_negs(tcg_op3, tcg_op3);
4904 if (o0 != o1) {
4905 gen_helper_vfp_negs(tcg_op1, tcg_op1);
4908 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4910 write_fp_sreg(s, rd, tcg_res);
4912 tcg_temp_free_ptr(fpst);
4913 tcg_temp_free_i32(tcg_op1);
4914 tcg_temp_free_i32(tcg_op2);
4915 tcg_temp_free_i32(tcg_op3);
4916 tcg_temp_free_i32(tcg_res);
4919 /* C3.6.27 Floating-point data-processing (3 source) - double precision */
4920 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
4921 int rd, int rn, int rm, int ra)
4923 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
4924 TCGv_i64 tcg_res = tcg_temp_new_i64();
4925 TCGv_ptr fpst = get_fpstatus_ptr();
4927 tcg_op1 = read_fp_dreg(s, rn);
4928 tcg_op2 = read_fp_dreg(s, rm);
4929 tcg_op3 = read_fp_dreg(s, ra);
4931 /* These are fused multiply-add, and must be done as one
4932 * floating point operation with no rounding between the
4933 * multiplication and addition steps.
4934 * NB that doing the negations here as separate steps is
4935 * correct : an input NaN should come out with its sign bit
4936 * flipped if it is a negated-input.
4938 if (o1 == true) {
4939 gen_helper_vfp_negd(tcg_op3, tcg_op3);
4942 if (o0 != o1) {
4943 gen_helper_vfp_negd(tcg_op1, tcg_op1);
4946 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
4948 write_fp_dreg(s, rd, tcg_res);
4950 tcg_temp_free_ptr(fpst);
4951 tcg_temp_free_i64(tcg_op1);
4952 tcg_temp_free_i64(tcg_op2);
4953 tcg_temp_free_i64(tcg_op3);
4954 tcg_temp_free_i64(tcg_res);
4957 /* C3.6.27 Floating point data-processing (3 source)
4958 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
4959 * +---+---+---+-----------+------+----+------+----+------+------+------+
4960 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
4961 * +---+---+---+-----------+------+----+------+----+------+------+------+
4963 static void disas_fp_3src(DisasContext *s, uint32_t insn)
4965 int type = extract32(insn, 22, 2);
4966 int rd = extract32(insn, 0, 5);
4967 int rn = extract32(insn, 5, 5);
4968 int ra = extract32(insn, 10, 5);
4969 int rm = extract32(insn, 16, 5);
4970 bool o0 = extract32(insn, 15, 1);
4971 bool o1 = extract32(insn, 21, 1);
4973 switch (type) {
4974 case 0:
4975 if (!fp_access_check(s)) {
4976 return;
4978 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
4979 break;
4980 case 1:
4981 if (!fp_access_check(s)) {
4982 return;
4984 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
4985 break;
4986 default:
4987 unallocated_encoding(s);
4991 /* C3.6.28 Floating point immediate
4992 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
4993 * +---+---+---+-----------+------+---+------------+-------+------+------+
4994 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
4995 * +---+---+---+-----------+------+---+------------+-------+------+------+
4997 static void disas_fp_imm(DisasContext *s, uint32_t insn)
4999 int rd = extract32(insn, 0, 5);
5000 int imm8 = extract32(insn, 13, 8);
5001 int is_double = extract32(insn, 22, 2);
5002 uint64_t imm;
5003 TCGv_i64 tcg_res;
5005 if (is_double > 1) {
5006 unallocated_encoding(s);
5007 return;
5010 if (!fp_access_check(s)) {
5011 return;
5014 /* The imm8 encodes the sign bit, enough bits to represent
5015 * an exponent in the range 01....1xx to 10....0xx,
5016 * and the most significant 4 bits of the mantissa; see
5017 * VFPExpandImm() in the v8 ARM ARM.
5019 if (is_double) {
5020 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5021 (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
5022 extract32(imm8, 0, 6);
5023 imm <<= 48;
5024 } else {
5025 imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
5026 (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
5027 (extract32(imm8, 0, 6) << 3);
5028 imm <<= 16;
5031 tcg_res = tcg_const_i64(imm);
5032 write_fp_dreg(s, rd, tcg_res);
5033 tcg_temp_free_i64(tcg_res);
5036 /* Handle floating point <=> fixed point conversions. Note that we can
5037 * also deal with fp <=> integer conversions as a special case (scale == 64)
5038 * OPTME: consider handling that special case specially or at least skipping
5039 * the call to scalbn in the helpers for zero shifts.
5041 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
5042 bool itof, int rmode, int scale, int sf, int type)
5044 bool is_signed = !(opcode & 1);
5045 bool is_double = type;
5046 TCGv_ptr tcg_fpstatus;
5047 TCGv_i32 tcg_shift;
5049 tcg_fpstatus = get_fpstatus_ptr();
5051 tcg_shift = tcg_const_i32(64 - scale);
5053 if (itof) {
5054 TCGv_i64 tcg_int = cpu_reg(s, rn);
5055 if (!sf) {
5056 TCGv_i64 tcg_extend = new_tmp_a64(s);
5058 if (is_signed) {
5059 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
5060 } else {
5061 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
5064 tcg_int = tcg_extend;
5067 if (is_double) {
5068 TCGv_i64 tcg_double = tcg_temp_new_i64();
5069 if (is_signed) {
5070 gen_helper_vfp_sqtod(tcg_double, tcg_int,
5071 tcg_shift, tcg_fpstatus);
5072 } else {
5073 gen_helper_vfp_uqtod(tcg_double, tcg_int,
5074 tcg_shift, tcg_fpstatus);
5076 write_fp_dreg(s, rd, tcg_double);
5077 tcg_temp_free_i64(tcg_double);
5078 } else {
5079 TCGv_i32 tcg_single = tcg_temp_new_i32();
5080 if (is_signed) {
5081 gen_helper_vfp_sqtos(tcg_single, tcg_int,
5082 tcg_shift, tcg_fpstatus);
5083 } else {
5084 gen_helper_vfp_uqtos(tcg_single, tcg_int,
5085 tcg_shift, tcg_fpstatus);
5087 write_fp_sreg(s, rd, tcg_single);
5088 tcg_temp_free_i32(tcg_single);
5090 } else {
5091 TCGv_i64 tcg_int = cpu_reg(s, rd);
5092 TCGv_i32 tcg_rmode;
5094 if (extract32(opcode, 2, 1)) {
5095 /* There are too many rounding modes to all fit into rmode,
5096 * so FCVTA[US] is a special case.
5098 rmode = FPROUNDING_TIEAWAY;
5101 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
5103 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5105 if (is_double) {
5106 TCGv_i64 tcg_double = read_fp_dreg(s, rn);
5107 if (is_signed) {
5108 if (!sf) {
5109 gen_helper_vfp_tosld(tcg_int, tcg_double,
5110 tcg_shift, tcg_fpstatus);
5111 } else {
5112 gen_helper_vfp_tosqd(tcg_int, tcg_double,
5113 tcg_shift, tcg_fpstatus);
5115 } else {
5116 if (!sf) {
5117 gen_helper_vfp_tould(tcg_int, tcg_double,
5118 tcg_shift, tcg_fpstatus);
5119 } else {
5120 gen_helper_vfp_touqd(tcg_int, tcg_double,
5121 tcg_shift, tcg_fpstatus);
5124 tcg_temp_free_i64(tcg_double);
5125 } else {
5126 TCGv_i32 tcg_single = read_fp_sreg(s, rn);
5127 if (sf) {
5128 if (is_signed) {
5129 gen_helper_vfp_tosqs(tcg_int, tcg_single,
5130 tcg_shift, tcg_fpstatus);
5131 } else {
5132 gen_helper_vfp_touqs(tcg_int, tcg_single,
5133 tcg_shift, tcg_fpstatus);
5135 } else {
5136 TCGv_i32 tcg_dest = tcg_temp_new_i32();
5137 if (is_signed) {
5138 gen_helper_vfp_tosls(tcg_dest, tcg_single,
5139 tcg_shift, tcg_fpstatus);
5140 } else {
5141 gen_helper_vfp_touls(tcg_dest, tcg_single,
5142 tcg_shift, tcg_fpstatus);
5144 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
5145 tcg_temp_free_i32(tcg_dest);
5147 tcg_temp_free_i32(tcg_single);
5150 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
5151 tcg_temp_free_i32(tcg_rmode);
5153 if (!sf) {
5154 tcg_gen_ext32u_i64(tcg_int, tcg_int);
5158 tcg_temp_free_ptr(tcg_fpstatus);
5159 tcg_temp_free_i32(tcg_shift);
5162 /* C3.6.29 Floating point <-> fixed point conversions
5163 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5164 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5165 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
5166 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
5168 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
5170 int rd = extract32(insn, 0, 5);
5171 int rn = extract32(insn, 5, 5);
5172 int scale = extract32(insn, 10, 6);
5173 int opcode = extract32(insn, 16, 3);
5174 int rmode = extract32(insn, 19, 2);
5175 int type = extract32(insn, 22, 2);
5176 bool sbit = extract32(insn, 29, 1);
5177 bool sf = extract32(insn, 31, 1);
5178 bool itof;
5180 if (sbit || (type > 1)
5181 || (!sf && scale < 32)) {
5182 unallocated_encoding(s);
5183 return;
5186 switch ((rmode << 3) | opcode) {
5187 case 0x2: /* SCVTF */
5188 case 0x3: /* UCVTF */
5189 itof = true;
5190 break;
5191 case 0x18: /* FCVTZS */
5192 case 0x19: /* FCVTZU */
5193 itof = false;
5194 break;
5195 default:
5196 unallocated_encoding(s);
5197 return;
5200 if (!fp_access_check(s)) {
5201 return;
5204 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
5207 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
5209 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
5210 * without conversion.
5213 if (itof) {
5214 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5216 switch (type) {
5217 case 0:
5219 /* 32 bit */
5220 TCGv_i64 tmp = tcg_temp_new_i64();
5221 tcg_gen_ext32u_i64(tmp, tcg_rn);
5222 tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(s, rd, MO_64));
5223 tcg_gen_movi_i64(tmp, 0);
5224 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5225 tcg_temp_free_i64(tmp);
5226 break;
5228 case 1:
5230 /* 64 bit */
5231 TCGv_i64 tmp = tcg_const_i64(0);
5232 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(s, rd, MO_64));
5233 tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(s, rd));
5234 tcg_temp_free_i64(tmp);
5235 break;
5237 case 2:
5238 /* 64 bit to top half. */
5239 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
5240 break;
5242 } else {
5243 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5245 switch (type) {
5246 case 0:
5247 /* 32 bit */
5248 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
5249 break;
5250 case 1:
5251 /* 64 bit */
5252 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
5253 break;
5254 case 2:
5255 /* 64 bits from top half */
5256 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
5257 break;
5262 /* C3.6.30 Floating point <-> integer conversions
5263 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
5264 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5265 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
5266 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
5268 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
5270 int rd = extract32(insn, 0, 5);
5271 int rn = extract32(insn, 5, 5);
5272 int opcode = extract32(insn, 16, 3);
5273 int rmode = extract32(insn, 19, 2);
5274 int type = extract32(insn, 22, 2);
5275 bool sbit = extract32(insn, 29, 1);
5276 bool sf = extract32(insn, 31, 1);
5278 if (sbit) {
5279 unallocated_encoding(s);
5280 return;
5283 if (opcode > 5) {
5284 /* FMOV */
5285 bool itof = opcode & 1;
5287 if (rmode >= 2) {
5288 unallocated_encoding(s);
5289 return;
5292 switch (sf << 3 | type << 1 | rmode) {
5293 case 0x0: /* 32 bit */
5294 case 0xa: /* 64 bit */
5295 case 0xd: /* 64 bit to top half of quad */
5296 break;
5297 default:
5298 /* all other sf/type/rmode combinations are invalid */
5299 unallocated_encoding(s);
5300 break;
5303 if (!fp_access_check(s)) {
5304 return;
5306 handle_fmov(s, rd, rn, type, itof);
5307 } else {
5308 /* actual FP conversions */
5309 bool itof = extract32(opcode, 1, 1);
5311 if (type > 1 || (rmode != 0 && opcode > 1)) {
5312 unallocated_encoding(s);
5313 return;
5316 if (!fp_access_check(s)) {
5317 return;
5319 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
5323 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
5324 * 31 30 29 28 25 24 0
5325 * +---+---+---+---------+-----------------------------+
5326 * | | 0 | | 1 1 1 1 | |
5327 * +---+---+---+---------+-----------------------------+
5329 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
5331 if (extract32(insn, 24, 1)) {
5332 /* Floating point data-processing (3 source) */
5333 disas_fp_3src(s, insn);
5334 } else if (extract32(insn, 21, 1) == 0) {
5335 /* Floating point to fixed point conversions */
5336 disas_fp_fixed_conv(s, insn);
5337 } else {
5338 switch (extract32(insn, 10, 2)) {
5339 case 1:
5340 /* Floating point conditional compare */
5341 disas_fp_ccomp(s, insn);
5342 break;
5343 case 2:
5344 /* Floating point data-processing (2 source) */
5345 disas_fp_2src(s, insn);
5346 break;
5347 case 3:
5348 /* Floating point conditional select */
5349 disas_fp_csel(s, insn);
5350 break;
5351 case 0:
5352 switch (ctz32(extract32(insn, 12, 4))) {
5353 case 0: /* [15:12] == xxx1 */
5354 /* Floating point immediate */
5355 disas_fp_imm(s, insn);
5356 break;
5357 case 1: /* [15:12] == xx10 */
5358 /* Floating point compare */
5359 disas_fp_compare(s, insn);
5360 break;
5361 case 2: /* [15:12] == x100 */
5362 /* Floating point data-processing (1 source) */
5363 disas_fp_1src(s, insn);
5364 break;
5365 case 3: /* [15:12] == 1000 */
5366 unallocated_encoding(s);
5367 break;
5368 default: /* [15:12] == 0000 */
5369 /* Floating point <-> integer conversions */
5370 disas_fp_int_conv(s, insn);
5371 break;
5373 break;
5378 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
5379 int pos)
5381 /* Extract 64 bits from the middle of two concatenated 64 bit
5382 * vector register slices left:right. The extracted bits start
5383 * at 'pos' bits into the right (least significant) side.
5384 * We return the result in tcg_right, and guarantee not to
5385 * trash tcg_left.
5387 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5388 assert(pos > 0 && pos < 64);
5390 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
5391 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
5392 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
5394 tcg_temp_free_i64(tcg_tmp);
5397 /* C3.6.1 EXT
5398 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
5399 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5400 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
5401 * +---+---+-------------+-----+---+------+---+------+---+------+------+
5403 static void disas_simd_ext(DisasContext *s, uint32_t insn)
5405 int is_q = extract32(insn, 30, 1);
5406 int op2 = extract32(insn, 22, 2);
5407 int imm4 = extract32(insn, 11, 4);
5408 int rm = extract32(insn, 16, 5);
5409 int rn = extract32(insn, 5, 5);
5410 int rd = extract32(insn, 0, 5);
5411 int pos = imm4 << 3;
5412 TCGv_i64 tcg_resl, tcg_resh;
5414 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
5415 unallocated_encoding(s);
5416 return;
5419 if (!fp_access_check(s)) {
5420 return;
5423 tcg_resh = tcg_temp_new_i64();
5424 tcg_resl = tcg_temp_new_i64();
5426 /* Vd gets bits starting at pos bits into Vm:Vn. This is
5427 * either extracting 128 bits from a 128:128 concatenation, or
5428 * extracting 64 bits from a 64:64 concatenation.
5430 if (!is_q) {
5431 read_vec_element(s, tcg_resl, rn, 0, MO_64);
5432 if (pos != 0) {
5433 read_vec_element(s, tcg_resh, rm, 0, MO_64);
5434 do_ext64(s, tcg_resh, tcg_resl, pos);
5436 tcg_gen_movi_i64(tcg_resh, 0);
5437 } else {
5438 TCGv_i64 tcg_hh;
5439 typedef struct {
5440 int reg;
5441 int elt;
5442 } EltPosns;
5443 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
5444 EltPosns *elt = eltposns;
5446 if (pos >= 64) {
5447 elt++;
5448 pos -= 64;
5451 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
5452 elt++;
5453 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
5454 elt++;
5455 if (pos != 0) {
5456 do_ext64(s, tcg_resh, tcg_resl, pos);
5457 tcg_hh = tcg_temp_new_i64();
5458 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
5459 do_ext64(s, tcg_hh, tcg_resh, pos);
5460 tcg_temp_free_i64(tcg_hh);
5464 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5465 tcg_temp_free_i64(tcg_resl);
5466 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5467 tcg_temp_free_i64(tcg_resh);
5470 /* C3.6.2 TBL/TBX
5471 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
5472 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5473 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
5474 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
5476 static void disas_simd_tb(DisasContext *s, uint32_t insn)
5478 int op2 = extract32(insn, 22, 2);
5479 int is_q = extract32(insn, 30, 1);
5480 int rm = extract32(insn, 16, 5);
5481 int rn = extract32(insn, 5, 5);
5482 int rd = extract32(insn, 0, 5);
5483 int is_tblx = extract32(insn, 12, 1);
5484 int len = extract32(insn, 13, 2);
5485 TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
5486 TCGv_i32 tcg_regno, tcg_numregs;
5488 if (op2 != 0) {
5489 unallocated_encoding(s);
5490 return;
5493 if (!fp_access_check(s)) {
5494 return;
5497 /* This does a table lookup: for every byte element in the input
5498 * we index into a table formed from up to four vector registers,
5499 * and then the output is the result of the lookups. Our helper
5500 * function does the lookup operation for a single 64 bit part of
5501 * the input.
5503 tcg_resl = tcg_temp_new_i64();
5504 tcg_resh = tcg_temp_new_i64();
5506 if (is_tblx) {
5507 read_vec_element(s, tcg_resl, rd, 0, MO_64);
5508 } else {
5509 tcg_gen_movi_i64(tcg_resl, 0);
5511 if (is_tblx && is_q) {
5512 read_vec_element(s, tcg_resh, rd, 1, MO_64);
5513 } else {
5514 tcg_gen_movi_i64(tcg_resh, 0);
5517 tcg_idx = tcg_temp_new_i64();
5518 tcg_regno = tcg_const_i32(rn);
5519 tcg_numregs = tcg_const_i32(len + 1);
5520 read_vec_element(s, tcg_idx, rm, 0, MO_64);
5521 gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
5522 tcg_regno, tcg_numregs);
5523 if (is_q) {
5524 read_vec_element(s, tcg_idx, rm, 1, MO_64);
5525 gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
5526 tcg_regno, tcg_numregs);
5528 tcg_temp_free_i64(tcg_idx);
5529 tcg_temp_free_i32(tcg_regno);
5530 tcg_temp_free_i32(tcg_numregs);
5532 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5533 tcg_temp_free_i64(tcg_resl);
5534 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5535 tcg_temp_free_i64(tcg_resh);
5538 /* C3.6.3 ZIP/UZP/TRN
5539 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
5540 * +---+---+-------------+------+---+------+---+------------------+------+
5541 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
5542 * +---+---+-------------+------+---+------+---+------------------+------+
5544 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
5546 int rd = extract32(insn, 0, 5);
5547 int rn = extract32(insn, 5, 5);
5548 int rm = extract32(insn, 16, 5);
5549 int size = extract32(insn, 22, 2);
5550 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
5551 * bit 2 indicates 1 vs 2 variant of the insn.
5553 int opcode = extract32(insn, 12, 2);
5554 bool part = extract32(insn, 14, 1);
5555 bool is_q = extract32(insn, 30, 1);
5556 int esize = 8 << size;
5557 int i, ofs;
5558 int datasize = is_q ? 128 : 64;
5559 int elements = datasize / esize;
5560 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
5562 if (opcode == 0 || (size == 3 && !is_q)) {
5563 unallocated_encoding(s);
5564 return;
5567 if (!fp_access_check(s)) {
5568 return;
5571 tcg_resl = tcg_const_i64(0);
5572 tcg_resh = tcg_const_i64(0);
5573 tcg_res = tcg_temp_new_i64();
5575 for (i = 0; i < elements; i++) {
5576 switch (opcode) {
5577 case 1: /* UZP1/2 */
5579 int midpoint = elements / 2;
5580 if (i < midpoint) {
5581 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
5582 } else {
5583 read_vec_element(s, tcg_res, rm,
5584 2 * (i - midpoint) + part, size);
5586 break;
5588 case 2: /* TRN1/2 */
5589 if (i & 1) {
5590 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
5591 } else {
5592 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
5594 break;
5595 case 3: /* ZIP1/2 */
5597 int base = part * elements / 2;
5598 if (i & 1) {
5599 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
5600 } else {
5601 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
5603 break;
5605 default:
5606 g_assert_not_reached();
5609 ofs = i * esize;
5610 if (ofs < 64) {
5611 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
5612 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
5613 } else {
5614 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
5615 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
5619 tcg_temp_free_i64(tcg_res);
5621 write_vec_element(s, tcg_resl, rd, 0, MO_64);
5622 tcg_temp_free_i64(tcg_resl);
5623 write_vec_element(s, tcg_resh, rd, 1, MO_64);
5624 tcg_temp_free_i64(tcg_resh);
5627 static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
5628 int opc, bool is_min, TCGv_ptr fpst)
5630 /* Helper function for disas_simd_across_lanes: do a single precision
5631 * min/max operation on the specified two inputs,
5632 * and return the result in tcg_elt1.
5634 if (opc == 0xc) {
5635 if (is_min) {
5636 gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5637 } else {
5638 gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5640 } else {
5641 assert(opc == 0xf);
5642 if (is_min) {
5643 gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5644 } else {
5645 gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
5650 /* C3.6.4 AdvSIMD across lanes
5651 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
5652 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5653 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
5654 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
5656 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
5658 int rd = extract32(insn, 0, 5);
5659 int rn = extract32(insn, 5, 5);
5660 int size = extract32(insn, 22, 2);
5661 int opcode = extract32(insn, 12, 5);
5662 bool is_q = extract32(insn, 30, 1);
5663 bool is_u = extract32(insn, 29, 1);
5664 bool is_fp = false;
5665 bool is_min = false;
5666 int esize;
5667 int elements;
5668 int i;
5669 TCGv_i64 tcg_res, tcg_elt;
5671 switch (opcode) {
5672 case 0x1b: /* ADDV */
5673 if (is_u) {
5674 unallocated_encoding(s);
5675 return;
5677 /* fall through */
5678 case 0x3: /* SADDLV, UADDLV */
5679 case 0xa: /* SMAXV, UMAXV */
5680 case 0x1a: /* SMINV, UMINV */
5681 if (size == 3 || (size == 2 && !is_q)) {
5682 unallocated_encoding(s);
5683 return;
5685 break;
5686 case 0xc: /* FMAXNMV, FMINNMV */
5687 case 0xf: /* FMAXV, FMINV */
5688 if (!is_u || !is_q || extract32(size, 0, 1)) {
5689 unallocated_encoding(s);
5690 return;
5692 /* Bit 1 of size field encodes min vs max, and actual size is always
5693 * 32 bits: adjust the size variable so following code can rely on it
5695 is_min = extract32(size, 1, 1);
5696 is_fp = true;
5697 size = 2;
5698 break;
5699 default:
5700 unallocated_encoding(s);
5701 return;
5704 if (!fp_access_check(s)) {
5705 return;
5708 esize = 8 << size;
5709 elements = (is_q ? 128 : 64) / esize;
5711 tcg_res = tcg_temp_new_i64();
5712 tcg_elt = tcg_temp_new_i64();
5714 /* These instructions operate across all lanes of a vector
5715 * to produce a single result. We can guarantee that a 64
5716 * bit intermediate is sufficient:
5717 * + for [US]ADDLV the maximum element size is 32 bits, and
5718 * the result type is 64 bits
5719 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
5720 * same as the element size, which is 32 bits at most
5721 * For the integer operations we can choose to work at 64
5722 * or 32 bits and truncate at the end; for simplicity
5723 * we use 64 bits always. The floating point
5724 * ops do require 32 bit intermediates, though.
5726 if (!is_fp) {
5727 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
5729 for (i = 1; i < elements; i++) {
5730 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
5732 switch (opcode) {
5733 case 0x03: /* SADDLV / UADDLV */
5734 case 0x1b: /* ADDV */
5735 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
5736 break;
5737 case 0x0a: /* SMAXV / UMAXV */
5738 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
5739 tcg_res,
5740 tcg_res, tcg_elt, tcg_res, tcg_elt);
5741 break;
5742 case 0x1a: /* SMINV / UMINV */
5743 tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
5744 tcg_res,
5745 tcg_res, tcg_elt, tcg_res, tcg_elt);
5746 break;
5747 break;
5748 default:
5749 g_assert_not_reached();
5753 } else {
5754 /* Floating point ops which work on 32 bit (single) intermediates.
5755 * Note that correct NaN propagation requires that we do these
5756 * operations in exactly the order specified by the pseudocode.
5758 TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
5759 TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
5760 TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
5761 TCGv_ptr fpst = get_fpstatus_ptr();
5763 assert(esize == 32);
5764 assert(elements == 4);
5766 read_vec_element(s, tcg_elt, rn, 0, MO_32);
5767 tcg_gen_extrl_i64_i32(tcg_elt1, tcg_elt);
5768 read_vec_element(s, tcg_elt, rn, 1, MO_32);
5769 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5771 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5773 read_vec_element(s, tcg_elt, rn, 2, MO_32);
5774 tcg_gen_extrl_i64_i32(tcg_elt2, tcg_elt);
5775 read_vec_element(s, tcg_elt, rn, 3, MO_32);
5776 tcg_gen_extrl_i64_i32(tcg_elt3, tcg_elt);
5778 do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
5780 do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
5782 tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
5783 tcg_temp_free_i32(tcg_elt1);
5784 tcg_temp_free_i32(tcg_elt2);
5785 tcg_temp_free_i32(tcg_elt3);
5786 tcg_temp_free_ptr(fpst);
5789 tcg_temp_free_i64(tcg_elt);
5791 /* Now truncate the result to the width required for the final output */
5792 if (opcode == 0x03) {
5793 /* SADDLV, UADDLV: result is 2*esize */
5794 size++;
5797 switch (size) {
5798 case 0:
5799 tcg_gen_ext8u_i64(tcg_res, tcg_res);
5800 break;
5801 case 1:
5802 tcg_gen_ext16u_i64(tcg_res, tcg_res);
5803 break;
5804 case 2:
5805 tcg_gen_ext32u_i64(tcg_res, tcg_res);
5806 break;
5807 case 3:
5808 break;
5809 default:
5810 g_assert_not_reached();
5813 write_fp_dreg(s, rd, tcg_res);
5814 tcg_temp_free_i64(tcg_res);
5817 /* C6.3.31 DUP (Element, Vector)
5819 * 31 30 29 21 20 16 15 10 9 5 4 0
5820 * +---+---+-------------------+--------+-------------+------+------+
5821 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5822 * +---+---+-------------------+--------+-------------+------+------+
5824 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5826 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
5827 int imm5)
5829 int size = ctz32(imm5);
5830 int esize = 8 << size;
5831 int elements = (is_q ? 128 : 64) / esize;
5832 int index, i;
5833 TCGv_i64 tmp;
5835 if (size > 3 || (size == 3 && !is_q)) {
5836 unallocated_encoding(s);
5837 return;
5840 if (!fp_access_check(s)) {
5841 return;
5844 index = imm5 >> (size + 1);
5846 tmp = tcg_temp_new_i64();
5847 read_vec_element(s, tmp, rn, index, size);
5849 for (i = 0; i < elements; i++) {
5850 write_vec_element(s, tmp, rd, i, size);
5853 if (!is_q) {
5854 clear_vec_high(s, rd);
5857 tcg_temp_free_i64(tmp);
5860 /* C6.3.31 DUP (element, scalar)
5861 * 31 21 20 16 15 10 9 5 4 0
5862 * +-----------------------+--------+-------------+------+------+
5863 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
5864 * +-----------------------+--------+-------------+------+------+
5866 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
5867 int imm5)
5869 int size = ctz32(imm5);
5870 int index;
5871 TCGv_i64 tmp;
5873 if (size > 3) {
5874 unallocated_encoding(s);
5875 return;
5878 if (!fp_access_check(s)) {
5879 return;
5882 index = imm5 >> (size + 1);
5884 /* This instruction just extracts the specified element and
5885 * zero-extends it into the bottom of the destination register.
5887 tmp = tcg_temp_new_i64();
5888 read_vec_element(s, tmp, rn, index, size);
5889 write_fp_dreg(s, rd, tmp);
5890 tcg_temp_free_i64(tmp);
5893 /* C6.3.32 DUP (General)
5895 * 31 30 29 21 20 16 15 10 9 5 4 0
5896 * +---+---+-------------------+--------+-------------+------+------+
5897 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
5898 * +---+---+-------------------+--------+-------------+------+------+
5900 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5902 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
5903 int imm5)
5905 int size = ctz32(imm5);
5906 int esize = 8 << size;
5907 int elements = (is_q ? 128 : 64)/esize;
5908 int i = 0;
5910 if (size > 3 || ((size == 3) && !is_q)) {
5911 unallocated_encoding(s);
5912 return;
5915 if (!fp_access_check(s)) {
5916 return;
5919 for (i = 0; i < elements; i++) {
5920 write_vec_element(s, cpu_reg(s, rn), rd, i, size);
5922 if (!is_q) {
5923 clear_vec_high(s, rd);
5927 /* C6.3.150 INS (Element)
5929 * 31 21 20 16 15 14 11 10 9 5 4 0
5930 * +-----------------------+--------+------------+---+------+------+
5931 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
5932 * +-----------------------+--------+------------+---+------+------+
5934 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5935 * index: encoded in imm5<4:size+1>
5937 static void handle_simd_inse(DisasContext *s, int rd, int rn,
5938 int imm4, int imm5)
5940 int size = ctz32(imm5);
5941 int src_index, dst_index;
5942 TCGv_i64 tmp;
5944 if (size > 3) {
5945 unallocated_encoding(s);
5946 return;
5949 if (!fp_access_check(s)) {
5950 return;
5953 dst_index = extract32(imm5, 1+size, 5);
5954 src_index = extract32(imm4, size, 4);
5956 tmp = tcg_temp_new_i64();
5958 read_vec_element(s, tmp, rn, src_index, size);
5959 write_vec_element(s, tmp, rd, dst_index, size);
5961 tcg_temp_free_i64(tmp);
5965 /* C6.3.151 INS (General)
5967 * 31 21 20 16 15 10 9 5 4 0
5968 * +-----------------------+--------+-------------+------+------+
5969 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
5970 * +-----------------------+--------+-------------+------+------+
5972 * size: encoded in imm5 (see ARM ARM LowestSetBit())
5973 * index: encoded in imm5<4:size+1>
5975 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
5977 int size = ctz32(imm5);
5978 int idx;
5980 if (size > 3) {
5981 unallocated_encoding(s);
5982 return;
5985 if (!fp_access_check(s)) {
5986 return;
5989 idx = extract32(imm5, 1 + size, 4 - size);
5990 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
5994 * C6.3.321 UMOV (General)
5995 * C6.3.237 SMOV (General)
5997 * 31 30 29 21 20 16 15 12 10 9 5 4 0
5998 * +---+---+-------------------+--------+-------------+------+------+
5999 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
6000 * +---+---+-------------------+--------+-------------+------+------+
6002 * U: unsigned when set
6003 * size: encoded in imm5 (see ARM ARM LowestSetBit())
6005 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
6006 int rn, int rd, int imm5)
6008 int size = ctz32(imm5);
6009 int element;
6010 TCGv_i64 tcg_rd;
6012 /* Check for UnallocatedEncodings */
6013 if (is_signed) {
6014 if (size > 2 || (size == 2 && !is_q)) {
6015 unallocated_encoding(s);
6016 return;
6018 } else {
6019 if (size > 3
6020 || (size < 3 && is_q)
6021 || (size == 3 && !is_q)) {
6022 unallocated_encoding(s);
6023 return;
6027 if (!fp_access_check(s)) {
6028 return;
6031 element = extract32(imm5, 1+size, 4);
6033 tcg_rd = cpu_reg(s, rd);
6034 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
6035 if (is_signed && !is_q) {
6036 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
6040 /* C3.6.5 AdvSIMD copy
6041 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6042 * +---+---+----+-----------------+------+---+------+---+------+------+
6043 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6044 * +---+---+----+-----------------+------+---+------+---+------+------+
6046 static void disas_simd_copy(DisasContext *s, uint32_t insn)
6048 int rd = extract32(insn, 0, 5);
6049 int rn = extract32(insn, 5, 5);
6050 int imm4 = extract32(insn, 11, 4);
6051 int op = extract32(insn, 29, 1);
6052 int is_q = extract32(insn, 30, 1);
6053 int imm5 = extract32(insn, 16, 5);
6055 if (op) {
6056 if (is_q) {
6057 /* INS (element) */
6058 handle_simd_inse(s, rd, rn, imm4, imm5);
6059 } else {
6060 unallocated_encoding(s);
6062 } else {
6063 switch (imm4) {
6064 case 0:
6065 /* DUP (element - vector) */
6066 handle_simd_dupe(s, is_q, rd, rn, imm5);
6067 break;
6068 case 1:
6069 /* DUP (general) */
6070 handle_simd_dupg(s, is_q, rd, rn, imm5);
6071 break;
6072 case 3:
6073 if (is_q) {
6074 /* INS (general) */
6075 handle_simd_insg(s, rd, rn, imm5);
6076 } else {
6077 unallocated_encoding(s);
6079 break;
6080 case 5:
6081 case 7:
6082 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
6083 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
6084 break;
6085 default:
6086 unallocated_encoding(s);
6087 break;
6092 /* C3.6.6 AdvSIMD modified immediate
6093 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
6094 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6095 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
6096 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
6098 * There are a number of operations that can be carried out here:
6099 * MOVI - move (shifted) imm into register
6100 * MVNI - move inverted (shifted) imm into register
6101 * ORR - bitwise OR of (shifted) imm with register
6102 * BIC - bitwise clear of (shifted) imm with register
6104 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
6106 int rd = extract32(insn, 0, 5);
6107 int cmode = extract32(insn, 12, 4);
6108 int cmode_3_1 = extract32(cmode, 1, 3);
6109 int cmode_0 = extract32(cmode, 0, 1);
6110 int o2 = extract32(insn, 11, 1);
6111 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
6112 bool is_neg = extract32(insn, 29, 1);
6113 bool is_q = extract32(insn, 30, 1);
6114 uint64_t imm = 0;
6115 TCGv_i64 tcg_rd, tcg_imm;
6116 int i;
6118 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
6119 unallocated_encoding(s);
6120 return;
6123 if (!fp_access_check(s)) {
6124 return;
6127 /* See AdvSIMDExpandImm() in ARM ARM */
6128 switch (cmode_3_1) {
6129 case 0: /* Replicate(Zeros(24):imm8, 2) */
6130 case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
6131 case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
6132 case 3: /* Replicate(imm8:Zeros(24), 2) */
6134 int shift = cmode_3_1 * 8;
6135 imm = bitfield_replicate(abcdefgh << shift, 32);
6136 break;
6138 case 4: /* Replicate(Zeros(8):imm8, 4) */
6139 case 5: /* Replicate(imm8:Zeros(8), 4) */
6141 int shift = (cmode_3_1 & 0x1) * 8;
6142 imm = bitfield_replicate(abcdefgh << shift, 16);
6143 break;
6145 case 6:
6146 if (cmode_0) {
6147 /* Replicate(Zeros(8):imm8:Ones(16), 2) */
6148 imm = (abcdefgh << 16) | 0xffff;
6149 } else {
6150 /* Replicate(Zeros(16):imm8:Ones(8), 2) */
6151 imm = (abcdefgh << 8) | 0xff;
6153 imm = bitfield_replicate(imm, 32);
6154 break;
6155 case 7:
6156 if (!cmode_0 && !is_neg) {
6157 imm = bitfield_replicate(abcdefgh, 8);
6158 } else if (!cmode_0 && is_neg) {
6159 int i;
6160 imm = 0;
6161 for (i = 0; i < 8; i++) {
6162 if ((abcdefgh) & (1 << i)) {
6163 imm |= 0xffULL << (i * 8);
6166 } else if (cmode_0) {
6167 if (is_neg) {
6168 imm = (abcdefgh & 0x3f) << 48;
6169 if (abcdefgh & 0x80) {
6170 imm |= 0x8000000000000000ULL;
6172 if (abcdefgh & 0x40) {
6173 imm |= 0x3fc0000000000000ULL;
6174 } else {
6175 imm |= 0x4000000000000000ULL;
6177 } else {
6178 imm = (abcdefgh & 0x3f) << 19;
6179 if (abcdefgh & 0x80) {
6180 imm |= 0x80000000;
6182 if (abcdefgh & 0x40) {
6183 imm |= 0x3e000000;
6184 } else {
6185 imm |= 0x40000000;
6187 imm |= (imm << 32);
6190 break;
6193 if (cmode_3_1 != 7 && is_neg) {
6194 imm = ~imm;
6197 tcg_imm = tcg_const_i64(imm);
6198 tcg_rd = new_tmp_a64(s);
6200 for (i = 0; i < 2; i++) {
6201 int foffs = i ? fp_reg_hi_offset(s, rd) : fp_reg_offset(s, rd, MO_64);
6203 if (i == 1 && !is_q) {
6204 /* non-quad ops clear high half of vector */
6205 tcg_gen_movi_i64(tcg_rd, 0);
6206 } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
6207 tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
6208 if (is_neg) {
6209 /* AND (BIC) */
6210 tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
6211 } else {
6212 /* ORR */
6213 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
6215 } else {
6216 /* MOVI */
6217 tcg_gen_mov_i64(tcg_rd, tcg_imm);
6219 tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
6222 tcg_temp_free_i64(tcg_imm);
6225 /* C3.6.7 AdvSIMD scalar copy
6226 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
6227 * +-----+----+-----------------+------+---+------+---+------+------+
6228 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
6229 * +-----+----+-----------------+------+---+------+---+------+------+
6231 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
6233 int rd = extract32(insn, 0, 5);
6234 int rn = extract32(insn, 5, 5);
6235 int imm4 = extract32(insn, 11, 4);
6236 int imm5 = extract32(insn, 16, 5);
6237 int op = extract32(insn, 29, 1);
6239 if (op != 0 || imm4 != 0) {
6240 unallocated_encoding(s);
6241 return;
6244 /* DUP (element, scalar) */
6245 handle_simd_dupes(s, rd, rn, imm5);
6248 /* C3.6.8 AdvSIMD scalar pairwise
6249 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
6250 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6251 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
6252 * +-----+---+-----------+------+-----------+--------+-----+------+------+
6254 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
6256 int u = extract32(insn, 29, 1);
6257 int size = extract32(insn, 22, 2);
6258 int opcode = extract32(insn, 12, 5);
6259 int rn = extract32(insn, 5, 5);
6260 int rd = extract32(insn, 0, 5);
6261 TCGv_ptr fpst;
6263 /* For some ops (the FP ones), size[1] is part of the encoding.
6264 * For ADDP strictly it is not but size[1] is always 1 for valid
6265 * encodings.
6267 opcode |= (extract32(size, 1, 1) << 5);
6269 switch (opcode) {
6270 case 0x3b: /* ADDP */
6271 if (u || size != 3) {
6272 unallocated_encoding(s);
6273 return;
6275 if (!fp_access_check(s)) {
6276 return;
6279 TCGV_UNUSED_PTR(fpst);
6280 break;
6281 case 0xc: /* FMAXNMP */
6282 case 0xd: /* FADDP */
6283 case 0xf: /* FMAXP */
6284 case 0x2c: /* FMINNMP */
6285 case 0x2f: /* FMINP */
6286 /* FP op, size[0] is 32 or 64 bit */
6287 if (!u) {
6288 unallocated_encoding(s);
6289 return;
6291 if (!fp_access_check(s)) {
6292 return;
6295 size = extract32(size, 0, 1) ? 3 : 2;
6296 fpst = get_fpstatus_ptr();
6297 break;
6298 default:
6299 unallocated_encoding(s);
6300 return;
6303 if (size == 3) {
6304 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6305 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6306 TCGv_i64 tcg_res = tcg_temp_new_i64();
6308 read_vec_element(s, tcg_op1, rn, 0, MO_64);
6309 read_vec_element(s, tcg_op2, rn, 1, MO_64);
6311 switch (opcode) {
6312 case 0x3b: /* ADDP */
6313 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
6314 break;
6315 case 0xc: /* FMAXNMP */
6316 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6317 break;
6318 case 0xd: /* FADDP */
6319 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6320 break;
6321 case 0xf: /* FMAXP */
6322 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6323 break;
6324 case 0x2c: /* FMINNMP */
6325 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6326 break;
6327 case 0x2f: /* FMINP */
6328 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6329 break;
6330 default:
6331 g_assert_not_reached();
6334 write_fp_dreg(s, rd, tcg_res);
6336 tcg_temp_free_i64(tcg_op1);
6337 tcg_temp_free_i64(tcg_op2);
6338 tcg_temp_free_i64(tcg_res);
6339 } else {
6340 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
6341 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
6342 TCGv_i32 tcg_res = tcg_temp_new_i32();
6344 read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
6345 read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
6347 switch (opcode) {
6348 case 0xc: /* FMAXNMP */
6349 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6350 break;
6351 case 0xd: /* FADDP */
6352 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6353 break;
6354 case 0xf: /* FMAXP */
6355 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6356 break;
6357 case 0x2c: /* FMINNMP */
6358 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6359 break;
6360 case 0x2f: /* FMINP */
6361 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6362 break;
6363 default:
6364 g_assert_not_reached();
6367 write_fp_sreg(s, rd, tcg_res);
6369 tcg_temp_free_i32(tcg_op1);
6370 tcg_temp_free_i32(tcg_op2);
6371 tcg_temp_free_i32(tcg_res);
6374 if (!TCGV_IS_UNUSED_PTR(fpst)) {
6375 tcg_temp_free_ptr(fpst);
6380 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
6382 * This code is handles the common shifting code and is used by both
6383 * the vector and scalar code.
6385 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6386 TCGv_i64 tcg_rnd, bool accumulate,
6387 bool is_u, int size, int shift)
6389 bool extended_result = false;
6390 bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
6391 int ext_lshift = 0;
6392 TCGv_i64 tcg_src_hi;
6394 if (round && size == 3) {
6395 extended_result = true;
6396 ext_lshift = 64 - shift;
6397 tcg_src_hi = tcg_temp_new_i64();
6398 } else if (shift == 64) {
6399 if (!accumulate && is_u) {
6400 /* result is zero */
6401 tcg_gen_movi_i64(tcg_res, 0);
6402 return;
6406 /* Deal with the rounding step */
6407 if (round) {
6408 if (extended_result) {
6409 TCGv_i64 tcg_zero = tcg_const_i64(0);
6410 if (!is_u) {
6411 /* take care of sign extending tcg_res */
6412 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
6413 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6414 tcg_src, tcg_src_hi,
6415 tcg_rnd, tcg_zero);
6416 } else {
6417 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
6418 tcg_src, tcg_zero,
6419 tcg_rnd, tcg_zero);
6421 tcg_temp_free_i64(tcg_zero);
6422 } else {
6423 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
6427 /* Now do the shift right */
6428 if (round && extended_result) {
6429 /* extended case, >64 bit precision required */
6430 if (ext_lshift == 0) {
6431 /* special case, only high bits matter */
6432 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
6433 } else {
6434 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6435 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
6436 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
6438 } else {
6439 if (is_u) {
6440 if (shift == 64) {
6441 /* essentially shifting in 64 zeros */
6442 tcg_gen_movi_i64(tcg_src, 0);
6443 } else {
6444 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6446 } else {
6447 if (shift == 64) {
6448 /* effectively extending the sign-bit */
6449 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
6450 } else {
6451 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
6456 if (accumulate) {
6457 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
6458 } else {
6459 tcg_gen_mov_i64(tcg_res, tcg_src);
6462 if (extended_result) {
6463 tcg_temp_free_i64(tcg_src_hi);
6467 /* Common SHL/SLI - Shift left with an optional insert */
6468 static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6469 bool insert, int shift)
6471 if (insert) { /* SLI */
6472 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
6473 } else { /* SHL */
6474 tcg_gen_shli_i64(tcg_res, tcg_src, shift);
6478 /* SRI: shift right with insert */
6479 static void handle_shri_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
6480 int size, int shift)
6482 int esize = 8 << size;
6484 /* shift count same as element size is valid but does nothing;
6485 * special case to avoid potential shift by 64.
6487 if (shift != esize) {
6488 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
6489 tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, 0, esize - shift);
6493 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
6494 static void handle_scalar_simd_shri(DisasContext *s,
6495 bool is_u, int immh, int immb,
6496 int opcode, int rn, int rd)
6498 const int size = 3;
6499 int immhb = immh << 3 | immb;
6500 int shift = 2 * (8 << size) - immhb;
6501 bool accumulate = false;
6502 bool round = false;
6503 bool insert = false;
6504 TCGv_i64 tcg_rn;
6505 TCGv_i64 tcg_rd;
6506 TCGv_i64 tcg_round;
6508 if (!extract32(immh, 3, 1)) {
6509 unallocated_encoding(s);
6510 return;
6513 if (!fp_access_check(s)) {
6514 return;
6517 switch (opcode) {
6518 case 0x02: /* SSRA / USRA (accumulate) */
6519 accumulate = true;
6520 break;
6521 case 0x04: /* SRSHR / URSHR (rounding) */
6522 round = true;
6523 break;
6524 case 0x06: /* SRSRA / URSRA (accum + rounding) */
6525 accumulate = round = true;
6526 break;
6527 case 0x08: /* SRI */
6528 insert = true;
6529 break;
6532 if (round) {
6533 uint64_t round_const = 1ULL << (shift - 1);
6534 tcg_round = tcg_const_i64(round_const);
6535 } else {
6536 TCGV_UNUSED_I64(tcg_round);
6539 tcg_rn = read_fp_dreg(s, rn);
6540 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6542 if (insert) {
6543 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
6544 } else {
6545 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6546 accumulate, is_u, size, shift);
6549 write_fp_dreg(s, rd, tcg_rd);
6551 tcg_temp_free_i64(tcg_rn);
6552 tcg_temp_free_i64(tcg_rd);
6553 if (round) {
6554 tcg_temp_free_i64(tcg_round);
6558 /* SHL/SLI - Scalar shift left */
6559 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
6560 int immh, int immb, int opcode,
6561 int rn, int rd)
6563 int size = 32 - clz32(immh) - 1;
6564 int immhb = immh << 3 | immb;
6565 int shift = immhb - (8 << size);
6566 TCGv_i64 tcg_rn = new_tmp_a64(s);
6567 TCGv_i64 tcg_rd = new_tmp_a64(s);
6569 if (!extract32(immh, 3, 1)) {
6570 unallocated_encoding(s);
6571 return;
6574 if (!fp_access_check(s)) {
6575 return;
6578 tcg_rn = read_fp_dreg(s, rn);
6579 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
6581 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
6583 write_fp_dreg(s, rd, tcg_rd);
6585 tcg_temp_free_i64(tcg_rn);
6586 tcg_temp_free_i64(tcg_rd);
6589 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
6590 * (signed/unsigned) narrowing */
6591 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
6592 bool is_u_shift, bool is_u_narrow,
6593 int immh, int immb, int opcode,
6594 int rn, int rd)
6596 int immhb = immh << 3 | immb;
6597 int size = 32 - clz32(immh) - 1;
6598 int esize = 8 << size;
6599 int shift = (2 * esize) - immhb;
6600 int elements = is_scalar ? 1 : (64 / esize);
6601 bool round = extract32(opcode, 0, 1);
6602 TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
6603 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
6604 TCGv_i32 tcg_rd_narrowed;
6605 TCGv_i64 tcg_final;
6607 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
6608 { gen_helper_neon_narrow_sat_s8,
6609 gen_helper_neon_unarrow_sat8 },
6610 { gen_helper_neon_narrow_sat_s16,
6611 gen_helper_neon_unarrow_sat16 },
6612 { gen_helper_neon_narrow_sat_s32,
6613 gen_helper_neon_unarrow_sat32 },
6614 { NULL, NULL },
6616 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
6617 gen_helper_neon_narrow_sat_u8,
6618 gen_helper_neon_narrow_sat_u16,
6619 gen_helper_neon_narrow_sat_u32,
6620 NULL
6622 NeonGenNarrowEnvFn *narrowfn;
6624 int i;
6626 assert(size < 4);
6628 if (extract32(immh, 3, 1)) {
6629 unallocated_encoding(s);
6630 return;
6633 if (!fp_access_check(s)) {
6634 return;
6637 if (is_u_shift) {
6638 narrowfn = unsigned_narrow_fns[size];
6639 } else {
6640 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
6643 tcg_rn = tcg_temp_new_i64();
6644 tcg_rd = tcg_temp_new_i64();
6645 tcg_rd_narrowed = tcg_temp_new_i32();
6646 tcg_final = tcg_const_i64(0);
6648 if (round) {
6649 uint64_t round_const = 1ULL << (shift - 1);
6650 tcg_round = tcg_const_i64(round_const);
6651 } else {
6652 TCGV_UNUSED_I64(tcg_round);
6655 for (i = 0; i < elements; i++) {
6656 read_vec_element(s, tcg_rn, rn, i, ldop);
6657 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
6658 false, is_u_shift, size+1, shift);
6659 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
6660 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
6661 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
6664 if (!is_q) {
6665 clear_vec_high(s, rd);
6666 write_vec_element(s, tcg_final, rd, 0, MO_64);
6667 } else {
6668 write_vec_element(s, tcg_final, rd, 1, MO_64);
6671 if (round) {
6672 tcg_temp_free_i64(tcg_round);
6674 tcg_temp_free_i64(tcg_rn);
6675 tcg_temp_free_i64(tcg_rd);
6676 tcg_temp_free_i32(tcg_rd_narrowed);
6677 tcg_temp_free_i64(tcg_final);
6678 return;
6681 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
6682 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
6683 bool src_unsigned, bool dst_unsigned,
6684 int immh, int immb, int rn, int rd)
6686 int immhb = immh << 3 | immb;
6687 int size = 32 - clz32(immh) - 1;
6688 int shift = immhb - (8 << size);
6689 int pass;
6691 assert(immh != 0);
6692 assert(!(scalar && is_q));
6694 if (!scalar) {
6695 if (!is_q && extract32(immh, 3, 1)) {
6696 unallocated_encoding(s);
6697 return;
6700 /* Since we use the variable-shift helpers we must
6701 * replicate the shift count into each element of
6702 * the tcg_shift value.
6704 switch (size) {
6705 case 0:
6706 shift |= shift << 8;
6707 /* fall through */
6708 case 1:
6709 shift |= shift << 16;
6710 break;
6711 case 2:
6712 case 3:
6713 break;
6714 default:
6715 g_assert_not_reached();
6719 if (!fp_access_check(s)) {
6720 return;
6723 if (size == 3) {
6724 TCGv_i64 tcg_shift = tcg_const_i64(shift);
6725 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
6726 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
6727 { NULL, gen_helper_neon_qshl_u64 },
6729 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
6730 int maxpass = is_q ? 2 : 1;
6732 for (pass = 0; pass < maxpass; pass++) {
6733 TCGv_i64 tcg_op = tcg_temp_new_i64();
6735 read_vec_element(s, tcg_op, rn, pass, MO_64);
6736 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6737 write_vec_element(s, tcg_op, rd, pass, MO_64);
6739 tcg_temp_free_i64(tcg_op);
6741 tcg_temp_free_i64(tcg_shift);
6743 if (!is_q) {
6744 clear_vec_high(s, rd);
6746 } else {
6747 TCGv_i32 tcg_shift = tcg_const_i32(shift);
6748 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
6750 { gen_helper_neon_qshl_s8,
6751 gen_helper_neon_qshl_s16,
6752 gen_helper_neon_qshl_s32 },
6753 { gen_helper_neon_qshlu_s8,
6754 gen_helper_neon_qshlu_s16,
6755 gen_helper_neon_qshlu_s32 }
6756 }, {
6757 { NULL, NULL, NULL },
6758 { gen_helper_neon_qshl_u8,
6759 gen_helper_neon_qshl_u16,
6760 gen_helper_neon_qshl_u32 }
6763 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
6764 TCGMemOp memop = scalar ? size : MO_32;
6765 int maxpass = scalar ? 1 : is_q ? 4 : 2;
6767 for (pass = 0; pass < maxpass; pass++) {
6768 TCGv_i32 tcg_op = tcg_temp_new_i32();
6770 read_vec_element_i32(s, tcg_op, rn, pass, memop);
6771 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
6772 if (scalar) {
6773 switch (size) {
6774 case 0:
6775 tcg_gen_ext8u_i32(tcg_op, tcg_op);
6776 break;
6777 case 1:
6778 tcg_gen_ext16u_i32(tcg_op, tcg_op);
6779 break;
6780 case 2:
6781 break;
6782 default:
6783 g_assert_not_reached();
6785 write_fp_sreg(s, rd, tcg_op);
6786 } else {
6787 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6790 tcg_temp_free_i32(tcg_op);
6792 tcg_temp_free_i32(tcg_shift);
6794 if (!is_q && !scalar) {
6795 clear_vec_high(s, rd);
6800 /* Common vector code for handling integer to FP conversion */
6801 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
6802 int elements, int is_signed,
6803 int fracbits, int size)
6805 bool is_double = size == 3 ? true : false;
6806 TCGv_ptr tcg_fpst = get_fpstatus_ptr();
6807 TCGv_i32 tcg_shift = tcg_const_i32(fracbits);
6808 TCGv_i64 tcg_int = tcg_temp_new_i64();
6809 TCGMemOp mop = size | (is_signed ? MO_SIGN : 0);
6810 int pass;
6812 for (pass = 0; pass < elements; pass++) {
6813 read_vec_element(s, tcg_int, rn, pass, mop);
6815 if (is_double) {
6816 TCGv_i64 tcg_double = tcg_temp_new_i64();
6817 if (is_signed) {
6818 gen_helper_vfp_sqtod(tcg_double, tcg_int,
6819 tcg_shift, tcg_fpst);
6820 } else {
6821 gen_helper_vfp_uqtod(tcg_double, tcg_int,
6822 tcg_shift, tcg_fpst);
6824 if (elements == 1) {
6825 write_fp_dreg(s, rd, tcg_double);
6826 } else {
6827 write_vec_element(s, tcg_double, rd, pass, MO_64);
6829 tcg_temp_free_i64(tcg_double);
6830 } else {
6831 TCGv_i32 tcg_single = tcg_temp_new_i32();
6832 if (is_signed) {
6833 gen_helper_vfp_sqtos(tcg_single, tcg_int,
6834 tcg_shift, tcg_fpst);
6835 } else {
6836 gen_helper_vfp_uqtos(tcg_single, tcg_int,
6837 tcg_shift, tcg_fpst);
6839 if (elements == 1) {
6840 write_fp_sreg(s, rd, tcg_single);
6841 } else {
6842 write_vec_element_i32(s, tcg_single, rd, pass, MO_32);
6844 tcg_temp_free_i32(tcg_single);
6848 if (!is_double && elements == 2) {
6849 clear_vec_high(s, rd);
6852 tcg_temp_free_i64(tcg_int);
6853 tcg_temp_free_ptr(tcg_fpst);
6854 tcg_temp_free_i32(tcg_shift);
6857 /* UCVTF/SCVTF - Integer to FP conversion */
6858 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
6859 bool is_q, bool is_u,
6860 int immh, int immb, int opcode,
6861 int rn, int rd)
6863 bool is_double = extract32(immh, 3, 1);
6864 int size = is_double ? MO_64 : MO_32;
6865 int elements;
6866 int immhb = immh << 3 | immb;
6867 int fracbits = (is_double ? 128 : 64) - immhb;
6869 if (!extract32(immh, 2, 2)) {
6870 unallocated_encoding(s);
6871 return;
6874 if (is_scalar) {
6875 elements = 1;
6876 } else {
6877 elements = is_double ? 2 : is_q ? 4 : 2;
6878 if (is_double && !is_q) {
6879 unallocated_encoding(s);
6880 return;
6884 if (!fp_access_check(s)) {
6885 return;
6888 /* immh == 0 would be a failure of the decode logic */
6889 g_assert(immh);
6891 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
6894 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
6895 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
6896 bool is_q, bool is_u,
6897 int immh, int immb, int rn, int rd)
6899 bool is_double = extract32(immh, 3, 1);
6900 int immhb = immh << 3 | immb;
6901 int fracbits = (is_double ? 128 : 64) - immhb;
6902 int pass;
6903 TCGv_ptr tcg_fpstatus;
6904 TCGv_i32 tcg_rmode, tcg_shift;
6906 if (!extract32(immh, 2, 2)) {
6907 unallocated_encoding(s);
6908 return;
6911 if (!is_scalar && !is_q && is_double) {
6912 unallocated_encoding(s);
6913 return;
6916 if (!fp_access_check(s)) {
6917 return;
6920 assert(!(is_scalar && is_q));
6922 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
6923 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6924 tcg_fpstatus = get_fpstatus_ptr();
6925 tcg_shift = tcg_const_i32(fracbits);
6927 if (is_double) {
6928 int maxpass = is_scalar ? 1 : 2;
6930 for (pass = 0; pass < maxpass; pass++) {
6931 TCGv_i64 tcg_op = tcg_temp_new_i64();
6933 read_vec_element(s, tcg_op, rn, pass, MO_64);
6934 if (is_u) {
6935 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6936 } else {
6937 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6939 write_vec_element(s, tcg_op, rd, pass, MO_64);
6940 tcg_temp_free_i64(tcg_op);
6942 if (!is_q) {
6943 clear_vec_high(s, rd);
6945 } else {
6946 int maxpass = is_scalar ? 1 : is_q ? 4 : 2;
6947 for (pass = 0; pass < maxpass; pass++) {
6948 TCGv_i32 tcg_op = tcg_temp_new_i32();
6950 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
6951 if (is_u) {
6952 gen_helper_vfp_touls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6953 } else {
6954 gen_helper_vfp_tosls(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
6956 if (is_scalar) {
6957 write_fp_sreg(s, rd, tcg_op);
6958 } else {
6959 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
6961 tcg_temp_free_i32(tcg_op);
6963 if (!is_q && !is_scalar) {
6964 clear_vec_high(s, rd);
6968 tcg_temp_free_ptr(tcg_fpstatus);
6969 tcg_temp_free_i32(tcg_shift);
6970 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
6971 tcg_temp_free_i32(tcg_rmode);
6974 /* C3.6.9 AdvSIMD scalar shift by immediate
6975 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
6976 * +-----+---+-------------+------+------+--------+---+------+------+
6977 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
6978 * +-----+---+-------------+------+------+--------+---+------+------+
6980 * This is the scalar version so it works on a fixed sized registers
6982 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
6984 int rd = extract32(insn, 0, 5);
6985 int rn = extract32(insn, 5, 5);
6986 int opcode = extract32(insn, 11, 5);
6987 int immb = extract32(insn, 16, 3);
6988 int immh = extract32(insn, 19, 4);
6989 bool is_u = extract32(insn, 29, 1);
6991 if (immh == 0) {
6992 unallocated_encoding(s);
6993 return;
6996 switch (opcode) {
6997 case 0x08: /* SRI */
6998 if (!is_u) {
6999 unallocated_encoding(s);
7000 return;
7002 /* fall through */
7003 case 0x00: /* SSHR / USHR */
7004 case 0x02: /* SSRA / USRA */
7005 case 0x04: /* SRSHR / URSHR */
7006 case 0x06: /* SRSRA / URSRA */
7007 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
7008 break;
7009 case 0x0a: /* SHL / SLI */
7010 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
7011 break;
7012 case 0x1c: /* SCVTF, UCVTF */
7013 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
7014 opcode, rn, rd);
7015 break;
7016 case 0x10: /* SQSHRUN, SQSHRUN2 */
7017 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
7018 if (!is_u) {
7019 unallocated_encoding(s);
7020 return;
7022 handle_vec_simd_sqshrn(s, true, false, false, true,
7023 immh, immb, opcode, rn, rd);
7024 break;
7025 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
7026 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
7027 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
7028 immh, immb, opcode, rn, rd);
7029 break;
7030 case 0xc: /* SQSHLU */
7031 if (!is_u) {
7032 unallocated_encoding(s);
7033 return;
7035 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
7036 break;
7037 case 0xe: /* SQSHL, UQSHL */
7038 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
7039 break;
7040 case 0x1f: /* FCVTZS, FCVTZU */
7041 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
7042 break;
7043 default:
7044 unallocated_encoding(s);
7045 break;
7049 /* C3.6.10 AdvSIMD scalar three different
7050 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
7051 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7052 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
7053 * +-----+---+-----------+------+---+------+--------+-----+------+------+
7055 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
7057 bool is_u = extract32(insn, 29, 1);
7058 int size = extract32(insn, 22, 2);
7059 int opcode = extract32(insn, 12, 4);
7060 int rm = extract32(insn, 16, 5);
7061 int rn = extract32(insn, 5, 5);
7062 int rd = extract32(insn, 0, 5);
7064 if (is_u) {
7065 unallocated_encoding(s);
7066 return;
7069 switch (opcode) {
7070 case 0x9: /* SQDMLAL, SQDMLAL2 */
7071 case 0xb: /* SQDMLSL, SQDMLSL2 */
7072 case 0xd: /* SQDMULL, SQDMULL2 */
7073 if (size == 0 || size == 3) {
7074 unallocated_encoding(s);
7075 return;
7077 break;
7078 default:
7079 unallocated_encoding(s);
7080 return;
7083 if (!fp_access_check(s)) {
7084 return;
7087 if (size == 2) {
7088 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7089 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7090 TCGv_i64 tcg_res = tcg_temp_new_i64();
7092 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
7093 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
7095 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
7096 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
7098 switch (opcode) {
7099 case 0xd: /* SQDMULL, SQDMULL2 */
7100 break;
7101 case 0xb: /* SQDMLSL, SQDMLSL2 */
7102 tcg_gen_neg_i64(tcg_res, tcg_res);
7103 /* fall through */
7104 case 0x9: /* SQDMLAL, SQDMLAL2 */
7105 read_vec_element(s, tcg_op1, rd, 0, MO_64);
7106 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
7107 tcg_res, tcg_op1);
7108 break;
7109 default:
7110 g_assert_not_reached();
7113 write_fp_dreg(s, rd, tcg_res);
7115 tcg_temp_free_i64(tcg_op1);
7116 tcg_temp_free_i64(tcg_op2);
7117 tcg_temp_free_i64(tcg_res);
7118 } else {
7119 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7120 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7121 TCGv_i64 tcg_res = tcg_temp_new_i64();
7123 read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
7124 read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
7126 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
7127 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
7129 switch (opcode) {
7130 case 0xd: /* SQDMULL, SQDMULL2 */
7131 break;
7132 case 0xb: /* SQDMLSL, SQDMLSL2 */
7133 gen_helper_neon_negl_u32(tcg_res, tcg_res);
7134 /* fall through */
7135 case 0x9: /* SQDMLAL, SQDMLAL2 */
7137 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
7138 read_vec_element(s, tcg_op3, rd, 0, MO_32);
7139 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
7140 tcg_res, tcg_op3);
7141 tcg_temp_free_i64(tcg_op3);
7142 break;
7144 default:
7145 g_assert_not_reached();
7148 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7149 write_fp_dreg(s, rd, tcg_res);
7151 tcg_temp_free_i32(tcg_op1);
7152 tcg_temp_free_i32(tcg_op2);
7153 tcg_temp_free_i64(tcg_res);
7157 static void handle_3same_64(DisasContext *s, int opcode, bool u,
7158 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
7160 /* Handle 64x64->64 opcodes which are shared between the scalar
7161 * and vector 3-same groups. We cover every opcode where size == 3
7162 * is valid in either the three-reg-same (integer, not pairwise)
7163 * or scalar-three-reg-same groups. (Some opcodes are not yet
7164 * implemented.)
7166 TCGCond cond;
7168 switch (opcode) {
7169 case 0x1: /* SQADD */
7170 if (u) {
7171 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7172 } else {
7173 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7175 break;
7176 case 0x5: /* SQSUB */
7177 if (u) {
7178 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7179 } else {
7180 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7182 break;
7183 case 0x6: /* CMGT, CMHI */
7184 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
7185 * We implement this using setcond (test) and then negating.
7187 cond = u ? TCG_COND_GTU : TCG_COND_GT;
7188 do_cmop:
7189 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
7190 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7191 break;
7192 case 0x7: /* CMGE, CMHS */
7193 cond = u ? TCG_COND_GEU : TCG_COND_GE;
7194 goto do_cmop;
7195 case 0x11: /* CMTST, CMEQ */
7196 if (u) {
7197 cond = TCG_COND_EQ;
7198 goto do_cmop;
7200 /* CMTST : test is "if (X & Y != 0)". */
7201 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
7202 tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
7203 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7204 break;
7205 case 0x8: /* SSHL, USHL */
7206 if (u) {
7207 gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
7208 } else {
7209 gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
7211 break;
7212 case 0x9: /* SQSHL, UQSHL */
7213 if (u) {
7214 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7215 } else {
7216 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7218 break;
7219 case 0xa: /* SRSHL, URSHL */
7220 if (u) {
7221 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
7222 } else {
7223 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
7225 break;
7226 case 0xb: /* SQRSHL, UQRSHL */
7227 if (u) {
7228 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7229 } else {
7230 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
7232 break;
7233 case 0x10: /* ADD, SUB */
7234 if (u) {
7235 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
7236 } else {
7237 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
7239 break;
7240 default:
7241 g_assert_not_reached();
7245 /* Handle the 3-same-operands float operations; shared by the scalar
7246 * and vector encodings. The caller must filter out any encodings
7247 * not allocated for the encoding it is dealing with.
7249 static void handle_3same_float(DisasContext *s, int size, int elements,
7250 int fpopcode, int rd, int rn, int rm)
7252 int pass;
7253 TCGv_ptr fpst = get_fpstatus_ptr();
7255 for (pass = 0; pass < elements; pass++) {
7256 if (size) {
7257 /* Double */
7258 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
7259 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
7260 TCGv_i64 tcg_res = tcg_temp_new_i64();
7262 read_vec_element(s, tcg_op1, rn, pass, MO_64);
7263 read_vec_element(s, tcg_op2, rm, pass, MO_64);
7265 switch (fpopcode) {
7266 case 0x39: /* FMLS */
7267 /* As usual for ARM, separate negation for fused multiply-add */
7268 gen_helper_vfp_negd(tcg_op1, tcg_op1);
7269 /* fall through */
7270 case 0x19: /* FMLA */
7271 read_vec_element(s, tcg_res, rd, pass, MO_64);
7272 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
7273 tcg_res, fpst);
7274 break;
7275 case 0x18: /* FMAXNM */
7276 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7277 break;
7278 case 0x1a: /* FADD */
7279 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
7280 break;
7281 case 0x1b: /* FMULX */
7282 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
7283 break;
7284 case 0x1c: /* FCMEQ */
7285 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7286 break;
7287 case 0x1e: /* FMAX */
7288 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
7289 break;
7290 case 0x1f: /* FRECPS */
7291 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7292 break;
7293 case 0x38: /* FMINNM */
7294 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
7295 break;
7296 case 0x3a: /* FSUB */
7297 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7298 break;
7299 case 0x3e: /* FMIN */
7300 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
7301 break;
7302 case 0x3f: /* FRSQRTS */
7303 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7304 break;
7305 case 0x5b: /* FMUL */
7306 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
7307 break;
7308 case 0x5c: /* FCMGE */
7309 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7310 break;
7311 case 0x5d: /* FACGE */
7312 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7313 break;
7314 case 0x5f: /* FDIV */
7315 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
7316 break;
7317 case 0x7a: /* FABD */
7318 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
7319 gen_helper_vfp_absd(tcg_res, tcg_res);
7320 break;
7321 case 0x7c: /* FCMGT */
7322 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7323 break;
7324 case 0x7d: /* FACGT */
7325 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
7326 break;
7327 default:
7328 g_assert_not_reached();
7331 write_vec_element(s, tcg_res, rd, pass, MO_64);
7333 tcg_temp_free_i64(tcg_res);
7334 tcg_temp_free_i64(tcg_op1);
7335 tcg_temp_free_i64(tcg_op2);
7336 } else {
7337 /* Single */
7338 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
7339 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
7340 TCGv_i32 tcg_res = tcg_temp_new_i32();
7342 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
7343 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
7345 switch (fpopcode) {
7346 case 0x39: /* FMLS */
7347 /* As usual for ARM, separate negation for fused multiply-add */
7348 gen_helper_vfp_negs(tcg_op1, tcg_op1);
7349 /* fall through */
7350 case 0x19: /* FMLA */
7351 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7352 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
7353 tcg_res, fpst);
7354 break;
7355 case 0x1a: /* FADD */
7356 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
7357 break;
7358 case 0x1b: /* FMULX */
7359 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
7360 break;
7361 case 0x1c: /* FCMEQ */
7362 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7363 break;
7364 case 0x1e: /* FMAX */
7365 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
7366 break;
7367 case 0x1f: /* FRECPS */
7368 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7369 break;
7370 case 0x18: /* FMAXNM */
7371 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
7372 break;
7373 case 0x38: /* FMINNM */
7374 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
7375 break;
7376 case 0x3a: /* FSUB */
7377 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7378 break;
7379 case 0x3e: /* FMIN */
7380 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
7381 break;
7382 case 0x3f: /* FRSQRTS */
7383 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7384 break;
7385 case 0x5b: /* FMUL */
7386 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
7387 break;
7388 case 0x5c: /* FCMGE */
7389 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7390 break;
7391 case 0x5d: /* FACGE */
7392 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7393 break;
7394 case 0x5f: /* FDIV */
7395 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
7396 break;
7397 case 0x7a: /* FABD */
7398 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
7399 gen_helper_vfp_abss(tcg_res, tcg_res);
7400 break;
7401 case 0x7c: /* FCMGT */
7402 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7403 break;
7404 case 0x7d: /* FACGT */
7405 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
7406 break;
7407 default:
7408 g_assert_not_reached();
7411 if (elements == 1) {
7412 /* scalar single so clear high part */
7413 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7415 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
7416 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
7417 tcg_temp_free_i64(tcg_tmp);
7418 } else {
7419 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7422 tcg_temp_free_i32(tcg_res);
7423 tcg_temp_free_i32(tcg_op1);
7424 tcg_temp_free_i32(tcg_op2);
7428 tcg_temp_free_ptr(fpst);
7430 if ((elements << size) < 4) {
7431 /* scalar, or non-quad vector op */
7432 clear_vec_high(s, rd);
7436 /* C3.6.11 AdvSIMD scalar three same
7437 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
7438 * +-----+---+-----------+------+---+------+--------+---+------+------+
7439 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
7440 * +-----+---+-----------+------+---+------+--------+---+------+------+
7442 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
7444 int rd = extract32(insn, 0, 5);
7445 int rn = extract32(insn, 5, 5);
7446 int opcode = extract32(insn, 11, 5);
7447 int rm = extract32(insn, 16, 5);
7448 int size = extract32(insn, 22, 2);
7449 bool u = extract32(insn, 29, 1);
7450 TCGv_i64 tcg_rd;
7452 if (opcode >= 0x18) {
7453 /* Floating point: U, size[1] and opcode indicate operation */
7454 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
7455 switch (fpopcode) {
7456 case 0x1b: /* FMULX */
7457 case 0x1f: /* FRECPS */
7458 case 0x3f: /* FRSQRTS */
7459 case 0x5d: /* FACGE */
7460 case 0x7d: /* FACGT */
7461 case 0x1c: /* FCMEQ */
7462 case 0x5c: /* FCMGE */
7463 case 0x7c: /* FCMGT */
7464 case 0x7a: /* FABD */
7465 break;
7466 default:
7467 unallocated_encoding(s);
7468 return;
7471 if (!fp_access_check(s)) {
7472 return;
7475 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
7476 return;
7479 switch (opcode) {
7480 case 0x1: /* SQADD, UQADD */
7481 case 0x5: /* SQSUB, UQSUB */
7482 case 0x9: /* SQSHL, UQSHL */
7483 case 0xb: /* SQRSHL, UQRSHL */
7484 break;
7485 case 0x8: /* SSHL, USHL */
7486 case 0xa: /* SRSHL, URSHL */
7487 case 0x6: /* CMGT, CMHI */
7488 case 0x7: /* CMGE, CMHS */
7489 case 0x11: /* CMTST, CMEQ */
7490 case 0x10: /* ADD, SUB (vector) */
7491 if (size != 3) {
7492 unallocated_encoding(s);
7493 return;
7495 break;
7496 case 0x16: /* SQDMULH, SQRDMULH (vector) */
7497 if (size != 1 && size != 2) {
7498 unallocated_encoding(s);
7499 return;
7501 break;
7502 default:
7503 unallocated_encoding(s);
7504 return;
7507 if (!fp_access_check(s)) {
7508 return;
7511 tcg_rd = tcg_temp_new_i64();
7513 if (size == 3) {
7514 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
7515 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
7517 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
7518 tcg_temp_free_i64(tcg_rn);
7519 tcg_temp_free_i64(tcg_rm);
7520 } else {
7521 /* Do a single operation on the lowest element in the vector.
7522 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
7523 * no side effects for all these operations.
7524 * OPTME: special-purpose helpers would avoid doing some
7525 * unnecessary work in the helper for the 8 and 16 bit cases.
7527 NeonGenTwoOpEnvFn *genenvfn;
7528 TCGv_i32 tcg_rn = tcg_temp_new_i32();
7529 TCGv_i32 tcg_rm = tcg_temp_new_i32();
7530 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
7532 read_vec_element_i32(s, tcg_rn, rn, 0, size);
7533 read_vec_element_i32(s, tcg_rm, rm, 0, size);
7535 switch (opcode) {
7536 case 0x1: /* SQADD, UQADD */
7538 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7539 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
7540 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
7541 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
7543 genenvfn = fns[size][u];
7544 break;
7546 case 0x5: /* SQSUB, UQSUB */
7548 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7549 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
7550 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
7551 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
7553 genenvfn = fns[size][u];
7554 break;
7556 case 0x9: /* SQSHL, UQSHL */
7558 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7559 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
7560 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
7561 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
7563 genenvfn = fns[size][u];
7564 break;
7566 case 0xb: /* SQRSHL, UQRSHL */
7568 static NeonGenTwoOpEnvFn * const fns[3][2] = {
7569 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
7570 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
7571 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
7573 genenvfn = fns[size][u];
7574 break;
7576 case 0x16: /* SQDMULH, SQRDMULH */
7578 static NeonGenTwoOpEnvFn * const fns[2][2] = {
7579 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
7580 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
7582 assert(size == 1 || size == 2);
7583 genenvfn = fns[size - 1][u];
7584 break;
7586 default:
7587 g_assert_not_reached();
7590 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
7591 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
7592 tcg_temp_free_i32(tcg_rd32);
7593 tcg_temp_free_i32(tcg_rn);
7594 tcg_temp_free_i32(tcg_rm);
7597 write_fp_dreg(s, rd, tcg_rd);
7599 tcg_temp_free_i64(tcg_rd);
7602 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
7603 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
7604 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
7606 /* Handle 64->64 opcodes which are shared between the scalar and
7607 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
7608 * is valid in either group and also the double-precision fp ops.
7609 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
7610 * requires them.
7612 TCGCond cond;
7614 switch (opcode) {
7615 case 0x4: /* CLS, CLZ */
7616 if (u) {
7617 gen_helper_clz64(tcg_rd, tcg_rn);
7618 } else {
7619 gen_helper_cls64(tcg_rd, tcg_rn);
7621 break;
7622 case 0x5: /* NOT */
7623 /* This opcode is shared with CNT and RBIT but we have earlier
7624 * enforced that size == 3 if and only if this is the NOT insn.
7626 tcg_gen_not_i64(tcg_rd, tcg_rn);
7627 break;
7628 case 0x7: /* SQABS, SQNEG */
7629 if (u) {
7630 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
7631 } else {
7632 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
7634 break;
7635 case 0xa: /* CMLT */
7636 /* 64 bit integer comparison against zero, result is
7637 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
7638 * subtracting 1.
7640 cond = TCG_COND_LT;
7641 do_cmop:
7642 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
7643 tcg_gen_neg_i64(tcg_rd, tcg_rd);
7644 break;
7645 case 0x8: /* CMGT, CMGE */
7646 cond = u ? TCG_COND_GE : TCG_COND_GT;
7647 goto do_cmop;
7648 case 0x9: /* CMEQ, CMLE */
7649 cond = u ? TCG_COND_LE : TCG_COND_EQ;
7650 goto do_cmop;
7651 case 0xb: /* ABS, NEG */
7652 if (u) {
7653 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7654 } else {
7655 TCGv_i64 tcg_zero = tcg_const_i64(0);
7656 tcg_gen_neg_i64(tcg_rd, tcg_rn);
7657 tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
7658 tcg_rn, tcg_rd);
7659 tcg_temp_free_i64(tcg_zero);
7661 break;
7662 case 0x2f: /* FABS */
7663 gen_helper_vfp_absd(tcg_rd, tcg_rn);
7664 break;
7665 case 0x6f: /* FNEG */
7666 gen_helper_vfp_negd(tcg_rd, tcg_rn);
7667 break;
7668 case 0x7f: /* FSQRT */
7669 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
7670 break;
7671 case 0x1a: /* FCVTNS */
7672 case 0x1b: /* FCVTMS */
7673 case 0x1c: /* FCVTAS */
7674 case 0x3a: /* FCVTPS */
7675 case 0x3b: /* FCVTZS */
7677 TCGv_i32 tcg_shift = tcg_const_i32(0);
7678 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7679 tcg_temp_free_i32(tcg_shift);
7680 break;
7682 case 0x5a: /* FCVTNU */
7683 case 0x5b: /* FCVTMU */
7684 case 0x5c: /* FCVTAU */
7685 case 0x7a: /* FCVTPU */
7686 case 0x7b: /* FCVTZU */
7688 TCGv_i32 tcg_shift = tcg_const_i32(0);
7689 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
7690 tcg_temp_free_i32(tcg_shift);
7691 break;
7693 case 0x18: /* FRINTN */
7694 case 0x19: /* FRINTM */
7695 case 0x38: /* FRINTP */
7696 case 0x39: /* FRINTZ */
7697 case 0x58: /* FRINTA */
7698 case 0x79: /* FRINTI */
7699 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
7700 break;
7701 case 0x59: /* FRINTX */
7702 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
7703 break;
7704 default:
7705 g_assert_not_reached();
7709 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
7710 bool is_scalar, bool is_u, bool is_q,
7711 int size, int rn, int rd)
7713 bool is_double = (size == 3);
7714 TCGv_ptr fpst;
7716 if (!fp_access_check(s)) {
7717 return;
7720 fpst = get_fpstatus_ptr();
7722 if (is_double) {
7723 TCGv_i64 tcg_op = tcg_temp_new_i64();
7724 TCGv_i64 tcg_zero = tcg_const_i64(0);
7725 TCGv_i64 tcg_res = tcg_temp_new_i64();
7726 NeonGenTwoDoubleOPFn *genfn;
7727 bool swap = false;
7728 int pass;
7730 switch (opcode) {
7731 case 0x2e: /* FCMLT (zero) */
7732 swap = true;
7733 /* fallthrough */
7734 case 0x2c: /* FCMGT (zero) */
7735 genfn = gen_helper_neon_cgt_f64;
7736 break;
7737 case 0x2d: /* FCMEQ (zero) */
7738 genfn = gen_helper_neon_ceq_f64;
7739 break;
7740 case 0x6d: /* FCMLE (zero) */
7741 swap = true;
7742 /* fall through */
7743 case 0x6c: /* FCMGE (zero) */
7744 genfn = gen_helper_neon_cge_f64;
7745 break;
7746 default:
7747 g_assert_not_reached();
7750 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7751 read_vec_element(s, tcg_op, rn, pass, MO_64);
7752 if (swap) {
7753 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7754 } else {
7755 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7757 write_vec_element(s, tcg_res, rd, pass, MO_64);
7759 if (is_scalar) {
7760 clear_vec_high(s, rd);
7763 tcg_temp_free_i64(tcg_res);
7764 tcg_temp_free_i64(tcg_zero);
7765 tcg_temp_free_i64(tcg_op);
7766 } else {
7767 TCGv_i32 tcg_op = tcg_temp_new_i32();
7768 TCGv_i32 tcg_zero = tcg_const_i32(0);
7769 TCGv_i32 tcg_res = tcg_temp_new_i32();
7770 NeonGenTwoSingleOPFn *genfn;
7771 bool swap = false;
7772 int pass, maxpasses;
7774 switch (opcode) {
7775 case 0x2e: /* FCMLT (zero) */
7776 swap = true;
7777 /* fall through */
7778 case 0x2c: /* FCMGT (zero) */
7779 genfn = gen_helper_neon_cgt_f32;
7780 break;
7781 case 0x2d: /* FCMEQ (zero) */
7782 genfn = gen_helper_neon_ceq_f32;
7783 break;
7784 case 0x6d: /* FCMLE (zero) */
7785 swap = true;
7786 /* fall through */
7787 case 0x6c: /* FCMGE (zero) */
7788 genfn = gen_helper_neon_cge_f32;
7789 break;
7790 default:
7791 g_assert_not_reached();
7794 if (is_scalar) {
7795 maxpasses = 1;
7796 } else {
7797 maxpasses = is_q ? 4 : 2;
7800 for (pass = 0; pass < maxpasses; pass++) {
7801 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7802 if (swap) {
7803 genfn(tcg_res, tcg_zero, tcg_op, fpst);
7804 } else {
7805 genfn(tcg_res, tcg_op, tcg_zero, fpst);
7807 if (is_scalar) {
7808 write_fp_sreg(s, rd, tcg_res);
7809 } else {
7810 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7813 tcg_temp_free_i32(tcg_res);
7814 tcg_temp_free_i32(tcg_zero);
7815 tcg_temp_free_i32(tcg_op);
7816 if (!is_q && !is_scalar) {
7817 clear_vec_high(s, rd);
7821 tcg_temp_free_ptr(fpst);
7824 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
7825 bool is_scalar, bool is_u, bool is_q,
7826 int size, int rn, int rd)
7828 bool is_double = (size == 3);
7829 TCGv_ptr fpst = get_fpstatus_ptr();
7831 if (is_double) {
7832 TCGv_i64 tcg_op = tcg_temp_new_i64();
7833 TCGv_i64 tcg_res = tcg_temp_new_i64();
7834 int pass;
7836 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
7837 read_vec_element(s, tcg_op, rn, pass, MO_64);
7838 switch (opcode) {
7839 case 0x3d: /* FRECPE */
7840 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
7841 break;
7842 case 0x3f: /* FRECPX */
7843 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
7844 break;
7845 case 0x7d: /* FRSQRTE */
7846 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
7847 break;
7848 default:
7849 g_assert_not_reached();
7851 write_vec_element(s, tcg_res, rd, pass, MO_64);
7853 if (is_scalar) {
7854 clear_vec_high(s, rd);
7857 tcg_temp_free_i64(tcg_res);
7858 tcg_temp_free_i64(tcg_op);
7859 } else {
7860 TCGv_i32 tcg_op = tcg_temp_new_i32();
7861 TCGv_i32 tcg_res = tcg_temp_new_i32();
7862 int pass, maxpasses;
7864 if (is_scalar) {
7865 maxpasses = 1;
7866 } else {
7867 maxpasses = is_q ? 4 : 2;
7870 for (pass = 0; pass < maxpasses; pass++) {
7871 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
7873 switch (opcode) {
7874 case 0x3c: /* URECPE */
7875 gen_helper_recpe_u32(tcg_res, tcg_op, fpst);
7876 break;
7877 case 0x3d: /* FRECPE */
7878 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
7879 break;
7880 case 0x3f: /* FRECPX */
7881 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
7882 break;
7883 case 0x7d: /* FRSQRTE */
7884 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
7885 break;
7886 default:
7887 g_assert_not_reached();
7890 if (is_scalar) {
7891 write_fp_sreg(s, rd, tcg_res);
7892 } else {
7893 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
7896 tcg_temp_free_i32(tcg_res);
7897 tcg_temp_free_i32(tcg_op);
7898 if (!is_q && !is_scalar) {
7899 clear_vec_high(s, rd);
7902 tcg_temp_free_ptr(fpst);
7905 static void handle_2misc_narrow(DisasContext *s, bool scalar,
7906 int opcode, bool u, bool is_q,
7907 int size, int rn, int rd)
7909 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
7910 * in the source becomes a size element in the destination).
7912 int pass;
7913 TCGv_i32 tcg_res[2];
7914 int destelt = is_q ? 2 : 0;
7915 int passes = scalar ? 1 : 2;
7917 if (scalar) {
7918 tcg_res[1] = tcg_const_i32(0);
7921 for (pass = 0; pass < passes; pass++) {
7922 TCGv_i64 tcg_op = tcg_temp_new_i64();
7923 NeonGenNarrowFn *genfn = NULL;
7924 NeonGenNarrowEnvFn *genenvfn = NULL;
7926 if (scalar) {
7927 read_vec_element(s, tcg_op, rn, pass, size + 1);
7928 } else {
7929 read_vec_element(s, tcg_op, rn, pass, MO_64);
7931 tcg_res[pass] = tcg_temp_new_i32();
7933 switch (opcode) {
7934 case 0x12: /* XTN, SQXTUN */
7936 static NeonGenNarrowFn * const xtnfns[3] = {
7937 gen_helper_neon_narrow_u8,
7938 gen_helper_neon_narrow_u16,
7939 tcg_gen_extrl_i64_i32,
7941 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
7942 gen_helper_neon_unarrow_sat8,
7943 gen_helper_neon_unarrow_sat16,
7944 gen_helper_neon_unarrow_sat32,
7946 if (u) {
7947 genenvfn = sqxtunfns[size];
7948 } else {
7949 genfn = xtnfns[size];
7951 break;
7953 case 0x14: /* SQXTN, UQXTN */
7955 static NeonGenNarrowEnvFn * const fns[3][2] = {
7956 { gen_helper_neon_narrow_sat_s8,
7957 gen_helper_neon_narrow_sat_u8 },
7958 { gen_helper_neon_narrow_sat_s16,
7959 gen_helper_neon_narrow_sat_u16 },
7960 { gen_helper_neon_narrow_sat_s32,
7961 gen_helper_neon_narrow_sat_u32 },
7963 genenvfn = fns[size][u];
7964 break;
7966 case 0x16: /* FCVTN, FCVTN2 */
7967 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
7968 if (size == 2) {
7969 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
7970 } else {
7971 TCGv_i32 tcg_lo = tcg_temp_new_i32();
7972 TCGv_i32 tcg_hi = tcg_temp_new_i32();
7973 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
7974 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, cpu_env);
7975 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, cpu_env);
7976 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
7977 tcg_temp_free_i32(tcg_lo);
7978 tcg_temp_free_i32(tcg_hi);
7980 break;
7981 case 0x56: /* FCVTXN, FCVTXN2 */
7982 /* 64 bit to 32 bit float conversion
7983 * with von Neumann rounding (round to odd)
7985 assert(size == 2);
7986 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
7987 break;
7988 default:
7989 g_assert_not_reached();
7992 if (genfn) {
7993 genfn(tcg_res[pass], tcg_op);
7994 } else if (genenvfn) {
7995 genenvfn(tcg_res[pass], cpu_env, tcg_op);
7998 tcg_temp_free_i64(tcg_op);
8001 for (pass = 0; pass < 2; pass++) {
8002 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
8003 tcg_temp_free_i32(tcg_res[pass]);
8005 if (!is_q) {
8006 clear_vec_high(s, rd);
8010 /* Remaining saturating accumulating ops */
8011 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
8012 bool is_q, int size, int rn, int rd)
8014 bool is_double = (size == 3);
8016 if (is_double) {
8017 TCGv_i64 tcg_rn = tcg_temp_new_i64();
8018 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8019 int pass;
8021 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
8022 read_vec_element(s, tcg_rn, rn, pass, MO_64);
8023 read_vec_element(s, tcg_rd, rd, pass, MO_64);
8025 if (is_u) { /* USQADD */
8026 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8027 } else { /* SUQADD */
8028 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8030 write_vec_element(s, tcg_rd, rd, pass, MO_64);
8032 if (is_scalar) {
8033 clear_vec_high(s, rd);
8036 tcg_temp_free_i64(tcg_rd);
8037 tcg_temp_free_i64(tcg_rn);
8038 } else {
8039 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8040 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8041 int pass, maxpasses;
8043 if (is_scalar) {
8044 maxpasses = 1;
8045 } else {
8046 maxpasses = is_q ? 4 : 2;
8049 for (pass = 0; pass < maxpasses; pass++) {
8050 if (is_scalar) {
8051 read_vec_element_i32(s, tcg_rn, rn, pass, size);
8052 read_vec_element_i32(s, tcg_rd, rd, pass, size);
8053 } else {
8054 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
8055 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8058 if (is_u) { /* USQADD */
8059 switch (size) {
8060 case 0:
8061 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8062 break;
8063 case 1:
8064 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8065 break;
8066 case 2:
8067 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8068 break;
8069 default:
8070 g_assert_not_reached();
8072 } else { /* SUQADD */
8073 switch (size) {
8074 case 0:
8075 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8076 break;
8077 case 1:
8078 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8079 break;
8080 case 2:
8081 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
8082 break;
8083 default:
8084 g_assert_not_reached();
8088 if (is_scalar) {
8089 TCGv_i64 tcg_zero = tcg_const_i64(0);
8090 write_vec_element(s, tcg_zero, rd, 0, MO_64);
8091 tcg_temp_free_i64(tcg_zero);
8093 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
8096 if (!is_q) {
8097 clear_vec_high(s, rd);
8100 tcg_temp_free_i32(tcg_rd);
8101 tcg_temp_free_i32(tcg_rn);
8105 /* C3.6.12 AdvSIMD scalar two reg misc
8106 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8107 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8108 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
8109 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8111 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
8113 int rd = extract32(insn, 0, 5);
8114 int rn = extract32(insn, 5, 5);
8115 int opcode = extract32(insn, 12, 5);
8116 int size = extract32(insn, 22, 2);
8117 bool u = extract32(insn, 29, 1);
8118 bool is_fcvt = false;
8119 int rmode;
8120 TCGv_i32 tcg_rmode;
8121 TCGv_ptr tcg_fpstatus;
8123 switch (opcode) {
8124 case 0x3: /* USQADD / SUQADD*/
8125 if (!fp_access_check(s)) {
8126 return;
8128 handle_2misc_satacc(s, true, u, false, size, rn, rd);
8129 return;
8130 case 0x7: /* SQABS / SQNEG */
8131 break;
8132 case 0xa: /* CMLT */
8133 if (u) {
8134 unallocated_encoding(s);
8135 return;
8137 /* fall through */
8138 case 0x8: /* CMGT, CMGE */
8139 case 0x9: /* CMEQ, CMLE */
8140 case 0xb: /* ABS, NEG */
8141 if (size != 3) {
8142 unallocated_encoding(s);
8143 return;
8145 break;
8146 case 0x12: /* SQXTUN */
8147 if (!u) {
8148 unallocated_encoding(s);
8149 return;
8151 /* fall through */
8152 case 0x14: /* SQXTN, UQXTN */
8153 if (size == 3) {
8154 unallocated_encoding(s);
8155 return;
8157 if (!fp_access_check(s)) {
8158 return;
8160 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
8161 return;
8162 case 0xc ... 0xf:
8163 case 0x16 ... 0x1d:
8164 case 0x1f:
8165 /* Floating point: U, size[1] and opcode indicate operation;
8166 * size[0] indicates single or double precision.
8168 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
8169 size = extract32(size, 0, 1) ? 3 : 2;
8170 switch (opcode) {
8171 case 0x2c: /* FCMGT (zero) */
8172 case 0x2d: /* FCMEQ (zero) */
8173 case 0x2e: /* FCMLT (zero) */
8174 case 0x6c: /* FCMGE (zero) */
8175 case 0x6d: /* FCMLE (zero) */
8176 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
8177 return;
8178 case 0x1d: /* SCVTF */
8179 case 0x5d: /* UCVTF */
8181 bool is_signed = (opcode == 0x1d);
8182 if (!fp_access_check(s)) {
8183 return;
8185 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
8186 return;
8188 case 0x3d: /* FRECPE */
8189 case 0x3f: /* FRECPX */
8190 case 0x7d: /* FRSQRTE */
8191 if (!fp_access_check(s)) {
8192 return;
8194 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
8195 return;
8196 case 0x1a: /* FCVTNS */
8197 case 0x1b: /* FCVTMS */
8198 case 0x3a: /* FCVTPS */
8199 case 0x3b: /* FCVTZS */
8200 case 0x5a: /* FCVTNU */
8201 case 0x5b: /* FCVTMU */
8202 case 0x7a: /* FCVTPU */
8203 case 0x7b: /* FCVTZU */
8204 is_fcvt = true;
8205 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
8206 break;
8207 case 0x1c: /* FCVTAS */
8208 case 0x5c: /* FCVTAU */
8209 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
8210 is_fcvt = true;
8211 rmode = FPROUNDING_TIEAWAY;
8212 break;
8213 case 0x56: /* FCVTXN, FCVTXN2 */
8214 if (size == 2) {
8215 unallocated_encoding(s);
8216 return;
8218 if (!fp_access_check(s)) {
8219 return;
8221 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
8222 return;
8223 default:
8224 unallocated_encoding(s);
8225 return;
8227 break;
8228 default:
8229 unallocated_encoding(s);
8230 return;
8233 if (!fp_access_check(s)) {
8234 return;
8237 if (is_fcvt) {
8238 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
8239 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8240 tcg_fpstatus = get_fpstatus_ptr();
8241 } else {
8242 TCGV_UNUSED_I32(tcg_rmode);
8243 TCGV_UNUSED_PTR(tcg_fpstatus);
8246 if (size == 3) {
8247 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
8248 TCGv_i64 tcg_rd = tcg_temp_new_i64();
8250 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
8251 write_fp_dreg(s, rd, tcg_rd);
8252 tcg_temp_free_i64(tcg_rd);
8253 tcg_temp_free_i64(tcg_rn);
8254 } else {
8255 TCGv_i32 tcg_rn = tcg_temp_new_i32();
8256 TCGv_i32 tcg_rd = tcg_temp_new_i32();
8258 read_vec_element_i32(s, tcg_rn, rn, 0, size);
8260 switch (opcode) {
8261 case 0x7: /* SQABS, SQNEG */
8263 NeonGenOneOpEnvFn *genfn;
8264 static NeonGenOneOpEnvFn * const fns[3][2] = {
8265 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
8266 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
8267 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
8269 genfn = fns[size][u];
8270 genfn(tcg_rd, cpu_env, tcg_rn);
8271 break;
8273 case 0x1a: /* FCVTNS */
8274 case 0x1b: /* FCVTMS */
8275 case 0x1c: /* FCVTAS */
8276 case 0x3a: /* FCVTPS */
8277 case 0x3b: /* FCVTZS */
8279 TCGv_i32 tcg_shift = tcg_const_i32(0);
8280 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8281 tcg_temp_free_i32(tcg_shift);
8282 break;
8284 case 0x5a: /* FCVTNU */
8285 case 0x5b: /* FCVTMU */
8286 case 0x5c: /* FCVTAU */
8287 case 0x7a: /* FCVTPU */
8288 case 0x7b: /* FCVTZU */
8290 TCGv_i32 tcg_shift = tcg_const_i32(0);
8291 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
8292 tcg_temp_free_i32(tcg_shift);
8293 break;
8295 default:
8296 g_assert_not_reached();
8299 write_fp_sreg(s, rd, tcg_rd);
8300 tcg_temp_free_i32(tcg_rd);
8301 tcg_temp_free_i32(tcg_rn);
8304 if (is_fcvt) {
8305 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
8306 tcg_temp_free_i32(tcg_rmode);
8307 tcg_temp_free_ptr(tcg_fpstatus);
8311 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
8312 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
8313 int immh, int immb, int opcode, int rn, int rd)
8315 int size = 32 - clz32(immh) - 1;
8316 int immhb = immh << 3 | immb;
8317 int shift = 2 * (8 << size) - immhb;
8318 bool accumulate = false;
8319 bool round = false;
8320 bool insert = false;
8321 int dsize = is_q ? 128 : 64;
8322 int esize = 8 << size;
8323 int elements = dsize/esize;
8324 TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
8325 TCGv_i64 tcg_rn = new_tmp_a64(s);
8326 TCGv_i64 tcg_rd = new_tmp_a64(s);
8327 TCGv_i64 tcg_round;
8328 int i;
8330 if (extract32(immh, 3, 1) && !is_q) {
8331 unallocated_encoding(s);
8332 return;
8335 if (size > 3 && !is_q) {
8336 unallocated_encoding(s);
8337 return;
8340 if (!fp_access_check(s)) {
8341 return;
8344 switch (opcode) {
8345 case 0x02: /* SSRA / USRA (accumulate) */
8346 accumulate = true;
8347 break;
8348 case 0x04: /* SRSHR / URSHR (rounding) */
8349 round = true;
8350 break;
8351 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8352 accumulate = round = true;
8353 break;
8354 case 0x08: /* SRI */
8355 insert = true;
8356 break;
8359 if (round) {
8360 uint64_t round_const = 1ULL << (shift - 1);
8361 tcg_round = tcg_const_i64(round_const);
8362 } else {
8363 TCGV_UNUSED_I64(tcg_round);
8366 for (i = 0; i < elements; i++) {
8367 read_vec_element(s, tcg_rn, rn, i, memop);
8368 if (accumulate || insert) {
8369 read_vec_element(s, tcg_rd, rd, i, memop);
8372 if (insert) {
8373 handle_shri_with_ins(tcg_rd, tcg_rn, size, shift);
8374 } else {
8375 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8376 accumulate, is_u, size, shift);
8379 write_vec_element(s, tcg_rd, rd, i, size);
8382 if (!is_q) {
8383 clear_vec_high(s, rd);
8386 if (round) {
8387 tcg_temp_free_i64(tcg_round);
8391 /* SHL/SLI - Vector shift left */
8392 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
8393 int immh, int immb, int opcode, int rn, int rd)
8395 int size = 32 - clz32(immh) - 1;
8396 int immhb = immh << 3 | immb;
8397 int shift = immhb - (8 << size);
8398 int dsize = is_q ? 128 : 64;
8399 int esize = 8 << size;
8400 int elements = dsize/esize;
8401 TCGv_i64 tcg_rn = new_tmp_a64(s);
8402 TCGv_i64 tcg_rd = new_tmp_a64(s);
8403 int i;
8405 if (extract32(immh, 3, 1) && !is_q) {
8406 unallocated_encoding(s);
8407 return;
8410 if (size > 3 && !is_q) {
8411 unallocated_encoding(s);
8412 return;
8415 if (!fp_access_check(s)) {
8416 return;
8419 for (i = 0; i < elements; i++) {
8420 read_vec_element(s, tcg_rn, rn, i, size);
8421 if (insert) {
8422 read_vec_element(s, tcg_rd, rd, i, size);
8425 handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
8427 write_vec_element(s, tcg_rd, rd, i, size);
8430 if (!is_q) {
8431 clear_vec_high(s, rd);
8435 /* USHLL/SHLL - Vector shift left with widening */
8436 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
8437 int immh, int immb, int opcode, int rn, int rd)
8439 int size = 32 - clz32(immh) - 1;
8440 int immhb = immh << 3 | immb;
8441 int shift = immhb - (8 << size);
8442 int dsize = 64;
8443 int esize = 8 << size;
8444 int elements = dsize/esize;
8445 TCGv_i64 tcg_rn = new_tmp_a64(s);
8446 TCGv_i64 tcg_rd = new_tmp_a64(s);
8447 int i;
8449 if (size >= 3) {
8450 unallocated_encoding(s);
8451 return;
8454 if (!fp_access_check(s)) {
8455 return;
8458 /* For the LL variants the store is larger than the load,
8459 * so if rd == rn we would overwrite parts of our input.
8460 * So load everything right now and use shifts in the main loop.
8462 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
8464 for (i = 0; i < elements; i++) {
8465 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
8466 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
8467 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
8468 write_vec_element(s, tcg_rd, rd, i, size + 1);
8472 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
8473 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
8474 int immh, int immb, int opcode, int rn, int rd)
8476 int immhb = immh << 3 | immb;
8477 int size = 32 - clz32(immh) - 1;
8478 int dsize = 64;
8479 int esize = 8 << size;
8480 int elements = dsize/esize;
8481 int shift = (2 * esize) - immhb;
8482 bool round = extract32(opcode, 0, 1);
8483 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
8484 TCGv_i64 tcg_round;
8485 int i;
8487 if (extract32(immh, 3, 1)) {
8488 unallocated_encoding(s);
8489 return;
8492 if (!fp_access_check(s)) {
8493 return;
8496 tcg_rn = tcg_temp_new_i64();
8497 tcg_rd = tcg_temp_new_i64();
8498 tcg_final = tcg_temp_new_i64();
8499 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
8501 if (round) {
8502 uint64_t round_const = 1ULL << (shift - 1);
8503 tcg_round = tcg_const_i64(round_const);
8504 } else {
8505 TCGV_UNUSED_I64(tcg_round);
8508 for (i = 0; i < elements; i++) {
8509 read_vec_element(s, tcg_rn, rn, i, size+1);
8510 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8511 false, true, size+1, shift);
8513 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8516 if (!is_q) {
8517 clear_vec_high(s, rd);
8518 write_vec_element(s, tcg_final, rd, 0, MO_64);
8519 } else {
8520 write_vec_element(s, tcg_final, rd, 1, MO_64);
8523 if (round) {
8524 tcg_temp_free_i64(tcg_round);
8526 tcg_temp_free_i64(tcg_rn);
8527 tcg_temp_free_i64(tcg_rd);
8528 tcg_temp_free_i64(tcg_final);
8529 return;
8533 /* C3.6.14 AdvSIMD shift by immediate
8534 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
8535 * +---+---+---+-------------+------+------+--------+---+------+------+
8536 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
8537 * +---+---+---+-------------+------+------+--------+---+------+------+
8539 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
8541 int rd = extract32(insn, 0, 5);
8542 int rn = extract32(insn, 5, 5);
8543 int opcode = extract32(insn, 11, 5);
8544 int immb = extract32(insn, 16, 3);
8545 int immh = extract32(insn, 19, 4);
8546 bool is_u = extract32(insn, 29, 1);
8547 bool is_q = extract32(insn, 30, 1);
8549 switch (opcode) {
8550 case 0x08: /* SRI */
8551 if (!is_u) {
8552 unallocated_encoding(s);
8553 return;
8555 /* fall through */
8556 case 0x00: /* SSHR / USHR */
8557 case 0x02: /* SSRA / USRA (accumulate) */
8558 case 0x04: /* SRSHR / URSHR (rounding) */
8559 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8560 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
8561 break;
8562 case 0x0a: /* SHL / SLI */
8563 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8564 break;
8565 case 0x10: /* SHRN */
8566 case 0x11: /* RSHRN / SQRSHRUN */
8567 if (is_u) {
8568 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
8569 opcode, rn, rd);
8570 } else {
8571 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
8573 break;
8574 case 0x12: /* SQSHRN / UQSHRN */
8575 case 0x13: /* SQRSHRN / UQRSHRN */
8576 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
8577 opcode, rn, rd);
8578 break;
8579 case 0x14: /* SSHLL / USHLL */
8580 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
8581 break;
8582 case 0x1c: /* SCVTF / UCVTF */
8583 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
8584 opcode, rn, rd);
8585 break;
8586 case 0xc: /* SQSHLU */
8587 if (!is_u) {
8588 unallocated_encoding(s);
8589 return;
8591 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
8592 break;
8593 case 0xe: /* SQSHL, UQSHL */
8594 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
8595 break;
8596 case 0x1f: /* FCVTZS/ FCVTZU */
8597 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
8598 return;
8599 default:
8600 unallocated_encoding(s);
8601 return;
8605 /* Generate code to do a "long" addition or subtraction, ie one done in
8606 * TCGv_i64 on vector lanes twice the width specified by size.
8608 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
8609 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
8611 static NeonGenTwo64OpFn * const fns[3][2] = {
8612 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
8613 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
8614 { tcg_gen_add_i64, tcg_gen_sub_i64 },
8616 NeonGenTwo64OpFn *genfn;
8617 assert(size < 3);
8619 genfn = fns[size][is_sub];
8620 genfn(tcg_res, tcg_op1, tcg_op2);
8623 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
8624 int opcode, int rd, int rn, int rm)
8626 /* 3-reg-different widening insns: 64 x 64 -> 128 */
8627 TCGv_i64 tcg_res[2];
8628 int pass, accop;
8630 tcg_res[0] = tcg_temp_new_i64();
8631 tcg_res[1] = tcg_temp_new_i64();
8633 /* Does this op do an adding accumulate, a subtracting accumulate,
8634 * or no accumulate at all?
8636 switch (opcode) {
8637 case 5:
8638 case 8:
8639 case 9:
8640 accop = 1;
8641 break;
8642 case 10:
8643 case 11:
8644 accop = -1;
8645 break;
8646 default:
8647 accop = 0;
8648 break;
8651 if (accop != 0) {
8652 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
8653 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
8656 /* size == 2 means two 32x32->64 operations; this is worth special
8657 * casing because we can generally handle it inline.
8659 if (size == 2) {
8660 for (pass = 0; pass < 2; pass++) {
8661 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8662 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8663 TCGv_i64 tcg_passres;
8664 TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
8666 int elt = pass + is_q * 2;
8668 read_vec_element(s, tcg_op1, rn, elt, memop);
8669 read_vec_element(s, tcg_op2, rm, elt, memop);
8671 if (accop == 0) {
8672 tcg_passres = tcg_res[pass];
8673 } else {
8674 tcg_passres = tcg_temp_new_i64();
8677 switch (opcode) {
8678 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8679 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
8680 break;
8681 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8682 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
8683 break;
8684 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8685 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8687 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
8688 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
8690 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
8691 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
8692 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
8693 tcg_passres,
8694 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
8695 tcg_temp_free_i64(tcg_tmp1);
8696 tcg_temp_free_i64(tcg_tmp2);
8697 break;
8699 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8700 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8701 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8702 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8703 break;
8704 case 9: /* SQDMLAL, SQDMLAL2 */
8705 case 11: /* SQDMLSL, SQDMLSL2 */
8706 case 13: /* SQDMULL, SQDMULL2 */
8707 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
8708 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
8709 tcg_passres, tcg_passres);
8710 break;
8711 default:
8712 g_assert_not_reached();
8715 if (opcode == 9 || opcode == 11) {
8716 /* saturating accumulate ops */
8717 if (accop < 0) {
8718 tcg_gen_neg_i64(tcg_passres, tcg_passres);
8720 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
8721 tcg_res[pass], tcg_passres);
8722 } else if (accop > 0) {
8723 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8724 } else if (accop < 0) {
8725 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
8728 if (accop != 0) {
8729 tcg_temp_free_i64(tcg_passres);
8732 tcg_temp_free_i64(tcg_op1);
8733 tcg_temp_free_i64(tcg_op2);
8735 } else {
8736 /* size 0 or 1, generally helper functions */
8737 for (pass = 0; pass < 2; pass++) {
8738 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8739 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8740 TCGv_i64 tcg_passres;
8741 int elt = pass + is_q * 2;
8743 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
8744 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
8746 if (accop == 0) {
8747 tcg_passres = tcg_res[pass];
8748 } else {
8749 tcg_passres = tcg_temp_new_i64();
8752 switch (opcode) {
8753 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
8754 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
8756 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
8757 static NeonGenWidenFn * const widenfns[2][2] = {
8758 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8759 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8761 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8763 widenfn(tcg_op2_64, tcg_op2);
8764 widenfn(tcg_passres, tcg_op1);
8765 gen_neon_addl(size, (opcode == 2), tcg_passres,
8766 tcg_passres, tcg_op2_64);
8767 tcg_temp_free_i64(tcg_op2_64);
8768 break;
8770 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
8771 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
8772 if (size == 0) {
8773 if (is_u) {
8774 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
8775 } else {
8776 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
8778 } else {
8779 if (is_u) {
8780 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
8781 } else {
8782 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
8785 break;
8786 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
8787 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
8788 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
8789 if (size == 0) {
8790 if (is_u) {
8791 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
8792 } else {
8793 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
8795 } else {
8796 if (is_u) {
8797 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
8798 } else {
8799 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8802 break;
8803 case 9: /* SQDMLAL, SQDMLAL2 */
8804 case 11: /* SQDMLSL, SQDMLSL2 */
8805 case 13: /* SQDMULL, SQDMULL2 */
8806 assert(size == 1);
8807 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
8808 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
8809 tcg_passres, tcg_passres);
8810 break;
8811 case 14: /* PMULL */
8812 assert(size == 0);
8813 gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2);
8814 break;
8815 default:
8816 g_assert_not_reached();
8818 tcg_temp_free_i32(tcg_op1);
8819 tcg_temp_free_i32(tcg_op2);
8821 if (accop != 0) {
8822 if (opcode == 9 || opcode == 11) {
8823 /* saturating accumulate ops */
8824 if (accop < 0) {
8825 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
8827 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
8828 tcg_res[pass],
8829 tcg_passres);
8830 } else {
8831 gen_neon_addl(size, (accop < 0), tcg_res[pass],
8832 tcg_res[pass], tcg_passres);
8834 tcg_temp_free_i64(tcg_passres);
8839 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
8840 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
8841 tcg_temp_free_i64(tcg_res[0]);
8842 tcg_temp_free_i64(tcg_res[1]);
8845 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
8846 int opcode, int rd, int rn, int rm)
8848 TCGv_i64 tcg_res[2];
8849 int part = is_q ? 2 : 0;
8850 int pass;
8852 for (pass = 0; pass < 2; pass++) {
8853 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8854 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8855 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
8856 static NeonGenWidenFn * const widenfns[3][2] = {
8857 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
8858 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
8859 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
8861 NeonGenWidenFn *widenfn = widenfns[size][is_u];
8863 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8864 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
8865 widenfn(tcg_op2_wide, tcg_op2);
8866 tcg_temp_free_i32(tcg_op2);
8867 tcg_res[pass] = tcg_temp_new_i64();
8868 gen_neon_addl(size, (opcode == 3),
8869 tcg_res[pass], tcg_op1, tcg_op2_wide);
8870 tcg_temp_free_i64(tcg_op1);
8871 tcg_temp_free_i64(tcg_op2_wide);
8874 for (pass = 0; pass < 2; pass++) {
8875 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
8876 tcg_temp_free_i64(tcg_res[pass]);
8880 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
8882 tcg_gen_addi_i64(in, in, 1U << 31);
8883 tcg_gen_extrh_i64_i32(res, in);
8886 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
8887 int opcode, int rd, int rn, int rm)
8889 TCGv_i32 tcg_res[2];
8890 int part = is_q ? 2 : 0;
8891 int pass;
8893 for (pass = 0; pass < 2; pass++) {
8894 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8895 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8896 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
8897 static NeonGenNarrowFn * const narrowfns[3][2] = {
8898 { gen_helper_neon_narrow_high_u8,
8899 gen_helper_neon_narrow_round_high_u8 },
8900 { gen_helper_neon_narrow_high_u16,
8901 gen_helper_neon_narrow_round_high_u16 },
8902 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
8904 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
8906 read_vec_element(s, tcg_op1, rn, pass, MO_64);
8907 read_vec_element(s, tcg_op2, rm, pass, MO_64);
8909 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
8911 tcg_temp_free_i64(tcg_op1);
8912 tcg_temp_free_i64(tcg_op2);
8914 tcg_res[pass] = tcg_temp_new_i32();
8915 gennarrow(tcg_res[pass], tcg_wideres);
8916 tcg_temp_free_i64(tcg_wideres);
8919 for (pass = 0; pass < 2; pass++) {
8920 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
8921 tcg_temp_free_i32(tcg_res[pass]);
8923 if (!is_q) {
8924 clear_vec_high(s, rd);
8928 static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm)
8930 /* PMULL of 64 x 64 -> 128 is an odd special case because it
8931 * is the only three-reg-diff instruction which produces a
8932 * 128-bit wide result from a single operation. However since
8933 * it's possible to calculate the two halves more or less
8934 * separately we just use two helper calls.
8936 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8937 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8938 TCGv_i64 tcg_res = tcg_temp_new_i64();
8940 read_vec_element(s, tcg_op1, rn, is_q, MO_64);
8941 read_vec_element(s, tcg_op2, rm, is_q, MO_64);
8942 gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2);
8943 write_vec_element(s, tcg_res, rd, 0, MO_64);
8944 gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2);
8945 write_vec_element(s, tcg_res, rd, 1, MO_64);
8947 tcg_temp_free_i64(tcg_op1);
8948 tcg_temp_free_i64(tcg_op2);
8949 tcg_temp_free_i64(tcg_res);
8952 /* C3.6.15 AdvSIMD three different
8953 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
8954 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8955 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
8956 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
8958 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
8960 /* Instructions in this group fall into three basic classes
8961 * (in each case with the operation working on each element in
8962 * the input vectors):
8963 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
8964 * 128 bit input)
8965 * (2) wide 64 x 128 -> 128
8966 * (3) narrowing 128 x 128 -> 64
8967 * Here we do initial decode, catch unallocated cases and
8968 * dispatch to separate functions for each class.
8970 int is_q = extract32(insn, 30, 1);
8971 int is_u = extract32(insn, 29, 1);
8972 int size = extract32(insn, 22, 2);
8973 int opcode = extract32(insn, 12, 4);
8974 int rm = extract32(insn, 16, 5);
8975 int rn = extract32(insn, 5, 5);
8976 int rd = extract32(insn, 0, 5);
8978 switch (opcode) {
8979 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
8980 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
8981 /* 64 x 128 -> 128 */
8982 if (size == 3) {
8983 unallocated_encoding(s);
8984 return;
8986 if (!fp_access_check(s)) {
8987 return;
8989 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
8990 break;
8991 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
8992 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
8993 /* 128 x 128 -> 64 */
8994 if (size == 3) {
8995 unallocated_encoding(s);
8996 return;
8998 if (!fp_access_check(s)) {
8999 return;
9001 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
9002 break;
9003 case 14: /* PMULL, PMULL2 */
9004 if (is_u || size == 1 || size == 2) {
9005 unallocated_encoding(s);
9006 return;
9008 if (size == 3) {
9009 if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) {
9010 unallocated_encoding(s);
9011 return;
9013 if (!fp_access_check(s)) {
9014 return;
9016 handle_pmull_64(s, is_q, rd, rn, rm);
9017 return;
9019 goto is_widening;
9020 case 9: /* SQDMLAL, SQDMLAL2 */
9021 case 11: /* SQDMLSL, SQDMLSL2 */
9022 case 13: /* SQDMULL, SQDMULL2 */
9023 if (is_u || size == 0) {
9024 unallocated_encoding(s);
9025 return;
9027 /* fall through */
9028 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
9029 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
9030 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
9031 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
9032 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
9033 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
9034 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
9035 /* 64 x 64 -> 128 */
9036 if (size == 3) {
9037 unallocated_encoding(s);
9038 return;
9040 is_widening:
9041 if (!fp_access_check(s)) {
9042 return;
9045 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
9046 break;
9047 default:
9048 /* opcode 15 not allocated */
9049 unallocated_encoding(s);
9050 break;
9054 /* Logic op (opcode == 3) subgroup of C3.6.16. */
9055 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
9057 int rd = extract32(insn, 0, 5);
9058 int rn = extract32(insn, 5, 5);
9059 int rm = extract32(insn, 16, 5);
9060 int size = extract32(insn, 22, 2);
9061 bool is_u = extract32(insn, 29, 1);
9062 bool is_q = extract32(insn, 30, 1);
9063 TCGv_i64 tcg_op1, tcg_op2, tcg_res[2];
9064 int pass;
9066 if (!fp_access_check(s)) {
9067 return;
9070 tcg_op1 = tcg_temp_new_i64();
9071 tcg_op2 = tcg_temp_new_i64();
9072 tcg_res[0] = tcg_temp_new_i64();
9073 tcg_res[1] = tcg_temp_new_i64();
9075 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
9076 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9077 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9079 if (!is_u) {
9080 switch (size) {
9081 case 0: /* AND */
9082 tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
9083 break;
9084 case 1: /* BIC */
9085 tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9086 break;
9087 case 2: /* ORR */
9088 tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
9089 break;
9090 case 3: /* ORN */
9091 tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
9092 break;
9094 } else {
9095 if (size != 0) {
9096 /* B* ops need res loaded to operate on */
9097 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9100 switch (size) {
9101 case 0: /* EOR */
9102 tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
9103 break;
9104 case 1: /* BSL bitwise select */
9105 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
9106 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9107 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
9108 break;
9109 case 2: /* BIT, bitwise insert if true */
9110 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9111 tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
9112 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9113 break;
9114 case 3: /* BIF, bitwise insert if false */
9115 tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
9116 tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
9117 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9118 break;
9123 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
9124 if (!is_q) {
9125 tcg_gen_movi_i64(tcg_res[1], 0);
9127 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
9129 tcg_temp_free_i64(tcg_op1);
9130 tcg_temp_free_i64(tcg_op2);
9131 tcg_temp_free_i64(tcg_res[0]);
9132 tcg_temp_free_i64(tcg_res[1]);
9135 /* Helper functions for 32 bit comparisons */
9136 static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9138 tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
9141 static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9143 tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
9146 static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9148 tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
9151 static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
9153 tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
9156 /* Pairwise op subgroup of C3.6.16.
9158 * This is called directly or via the handle_3same_float for float pairwise
9159 * operations where the opcode and size are calculated differently.
9161 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
9162 int size, int rn, int rm, int rd)
9164 TCGv_ptr fpst;
9165 int pass;
9167 /* Floating point operations need fpst */
9168 if (opcode >= 0x58) {
9169 fpst = get_fpstatus_ptr();
9170 } else {
9171 TCGV_UNUSED_PTR(fpst);
9174 if (!fp_access_check(s)) {
9175 return;
9178 /* These operations work on the concatenated rm:rn, with each pair of
9179 * adjacent elements being operated on to produce an element in the result.
9181 if (size == 3) {
9182 TCGv_i64 tcg_res[2];
9184 for (pass = 0; pass < 2; pass++) {
9185 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9186 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9187 int passreg = (pass == 0) ? rn : rm;
9189 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
9190 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
9191 tcg_res[pass] = tcg_temp_new_i64();
9193 switch (opcode) {
9194 case 0x17: /* ADDP */
9195 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9196 break;
9197 case 0x58: /* FMAXNMP */
9198 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9199 break;
9200 case 0x5a: /* FADDP */
9201 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9202 break;
9203 case 0x5e: /* FMAXP */
9204 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9205 break;
9206 case 0x78: /* FMINNMP */
9207 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9208 break;
9209 case 0x7e: /* FMINP */
9210 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9211 break;
9212 default:
9213 g_assert_not_reached();
9216 tcg_temp_free_i64(tcg_op1);
9217 tcg_temp_free_i64(tcg_op2);
9220 for (pass = 0; pass < 2; pass++) {
9221 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9222 tcg_temp_free_i64(tcg_res[pass]);
9224 } else {
9225 int maxpass = is_q ? 4 : 2;
9226 TCGv_i32 tcg_res[4];
9228 for (pass = 0; pass < maxpass; pass++) {
9229 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9230 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9231 NeonGenTwoOpFn *genfn = NULL;
9232 int passreg = pass < (maxpass / 2) ? rn : rm;
9233 int passelt = (is_q && (pass & 1)) ? 2 : 0;
9235 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
9236 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
9237 tcg_res[pass] = tcg_temp_new_i32();
9239 switch (opcode) {
9240 case 0x17: /* ADDP */
9242 static NeonGenTwoOpFn * const fns[3] = {
9243 gen_helper_neon_padd_u8,
9244 gen_helper_neon_padd_u16,
9245 tcg_gen_add_i32,
9247 genfn = fns[size];
9248 break;
9250 case 0x14: /* SMAXP, UMAXP */
9252 static NeonGenTwoOpFn * const fns[3][2] = {
9253 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
9254 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
9255 { gen_max_s32, gen_max_u32 },
9257 genfn = fns[size][u];
9258 break;
9260 case 0x15: /* SMINP, UMINP */
9262 static NeonGenTwoOpFn * const fns[3][2] = {
9263 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
9264 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
9265 { gen_min_s32, gen_min_u32 },
9267 genfn = fns[size][u];
9268 break;
9270 /* The FP operations are all on single floats (32 bit) */
9271 case 0x58: /* FMAXNMP */
9272 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9273 break;
9274 case 0x5a: /* FADDP */
9275 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9276 break;
9277 case 0x5e: /* FMAXP */
9278 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9279 break;
9280 case 0x78: /* FMINNMP */
9281 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9282 break;
9283 case 0x7e: /* FMINP */
9284 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
9285 break;
9286 default:
9287 g_assert_not_reached();
9290 /* FP ops called directly, otherwise call now */
9291 if (genfn) {
9292 genfn(tcg_res[pass], tcg_op1, tcg_op2);
9295 tcg_temp_free_i32(tcg_op1);
9296 tcg_temp_free_i32(tcg_op2);
9299 for (pass = 0; pass < maxpass; pass++) {
9300 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9301 tcg_temp_free_i32(tcg_res[pass]);
9303 if (!is_q) {
9304 clear_vec_high(s, rd);
9308 if (!TCGV_IS_UNUSED_PTR(fpst)) {
9309 tcg_temp_free_ptr(fpst);
9313 /* Floating point op subgroup of C3.6.16. */
9314 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
9316 /* For floating point ops, the U, size[1] and opcode bits
9317 * together indicate the operation. size[0] indicates single
9318 * or double.
9320 int fpopcode = extract32(insn, 11, 5)
9321 | (extract32(insn, 23, 1) << 5)
9322 | (extract32(insn, 29, 1) << 6);
9323 int is_q = extract32(insn, 30, 1);
9324 int size = extract32(insn, 22, 1);
9325 int rm = extract32(insn, 16, 5);
9326 int rn = extract32(insn, 5, 5);
9327 int rd = extract32(insn, 0, 5);
9329 int datasize = is_q ? 128 : 64;
9330 int esize = 32 << size;
9331 int elements = datasize / esize;
9333 if (size == 1 && !is_q) {
9334 unallocated_encoding(s);
9335 return;
9338 switch (fpopcode) {
9339 case 0x58: /* FMAXNMP */
9340 case 0x5a: /* FADDP */
9341 case 0x5e: /* FMAXP */
9342 case 0x78: /* FMINNMP */
9343 case 0x7e: /* FMINP */
9344 if (size && !is_q) {
9345 unallocated_encoding(s);
9346 return;
9348 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
9349 rn, rm, rd);
9350 return;
9351 case 0x1b: /* FMULX */
9352 case 0x1f: /* FRECPS */
9353 case 0x3f: /* FRSQRTS */
9354 case 0x5d: /* FACGE */
9355 case 0x7d: /* FACGT */
9356 case 0x19: /* FMLA */
9357 case 0x39: /* FMLS */
9358 case 0x18: /* FMAXNM */
9359 case 0x1a: /* FADD */
9360 case 0x1c: /* FCMEQ */
9361 case 0x1e: /* FMAX */
9362 case 0x38: /* FMINNM */
9363 case 0x3a: /* FSUB */
9364 case 0x3e: /* FMIN */
9365 case 0x5b: /* FMUL */
9366 case 0x5c: /* FCMGE */
9367 case 0x5f: /* FDIV */
9368 case 0x7a: /* FABD */
9369 case 0x7c: /* FCMGT */
9370 if (!fp_access_check(s)) {
9371 return;
9374 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
9375 return;
9376 default:
9377 unallocated_encoding(s);
9378 return;
9382 /* Integer op subgroup of C3.6.16. */
9383 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
9385 int is_q = extract32(insn, 30, 1);
9386 int u = extract32(insn, 29, 1);
9387 int size = extract32(insn, 22, 2);
9388 int opcode = extract32(insn, 11, 5);
9389 int rm = extract32(insn, 16, 5);
9390 int rn = extract32(insn, 5, 5);
9391 int rd = extract32(insn, 0, 5);
9392 int pass;
9394 switch (opcode) {
9395 case 0x13: /* MUL, PMUL */
9396 if (u && size != 0) {
9397 unallocated_encoding(s);
9398 return;
9400 /* fall through */
9401 case 0x0: /* SHADD, UHADD */
9402 case 0x2: /* SRHADD, URHADD */
9403 case 0x4: /* SHSUB, UHSUB */
9404 case 0xc: /* SMAX, UMAX */
9405 case 0xd: /* SMIN, UMIN */
9406 case 0xe: /* SABD, UABD */
9407 case 0xf: /* SABA, UABA */
9408 case 0x12: /* MLA, MLS */
9409 if (size == 3) {
9410 unallocated_encoding(s);
9411 return;
9413 break;
9414 case 0x16: /* SQDMULH, SQRDMULH */
9415 if (size == 0 || size == 3) {
9416 unallocated_encoding(s);
9417 return;
9419 break;
9420 default:
9421 if (size == 3 && !is_q) {
9422 unallocated_encoding(s);
9423 return;
9425 break;
9428 if (!fp_access_check(s)) {
9429 return;
9432 if (size == 3) {
9433 assert(is_q);
9434 for (pass = 0; pass < 2; pass++) {
9435 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9436 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9437 TCGv_i64 tcg_res = tcg_temp_new_i64();
9439 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9440 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9442 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
9444 write_vec_element(s, tcg_res, rd, pass, MO_64);
9446 tcg_temp_free_i64(tcg_res);
9447 tcg_temp_free_i64(tcg_op1);
9448 tcg_temp_free_i64(tcg_op2);
9450 } else {
9451 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
9452 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9453 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9454 TCGv_i32 tcg_res = tcg_temp_new_i32();
9455 NeonGenTwoOpFn *genfn = NULL;
9456 NeonGenTwoOpEnvFn *genenvfn = NULL;
9458 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9459 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9461 switch (opcode) {
9462 case 0x0: /* SHADD, UHADD */
9464 static NeonGenTwoOpFn * const fns[3][2] = {
9465 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
9466 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
9467 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
9469 genfn = fns[size][u];
9470 break;
9472 case 0x1: /* SQADD, UQADD */
9474 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9475 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9476 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9477 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9479 genenvfn = fns[size][u];
9480 break;
9482 case 0x2: /* SRHADD, URHADD */
9484 static NeonGenTwoOpFn * const fns[3][2] = {
9485 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
9486 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
9487 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
9489 genfn = fns[size][u];
9490 break;
9492 case 0x4: /* SHSUB, UHSUB */
9494 static NeonGenTwoOpFn * const fns[3][2] = {
9495 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
9496 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
9497 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
9499 genfn = fns[size][u];
9500 break;
9502 case 0x5: /* SQSUB, UQSUB */
9504 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9505 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9506 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9507 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9509 genenvfn = fns[size][u];
9510 break;
9512 case 0x6: /* CMGT, CMHI */
9514 static NeonGenTwoOpFn * const fns[3][2] = {
9515 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
9516 { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
9517 { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
9519 genfn = fns[size][u];
9520 break;
9522 case 0x7: /* CMGE, CMHS */
9524 static NeonGenTwoOpFn * const fns[3][2] = {
9525 { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
9526 { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
9527 { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
9529 genfn = fns[size][u];
9530 break;
9532 case 0x8: /* SSHL, USHL */
9534 static NeonGenTwoOpFn * const fns[3][2] = {
9535 { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
9536 { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
9537 { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
9539 genfn = fns[size][u];
9540 break;
9542 case 0x9: /* SQSHL, UQSHL */
9544 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9545 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9546 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9547 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9549 genenvfn = fns[size][u];
9550 break;
9552 case 0xa: /* SRSHL, URSHL */
9554 static NeonGenTwoOpFn * const fns[3][2] = {
9555 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
9556 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
9557 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
9559 genfn = fns[size][u];
9560 break;
9562 case 0xb: /* SQRSHL, UQRSHL */
9564 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9565 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9566 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9567 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9569 genenvfn = fns[size][u];
9570 break;
9572 case 0xc: /* SMAX, UMAX */
9574 static NeonGenTwoOpFn * const fns[3][2] = {
9575 { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
9576 { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
9577 { gen_max_s32, gen_max_u32 },
9579 genfn = fns[size][u];
9580 break;
9583 case 0xd: /* SMIN, UMIN */
9585 static NeonGenTwoOpFn * const fns[3][2] = {
9586 { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
9587 { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
9588 { gen_min_s32, gen_min_u32 },
9590 genfn = fns[size][u];
9591 break;
9593 case 0xe: /* SABD, UABD */
9594 case 0xf: /* SABA, UABA */
9596 static NeonGenTwoOpFn * const fns[3][2] = {
9597 { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
9598 { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
9599 { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
9601 genfn = fns[size][u];
9602 break;
9604 case 0x10: /* ADD, SUB */
9606 static NeonGenTwoOpFn * const fns[3][2] = {
9607 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9608 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9609 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9611 genfn = fns[size][u];
9612 break;
9614 case 0x11: /* CMTST, CMEQ */
9616 static NeonGenTwoOpFn * const fns[3][2] = {
9617 { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
9618 { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
9619 { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
9621 genfn = fns[size][u];
9622 break;
9624 case 0x13: /* MUL, PMUL */
9625 if (u) {
9626 /* PMUL */
9627 assert(size == 0);
9628 genfn = gen_helper_neon_mul_p8;
9629 break;
9631 /* fall through : MUL */
9632 case 0x12: /* MLA, MLS */
9634 static NeonGenTwoOpFn * const fns[3] = {
9635 gen_helper_neon_mul_u8,
9636 gen_helper_neon_mul_u16,
9637 tcg_gen_mul_i32,
9639 genfn = fns[size];
9640 break;
9642 case 0x16: /* SQDMULH, SQRDMULH */
9644 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9645 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9646 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9648 assert(size == 1 || size == 2);
9649 genenvfn = fns[size - 1][u];
9650 break;
9652 default:
9653 g_assert_not_reached();
9656 if (genenvfn) {
9657 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
9658 } else {
9659 genfn(tcg_res, tcg_op1, tcg_op2);
9662 if (opcode == 0xf || opcode == 0x12) {
9663 /* SABA, UABA, MLA, MLS: accumulating ops */
9664 static NeonGenTwoOpFn * const fns[3][2] = {
9665 { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
9666 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
9667 { tcg_gen_add_i32, tcg_gen_sub_i32 },
9669 bool is_sub = (opcode == 0x12 && u); /* MLS */
9671 genfn = fns[size][is_sub];
9672 read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
9673 genfn(tcg_res, tcg_op1, tcg_res);
9676 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9678 tcg_temp_free_i32(tcg_res);
9679 tcg_temp_free_i32(tcg_op1);
9680 tcg_temp_free_i32(tcg_op2);
9684 if (!is_q) {
9685 clear_vec_high(s, rd);
9689 /* C3.6.16 AdvSIMD three same
9690 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9691 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9692 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9693 * +---+---+---+-----------+------+---+------+--------+---+------+------+
9695 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
9697 int opcode = extract32(insn, 11, 5);
9699 switch (opcode) {
9700 case 0x3: /* logic ops */
9701 disas_simd_3same_logic(s, insn);
9702 break;
9703 case 0x17: /* ADDP */
9704 case 0x14: /* SMAXP, UMAXP */
9705 case 0x15: /* SMINP, UMINP */
9707 /* Pairwise operations */
9708 int is_q = extract32(insn, 30, 1);
9709 int u = extract32(insn, 29, 1);
9710 int size = extract32(insn, 22, 2);
9711 int rm = extract32(insn, 16, 5);
9712 int rn = extract32(insn, 5, 5);
9713 int rd = extract32(insn, 0, 5);
9714 if (opcode == 0x17) {
9715 if (u || (size == 3 && !is_q)) {
9716 unallocated_encoding(s);
9717 return;
9719 } else {
9720 if (size == 3) {
9721 unallocated_encoding(s);
9722 return;
9725 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
9726 break;
9728 case 0x18 ... 0x31:
9729 /* floating point ops, sz[1] and U are part of opcode */
9730 disas_simd_3same_float(s, insn);
9731 break;
9732 default:
9733 disas_simd_3same_int(s, insn);
9734 break;
9738 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
9739 int size, int rn, int rd)
9741 /* Handle 2-reg-misc ops which are widening (so each size element
9742 * in the source becomes a 2*size element in the destination.
9743 * The only instruction like this is FCVTL.
9745 int pass;
9747 if (size == 3) {
9748 /* 32 -> 64 bit fp conversion */
9749 TCGv_i64 tcg_res[2];
9750 int srcelt = is_q ? 2 : 0;
9752 for (pass = 0; pass < 2; pass++) {
9753 TCGv_i32 tcg_op = tcg_temp_new_i32();
9754 tcg_res[pass] = tcg_temp_new_i64();
9756 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
9757 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
9758 tcg_temp_free_i32(tcg_op);
9760 for (pass = 0; pass < 2; pass++) {
9761 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9762 tcg_temp_free_i64(tcg_res[pass]);
9764 } else {
9765 /* 16 -> 32 bit fp conversion */
9766 int srcelt = is_q ? 4 : 0;
9767 TCGv_i32 tcg_res[4];
9769 for (pass = 0; pass < 4; pass++) {
9770 tcg_res[pass] = tcg_temp_new_i32();
9772 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
9773 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
9774 cpu_env);
9776 for (pass = 0; pass < 4; pass++) {
9777 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
9778 tcg_temp_free_i32(tcg_res[pass]);
9783 static void handle_rev(DisasContext *s, int opcode, bool u,
9784 bool is_q, int size, int rn, int rd)
9786 int op = (opcode << 1) | u;
9787 int opsz = op + size;
9788 int grp_size = 3 - opsz;
9789 int dsize = is_q ? 128 : 64;
9790 int i;
9792 if (opsz >= 3) {
9793 unallocated_encoding(s);
9794 return;
9797 if (!fp_access_check(s)) {
9798 return;
9801 if (size == 0) {
9802 /* Special case bytes, use bswap op on each group of elements */
9803 int groups = dsize / (8 << grp_size);
9805 for (i = 0; i < groups; i++) {
9806 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9808 read_vec_element(s, tcg_tmp, rn, i, grp_size);
9809 switch (grp_size) {
9810 case MO_16:
9811 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
9812 break;
9813 case MO_32:
9814 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
9815 break;
9816 case MO_64:
9817 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
9818 break;
9819 default:
9820 g_assert_not_reached();
9822 write_vec_element(s, tcg_tmp, rd, i, grp_size);
9823 tcg_temp_free_i64(tcg_tmp);
9825 if (!is_q) {
9826 clear_vec_high(s, rd);
9828 } else {
9829 int revmask = (1 << grp_size) - 1;
9830 int esize = 8 << size;
9831 int elements = dsize / esize;
9832 TCGv_i64 tcg_rn = tcg_temp_new_i64();
9833 TCGv_i64 tcg_rd = tcg_const_i64(0);
9834 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
9836 for (i = 0; i < elements; i++) {
9837 int e_rev = (i & 0xf) ^ revmask;
9838 int off = e_rev * esize;
9839 read_vec_element(s, tcg_rn, rn, i, size);
9840 if (off >= 64) {
9841 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
9842 tcg_rn, off - 64, esize);
9843 } else {
9844 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
9847 write_vec_element(s, tcg_rd, rd, 0, MO_64);
9848 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
9850 tcg_temp_free_i64(tcg_rd_hi);
9851 tcg_temp_free_i64(tcg_rd);
9852 tcg_temp_free_i64(tcg_rn);
9856 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
9857 bool is_q, int size, int rn, int rd)
9859 /* Implement the pairwise operations from 2-misc:
9860 * SADDLP, UADDLP, SADALP, UADALP.
9861 * These all add pairs of elements in the input to produce a
9862 * double-width result element in the output (possibly accumulating).
9864 bool accum = (opcode == 0x6);
9865 int maxpass = is_q ? 2 : 1;
9866 int pass;
9867 TCGv_i64 tcg_res[2];
9869 if (size == 2) {
9870 /* 32 + 32 -> 64 op */
9871 TCGMemOp memop = size + (u ? 0 : MO_SIGN);
9873 for (pass = 0; pass < maxpass; pass++) {
9874 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9875 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9877 tcg_res[pass] = tcg_temp_new_i64();
9879 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
9880 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
9881 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
9882 if (accum) {
9883 read_vec_element(s, tcg_op1, rd, pass, MO_64);
9884 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
9887 tcg_temp_free_i64(tcg_op1);
9888 tcg_temp_free_i64(tcg_op2);
9890 } else {
9891 for (pass = 0; pass < maxpass; pass++) {
9892 TCGv_i64 tcg_op = tcg_temp_new_i64();
9893 NeonGenOneOpFn *genfn;
9894 static NeonGenOneOpFn * const fns[2][2] = {
9895 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
9896 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
9899 genfn = fns[size][u];
9901 tcg_res[pass] = tcg_temp_new_i64();
9903 read_vec_element(s, tcg_op, rn, pass, MO_64);
9904 genfn(tcg_res[pass], tcg_op);
9906 if (accum) {
9907 read_vec_element(s, tcg_op, rd, pass, MO_64);
9908 if (size == 0) {
9909 gen_helper_neon_addl_u16(tcg_res[pass],
9910 tcg_res[pass], tcg_op);
9911 } else {
9912 gen_helper_neon_addl_u32(tcg_res[pass],
9913 tcg_res[pass], tcg_op);
9916 tcg_temp_free_i64(tcg_op);
9919 if (!is_q) {
9920 tcg_res[1] = tcg_const_i64(0);
9922 for (pass = 0; pass < 2; pass++) {
9923 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9924 tcg_temp_free_i64(tcg_res[pass]);
9928 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
9930 /* Implement SHLL and SHLL2 */
9931 int pass;
9932 int part = is_q ? 2 : 0;
9933 TCGv_i64 tcg_res[2];
9935 for (pass = 0; pass < 2; pass++) {
9936 static NeonGenWidenFn * const widenfns[3] = {
9937 gen_helper_neon_widen_u8,
9938 gen_helper_neon_widen_u16,
9939 tcg_gen_extu_i32_i64,
9941 NeonGenWidenFn *widenfn = widenfns[size];
9942 TCGv_i32 tcg_op = tcg_temp_new_i32();
9944 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
9945 tcg_res[pass] = tcg_temp_new_i64();
9946 widenfn(tcg_res[pass], tcg_op);
9947 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
9949 tcg_temp_free_i32(tcg_op);
9952 for (pass = 0; pass < 2; pass++) {
9953 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
9954 tcg_temp_free_i64(tcg_res[pass]);
9958 /* C3.6.17 AdvSIMD two reg misc
9959 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
9960 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9961 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
9962 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
9964 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
9966 int size = extract32(insn, 22, 2);
9967 int opcode = extract32(insn, 12, 5);
9968 bool u = extract32(insn, 29, 1);
9969 bool is_q = extract32(insn, 30, 1);
9970 int rn = extract32(insn, 5, 5);
9971 int rd = extract32(insn, 0, 5);
9972 bool need_fpstatus = false;
9973 bool need_rmode = false;
9974 int rmode = -1;
9975 TCGv_i32 tcg_rmode;
9976 TCGv_ptr tcg_fpstatus;
9978 switch (opcode) {
9979 case 0x0: /* REV64, REV32 */
9980 case 0x1: /* REV16 */
9981 handle_rev(s, opcode, u, is_q, size, rn, rd);
9982 return;
9983 case 0x5: /* CNT, NOT, RBIT */
9984 if (u && size == 0) {
9985 /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
9986 size = 3;
9987 break;
9988 } else if (u && size == 1) {
9989 /* RBIT */
9990 break;
9991 } else if (!u && size == 0) {
9992 /* CNT */
9993 break;
9995 unallocated_encoding(s);
9996 return;
9997 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
9998 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
9999 if (size == 3) {
10000 unallocated_encoding(s);
10001 return;
10003 if (!fp_access_check(s)) {
10004 return;
10007 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
10008 return;
10009 case 0x4: /* CLS, CLZ */
10010 if (size == 3) {
10011 unallocated_encoding(s);
10012 return;
10014 break;
10015 case 0x2: /* SADDLP, UADDLP */
10016 case 0x6: /* SADALP, UADALP */
10017 if (size == 3) {
10018 unallocated_encoding(s);
10019 return;
10021 if (!fp_access_check(s)) {
10022 return;
10024 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
10025 return;
10026 case 0x13: /* SHLL, SHLL2 */
10027 if (u == 0 || size == 3) {
10028 unallocated_encoding(s);
10029 return;
10031 if (!fp_access_check(s)) {
10032 return;
10034 handle_shll(s, is_q, size, rn, rd);
10035 return;
10036 case 0xa: /* CMLT */
10037 if (u == 1) {
10038 unallocated_encoding(s);
10039 return;
10041 /* fall through */
10042 case 0x8: /* CMGT, CMGE */
10043 case 0x9: /* CMEQ, CMLE */
10044 case 0xb: /* ABS, NEG */
10045 if (size == 3 && !is_q) {
10046 unallocated_encoding(s);
10047 return;
10049 break;
10050 case 0x3: /* SUQADD, USQADD */
10051 if (size == 3 && !is_q) {
10052 unallocated_encoding(s);
10053 return;
10055 if (!fp_access_check(s)) {
10056 return;
10058 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
10059 return;
10060 case 0x7: /* SQABS, SQNEG */
10061 if (size == 3 && !is_q) {
10062 unallocated_encoding(s);
10063 return;
10065 break;
10066 case 0xc ... 0xf:
10067 case 0x16 ... 0x1d:
10068 case 0x1f:
10070 /* Floating point: U, size[1] and opcode indicate operation;
10071 * size[0] indicates single or double precision.
10073 int is_double = extract32(size, 0, 1);
10074 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10075 size = is_double ? 3 : 2;
10076 switch (opcode) {
10077 case 0x2f: /* FABS */
10078 case 0x6f: /* FNEG */
10079 if (size == 3 && !is_q) {
10080 unallocated_encoding(s);
10081 return;
10083 break;
10084 case 0x1d: /* SCVTF */
10085 case 0x5d: /* UCVTF */
10087 bool is_signed = (opcode == 0x1d) ? true : false;
10088 int elements = is_double ? 2 : is_q ? 4 : 2;
10089 if (is_double && !is_q) {
10090 unallocated_encoding(s);
10091 return;
10093 if (!fp_access_check(s)) {
10094 return;
10096 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
10097 return;
10099 case 0x2c: /* FCMGT (zero) */
10100 case 0x2d: /* FCMEQ (zero) */
10101 case 0x2e: /* FCMLT (zero) */
10102 case 0x6c: /* FCMGE (zero) */
10103 case 0x6d: /* FCMLE (zero) */
10104 if (size == 3 && !is_q) {
10105 unallocated_encoding(s);
10106 return;
10108 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
10109 return;
10110 case 0x7f: /* FSQRT */
10111 if (size == 3 && !is_q) {
10112 unallocated_encoding(s);
10113 return;
10115 break;
10116 case 0x1a: /* FCVTNS */
10117 case 0x1b: /* FCVTMS */
10118 case 0x3a: /* FCVTPS */
10119 case 0x3b: /* FCVTZS */
10120 case 0x5a: /* FCVTNU */
10121 case 0x5b: /* FCVTMU */
10122 case 0x7a: /* FCVTPU */
10123 case 0x7b: /* FCVTZU */
10124 need_fpstatus = true;
10125 need_rmode = true;
10126 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10127 if (size == 3 && !is_q) {
10128 unallocated_encoding(s);
10129 return;
10131 break;
10132 case 0x5c: /* FCVTAU */
10133 case 0x1c: /* FCVTAS */
10134 need_fpstatus = true;
10135 need_rmode = true;
10136 rmode = FPROUNDING_TIEAWAY;
10137 if (size == 3 && !is_q) {
10138 unallocated_encoding(s);
10139 return;
10141 break;
10142 case 0x3c: /* URECPE */
10143 if (size == 3) {
10144 unallocated_encoding(s);
10145 return;
10147 /* fall through */
10148 case 0x3d: /* FRECPE */
10149 case 0x7d: /* FRSQRTE */
10150 if (size == 3 && !is_q) {
10151 unallocated_encoding(s);
10152 return;
10154 if (!fp_access_check(s)) {
10155 return;
10157 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
10158 return;
10159 case 0x56: /* FCVTXN, FCVTXN2 */
10160 if (size == 2) {
10161 unallocated_encoding(s);
10162 return;
10164 /* fall through */
10165 case 0x16: /* FCVTN, FCVTN2 */
10166 /* handle_2misc_narrow does a 2*size -> size operation, but these
10167 * instructions encode the source size rather than dest size.
10169 if (!fp_access_check(s)) {
10170 return;
10172 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
10173 return;
10174 case 0x17: /* FCVTL, FCVTL2 */
10175 if (!fp_access_check(s)) {
10176 return;
10178 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
10179 return;
10180 case 0x18: /* FRINTN */
10181 case 0x19: /* FRINTM */
10182 case 0x38: /* FRINTP */
10183 case 0x39: /* FRINTZ */
10184 need_rmode = true;
10185 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10186 /* fall through */
10187 case 0x59: /* FRINTX */
10188 case 0x79: /* FRINTI */
10189 need_fpstatus = true;
10190 if (size == 3 && !is_q) {
10191 unallocated_encoding(s);
10192 return;
10194 break;
10195 case 0x58: /* FRINTA */
10196 need_rmode = true;
10197 rmode = FPROUNDING_TIEAWAY;
10198 need_fpstatus = true;
10199 if (size == 3 && !is_q) {
10200 unallocated_encoding(s);
10201 return;
10203 break;
10204 case 0x7c: /* URSQRTE */
10205 if (size == 3) {
10206 unallocated_encoding(s);
10207 return;
10209 need_fpstatus = true;
10210 break;
10211 default:
10212 unallocated_encoding(s);
10213 return;
10215 break;
10217 default:
10218 unallocated_encoding(s);
10219 return;
10222 if (!fp_access_check(s)) {
10223 return;
10226 if (need_fpstatus) {
10227 tcg_fpstatus = get_fpstatus_ptr();
10228 } else {
10229 TCGV_UNUSED_PTR(tcg_fpstatus);
10231 if (need_rmode) {
10232 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10233 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10234 } else {
10235 TCGV_UNUSED_I32(tcg_rmode);
10238 if (size == 3) {
10239 /* All 64-bit element operations can be shared with scalar 2misc */
10240 int pass;
10242 for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
10243 TCGv_i64 tcg_op = tcg_temp_new_i64();
10244 TCGv_i64 tcg_res = tcg_temp_new_i64();
10246 read_vec_element(s, tcg_op, rn, pass, MO_64);
10248 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
10249 tcg_rmode, tcg_fpstatus);
10251 write_vec_element(s, tcg_res, rd, pass, MO_64);
10253 tcg_temp_free_i64(tcg_res);
10254 tcg_temp_free_i64(tcg_op);
10256 } else {
10257 int pass;
10259 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
10260 TCGv_i32 tcg_op = tcg_temp_new_i32();
10261 TCGv_i32 tcg_res = tcg_temp_new_i32();
10262 TCGCond cond;
10264 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10266 if (size == 2) {
10267 /* Special cases for 32 bit elements */
10268 switch (opcode) {
10269 case 0xa: /* CMLT */
10270 /* 32 bit integer comparison against zero, result is
10271 * test ? (2^32 - 1) : 0. We implement via setcond(test)
10272 * and inverting.
10274 cond = TCG_COND_LT;
10275 do_cmop:
10276 tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
10277 tcg_gen_neg_i32(tcg_res, tcg_res);
10278 break;
10279 case 0x8: /* CMGT, CMGE */
10280 cond = u ? TCG_COND_GE : TCG_COND_GT;
10281 goto do_cmop;
10282 case 0x9: /* CMEQ, CMLE */
10283 cond = u ? TCG_COND_LE : TCG_COND_EQ;
10284 goto do_cmop;
10285 case 0x4: /* CLS */
10286 if (u) {
10287 gen_helper_clz32(tcg_res, tcg_op);
10288 } else {
10289 gen_helper_cls32(tcg_res, tcg_op);
10291 break;
10292 case 0x7: /* SQABS, SQNEG */
10293 if (u) {
10294 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
10295 } else {
10296 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
10298 break;
10299 case 0xb: /* ABS, NEG */
10300 if (u) {
10301 tcg_gen_neg_i32(tcg_res, tcg_op);
10302 } else {
10303 TCGv_i32 tcg_zero = tcg_const_i32(0);
10304 tcg_gen_neg_i32(tcg_res, tcg_op);
10305 tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
10306 tcg_zero, tcg_op, tcg_res);
10307 tcg_temp_free_i32(tcg_zero);
10309 break;
10310 case 0x2f: /* FABS */
10311 gen_helper_vfp_abss(tcg_res, tcg_op);
10312 break;
10313 case 0x6f: /* FNEG */
10314 gen_helper_vfp_negs(tcg_res, tcg_op);
10315 break;
10316 case 0x7f: /* FSQRT */
10317 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
10318 break;
10319 case 0x1a: /* FCVTNS */
10320 case 0x1b: /* FCVTMS */
10321 case 0x1c: /* FCVTAS */
10322 case 0x3a: /* FCVTPS */
10323 case 0x3b: /* FCVTZS */
10325 TCGv_i32 tcg_shift = tcg_const_i32(0);
10326 gen_helper_vfp_tosls(tcg_res, tcg_op,
10327 tcg_shift, tcg_fpstatus);
10328 tcg_temp_free_i32(tcg_shift);
10329 break;
10331 case 0x5a: /* FCVTNU */
10332 case 0x5b: /* FCVTMU */
10333 case 0x5c: /* FCVTAU */
10334 case 0x7a: /* FCVTPU */
10335 case 0x7b: /* FCVTZU */
10337 TCGv_i32 tcg_shift = tcg_const_i32(0);
10338 gen_helper_vfp_touls(tcg_res, tcg_op,
10339 tcg_shift, tcg_fpstatus);
10340 tcg_temp_free_i32(tcg_shift);
10341 break;
10343 case 0x18: /* FRINTN */
10344 case 0x19: /* FRINTM */
10345 case 0x38: /* FRINTP */
10346 case 0x39: /* FRINTZ */
10347 case 0x58: /* FRINTA */
10348 case 0x79: /* FRINTI */
10349 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
10350 break;
10351 case 0x59: /* FRINTX */
10352 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
10353 break;
10354 case 0x7c: /* URSQRTE */
10355 gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus);
10356 break;
10357 default:
10358 g_assert_not_reached();
10360 } else {
10361 /* Use helpers for 8 and 16 bit elements */
10362 switch (opcode) {
10363 case 0x5: /* CNT, RBIT */
10364 /* For these two insns size is part of the opcode specifier
10365 * (handled earlier); they always operate on byte elements.
10367 if (u) {
10368 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
10369 } else {
10370 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
10372 break;
10373 case 0x7: /* SQABS, SQNEG */
10375 NeonGenOneOpEnvFn *genfn;
10376 static NeonGenOneOpEnvFn * const fns[2][2] = {
10377 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10378 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10380 genfn = fns[size][u];
10381 genfn(tcg_res, cpu_env, tcg_op);
10382 break;
10384 case 0x8: /* CMGT, CMGE */
10385 case 0x9: /* CMEQ, CMLE */
10386 case 0xa: /* CMLT */
10388 static NeonGenTwoOpFn * const fns[3][2] = {
10389 { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
10390 { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
10391 { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
10393 NeonGenTwoOpFn *genfn;
10394 int comp;
10395 bool reverse;
10396 TCGv_i32 tcg_zero = tcg_const_i32(0);
10398 /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
10399 comp = (opcode - 0x8) * 2 + u;
10400 /* ...but LE, LT are implemented as reverse GE, GT */
10401 reverse = (comp > 2);
10402 if (reverse) {
10403 comp = 4 - comp;
10405 genfn = fns[comp][size];
10406 if (reverse) {
10407 genfn(tcg_res, tcg_zero, tcg_op);
10408 } else {
10409 genfn(tcg_res, tcg_op, tcg_zero);
10411 tcg_temp_free_i32(tcg_zero);
10412 break;
10414 case 0xb: /* ABS, NEG */
10415 if (u) {
10416 TCGv_i32 tcg_zero = tcg_const_i32(0);
10417 if (size) {
10418 gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
10419 } else {
10420 gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
10422 tcg_temp_free_i32(tcg_zero);
10423 } else {
10424 if (size) {
10425 gen_helper_neon_abs_s16(tcg_res, tcg_op);
10426 } else {
10427 gen_helper_neon_abs_s8(tcg_res, tcg_op);
10430 break;
10431 case 0x4: /* CLS, CLZ */
10432 if (u) {
10433 if (size == 0) {
10434 gen_helper_neon_clz_u8(tcg_res, tcg_op);
10435 } else {
10436 gen_helper_neon_clz_u16(tcg_res, tcg_op);
10438 } else {
10439 if (size == 0) {
10440 gen_helper_neon_cls_s8(tcg_res, tcg_op);
10441 } else {
10442 gen_helper_neon_cls_s16(tcg_res, tcg_op);
10445 break;
10446 default:
10447 g_assert_not_reached();
10451 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10453 tcg_temp_free_i32(tcg_res);
10454 tcg_temp_free_i32(tcg_op);
10457 if (!is_q) {
10458 clear_vec_high(s, rd);
10461 if (need_rmode) {
10462 gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
10463 tcg_temp_free_i32(tcg_rmode);
10465 if (need_fpstatus) {
10466 tcg_temp_free_ptr(tcg_fpstatus);
10470 /* C3.6.13 AdvSIMD scalar x indexed element
10471 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10472 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10473 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10474 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
10475 * C3.6.18 AdvSIMD vector x indexed element
10476 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
10477 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10478 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
10479 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
10481 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
10483 /* This encoding has two kinds of instruction:
10484 * normal, where we perform elt x idxelt => elt for each
10485 * element in the vector
10486 * long, where we perform elt x idxelt and generate a result of
10487 * double the width of the input element
10488 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
10490 bool is_scalar = extract32(insn, 28, 1);
10491 bool is_q = extract32(insn, 30, 1);
10492 bool u = extract32(insn, 29, 1);
10493 int size = extract32(insn, 22, 2);
10494 int l = extract32(insn, 21, 1);
10495 int m = extract32(insn, 20, 1);
10496 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
10497 int rm = extract32(insn, 16, 4);
10498 int opcode = extract32(insn, 12, 4);
10499 int h = extract32(insn, 11, 1);
10500 int rn = extract32(insn, 5, 5);
10501 int rd = extract32(insn, 0, 5);
10502 bool is_long = false;
10503 bool is_fp = false;
10504 int index;
10505 TCGv_ptr fpst;
10507 switch (opcode) {
10508 case 0x0: /* MLA */
10509 case 0x4: /* MLS */
10510 if (!u || is_scalar) {
10511 unallocated_encoding(s);
10512 return;
10514 break;
10515 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10516 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10517 case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
10518 if (is_scalar) {
10519 unallocated_encoding(s);
10520 return;
10522 is_long = true;
10523 break;
10524 case 0x3: /* SQDMLAL, SQDMLAL2 */
10525 case 0x7: /* SQDMLSL, SQDMLSL2 */
10526 case 0xb: /* SQDMULL, SQDMULL2 */
10527 is_long = true;
10528 /* fall through */
10529 case 0xc: /* SQDMULH */
10530 case 0xd: /* SQRDMULH */
10531 if (u) {
10532 unallocated_encoding(s);
10533 return;
10535 break;
10536 case 0x8: /* MUL */
10537 if (u || is_scalar) {
10538 unallocated_encoding(s);
10539 return;
10541 break;
10542 case 0x1: /* FMLA */
10543 case 0x5: /* FMLS */
10544 if (u) {
10545 unallocated_encoding(s);
10546 return;
10548 /* fall through */
10549 case 0x9: /* FMUL, FMULX */
10550 if (!extract32(size, 1, 1)) {
10551 unallocated_encoding(s);
10552 return;
10554 is_fp = true;
10555 break;
10556 default:
10557 unallocated_encoding(s);
10558 return;
10561 if (is_fp) {
10562 /* low bit of size indicates single/double */
10563 size = extract32(size, 0, 1) ? 3 : 2;
10564 if (size == 2) {
10565 index = h << 1 | l;
10566 } else {
10567 if (l || !is_q) {
10568 unallocated_encoding(s);
10569 return;
10571 index = h;
10573 rm |= (m << 4);
10574 } else {
10575 switch (size) {
10576 case 1:
10577 index = h << 2 | l << 1 | m;
10578 break;
10579 case 2:
10580 index = h << 1 | l;
10581 rm |= (m << 4);
10582 break;
10583 default:
10584 unallocated_encoding(s);
10585 return;
10589 if (!fp_access_check(s)) {
10590 return;
10593 if (is_fp) {
10594 fpst = get_fpstatus_ptr();
10595 } else {
10596 TCGV_UNUSED_PTR(fpst);
10599 if (size == 3) {
10600 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10601 int pass;
10603 assert(is_fp && is_q && !is_long);
10605 read_vec_element(s, tcg_idx, rm, index, MO_64);
10607 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10608 TCGv_i64 tcg_op = tcg_temp_new_i64();
10609 TCGv_i64 tcg_res = tcg_temp_new_i64();
10611 read_vec_element(s, tcg_op, rn, pass, MO_64);
10613 switch (opcode) {
10614 case 0x5: /* FMLS */
10615 /* As usual for ARM, separate negation for fused multiply-add */
10616 gen_helper_vfp_negd(tcg_op, tcg_op);
10617 /* fall through */
10618 case 0x1: /* FMLA */
10619 read_vec_element(s, tcg_res, rd, pass, MO_64);
10620 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10621 break;
10622 case 0x9: /* FMUL, FMULX */
10623 if (u) {
10624 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
10625 } else {
10626 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
10628 break;
10629 default:
10630 g_assert_not_reached();
10633 write_vec_element(s, tcg_res, rd, pass, MO_64);
10634 tcg_temp_free_i64(tcg_op);
10635 tcg_temp_free_i64(tcg_res);
10638 if (is_scalar) {
10639 clear_vec_high(s, rd);
10642 tcg_temp_free_i64(tcg_idx);
10643 } else if (!is_long) {
10644 /* 32 bit floating point, or 16 or 32 bit integer.
10645 * For the 16 bit scalar case we use the usual Neon helpers and
10646 * rely on the fact that 0 op 0 == 0 with no side effects.
10648 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10649 int pass, maxpasses;
10651 if (is_scalar) {
10652 maxpasses = 1;
10653 } else {
10654 maxpasses = is_q ? 4 : 2;
10657 read_vec_element_i32(s, tcg_idx, rm, index, size);
10659 if (size == 1 && !is_scalar) {
10660 /* The simplest way to handle the 16x16 indexed ops is to duplicate
10661 * the index into both halves of the 32 bit tcg_idx and then use
10662 * the usual Neon helpers.
10664 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10667 for (pass = 0; pass < maxpasses; pass++) {
10668 TCGv_i32 tcg_op = tcg_temp_new_i32();
10669 TCGv_i32 tcg_res = tcg_temp_new_i32();
10671 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
10673 switch (opcode) {
10674 case 0x0: /* MLA */
10675 case 0x4: /* MLS */
10676 case 0x8: /* MUL */
10678 static NeonGenTwoOpFn * const fns[2][2] = {
10679 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
10680 { tcg_gen_add_i32, tcg_gen_sub_i32 },
10682 NeonGenTwoOpFn *genfn;
10683 bool is_sub = opcode == 0x4;
10685 if (size == 1) {
10686 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
10687 } else {
10688 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
10690 if (opcode == 0x8) {
10691 break;
10693 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
10694 genfn = fns[size - 1][is_sub];
10695 genfn(tcg_res, tcg_op, tcg_res);
10696 break;
10698 case 0x5: /* FMLS */
10699 /* As usual for ARM, separate negation for fused multiply-add */
10700 gen_helper_vfp_negs(tcg_op, tcg_op);
10701 /* fall through */
10702 case 0x1: /* FMLA */
10703 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10704 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
10705 break;
10706 case 0x9: /* FMUL, FMULX */
10707 if (u) {
10708 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
10709 } else {
10710 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
10712 break;
10713 case 0xc: /* SQDMULH */
10714 if (size == 1) {
10715 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
10716 tcg_op, tcg_idx);
10717 } else {
10718 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
10719 tcg_op, tcg_idx);
10721 break;
10722 case 0xd: /* SQRDMULH */
10723 if (size == 1) {
10724 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
10725 tcg_op, tcg_idx);
10726 } else {
10727 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
10728 tcg_op, tcg_idx);
10730 break;
10731 default:
10732 g_assert_not_reached();
10735 if (is_scalar) {
10736 write_fp_sreg(s, rd, tcg_res);
10737 } else {
10738 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10741 tcg_temp_free_i32(tcg_op);
10742 tcg_temp_free_i32(tcg_res);
10745 tcg_temp_free_i32(tcg_idx);
10747 if (!is_q) {
10748 clear_vec_high(s, rd);
10750 } else {
10751 /* long ops: 16x16->32 or 32x32->64 */
10752 TCGv_i64 tcg_res[2];
10753 int pass;
10754 bool satop = extract32(opcode, 0, 1);
10755 TCGMemOp memop = MO_32;
10757 if (satop || !u) {
10758 memop |= MO_SIGN;
10761 if (size == 2) {
10762 TCGv_i64 tcg_idx = tcg_temp_new_i64();
10764 read_vec_element(s, tcg_idx, rm, index, memop);
10766 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10767 TCGv_i64 tcg_op = tcg_temp_new_i64();
10768 TCGv_i64 tcg_passres;
10769 int passelt;
10771 if (is_scalar) {
10772 passelt = 0;
10773 } else {
10774 passelt = pass + (is_q * 2);
10777 read_vec_element(s, tcg_op, rn, passelt, memop);
10779 tcg_res[pass] = tcg_temp_new_i64();
10781 if (opcode == 0xa || opcode == 0xb) {
10782 /* Non-accumulating ops */
10783 tcg_passres = tcg_res[pass];
10784 } else {
10785 tcg_passres = tcg_temp_new_i64();
10788 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
10789 tcg_temp_free_i64(tcg_op);
10791 if (satop) {
10792 /* saturating, doubling */
10793 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10794 tcg_passres, tcg_passres);
10797 if (opcode == 0xa || opcode == 0xb) {
10798 continue;
10801 /* Accumulating op: handle accumulate step */
10802 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10804 switch (opcode) {
10805 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10806 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10807 break;
10808 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10809 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10810 break;
10811 case 0x7: /* SQDMLSL, SQDMLSL2 */
10812 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10813 /* fall through */
10814 case 0x3: /* SQDMLAL, SQDMLAL2 */
10815 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10816 tcg_res[pass],
10817 tcg_passres);
10818 break;
10819 default:
10820 g_assert_not_reached();
10822 tcg_temp_free_i64(tcg_passres);
10824 tcg_temp_free_i64(tcg_idx);
10826 if (is_scalar) {
10827 clear_vec_high(s, rd);
10829 } else {
10830 TCGv_i32 tcg_idx = tcg_temp_new_i32();
10832 assert(size == 1);
10833 read_vec_element_i32(s, tcg_idx, rm, index, size);
10835 if (!is_scalar) {
10836 /* The simplest way to handle the 16x16 indexed ops is to
10837 * duplicate the index into both halves of the 32 bit tcg_idx
10838 * and then use the usual Neon helpers.
10840 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
10843 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10844 TCGv_i32 tcg_op = tcg_temp_new_i32();
10845 TCGv_i64 tcg_passres;
10847 if (is_scalar) {
10848 read_vec_element_i32(s, tcg_op, rn, pass, size);
10849 } else {
10850 read_vec_element_i32(s, tcg_op, rn,
10851 pass + (is_q * 2), MO_32);
10854 tcg_res[pass] = tcg_temp_new_i64();
10856 if (opcode == 0xa || opcode == 0xb) {
10857 /* Non-accumulating ops */
10858 tcg_passres = tcg_res[pass];
10859 } else {
10860 tcg_passres = tcg_temp_new_i64();
10863 if (memop & MO_SIGN) {
10864 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
10865 } else {
10866 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
10868 if (satop) {
10869 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
10870 tcg_passres, tcg_passres);
10872 tcg_temp_free_i32(tcg_op);
10874 if (opcode == 0xa || opcode == 0xb) {
10875 continue;
10878 /* Accumulating op: handle accumulate step */
10879 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10881 switch (opcode) {
10882 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10883 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
10884 tcg_passres);
10885 break;
10886 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10887 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
10888 tcg_passres);
10889 break;
10890 case 0x7: /* SQDMLSL, SQDMLSL2 */
10891 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
10892 /* fall through */
10893 case 0x3: /* SQDMLAL, SQDMLAL2 */
10894 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
10895 tcg_res[pass],
10896 tcg_passres);
10897 break;
10898 default:
10899 g_assert_not_reached();
10901 tcg_temp_free_i64(tcg_passres);
10903 tcg_temp_free_i32(tcg_idx);
10905 if (is_scalar) {
10906 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
10910 if (is_scalar) {
10911 tcg_res[1] = tcg_const_i64(0);
10914 for (pass = 0; pass < 2; pass++) {
10915 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
10916 tcg_temp_free_i64(tcg_res[pass]);
10920 if (!TCGV_IS_UNUSED_PTR(fpst)) {
10921 tcg_temp_free_ptr(fpst);
10925 /* C3.6.19 Crypto AES
10926 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
10927 * +-----------------+------+-----------+--------+-----+------+------+
10928 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
10929 * +-----------------+------+-----------+--------+-----+------+------+
10931 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
10933 int size = extract32(insn, 22, 2);
10934 int opcode = extract32(insn, 12, 5);
10935 int rn = extract32(insn, 5, 5);
10936 int rd = extract32(insn, 0, 5);
10937 int decrypt;
10938 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_decrypt;
10939 CryptoThreeOpEnvFn *genfn;
10941 if (!arm_dc_feature(s, ARM_FEATURE_V8_AES)
10942 || size != 0) {
10943 unallocated_encoding(s);
10944 return;
10947 switch (opcode) {
10948 case 0x4: /* AESE */
10949 decrypt = 0;
10950 genfn = gen_helper_crypto_aese;
10951 break;
10952 case 0x6: /* AESMC */
10953 decrypt = 0;
10954 genfn = gen_helper_crypto_aesmc;
10955 break;
10956 case 0x5: /* AESD */
10957 decrypt = 1;
10958 genfn = gen_helper_crypto_aese;
10959 break;
10960 case 0x7: /* AESIMC */
10961 decrypt = 1;
10962 genfn = gen_helper_crypto_aesmc;
10963 break;
10964 default:
10965 unallocated_encoding(s);
10966 return;
10969 /* Note that we convert the Vx register indexes into the
10970 * index within the vfp.regs[] array, so we can share the
10971 * helper with the AArch32 instructions.
10973 tcg_rd_regno = tcg_const_i32(rd << 1);
10974 tcg_rn_regno = tcg_const_i32(rn << 1);
10975 tcg_decrypt = tcg_const_i32(decrypt);
10977 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_decrypt);
10979 tcg_temp_free_i32(tcg_rd_regno);
10980 tcg_temp_free_i32(tcg_rn_regno);
10981 tcg_temp_free_i32(tcg_decrypt);
10984 /* C3.6.20 Crypto three-reg SHA
10985 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
10986 * +-----------------+------+---+------+---+--------+-----+------+------+
10987 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
10988 * +-----------------+------+---+------+---+--------+-----+------+------+
10990 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
10992 int size = extract32(insn, 22, 2);
10993 int opcode = extract32(insn, 12, 3);
10994 int rm = extract32(insn, 16, 5);
10995 int rn = extract32(insn, 5, 5);
10996 int rd = extract32(insn, 0, 5);
10997 CryptoThreeOpEnvFn *genfn;
10998 TCGv_i32 tcg_rd_regno, tcg_rn_regno, tcg_rm_regno;
10999 int feature = ARM_FEATURE_V8_SHA256;
11001 if (size != 0) {
11002 unallocated_encoding(s);
11003 return;
11006 switch (opcode) {
11007 case 0: /* SHA1C */
11008 case 1: /* SHA1P */
11009 case 2: /* SHA1M */
11010 case 3: /* SHA1SU0 */
11011 genfn = NULL;
11012 feature = ARM_FEATURE_V8_SHA1;
11013 break;
11014 case 4: /* SHA256H */
11015 genfn = gen_helper_crypto_sha256h;
11016 break;
11017 case 5: /* SHA256H2 */
11018 genfn = gen_helper_crypto_sha256h2;
11019 break;
11020 case 6: /* SHA256SU1 */
11021 genfn = gen_helper_crypto_sha256su1;
11022 break;
11023 default:
11024 unallocated_encoding(s);
11025 return;
11028 if (!arm_dc_feature(s, feature)) {
11029 unallocated_encoding(s);
11030 return;
11033 tcg_rd_regno = tcg_const_i32(rd << 1);
11034 tcg_rn_regno = tcg_const_i32(rn << 1);
11035 tcg_rm_regno = tcg_const_i32(rm << 1);
11037 if (genfn) {
11038 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno, tcg_rm_regno);
11039 } else {
11040 TCGv_i32 tcg_opcode = tcg_const_i32(opcode);
11042 gen_helper_crypto_sha1_3reg(cpu_env, tcg_rd_regno,
11043 tcg_rn_regno, tcg_rm_regno, tcg_opcode);
11044 tcg_temp_free_i32(tcg_opcode);
11047 tcg_temp_free_i32(tcg_rd_regno);
11048 tcg_temp_free_i32(tcg_rn_regno);
11049 tcg_temp_free_i32(tcg_rm_regno);
11052 /* C3.6.21 Crypto two-reg SHA
11053 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
11054 * +-----------------+------+-----------+--------+-----+------+------+
11055 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
11056 * +-----------------+------+-----------+--------+-----+------+------+
11058 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
11060 int size = extract32(insn, 22, 2);
11061 int opcode = extract32(insn, 12, 5);
11062 int rn = extract32(insn, 5, 5);
11063 int rd = extract32(insn, 0, 5);
11064 CryptoTwoOpEnvFn *genfn;
11065 int feature;
11066 TCGv_i32 tcg_rd_regno, tcg_rn_regno;
11068 if (size != 0) {
11069 unallocated_encoding(s);
11070 return;
11073 switch (opcode) {
11074 case 0: /* SHA1H */
11075 feature = ARM_FEATURE_V8_SHA1;
11076 genfn = gen_helper_crypto_sha1h;
11077 break;
11078 case 1: /* SHA1SU1 */
11079 feature = ARM_FEATURE_V8_SHA1;
11080 genfn = gen_helper_crypto_sha1su1;
11081 break;
11082 case 2: /* SHA256SU0 */
11083 feature = ARM_FEATURE_V8_SHA256;
11084 genfn = gen_helper_crypto_sha256su0;
11085 break;
11086 default:
11087 unallocated_encoding(s);
11088 return;
11091 if (!arm_dc_feature(s, feature)) {
11092 unallocated_encoding(s);
11093 return;
11096 tcg_rd_regno = tcg_const_i32(rd << 1);
11097 tcg_rn_regno = tcg_const_i32(rn << 1);
11099 genfn(cpu_env, tcg_rd_regno, tcg_rn_regno);
11101 tcg_temp_free_i32(tcg_rd_regno);
11102 tcg_temp_free_i32(tcg_rn_regno);
11105 /* C3.6 Data processing - SIMD, inc Crypto
11107 * As the decode gets a little complex we are using a table based
11108 * approach for this part of the decode.
11110 static const AArch64DecodeTable data_proc_simd[] = {
11111 /* pattern , mask , fn */
11112 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
11113 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
11114 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
11115 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
11116 { 0x0e000400, 0x9fe08400, disas_simd_copy },
11117 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
11118 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
11119 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
11120 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
11121 { 0x0e000000, 0xbf208c00, disas_simd_tb },
11122 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
11123 { 0x2e000000, 0xbf208400, disas_simd_ext },
11124 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
11125 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
11126 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
11127 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
11128 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
11129 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
11130 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
11131 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
11132 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
11133 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
11134 { 0x00000000, 0x00000000, NULL }
11137 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
11139 /* Note that this is called with all non-FP cases from
11140 * table C3-6 so it must UNDEF for entries not specifically
11141 * allocated to instructions in that table.
11143 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
11144 if (fn) {
11145 fn(s, insn);
11146 } else {
11147 unallocated_encoding(s);
11151 /* C3.6 Data processing - SIMD and floating point */
11152 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
11154 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
11155 disas_data_proc_fp(s, insn);
11156 } else {
11157 /* SIMD, including crypto */
11158 disas_data_proc_simd(s, insn);
11162 /* C3.1 A64 instruction index by encoding */
11163 static void disas_a64_insn(CPUARMState *env, DisasContext *s)
11165 uint32_t insn;
11167 insn = arm_ldl_code(env, s->pc, s->sctlr_b);
11168 s->insn = insn;
11169 s->pc += 4;
11171 s->fp_access_checked = false;
11173 switch (extract32(insn, 25, 4)) {
11174 case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */
11175 unallocated_encoding(s);
11176 break;
11177 case 0x8: case 0x9: /* Data processing - immediate */
11178 disas_data_proc_imm(s, insn);
11179 break;
11180 case 0xa: case 0xb: /* Branch, exception generation and system insns */
11181 disas_b_exc_sys(s, insn);
11182 break;
11183 case 0x4:
11184 case 0x6:
11185 case 0xc:
11186 case 0xe: /* Loads and stores */
11187 disas_ldst(s, insn);
11188 break;
11189 case 0x5:
11190 case 0xd: /* Data processing - register */
11191 disas_data_proc_reg(s, insn);
11192 break;
11193 case 0x7:
11194 case 0xf: /* Data processing - SIMD and floating point */
11195 disas_data_proc_simd_fp(s, insn);
11196 break;
11197 default:
11198 assert(FALSE); /* all 15 cases should be handled above */
11199 break;
11202 /* if we allocated any temporaries, free them here */
11203 free_tmp_a64(s);
11206 void gen_intermediate_code_a64(ARMCPU *cpu, TranslationBlock *tb)
11208 CPUState *cs = CPU(cpu);
11209 CPUARMState *env = &cpu->env;
11210 DisasContext dc1, *dc = &dc1;
11211 target_ulong pc_start;
11212 target_ulong next_page_start;
11213 int num_insns;
11214 int max_insns;
11216 pc_start = tb->pc;
11218 dc->tb = tb;
11220 dc->is_jmp = DISAS_NEXT;
11221 dc->pc = pc_start;
11222 dc->singlestep_enabled = cs->singlestep_enabled;
11223 dc->condjmp = 0;
11225 dc->aarch64 = 1;
11226 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
11227 * there is no secure EL1, so we route exceptions to EL3.
11229 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
11230 !arm_el_is_aa64(env, 3);
11231 dc->thumb = 0;
11232 dc->sctlr_b = 0;
11233 dc->be_data = ARM_TBFLAG_BE_DATA(tb->flags) ? MO_BE : MO_LE;
11234 dc->condexec_mask = 0;
11235 dc->condexec_cond = 0;
11236 dc->mmu_idx = ARM_TBFLAG_MMUIDX(tb->flags);
11237 dc->tbi0 = ARM_TBFLAG_TBI0(tb->flags);
11238 dc->tbi1 = ARM_TBFLAG_TBI1(tb->flags);
11239 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
11240 #if !defined(CONFIG_USER_ONLY)
11241 dc->user = (dc->current_el == 0);
11242 #endif
11243 dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(tb->flags);
11244 dc->vec_len = 0;
11245 dc->vec_stride = 0;
11246 dc->cp_regs = cpu->cp_regs;
11247 dc->features = env->features;
11249 /* Single step state. The code-generation logic here is:
11250 * SS_ACTIVE == 0:
11251 * generate code with no special handling for single-stepping (except
11252 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
11253 * this happens anyway because those changes are all system register or
11254 * PSTATE writes).
11255 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
11256 * emit code for one insn
11257 * emit code to clear PSTATE.SS
11258 * emit code to generate software step exception for completed step
11259 * end TB (as usual for having generated an exception)
11260 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
11261 * emit code to generate a software step exception
11262 * end the TB
11264 dc->ss_active = ARM_TBFLAG_SS_ACTIVE(tb->flags);
11265 dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(tb->flags);
11266 dc->is_ldex = false;
11267 dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el);
11269 init_tmp_a64_array(dc);
11271 next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
11272 num_insns = 0;
11273 max_insns = tb->cflags & CF_COUNT_MASK;
11274 if (max_insns == 0) {
11275 max_insns = CF_COUNT_MASK;
11277 if (max_insns > TCG_MAX_INSNS) {
11278 max_insns = TCG_MAX_INSNS;
11281 gen_tb_start(tb);
11283 tcg_clear_temp_count();
11285 do {
11286 dc->insn_start_idx = tcg_op_buf_count();
11287 tcg_gen_insn_start(dc->pc, 0, 0);
11288 num_insns++;
11290 if (unlikely(!QTAILQ_EMPTY(&cs->breakpoints))) {
11291 CPUBreakpoint *bp;
11292 QTAILQ_FOREACH(bp, &cs->breakpoints, entry) {
11293 if (bp->pc == dc->pc) {
11294 if (bp->flags & BP_CPU) {
11295 gen_a64_set_pc_im(dc->pc);
11296 gen_helper_check_breakpoints(cpu_env);
11297 /* End the TB early; it likely won't be executed */
11298 dc->is_jmp = DISAS_UPDATE;
11299 } else {
11300 gen_exception_internal_insn(dc, 0, EXCP_DEBUG);
11301 /* The address covered by the breakpoint must be
11302 included in [tb->pc, tb->pc + tb->size) in order
11303 to for it to be properly cleared -- thus we
11304 increment the PC here so that the logic setting
11305 tb->size below does the right thing. */
11306 dc->pc += 4;
11307 goto done_generating;
11309 break;
11314 if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) {
11315 gen_io_start();
11318 if (dc->ss_active && !dc->pstate_ss) {
11319 /* Singlestep state is Active-pending.
11320 * If we're in this state at the start of a TB then either
11321 * a) we just took an exception to an EL which is being debugged
11322 * and this is the first insn in the exception handler
11323 * b) debug exceptions were masked and we just unmasked them
11324 * without changing EL (eg by clearing PSTATE.D)
11325 * In either case we're going to take a swstep exception in the
11326 * "did not step an insn" case, and so the syndrome ISV and EX
11327 * bits should be zero.
11329 assert(num_insns == 1);
11330 gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0),
11331 default_exception_el(dc));
11332 dc->is_jmp = DISAS_EXC;
11333 break;
11336 disas_a64_insn(env, dc);
11338 if (tcg_check_temp_count()) {
11339 fprintf(stderr, "TCG temporary leak before "TARGET_FMT_lx"\n",
11340 dc->pc);
11343 /* Translation stops when a conditional branch is encountered.
11344 * Otherwise the subsequent code could get translated several times.
11345 * Also stop translation when a page boundary is reached. This
11346 * ensures prefetch aborts occur at the right place.
11348 } while (!dc->is_jmp && !tcg_op_buf_full() &&
11349 !cs->singlestep_enabled &&
11350 !singlestep &&
11351 !dc->ss_active &&
11352 dc->pc < next_page_start &&
11353 num_insns < max_insns);
11355 if (tb->cflags & CF_LAST_IO) {
11356 gen_io_end();
11359 if (unlikely(cs->singlestep_enabled || dc->ss_active)
11360 && dc->is_jmp != DISAS_EXC) {
11361 /* Note that this means single stepping WFI doesn't halt the CPU.
11362 * For conditional branch insns this is harmless unreachable code as
11363 * gen_goto_tb() has already handled emitting the debug exception
11364 * (and thus a tb-jump is not possible when singlestepping).
11366 assert(dc->is_jmp != DISAS_TB_JUMP);
11367 if (dc->is_jmp != DISAS_JUMP) {
11368 gen_a64_set_pc_im(dc->pc);
11370 if (cs->singlestep_enabled) {
11371 gen_exception_internal(EXCP_DEBUG);
11372 } else {
11373 gen_step_complete_exception(dc);
11375 } else {
11376 switch (dc->is_jmp) {
11377 case DISAS_NEXT:
11378 gen_goto_tb(dc, 1, dc->pc);
11379 break;
11380 default:
11381 case DISAS_UPDATE:
11382 gen_a64_set_pc_im(dc->pc);
11383 /* fall through */
11384 case DISAS_JUMP:
11385 /* indicate that the hash table must be used to find the next TB */
11386 tcg_gen_exit_tb(0);
11387 break;
11388 case DISAS_TB_JUMP:
11389 case DISAS_EXC:
11390 case DISAS_SWI:
11391 break;
11392 case DISAS_WFE:
11393 gen_a64_set_pc_im(dc->pc);
11394 gen_helper_wfe(cpu_env);
11395 break;
11396 case DISAS_YIELD:
11397 gen_a64_set_pc_im(dc->pc);
11398 gen_helper_yield(cpu_env);
11399 break;
11400 case DISAS_WFI:
11401 /* This is a special case because we don't want to just halt the CPU
11402 * if trying to debug across a WFI.
11404 gen_a64_set_pc_im(dc->pc);
11405 gen_helper_wfi(cpu_env);
11406 /* The helper doesn't necessarily throw an exception, but we
11407 * must go back to the main loop to check for interrupts anyway.
11409 tcg_gen_exit_tb(0);
11410 break;
11414 done_generating:
11415 gen_tb_end(tb, num_insns);
11417 #ifdef DEBUG_DISAS
11418 if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) &&
11419 qemu_log_in_addr_range(pc_start)) {
11420 qemu_log_lock();
11421 qemu_log("----------------\n");
11422 qemu_log("IN: %s\n", lookup_symbol(pc_start));
11423 log_target_disas(cs, pc_start, dc->pc - pc_start,
11424 4 | (bswap_code(dc->sctlr_b) ? 2 : 0));
11425 qemu_log("\n");
11426 qemu_log_unlock();
11428 #endif
11429 tb->size = dc->pc - pc_start;
11430 tb->icount = num_insns;