Merge tag 'v7.1.0-rc2'
[qemu/ar7.git] / accel / kvm / kvm-all.c
blob645f0a249ace7c95bf3665d76b51bb898993e171
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
18 #include <poll.h>
20 #include <linux/kvm.h>
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/s390x/adapter.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm_int.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "qemu/event_notifier.h"
38 #include "qemu/main-loop.h"
39 #include "trace.h"
40 #include "hw/irq.h"
41 #include "qapi/visitor.h"
42 #include "qapi/qapi-types-common.h"
43 #include "qapi/qapi-visit-common.h"
44 #include "sysemu/reset.h"
45 #include "qemu/guest-random.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm-cpus.h"
48 #include "sysemu/dirtylimit.h"
50 #include "hw/boards.h"
51 #include "monitor/stats.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size()
66 #ifndef KVM_GUESTDBG_BLOCKIRQ
67 #define KVM_GUESTDBG_BLOCKIRQ 0
68 #endif
70 //#define DEBUG_KVM
72 #ifdef DEBUG_KVM
73 #define DPRINTF(fmt, ...) \
74 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
75 #else
76 #define DPRINTF(fmt, ...) \
77 do { } while (0)
78 #endif
80 #define KVM_MSI_HASHTAB_SIZE 256
82 struct KVMParkedVcpu {
83 unsigned long vcpu_id;
84 int kvm_fd;
85 QLIST_ENTRY(KVMParkedVcpu) node;
88 enum KVMDirtyRingReaperState {
89 KVM_DIRTY_RING_REAPER_NONE = 0,
90 /* The reaper is sleeping */
91 KVM_DIRTY_RING_REAPER_WAIT,
92 /* The reaper is reaping for dirty pages */
93 KVM_DIRTY_RING_REAPER_REAPING,
97 * KVM reaper instance, responsible for collecting the KVM dirty bits
98 * via the dirty ring.
100 struct KVMDirtyRingReaper {
101 /* The reaper thread */
102 QemuThread reaper_thr;
103 volatile uint64_t reaper_iteration; /* iteration number of reaper thr */
104 volatile enum KVMDirtyRingReaperState reaper_state; /* reap thr state */
107 struct KVMState
109 AccelState parent_obj;
111 int nr_slots;
112 int fd;
113 int vmfd;
114 int coalesced_mmio;
115 int coalesced_pio;
116 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
117 bool coalesced_flush_in_progress;
118 int vcpu_events;
119 int robust_singlestep;
120 int debugregs;
121 #ifdef KVM_CAP_SET_GUEST_DEBUG
122 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
123 #endif
124 int max_nested_state_len;
125 int many_ioeventfds;
126 int intx_set_mask;
127 int kvm_shadow_mem;
128 bool kernel_irqchip_allowed;
129 bool kernel_irqchip_required;
130 OnOffAuto kernel_irqchip_split;
131 bool sync_mmu;
132 uint64_t manual_dirty_log_protect;
133 /* The man page (and posix) say ioctl numbers are signed int, but
134 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
135 * unsigned, and treating them as signed here can break things */
136 unsigned irq_set_ioctl;
137 unsigned int sigmask_len;
138 GHashTable *gsimap;
139 #ifdef KVM_CAP_IRQ_ROUTING
140 struct kvm_irq_routing *irq_routes;
141 int nr_allocated_irq_routes;
142 unsigned long *used_gsi_bitmap;
143 unsigned int gsi_count;
144 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
145 #endif
146 KVMMemoryListener memory_listener;
147 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
149 /* For "info mtree -f" to tell if an MR is registered in KVM */
150 int nr_as;
151 struct KVMAs {
152 KVMMemoryListener *ml;
153 AddressSpace *as;
154 } *as;
155 uint64_t kvm_dirty_ring_bytes; /* Size of the per-vcpu dirty ring */
156 uint32_t kvm_dirty_ring_size; /* Number of dirty GFNs per ring */
157 struct KVMDirtyRingReaper reaper;
160 KVMState *kvm_state;
161 bool kvm_kernel_irqchip;
162 bool kvm_split_irqchip;
163 bool kvm_async_interrupts_allowed;
164 bool kvm_halt_in_kernel_allowed;
165 bool kvm_eventfds_allowed;
166 bool kvm_irqfds_allowed;
167 bool kvm_resamplefds_allowed;
168 bool kvm_msi_via_irqfd_allowed;
169 bool kvm_gsi_routing_allowed;
170 bool kvm_gsi_direct_mapping;
171 bool kvm_allowed;
172 bool kvm_readonly_mem_allowed;
173 bool kvm_vm_attributes_allowed;
174 bool kvm_direct_msi_allowed;
175 bool kvm_ioeventfd_any_length_allowed;
176 bool kvm_msi_use_devid;
177 bool kvm_has_guest_debug;
178 int kvm_sstep_flags;
179 static bool kvm_immediate_exit;
180 static hwaddr kvm_max_slot_size = ~0;
182 static const KVMCapabilityInfo kvm_required_capabilites[] = {
183 KVM_CAP_INFO(USER_MEMORY),
184 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
185 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
186 KVM_CAP_LAST_INFO
189 static NotifierList kvm_irqchip_change_notifiers =
190 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
192 struct KVMResampleFd {
193 int gsi;
194 EventNotifier *resample_event;
195 QLIST_ENTRY(KVMResampleFd) node;
197 typedef struct KVMResampleFd KVMResampleFd;
200 * Only used with split irqchip where we need to do the resample fd
201 * kick for the kernel from userspace.
203 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
204 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
206 static QemuMutex kml_slots_lock;
208 #define kvm_slots_lock() qemu_mutex_lock(&kml_slots_lock)
209 #define kvm_slots_unlock() qemu_mutex_unlock(&kml_slots_lock)
211 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem);
213 static inline void kvm_resample_fd_remove(int gsi)
215 KVMResampleFd *rfd;
217 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
218 if (rfd->gsi == gsi) {
219 QLIST_REMOVE(rfd, node);
220 g_free(rfd);
221 break;
226 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
228 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
230 rfd->gsi = gsi;
231 rfd->resample_event = event;
233 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
236 void kvm_resample_fd_notify(int gsi)
238 KVMResampleFd *rfd;
240 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
241 if (rfd->gsi == gsi) {
242 event_notifier_set(rfd->resample_event);
243 trace_kvm_resample_fd_notify(gsi);
244 return;
249 int kvm_get_max_memslots(void)
251 KVMState *s = KVM_STATE(current_accel());
253 return s->nr_slots;
256 /* Called with KVMMemoryListener.slots_lock held */
257 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
259 KVMState *s = kvm_state;
260 int i;
262 for (i = 0; i < s->nr_slots; i++) {
263 if (kml->slots[i].memory_size == 0) {
264 return &kml->slots[i];
268 return NULL;
271 bool kvm_has_free_slot(MachineState *ms)
273 KVMState *s = KVM_STATE(ms->accelerator);
274 bool result;
275 KVMMemoryListener *kml = &s->memory_listener;
277 kvm_slots_lock();
278 result = !!kvm_get_free_slot(kml);
279 kvm_slots_unlock();
281 return result;
284 /* Called with KVMMemoryListener.slots_lock held */
285 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
287 KVMSlot *slot = kvm_get_free_slot(kml);
289 if (slot) {
290 return slot;
293 fprintf(stderr, "%s: no free slot available\n", __func__);
294 abort();
297 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
298 hwaddr start_addr,
299 hwaddr size)
301 KVMState *s = kvm_state;
302 int i;
304 for (i = 0; i < s->nr_slots; i++) {
305 KVMSlot *mem = &kml->slots[i];
307 if (start_addr == mem->start_addr && size == mem->memory_size) {
308 return mem;
312 return NULL;
316 * Calculate and align the start address and the size of the section.
317 * Return the size. If the size is 0, the aligned section is empty.
319 static hwaddr kvm_align_section(MemoryRegionSection *section,
320 hwaddr *start)
322 hwaddr size = int128_get64(section->size);
323 hwaddr delta, aligned;
325 /* kvm works in page size chunks, but the function may be called
326 with sub-page size and unaligned start address. Pad the start
327 address to next and truncate size to previous page boundary. */
328 aligned = ROUND_UP(section->offset_within_address_space,
329 qemu_real_host_page_size());
330 delta = aligned - section->offset_within_address_space;
331 *start = aligned;
332 if (delta > size) {
333 return 0;
336 return (size - delta) & qemu_real_host_page_mask();
339 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
340 hwaddr *phys_addr)
342 KVMMemoryListener *kml = &s->memory_listener;
343 int i, ret = 0;
345 kvm_slots_lock();
346 for (i = 0; i < s->nr_slots; i++) {
347 KVMSlot *mem = &kml->slots[i];
349 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
350 *phys_addr = mem->start_addr + (ram - mem->ram);
351 ret = 1;
352 break;
355 kvm_slots_unlock();
357 return ret;
360 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
362 KVMState *s = kvm_state;
363 struct kvm_userspace_memory_region mem;
364 int ret;
366 mem.slot = slot->slot | (kml->as_id << 16);
367 mem.guest_phys_addr = slot->start_addr;
368 mem.userspace_addr = (unsigned long)slot->ram;
369 mem.flags = slot->flags;
371 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
372 /* Set the slot size to 0 before setting the slot to the desired
373 * value. This is needed based on KVM commit 75d61fbc. */
374 mem.memory_size = 0;
375 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
376 if (ret < 0) {
377 goto err;
380 mem.memory_size = slot->memory_size;
381 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
382 slot->old_flags = mem.flags;
383 err:
384 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
385 mem.memory_size, mem.userspace_addr, ret);
386 if (ret < 0) {
387 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
388 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
389 __func__, mem.slot, slot->start_addr,
390 (uint64_t)mem.memory_size, strerror(errno));
392 return ret;
395 static int do_kvm_destroy_vcpu(CPUState *cpu)
397 KVMState *s = kvm_state;
398 long mmap_size;
399 struct KVMParkedVcpu *vcpu = NULL;
400 int ret = 0;
402 DPRINTF("kvm_destroy_vcpu\n");
404 ret = kvm_arch_destroy_vcpu(cpu);
405 if (ret < 0) {
406 goto err;
409 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
410 if (mmap_size < 0) {
411 ret = mmap_size;
412 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
413 goto err;
416 ret = munmap(cpu->kvm_run, mmap_size);
417 if (ret < 0) {
418 goto err;
421 if (cpu->kvm_dirty_gfns) {
422 ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes);
423 if (ret < 0) {
424 goto err;
428 vcpu = g_malloc0(sizeof(*vcpu));
429 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
430 vcpu->kvm_fd = cpu->kvm_fd;
431 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
432 err:
433 return ret;
436 void kvm_destroy_vcpu(CPUState *cpu)
438 if (do_kvm_destroy_vcpu(cpu) < 0) {
439 error_report("kvm_destroy_vcpu failed");
440 exit(EXIT_FAILURE);
444 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
446 struct KVMParkedVcpu *cpu;
448 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
449 if (cpu->vcpu_id == vcpu_id) {
450 int kvm_fd;
452 QLIST_REMOVE(cpu, node);
453 kvm_fd = cpu->kvm_fd;
454 g_free(cpu);
455 return kvm_fd;
459 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
462 int kvm_init_vcpu(CPUState *cpu, Error **errp)
464 KVMState *s = kvm_state;
465 long mmap_size;
466 int ret;
468 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
470 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
471 if (ret < 0) {
472 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
473 kvm_arch_vcpu_id(cpu));
474 goto err;
477 cpu->kvm_fd = ret;
478 cpu->kvm_state = s;
479 cpu->vcpu_dirty = true;
480 cpu->dirty_pages = 0;
481 cpu->throttle_us_per_full = 0;
483 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
484 if (mmap_size < 0) {
485 ret = mmap_size;
486 error_setg_errno(errp, -mmap_size,
487 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
488 goto err;
491 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
492 cpu->kvm_fd, 0);
493 if (cpu->kvm_run == MAP_FAILED) {
494 ret = -errno;
495 error_setg_errno(errp, ret,
496 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
497 kvm_arch_vcpu_id(cpu));
498 goto err;
501 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
502 s->coalesced_mmio_ring =
503 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
506 if (s->kvm_dirty_ring_size) {
507 /* Use MAP_SHARED to share pages with the kernel */
508 cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes,
509 PROT_READ | PROT_WRITE, MAP_SHARED,
510 cpu->kvm_fd,
511 PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET);
512 if (cpu->kvm_dirty_gfns == MAP_FAILED) {
513 ret = -errno;
514 DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret);
515 goto err;
519 ret = kvm_arch_init_vcpu(cpu);
520 if (ret < 0) {
521 error_setg_errno(errp, -ret,
522 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
523 kvm_arch_vcpu_id(cpu));
525 err:
526 return ret;
530 * dirty pages logging control
533 static int kvm_mem_flags(MemoryRegion *mr)
535 bool readonly = mr->readonly || memory_region_is_romd(mr);
536 int flags = 0;
538 if (memory_region_get_dirty_log_mask(mr) != 0) {
539 flags |= KVM_MEM_LOG_DIRTY_PAGES;
541 if (readonly && kvm_readonly_mem_allowed) {
542 flags |= KVM_MEM_READONLY;
544 return flags;
547 /* Called with KVMMemoryListener.slots_lock held */
548 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
549 MemoryRegion *mr)
551 mem->flags = kvm_mem_flags(mr);
553 /* If nothing changed effectively, no need to issue ioctl */
554 if (mem->flags == mem->old_flags) {
555 return 0;
558 kvm_slot_init_dirty_bitmap(mem);
559 return kvm_set_user_memory_region(kml, mem, false);
562 static int kvm_section_update_flags(KVMMemoryListener *kml,
563 MemoryRegionSection *section)
565 hwaddr start_addr, size, slot_size;
566 KVMSlot *mem;
567 int ret = 0;
569 size = kvm_align_section(section, &start_addr);
570 if (!size) {
571 return 0;
574 kvm_slots_lock();
576 while (size && !ret) {
577 slot_size = MIN(kvm_max_slot_size, size);
578 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
579 if (!mem) {
580 /* We don't have a slot if we want to trap every access. */
581 goto out;
584 ret = kvm_slot_update_flags(kml, mem, section->mr);
585 start_addr += slot_size;
586 size -= slot_size;
589 out:
590 kvm_slots_unlock();
591 return ret;
594 static void kvm_log_start(MemoryListener *listener,
595 MemoryRegionSection *section,
596 int old, int new)
598 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
599 int r;
601 if (old != 0) {
602 return;
605 r = kvm_section_update_flags(kml, section);
606 if (r < 0) {
607 abort();
611 static void kvm_log_stop(MemoryListener *listener,
612 MemoryRegionSection *section,
613 int old, int new)
615 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
616 int r;
618 if (new != 0) {
619 return;
622 r = kvm_section_update_flags(kml, section);
623 if (r < 0) {
624 abort();
628 /* get kvm's dirty pages bitmap and update qemu's */
629 static void kvm_slot_sync_dirty_pages(KVMSlot *slot)
631 ram_addr_t start = slot->ram_start_offset;
632 ram_addr_t pages = slot->memory_size / qemu_real_host_page_size();
634 cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages);
637 static void kvm_slot_reset_dirty_pages(KVMSlot *slot)
639 memset(slot->dirty_bmap, 0, slot->dirty_bmap_size);
642 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
644 /* Allocate the dirty bitmap for a slot */
645 static void kvm_slot_init_dirty_bitmap(KVMSlot *mem)
647 if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) {
648 return;
652 * XXX bad kernel interface alert
653 * For dirty bitmap, kernel allocates array of size aligned to
654 * bits-per-long. But for case when the kernel is 64bits and
655 * the userspace is 32bits, userspace can't align to the same
656 * bits-per-long, since sizeof(long) is different between kernel
657 * and user space. This way, userspace will provide buffer which
658 * may be 4 bytes less than the kernel will use, resulting in
659 * userspace memory corruption (which is not detectable by valgrind
660 * too, in most cases).
661 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
662 * a hope that sizeof(long) won't become >8 any time soon.
664 * Note: the granule of kvm dirty log is qemu_real_host_page_size.
665 * And mem->memory_size is aligned to it (otherwise this mem can't
666 * be registered to KVM).
668 hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(),
669 /*HOST_LONG_BITS*/ 64) / 8;
670 mem->dirty_bmap = g_malloc0(bitmap_size);
671 mem->dirty_bmap_size = bitmap_size;
675 * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if
676 * succeeded, false otherwise
678 static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot)
680 struct kvm_dirty_log d = {};
681 int ret;
683 d.dirty_bitmap = slot->dirty_bmap;
684 d.slot = slot->slot | (slot->as_id << 16);
685 ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d);
687 if (ret == -ENOENT) {
688 /* kernel does not have dirty bitmap in this slot */
689 ret = 0;
691 if (ret) {
692 error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d",
693 __func__, ret);
695 return ret == 0;
698 /* Should be with all slots_lock held for the address spaces. */
699 static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id,
700 uint32_t slot_id, uint64_t offset)
702 KVMMemoryListener *kml;
703 KVMSlot *mem;
705 if (as_id >= s->nr_as) {
706 return;
709 kml = s->as[as_id].ml;
710 mem = &kml->slots[slot_id];
712 if (!mem->memory_size || offset >=
713 (mem->memory_size / qemu_real_host_page_size())) {
714 return;
717 set_bit(offset, mem->dirty_bmap);
720 static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
722 return gfn->flags == KVM_DIRTY_GFN_F_DIRTY;
725 static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
727 gfn->flags = KVM_DIRTY_GFN_F_RESET;
731 * Should be with all slots_lock held for the address spaces. It returns the
732 * dirty page we've collected on this dirty ring.
734 static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu)
736 struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur;
737 uint32_t ring_size = s->kvm_dirty_ring_size;
738 uint32_t count = 0, fetch = cpu->kvm_fetch_index;
740 assert(dirty_gfns && ring_size);
741 trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index);
743 while (true) {
744 cur = &dirty_gfns[fetch % ring_size];
745 if (!dirty_gfn_is_dirtied(cur)) {
746 break;
748 kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff,
749 cur->offset);
750 dirty_gfn_set_collected(cur);
751 trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset);
752 fetch++;
753 count++;
755 cpu->kvm_fetch_index = fetch;
756 cpu->dirty_pages += count;
758 return count;
761 /* Must be with slots_lock held */
762 static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu)
764 int ret;
765 uint64_t total = 0;
766 int64_t stamp;
768 stamp = get_clock();
770 if (cpu) {
771 total = kvm_dirty_ring_reap_one(s, cpu);
772 } else {
773 CPU_FOREACH(cpu) {
774 total += kvm_dirty_ring_reap_one(s, cpu);
778 if (total) {
779 ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS);
780 assert(ret == total);
783 stamp = get_clock() - stamp;
785 if (total) {
786 trace_kvm_dirty_ring_reap(total, stamp / 1000);
789 return total;
793 * Currently for simplicity, we must hold BQL before calling this. We can
794 * consider to drop the BQL if we're clear with all the race conditions.
796 static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu)
798 uint64_t total;
801 * We need to lock all kvm slots for all address spaces here,
802 * because:
804 * (1) We need to mark dirty for dirty bitmaps in multiple slots
805 * and for tons of pages, so it's better to take the lock here
806 * once rather than once per page. And more importantly,
808 * (2) We must _NOT_ publish dirty bits to the other threads
809 * (e.g., the migration thread) via the kvm memory slot dirty
810 * bitmaps before correctly re-protect those dirtied pages.
811 * Otherwise we can have potential risk of data corruption if
812 * the page data is read in the other thread before we do
813 * reset below.
815 kvm_slots_lock();
816 total = kvm_dirty_ring_reap_locked(s, cpu);
817 kvm_slots_unlock();
819 return total;
822 static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg)
824 /* No need to do anything */
828 * Kick all vcpus out in a synchronized way. When returned, we
829 * guarantee that every vcpu has been kicked and at least returned to
830 * userspace once.
832 static void kvm_cpu_synchronize_kick_all(void)
834 CPUState *cpu;
836 CPU_FOREACH(cpu) {
837 run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL);
842 * Flush all the existing dirty pages to the KVM slot buffers. When
843 * this call returns, we guarantee that all the touched dirty pages
844 * before calling this function have been put into the per-kvmslot
845 * dirty bitmap.
847 * This function must be called with BQL held.
849 static void kvm_dirty_ring_flush(void)
851 trace_kvm_dirty_ring_flush(0);
853 * The function needs to be serialized. Since this function
854 * should always be with BQL held, serialization is guaranteed.
855 * However, let's be sure of it.
857 assert(qemu_mutex_iothread_locked());
859 * First make sure to flush the hardware buffers by kicking all
860 * vcpus out in a synchronous way.
862 kvm_cpu_synchronize_kick_all();
863 kvm_dirty_ring_reap(kvm_state, NULL);
864 trace_kvm_dirty_ring_flush(1);
868 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
870 * This function will first try to fetch dirty bitmap from the kernel,
871 * and then updates qemu's dirty bitmap.
873 * NOTE: caller must be with kml->slots_lock held.
875 * @kml: the KVM memory listener object
876 * @section: the memory section to sync the dirty bitmap with
878 static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
879 MemoryRegionSection *section)
881 KVMState *s = kvm_state;
882 KVMSlot *mem;
883 hwaddr start_addr, size;
884 hwaddr slot_size;
886 size = kvm_align_section(section, &start_addr);
887 while (size) {
888 slot_size = MIN(kvm_max_slot_size, size);
889 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
890 if (!mem) {
891 /* We don't have a slot if we want to trap every access. */
892 return;
894 if (kvm_slot_get_dirty_log(s, mem)) {
895 kvm_slot_sync_dirty_pages(mem);
897 start_addr += slot_size;
898 size -= slot_size;
902 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
903 #define KVM_CLEAR_LOG_SHIFT 6
904 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT)
905 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
907 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
908 uint64_t size)
910 KVMState *s = kvm_state;
911 uint64_t end, bmap_start, start_delta, bmap_npages;
912 struct kvm_clear_dirty_log d;
913 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size();
914 int ret;
917 * We need to extend either the start or the size or both to
918 * satisfy the KVM interface requirement. Firstly, do the start
919 * page alignment on 64 host pages
921 bmap_start = start & KVM_CLEAR_LOG_MASK;
922 start_delta = start - bmap_start;
923 bmap_start /= psize;
926 * The kernel interface has restriction on the size too, that either:
928 * (1) the size is 64 host pages aligned (just like the start), or
929 * (2) the size fills up until the end of the KVM memslot.
931 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
932 << KVM_CLEAR_LOG_SHIFT;
933 end = mem->memory_size / psize;
934 if (bmap_npages > end - bmap_start) {
935 bmap_npages = end - bmap_start;
937 start_delta /= psize;
940 * Prepare the bitmap to clear dirty bits. Here we must guarantee
941 * that we won't clear any unknown dirty bits otherwise we might
942 * accidentally clear some set bits which are not yet synced from
943 * the kernel into QEMU's bitmap, then we'll lose track of the
944 * guest modifications upon those pages (which can directly lead
945 * to guest data loss or panic after migration).
947 * Layout of the KVMSlot.dirty_bmap:
949 * |<-------- bmap_npages -----------..>|
950 * [1]
951 * start_delta size
952 * |----------------|-------------|------------------|------------|
953 * ^ ^ ^ ^
954 * | | | |
955 * start bmap_start (start) end
956 * of memslot of memslot
958 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
961 assert(bmap_start % BITS_PER_LONG == 0);
962 /* We should never do log_clear before log_sync */
963 assert(mem->dirty_bmap);
964 if (start_delta || bmap_npages - size / psize) {
965 /* Slow path - we need to manipulate a temp bitmap */
966 bmap_clear = bitmap_new(bmap_npages);
967 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
968 bmap_start, start_delta + size / psize);
970 * We need to fill the holes at start because that was not
971 * specified by the caller and we extended the bitmap only for
972 * 64 pages alignment
974 bitmap_clear(bmap_clear, 0, start_delta);
975 d.dirty_bitmap = bmap_clear;
976 } else {
978 * Fast path - both start and size align well with BITS_PER_LONG
979 * (or the end of memory slot)
981 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
984 d.first_page = bmap_start;
985 /* It should never overflow. If it happens, say something */
986 assert(bmap_npages <= UINT32_MAX);
987 d.num_pages = bmap_npages;
988 d.slot = mem->slot | (as_id << 16);
990 ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d);
991 if (ret < 0 && ret != -ENOENT) {
992 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
993 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
994 __func__, d.slot, (uint64_t)d.first_page,
995 (uint32_t)d.num_pages, ret);
996 } else {
997 ret = 0;
998 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
1002 * After we have updated the remote dirty bitmap, we update the
1003 * cached bitmap as well for the memslot, then if another user
1004 * clears the same region we know we shouldn't clear it again on
1005 * the remote otherwise it's data loss as well.
1007 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
1008 size / psize);
1009 /* This handles the NULL case well */
1010 g_free(bmap_clear);
1011 return ret;
1016 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
1018 * NOTE: this will be a no-op if we haven't enabled manual dirty log
1019 * protection in the host kernel because in that case this operation
1020 * will be done within log_sync().
1022 * @kml: the kvm memory listener
1023 * @section: the memory range to clear dirty bitmap
1025 static int kvm_physical_log_clear(KVMMemoryListener *kml,
1026 MemoryRegionSection *section)
1028 KVMState *s = kvm_state;
1029 uint64_t start, size, offset, count;
1030 KVMSlot *mem;
1031 int ret = 0, i;
1033 if (!s->manual_dirty_log_protect) {
1034 /* No need to do explicit clear */
1035 return ret;
1038 start = section->offset_within_address_space;
1039 size = int128_get64(section->size);
1041 if (!size) {
1042 /* Nothing more we can do... */
1043 return ret;
1046 kvm_slots_lock();
1048 for (i = 0; i < s->nr_slots; i++) {
1049 mem = &kml->slots[i];
1050 /* Discard slots that are empty or do not overlap the section */
1051 if (!mem->memory_size ||
1052 mem->start_addr > start + size - 1 ||
1053 start > mem->start_addr + mem->memory_size - 1) {
1054 continue;
1057 if (start >= mem->start_addr) {
1058 /* The slot starts before section or is aligned to it. */
1059 offset = start - mem->start_addr;
1060 count = MIN(mem->memory_size - offset, size);
1061 } else {
1062 /* The slot starts after section. */
1063 offset = 0;
1064 count = MIN(mem->memory_size, size - (mem->start_addr - start));
1066 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
1067 if (ret < 0) {
1068 break;
1072 kvm_slots_unlock();
1074 return ret;
1077 static void kvm_coalesce_mmio_region(MemoryListener *listener,
1078 MemoryRegionSection *secion,
1079 hwaddr start, hwaddr size)
1081 KVMState *s = kvm_state;
1083 if (s->coalesced_mmio) {
1084 struct kvm_coalesced_mmio_zone zone;
1086 zone.addr = start;
1087 zone.size = size;
1088 zone.pad = 0;
1090 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1094 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
1095 MemoryRegionSection *secion,
1096 hwaddr start, hwaddr size)
1098 KVMState *s = kvm_state;
1100 if (s->coalesced_mmio) {
1101 struct kvm_coalesced_mmio_zone zone;
1103 zone.addr = start;
1104 zone.size = size;
1105 zone.pad = 0;
1107 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1111 static void kvm_coalesce_pio_add(MemoryListener *listener,
1112 MemoryRegionSection *section,
1113 hwaddr start, hwaddr size)
1115 KVMState *s = kvm_state;
1117 if (s->coalesced_pio) {
1118 struct kvm_coalesced_mmio_zone zone;
1120 zone.addr = start;
1121 zone.size = size;
1122 zone.pio = 1;
1124 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
1128 static void kvm_coalesce_pio_del(MemoryListener *listener,
1129 MemoryRegionSection *section,
1130 hwaddr start, hwaddr size)
1132 KVMState *s = kvm_state;
1134 if (s->coalesced_pio) {
1135 struct kvm_coalesced_mmio_zone zone;
1137 zone.addr = start;
1138 zone.size = size;
1139 zone.pio = 1;
1141 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
1145 static MemoryListener kvm_coalesced_pio_listener = {
1146 .name = "kvm-coalesced-pio",
1147 .coalesced_io_add = kvm_coalesce_pio_add,
1148 .coalesced_io_del = kvm_coalesce_pio_del,
1151 int kvm_check_extension(KVMState *s, unsigned int extension)
1153 int ret;
1155 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1156 if (ret < 0) {
1157 ret = 0;
1160 return ret;
1163 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
1165 int ret;
1167 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
1168 if (ret < 0) {
1169 /* VM wide version not implemented, use global one instead */
1170 ret = kvm_check_extension(s, extension);
1173 return ret;
1176 typedef struct HWPoisonPage {
1177 ram_addr_t ram_addr;
1178 QLIST_ENTRY(HWPoisonPage) list;
1179 } HWPoisonPage;
1181 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
1182 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
1184 static void kvm_unpoison_all(void *param)
1186 HWPoisonPage *page, *next_page;
1188 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
1189 QLIST_REMOVE(page, list);
1190 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
1191 g_free(page);
1195 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
1197 HWPoisonPage *page;
1199 QLIST_FOREACH(page, &hwpoison_page_list, list) {
1200 if (page->ram_addr == ram_addr) {
1201 return;
1204 page = g_new(HWPoisonPage, 1);
1205 page->ram_addr = ram_addr;
1206 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
1209 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
1211 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
1212 /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN
1213 * endianness, but the memory core hands them in target endianness.
1214 * For example, PPC is always treated as big-endian even if running
1215 * on KVM and on PPC64LE. Correct here.
1217 switch (size) {
1218 case 2:
1219 val = bswap16(val);
1220 break;
1221 case 4:
1222 val = bswap32(val);
1223 break;
1225 #endif
1226 return val;
1229 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
1230 bool assign, uint32_t size, bool datamatch)
1232 int ret;
1233 struct kvm_ioeventfd iofd = {
1234 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1235 .addr = addr,
1236 .len = size,
1237 .flags = 0,
1238 .fd = fd,
1241 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1242 datamatch);
1243 if (!kvm_enabled()) {
1244 return -ENOSYS;
1247 if (datamatch) {
1248 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1250 if (!assign) {
1251 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1254 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1256 if (ret < 0) {
1257 return -errno;
1260 return 0;
1263 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1264 bool assign, uint32_t size, bool datamatch)
1266 struct kvm_ioeventfd kick = {
1267 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1268 .addr = addr,
1269 .flags = KVM_IOEVENTFD_FLAG_PIO,
1270 .len = size,
1271 .fd = fd,
1273 int r;
1274 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1275 if (!kvm_enabled()) {
1276 return -ENOSYS;
1278 if (datamatch) {
1279 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1281 if (!assign) {
1282 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1284 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1285 if (r < 0) {
1286 return r;
1288 return 0;
1292 static int kvm_check_many_ioeventfds(void)
1294 /* Userspace can use ioeventfd for io notification. This requires a host
1295 * that supports eventfd(2) and an I/O thread; since eventfd does not
1296 * support SIGIO it cannot interrupt the vcpu.
1298 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1299 * can avoid creating too many ioeventfds.
1301 #if defined(CONFIG_EVENTFD)
1302 int ioeventfds[7];
1303 int i, ret = 0;
1304 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1305 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1306 if (ioeventfds[i] < 0) {
1307 break;
1309 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1310 if (ret < 0) {
1311 close(ioeventfds[i]);
1312 break;
1316 /* Decide whether many devices are supported or not */
1317 ret = i == ARRAY_SIZE(ioeventfds);
1319 while (i-- > 0) {
1320 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1321 close(ioeventfds[i]);
1323 return ret;
1324 #else
1325 return 0;
1326 #endif
1329 static const KVMCapabilityInfo *
1330 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1332 while (list->name) {
1333 if (!kvm_check_extension(s, list->value)) {
1334 return list;
1336 list++;
1338 return NULL;
1341 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1343 g_assert(
1344 ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size
1346 kvm_max_slot_size = max_slot_size;
1349 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1350 MemoryRegionSection *section, bool add)
1352 KVMSlot *mem;
1353 int err;
1354 MemoryRegion *mr = section->mr;
1355 bool writable = !mr->readonly && !mr->rom_device;
1356 hwaddr start_addr, size, slot_size, mr_offset;
1357 ram_addr_t ram_start_offset;
1358 void *ram;
1360 if (!memory_region_is_ram(mr)) {
1361 if (writable || !kvm_readonly_mem_allowed) {
1362 return;
1363 } else if (!mr->romd_mode) {
1364 /* If the memory device is not in romd_mode, then we actually want
1365 * to remove the kvm memory slot so all accesses will trap. */
1366 add = false;
1370 size = kvm_align_section(section, &start_addr);
1371 if (!size) {
1372 return;
1375 /* The offset of the kvmslot within the memory region */
1376 mr_offset = section->offset_within_region + start_addr -
1377 section->offset_within_address_space;
1379 /* use aligned delta to align the ram address and offset */
1380 ram = memory_region_get_ram_ptr(mr) + mr_offset;
1381 ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset;
1383 kvm_slots_lock();
1385 if (!add) {
1386 do {
1387 slot_size = MIN(kvm_max_slot_size, size);
1388 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1389 if (!mem) {
1390 goto out;
1392 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1394 * NOTE: We should be aware of the fact that here we're only
1395 * doing a best effort to sync dirty bits. No matter whether
1396 * we're using dirty log or dirty ring, we ignored two facts:
1398 * (1) dirty bits can reside in hardware buffers (PML)
1400 * (2) after we collected dirty bits here, pages can be dirtied
1401 * again before we do the final KVM_SET_USER_MEMORY_REGION to
1402 * remove the slot.
1404 * Not easy. Let's cross the fingers until it's fixed.
1406 if (kvm_state->kvm_dirty_ring_size) {
1407 kvm_dirty_ring_reap_locked(kvm_state, NULL);
1408 } else {
1409 kvm_slot_get_dirty_log(kvm_state, mem);
1411 kvm_slot_sync_dirty_pages(mem);
1414 /* unregister the slot */
1415 g_free(mem->dirty_bmap);
1416 mem->dirty_bmap = NULL;
1417 mem->memory_size = 0;
1418 mem->flags = 0;
1419 err = kvm_set_user_memory_region(kml, mem, false);
1420 if (err) {
1421 fprintf(stderr, "%s: error unregistering slot: %s\n",
1422 __func__, strerror(-err));
1423 abort();
1425 start_addr += slot_size;
1426 size -= slot_size;
1427 } while (size);
1428 goto out;
1431 /* register the new slot */
1432 do {
1433 slot_size = MIN(kvm_max_slot_size, size);
1434 mem = kvm_alloc_slot(kml);
1435 mem->as_id = kml->as_id;
1436 mem->memory_size = slot_size;
1437 mem->start_addr = start_addr;
1438 mem->ram_start_offset = ram_start_offset;
1439 mem->ram = ram;
1440 mem->flags = kvm_mem_flags(mr);
1441 kvm_slot_init_dirty_bitmap(mem);
1442 err = kvm_set_user_memory_region(kml, mem, true);
1443 if (err) {
1444 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1445 strerror(-err));
1446 abort();
1448 start_addr += slot_size;
1449 ram_start_offset += slot_size;
1450 ram += slot_size;
1451 size -= slot_size;
1452 } while (size);
1454 out:
1455 kvm_slots_unlock();
1458 static void *kvm_dirty_ring_reaper_thread(void *data)
1460 KVMState *s = data;
1461 struct KVMDirtyRingReaper *r = &s->reaper;
1463 rcu_register_thread();
1465 trace_kvm_dirty_ring_reaper("init");
1467 while (true) {
1468 r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT;
1469 trace_kvm_dirty_ring_reaper("wait");
1471 * TODO: provide a smarter timeout rather than a constant?
1473 sleep(1);
1475 /* keep sleeping so that dirtylimit not be interfered by reaper */
1476 if (dirtylimit_in_service()) {
1477 continue;
1480 trace_kvm_dirty_ring_reaper("wakeup");
1481 r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING;
1483 qemu_mutex_lock_iothread();
1484 kvm_dirty_ring_reap(s, NULL);
1485 qemu_mutex_unlock_iothread();
1487 r->reaper_iteration++;
1490 trace_kvm_dirty_ring_reaper("exit");
1492 rcu_unregister_thread();
1494 return NULL;
1497 static int kvm_dirty_ring_reaper_init(KVMState *s)
1499 struct KVMDirtyRingReaper *r = &s->reaper;
1501 qemu_thread_create(&r->reaper_thr, "kvm-reaper",
1502 kvm_dirty_ring_reaper_thread,
1503 s, QEMU_THREAD_JOINABLE);
1505 return 0;
1508 static void kvm_region_add(MemoryListener *listener,
1509 MemoryRegionSection *section)
1511 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1513 memory_region_ref(section->mr);
1514 kvm_set_phys_mem(kml, section, true);
1517 static void kvm_region_del(MemoryListener *listener,
1518 MemoryRegionSection *section)
1520 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1522 kvm_set_phys_mem(kml, section, false);
1523 memory_region_unref(section->mr);
1526 static void kvm_log_sync(MemoryListener *listener,
1527 MemoryRegionSection *section)
1529 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1531 kvm_slots_lock();
1532 kvm_physical_sync_dirty_bitmap(kml, section);
1533 kvm_slots_unlock();
1536 static void kvm_log_sync_global(MemoryListener *l)
1538 KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener);
1539 KVMState *s = kvm_state;
1540 KVMSlot *mem;
1541 int i;
1543 /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */
1544 kvm_dirty_ring_flush();
1547 * TODO: make this faster when nr_slots is big while there are
1548 * only a few used slots (small VMs).
1550 kvm_slots_lock();
1551 for (i = 0; i < s->nr_slots; i++) {
1552 mem = &kml->slots[i];
1553 if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1554 kvm_slot_sync_dirty_pages(mem);
1556 * This is not needed by KVM_GET_DIRTY_LOG because the
1557 * ioctl will unconditionally overwrite the whole region.
1558 * However kvm dirty ring has no such side effect.
1560 kvm_slot_reset_dirty_pages(mem);
1563 kvm_slots_unlock();
1566 static void kvm_log_clear(MemoryListener *listener,
1567 MemoryRegionSection *section)
1569 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1570 int r;
1572 r = kvm_physical_log_clear(kml, section);
1573 if (r < 0) {
1574 error_report_once("%s: kvm log clear failed: mr=%s "
1575 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1576 section->mr->name, section->offset_within_region,
1577 int128_get64(section->size));
1578 abort();
1582 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1583 MemoryRegionSection *section,
1584 bool match_data, uint64_t data,
1585 EventNotifier *e)
1587 int fd = event_notifier_get_fd(e);
1588 int r;
1590 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1591 data, true, int128_get64(section->size),
1592 match_data);
1593 if (r < 0) {
1594 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1595 __func__, strerror(-r), -r);
1596 abort();
1600 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1601 MemoryRegionSection *section,
1602 bool match_data, uint64_t data,
1603 EventNotifier *e)
1605 int fd = event_notifier_get_fd(e);
1606 int r;
1608 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1609 data, false, int128_get64(section->size),
1610 match_data);
1611 if (r < 0) {
1612 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1613 __func__, strerror(-r), -r);
1614 abort();
1618 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1619 MemoryRegionSection *section,
1620 bool match_data, uint64_t data,
1621 EventNotifier *e)
1623 int fd = event_notifier_get_fd(e);
1624 int r;
1626 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1627 data, true, int128_get64(section->size),
1628 match_data);
1629 if (r < 0) {
1630 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1631 __func__, strerror(-r), -r);
1632 abort();
1636 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1637 MemoryRegionSection *section,
1638 bool match_data, uint64_t data,
1639 EventNotifier *e)
1642 int fd = event_notifier_get_fd(e);
1643 int r;
1645 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1646 data, false, int128_get64(section->size),
1647 match_data);
1648 if (r < 0) {
1649 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1650 __func__, strerror(-r), -r);
1651 abort();
1655 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1656 AddressSpace *as, int as_id, const char *name)
1658 int i;
1660 kml->slots = g_new0(KVMSlot, s->nr_slots);
1661 kml->as_id = as_id;
1663 for (i = 0; i < s->nr_slots; i++) {
1664 kml->slots[i].slot = i;
1667 kml->listener.region_add = kvm_region_add;
1668 kml->listener.region_del = kvm_region_del;
1669 kml->listener.log_start = kvm_log_start;
1670 kml->listener.log_stop = kvm_log_stop;
1671 kml->listener.priority = 10;
1672 kml->listener.name = name;
1674 if (s->kvm_dirty_ring_size) {
1675 kml->listener.log_sync_global = kvm_log_sync_global;
1676 } else {
1677 kml->listener.log_sync = kvm_log_sync;
1678 kml->listener.log_clear = kvm_log_clear;
1681 memory_listener_register(&kml->listener, as);
1683 for (i = 0; i < s->nr_as; ++i) {
1684 if (!s->as[i].as) {
1685 s->as[i].as = as;
1686 s->as[i].ml = kml;
1687 break;
1692 static MemoryListener kvm_io_listener = {
1693 .name = "kvm-io",
1694 .eventfd_add = kvm_io_ioeventfd_add,
1695 .eventfd_del = kvm_io_ioeventfd_del,
1696 .priority = 10,
1699 int kvm_set_irq(KVMState *s, int irq, int level)
1701 struct kvm_irq_level event;
1702 int ret;
1704 assert(kvm_async_interrupts_enabled());
1706 event.level = level;
1707 event.irq = irq;
1708 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1709 if (ret < 0) {
1710 perror("kvm_set_irq");
1711 abort();
1714 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1717 #ifdef KVM_CAP_IRQ_ROUTING
1718 typedef struct KVMMSIRoute {
1719 struct kvm_irq_routing_entry kroute;
1720 QTAILQ_ENTRY(KVMMSIRoute) entry;
1721 } KVMMSIRoute;
1723 static void set_gsi(KVMState *s, unsigned int gsi)
1725 set_bit(gsi, s->used_gsi_bitmap);
1728 static void clear_gsi(KVMState *s, unsigned int gsi)
1730 clear_bit(gsi, s->used_gsi_bitmap);
1733 void kvm_init_irq_routing(KVMState *s)
1735 int gsi_count, i;
1737 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1738 if (gsi_count > 0) {
1739 /* Round up so we can search ints using ffs */
1740 s->used_gsi_bitmap = bitmap_new(gsi_count);
1741 s->gsi_count = gsi_count;
1744 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1745 s->nr_allocated_irq_routes = 0;
1747 if (!kvm_direct_msi_allowed) {
1748 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1749 QTAILQ_INIT(&s->msi_hashtab[i]);
1753 kvm_arch_init_irq_routing(s);
1756 void kvm_irqchip_commit_routes(KVMState *s)
1758 int ret;
1760 if (kvm_gsi_direct_mapping()) {
1761 return;
1764 if (!kvm_gsi_routing_enabled()) {
1765 return;
1768 s->irq_routes->flags = 0;
1769 trace_kvm_irqchip_commit_routes();
1770 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1771 assert(ret == 0);
1774 static void kvm_add_routing_entry(KVMState *s,
1775 struct kvm_irq_routing_entry *entry)
1777 struct kvm_irq_routing_entry *new;
1778 int n, size;
1780 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1781 n = s->nr_allocated_irq_routes * 2;
1782 if (n < 64) {
1783 n = 64;
1785 size = sizeof(struct kvm_irq_routing);
1786 size += n * sizeof(*new);
1787 s->irq_routes = g_realloc(s->irq_routes, size);
1788 s->nr_allocated_irq_routes = n;
1790 n = s->irq_routes->nr++;
1791 new = &s->irq_routes->entries[n];
1793 *new = *entry;
1795 set_gsi(s, entry->gsi);
1798 static int kvm_update_routing_entry(KVMState *s,
1799 struct kvm_irq_routing_entry *new_entry)
1801 struct kvm_irq_routing_entry *entry;
1802 int n;
1804 for (n = 0; n < s->irq_routes->nr; n++) {
1805 entry = &s->irq_routes->entries[n];
1806 if (entry->gsi != new_entry->gsi) {
1807 continue;
1810 if(!memcmp(entry, new_entry, sizeof *entry)) {
1811 return 0;
1814 *entry = *new_entry;
1816 return 0;
1819 return -ESRCH;
1822 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1824 struct kvm_irq_routing_entry e = {};
1826 assert(pin < s->gsi_count);
1828 e.gsi = irq;
1829 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1830 e.flags = 0;
1831 e.u.irqchip.irqchip = irqchip;
1832 e.u.irqchip.pin = pin;
1833 kvm_add_routing_entry(s, &e);
1836 void kvm_irqchip_release_virq(KVMState *s, int virq)
1838 struct kvm_irq_routing_entry *e;
1839 int i;
1841 if (kvm_gsi_direct_mapping()) {
1842 return;
1845 for (i = 0; i < s->irq_routes->nr; i++) {
1846 e = &s->irq_routes->entries[i];
1847 if (e->gsi == virq) {
1848 s->irq_routes->nr--;
1849 *e = s->irq_routes->entries[s->irq_routes->nr];
1852 clear_gsi(s, virq);
1853 kvm_arch_release_virq_post(virq);
1854 trace_kvm_irqchip_release_virq(virq);
1857 void kvm_irqchip_add_change_notifier(Notifier *n)
1859 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1862 void kvm_irqchip_remove_change_notifier(Notifier *n)
1864 notifier_remove(n);
1867 void kvm_irqchip_change_notify(void)
1869 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1872 static unsigned int kvm_hash_msi(uint32_t data)
1874 /* This is optimized for IA32 MSI layout. However, no other arch shall
1875 * repeat the mistake of not providing a direct MSI injection API. */
1876 return data & 0xff;
1879 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1881 KVMMSIRoute *route, *next;
1882 unsigned int hash;
1884 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1885 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1886 kvm_irqchip_release_virq(s, route->kroute.gsi);
1887 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1888 g_free(route);
1893 static int kvm_irqchip_get_virq(KVMState *s)
1895 int next_virq;
1898 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1899 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1900 * number can succeed even though a new route entry cannot be added.
1901 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1903 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1904 kvm_flush_dynamic_msi_routes(s);
1907 /* Return the lowest unused GSI in the bitmap */
1908 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1909 if (next_virq >= s->gsi_count) {
1910 return -ENOSPC;
1911 } else {
1912 return next_virq;
1916 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1918 unsigned int hash = kvm_hash_msi(msg.data);
1919 KVMMSIRoute *route;
1921 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1922 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1923 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1924 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1925 return route;
1928 return NULL;
1931 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1933 struct kvm_msi msi;
1934 KVMMSIRoute *route;
1936 if (kvm_direct_msi_allowed) {
1937 msi.address_lo = (uint32_t)msg.address;
1938 msi.address_hi = msg.address >> 32;
1939 msi.data = le32_to_cpu(msg.data);
1940 msi.flags = 0;
1941 memset(msi.pad, 0, sizeof(msi.pad));
1943 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1946 route = kvm_lookup_msi_route(s, msg);
1947 if (!route) {
1948 int virq;
1950 virq = kvm_irqchip_get_virq(s);
1951 if (virq < 0) {
1952 return virq;
1955 route = g_new0(KVMMSIRoute, 1);
1956 route->kroute.gsi = virq;
1957 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1958 route->kroute.flags = 0;
1959 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1960 route->kroute.u.msi.address_hi = msg.address >> 32;
1961 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1963 kvm_add_routing_entry(s, &route->kroute);
1964 kvm_irqchip_commit_routes(s);
1966 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1967 entry);
1970 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1972 return kvm_set_irq(s, route->kroute.gsi, 1);
1975 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
1977 struct kvm_irq_routing_entry kroute = {};
1978 int virq;
1979 KVMState *s = c->s;
1980 MSIMessage msg = {0, 0};
1982 if (pci_available && dev) {
1983 msg = pci_get_msi_message(dev, vector);
1986 if (kvm_gsi_direct_mapping()) {
1987 return kvm_arch_msi_data_to_gsi(msg.data);
1990 if (!kvm_gsi_routing_enabled()) {
1991 return -ENOSYS;
1994 virq = kvm_irqchip_get_virq(s);
1995 if (virq < 0) {
1996 return virq;
1999 kroute.gsi = virq;
2000 kroute.type = KVM_IRQ_ROUTING_MSI;
2001 kroute.flags = 0;
2002 kroute.u.msi.address_lo = (uint32_t)msg.address;
2003 kroute.u.msi.address_hi = msg.address >> 32;
2004 kroute.u.msi.data = le32_to_cpu(msg.data);
2005 if (pci_available && kvm_msi_devid_required()) {
2006 kroute.flags = KVM_MSI_VALID_DEVID;
2007 kroute.u.msi.devid = pci_requester_id(dev);
2009 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2010 kvm_irqchip_release_virq(s, virq);
2011 return -EINVAL;
2014 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
2015 vector, virq);
2017 kvm_add_routing_entry(s, &kroute);
2018 kvm_arch_add_msi_route_post(&kroute, vector, dev);
2019 c->changes++;
2021 return virq;
2024 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
2025 PCIDevice *dev)
2027 struct kvm_irq_routing_entry kroute = {};
2029 if (kvm_gsi_direct_mapping()) {
2030 return 0;
2033 if (!kvm_irqchip_in_kernel()) {
2034 return -ENOSYS;
2037 kroute.gsi = virq;
2038 kroute.type = KVM_IRQ_ROUTING_MSI;
2039 kroute.flags = 0;
2040 kroute.u.msi.address_lo = (uint32_t)msg.address;
2041 kroute.u.msi.address_hi = msg.address >> 32;
2042 kroute.u.msi.data = le32_to_cpu(msg.data);
2043 if (pci_available && kvm_msi_devid_required()) {
2044 kroute.flags = KVM_MSI_VALID_DEVID;
2045 kroute.u.msi.devid = pci_requester_id(dev);
2047 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
2048 return -EINVAL;
2051 trace_kvm_irqchip_update_msi_route(virq);
2053 return kvm_update_routing_entry(s, &kroute);
2056 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2057 EventNotifier *resample, int virq,
2058 bool assign)
2060 int fd = event_notifier_get_fd(event);
2061 int rfd = resample ? event_notifier_get_fd(resample) : -1;
2063 struct kvm_irqfd irqfd = {
2064 .fd = fd,
2065 .gsi = virq,
2066 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
2069 if (rfd != -1) {
2070 assert(assign);
2071 if (kvm_irqchip_is_split()) {
2073 * When the slow irqchip (e.g. IOAPIC) is in the
2074 * userspace, KVM kernel resamplefd will not work because
2075 * the EOI of the interrupt will be delivered to userspace
2076 * instead, so the KVM kernel resamplefd kick will be
2077 * skipped. The userspace here mimics what the kernel
2078 * provides with resamplefd, remember the resamplefd and
2079 * kick it when we receive EOI of this IRQ.
2081 * This is hackery because IOAPIC is mostly bypassed
2082 * (except EOI broadcasts) when irqfd is used. However
2083 * this can bring much performance back for split irqchip
2084 * with INTx IRQs (for VFIO, this gives 93% perf of the
2085 * full fast path, which is 46% perf boost comparing to
2086 * the INTx slow path).
2088 kvm_resample_fd_insert(virq, resample);
2089 } else {
2090 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
2091 irqfd.resamplefd = rfd;
2093 } else if (!assign) {
2094 if (kvm_irqchip_is_split()) {
2095 kvm_resample_fd_remove(virq);
2099 if (!kvm_irqfds_enabled()) {
2100 return -ENOSYS;
2103 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
2106 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2108 struct kvm_irq_routing_entry kroute = {};
2109 int virq;
2111 if (!kvm_gsi_routing_enabled()) {
2112 return -ENOSYS;
2115 virq = kvm_irqchip_get_virq(s);
2116 if (virq < 0) {
2117 return virq;
2120 kroute.gsi = virq;
2121 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
2122 kroute.flags = 0;
2123 kroute.u.adapter.summary_addr = adapter->summary_addr;
2124 kroute.u.adapter.ind_addr = adapter->ind_addr;
2125 kroute.u.adapter.summary_offset = adapter->summary_offset;
2126 kroute.u.adapter.ind_offset = adapter->ind_offset;
2127 kroute.u.adapter.adapter_id = adapter->adapter_id;
2129 kvm_add_routing_entry(s, &kroute);
2131 return virq;
2134 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2136 struct kvm_irq_routing_entry kroute = {};
2137 int virq;
2139 if (!kvm_gsi_routing_enabled()) {
2140 return -ENOSYS;
2142 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
2143 return -ENOSYS;
2145 virq = kvm_irqchip_get_virq(s);
2146 if (virq < 0) {
2147 return virq;
2150 kroute.gsi = virq;
2151 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
2152 kroute.flags = 0;
2153 kroute.u.hv_sint.vcpu = vcpu;
2154 kroute.u.hv_sint.sint = sint;
2156 kvm_add_routing_entry(s, &kroute);
2157 kvm_irqchip_commit_routes(s);
2159 return virq;
2162 #else /* !KVM_CAP_IRQ_ROUTING */
2164 void kvm_init_irq_routing(KVMState *s)
2168 void kvm_irqchip_release_virq(KVMState *s, int virq)
2172 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
2174 abort();
2177 int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev)
2179 return -ENOSYS;
2182 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
2184 return -ENOSYS;
2187 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
2189 return -ENOSYS;
2192 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
2193 EventNotifier *resample, int virq,
2194 bool assign)
2196 abort();
2199 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
2201 return -ENOSYS;
2203 #endif /* !KVM_CAP_IRQ_ROUTING */
2205 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2206 EventNotifier *rn, int virq)
2208 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
2211 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
2212 int virq)
2214 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
2217 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
2218 EventNotifier *rn, qemu_irq irq)
2220 gpointer key, gsi;
2221 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2223 if (!found) {
2224 return -ENXIO;
2226 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
2229 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
2230 qemu_irq irq)
2232 gpointer key, gsi;
2233 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
2235 if (!found) {
2236 return -ENXIO;
2238 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
2241 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
2243 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
2246 static void kvm_irqchip_create(KVMState *s)
2248 int ret;
2250 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
2251 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
2253 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
2254 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
2255 if (ret < 0) {
2256 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
2257 exit(1);
2259 } else {
2260 return;
2263 /* First probe and see if there's a arch-specific hook to create the
2264 * in-kernel irqchip for us */
2265 ret = kvm_arch_irqchip_create(s);
2266 if (ret == 0) {
2267 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
2268 error_report("Split IRQ chip mode not supported.");
2269 exit(1);
2270 } else {
2271 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
2274 if (ret < 0) {
2275 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
2276 exit(1);
2279 kvm_kernel_irqchip = true;
2280 /* If we have an in-kernel IRQ chip then we must have asynchronous
2281 * interrupt delivery (though the reverse is not necessarily true)
2283 kvm_async_interrupts_allowed = true;
2284 kvm_halt_in_kernel_allowed = true;
2286 kvm_init_irq_routing(s);
2288 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
2291 /* Find number of supported CPUs using the recommended
2292 * procedure from the kernel API documentation to cope with
2293 * older kernels that may be missing capabilities.
2295 static int kvm_recommended_vcpus(KVMState *s)
2297 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
2298 return (ret) ? ret : 4;
2301 static int kvm_max_vcpus(KVMState *s)
2303 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
2304 return (ret) ? ret : kvm_recommended_vcpus(s);
2307 static int kvm_max_vcpu_id(KVMState *s)
2309 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
2310 return (ret) ? ret : kvm_max_vcpus(s);
2313 bool kvm_vcpu_id_is_valid(int vcpu_id)
2315 KVMState *s = KVM_STATE(current_accel());
2316 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
2319 bool kvm_dirty_ring_enabled(void)
2321 return kvm_state->kvm_dirty_ring_size ? true : false;
2324 static void query_stats_cb(StatsResultList **result, StatsTarget target,
2325 strList *names, strList *targets, Error **errp);
2326 static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp);
2328 uint32_t kvm_dirty_ring_size(void)
2330 return kvm_state->kvm_dirty_ring_size;
2333 static int kvm_init(MachineState *ms)
2335 MachineClass *mc = MACHINE_GET_CLASS(ms);
2336 static const char upgrade_note[] =
2337 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
2338 "(see http://sourceforge.net/projects/kvm).\n";
2339 struct {
2340 const char *name;
2341 int num;
2342 } num_cpus[] = {
2343 { "SMP", ms->smp.cpus },
2344 { "hotpluggable", ms->smp.max_cpus },
2345 { NULL, }
2346 }, *nc = num_cpus;
2347 int soft_vcpus_limit, hard_vcpus_limit;
2348 KVMState *s;
2349 const KVMCapabilityInfo *missing_cap;
2350 int ret;
2351 int type = 0;
2352 uint64_t dirty_log_manual_caps;
2354 qemu_mutex_init(&kml_slots_lock);
2356 s = KVM_STATE(ms->accelerator);
2359 * On systems where the kernel can support different base page
2360 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2361 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2362 * page size for the system though.
2364 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size());
2366 s->sigmask_len = 8;
2368 #ifdef KVM_CAP_SET_GUEST_DEBUG
2369 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2370 #endif
2371 QLIST_INIT(&s->kvm_parked_vcpus);
2372 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2373 if (s->fd == -1) {
2374 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2375 ret = -errno;
2376 goto err;
2379 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2380 if (ret < KVM_API_VERSION) {
2381 if (ret >= 0) {
2382 ret = -EINVAL;
2384 fprintf(stderr, "kvm version too old\n");
2385 goto err;
2388 if (ret > KVM_API_VERSION) {
2389 ret = -EINVAL;
2390 fprintf(stderr, "kvm version not supported\n");
2391 goto err;
2394 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2395 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2397 /* If unspecified, use the default value */
2398 if (!s->nr_slots) {
2399 s->nr_slots = 32;
2402 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2403 if (s->nr_as <= 1) {
2404 s->nr_as = 1;
2406 s->as = g_new0(struct KVMAs, s->nr_as);
2408 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2409 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2410 "kvm-type",
2411 &error_abort);
2412 type = mc->kvm_type(ms, kvm_type);
2413 } else if (mc->kvm_type) {
2414 type = mc->kvm_type(ms, NULL);
2417 do {
2418 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2419 } while (ret == -EINTR);
2421 if (ret < 0) {
2422 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2423 strerror(-ret));
2425 #ifdef TARGET_S390X
2426 if (ret == -EINVAL) {
2427 fprintf(stderr,
2428 "Host kernel setup problem detected. Please verify:\n");
2429 fprintf(stderr, "- for kernels supporting the switch_amode or"
2430 " user_mode parameters, whether\n");
2431 fprintf(stderr,
2432 " user space is running in primary address space\n");
2433 fprintf(stderr,
2434 "- for kernels supporting the vm.allocate_pgste sysctl, "
2435 "whether it is enabled\n");
2437 #elif defined(TARGET_PPC)
2438 if (ret == -EINVAL) {
2439 fprintf(stderr,
2440 "PPC KVM module is not loaded. Try modprobe kvm_%s.\n",
2441 (type == 2) ? "pr" : "hv");
2443 #endif
2444 goto err;
2447 s->vmfd = ret;
2449 /* check the vcpu limits */
2450 soft_vcpus_limit = kvm_recommended_vcpus(s);
2451 hard_vcpus_limit = kvm_max_vcpus(s);
2453 while (nc->name) {
2454 if (nc->num > soft_vcpus_limit) {
2455 warn_report("Number of %s cpus requested (%d) exceeds "
2456 "the recommended cpus supported by KVM (%d)",
2457 nc->name, nc->num, soft_vcpus_limit);
2459 if (nc->num > hard_vcpus_limit) {
2460 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2461 "the maximum cpus supported by KVM (%d)\n",
2462 nc->name, nc->num, hard_vcpus_limit);
2463 exit(1);
2466 nc++;
2469 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2470 if (!missing_cap) {
2471 missing_cap =
2472 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2474 if (missing_cap) {
2475 ret = -EINVAL;
2476 fprintf(stderr, "kvm does not support %s\n%s",
2477 missing_cap->name, upgrade_note);
2478 goto err;
2481 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2482 s->coalesced_pio = s->coalesced_mmio &&
2483 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2486 * Enable KVM dirty ring if supported, otherwise fall back to
2487 * dirty logging mode
2489 if (s->kvm_dirty_ring_size > 0) {
2490 uint64_t ring_bytes;
2492 ring_bytes = s->kvm_dirty_ring_size * sizeof(struct kvm_dirty_gfn);
2494 /* Read the max supported pages */
2495 ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING);
2496 if (ret > 0) {
2497 if (ring_bytes > ret) {
2498 error_report("KVM dirty ring size %" PRIu32 " too big "
2499 "(maximum is %ld). Please use a smaller value.",
2500 s->kvm_dirty_ring_size,
2501 (long)ret / sizeof(struct kvm_dirty_gfn));
2502 ret = -EINVAL;
2503 goto err;
2506 ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING, 0, ring_bytes);
2507 if (ret) {
2508 error_report("Enabling of KVM dirty ring failed: %s. "
2509 "Suggested minimum value is 1024.", strerror(-ret));
2510 goto err;
2513 s->kvm_dirty_ring_bytes = ring_bytes;
2514 } else {
2515 warn_report("KVM dirty ring not available, using bitmap method");
2516 s->kvm_dirty_ring_size = 0;
2521 * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is
2522 * enabled. More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no
2523 * page is wr-protected initially, which is against how kvm dirty ring is
2524 * usage - kvm dirty ring requires all pages are wr-protected at the very
2525 * beginning. Enabling this feature for dirty ring causes data corruption.
2527 * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log,
2528 * we may expect a higher stall time when starting the migration. In the
2529 * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too:
2530 * instead of clearing dirty bit, it can be a way to explicitly wr-protect
2531 * guest pages.
2533 if (!s->kvm_dirty_ring_size) {
2534 dirty_log_manual_caps =
2535 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2536 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2537 KVM_DIRTY_LOG_INITIALLY_SET);
2538 s->manual_dirty_log_protect = dirty_log_manual_caps;
2539 if (dirty_log_manual_caps) {
2540 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2541 dirty_log_manual_caps);
2542 if (ret) {
2543 warn_report("Trying to enable capability %"PRIu64" of "
2544 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2545 "Falling back to the legacy mode. ",
2546 dirty_log_manual_caps);
2547 s->manual_dirty_log_protect = 0;
2552 #ifdef KVM_CAP_VCPU_EVENTS
2553 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2554 #endif
2556 s->robust_singlestep =
2557 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2559 #ifdef KVM_CAP_DEBUGREGS
2560 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2561 #endif
2563 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2565 #ifdef KVM_CAP_IRQ_ROUTING
2566 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2567 #endif
2569 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2571 s->irq_set_ioctl = KVM_IRQ_LINE;
2572 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2573 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2576 kvm_readonly_mem_allowed =
2577 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2579 kvm_eventfds_allowed =
2580 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2582 kvm_irqfds_allowed =
2583 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2585 kvm_resamplefds_allowed =
2586 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2588 kvm_vm_attributes_allowed =
2589 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2591 kvm_ioeventfd_any_length_allowed =
2592 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2594 #ifdef KVM_CAP_SET_GUEST_DEBUG
2595 kvm_has_guest_debug =
2596 (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0);
2597 #endif
2599 kvm_sstep_flags = 0;
2600 if (kvm_has_guest_debug) {
2601 kvm_sstep_flags = SSTEP_ENABLE;
2603 #if defined KVM_CAP_SET_GUEST_DEBUG2
2604 int guest_debug_flags =
2605 kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2);
2607 if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) {
2608 kvm_sstep_flags |= SSTEP_NOIRQ;
2610 #endif
2613 kvm_state = s;
2615 ret = kvm_arch_init(ms, s);
2616 if (ret < 0) {
2617 goto err;
2620 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2621 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2624 qemu_register_reset(kvm_unpoison_all, NULL);
2626 if (s->kernel_irqchip_allowed) {
2627 kvm_irqchip_create(s);
2630 if (kvm_eventfds_allowed) {
2631 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2632 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2634 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2635 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2637 kvm_memory_listener_register(s, &s->memory_listener,
2638 &address_space_memory, 0, "kvm-memory");
2639 if (kvm_eventfds_allowed) {
2640 memory_listener_register(&kvm_io_listener,
2641 &address_space_io);
2643 memory_listener_register(&kvm_coalesced_pio_listener,
2644 &address_space_io);
2646 s->many_ioeventfds = kvm_check_many_ioeventfds();
2648 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2649 if (!s->sync_mmu) {
2650 ret = ram_block_discard_disable(true);
2651 assert(!ret);
2654 if (s->kvm_dirty_ring_size) {
2655 ret = kvm_dirty_ring_reaper_init(s);
2656 if (ret) {
2657 goto err;
2661 if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) {
2662 add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb,
2663 query_stats_schemas_cb);
2666 return 0;
2668 err:
2669 assert(ret < 0);
2670 if (s->vmfd >= 0) {
2671 close(s->vmfd);
2673 if (s->fd != -1) {
2674 close(s->fd);
2676 g_free(s->memory_listener.slots);
2678 return ret;
2681 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2683 s->sigmask_len = sigmask_len;
2686 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2687 int size, uint32_t count)
2689 int i;
2690 uint8_t *ptr = data;
2692 for (i = 0; i < count; i++) {
2693 address_space_rw(&address_space_io, port, attrs,
2694 ptr, size,
2695 direction == KVM_EXIT_IO_OUT);
2696 ptr += size;
2700 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2702 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2703 run->internal.suberror);
2705 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2706 int i;
2708 for (i = 0; i < run->internal.ndata; ++i) {
2709 fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n",
2710 i, (uint64_t)run->internal.data[i]);
2713 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2714 fprintf(stderr, "emulation failure\n");
2715 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2716 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2717 return EXCP_INTERRUPT;
2720 /* FIXME: Should trigger a qmp message to let management know
2721 * something went wrong.
2723 return -1;
2726 void kvm_flush_coalesced_mmio_buffer(void)
2728 KVMState *s = kvm_state;
2730 if (s->coalesced_flush_in_progress) {
2731 return;
2734 s->coalesced_flush_in_progress = true;
2736 if (s->coalesced_mmio_ring) {
2737 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2738 while (ring->first != ring->last) {
2739 struct kvm_coalesced_mmio *ent;
2741 ent = &ring->coalesced_mmio[ring->first];
2743 if (ent->pio == 1) {
2744 address_space_write(&address_space_io, ent->phys_addr,
2745 MEMTXATTRS_UNSPECIFIED, ent->data,
2746 ent->len);
2747 } else {
2748 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2750 smp_wmb();
2751 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2755 s->coalesced_flush_in_progress = false;
2758 bool kvm_cpu_check_are_resettable(void)
2760 return kvm_arch_cpu_check_are_resettable();
2763 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2765 if (!cpu->vcpu_dirty) {
2766 kvm_arch_get_registers(cpu);
2767 cpu->vcpu_dirty = true;
2771 void kvm_cpu_synchronize_state(CPUState *cpu)
2773 if (!cpu->vcpu_dirty) {
2774 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2778 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2780 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2781 cpu->vcpu_dirty = false;
2784 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2786 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2789 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2791 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2792 cpu->vcpu_dirty = false;
2795 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2797 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2800 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2802 cpu->vcpu_dirty = true;
2805 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2807 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2810 #ifdef KVM_HAVE_MCE_INJECTION
2811 static __thread void *pending_sigbus_addr;
2812 static __thread int pending_sigbus_code;
2813 static __thread bool have_sigbus_pending;
2814 #endif
2816 static void kvm_cpu_kick(CPUState *cpu)
2818 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2821 static void kvm_cpu_kick_self(void)
2823 if (kvm_immediate_exit) {
2824 kvm_cpu_kick(current_cpu);
2825 } else {
2826 qemu_cpu_kick_self();
2830 static void kvm_eat_signals(CPUState *cpu)
2832 struct timespec ts = { 0, 0 };
2833 siginfo_t siginfo;
2834 sigset_t waitset;
2835 sigset_t chkset;
2836 int r;
2838 if (kvm_immediate_exit) {
2839 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2840 /* Write kvm_run->immediate_exit before the cpu->exit_request
2841 * write in kvm_cpu_exec.
2843 smp_wmb();
2844 return;
2847 sigemptyset(&waitset);
2848 sigaddset(&waitset, SIG_IPI);
2850 do {
2851 r = sigtimedwait(&waitset, &siginfo, &ts);
2852 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2853 perror("sigtimedwait");
2854 exit(1);
2857 r = sigpending(&chkset);
2858 if (r == -1) {
2859 perror("sigpending");
2860 exit(1);
2862 } while (sigismember(&chkset, SIG_IPI));
2865 int kvm_cpu_exec(CPUState *cpu)
2867 struct kvm_run *run = cpu->kvm_run;
2868 int ret, run_ret;
2870 DPRINTF("kvm_cpu_exec()\n");
2872 if (kvm_arch_process_async_events(cpu)) {
2873 qatomic_set(&cpu->exit_request, 0);
2874 return EXCP_HLT;
2877 qemu_mutex_unlock_iothread();
2878 cpu_exec_start(cpu);
2880 do {
2881 MemTxAttrs attrs;
2883 if (cpu->vcpu_dirty) {
2884 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2885 cpu->vcpu_dirty = false;
2888 kvm_arch_pre_run(cpu, run);
2889 if (qatomic_read(&cpu->exit_request)) {
2890 DPRINTF("interrupt exit requested\n");
2892 * KVM requires us to reenter the kernel after IO exits to complete
2893 * instruction emulation. This self-signal will ensure that we
2894 * leave ASAP again.
2896 kvm_cpu_kick_self();
2899 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2900 * Matching barrier in kvm_eat_signals.
2902 smp_rmb();
2904 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2906 attrs = kvm_arch_post_run(cpu, run);
2908 #ifdef KVM_HAVE_MCE_INJECTION
2909 if (unlikely(have_sigbus_pending)) {
2910 qemu_mutex_lock_iothread();
2911 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2912 pending_sigbus_addr);
2913 have_sigbus_pending = false;
2914 qemu_mutex_unlock_iothread();
2916 #endif
2918 if (run_ret < 0) {
2919 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2920 DPRINTF("io window exit\n");
2921 kvm_eat_signals(cpu);
2922 ret = EXCP_INTERRUPT;
2923 break;
2925 fprintf(stderr, "error: kvm run failed %s\n",
2926 strerror(-run_ret));
2927 #ifdef TARGET_PPC
2928 if (run_ret == -EBUSY) {
2929 fprintf(stderr,
2930 "This is probably because your SMT is enabled.\n"
2931 "VCPU can only run on primary threads with all "
2932 "secondary threads offline.\n");
2934 #endif
2935 ret = -1;
2936 break;
2939 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2940 switch (run->exit_reason) {
2941 case KVM_EXIT_IO:
2942 DPRINTF("handle_io\n");
2943 /* Called outside BQL */
2944 kvm_handle_io(run->io.port, attrs,
2945 (uint8_t *)run + run->io.data_offset,
2946 run->io.direction,
2947 run->io.size,
2948 run->io.count);
2949 ret = 0;
2950 break;
2951 case KVM_EXIT_MMIO:
2952 DPRINTF("handle_mmio\n");
2953 /* Called outside BQL */
2954 address_space_rw(&address_space_memory,
2955 run->mmio.phys_addr, attrs,
2956 run->mmio.data,
2957 run->mmio.len,
2958 run->mmio.is_write);
2959 ret = 0;
2960 break;
2961 case KVM_EXIT_IRQ_WINDOW_OPEN:
2962 DPRINTF("irq_window_open\n");
2963 ret = EXCP_INTERRUPT;
2964 break;
2965 case KVM_EXIT_SHUTDOWN:
2966 DPRINTF("shutdown\n");
2967 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2968 ret = EXCP_INTERRUPT;
2969 break;
2970 case KVM_EXIT_UNKNOWN:
2971 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2972 (uint64_t)run->hw.hardware_exit_reason);
2973 ret = -1;
2974 break;
2975 case KVM_EXIT_INTERNAL_ERROR:
2976 ret = kvm_handle_internal_error(cpu, run);
2977 break;
2978 case KVM_EXIT_DIRTY_RING_FULL:
2980 * We shouldn't continue if the dirty ring of this vcpu is
2981 * still full. Got kicked by KVM_RESET_DIRTY_RINGS.
2983 trace_kvm_dirty_ring_full(cpu->cpu_index);
2984 qemu_mutex_lock_iothread();
2986 * We throttle vCPU by making it sleep once it exit from kernel
2987 * due to dirty ring full. In the dirtylimit scenario, reaping
2988 * all vCPUs after a single vCPU dirty ring get full result in
2989 * the miss of sleep, so just reap the ring-fulled vCPU.
2991 if (dirtylimit_in_service()) {
2992 kvm_dirty_ring_reap(kvm_state, cpu);
2993 } else {
2994 kvm_dirty_ring_reap(kvm_state, NULL);
2996 qemu_mutex_unlock_iothread();
2997 dirtylimit_vcpu_execute(cpu);
2998 ret = 0;
2999 break;
3000 case KVM_EXIT_SYSTEM_EVENT:
3001 switch (run->system_event.type) {
3002 case KVM_SYSTEM_EVENT_SHUTDOWN:
3003 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
3004 ret = EXCP_INTERRUPT;
3005 break;
3006 case KVM_SYSTEM_EVENT_RESET:
3007 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3008 ret = EXCP_INTERRUPT;
3009 break;
3010 case KVM_SYSTEM_EVENT_CRASH:
3011 kvm_cpu_synchronize_state(cpu);
3012 qemu_mutex_lock_iothread();
3013 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
3014 qemu_mutex_unlock_iothread();
3015 ret = 0;
3016 break;
3017 default:
3018 DPRINTF("kvm_arch_handle_exit\n");
3019 ret = kvm_arch_handle_exit(cpu, run);
3020 break;
3022 break;
3023 default:
3024 DPRINTF("kvm_arch_handle_exit\n");
3025 ret = kvm_arch_handle_exit(cpu, run);
3026 break;
3028 } while (ret == 0);
3030 cpu_exec_end(cpu);
3031 qemu_mutex_lock_iothread();
3033 if (ret < 0) {
3034 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
3035 vm_stop(RUN_STATE_INTERNAL_ERROR);
3038 qatomic_set(&cpu->exit_request, 0);
3039 return ret;
3042 int kvm_ioctl(KVMState *s, int type, ...)
3044 int ret;
3045 void *arg;
3046 va_list ap;
3048 va_start(ap, type);
3049 arg = va_arg(ap, void *);
3050 va_end(ap);
3052 trace_kvm_ioctl(type, arg);
3053 ret = ioctl(s->fd, type, arg);
3054 if (ret == -1) {
3055 ret = -errno;
3057 return ret;
3060 int kvm_vm_ioctl(KVMState *s, int type, ...)
3062 int ret;
3063 void *arg;
3064 va_list ap;
3066 va_start(ap, type);
3067 arg = va_arg(ap, void *);
3068 va_end(ap);
3070 trace_kvm_vm_ioctl(type, arg);
3071 ret = ioctl(s->vmfd, type, arg);
3072 if (ret == -1) {
3073 ret = -errno;
3075 return ret;
3078 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
3080 int ret;
3081 void *arg;
3082 va_list ap;
3084 va_start(ap, type);
3085 arg = va_arg(ap, void *);
3086 va_end(ap);
3088 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
3089 ret = ioctl(cpu->kvm_fd, type, arg);
3090 if (ret == -1) {
3091 ret = -errno;
3093 return ret;
3096 int kvm_device_ioctl(int fd, int type, ...)
3098 int ret;
3099 void *arg;
3100 va_list ap;
3102 va_start(ap, type);
3103 arg = va_arg(ap, void *);
3104 va_end(ap);
3106 trace_kvm_device_ioctl(fd, type, arg);
3107 ret = ioctl(fd, type, arg);
3108 if (ret == -1) {
3109 ret = -errno;
3111 return ret;
3114 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
3116 int ret;
3117 struct kvm_device_attr attribute = {
3118 .group = group,
3119 .attr = attr,
3122 if (!kvm_vm_attributes_allowed) {
3123 return 0;
3126 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
3127 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
3128 return ret ? 0 : 1;
3131 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
3133 struct kvm_device_attr attribute = {
3134 .group = group,
3135 .attr = attr,
3136 .flags = 0,
3139 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
3142 int kvm_device_access(int fd, int group, uint64_t attr,
3143 void *val, bool write, Error **errp)
3145 struct kvm_device_attr kvmattr;
3146 int err;
3148 kvmattr.flags = 0;
3149 kvmattr.group = group;
3150 kvmattr.attr = attr;
3151 kvmattr.addr = (uintptr_t)val;
3153 err = kvm_device_ioctl(fd,
3154 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
3155 &kvmattr);
3156 if (err < 0) {
3157 error_setg_errno(errp, -err,
3158 "KVM_%s_DEVICE_ATTR failed: Group %d "
3159 "attr 0x%016" PRIx64,
3160 write ? "SET" : "GET", group, attr);
3162 return err;
3165 bool kvm_has_sync_mmu(void)
3167 return kvm_state->sync_mmu;
3170 int kvm_has_vcpu_events(void)
3172 return kvm_state->vcpu_events;
3175 int kvm_has_robust_singlestep(void)
3177 return kvm_state->robust_singlestep;
3180 int kvm_has_debugregs(void)
3182 return kvm_state->debugregs;
3185 int kvm_max_nested_state_length(void)
3187 return kvm_state->max_nested_state_len;
3190 int kvm_has_many_ioeventfds(void)
3192 if (!kvm_enabled()) {
3193 return 0;
3195 return kvm_state->many_ioeventfds;
3198 int kvm_has_gsi_routing(void)
3200 #ifdef KVM_CAP_IRQ_ROUTING
3201 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
3202 #else
3203 return false;
3204 #endif
3207 int kvm_has_intx_set_mask(void)
3209 return kvm_state->intx_set_mask;
3212 bool kvm_arm_supports_user_irq(void)
3214 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
3217 #ifdef KVM_CAP_SET_GUEST_DEBUG
3218 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
3219 target_ulong pc)
3221 struct kvm_sw_breakpoint *bp;
3223 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
3224 if (bp->pc == pc) {
3225 return bp;
3228 return NULL;
3231 int kvm_sw_breakpoints_active(CPUState *cpu)
3233 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
3236 struct kvm_set_guest_debug_data {
3237 struct kvm_guest_debug dbg;
3238 int err;
3241 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
3243 struct kvm_set_guest_debug_data *dbg_data =
3244 (struct kvm_set_guest_debug_data *) data.host_ptr;
3246 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
3247 &dbg_data->dbg);
3250 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3252 struct kvm_set_guest_debug_data data;
3254 data.dbg.control = reinject_trap;
3256 if (cpu->singlestep_enabled) {
3257 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
3259 if (cpu->singlestep_enabled & SSTEP_NOIRQ) {
3260 data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ;
3263 kvm_arch_update_guest_debug(cpu, &data.dbg);
3265 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
3266 RUN_ON_CPU_HOST_PTR(&data));
3267 return data.err;
3270 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3271 target_ulong len, int type)
3273 struct kvm_sw_breakpoint *bp;
3274 int err;
3276 if (type == GDB_BREAKPOINT_SW) {
3277 bp = kvm_find_sw_breakpoint(cpu, addr);
3278 if (bp) {
3279 bp->use_count++;
3280 return 0;
3283 bp = g_new(struct kvm_sw_breakpoint, 1);
3284 bp->pc = addr;
3285 bp->use_count = 1;
3286 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
3287 if (err) {
3288 g_free(bp);
3289 return err;
3292 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3293 } else {
3294 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
3295 if (err) {
3296 return err;
3300 CPU_FOREACH(cpu) {
3301 err = kvm_update_guest_debug(cpu, 0);
3302 if (err) {
3303 return err;
3306 return 0;
3309 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3310 target_ulong len, int type)
3312 struct kvm_sw_breakpoint *bp;
3313 int err;
3315 if (type == GDB_BREAKPOINT_SW) {
3316 bp = kvm_find_sw_breakpoint(cpu, addr);
3317 if (!bp) {
3318 return -ENOENT;
3321 if (bp->use_count > 1) {
3322 bp->use_count--;
3323 return 0;
3326 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
3327 if (err) {
3328 return err;
3331 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
3332 g_free(bp);
3333 } else {
3334 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
3335 if (err) {
3336 return err;
3340 CPU_FOREACH(cpu) {
3341 err = kvm_update_guest_debug(cpu, 0);
3342 if (err) {
3343 return err;
3346 return 0;
3349 void kvm_remove_all_breakpoints(CPUState *cpu)
3351 struct kvm_sw_breakpoint *bp, *next;
3352 KVMState *s = cpu->kvm_state;
3353 CPUState *tmpcpu;
3355 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
3356 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
3357 /* Try harder to find a CPU that currently sees the breakpoint. */
3358 CPU_FOREACH(tmpcpu) {
3359 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
3360 break;
3364 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
3365 g_free(bp);
3367 kvm_arch_remove_all_hw_breakpoints();
3369 CPU_FOREACH(cpu) {
3370 kvm_update_guest_debug(cpu, 0);
3374 #else /* !KVM_CAP_SET_GUEST_DEBUG */
3376 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
3378 return -EINVAL;
3381 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
3382 target_ulong len, int type)
3384 return -EINVAL;
3387 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
3388 target_ulong len, int type)
3390 return -EINVAL;
3393 void kvm_remove_all_breakpoints(CPUState *cpu)
3396 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
3398 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
3400 KVMState *s = kvm_state;
3401 struct kvm_signal_mask *sigmask;
3402 int r;
3404 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
3406 sigmask->len = s->sigmask_len;
3407 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
3408 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
3409 g_free(sigmask);
3411 return r;
3414 static void kvm_ipi_signal(int sig)
3416 if (current_cpu) {
3417 assert(kvm_immediate_exit);
3418 kvm_cpu_kick(current_cpu);
3422 void kvm_init_cpu_signals(CPUState *cpu)
3424 int r;
3425 sigset_t set;
3426 struct sigaction sigact;
3428 memset(&sigact, 0, sizeof(sigact));
3429 sigact.sa_handler = kvm_ipi_signal;
3430 sigaction(SIG_IPI, &sigact, NULL);
3432 pthread_sigmask(SIG_BLOCK, NULL, &set);
3433 #if defined KVM_HAVE_MCE_INJECTION
3434 sigdelset(&set, SIGBUS);
3435 pthread_sigmask(SIG_SETMASK, &set, NULL);
3436 #endif
3437 sigdelset(&set, SIG_IPI);
3438 if (kvm_immediate_exit) {
3439 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
3440 } else {
3441 r = kvm_set_signal_mask(cpu, &set);
3443 if (r) {
3444 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
3445 exit(1);
3449 /* Called asynchronously in VCPU thread. */
3450 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
3452 #ifdef KVM_HAVE_MCE_INJECTION
3453 if (have_sigbus_pending) {
3454 return 1;
3456 have_sigbus_pending = true;
3457 pending_sigbus_addr = addr;
3458 pending_sigbus_code = code;
3459 qatomic_set(&cpu->exit_request, 1);
3460 return 0;
3461 #else
3462 return 1;
3463 #endif
3466 /* Called synchronously (via signalfd) in main thread. */
3467 int kvm_on_sigbus(int code, void *addr)
3469 #ifdef KVM_HAVE_MCE_INJECTION
3470 /* Action required MCE kills the process if SIGBUS is blocked. Because
3471 * that's what happens in the I/O thread, where we handle MCE via signalfd,
3472 * we can only get action optional here.
3474 assert(code != BUS_MCEERR_AR);
3475 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3476 return 0;
3477 #else
3478 return 1;
3479 #endif
3482 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3484 int ret;
3485 struct kvm_create_device create_dev;
3487 create_dev.type = type;
3488 create_dev.fd = -1;
3489 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3491 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3492 return -ENOTSUP;
3495 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3496 if (ret) {
3497 return ret;
3500 return test ? 0 : create_dev.fd;
3503 bool kvm_device_supported(int vmfd, uint64_t type)
3505 struct kvm_create_device create_dev = {
3506 .type = type,
3507 .fd = -1,
3508 .flags = KVM_CREATE_DEVICE_TEST,
3511 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3512 return false;
3515 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3518 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3520 struct kvm_one_reg reg;
3521 int r;
3523 reg.id = id;
3524 reg.addr = (uintptr_t) source;
3525 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3526 if (r) {
3527 trace_kvm_failed_reg_set(id, strerror(-r));
3529 return r;
3532 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3534 struct kvm_one_reg reg;
3535 int r;
3537 reg.id = id;
3538 reg.addr = (uintptr_t) target;
3539 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3540 if (r) {
3541 trace_kvm_failed_reg_get(id, strerror(-r));
3543 return r;
3546 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3547 hwaddr start_addr, hwaddr size)
3549 KVMState *kvm = KVM_STATE(ms->accelerator);
3550 int i;
3552 for (i = 0; i < kvm->nr_as; ++i) {
3553 if (kvm->as[i].as == as && kvm->as[i].ml) {
3554 size = MIN(kvm_max_slot_size, size);
3555 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3556 start_addr, size);
3560 return false;
3563 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3564 const char *name, void *opaque,
3565 Error **errp)
3567 KVMState *s = KVM_STATE(obj);
3568 int64_t value = s->kvm_shadow_mem;
3570 visit_type_int(v, name, &value, errp);
3573 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3574 const char *name, void *opaque,
3575 Error **errp)
3577 KVMState *s = KVM_STATE(obj);
3578 int64_t value;
3580 if (s->fd != -1) {
3581 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3582 return;
3585 if (!visit_type_int(v, name, &value, errp)) {
3586 return;
3589 s->kvm_shadow_mem = value;
3592 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3593 const char *name, void *opaque,
3594 Error **errp)
3596 KVMState *s = KVM_STATE(obj);
3597 OnOffSplit mode;
3599 if (s->fd != -1) {
3600 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3601 return;
3604 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3605 return;
3607 switch (mode) {
3608 case ON_OFF_SPLIT_ON:
3609 s->kernel_irqchip_allowed = true;
3610 s->kernel_irqchip_required = true;
3611 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3612 break;
3613 case ON_OFF_SPLIT_OFF:
3614 s->kernel_irqchip_allowed = false;
3615 s->kernel_irqchip_required = false;
3616 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3617 break;
3618 case ON_OFF_SPLIT_SPLIT:
3619 s->kernel_irqchip_allowed = true;
3620 s->kernel_irqchip_required = true;
3621 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3622 break;
3623 default:
3624 /* The value was checked in visit_type_OnOffSplit() above. If
3625 * we get here, then something is wrong in QEMU.
3627 abort();
3631 bool kvm_kernel_irqchip_allowed(void)
3633 return kvm_state->kernel_irqchip_allowed;
3636 bool kvm_kernel_irqchip_required(void)
3638 return kvm_state->kernel_irqchip_required;
3641 bool kvm_kernel_irqchip_split(void)
3643 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3646 static void kvm_get_dirty_ring_size(Object *obj, Visitor *v,
3647 const char *name, void *opaque,
3648 Error **errp)
3650 KVMState *s = KVM_STATE(obj);
3651 uint32_t value = s->kvm_dirty_ring_size;
3653 visit_type_uint32(v, name, &value, errp);
3656 static void kvm_set_dirty_ring_size(Object *obj, Visitor *v,
3657 const char *name, void *opaque,
3658 Error **errp)
3660 KVMState *s = KVM_STATE(obj);
3661 Error *error = NULL;
3662 uint32_t value;
3664 if (s->fd != -1) {
3665 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
3666 return;
3669 visit_type_uint32(v, name, &value, &error);
3670 if (error) {
3671 error_propagate(errp, error);
3672 return;
3674 if (value & (value - 1)) {
3675 error_setg(errp, "dirty-ring-size must be a power of two.");
3676 return;
3679 s->kvm_dirty_ring_size = value;
3682 static void kvm_accel_instance_init(Object *obj)
3684 KVMState *s = KVM_STATE(obj);
3686 s->fd = -1;
3687 s->vmfd = -1;
3688 s->kvm_shadow_mem = -1;
3689 s->kernel_irqchip_allowed = true;
3690 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3691 /* KVM dirty ring is by default off */
3692 s->kvm_dirty_ring_size = 0;
3695 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3697 AccelClass *ac = ACCEL_CLASS(oc);
3698 ac->name = "KVM";
3699 ac->init_machine = kvm_init;
3700 ac->has_memory = kvm_accel_has_memory;
3701 ac->allowed = &kvm_allowed;
3703 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3704 NULL, kvm_set_kernel_irqchip,
3705 NULL, NULL);
3706 object_class_property_set_description(oc, "kernel-irqchip",
3707 "Configure KVM in-kernel irqchip");
3709 object_class_property_add(oc, "kvm-shadow-mem", "int",
3710 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3711 NULL, NULL);
3712 object_class_property_set_description(oc, "kvm-shadow-mem",
3713 "KVM shadow MMU size");
3715 object_class_property_add(oc, "dirty-ring-size", "uint32",
3716 kvm_get_dirty_ring_size, kvm_set_dirty_ring_size,
3717 NULL, NULL);
3718 object_class_property_set_description(oc, "dirty-ring-size",
3719 "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)");
3722 static const TypeInfo kvm_accel_type = {
3723 .name = TYPE_KVM_ACCEL,
3724 .parent = TYPE_ACCEL,
3725 .instance_init = kvm_accel_instance_init,
3726 .class_init = kvm_accel_class_init,
3727 .instance_size = sizeof(KVMState),
3730 static void kvm_type_init(void)
3732 type_register_static(&kvm_accel_type);
3735 type_init(kvm_type_init);
3737 typedef struct StatsArgs {
3738 union StatsResultsType {
3739 StatsResultList **stats;
3740 StatsSchemaList **schema;
3741 } result;
3742 strList *names;
3743 Error **errp;
3744 } StatsArgs;
3746 static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc,
3747 uint64_t *stats_data,
3748 StatsList *stats_list,
3749 Error **errp)
3752 Stats *stats;
3753 uint64List *val_list = NULL;
3755 /* Only add stats that we understand. */
3756 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3757 case KVM_STATS_TYPE_CUMULATIVE:
3758 case KVM_STATS_TYPE_INSTANT:
3759 case KVM_STATS_TYPE_PEAK:
3760 case KVM_STATS_TYPE_LINEAR_HIST:
3761 case KVM_STATS_TYPE_LOG_HIST:
3762 break;
3763 default:
3764 return stats_list;
3767 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3768 case KVM_STATS_UNIT_NONE:
3769 case KVM_STATS_UNIT_BYTES:
3770 case KVM_STATS_UNIT_CYCLES:
3771 case KVM_STATS_UNIT_SECONDS:
3772 case KVM_STATS_UNIT_BOOLEAN:
3773 break;
3774 default:
3775 return stats_list;
3778 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3779 case KVM_STATS_BASE_POW10:
3780 case KVM_STATS_BASE_POW2:
3781 break;
3782 default:
3783 return stats_list;
3786 /* Alloc and populate data list */
3787 stats = g_new0(Stats, 1);
3788 stats->name = g_strdup(pdesc->name);
3789 stats->value = g_new0(StatsValue, 1);;
3791 if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) {
3792 stats->value->u.boolean = *stats_data;
3793 stats->value->type = QTYPE_QBOOL;
3794 } else if (pdesc->size == 1) {
3795 stats->value->u.scalar = *stats_data;
3796 stats->value->type = QTYPE_QNUM;
3797 } else {
3798 int i;
3799 for (i = 0; i < pdesc->size; i++) {
3800 QAPI_LIST_PREPEND(val_list, stats_data[i]);
3802 stats->value->u.list = val_list;
3803 stats->value->type = QTYPE_QLIST;
3806 QAPI_LIST_PREPEND(stats_list, stats);
3807 return stats_list;
3810 static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc,
3811 StatsSchemaValueList *list,
3812 Error **errp)
3814 StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1);
3815 schema_entry->value = g_new0(StatsSchemaValue, 1);
3817 switch (pdesc->flags & KVM_STATS_TYPE_MASK) {
3818 case KVM_STATS_TYPE_CUMULATIVE:
3819 schema_entry->value->type = STATS_TYPE_CUMULATIVE;
3820 break;
3821 case KVM_STATS_TYPE_INSTANT:
3822 schema_entry->value->type = STATS_TYPE_INSTANT;
3823 break;
3824 case KVM_STATS_TYPE_PEAK:
3825 schema_entry->value->type = STATS_TYPE_PEAK;
3826 break;
3827 case KVM_STATS_TYPE_LINEAR_HIST:
3828 schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM;
3829 schema_entry->value->bucket_size = pdesc->bucket_size;
3830 schema_entry->value->has_bucket_size = true;
3831 break;
3832 case KVM_STATS_TYPE_LOG_HIST:
3833 schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM;
3834 break;
3835 default:
3836 goto exit;
3839 switch (pdesc->flags & KVM_STATS_UNIT_MASK) {
3840 case KVM_STATS_UNIT_NONE:
3841 break;
3842 case KVM_STATS_UNIT_BOOLEAN:
3843 schema_entry->value->has_unit = true;
3844 schema_entry->value->unit = STATS_UNIT_BOOLEAN;
3845 break;
3846 case KVM_STATS_UNIT_BYTES:
3847 schema_entry->value->has_unit = true;
3848 schema_entry->value->unit = STATS_UNIT_BYTES;
3849 break;
3850 case KVM_STATS_UNIT_CYCLES:
3851 schema_entry->value->has_unit = true;
3852 schema_entry->value->unit = STATS_UNIT_CYCLES;
3853 break;
3854 case KVM_STATS_UNIT_SECONDS:
3855 schema_entry->value->has_unit = true;
3856 schema_entry->value->unit = STATS_UNIT_SECONDS;
3857 break;
3858 default:
3859 goto exit;
3862 schema_entry->value->exponent = pdesc->exponent;
3863 if (pdesc->exponent) {
3864 switch (pdesc->flags & KVM_STATS_BASE_MASK) {
3865 case KVM_STATS_BASE_POW10:
3866 schema_entry->value->has_base = true;
3867 schema_entry->value->base = 10;
3868 break;
3869 case KVM_STATS_BASE_POW2:
3870 schema_entry->value->has_base = true;
3871 schema_entry->value->base = 2;
3872 break;
3873 default:
3874 goto exit;
3878 schema_entry->value->name = g_strdup(pdesc->name);
3879 schema_entry->next = list;
3880 return schema_entry;
3881 exit:
3882 g_free(schema_entry->value);
3883 g_free(schema_entry);
3884 return list;
3887 /* Cached stats descriptors */
3888 typedef struct StatsDescriptors {
3889 const char *ident; /* cache key, currently the StatsTarget */
3890 struct kvm_stats_desc *kvm_stats_desc;
3891 struct kvm_stats_header *kvm_stats_header;
3892 QTAILQ_ENTRY(StatsDescriptors) next;
3893 } StatsDescriptors;
3895 static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors =
3896 QTAILQ_HEAD_INITIALIZER(stats_descriptors);
3899 * Return the descriptors for 'target', that either have already been read
3900 * or are retrieved from 'stats_fd'.
3902 static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd,
3903 Error **errp)
3905 StatsDescriptors *descriptors;
3906 const char *ident;
3907 struct kvm_stats_desc *kvm_stats_desc;
3908 struct kvm_stats_header *kvm_stats_header;
3909 size_t size_desc;
3910 ssize_t ret;
3912 ident = StatsTarget_str(target);
3913 QTAILQ_FOREACH(descriptors, &stats_descriptors, next) {
3914 if (g_str_equal(descriptors->ident, ident)) {
3915 return descriptors;
3919 descriptors = g_new0(StatsDescriptors, 1);
3921 /* Read stats header */
3922 kvm_stats_header = g_malloc(sizeof(*kvm_stats_header));
3923 ret = read(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header));
3924 if (ret != sizeof(*kvm_stats_header)) {
3925 error_setg(errp, "KVM stats: failed to read stats header: "
3926 "expected %zu actual %zu",
3927 sizeof(*kvm_stats_header), ret);
3928 g_free(descriptors);
3929 return NULL;
3931 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3933 /* Read stats descriptors */
3934 kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc);
3935 ret = pread(stats_fd, kvm_stats_desc,
3936 size_desc * kvm_stats_header->num_desc,
3937 kvm_stats_header->desc_offset);
3939 if (ret != size_desc * kvm_stats_header->num_desc) {
3940 error_setg(errp, "KVM stats: failed to read stats descriptors: "
3941 "expected %zu actual %zu",
3942 size_desc * kvm_stats_header->num_desc, ret);
3943 g_free(descriptors);
3944 g_free(kvm_stats_desc);
3945 return NULL;
3947 descriptors->kvm_stats_header = kvm_stats_header;
3948 descriptors->kvm_stats_desc = kvm_stats_desc;
3949 descriptors->ident = ident;
3950 QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next);
3951 return descriptors;
3954 static void query_stats(StatsResultList **result, StatsTarget target,
3955 strList *names, int stats_fd, Error **errp)
3957 struct kvm_stats_desc *kvm_stats_desc;
3958 struct kvm_stats_header *kvm_stats_header;
3959 StatsDescriptors *descriptors;
3960 g_autofree uint64_t *stats_data = NULL;
3961 struct kvm_stats_desc *pdesc;
3962 StatsList *stats_list = NULL;
3963 size_t size_desc, size_data = 0;
3964 ssize_t ret;
3965 int i;
3967 descriptors = find_stats_descriptors(target, stats_fd, errp);
3968 if (!descriptors) {
3969 return;
3972 kvm_stats_header = descriptors->kvm_stats_header;
3973 kvm_stats_desc = descriptors->kvm_stats_desc;
3974 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
3976 /* Tally the total data size; read schema data */
3977 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3978 pdesc = (void *)kvm_stats_desc + i * size_desc;
3979 size_data += pdesc->size * sizeof(*stats_data);
3982 stats_data = g_malloc0(size_data);
3983 ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset);
3985 if (ret != size_data) {
3986 error_setg(errp, "KVM stats: failed to read data: "
3987 "expected %zu actual %zu", size_data, ret);
3988 return;
3991 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
3992 uint64_t *stats;
3993 pdesc = (void *)kvm_stats_desc + i * size_desc;
3995 /* Add entry to the list */
3996 stats = (void *)stats_data + pdesc->offset;
3997 if (!apply_str_list_filter(pdesc->name, names)) {
3998 continue;
4000 stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp);
4003 if (!stats_list) {
4004 return;
4007 switch (target) {
4008 case STATS_TARGET_VM:
4009 add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list);
4010 break;
4011 case STATS_TARGET_VCPU:
4012 add_stats_entry(result, STATS_PROVIDER_KVM,
4013 current_cpu->parent_obj.canonical_path,
4014 stats_list);
4015 break;
4016 default:
4017 g_assert_not_reached();
4021 static void query_stats_schema(StatsSchemaList **result, StatsTarget target,
4022 int stats_fd, Error **errp)
4024 struct kvm_stats_desc *kvm_stats_desc;
4025 struct kvm_stats_header *kvm_stats_header;
4026 StatsDescriptors *descriptors;
4027 struct kvm_stats_desc *pdesc;
4028 StatsSchemaValueList *stats_list = NULL;
4029 size_t size_desc;
4030 int i;
4032 descriptors = find_stats_descriptors(target, stats_fd, errp);
4033 if (!descriptors) {
4034 return;
4037 kvm_stats_header = descriptors->kvm_stats_header;
4038 kvm_stats_desc = descriptors->kvm_stats_desc;
4039 size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size;
4041 /* Tally the total data size; read schema data */
4042 for (i = 0; i < kvm_stats_header->num_desc; ++i) {
4043 pdesc = (void *)kvm_stats_desc + i * size_desc;
4044 stats_list = add_kvmschema_entry(pdesc, stats_list, errp);
4047 add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list);
4050 static void query_stats_vcpu(CPUState *cpu, run_on_cpu_data data)
4052 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4053 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4054 Error *local_err = NULL;
4056 if (stats_fd == -1) {
4057 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4058 error_propagate(kvm_stats_args->errp, local_err);
4059 return;
4061 query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU,
4062 kvm_stats_args->names, stats_fd, kvm_stats_args->errp);
4063 close(stats_fd);
4066 static void query_stats_schema_vcpu(CPUState *cpu, run_on_cpu_data data)
4068 StatsArgs *kvm_stats_args = (StatsArgs *) data.host_ptr;
4069 int stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL);
4070 Error *local_err = NULL;
4072 if (stats_fd == -1) {
4073 error_setg_errno(&local_err, errno, "KVM stats: ioctl failed");
4074 error_propagate(kvm_stats_args->errp, local_err);
4075 return;
4077 query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd,
4078 kvm_stats_args->errp);
4079 close(stats_fd);
4082 static void query_stats_cb(StatsResultList **result, StatsTarget target,
4083 strList *names, strList *targets, Error **errp)
4085 KVMState *s = kvm_state;
4086 CPUState *cpu;
4087 int stats_fd;
4089 switch (target) {
4090 case STATS_TARGET_VM:
4092 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4093 if (stats_fd == -1) {
4094 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4095 return;
4097 query_stats(result, target, names, stats_fd, errp);
4098 close(stats_fd);
4099 break;
4101 case STATS_TARGET_VCPU:
4103 StatsArgs stats_args;
4104 stats_args.result.stats = result;
4105 stats_args.names = names;
4106 stats_args.errp = errp;
4107 CPU_FOREACH(cpu) {
4108 if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) {
4109 continue;
4111 run_on_cpu(cpu, query_stats_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));
4113 break;
4115 default:
4116 break;
4120 void query_stats_schemas_cb(StatsSchemaList **result, Error **errp)
4122 StatsArgs stats_args;
4123 KVMState *s = kvm_state;
4124 int stats_fd;
4126 stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL);
4127 if (stats_fd == -1) {
4128 error_setg_errno(errp, errno, "KVM stats: ioctl failed");
4129 return;
4131 query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp);
4132 close(stats_fd);
4134 stats_args.result.schema = result;
4135 stats_args.errp = errp;
4136 run_on_cpu(first_cpu, query_stats_schema_vcpu, RUN_ON_CPU_HOST_PTR(&stats_args));