hw/block/pflash_cfi01: Start state machine as READY to accept commands
[qemu/ar7.git] / hw / block / pflash_cfi01.c
blob435be1e35c6319ba23108475e4e09ac67c5e9d82
1 /*
2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
24 * - flash read
25 * - flash write
26 * - flash ID read
27 * - sector erase
28 * - CFI queries
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/block/block.h"
42 #include "hw/block/flash.h"
43 #include "sysemu/block-backend.h"
44 #include "qapi/error.h"
45 #include "qemu/timer.h"
46 #include "qemu/bitops.h"
47 #include "qemu/error-report.h"
48 #include "qemu/host-utils.h"
49 #include "qemu/log.h"
50 #include "qemu/module.h"
51 #include "qemu/option.h"
52 #include "hw/sysbus.h"
53 #include "sysemu/blockdev.h"
54 #include "sysemu/sysemu.h"
55 #include "trace.h"
57 /* #define PFLASH_DEBUG */
58 #ifdef PFLASH_DEBUG
59 #define DPRINTF(fmt, ...) \
60 do { \
61 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
62 } while (0)
63 #else
64 #define DPRINTF(fmt, ...) do { } while (0)
65 #endif
67 #define PFLASH_BE 0
68 #define PFLASH_SECURE 1
70 struct PFlashCFI01 {
71 /*< private >*/
72 SysBusDevice parent_obj;
73 /*< public >*/
75 BlockBackend *blk;
76 uint32_t nb_blocs;
77 uint64_t sector_len;
78 uint8_t bank_width;
79 uint8_t device_width; /* If 0, device width not specified. */
80 uint8_t max_device_width; /* max device width in bytes */
81 uint32_t features;
82 uint8_t wcycle; /* if 0, the flash is read normally */
83 int ro;
84 uint8_t cmd;
85 uint8_t status;
86 uint16_t ident0;
87 uint16_t ident1;
88 uint16_t ident2;
89 uint16_t ident3;
90 uint8_t cfi_table[0x52];
91 uint64_t counter;
92 unsigned int writeblock_size;
93 QEMUTimer *timer;
94 MemoryRegion mem;
95 char *name;
96 void *storage;
97 VMChangeStateEntry *vmstate;
98 bool old_multiple_chip_handling;
101 static int pflash_post_load(void *opaque, int version_id);
103 static const VMStateDescription vmstate_pflash = {
104 .name = "pflash_cfi01",
105 .version_id = 1,
106 .minimum_version_id = 1,
107 .post_load = pflash_post_load,
108 .fields = (VMStateField[]) {
109 VMSTATE_UINT8(wcycle, PFlashCFI01),
110 VMSTATE_UINT8(cmd, PFlashCFI01),
111 VMSTATE_UINT8(status, PFlashCFI01),
112 VMSTATE_UINT64(counter, PFlashCFI01),
113 VMSTATE_END_OF_LIST()
117 static void pflash_timer (void *opaque)
119 PFlashCFI01 *pfl = opaque;
121 trace_pflash_timer_expired(pfl->cmd);
122 /* Reset flash */
123 pfl->status ^= 0x80;
124 memory_region_rom_device_set_romd(&pfl->mem, true);
125 pfl->wcycle = 0;
126 pfl->cmd = 0;
129 /* Perform a CFI query based on the bank width of the flash.
130 * If this code is called we know we have a device_width set for
131 * this flash.
133 static uint32_t pflash_cfi_query(PFlashCFI01 *pfl, hwaddr offset)
135 int i;
136 uint32_t resp = 0;
137 hwaddr boff;
139 /* Adjust incoming offset to match expected device-width
140 * addressing. CFI query addresses are always specified in terms of
141 * the maximum supported width of the device. This means that x8
142 * devices and x8/x16 devices in x8 mode behave differently. For
143 * devices that are not used at their max width, we will be
144 * provided with addresses that use higher address bits than
145 * expected (based on the max width), so we will shift them lower
146 * so that they will match the addresses used when
147 * device_width==max_device_width.
149 boff = offset >> (ctz32(pfl->bank_width) +
150 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
152 if (boff >= sizeof(pfl->cfi_table)) {
153 return 0;
155 /* Now we will construct the CFI response generated by a single
156 * device, then replicate that for all devices that make up the
157 * bus. For wide parts used in x8 mode, CFI query responses
158 * are different than native byte-wide parts.
160 resp = pfl->cfi_table[boff];
161 if (pfl->device_width != pfl->max_device_width) {
162 /* The only case currently supported is x8 mode for a
163 * wider part.
165 if (pfl->device_width != 1 || pfl->bank_width > 4) {
166 DPRINTF("%s: Unsupported device configuration: "
167 "device_width=%d, max_device_width=%d\n",
168 __func__, pfl->device_width,
169 pfl->max_device_width);
170 return 0;
172 /* CFI query data is repeated, rather than zero padded for
173 * wide devices used in x8 mode.
175 for (i = 1; i < pfl->max_device_width; i++) {
176 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
179 /* Replicate responses for each device in bank. */
180 if (pfl->device_width < pfl->bank_width) {
181 for (i = pfl->device_width;
182 i < pfl->bank_width; i += pfl->device_width) {
183 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
187 return resp;
192 /* Perform a device id query based on the bank width of the flash. */
193 static uint32_t pflash_devid_query(PFlashCFI01 *pfl, hwaddr offset)
195 int i;
196 uint32_t resp;
197 hwaddr boff;
199 /* Adjust incoming offset to match expected device-width
200 * addressing. Device ID read addresses are always specified in
201 * terms of the maximum supported width of the device. This means
202 * that x8 devices and x8/x16 devices in x8 mode behave
203 * differently. For devices that are not used at their max width,
204 * we will be provided with addresses that use higher address bits
205 * than expected (based on the max width), so we will shift them
206 * lower so that they will match the addresses used when
207 * device_width==max_device_width.
209 boff = offset >> (ctz32(pfl->bank_width) +
210 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
212 /* Mask off upper bits which may be used in to query block
213 * or sector lock status at other addresses.
214 * Offsets 2/3 are block lock status, is not emulated.
216 switch (boff & 0xFF) {
217 case 0:
218 resp = pfl->ident0;
219 trace_pflash_manufacturer_id(resp);
220 break;
221 case 1:
222 resp = pfl->ident1;
223 trace_pflash_device_id(resp);
224 break;
225 default:
226 trace_pflash_device_info(offset);
227 return 0;
228 break;
230 /* Replicate responses for each device in bank. */
231 if (pfl->device_width < pfl->bank_width) {
232 for (i = pfl->device_width;
233 i < pfl->bank_width; i += pfl->device_width) {
234 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
238 return resp;
241 static uint32_t pflash_data_read(PFlashCFI01 *pfl, hwaddr offset,
242 int width, int be)
244 uint8_t *p;
245 uint32_t ret;
247 p = pfl->storage;
248 switch (width) {
249 case 1:
250 ret = p[offset];
251 break;
252 case 2:
253 if (be) {
254 ret = p[offset] << 8;
255 ret |= p[offset + 1];
256 } else {
257 ret = p[offset];
258 ret |= p[offset + 1] << 8;
260 break;
261 case 4:
262 if (be) {
263 ret = p[offset] << 24;
264 ret |= p[offset + 1] << 16;
265 ret |= p[offset + 2] << 8;
266 ret |= p[offset + 3];
267 } else {
268 ret = p[offset];
269 ret |= p[offset + 1] << 8;
270 ret |= p[offset + 2] << 16;
271 ret |= p[offset + 3] << 24;
273 break;
274 default:
275 DPRINTF("BUG in %s\n", __func__);
276 abort();
278 trace_pflash_data_read(offset, width << 1, ret);
279 return ret;
282 static uint32_t pflash_read(PFlashCFI01 *pfl, hwaddr offset,
283 int width, int be)
285 hwaddr boff;
286 uint32_t ret;
288 ret = -1;
289 switch (pfl->cmd) {
290 default:
291 /* This should never happen : reset state & treat it as a read */
292 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
293 pfl->wcycle = 0;
294 pfl->cmd = 0;
295 /* fall through to read code */
296 case 0x00:
297 /* Flash area read */
298 ret = pflash_data_read(pfl, offset, width, be);
299 break;
300 case 0x10: /* Single byte program */
301 case 0x20: /* Block erase */
302 case 0x28: /* Block erase */
303 case 0x40: /* single byte program */
304 case 0x50: /* Clear status register */
305 case 0x60: /* Block /un)lock */
306 case 0x70: /* Status Register */
307 case 0xe8: /* Write block */
308 /* Status register read. Return status from each device in
309 * bank.
311 ret = pfl->status;
312 if (pfl->device_width && width > pfl->device_width) {
313 int shift = pfl->device_width * 8;
314 while (shift + pfl->device_width * 8 <= width * 8) {
315 ret |= pfl->status << shift;
316 shift += pfl->device_width * 8;
318 } else if (!pfl->device_width && width > 2) {
319 /* Handle 32 bit flash cases where device width is not
320 * set. (Existing behavior before device width added.)
322 ret |= pfl->status << 16;
324 DPRINTF("%s: status %x\n", __func__, ret);
325 break;
326 case 0x90:
327 if (!pfl->device_width) {
328 /* Preserve old behavior if device width not specified */
329 boff = offset & 0xFF;
330 if (pfl->bank_width == 2) {
331 boff = boff >> 1;
332 } else if (pfl->bank_width == 4) {
333 boff = boff >> 2;
336 switch (boff) {
337 case 0:
338 ret = pfl->ident0 << 8 | pfl->ident1;
339 trace_pflash_manufacturer_id(ret);
340 break;
341 case 1:
342 ret = pfl->ident2 << 8 | pfl->ident3;
343 trace_pflash_device_id(ret);
344 break;
345 default:
346 trace_pflash_device_info(boff);
347 ret = 0;
348 break;
350 } else {
351 /* If we have a read larger than the bank_width, combine multiple
352 * manufacturer/device ID queries into a single response.
354 int i;
355 for (i = 0; i < width; i += pfl->bank_width) {
356 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
357 pflash_devid_query(pfl,
358 offset + i * pfl->bank_width));
361 break;
362 case 0x98: /* Query mode */
363 if (!pfl->device_width) {
364 /* Preserve old behavior if device width not specified */
365 boff = offset & 0xFF;
366 if (pfl->bank_width == 2) {
367 boff = boff >> 1;
368 } else if (pfl->bank_width == 4) {
369 boff = boff >> 2;
372 if (boff < sizeof(pfl->cfi_table)) {
373 ret = pfl->cfi_table[boff];
374 } else {
375 ret = 0;
377 } else {
378 /* If we have a read larger than the bank_width, combine multiple
379 * CFI queries into a single response.
381 int i;
382 for (i = 0; i < width; i += pfl->bank_width) {
383 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
384 pflash_cfi_query(pfl,
385 offset + i * pfl->bank_width));
389 break;
391 trace_pflash_io_read(offset, width, width << 1, ret, pfl->cmd, pfl->wcycle);
393 return ret;
396 /* update flash content on disk */
397 static void pflash_update(PFlashCFI01 *pfl, int offset,
398 int size)
400 int offset_end;
401 if (pfl->blk) {
402 offset_end = offset + size;
403 /* widen to sector boundaries */
404 offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
405 offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
406 blk_pwrite(pfl->blk, offset, pfl->storage + offset,
407 offset_end - offset, 0);
411 static inline void pflash_data_write(PFlashCFI01 *pfl, hwaddr offset,
412 uint32_t value, int width, int be)
414 uint8_t *p = pfl->storage;
416 trace_pflash_data_write(offset, width << 1, value, pfl->counter);
417 switch (width) {
418 case 1:
419 p[offset] = value;
420 break;
421 case 2:
422 if (be) {
423 p[offset] = value >> 8;
424 p[offset + 1] = value;
425 } else {
426 p[offset] = value;
427 p[offset + 1] = value >> 8;
429 break;
430 case 4:
431 if (be) {
432 p[offset] = value >> 24;
433 p[offset + 1] = value >> 16;
434 p[offset + 2] = value >> 8;
435 p[offset + 3] = value;
436 } else {
437 p[offset] = value;
438 p[offset + 1] = value >> 8;
439 p[offset + 2] = value >> 16;
440 p[offset + 3] = value >> 24;
442 break;
447 static void pflash_write(PFlashCFI01 *pfl, hwaddr offset,
448 uint32_t value, int width, int be)
450 uint8_t *p;
451 uint8_t cmd;
453 cmd = value;
455 trace_pflash_io_write(offset, width, width << 1, value, pfl->wcycle);
456 if (!pfl->wcycle) {
457 /* Set the device in I/O access mode */
458 memory_region_rom_device_set_romd(&pfl->mem, false);
461 switch (pfl->wcycle) {
462 case 0:
463 /* read mode */
464 switch (cmd) {
465 case 0x00: /* ??? */
466 goto reset_flash;
467 case 0x10: /* Single Byte Program */
468 case 0x40: /* Single Byte Program */
469 DPRINTF("%s: Single Byte Program\n", __func__);
470 break;
471 case 0x20: /* Block erase */
472 p = pfl->storage;
473 offset &= ~(pfl->sector_len - 1);
475 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
476 __func__, offset, (unsigned)pfl->sector_len);
478 if (!pfl->ro) {
479 memset(p + offset, 0xff, pfl->sector_len);
480 pflash_update(pfl, offset, pfl->sector_len);
481 } else {
482 pfl->status |= 0x20; /* Block erase error */
484 pfl->status |= 0x80; /* Ready! */
485 break;
486 case 0x50: /* Clear status bits */
487 DPRINTF("%s: Clear status bits\n", __func__);
488 pfl->status = 0x0;
489 goto reset_flash;
490 case 0x60: /* Block (un)lock */
491 DPRINTF("%s: Block unlock\n", __func__);
492 break;
493 case 0x70: /* Status Register */
494 DPRINTF("%s: Read status register\n", __func__);
495 pfl->cmd = cmd;
496 return;
497 case 0x90: /* Read Device ID */
498 DPRINTF("%s: Read Device information\n", __func__);
499 pfl->cmd = cmd;
500 return;
501 case 0x98: /* CFI query */
502 DPRINTF("%s: CFI query\n", __func__);
503 break;
504 case 0xe8: /* Write to buffer */
505 DPRINTF("%s: Write to buffer\n", __func__);
506 /* FIXME should save @offset, @width for case 1+ */
507 qemu_log_mask(LOG_UNIMP,
508 "%s: Write to buffer emulation is flawed\n",
509 __func__);
510 pfl->status |= 0x80; /* Ready! */
511 break;
512 case 0xf0: /* Probe for AMD flash */
513 DPRINTF("%s: Probe for AMD flash\n", __func__);
514 goto reset_flash;
515 case 0xff: /* Read array mode */
516 DPRINTF("%s: Read array mode\n", __func__);
517 goto reset_flash;
518 default:
519 goto error_flash;
521 pfl->wcycle++;
522 pfl->cmd = cmd;
523 break;
524 case 1:
525 switch (pfl->cmd) {
526 case 0x10: /* Single Byte Program */
527 case 0x40: /* Single Byte Program */
528 DPRINTF("%s: Single Byte Program\n", __func__);
529 if (!pfl->ro) {
530 pflash_data_write(pfl, offset, value, width, be);
531 pflash_update(pfl, offset, width);
532 } else {
533 pfl->status |= 0x10; /* Programming error */
535 pfl->status |= 0x80; /* Ready! */
536 pfl->wcycle = 0;
537 break;
538 case 0x20: /* Block erase */
539 case 0x28:
540 if (cmd == 0xd0) { /* confirm */
541 pfl->wcycle = 0;
542 pfl->status |= 0x80;
543 } else if (cmd == 0xff) { /* read array mode */
544 goto reset_flash;
545 } else
546 goto error_flash;
548 break;
549 case 0xe8:
550 /* Mask writeblock size based on device width, or bank width if
551 * device width not specified.
553 /* FIXME check @offset, @width */
554 if (pfl->device_width) {
555 value = extract32(value, 0, pfl->device_width * 8);
556 } else {
557 value = extract32(value, 0, pfl->bank_width * 8);
559 DPRINTF("%s: block write of %x bytes\n", __func__, value);
560 pfl->counter = value;
561 pfl->wcycle++;
562 break;
563 case 0x60:
564 if (cmd == 0xd0) {
565 pfl->wcycle = 0;
566 pfl->status |= 0x80;
567 } else if (cmd == 0x01) {
568 pfl->wcycle = 0;
569 pfl->status |= 0x80;
570 } else if (cmd == 0xff) {
571 goto reset_flash;
572 } else {
573 DPRINTF("%s: Unknown (un)locking command\n", __func__);
574 goto reset_flash;
576 break;
577 case 0x98:
578 if (cmd == 0xff) {
579 goto reset_flash;
580 } else {
581 DPRINTF("%s: leaving query mode\n", __func__);
583 break;
584 default:
585 goto error_flash;
587 break;
588 case 2:
589 switch (pfl->cmd) {
590 case 0xe8: /* Block write */
591 /* FIXME check @offset, @width */
592 if (!pfl->ro) {
594 * FIXME writing straight to memory is *wrong*. We
595 * should write to a buffer, and flush it to memory
596 * only on confirm command (see below).
598 pflash_data_write(pfl, offset, value, width, be);
599 } else {
600 pfl->status |= 0x10; /* Programming error */
603 pfl->status |= 0x80;
605 if (!pfl->counter) {
606 hwaddr mask = pfl->writeblock_size - 1;
607 mask = ~mask;
609 DPRINTF("%s: block write finished\n", __func__);
610 pfl->wcycle++;
611 if (!pfl->ro) {
612 /* Flush the entire write buffer onto backing storage. */
613 /* FIXME premature! */
614 pflash_update(pfl, offset & mask, pfl->writeblock_size);
615 } else {
616 pfl->status |= 0x10; /* Programming error */
620 pfl->counter--;
621 break;
622 default:
623 goto error_flash;
625 break;
626 case 3: /* Confirm mode */
627 switch (pfl->cmd) {
628 case 0xe8: /* Block write */
629 if (cmd == 0xd0) {
630 /* FIXME this is where we should write out the buffer */
631 pfl->wcycle = 0;
632 pfl->status |= 0x80;
633 } else {
634 qemu_log_mask(LOG_UNIMP,
635 "%s: Aborting write to buffer not implemented,"
636 " the data is already written to storage!\n"
637 "Flash device reset into READ mode.\n",
638 __func__);
639 goto reset_flash;
641 break;
642 default:
643 goto error_flash;
645 break;
646 default:
647 /* Should never happen */
648 DPRINTF("%s: invalid write state\n", __func__);
649 goto reset_flash;
651 return;
653 error_flash:
654 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
655 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
656 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
658 reset_flash:
659 trace_pflash_reset();
660 memory_region_rom_device_set_romd(&pfl->mem, true);
661 pfl->wcycle = 0;
662 pfl->cmd = 0;
666 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
667 unsigned len, MemTxAttrs attrs)
669 PFlashCFI01 *pfl = opaque;
670 bool be = !!(pfl->features & (1 << PFLASH_BE));
672 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
673 *value = pflash_data_read(opaque, addr, len, be);
674 } else {
675 *value = pflash_read(opaque, addr, len, be);
677 return MEMTX_OK;
680 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
681 unsigned len, MemTxAttrs attrs)
683 PFlashCFI01 *pfl = opaque;
684 bool be = !!(pfl->features & (1 << PFLASH_BE));
686 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
687 return MEMTX_ERROR;
688 } else {
689 pflash_write(opaque, addr, value, len, be);
690 return MEMTX_OK;
694 static const MemoryRegionOps pflash_cfi01_ops = {
695 .read_with_attrs = pflash_mem_read_with_attrs,
696 .write_with_attrs = pflash_mem_write_with_attrs,
697 .endianness = DEVICE_NATIVE_ENDIAN,
700 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
702 PFlashCFI01 *pfl = PFLASH_CFI01(dev);
703 uint64_t total_len;
704 int ret;
705 uint64_t blocks_per_device, sector_len_per_device, device_len;
706 int num_devices;
707 Error *local_err = NULL;
709 if (pfl->sector_len == 0) {
710 error_setg(errp, "attribute \"sector-length\" not specified or zero.");
711 return;
713 if (pfl->nb_blocs == 0) {
714 error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
715 return;
717 if (pfl->name == NULL) {
718 error_setg(errp, "attribute \"name\" not specified.");
719 return;
722 total_len = pfl->sector_len * pfl->nb_blocs;
724 /* These are only used to expose the parameters of each device
725 * in the cfi_table[].
727 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
728 if (pfl->old_multiple_chip_handling) {
729 blocks_per_device = pfl->nb_blocs / num_devices;
730 sector_len_per_device = pfl->sector_len;
731 } else {
732 blocks_per_device = pfl->nb_blocs;
733 sector_len_per_device = pfl->sector_len / num_devices;
735 device_len = sector_len_per_device * blocks_per_device;
737 memory_region_init_rom_device(
738 &pfl->mem, OBJECT(dev),
739 &pflash_cfi01_ops,
740 pfl,
741 pfl->name, total_len, &local_err);
742 if (local_err) {
743 error_propagate(errp, local_err);
744 return;
747 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
748 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
750 if (pfl->blk) {
751 uint64_t perm;
752 pfl->ro = blk_is_read_only(pfl->blk);
753 perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
754 ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
755 if (ret < 0) {
756 return;
758 } else {
759 pfl->ro = 0;
762 if (pfl->blk) {
763 if (!blk_check_size_and_read_all(pfl->blk, pfl->storage, total_len,
764 errp)) {
765 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
766 return;
770 /* Default to devices being used at their maximum device width. This was
771 * assumed before the device_width support was added.
773 if (!pfl->max_device_width) {
774 pfl->max_device_width = pfl->device_width;
777 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
778 pfl->wcycle = 0;
779 pfl->cmd = 0;
780 pfl->status = 0x80; /* WSM ready */
781 /* Hardcoded CFI table */
782 /* Standard "QRY" string */
783 pfl->cfi_table[0x10] = 'Q';
784 pfl->cfi_table[0x11] = 'R';
785 pfl->cfi_table[0x12] = 'Y';
786 /* Command set (Intel) */
787 pfl->cfi_table[0x13] = 0x01;
788 pfl->cfi_table[0x14] = 0x00;
789 /* Primary extended table address (none) */
790 pfl->cfi_table[0x15] = 0x31;
791 pfl->cfi_table[0x16] = 0x00;
792 /* Alternate command set (none) */
793 pfl->cfi_table[0x17] = 0x00;
794 pfl->cfi_table[0x18] = 0x00;
795 /* Alternate extended table (none) */
796 pfl->cfi_table[0x19] = 0x00;
797 pfl->cfi_table[0x1A] = 0x00;
798 /* Vcc min */
799 pfl->cfi_table[0x1B] = 0x45;
800 /* Vcc max */
801 pfl->cfi_table[0x1C] = 0x55;
802 /* Vpp min (no Vpp pin) */
803 pfl->cfi_table[0x1D] = 0x00;
804 /* Vpp max (no Vpp pin) */
805 pfl->cfi_table[0x1E] = 0x00;
806 /* Reserved */
807 pfl->cfi_table[0x1F] = 0x07;
808 /* Timeout for min size buffer write */
809 pfl->cfi_table[0x20] = 0x07;
810 /* Typical timeout for block erase */
811 pfl->cfi_table[0x21] = 0x0a;
812 /* Typical timeout for full chip erase (4096 ms) */
813 pfl->cfi_table[0x22] = 0x00;
814 /* Reserved */
815 pfl->cfi_table[0x23] = 0x04;
816 /* Max timeout for buffer write */
817 pfl->cfi_table[0x24] = 0x04;
818 /* Max timeout for block erase */
819 pfl->cfi_table[0x25] = 0x04;
820 /* Max timeout for chip erase */
821 pfl->cfi_table[0x26] = 0x00;
822 /* Device size */
823 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
824 /* Flash device interface (8 & 16 bits) */
825 pfl->cfi_table[0x28] = 0x02;
826 pfl->cfi_table[0x29] = 0x00;
827 /* Max number of bytes in multi-bytes write */
828 if (pfl->bank_width == 1) {
829 pfl->cfi_table[0x2A] = 0x08;
830 } else {
831 pfl->cfi_table[0x2A] = 0x0B;
833 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
834 if (!pfl->old_multiple_chip_handling && num_devices > 1) {
835 pfl->writeblock_size *= num_devices;
838 pfl->cfi_table[0x2B] = 0x00;
839 /* Number of erase block regions (uniform) */
840 pfl->cfi_table[0x2C] = 0x01;
841 /* Erase block region 1 */
842 pfl->cfi_table[0x2D] = blocks_per_device - 1;
843 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
844 pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
845 pfl->cfi_table[0x30] = sector_len_per_device >> 16;
847 /* Extended */
848 pfl->cfi_table[0x31] = 'P';
849 pfl->cfi_table[0x32] = 'R';
850 pfl->cfi_table[0x33] = 'I';
852 pfl->cfi_table[0x34] = '1';
853 pfl->cfi_table[0x35] = '0';
855 pfl->cfi_table[0x36] = 0x00;
856 pfl->cfi_table[0x37] = 0x00;
857 pfl->cfi_table[0x38] = 0x00;
858 pfl->cfi_table[0x39] = 0x00;
860 pfl->cfi_table[0x3a] = 0x00;
862 pfl->cfi_table[0x3b] = 0x00;
863 pfl->cfi_table[0x3c] = 0x00;
865 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
868 static Property pflash_cfi01_properties[] = {
869 DEFINE_PROP_DRIVE("drive", PFlashCFI01, blk),
870 /* num-blocks is the number of blocks actually visible to the guest,
871 * ie the total size of the device divided by the sector length.
872 * If we're emulating flash devices wired in parallel the actual
873 * number of blocks per indvidual device will differ.
875 DEFINE_PROP_UINT32("num-blocks", PFlashCFI01, nb_blocs, 0),
876 DEFINE_PROP_UINT64("sector-length", PFlashCFI01, sector_len, 0),
877 /* width here is the overall width of this QEMU device in bytes.
878 * The QEMU device may be emulating a number of flash devices
879 * wired up in parallel; the width of each individual flash
880 * device should be specified via device-width. If the individual
881 * devices have a maximum width which is greater than the width
882 * they are being used for, this maximum width should be set via
883 * max-device-width (which otherwise defaults to device-width).
884 * So for instance a 32-bit wide QEMU flash device made from four
885 * 16-bit flash devices used in 8-bit wide mode would be configured
886 * with width = 4, device-width = 1, max-device-width = 2.
888 * If device-width is not specified we default to backwards
889 * compatible behaviour which is a bad emulation of two
890 * 16 bit devices making up a 32 bit wide QEMU device. This
891 * is deprecated for new uses of this device.
893 DEFINE_PROP_UINT8("width", PFlashCFI01, bank_width, 0),
894 DEFINE_PROP_UINT8("device-width", PFlashCFI01, device_width, 0),
895 DEFINE_PROP_UINT8("max-device-width", PFlashCFI01, max_device_width, 0),
896 DEFINE_PROP_BIT("big-endian", PFlashCFI01, features, PFLASH_BE, 0),
897 DEFINE_PROP_BIT("secure", PFlashCFI01, features, PFLASH_SECURE, 0),
898 DEFINE_PROP_UINT16("id0", PFlashCFI01, ident0, 0),
899 DEFINE_PROP_UINT16("id1", PFlashCFI01, ident1, 0),
900 DEFINE_PROP_UINT16("id2", PFlashCFI01, ident2, 0),
901 DEFINE_PROP_UINT16("id3", PFlashCFI01, ident3, 0),
902 DEFINE_PROP_STRING("name", PFlashCFI01, name),
903 DEFINE_PROP_BOOL("old-multiple-chip-handling", PFlashCFI01,
904 old_multiple_chip_handling, false),
905 DEFINE_PROP_END_OF_LIST(),
908 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
910 DeviceClass *dc = DEVICE_CLASS(klass);
912 dc->realize = pflash_cfi01_realize;
913 dc->props = pflash_cfi01_properties;
914 dc->vmsd = &vmstate_pflash;
915 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
919 static const TypeInfo pflash_cfi01_info = {
920 .name = TYPE_PFLASH_CFI01,
921 .parent = TYPE_SYS_BUS_DEVICE,
922 .instance_size = sizeof(PFlashCFI01),
923 .class_init = pflash_cfi01_class_init,
926 static void pflash_cfi01_register_types(void)
928 type_register_static(&pflash_cfi01_info);
931 type_init(pflash_cfi01_register_types)
933 PFlashCFI01 *pflash_cfi01_register(hwaddr base,
934 const char *name,
935 hwaddr size,
936 BlockBackend *blk,
937 uint32_t sector_len,
938 int bank_width,
939 uint16_t id0, uint16_t id1,
940 uint16_t id2, uint16_t id3,
941 int be)
943 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
945 if (blk) {
946 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
948 assert(size % sector_len == 0);
949 qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
950 qdev_prop_set_uint64(dev, "sector-length", sector_len);
951 qdev_prop_set_uint8(dev, "width", bank_width);
952 qdev_prop_set_bit(dev, "big-endian", !!be);
953 qdev_prop_set_uint16(dev, "id0", id0);
954 qdev_prop_set_uint16(dev, "id1", id1);
955 qdev_prop_set_uint16(dev, "id2", id2);
956 qdev_prop_set_uint16(dev, "id3", id3);
957 qdev_prop_set_string(dev, "name", name);
958 qdev_init_nofail(dev);
960 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
961 return PFLASH_CFI01(dev);
964 BlockBackend *pflash_cfi01_get_blk(PFlashCFI01 *fl)
966 return fl->blk;
969 MemoryRegion *pflash_cfi01_get_memory(PFlashCFI01 *fl)
971 return &fl->mem;
975 * Handle -drive if=pflash for machines that use properties.
976 * If @dinfo is null, do nothing.
977 * Else if @fl's property "drive" is already set, fatal error.
978 * Else set it to the BlockBackend with @dinfo.
980 void pflash_cfi01_legacy_drive(PFlashCFI01 *fl, DriveInfo *dinfo)
982 Location loc;
984 if (!dinfo) {
985 return;
988 loc_push_none(&loc);
989 qemu_opts_loc_restore(dinfo->opts);
990 if (fl->blk) {
991 error_report("clashes with -machine");
992 exit(1);
994 qdev_prop_set_drive(DEVICE(fl), "drive",
995 blk_by_legacy_dinfo(dinfo), &error_fatal);
996 loc_pop(&loc);
999 static void postload_update_cb(void *opaque, int running, RunState state)
1001 PFlashCFI01 *pfl = opaque;
1003 /* This is called after bdrv_invalidate_cache_all. */
1004 qemu_del_vm_change_state_handler(pfl->vmstate);
1005 pfl->vmstate = NULL;
1007 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
1008 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
1011 static int pflash_post_load(void *opaque, int version_id)
1013 PFlashCFI01 *pfl = opaque;
1015 if (!pfl->ro) {
1016 pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
1017 pfl);
1019 return 0;