bugfix: Use gicr_typer in arm_gicv3_icc_reset
[qemu/ar7.git] / hw / intc / arm_gicv3_kvm.c
blobca43bf87caba0383b8d1cfe3ed1a4dbe6a781861
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
35 #ifdef DEBUG_GICV3_KVM
36 #define DPRINTF(fmt, ...) \
37 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40 do { } while (0)
41 #endif
43 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
44 #define KVM_ARM_GICV3(obj) \
45 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
46 #define KVM_ARM_GICV3_CLASS(klass) \
47 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
48 #define KVM_ARM_GICV3_GET_CLASS(obj) \
49 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
51 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
52 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
58 #define ICC_PMR_EL1 \
59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1 \
61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1 \
67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1 \
69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
77 typedef struct KVMARMGICv3Class {
78 ARMGICv3CommonClass parent_class;
79 DeviceRealize parent_realize;
80 void (*parent_reset)(DeviceState *dev);
81 } KVMARMGICv3Class;
83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
85 GICv3State *s = (GICv3State *)opaque;
87 kvm_arm_gic_set_irq(s->num_irq, irq, level);
90 #define KVM_VGIC_ATTR(reg, typer) \
91 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94 uint32_t *val, bool write)
96 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97 KVM_VGIC_ATTR(offset, 0),
98 val, write, &error_abort);
101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102 uint32_t *val, bool write)
104 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106 val, write, &error_abort);
109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110 uint64_t *val, bool write)
112 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114 val, write, &error_abort);
117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118 uint32_t *val, bool write)
120 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122 (VGIC_LEVEL_INFO_LINE_LEVEL <<
123 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124 val, write, &error_abort);
127 /* Loop through each distributor IRQ related register; since bits
128 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129 * is enabled, we skip those.
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
136 uint32_t reg, *field;
137 int irq;
139 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143 * offset.
145 field = (uint32_t *)(bmp + GIC_INTERNAL);
146 offset += (GIC_INTERNAL * 8) / 8;
147 for_each_dist_irq_reg(irq, s->num_irq, 8) {
148 kvm_gicd_access(s, offset, &reg, false);
149 *field = reg;
150 offset += 4;
151 field++;
155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
157 uint32_t reg, *field;
158 int irq;
160 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164 * offset.
166 field = (uint32_t *)(bmp + GIC_INTERNAL);
167 offset += (GIC_INTERNAL * 8) / 8;
168 for_each_dist_irq_reg(irq, s->num_irq, 8) {
169 reg = *field;
170 kvm_gicd_access(s, offset, &reg, true);
171 offset += 4;
172 field++;
176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177 uint32_t *bmp)
179 uint32_t reg;
180 int irq;
182 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186 * This matches the for_each_dist_irq_reg() macro which also skips the
187 * first GIC_INTERNAL irqs.
189 offset += (GIC_INTERNAL * 2) / 8;
190 for_each_dist_irq_reg(irq, s->num_irq, 2) {
191 kvm_gicd_access(s, offset, &reg, false);
192 reg = half_unshuffle32(reg >> 1);
193 if (irq % 32 != 0) {
194 reg = (reg << 16);
196 *gic_bmp_ptr32(bmp, irq) |= reg;
197 offset += 4;
201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202 uint32_t *bmp)
204 uint32_t reg;
205 int irq;
207 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211 * This matches the for_each_dist_irq_reg() macro which also skips the
212 * first GIC_INTERNAL irqs.
214 offset += (GIC_INTERNAL * 2) / 8;
215 for_each_dist_irq_reg(irq, s->num_irq, 2) {
216 reg = *gic_bmp_ptr32(bmp, irq);
217 if (irq % 32 != 0) {
218 reg = (reg & 0xffff0000) >> 16;
219 } else {
220 reg = reg & 0xffff;
222 reg = half_shuffle32(reg) << 1;
223 kvm_gicd_access(s, offset, &reg, true);
224 offset += 4;
228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
230 uint32_t reg;
231 int irq;
233 for_each_dist_irq_reg(irq, s->num_irq, 1) {
234 kvm_gic_line_level_access(s, irq, 0, &reg, false);
235 *gic_bmp_ptr32(bmp, irq) = reg;
239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
241 uint32_t reg;
242 int irq;
244 for_each_dist_irq_reg(irq, s->num_irq, 1) {
245 reg = *gic_bmp_ptr32(bmp, irq);
246 kvm_gic_line_level_access(s, irq, 0, &reg, true);
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
253 uint32_t reg;
254 int irq;
256 /* For the KVM GICv3, affinity routing is always enabled, and the
257 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259 * functionality is replaced by the GICR registers. It doesn't need to sync
260 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261 * This matches the for_each_dist_irq_reg() macro which also skips the
262 * first GIC_INTERNAL irqs.
264 offset += (GIC_INTERNAL * 1) / 8;
265 for_each_dist_irq_reg(irq, s->num_irq, 1) {
266 kvm_gicd_access(s, offset, &reg, false);
267 *gic_bmp_ptr32(bmp, irq) = reg;
268 offset += 4;
272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273 uint32_t clroffset, uint32_t *bmp)
275 uint32_t reg;
276 int irq;
278 /* For the KVM GICv3, affinity routing is always enabled, and the
279 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281 * functionality is replaced by the GICR registers. It doesn't need to sync
282 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284 * first GIC_INTERNAL irqs.
286 offset += (GIC_INTERNAL * 1) / 8;
287 if (clroffset != 0) {
288 clroffset += (GIC_INTERNAL * 1) / 8;
291 for_each_dist_irq_reg(irq, s->num_irq, 1) {
292 /* If this bitmap is a set/clear register pair, first write to the
293 * clear-reg to clear all bits before using the set-reg to write
294 * the 1 bits.
296 if (clroffset != 0) {
297 reg = 0;
298 kvm_gicd_access(s, clroffset, &reg, true);
299 clroffset += 4;
301 reg = *gic_bmp_ptr32(bmp, irq);
302 kvm_gicd_access(s, offset, &reg, true);
303 offset += 4;
307 static void kvm_arm_gicv3_check(GICv3State *s)
309 uint32_t reg;
310 uint32_t num_irq;
312 /* Sanity checking s->num_irq */
313 kvm_gicd_access(s, GICD_TYPER, &reg, false);
314 num_irq = ((reg & 0x1f) + 1) * 32;
316 if (num_irq < s->num_irq) {
317 error_report("Model requests %u IRQs, but kernel supports max %u",
318 s->num_irq, num_irq);
319 abort();
323 static void kvm_arm_gicv3_put(GICv3State *s)
325 uint32_t regl, regh, reg;
326 uint64_t reg64, redist_typer;
327 int ncpu, i;
329 kvm_arm_gicv3_check(s);
331 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333 redist_typer = ((uint64_t)regh << 32) | regl;
335 reg = s->gicd_ctlr;
336 kvm_gicd_access(s, GICD_CTLR, &reg, true);
338 if (redist_typer & GICR_TYPER_PLPIS) {
340 * Restore base addresses before LPIs are potentially enabled by
341 * GICR_CTLR write
343 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
344 GICv3CPUState *c = &s->cpu[ncpu];
346 reg64 = c->gicr_propbaser;
347 regl = (uint32_t)reg64;
348 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
349 regh = (uint32_t)(reg64 >> 32);
350 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
352 reg64 = c->gicr_pendbaser;
353 regl = (uint32_t)reg64;
354 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
355 regh = (uint32_t)(reg64 >> 32);
356 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
360 /* Redistributor state (one per CPU) */
362 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
363 GICv3CPUState *c = &s->cpu[ncpu];
365 reg = c->gicr_ctlr;
366 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
368 reg = c->gicr_statusr[GICV3_NS];
369 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
371 reg = c->gicr_waker;
372 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
374 reg = c->gicr_igroupr0;
375 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
377 reg = ~0;
378 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
379 reg = c->gicr_ienabler0;
380 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
382 /* Restore config before pending so we treat level/edge correctly */
383 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
384 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
386 reg = c->level;
387 kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
389 reg = ~0;
390 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
391 reg = c->gicr_ipendr0;
392 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
394 reg = ~0;
395 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
396 reg = c->gicr_iactiver0;
397 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
399 for (i = 0; i < GIC_INTERNAL; i += 4) {
400 reg = c->gicr_ipriorityr[i] |
401 (c->gicr_ipriorityr[i + 1] << 8) |
402 (c->gicr_ipriorityr[i + 2] << 16) |
403 (c->gicr_ipriorityr[i + 3] << 24);
404 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
408 /* Distributor state (shared between all CPUs */
409 reg = s->gicd_statusr[GICV3_NS];
410 kvm_gicd_access(s, GICD_STATUSR, &reg, true);
412 /* s->enable bitmap -> GICD_ISENABLERn */
413 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
415 /* s->group bitmap -> GICD_IGROUPRn */
416 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
418 /* Restore targets before pending to ensure the pending state is set on
419 * the appropriate CPU interfaces in the kernel
422 /* s->gicd_irouter[irq] -> GICD_IROUTERn
423 * We can't use kvm_dist_put() here because the registers are 64-bit
425 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
426 uint32_t offset;
428 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
429 reg = (uint32_t)s->gicd_irouter[i];
430 kvm_gicd_access(s, offset, &reg, true);
432 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
433 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
434 kvm_gicd_access(s, offset, &reg, true);
437 /* s->trigger bitmap -> GICD_ICFGRn
438 * (restore configuration registers before pending IRQs so we treat
439 * level/edge correctly)
441 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
443 /* s->level bitmap -> line_level */
444 kvm_gic_put_line_level_bmp(s, s->level);
446 /* s->pending bitmap -> GICD_ISPENDRn */
447 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
449 /* s->active bitmap -> GICD_ISACTIVERn */
450 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
452 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
455 /* CPU Interface state (one per CPU) */
457 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
458 GICv3CPUState *c = &s->cpu[ncpu];
459 int num_pri_bits;
461 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
462 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
463 &c->icc_ctlr_el1[GICV3_NS], true);
464 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
465 &c->icc_igrpen[GICV3_G0], true);
466 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
467 &c->icc_igrpen[GICV3_G1NS], true);
468 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
469 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
470 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
472 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
473 ICC_CTLR_EL1_PRIBITS_MASK) >>
474 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
476 switch (num_pri_bits) {
477 case 7:
478 reg64 = c->icc_apr[GICV3_G0][3];
479 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
480 reg64 = c->icc_apr[GICV3_G0][2];
481 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
482 case 6:
483 reg64 = c->icc_apr[GICV3_G0][1];
484 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
485 default:
486 reg64 = c->icc_apr[GICV3_G0][0];
487 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
490 switch (num_pri_bits) {
491 case 7:
492 reg64 = c->icc_apr[GICV3_G1NS][3];
493 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
494 reg64 = c->icc_apr[GICV3_G1NS][2];
495 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
496 case 6:
497 reg64 = c->icc_apr[GICV3_G1NS][1];
498 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
499 default:
500 reg64 = c->icc_apr[GICV3_G1NS][0];
501 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
506 static void kvm_arm_gicv3_get(GICv3State *s)
508 uint32_t regl, regh, reg;
509 uint64_t reg64, redist_typer;
510 int ncpu, i;
512 kvm_arm_gicv3_check(s);
514 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
515 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
516 redist_typer = ((uint64_t)regh << 32) | regl;
518 kvm_gicd_access(s, GICD_CTLR, &reg, false);
519 s->gicd_ctlr = reg;
521 /* Redistributor state (one per CPU) */
523 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
524 GICv3CPUState *c = &s->cpu[ncpu];
526 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
527 c->gicr_ctlr = reg;
529 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
530 c->gicr_statusr[GICV3_NS] = reg;
532 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
533 c->gicr_waker = reg;
535 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
536 c->gicr_igroupr0 = reg;
537 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
538 c->gicr_ienabler0 = reg;
539 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
540 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
541 kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
542 c->level = reg;
543 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
544 c->gicr_ipendr0 = reg;
545 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
546 c->gicr_iactiver0 = reg;
548 for (i = 0; i < GIC_INTERNAL; i += 4) {
549 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
550 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
551 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
552 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
553 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
557 if (redist_typer & GICR_TYPER_PLPIS) {
558 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
559 GICv3CPUState *c = &s->cpu[ncpu];
561 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
562 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
563 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
565 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
566 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
567 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
571 /* Distributor state (shared between all CPUs */
573 kvm_gicd_access(s, GICD_STATUSR, &reg, false);
574 s->gicd_statusr[GICV3_NS] = reg;
576 /* GICD_IGROUPRn -> s->group bitmap */
577 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
579 /* GICD_ISENABLERn -> s->enabled bitmap */
580 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
582 /* Line level of irq */
583 kvm_gic_get_line_level_bmp(s, s->level);
584 /* GICD_ISPENDRn -> s->pending bitmap */
585 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
587 /* GICD_ISACTIVERn -> s->active bitmap */
588 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
590 /* GICD_ICFGRn -> s->trigger bitmap */
591 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
593 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
594 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
596 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
597 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
598 uint32_t offset;
600 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
601 kvm_gicd_access(s, offset, &regl, false);
602 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
603 kvm_gicd_access(s, offset, &regh, false);
604 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
607 /*****************************************************************
608 * CPU Interface(s) State
611 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
612 GICv3CPUState *c = &s->cpu[ncpu];
613 int num_pri_bits;
615 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
616 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
617 &c->icc_ctlr_el1[GICV3_NS], false);
618 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
619 &c->icc_igrpen[GICV3_G0], false);
620 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
621 &c->icc_igrpen[GICV3_G1NS], false);
622 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
623 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
624 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
625 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
626 ICC_CTLR_EL1_PRIBITS_MASK) >>
627 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
629 switch (num_pri_bits) {
630 case 7:
631 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
632 c->icc_apr[GICV3_G0][3] = reg64;
633 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
634 c->icc_apr[GICV3_G0][2] = reg64;
635 case 6:
636 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
637 c->icc_apr[GICV3_G0][1] = reg64;
638 default:
639 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
640 c->icc_apr[GICV3_G0][0] = reg64;
643 switch (num_pri_bits) {
644 case 7:
645 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
646 c->icc_apr[GICV3_G1NS][3] = reg64;
647 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
648 c->icc_apr[GICV3_G1NS][2] = reg64;
649 case 6:
650 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
651 c->icc_apr[GICV3_G1NS][1] = reg64;
652 default:
653 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
654 c->icc_apr[GICV3_G1NS][0] = reg64;
659 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
661 GICv3State *s;
662 GICv3CPUState *c;
664 c = (GICv3CPUState *)env->gicv3state;
665 s = c->gic;
667 c->icc_pmr_el1 = 0;
668 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
669 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
670 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
672 c->icc_sre_el1 = 0x7;
673 memset(c->icc_apr, 0, sizeof(c->icc_apr));
674 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
676 if (s->migration_blocker) {
677 return;
680 /* Initialize to actual HW supported configuration */
681 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
682 KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
683 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
685 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
688 static void kvm_arm_gicv3_reset(DeviceState *dev)
690 GICv3State *s = ARM_GICV3_COMMON(dev);
691 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
693 DPRINTF("Reset\n");
695 kgc->parent_reset(dev);
697 if (s->migration_blocker) {
698 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
699 return;
702 kvm_arm_gicv3_put(s);
706 * CPU interface registers of GIC needs to be reset on CPU reset.
707 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
708 * below ARMCPRegInfo. As we reset the whole cpu interface under single
709 * register reset, we define only one register of CPU interface instead
710 * of defining all the registers.
712 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
713 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
714 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
716 * If ARM_CP_NOP is used, resetfn is not called,
717 * So ARM_CP_NO_RAW is appropriate type.
719 .type = ARM_CP_NO_RAW,
720 .access = PL1_RW,
721 .readfn = arm_cp_read_zero,
722 .writefn = arm_cp_write_ignore,
724 * We hang the whole cpu interface reset routine off here
725 * rather than parcelling it out into one little function
726 * per register
728 .resetfn = arm_gicv3_icc_reset,
730 REGINFO_SENTINEL
734 * vm_change_state_handler - VM change state callback aiming at flushing
735 * RDIST pending tables into guest RAM
737 * The tables get flushed to guest RAM whenever the VM gets stopped.
739 static void vm_change_state_handler(void *opaque, int running,
740 RunState state)
742 GICv3State *s = (GICv3State *)opaque;
743 Error *err = NULL;
744 int ret;
746 if (running) {
747 return;
750 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
751 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
752 NULL, true, &err);
753 if (err) {
754 error_report_err(err);
756 if (ret < 0 && ret != -EFAULT) {
757 abort();
762 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
764 GICv3State *s = KVM_ARM_GICV3(dev);
765 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
766 bool multiple_redist_region_allowed;
767 Error *local_err = NULL;
768 int i;
770 DPRINTF("kvm_arm_gicv3_realize\n");
772 kgc->parent_realize(dev, &local_err);
773 if (local_err) {
774 error_propagate(errp, local_err);
775 return;
778 if (s->security_extn) {
779 error_setg(errp, "the in-kernel VGICv3 does not implement the "
780 "security extensions");
781 return;
784 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
785 if (local_err) {
786 error_propagate(errp, local_err);
787 return;
790 for (i = 0; i < s->num_cpu; i++) {
791 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
793 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
796 /* Try to create the device via the device control API */
797 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
798 if (s->dev_fd < 0) {
799 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
800 return;
803 multiple_redist_region_allowed =
804 kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
805 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
807 if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
808 error_setg(errp, "Multiple VGICv3 redistributor regions are not "
809 "supported by this host kernel");
810 error_append_hint(errp, "A maximum of %d VCPUs can be used",
811 s->redist_region_count[0]);
812 return;
815 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
816 0, &s->num_irq, true, &error_abort);
818 /* Tell the kernel to complete VGIC initialization now */
819 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
820 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
822 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
823 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
825 if (!multiple_redist_region_allowed) {
826 kvm_arm_register_device(&s->iomem_redist[0], -1,
827 KVM_DEV_ARM_VGIC_GRP_ADDR,
828 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
829 } else {
830 /* we register regions in reverse order as "devices" are inserted at
831 * the head of a QSLIST and the list is then popped from the head
832 * onwards by kvm_arm_machine_init_done()
834 for (i = s->nb_redist_regions - 1; i >= 0; i--) {
835 /* Address mask made of the rdist region index and count */
836 uint64_t addr_ormask =
837 i | ((uint64_t)s->redist_region_count[i] << 52);
839 kvm_arm_register_device(&s->iomem_redist[i], -1,
840 KVM_DEV_ARM_VGIC_GRP_ADDR,
841 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
842 s->dev_fd, addr_ormask);
846 if (kvm_has_gsi_routing()) {
847 /* set up irq routing */
848 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
849 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
852 kvm_gsi_routing_allowed = true;
854 kvm_irqchip_commit_routes(kvm_state);
857 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
858 GICD_CTLR)) {
859 error_setg(&s->migration_blocker, "This operating system kernel does "
860 "not support vGICv3 migration");
861 migrate_add_blocker(s->migration_blocker, &local_err);
862 if (local_err) {
863 error_propagate(errp, local_err);
864 error_free(s->migration_blocker);
865 return;
868 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
869 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
870 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
874 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
876 DeviceClass *dc = DEVICE_CLASS(klass);
877 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
878 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
880 agcc->pre_save = kvm_arm_gicv3_get;
881 agcc->post_load = kvm_arm_gicv3_put;
882 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
883 &kgc->parent_realize);
884 device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
887 static const TypeInfo kvm_arm_gicv3_info = {
888 .name = TYPE_KVM_ARM_GICV3,
889 .parent = TYPE_ARM_GICV3_COMMON,
890 .instance_size = sizeof(GICv3State),
891 .class_init = kvm_arm_gicv3_class_init,
892 .class_size = sizeof(KVMARMGICv3Class),
895 static void kvm_arm_gicv3_register_types(void)
897 type_register_static(&kvm_arm_gicv3_info);
900 type_init(kvm_arm_gicv3_register_types)