sparc64: fix udiv and sdiv insns
[qemu/aliguori-queue.git] / target-sparc / op_helper.c
blobbe3c1e051b5f6f12b82c28ac41b9be2c98741079
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
5 //#define DEBUG_MMU
6 //#define DEBUG_MXCC
7 //#define DEBUG_UNALIGNED
8 //#define DEBUG_UNASSIGNED
9 //#define DEBUG_ASI
10 //#define DEBUG_PCALL
11 //#define DEBUG_PSTATE
13 #ifdef DEBUG_MMU
14 #define DPRINTF_MMU(fmt, ...) \
15 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 #else
17 #define DPRINTF_MMU(fmt, ...) do {} while (0)
18 #endif
20 #ifdef DEBUG_MXCC
21 #define DPRINTF_MXCC(fmt, ...) \
22 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 #endif
27 #ifdef DEBUG_ASI
28 #define DPRINTF_ASI(fmt, ...) \
29 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 #endif
32 #ifdef DEBUG_PSTATE
33 #define DPRINTF_PSTATE(fmt, ...) \
34 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 #endif
39 #ifdef TARGET_SPARC64
40 #ifndef TARGET_ABI32
41 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 #else
43 #define AM_CHECK(env1) (1)
44 #endif
45 #endif
47 #define DT0 (env->dt0)
48 #define DT1 (env->dt1)
49 #define QT0 (env->qt0)
50 #define QT1 (env->qt1)
52 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
53 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
54 int is_asi, int size);
55 #endif
57 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
58 // Calculates TSB pointer value for fault page size 8k or 64k
59 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
60 uint64_t tag_access_register,
61 int page_size)
63 uint64_t tsb_base = tsb_register & ~0x1fffULL;
64 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
65 int tsb_size = tsb_register & 0xf;
67 // discard lower 13 bits which hold tag access context
68 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
70 // now reorder bits
71 uint64_t tsb_base_mask = ~0x1fffULL;
72 uint64_t va = tag_access_va;
74 // move va bits to correct position
75 if (page_size == 8*1024) {
76 va >>= 9;
77 } else if (page_size == 64*1024) {
78 va >>= 12;
81 if (tsb_size) {
82 tsb_base_mask <<= tsb_size;
85 // calculate tsb_base mask and adjust va if split is in use
86 if (tsb_split) {
87 if (page_size == 8*1024) {
88 va &= ~(1ULL << (13 + tsb_size));
89 } else if (page_size == 64*1024) {
90 va |= (1ULL << (13 + tsb_size));
92 tsb_base_mask <<= 1;
95 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
98 // Calculates tag target register value by reordering bits
99 // in tag access register
100 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
102 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
105 static void replace_tlb_entry(SparcTLBEntry *tlb,
106 uint64_t tlb_tag, uint64_t tlb_tte,
107 CPUState *env1)
109 target_ulong mask, size, va, offset;
111 // flush page range if translation is valid
112 if (TTE_IS_VALID(tlb->tte)) {
114 mask = 0xffffffffffffe000ULL;
115 mask <<= 3 * ((tlb->tte >> 61) & 3);
116 size = ~mask + 1;
118 va = tlb->tag & mask;
120 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
121 tlb_flush_page(env1, va + offset);
125 tlb->tag = tlb_tag;
126 tlb->tte = tlb_tte;
129 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
130 const char* strmmu, CPUState *env1)
132 unsigned int i;
133 target_ulong mask;
134 uint64_t context;
136 int is_demap_context = (demap_addr >> 6) & 1;
138 // demap context
139 switch ((demap_addr >> 4) & 3) {
140 case 0: // primary
141 context = env1->dmmu.mmu_primary_context;
142 break;
143 case 1: // secondary
144 context = env1->dmmu.mmu_secondary_context;
145 break;
146 case 2: // nucleus
147 context = 0;
148 break;
149 case 3: // reserved
150 default:
151 return;
154 for (i = 0; i < 64; i++) {
155 if (TTE_IS_VALID(tlb[i].tte)) {
157 if (is_demap_context) {
158 // will remove non-global entries matching context value
159 if (TTE_IS_GLOBAL(tlb[i].tte) ||
160 !tlb_compare_context(&tlb[i], context)) {
161 continue;
163 } else {
164 // demap page
165 // will remove any entry matching VA
166 mask = 0xffffffffffffe000ULL;
167 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
169 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
170 continue;
173 // entry should be global or matching context value
174 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
175 !tlb_compare_context(&tlb[i], context)) {
176 continue;
180 replace_tlb_entry(&tlb[i], 0, 0, env1);
181 #ifdef DEBUG_MMU
182 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
183 dump_mmu(env1);
184 #endif
189 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
190 uint64_t tlb_tag, uint64_t tlb_tte,
191 const char* strmmu, CPUState *env1)
193 unsigned int i, replace_used;
195 // Try replacing invalid entry
196 for (i = 0; i < 64; i++) {
197 if (!TTE_IS_VALID(tlb[i].tte)) {
198 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 return;
207 // All entries are valid, try replacing unlocked entry
209 for (replace_used = 0; replace_used < 2; ++replace_used) {
211 // Used entries are not replaced on first pass
213 for (i = 0; i < 64; i++) {
214 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
216 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
217 #ifdef DEBUG_MMU
218 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
219 strmmu, (replace_used?"used":"unused"), i);
220 dump_mmu(env1);
221 #endif
222 return;
226 // Now reset used bit and search for unused entries again
228 for (i = 0; i < 64; i++) {
229 TTE_SET_UNUSED(tlb[i].tte);
233 #ifdef DEBUG_MMU
234 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
235 #endif
236 // error state?
239 #endif
241 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
243 #ifdef TARGET_SPARC64
244 if (AM_CHECK(env1))
245 addr &= 0xffffffffULL;
246 #endif
247 return addr;
250 /* returns true if access using this ASI is to have address translated by MMU
251 otherwise access is to raw physical address */
252 static inline int is_translating_asi(int asi)
254 #ifdef TARGET_SPARC64
255 /* Ultrasparc IIi translating asi
256 - note this list is defined by cpu implementation
258 switch (asi) {
259 case 0x04 ... 0x11:
260 case 0x18 ... 0x19:
261 case 0x24 ... 0x2C:
262 case 0x70 ... 0x73:
263 case 0x78 ... 0x79:
264 case 0x80 ... 0xFF:
265 return 1;
267 default:
268 return 0;
270 #else
271 /* TODO: check sparc32 bits */
272 return 0;
273 #endif
276 static inline target_ulong asi_address_mask(CPUState *env1,
277 int asi, target_ulong addr)
279 if (is_translating_asi(asi)) {
280 return address_mask(env, addr);
281 } else {
282 return addr;
286 static void raise_exception(int tt)
288 env->exception_index = tt;
289 cpu_loop_exit();
292 void HELPER(raise_exception)(int tt)
294 raise_exception(tt);
297 void helper_check_align(target_ulong addr, uint32_t align)
299 if (addr & align) {
300 #ifdef DEBUG_UNALIGNED
301 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
302 "\n", addr, env->pc);
303 #endif
304 raise_exception(TT_UNALIGNED);
308 #define F_HELPER(name, p) void helper_f##name##p(void)
310 #define F_BINOP(name) \
311 float32 helper_f ## name ## s (float32 src1, float32 src2) \
313 return float32_ ## name (src1, src2, &env->fp_status); \
315 F_HELPER(name, d) \
317 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
319 F_HELPER(name, q) \
321 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
324 F_BINOP(add);
325 F_BINOP(sub);
326 F_BINOP(mul);
327 F_BINOP(div);
328 #undef F_BINOP
330 void helper_fsmuld(float32 src1, float32 src2)
332 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
333 float32_to_float64(src2, &env->fp_status),
334 &env->fp_status);
337 void helper_fdmulq(void)
339 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
340 float64_to_float128(DT1, &env->fp_status),
341 &env->fp_status);
344 float32 helper_fnegs(float32 src)
346 return float32_chs(src);
349 #ifdef TARGET_SPARC64
350 F_HELPER(neg, d)
352 DT0 = float64_chs(DT1);
355 F_HELPER(neg, q)
357 QT0 = float128_chs(QT1);
359 #endif
361 /* Integer to float conversion. */
362 float32 helper_fitos(int32_t src)
364 return int32_to_float32(src, &env->fp_status);
367 void helper_fitod(int32_t src)
369 DT0 = int32_to_float64(src, &env->fp_status);
372 void helper_fitoq(int32_t src)
374 QT0 = int32_to_float128(src, &env->fp_status);
377 #ifdef TARGET_SPARC64
378 float32 helper_fxtos(void)
380 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
383 F_HELPER(xto, d)
385 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
388 F_HELPER(xto, q)
390 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
392 #endif
393 #undef F_HELPER
395 /* floating point conversion */
396 float32 helper_fdtos(void)
398 return float64_to_float32(DT1, &env->fp_status);
401 void helper_fstod(float32 src)
403 DT0 = float32_to_float64(src, &env->fp_status);
406 float32 helper_fqtos(void)
408 return float128_to_float32(QT1, &env->fp_status);
411 void helper_fstoq(float32 src)
413 QT0 = float32_to_float128(src, &env->fp_status);
416 void helper_fqtod(void)
418 DT0 = float128_to_float64(QT1, &env->fp_status);
421 void helper_fdtoq(void)
423 QT0 = float64_to_float128(DT1, &env->fp_status);
426 /* Float to integer conversion. */
427 int32_t helper_fstoi(float32 src)
429 return float32_to_int32_round_to_zero(src, &env->fp_status);
432 int32_t helper_fdtoi(void)
434 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
437 int32_t helper_fqtoi(void)
439 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
442 #ifdef TARGET_SPARC64
443 void helper_fstox(float32 src)
445 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
448 void helper_fdtox(void)
450 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
453 void helper_fqtox(void)
455 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
458 void helper_faligndata(void)
460 uint64_t tmp;
462 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
463 /* on many architectures a shift of 64 does nothing */
464 if ((env->gsr & 7) != 0) {
465 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
467 *((uint64_t *)&DT0) = tmp;
470 #ifdef HOST_WORDS_BIGENDIAN
471 #define VIS_B64(n) b[7 - (n)]
472 #define VIS_W64(n) w[3 - (n)]
473 #define VIS_SW64(n) sw[3 - (n)]
474 #define VIS_L64(n) l[1 - (n)]
475 #define VIS_B32(n) b[3 - (n)]
476 #define VIS_W32(n) w[1 - (n)]
477 #else
478 #define VIS_B64(n) b[n]
479 #define VIS_W64(n) w[n]
480 #define VIS_SW64(n) sw[n]
481 #define VIS_L64(n) l[n]
482 #define VIS_B32(n) b[n]
483 #define VIS_W32(n) w[n]
484 #endif
486 typedef union {
487 uint8_t b[8];
488 uint16_t w[4];
489 int16_t sw[4];
490 uint32_t l[2];
491 float64 d;
492 } vis64;
494 typedef union {
495 uint8_t b[4];
496 uint16_t w[2];
497 uint32_t l;
498 float32 f;
499 } vis32;
501 void helper_fpmerge(void)
503 vis64 s, d;
505 s.d = DT0;
506 d.d = DT1;
508 // Reverse calculation order to handle overlap
509 d.VIS_B64(7) = s.VIS_B64(3);
510 d.VIS_B64(6) = d.VIS_B64(3);
511 d.VIS_B64(5) = s.VIS_B64(2);
512 d.VIS_B64(4) = d.VIS_B64(2);
513 d.VIS_B64(3) = s.VIS_B64(1);
514 d.VIS_B64(2) = d.VIS_B64(1);
515 d.VIS_B64(1) = s.VIS_B64(0);
516 //d.VIS_B64(0) = d.VIS_B64(0);
518 DT0 = d.d;
521 void helper_fmul8x16(void)
523 vis64 s, d;
524 uint32_t tmp;
526 s.d = DT0;
527 d.d = DT1;
529 #define PMUL(r) \
530 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
531 if ((tmp & 0xff) > 0x7f) \
532 tmp += 0x100; \
533 d.VIS_W64(r) = tmp >> 8;
535 PMUL(0);
536 PMUL(1);
537 PMUL(2);
538 PMUL(3);
539 #undef PMUL
541 DT0 = d.d;
544 void helper_fmul8x16al(void)
546 vis64 s, d;
547 uint32_t tmp;
549 s.d = DT0;
550 d.d = DT1;
552 #define PMUL(r) \
553 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
554 if ((tmp & 0xff) > 0x7f) \
555 tmp += 0x100; \
556 d.VIS_W64(r) = tmp >> 8;
558 PMUL(0);
559 PMUL(1);
560 PMUL(2);
561 PMUL(3);
562 #undef PMUL
564 DT0 = d.d;
567 void helper_fmul8x16au(void)
569 vis64 s, d;
570 uint32_t tmp;
572 s.d = DT0;
573 d.d = DT1;
575 #define PMUL(r) \
576 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
577 if ((tmp & 0xff) > 0x7f) \
578 tmp += 0x100; \
579 d.VIS_W64(r) = tmp >> 8;
581 PMUL(0);
582 PMUL(1);
583 PMUL(2);
584 PMUL(3);
585 #undef PMUL
587 DT0 = d.d;
590 void helper_fmul8sux16(void)
592 vis64 s, d;
593 uint32_t tmp;
595 s.d = DT0;
596 d.d = DT1;
598 #define PMUL(r) \
599 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
600 if ((tmp & 0xff) > 0x7f) \
601 tmp += 0x100; \
602 d.VIS_W64(r) = tmp >> 8;
604 PMUL(0);
605 PMUL(1);
606 PMUL(2);
607 PMUL(3);
608 #undef PMUL
610 DT0 = d.d;
613 void helper_fmul8ulx16(void)
615 vis64 s, d;
616 uint32_t tmp;
618 s.d = DT0;
619 d.d = DT1;
621 #define PMUL(r) \
622 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
623 if ((tmp & 0xff) > 0x7f) \
624 tmp += 0x100; \
625 d.VIS_W64(r) = tmp >> 8;
627 PMUL(0);
628 PMUL(1);
629 PMUL(2);
630 PMUL(3);
631 #undef PMUL
633 DT0 = d.d;
636 void helper_fmuld8sux16(void)
638 vis64 s, d;
639 uint32_t tmp;
641 s.d = DT0;
642 d.d = DT1;
644 #define PMUL(r) \
645 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
646 if ((tmp & 0xff) > 0x7f) \
647 tmp += 0x100; \
648 d.VIS_L64(r) = tmp;
650 // Reverse calculation order to handle overlap
651 PMUL(1);
652 PMUL(0);
653 #undef PMUL
655 DT0 = d.d;
658 void helper_fmuld8ulx16(void)
660 vis64 s, d;
661 uint32_t tmp;
663 s.d = DT0;
664 d.d = DT1;
666 #define PMUL(r) \
667 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
668 if ((tmp & 0xff) > 0x7f) \
669 tmp += 0x100; \
670 d.VIS_L64(r) = tmp;
672 // Reverse calculation order to handle overlap
673 PMUL(1);
674 PMUL(0);
675 #undef PMUL
677 DT0 = d.d;
680 void helper_fexpand(void)
682 vis32 s;
683 vis64 d;
685 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
686 d.d = DT1;
687 d.VIS_W64(0) = s.VIS_B32(0) << 4;
688 d.VIS_W64(1) = s.VIS_B32(1) << 4;
689 d.VIS_W64(2) = s.VIS_B32(2) << 4;
690 d.VIS_W64(3) = s.VIS_B32(3) << 4;
692 DT0 = d.d;
695 #define VIS_HELPER(name, F) \
696 void name##16(void) \
698 vis64 s, d; \
700 s.d = DT0; \
701 d.d = DT1; \
703 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
704 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
705 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
706 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
708 DT0 = d.d; \
711 uint32_t name##16s(uint32_t src1, uint32_t src2) \
713 vis32 s, d; \
715 s.l = src1; \
716 d.l = src2; \
718 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
719 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
721 return d.l; \
724 void name##32(void) \
726 vis64 s, d; \
728 s.d = DT0; \
729 d.d = DT1; \
731 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
732 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
734 DT0 = d.d; \
737 uint32_t name##32s(uint32_t src1, uint32_t src2) \
739 vis32 s, d; \
741 s.l = src1; \
742 d.l = src2; \
744 d.l = F(d.l, s.l); \
746 return d.l; \
749 #define FADD(a, b) ((a) + (b))
750 #define FSUB(a, b) ((a) - (b))
751 VIS_HELPER(helper_fpadd, FADD)
752 VIS_HELPER(helper_fpsub, FSUB)
754 #define VIS_CMPHELPER(name, F) \
755 void name##16(void) \
757 vis64 s, d; \
759 s.d = DT0; \
760 d.d = DT1; \
762 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
763 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
764 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
765 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
767 DT0 = d.d; \
770 void name##32(void) \
772 vis64 s, d; \
774 s.d = DT0; \
775 d.d = DT1; \
777 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
778 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
780 DT0 = d.d; \
783 #define FCMPGT(a, b) ((a) > (b))
784 #define FCMPEQ(a, b) ((a) == (b))
785 #define FCMPLE(a, b) ((a) <= (b))
786 #define FCMPNE(a, b) ((a) != (b))
788 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
789 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
790 VIS_CMPHELPER(helper_fcmple, FCMPLE)
791 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
792 #endif
794 void helper_check_ieee_exceptions(void)
796 target_ulong status;
798 status = get_float_exception_flags(&env->fp_status);
799 if (status) {
800 /* Copy IEEE 754 flags into FSR */
801 if (status & float_flag_invalid)
802 env->fsr |= FSR_NVC;
803 if (status & float_flag_overflow)
804 env->fsr |= FSR_OFC;
805 if (status & float_flag_underflow)
806 env->fsr |= FSR_UFC;
807 if (status & float_flag_divbyzero)
808 env->fsr |= FSR_DZC;
809 if (status & float_flag_inexact)
810 env->fsr |= FSR_NXC;
812 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
813 /* Unmasked exception, generate a trap */
814 env->fsr |= FSR_FTT_IEEE_EXCP;
815 raise_exception(TT_FP_EXCP);
816 } else {
817 /* Accumulate exceptions */
818 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
823 void helper_clear_float_exceptions(void)
825 set_float_exception_flags(0, &env->fp_status);
828 float32 helper_fabss(float32 src)
830 return float32_abs(src);
833 #ifdef TARGET_SPARC64
834 void helper_fabsd(void)
836 DT0 = float64_abs(DT1);
839 void helper_fabsq(void)
841 QT0 = float128_abs(QT1);
843 #endif
845 float32 helper_fsqrts(float32 src)
847 return float32_sqrt(src, &env->fp_status);
850 void helper_fsqrtd(void)
852 DT0 = float64_sqrt(DT1, &env->fp_status);
855 void helper_fsqrtq(void)
857 QT0 = float128_sqrt(QT1, &env->fp_status);
860 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
861 void glue(helper_, name) (void) \
863 target_ulong new_fsr; \
865 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
866 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
867 case float_relation_unordered: \
868 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
869 if ((env->fsr & FSR_NVM) || TRAP) { \
870 env->fsr |= new_fsr; \
871 env->fsr |= FSR_NVC; \
872 env->fsr |= FSR_FTT_IEEE_EXCP; \
873 raise_exception(TT_FP_EXCP); \
874 } else { \
875 env->fsr |= FSR_NVA; \
877 break; \
878 case float_relation_less: \
879 new_fsr = FSR_FCC0 << FS; \
880 break; \
881 case float_relation_greater: \
882 new_fsr = FSR_FCC1 << FS; \
883 break; \
884 default: \
885 new_fsr = 0; \
886 break; \
888 env->fsr |= new_fsr; \
890 #define GEN_FCMPS(name, size, FS, TRAP) \
891 void glue(helper_, name)(float32 src1, float32 src2) \
893 target_ulong new_fsr; \
895 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
896 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
897 case float_relation_unordered: \
898 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
899 if ((env->fsr & FSR_NVM) || TRAP) { \
900 env->fsr |= new_fsr; \
901 env->fsr |= FSR_NVC; \
902 env->fsr |= FSR_FTT_IEEE_EXCP; \
903 raise_exception(TT_FP_EXCP); \
904 } else { \
905 env->fsr |= FSR_NVA; \
907 break; \
908 case float_relation_less: \
909 new_fsr = FSR_FCC0 << FS; \
910 break; \
911 case float_relation_greater: \
912 new_fsr = FSR_FCC1 << FS; \
913 break; \
914 default: \
915 new_fsr = 0; \
916 break; \
918 env->fsr |= new_fsr; \
921 GEN_FCMPS(fcmps, float32, 0, 0);
922 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
924 GEN_FCMPS(fcmpes, float32, 0, 1);
925 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
927 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
928 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
930 static uint32_t compute_all_flags(void)
932 return env->psr & PSR_ICC;
935 static uint32_t compute_C_flags(void)
937 return env->psr & PSR_CARRY;
940 static inline uint32_t get_NZ_icc(int32_t dst)
942 uint32_t ret = 0;
944 if (dst == 0) {
945 ret = PSR_ZERO;
946 } else if (dst < 0) {
947 ret = PSR_NEG;
949 return ret;
952 #ifdef TARGET_SPARC64
953 static uint32_t compute_all_flags_xcc(void)
955 return env->xcc & PSR_ICC;
958 static uint32_t compute_C_flags_xcc(void)
960 return env->xcc & PSR_CARRY;
963 static inline uint32_t get_NZ_xcc(target_long dst)
965 uint32_t ret = 0;
967 if (!dst) {
968 ret = PSR_ZERO;
969 } else if (dst < 0) {
970 ret = PSR_NEG;
972 return ret;
974 #endif
976 static inline uint32_t get_V_div_icc(target_ulong src2)
978 uint32_t ret = 0;
980 if (src2 != 0) {
981 ret = PSR_OVF;
983 return ret;
986 static uint32_t compute_all_div(void)
988 uint32_t ret;
990 ret = get_NZ_icc(CC_DST);
991 ret |= get_V_div_icc(CC_SRC2);
992 return ret;
995 static uint32_t compute_C_div(void)
997 return 0;
1000 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1002 uint32_t ret = 0;
1004 if (dst < src1) {
1005 ret = PSR_CARRY;
1007 return ret;
1010 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1011 uint32_t src2)
1013 uint32_t ret = 0;
1015 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1016 ret = PSR_CARRY;
1018 return ret;
1021 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1022 uint32_t src2)
1024 uint32_t ret = 0;
1026 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1027 ret = PSR_OVF;
1029 return ret;
1032 #ifdef TARGET_SPARC64
1033 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1035 uint32_t ret = 0;
1037 if (dst < src1) {
1038 ret = PSR_CARRY;
1040 return ret;
1043 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1044 target_ulong src2)
1046 uint32_t ret = 0;
1048 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1049 ret = PSR_CARRY;
1051 return ret;
1054 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1055 target_ulong src2)
1057 uint32_t ret = 0;
1059 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1060 ret = PSR_OVF;
1062 return ret;
1065 static uint32_t compute_all_add_xcc(void)
1067 uint32_t ret;
1069 ret = get_NZ_xcc(CC_DST);
1070 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1071 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1072 return ret;
1075 static uint32_t compute_C_add_xcc(void)
1077 return get_C_add_xcc(CC_DST, CC_SRC);
1079 #endif
1081 static uint32_t compute_all_add(void)
1083 uint32_t ret;
1085 ret = get_NZ_icc(CC_DST);
1086 ret |= get_C_add_icc(CC_DST, CC_SRC);
1087 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1088 return ret;
1091 static uint32_t compute_C_add(void)
1093 return get_C_add_icc(CC_DST, CC_SRC);
1096 #ifdef TARGET_SPARC64
1097 static uint32_t compute_all_addx_xcc(void)
1099 uint32_t ret;
1101 ret = get_NZ_xcc(CC_DST);
1102 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1103 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1104 return ret;
1107 static uint32_t compute_C_addx_xcc(void)
1109 uint32_t ret;
1111 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1112 return ret;
1114 #endif
1116 static uint32_t compute_all_addx(void)
1118 uint32_t ret;
1120 ret = get_NZ_icc(CC_DST);
1121 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1122 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1123 return ret;
1126 static uint32_t compute_C_addx(void)
1128 uint32_t ret;
1130 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1131 return ret;
1134 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1136 uint32_t ret = 0;
1138 if ((src1 | src2) & 0x3) {
1139 ret = PSR_OVF;
1141 return ret;
1144 static uint32_t compute_all_tadd(void)
1146 uint32_t ret;
1148 ret = get_NZ_icc(CC_DST);
1149 ret |= get_C_add_icc(CC_DST, CC_SRC);
1150 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1151 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1152 return ret;
1155 static uint32_t compute_all_taddtv(void)
1157 uint32_t ret;
1159 ret = get_NZ_icc(CC_DST);
1160 ret |= get_C_add_icc(CC_DST, CC_SRC);
1161 return ret;
1164 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1166 uint32_t ret = 0;
1168 if (src1 < src2) {
1169 ret = PSR_CARRY;
1171 return ret;
1174 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1175 uint32_t src2)
1177 uint32_t ret = 0;
1179 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1180 ret = PSR_CARRY;
1182 return ret;
1185 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1186 uint32_t src2)
1188 uint32_t ret = 0;
1190 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1191 ret = PSR_OVF;
1193 return ret;
1197 #ifdef TARGET_SPARC64
1198 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1200 uint32_t ret = 0;
1202 if (src1 < src2) {
1203 ret = PSR_CARRY;
1205 return ret;
1208 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1209 target_ulong src2)
1211 uint32_t ret = 0;
1213 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1214 ret = PSR_CARRY;
1216 return ret;
1219 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1220 target_ulong src2)
1222 uint32_t ret = 0;
1224 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1225 ret = PSR_OVF;
1227 return ret;
1230 static uint32_t compute_all_sub_xcc(void)
1232 uint32_t ret;
1234 ret = get_NZ_xcc(CC_DST);
1235 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1236 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1237 return ret;
1240 static uint32_t compute_C_sub_xcc(void)
1242 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1244 #endif
1246 static uint32_t compute_all_sub(void)
1248 uint32_t ret;
1250 ret = get_NZ_icc(CC_DST);
1251 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1252 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1253 return ret;
1256 static uint32_t compute_C_sub(void)
1258 return get_C_sub_icc(CC_SRC, CC_SRC2);
1261 #ifdef TARGET_SPARC64
1262 static uint32_t compute_all_subx_xcc(void)
1264 uint32_t ret;
1266 ret = get_NZ_xcc(CC_DST);
1267 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1268 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1269 return ret;
1272 static uint32_t compute_C_subx_xcc(void)
1274 uint32_t ret;
1276 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1277 return ret;
1279 #endif
1281 static uint32_t compute_all_subx(void)
1283 uint32_t ret;
1285 ret = get_NZ_icc(CC_DST);
1286 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1287 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1288 return ret;
1291 static uint32_t compute_C_subx(void)
1293 uint32_t ret;
1295 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1296 return ret;
1299 static uint32_t compute_all_tsub(void)
1301 uint32_t ret;
1303 ret = get_NZ_icc(CC_DST);
1304 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1305 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1306 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1307 return ret;
1310 static uint32_t compute_all_tsubtv(void)
1312 uint32_t ret;
1314 ret = get_NZ_icc(CC_DST);
1315 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1316 return ret;
1319 static uint32_t compute_all_logic(void)
1321 return get_NZ_icc(CC_DST);
1324 static uint32_t compute_C_logic(void)
1326 return 0;
1329 #ifdef TARGET_SPARC64
1330 static uint32_t compute_all_logic_xcc(void)
1332 return get_NZ_xcc(CC_DST);
1334 #endif
1336 typedef struct CCTable {
1337 uint32_t (*compute_all)(void); /* return all the flags */
1338 uint32_t (*compute_c)(void); /* return the C flag */
1339 } CCTable;
1341 static const CCTable icc_table[CC_OP_NB] = {
1342 /* CC_OP_DYNAMIC should never happen */
1343 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1344 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1345 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1346 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1347 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1348 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1349 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1350 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1351 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1352 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1353 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1356 #ifdef TARGET_SPARC64
1357 static const CCTable xcc_table[CC_OP_NB] = {
1358 /* CC_OP_DYNAMIC should never happen */
1359 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1360 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1361 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1362 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1363 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1364 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1365 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1366 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1367 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1368 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1369 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1371 #endif
1373 void helper_compute_psr(void)
1375 uint32_t new_psr;
1377 new_psr = icc_table[CC_OP].compute_all();
1378 env->psr = new_psr;
1379 #ifdef TARGET_SPARC64
1380 new_psr = xcc_table[CC_OP].compute_all();
1381 env->xcc = new_psr;
1382 #endif
1383 CC_OP = CC_OP_FLAGS;
1386 uint32_t helper_compute_C_icc(void)
1388 uint32_t ret;
1390 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1391 return ret;
1394 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1396 dst[0] = src[0];
1397 dst[1] = src[1];
1398 dst[2] = src[2];
1399 dst[3] = src[3];
1400 dst[4] = src[4];
1401 dst[5] = src[5];
1402 dst[6] = src[6];
1403 dst[7] = src[7];
1406 static void set_cwp(int new_cwp)
1408 /* put the modified wrap registers at their proper location */
1409 if (env->cwp == env->nwindows - 1) {
1410 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1412 env->cwp = new_cwp;
1414 /* put the wrap registers at their temporary location */
1415 if (new_cwp == env->nwindows - 1) {
1416 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1418 env->regwptr = env->regbase + (new_cwp * 16);
1421 void cpu_set_cwp(CPUState *env1, int new_cwp)
1423 CPUState *saved_env;
1425 saved_env = env;
1426 env = env1;
1427 set_cwp(new_cwp);
1428 env = saved_env;
1431 static target_ulong get_psr(void)
1433 helper_compute_psr();
1435 #if !defined (TARGET_SPARC64)
1436 return env->version | (env->psr & PSR_ICC) |
1437 (env->psref? PSR_EF : 0) |
1438 (env->psrpil << 8) |
1439 (env->psrs? PSR_S : 0) |
1440 (env->psrps? PSR_PS : 0) |
1441 (env->psret? PSR_ET : 0) | env->cwp;
1442 #else
1443 return env->psr & PSR_ICC;
1444 #endif
1447 target_ulong cpu_get_psr(CPUState *env1)
1449 CPUState *saved_env;
1450 target_ulong ret;
1452 saved_env = env;
1453 env = env1;
1454 ret = get_psr();
1455 env = saved_env;
1456 return ret;
1459 static void put_psr(target_ulong val)
1461 env->psr = val & PSR_ICC;
1462 #if !defined (TARGET_SPARC64)
1463 env->psref = (val & PSR_EF)? 1 : 0;
1464 env->psrpil = (val & PSR_PIL) >> 8;
1465 #endif
1466 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1467 cpu_check_irqs(env);
1468 #endif
1469 #if !defined (TARGET_SPARC64)
1470 env->psrs = (val & PSR_S)? 1 : 0;
1471 env->psrps = (val & PSR_PS)? 1 : 0;
1472 env->psret = (val & PSR_ET)? 1 : 0;
1473 set_cwp(val & PSR_CWP);
1474 #endif
1475 env->cc_op = CC_OP_FLAGS;
1478 void cpu_put_psr(CPUState *env1, target_ulong val)
1480 CPUState *saved_env;
1482 saved_env = env;
1483 env = env1;
1484 put_psr(val);
1485 env = saved_env;
1488 static int cwp_inc(int cwp)
1490 if (unlikely(cwp >= env->nwindows)) {
1491 cwp -= env->nwindows;
1493 return cwp;
1496 int cpu_cwp_inc(CPUState *env1, int cwp)
1498 CPUState *saved_env;
1499 target_ulong ret;
1501 saved_env = env;
1502 env = env1;
1503 ret = cwp_inc(cwp);
1504 env = saved_env;
1505 return ret;
1508 static int cwp_dec(int cwp)
1510 if (unlikely(cwp < 0)) {
1511 cwp += env->nwindows;
1513 return cwp;
1516 int cpu_cwp_dec(CPUState *env1, int cwp)
1518 CPUState *saved_env;
1519 target_ulong ret;
1521 saved_env = env;
1522 env = env1;
1523 ret = cwp_dec(cwp);
1524 env = saved_env;
1525 return ret;
1528 #ifdef TARGET_SPARC64
1529 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1530 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1531 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1533 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1534 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1535 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1537 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1538 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1539 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1541 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1542 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1543 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1545 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1546 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1547 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1549 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1550 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1551 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1552 #endif
1553 #undef GEN_FCMPS
1555 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1556 defined(DEBUG_MXCC)
1557 static void dump_mxcc(CPUState *env)
1559 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1560 "\n",
1561 env->mxccdata[0], env->mxccdata[1],
1562 env->mxccdata[2], env->mxccdata[3]);
1563 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1564 "\n"
1565 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1566 "\n",
1567 env->mxccregs[0], env->mxccregs[1],
1568 env->mxccregs[2], env->mxccregs[3],
1569 env->mxccregs[4], env->mxccregs[5],
1570 env->mxccregs[6], env->mxccregs[7]);
1572 #endif
1574 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1575 && defined(DEBUG_ASI)
1576 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1577 uint64_t r1)
1579 switch (size)
1581 case 1:
1582 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1583 addr, asi, r1 & 0xff);
1584 break;
1585 case 2:
1586 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1587 addr, asi, r1 & 0xffff);
1588 break;
1589 case 4:
1590 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1591 addr, asi, r1 & 0xffffffff);
1592 break;
1593 case 8:
1594 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1595 addr, asi, r1);
1596 break;
1599 #endif
1601 #ifndef TARGET_SPARC64
1602 #ifndef CONFIG_USER_ONLY
1603 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1605 uint64_t ret = 0;
1606 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1607 uint32_t last_addr = addr;
1608 #endif
1610 helper_check_align(addr, size - 1);
1611 switch (asi) {
1612 case 2: /* SuperSparc MXCC registers */
1613 switch (addr) {
1614 case 0x01c00a00: /* MXCC control register */
1615 if (size == 8)
1616 ret = env->mxccregs[3];
1617 else
1618 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1619 size);
1620 break;
1621 case 0x01c00a04: /* MXCC control register */
1622 if (size == 4)
1623 ret = env->mxccregs[3];
1624 else
1625 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1626 size);
1627 break;
1628 case 0x01c00c00: /* Module reset register */
1629 if (size == 8) {
1630 ret = env->mxccregs[5];
1631 // should we do something here?
1632 } else
1633 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1634 size);
1635 break;
1636 case 0x01c00f00: /* MBus port address register */
1637 if (size == 8)
1638 ret = env->mxccregs[7];
1639 else
1640 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1641 size);
1642 break;
1643 default:
1644 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1645 size);
1646 break;
1648 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1649 "addr = %08x -> ret = %" PRIx64 ","
1650 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1651 #ifdef DEBUG_MXCC
1652 dump_mxcc(env);
1653 #endif
1654 break;
1655 case 3: /* MMU probe */
1657 int mmulev;
1659 mmulev = (addr >> 8) & 15;
1660 if (mmulev > 4)
1661 ret = 0;
1662 else
1663 ret = mmu_probe(env, addr, mmulev);
1664 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1665 addr, mmulev, ret);
1667 break;
1668 case 4: /* read MMU regs */
1670 int reg = (addr >> 8) & 0x1f;
1672 ret = env->mmuregs[reg];
1673 if (reg == 3) /* Fault status cleared on read */
1674 env->mmuregs[3] = 0;
1675 else if (reg == 0x13) /* Fault status read */
1676 ret = env->mmuregs[3];
1677 else if (reg == 0x14) /* Fault address read */
1678 ret = env->mmuregs[4];
1679 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1681 break;
1682 case 5: // Turbosparc ITLB Diagnostic
1683 case 6: // Turbosparc DTLB Diagnostic
1684 case 7: // Turbosparc IOTLB Diagnostic
1685 break;
1686 case 9: /* Supervisor code access */
1687 switch(size) {
1688 case 1:
1689 ret = ldub_code(addr);
1690 break;
1691 case 2:
1692 ret = lduw_code(addr);
1693 break;
1694 default:
1695 case 4:
1696 ret = ldl_code(addr);
1697 break;
1698 case 8:
1699 ret = ldq_code(addr);
1700 break;
1702 break;
1703 case 0xa: /* User data access */
1704 switch(size) {
1705 case 1:
1706 ret = ldub_user(addr);
1707 break;
1708 case 2:
1709 ret = lduw_user(addr);
1710 break;
1711 default:
1712 case 4:
1713 ret = ldl_user(addr);
1714 break;
1715 case 8:
1716 ret = ldq_user(addr);
1717 break;
1719 break;
1720 case 0xb: /* Supervisor data access */
1721 switch(size) {
1722 case 1:
1723 ret = ldub_kernel(addr);
1724 break;
1725 case 2:
1726 ret = lduw_kernel(addr);
1727 break;
1728 default:
1729 case 4:
1730 ret = ldl_kernel(addr);
1731 break;
1732 case 8:
1733 ret = ldq_kernel(addr);
1734 break;
1736 break;
1737 case 0xc: /* I-cache tag */
1738 case 0xd: /* I-cache data */
1739 case 0xe: /* D-cache tag */
1740 case 0xf: /* D-cache data */
1741 break;
1742 case 0x20: /* MMU passthrough */
1743 switch(size) {
1744 case 1:
1745 ret = ldub_phys(addr);
1746 break;
1747 case 2:
1748 ret = lduw_phys(addr);
1749 break;
1750 default:
1751 case 4:
1752 ret = ldl_phys(addr);
1753 break;
1754 case 8:
1755 ret = ldq_phys(addr);
1756 break;
1758 break;
1759 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1760 switch(size) {
1761 case 1:
1762 ret = ldub_phys((target_phys_addr_t)addr
1763 | ((target_phys_addr_t)(asi & 0xf) << 32));
1764 break;
1765 case 2:
1766 ret = lduw_phys((target_phys_addr_t)addr
1767 | ((target_phys_addr_t)(asi & 0xf) << 32));
1768 break;
1769 default:
1770 case 4:
1771 ret = ldl_phys((target_phys_addr_t)addr
1772 | ((target_phys_addr_t)(asi & 0xf) << 32));
1773 break;
1774 case 8:
1775 ret = ldq_phys((target_phys_addr_t)addr
1776 | ((target_phys_addr_t)(asi & 0xf) << 32));
1777 break;
1779 break;
1780 case 0x30: // Turbosparc secondary cache diagnostic
1781 case 0x31: // Turbosparc RAM snoop
1782 case 0x32: // Turbosparc page table descriptor diagnostic
1783 case 0x39: /* data cache diagnostic register */
1784 case 0x4c: /* SuperSPARC MMU Breakpoint Action register */
1785 ret = 0;
1786 break;
1787 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1789 int reg = (addr >> 8) & 3;
1791 switch(reg) {
1792 case 0: /* Breakpoint Value (Addr) */
1793 ret = env->mmubpregs[reg];
1794 break;
1795 case 1: /* Breakpoint Mask */
1796 ret = env->mmubpregs[reg];
1797 break;
1798 case 2: /* Breakpoint Control */
1799 ret = env->mmubpregs[reg];
1800 break;
1801 case 3: /* Breakpoint Status */
1802 ret = env->mmubpregs[reg];
1803 env->mmubpregs[reg] = 0ULL;
1804 break;
1806 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1807 ret);
1809 break;
1810 case 8: /* User code access, XXX */
1811 default:
1812 do_unassigned_access(addr, 0, 0, asi, size);
1813 ret = 0;
1814 break;
1816 if (sign) {
1817 switch(size) {
1818 case 1:
1819 ret = (int8_t) ret;
1820 break;
1821 case 2:
1822 ret = (int16_t) ret;
1823 break;
1824 case 4:
1825 ret = (int32_t) ret;
1826 break;
1827 default:
1828 break;
1831 #ifdef DEBUG_ASI
1832 dump_asi("read ", last_addr, asi, size, ret);
1833 #endif
1834 return ret;
1837 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1839 helper_check_align(addr, size - 1);
1840 switch(asi) {
1841 case 2: /* SuperSparc MXCC registers */
1842 switch (addr) {
1843 case 0x01c00000: /* MXCC stream data register 0 */
1844 if (size == 8)
1845 env->mxccdata[0] = val;
1846 else
1847 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1848 size);
1849 break;
1850 case 0x01c00008: /* MXCC stream data register 1 */
1851 if (size == 8)
1852 env->mxccdata[1] = val;
1853 else
1854 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1855 size);
1856 break;
1857 case 0x01c00010: /* MXCC stream data register 2 */
1858 if (size == 8)
1859 env->mxccdata[2] = val;
1860 else
1861 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1862 size);
1863 break;
1864 case 0x01c00018: /* MXCC stream data register 3 */
1865 if (size == 8)
1866 env->mxccdata[3] = val;
1867 else
1868 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1869 size);
1870 break;
1871 case 0x01c00100: /* MXCC stream source */
1872 if (size == 8)
1873 env->mxccregs[0] = val;
1874 else
1875 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1876 size);
1877 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1879 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1881 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1882 16);
1883 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1884 24);
1885 break;
1886 case 0x01c00200: /* MXCC stream destination */
1887 if (size == 8)
1888 env->mxccregs[1] = val;
1889 else
1890 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1891 size);
1892 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1893 env->mxccdata[0]);
1894 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1895 env->mxccdata[1]);
1896 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1897 env->mxccdata[2]);
1898 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1899 env->mxccdata[3]);
1900 break;
1901 case 0x01c00a00: /* MXCC control register */
1902 if (size == 8)
1903 env->mxccregs[3] = val;
1904 else
1905 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1906 size);
1907 break;
1908 case 0x01c00a04: /* MXCC control register */
1909 if (size == 4)
1910 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1911 | val;
1912 else
1913 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1914 size);
1915 break;
1916 case 0x01c00e00: /* MXCC error register */
1917 // writing a 1 bit clears the error
1918 if (size == 8)
1919 env->mxccregs[6] &= ~val;
1920 else
1921 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1922 size);
1923 break;
1924 case 0x01c00f00: /* MBus port address register */
1925 if (size == 8)
1926 env->mxccregs[7] = val;
1927 else
1928 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1929 size);
1930 break;
1931 default:
1932 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1933 size);
1934 break;
1936 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1937 asi, size, addr, val);
1938 #ifdef DEBUG_MXCC
1939 dump_mxcc(env);
1940 #endif
1941 break;
1942 case 3: /* MMU flush */
1944 int mmulev;
1946 mmulev = (addr >> 8) & 15;
1947 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1948 switch (mmulev) {
1949 case 0: // flush page
1950 tlb_flush_page(env, addr & 0xfffff000);
1951 break;
1952 case 1: // flush segment (256k)
1953 case 2: // flush region (16M)
1954 case 3: // flush context (4G)
1955 case 4: // flush entire
1956 tlb_flush(env, 1);
1957 break;
1958 default:
1959 break;
1961 #ifdef DEBUG_MMU
1962 dump_mmu(env);
1963 #endif
1965 break;
1966 case 4: /* write MMU regs */
1968 int reg = (addr >> 8) & 0x1f;
1969 uint32_t oldreg;
1971 oldreg = env->mmuregs[reg];
1972 switch(reg) {
1973 case 0: // Control Register
1974 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1975 (val & 0x00ffffff);
1976 // Mappings generated during no-fault mode or MMU
1977 // disabled mode are invalid in normal mode
1978 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1979 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1980 tlb_flush(env, 1);
1981 break;
1982 case 1: // Context Table Pointer Register
1983 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1984 break;
1985 case 2: // Context Register
1986 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1987 if (oldreg != env->mmuregs[reg]) {
1988 /* we flush when the MMU context changes because
1989 QEMU has no MMU context support */
1990 tlb_flush(env, 1);
1992 break;
1993 case 3: // Synchronous Fault Status Register with Clear
1994 case 4: // Synchronous Fault Address Register
1995 break;
1996 case 0x10: // TLB Replacement Control Register
1997 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1998 break;
1999 case 0x13: // Synchronous Fault Status Register with Read and Clear
2000 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2001 break;
2002 case 0x14: // Synchronous Fault Address Register
2003 env->mmuregs[4] = val;
2004 break;
2005 default:
2006 env->mmuregs[reg] = val;
2007 break;
2009 if (oldreg != env->mmuregs[reg]) {
2010 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2011 reg, oldreg, env->mmuregs[reg]);
2013 #ifdef DEBUG_MMU
2014 dump_mmu(env);
2015 #endif
2017 break;
2018 case 5: // Turbosparc ITLB Diagnostic
2019 case 6: // Turbosparc DTLB Diagnostic
2020 case 7: // Turbosparc IOTLB Diagnostic
2021 break;
2022 case 0xa: /* User data access */
2023 switch(size) {
2024 case 1:
2025 stb_user(addr, val);
2026 break;
2027 case 2:
2028 stw_user(addr, val);
2029 break;
2030 default:
2031 case 4:
2032 stl_user(addr, val);
2033 break;
2034 case 8:
2035 stq_user(addr, val);
2036 break;
2038 break;
2039 case 0xb: /* Supervisor data access */
2040 switch(size) {
2041 case 1:
2042 stb_kernel(addr, val);
2043 break;
2044 case 2:
2045 stw_kernel(addr, val);
2046 break;
2047 default:
2048 case 4:
2049 stl_kernel(addr, val);
2050 break;
2051 case 8:
2052 stq_kernel(addr, val);
2053 break;
2055 break;
2056 case 0xc: /* I-cache tag */
2057 case 0xd: /* I-cache data */
2058 case 0xe: /* D-cache tag */
2059 case 0xf: /* D-cache data */
2060 case 0x10: /* I/D-cache flush page */
2061 case 0x11: /* I/D-cache flush segment */
2062 case 0x12: /* I/D-cache flush region */
2063 case 0x13: /* I/D-cache flush context */
2064 case 0x14: /* I/D-cache flush user */
2065 break;
2066 case 0x17: /* Block copy, sta access */
2068 // val = src
2069 // addr = dst
2070 // copy 32 bytes
2071 unsigned int i;
2072 uint32_t src = val & ~3, dst = addr & ~3, temp;
2074 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2075 temp = ldl_kernel(src);
2076 stl_kernel(dst, temp);
2079 break;
2080 case 0x1f: /* Block fill, stda access */
2082 // addr = dst
2083 // fill 32 bytes with val
2084 unsigned int i;
2085 uint32_t dst = addr & 7;
2087 for (i = 0; i < 32; i += 8, dst += 8)
2088 stq_kernel(dst, val);
2090 break;
2091 case 0x20: /* MMU passthrough */
2093 switch(size) {
2094 case 1:
2095 stb_phys(addr, val);
2096 break;
2097 case 2:
2098 stw_phys(addr, val);
2099 break;
2100 case 4:
2101 default:
2102 stl_phys(addr, val);
2103 break;
2104 case 8:
2105 stq_phys(addr, val);
2106 break;
2109 break;
2110 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2112 switch(size) {
2113 case 1:
2114 stb_phys((target_phys_addr_t)addr
2115 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2116 break;
2117 case 2:
2118 stw_phys((target_phys_addr_t)addr
2119 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2120 break;
2121 case 4:
2122 default:
2123 stl_phys((target_phys_addr_t)addr
2124 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2125 break;
2126 case 8:
2127 stq_phys((target_phys_addr_t)addr
2128 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2129 break;
2132 break;
2133 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2134 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2135 // Turbosparc snoop RAM
2136 case 0x32: // store buffer control or Turbosparc page table
2137 // descriptor diagnostic
2138 case 0x36: /* I-cache flash clear */
2139 case 0x37: /* D-cache flash clear */
2140 case 0x4c: /* breakpoint action */
2141 break;
2142 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2144 int reg = (addr >> 8) & 3;
2146 switch(reg) {
2147 case 0: /* Breakpoint Value (Addr) */
2148 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2149 break;
2150 case 1: /* Breakpoint Mask */
2151 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2152 break;
2153 case 2: /* Breakpoint Control */
2154 env->mmubpregs[reg] = (val & 0x7fULL);
2155 break;
2156 case 3: /* Breakpoint Status */
2157 env->mmubpregs[reg] = (val & 0xfULL);
2158 break;
2160 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2161 env->mmuregs[reg]);
2163 break;
2164 case 8: /* User code access, XXX */
2165 case 9: /* Supervisor code access, XXX */
2166 default:
2167 do_unassigned_access(addr, 1, 0, asi, size);
2168 break;
2170 #ifdef DEBUG_ASI
2171 dump_asi("write", addr, asi, size, val);
2172 #endif
2175 #endif /* CONFIG_USER_ONLY */
2176 #else /* TARGET_SPARC64 */
2178 #ifdef CONFIG_USER_ONLY
2179 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2181 uint64_t ret = 0;
2182 #if defined(DEBUG_ASI)
2183 target_ulong last_addr = addr;
2184 #endif
2186 if (asi < 0x80)
2187 raise_exception(TT_PRIV_ACT);
2189 helper_check_align(addr, size - 1);
2190 addr = asi_address_mask(env, asi, addr);
2192 switch (asi) {
2193 case 0x82: // Primary no-fault
2194 case 0x8a: // Primary no-fault LE
2195 if (page_check_range(addr, size, PAGE_READ) == -1) {
2196 #ifdef DEBUG_ASI
2197 dump_asi("read ", last_addr, asi, size, ret);
2198 #endif
2199 return 0;
2201 // Fall through
2202 case 0x80: // Primary
2203 case 0x88: // Primary LE
2205 switch(size) {
2206 case 1:
2207 ret = ldub_raw(addr);
2208 break;
2209 case 2:
2210 ret = lduw_raw(addr);
2211 break;
2212 case 4:
2213 ret = ldl_raw(addr);
2214 break;
2215 default:
2216 case 8:
2217 ret = ldq_raw(addr);
2218 break;
2221 break;
2222 case 0x83: // Secondary no-fault
2223 case 0x8b: // Secondary no-fault LE
2224 if (page_check_range(addr, size, PAGE_READ) == -1) {
2225 #ifdef DEBUG_ASI
2226 dump_asi("read ", last_addr, asi, size, ret);
2227 #endif
2228 return 0;
2230 // Fall through
2231 case 0x81: // Secondary
2232 case 0x89: // Secondary LE
2233 // XXX
2234 break;
2235 default:
2236 break;
2239 /* Convert from little endian */
2240 switch (asi) {
2241 case 0x88: // Primary LE
2242 case 0x89: // Secondary LE
2243 case 0x8a: // Primary no-fault LE
2244 case 0x8b: // Secondary no-fault LE
2245 switch(size) {
2246 case 2:
2247 ret = bswap16(ret);
2248 break;
2249 case 4:
2250 ret = bswap32(ret);
2251 break;
2252 case 8:
2253 ret = bswap64(ret);
2254 break;
2255 default:
2256 break;
2258 default:
2259 break;
2262 /* Convert to signed number */
2263 if (sign) {
2264 switch(size) {
2265 case 1:
2266 ret = (int8_t) ret;
2267 break;
2268 case 2:
2269 ret = (int16_t) ret;
2270 break;
2271 case 4:
2272 ret = (int32_t) ret;
2273 break;
2274 default:
2275 break;
2278 #ifdef DEBUG_ASI
2279 dump_asi("read ", last_addr, asi, size, ret);
2280 #endif
2281 return ret;
2284 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2286 #ifdef DEBUG_ASI
2287 dump_asi("write", addr, asi, size, val);
2288 #endif
2289 if (asi < 0x80)
2290 raise_exception(TT_PRIV_ACT);
2292 helper_check_align(addr, size - 1);
2293 addr = asi_address_mask(env, asi, addr);
2295 /* Convert to little endian */
2296 switch (asi) {
2297 case 0x88: // Primary LE
2298 case 0x89: // Secondary LE
2299 switch(size) {
2300 case 2:
2301 val = bswap16(val);
2302 break;
2303 case 4:
2304 val = bswap32(val);
2305 break;
2306 case 8:
2307 val = bswap64(val);
2308 break;
2309 default:
2310 break;
2312 default:
2313 break;
2316 switch(asi) {
2317 case 0x80: // Primary
2318 case 0x88: // Primary LE
2320 switch(size) {
2321 case 1:
2322 stb_raw(addr, val);
2323 break;
2324 case 2:
2325 stw_raw(addr, val);
2326 break;
2327 case 4:
2328 stl_raw(addr, val);
2329 break;
2330 case 8:
2331 default:
2332 stq_raw(addr, val);
2333 break;
2336 break;
2337 case 0x81: // Secondary
2338 case 0x89: // Secondary LE
2339 // XXX
2340 return;
2342 case 0x82: // Primary no-fault, RO
2343 case 0x83: // Secondary no-fault, RO
2344 case 0x8a: // Primary no-fault LE, RO
2345 case 0x8b: // Secondary no-fault LE, RO
2346 default:
2347 do_unassigned_access(addr, 1, 0, 1, size);
2348 return;
2352 #else /* CONFIG_USER_ONLY */
2354 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2356 uint64_t ret = 0;
2357 #if defined(DEBUG_ASI)
2358 target_ulong last_addr = addr;
2359 #endif
2361 asi &= 0xff;
2363 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2364 || (cpu_has_hypervisor(env)
2365 && asi >= 0x30 && asi < 0x80
2366 && !(env->hpstate & HS_PRIV)))
2367 raise_exception(TT_PRIV_ACT);
2369 helper_check_align(addr, size - 1);
2370 addr = asi_address_mask(env, asi, addr);
2372 switch (asi) {
2373 case 0x82: // Primary no-fault
2374 case 0x8a: // Primary no-fault LE
2375 case 0x83: // Secondary no-fault
2376 case 0x8b: // Secondary no-fault LE
2378 /* secondary space access has lowest asi bit equal to 1 */
2379 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2380 : MMU_KERNEL_SECONDARY_IDX;
2382 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2383 #ifdef DEBUG_ASI
2384 dump_asi("read ", last_addr, asi, size, ret);
2385 #endif
2386 return 0;
2389 // Fall through
2390 case 0x10: // As if user primary
2391 case 0x11: // As if user secondary
2392 case 0x18: // As if user primary LE
2393 case 0x19: // As if user secondary LE
2394 case 0x80: // Primary
2395 case 0x81: // Secondary
2396 case 0x88: // Primary LE
2397 case 0x89: // Secondary LE
2398 case 0xe2: // UA2007 Primary block init
2399 case 0xe3: // UA2007 Secondary block init
2400 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2401 if (cpu_hypervisor_mode(env)) {
2402 switch(size) {
2403 case 1:
2404 ret = ldub_hypv(addr);
2405 break;
2406 case 2:
2407 ret = lduw_hypv(addr);
2408 break;
2409 case 4:
2410 ret = ldl_hypv(addr);
2411 break;
2412 default:
2413 case 8:
2414 ret = ldq_hypv(addr);
2415 break;
2417 } else {
2418 /* secondary space access has lowest asi bit equal to 1 */
2419 if (asi & 1) {
2420 switch(size) {
2421 case 1:
2422 ret = ldub_kernel_secondary(addr);
2423 break;
2424 case 2:
2425 ret = lduw_kernel_secondary(addr);
2426 break;
2427 case 4:
2428 ret = ldl_kernel_secondary(addr);
2429 break;
2430 default:
2431 case 8:
2432 ret = ldq_kernel_secondary(addr);
2433 break;
2435 } else {
2436 switch(size) {
2437 case 1:
2438 ret = ldub_kernel(addr);
2439 break;
2440 case 2:
2441 ret = lduw_kernel(addr);
2442 break;
2443 case 4:
2444 ret = ldl_kernel(addr);
2445 break;
2446 default:
2447 case 8:
2448 ret = ldq_kernel(addr);
2449 break;
2453 } else {
2454 /* secondary space access has lowest asi bit equal to 1 */
2455 if (asi & 1) {
2456 switch(size) {
2457 case 1:
2458 ret = ldub_user_secondary(addr);
2459 break;
2460 case 2:
2461 ret = lduw_user_secondary(addr);
2462 break;
2463 case 4:
2464 ret = ldl_user_secondary(addr);
2465 break;
2466 default:
2467 case 8:
2468 ret = ldq_user_secondary(addr);
2469 break;
2471 } else {
2472 switch(size) {
2473 case 1:
2474 ret = ldub_user(addr);
2475 break;
2476 case 2:
2477 ret = lduw_user(addr);
2478 break;
2479 case 4:
2480 ret = ldl_user(addr);
2481 break;
2482 default:
2483 case 8:
2484 ret = ldq_user(addr);
2485 break;
2489 break;
2490 case 0x14: // Bypass
2491 case 0x15: // Bypass, non-cacheable
2492 case 0x1c: // Bypass LE
2493 case 0x1d: // Bypass, non-cacheable LE
2495 switch(size) {
2496 case 1:
2497 ret = ldub_phys(addr);
2498 break;
2499 case 2:
2500 ret = lduw_phys(addr);
2501 break;
2502 case 4:
2503 ret = ldl_phys(addr);
2504 break;
2505 default:
2506 case 8:
2507 ret = ldq_phys(addr);
2508 break;
2510 break;
2512 case 0x24: // Nucleus quad LDD 128 bit atomic
2513 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2514 // Only ldda allowed
2515 raise_exception(TT_ILL_INSN);
2516 return 0;
2517 case 0x04: // Nucleus
2518 case 0x0c: // Nucleus Little Endian (LE)
2520 switch(size) {
2521 case 1:
2522 ret = ldub_nucleus(addr);
2523 break;
2524 case 2:
2525 ret = lduw_nucleus(addr);
2526 break;
2527 case 4:
2528 ret = ldl_nucleus(addr);
2529 break;
2530 default:
2531 case 8:
2532 ret = ldq_nucleus(addr);
2533 break;
2535 break;
2537 case 0x4a: // UPA config
2538 // XXX
2539 break;
2540 case 0x45: // LSU
2541 ret = env->lsu;
2542 break;
2543 case 0x50: // I-MMU regs
2545 int reg = (addr >> 3) & 0xf;
2547 if (reg == 0) {
2548 // I-TSB Tag Target register
2549 ret = ultrasparc_tag_target(env->immu.tag_access);
2550 } else {
2551 ret = env->immuregs[reg];
2554 break;
2556 case 0x51: // I-MMU 8k TSB pointer
2558 // env->immuregs[5] holds I-MMU TSB register value
2559 // env->immuregs[6] holds I-MMU Tag Access register value
2560 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2561 8*1024);
2562 break;
2564 case 0x52: // I-MMU 64k TSB pointer
2566 // env->immuregs[5] holds I-MMU TSB register value
2567 // env->immuregs[6] holds I-MMU Tag Access register value
2568 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2569 64*1024);
2570 break;
2572 case 0x55: // I-MMU data access
2574 int reg = (addr >> 3) & 0x3f;
2576 ret = env->itlb[reg].tte;
2577 break;
2579 case 0x56: // I-MMU tag read
2581 int reg = (addr >> 3) & 0x3f;
2583 ret = env->itlb[reg].tag;
2584 break;
2586 case 0x58: // D-MMU regs
2588 int reg = (addr >> 3) & 0xf;
2590 if (reg == 0) {
2591 // D-TSB Tag Target register
2592 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2593 } else {
2594 ret = env->dmmuregs[reg];
2596 break;
2598 case 0x59: // D-MMU 8k TSB pointer
2600 // env->dmmuregs[5] holds D-MMU TSB register value
2601 // env->dmmuregs[6] holds D-MMU Tag Access register value
2602 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2603 8*1024);
2604 break;
2606 case 0x5a: // D-MMU 64k TSB pointer
2608 // env->dmmuregs[5] holds D-MMU TSB register value
2609 // env->dmmuregs[6] holds D-MMU Tag Access register value
2610 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2611 64*1024);
2612 break;
2614 case 0x5d: // D-MMU data access
2616 int reg = (addr >> 3) & 0x3f;
2618 ret = env->dtlb[reg].tte;
2619 break;
2621 case 0x5e: // D-MMU tag read
2623 int reg = (addr >> 3) & 0x3f;
2625 ret = env->dtlb[reg].tag;
2626 break;
2628 case 0x46: // D-cache data
2629 case 0x47: // D-cache tag access
2630 case 0x4b: // E-cache error enable
2631 case 0x4c: // E-cache asynchronous fault status
2632 case 0x4d: // E-cache asynchronous fault address
2633 case 0x4e: // E-cache tag data
2634 case 0x66: // I-cache instruction access
2635 case 0x67: // I-cache tag access
2636 case 0x6e: // I-cache predecode
2637 case 0x6f: // I-cache LRU etc.
2638 case 0x76: // E-cache tag
2639 case 0x7e: // E-cache tag
2640 break;
2641 case 0x5b: // D-MMU data pointer
2642 case 0x48: // Interrupt dispatch, RO
2643 case 0x49: // Interrupt data receive
2644 case 0x7f: // Incoming interrupt vector, RO
2645 // XXX
2646 break;
2647 case 0x54: // I-MMU data in, WO
2648 case 0x57: // I-MMU demap, WO
2649 case 0x5c: // D-MMU data in, WO
2650 case 0x5f: // D-MMU demap, WO
2651 case 0x77: // Interrupt vector, WO
2652 default:
2653 do_unassigned_access(addr, 0, 0, 1, size);
2654 ret = 0;
2655 break;
2658 /* Convert from little endian */
2659 switch (asi) {
2660 case 0x0c: // Nucleus Little Endian (LE)
2661 case 0x18: // As if user primary LE
2662 case 0x19: // As if user secondary LE
2663 case 0x1c: // Bypass LE
2664 case 0x1d: // Bypass, non-cacheable LE
2665 case 0x88: // Primary LE
2666 case 0x89: // Secondary LE
2667 case 0x8a: // Primary no-fault LE
2668 case 0x8b: // Secondary no-fault LE
2669 switch(size) {
2670 case 2:
2671 ret = bswap16(ret);
2672 break;
2673 case 4:
2674 ret = bswap32(ret);
2675 break;
2676 case 8:
2677 ret = bswap64(ret);
2678 break;
2679 default:
2680 break;
2682 default:
2683 break;
2686 /* Convert to signed number */
2687 if (sign) {
2688 switch(size) {
2689 case 1:
2690 ret = (int8_t) ret;
2691 break;
2692 case 2:
2693 ret = (int16_t) ret;
2694 break;
2695 case 4:
2696 ret = (int32_t) ret;
2697 break;
2698 default:
2699 break;
2702 #ifdef DEBUG_ASI
2703 dump_asi("read ", last_addr, asi, size, ret);
2704 #endif
2705 return ret;
2708 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2710 #ifdef DEBUG_ASI
2711 dump_asi("write", addr, asi, size, val);
2712 #endif
2714 asi &= 0xff;
2716 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2717 || (cpu_has_hypervisor(env)
2718 && asi >= 0x30 && asi < 0x80
2719 && !(env->hpstate & HS_PRIV)))
2720 raise_exception(TT_PRIV_ACT);
2722 helper_check_align(addr, size - 1);
2723 addr = asi_address_mask(env, asi, addr);
2725 /* Convert to little endian */
2726 switch (asi) {
2727 case 0x0c: // Nucleus Little Endian (LE)
2728 case 0x18: // As if user primary LE
2729 case 0x19: // As if user secondary LE
2730 case 0x1c: // Bypass LE
2731 case 0x1d: // Bypass, non-cacheable LE
2732 case 0x88: // Primary LE
2733 case 0x89: // Secondary LE
2734 switch(size) {
2735 case 2:
2736 val = bswap16(val);
2737 break;
2738 case 4:
2739 val = bswap32(val);
2740 break;
2741 case 8:
2742 val = bswap64(val);
2743 break;
2744 default:
2745 break;
2747 default:
2748 break;
2751 switch(asi) {
2752 case 0x10: // As if user primary
2753 case 0x11: // As if user secondary
2754 case 0x18: // As if user primary LE
2755 case 0x19: // As if user secondary LE
2756 case 0x80: // Primary
2757 case 0x81: // Secondary
2758 case 0x88: // Primary LE
2759 case 0x89: // Secondary LE
2760 case 0xe2: // UA2007 Primary block init
2761 case 0xe3: // UA2007 Secondary block init
2762 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2763 if (cpu_hypervisor_mode(env)) {
2764 switch(size) {
2765 case 1:
2766 stb_hypv(addr, val);
2767 break;
2768 case 2:
2769 stw_hypv(addr, val);
2770 break;
2771 case 4:
2772 stl_hypv(addr, val);
2773 break;
2774 case 8:
2775 default:
2776 stq_hypv(addr, val);
2777 break;
2779 } else {
2780 /* secondary space access has lowest asi bit equal to 1 */
2781 if (asi & 1) {
2782 switch(size) {
2783 case 1:
2784 stb_kernel_secondary(addr, val);
2785 break;
2786 case 2:
2787 stw_kernel_secondary(addr, val);
2788 break;
2789 case 4:
2790 stl_kernel_secondary(addr, val);
2791 break;
2792 case 8:
2793 default:
2794 stq_kernel_secondary(addr, val);
2795 break;
2797 } else {
2798 switch(size) {
2799 case 1:
2800 stb_kernel(addr, val);
2801 break;
2802 case 2:
2803 stw_kernel(addr, val);
2804 break;
2805 case 4:
2806 stl_kernel(addr, val);
2807 break;
2808 case 8:
2809 default:
2810 stq_kernel(addr, val);
2811 break;
2815 } else {
2816 /* secondary space access has lowest asi bit equal to 1 */
2817 if (asi & 1) {
2818 switch(size) {
2819 case 1:
2820 stb_user_secondary(addr, val);
2821 break;
2822 case 2:
2823 stw_user_secondary(addr, val);
2824 break;
2825 case 4:
2826 stl_user_secondary(addr, val);
2827 break;
2828 case 8:
2829 default:
2830 stq_user_secondary(addr, val);
2831 break;
2833 } else {
2834 switch(size) {
2835 case 1:
2836 stb_user(addr, val);
2837 break;
2838 case 2:
2839 stw_user(addr, val);
2840 break;
2841 case 4:
2842 stl_user(addr, val);
2843 break;
2844 case 8:
2845 default:
2846 stq_user(addr, val);
2847 break;
2851 break;
2852 case 0x14: // Bypass
2853 case 0x15: // Bypass, non-cacheable
2854 case 0x1c: // Bypass LE
2855 case 0x1d: // Bypass, non-cacheable LE
2857 switch(size) {
2858 case 1:
2859 stb_phys(addr, val);
2860 break;
2861 case 2:
2862 stw_phys(addr, val);
2863 break;
2864 case 4:
2865 stl_phys(addr, val);
2866 break;
2867 case 8:
2868 default:
2869 stq_phys(addr, val);
2870 break;
2873 return;
2874 case 0x24: // Nucleus quad LDD 128 bit atomic
2875 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2876 // Only ldda allowed
2877 raise_exception(TT_ILL_INSN);
2878 return;
2879 case 0x04: // Nucleus
2880 case 0x0c: // Nucleus Little Endian (LE)
2882 switch(size) {
2883 case 1:
2884 stb_nucleus(addr, val);
2885 break;
2886 case 2:
2887 stw_nucleus(addr, val);
2888 break;
2889 case 4:
2890 stl_nucleus(addr, val);
2891 break;
2892 default:
2893 case 8:
2894 stq_nucleus(addr, val);
2895 break;
2897 break;
2900 case 0x4a: // UPA config
2901 // XXX
2902 return;
2903 case 0x45: // LSU
2905 uint64_t oldreg;
2907 oldreg = env->lsu;
2908 env->lsu = val & (DMMU_E | IMMU_E);
2909 // Mappings generated during D/I MMU disabled mode are
2910 // invalid in normal mode
2911 if (oldreg != env->lsu) {
2912 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2913 oldreg, env->lsu);
2914 #ifdef DEBUG_MMU
2915 dump_mmu(env);
2916 #endif
2917 tlb_flush(env, 1);
2919 return;
2921 case 0x50: // I-MMU regs
2923 int reg = (addr >> 3) & 0xf;
2924 uint64_t oldreg;
2926 oldreg = env->immuregs[reg];
2927 switch(reg) {
2928 case 0: // RO
2929 return;
2930 case 1: // Not in I-MMU
2931 case 2:
2932 return;
2933 case 3: // SFSR
2934 if ((val & 1) == 0)
2935 val = 0; // Clear SFSR
2936 env->immu.sfsr = val;
2937 break;
2938 case 4: // RO
2939 return;
2940 case 5: // TSB access
2941 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2942 PRIx64 "\n", env->immu.tsb, val);
2943 env->immu.tsb = val;
2944 break;
2945 case 6: // Tag access
2946 env->immu.tag_access = val;
2947 break;
2948 case 7:
2949 case 8:
2950 return;
2951 default:
2952 break;
2955 if (oldreg != env->immuregs[reg]) {
2956 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2957 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2959 #ifdef DEBUG_MMU
2960 dump_mmu(env);
2961 #endif
2962 return;
2964 case 0x54: // I-MMU data in
2965 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2966 return;
2967 case 0x55: // I-MMU data access
2969 // TODO: auto demap
2971 unsigned int i = (addr >> 3) & 0x3f;
2973 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2975 #ifdef DEBUG_MMU
2976 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2977 dump_mmu(env);
2978 #endif
2979 return;
2981 case 0x57: // I-MMU demap
2982 demap_tlb(env->itlb, addr, "immu", env);
2983 return;
2984 case 0x58: // D-MMU regs
2986 int reg = (addr >> 3) & 0xf;
2987 uint64_t oldreg;
2989 oldreg = env->dmmuregs[reg];
2990 switch(reg) {
2991 case 0: // RO
2992 case 4:
2993 return;
2994 case 3: // SFSR
2995 if ((val & 1) == 0) {
2996 val = 0; // Clear SFSR, Fault address
2997 env->dmmu.sfar = 0;
2999 env->dmmu.sfsr = val;
3000 break;
3001 case 1: // Primary context
3002 env->dmmu.mmu_primary_context = val;
3003 /* can be optimized to only flush MMU_USER_IDX
3004 and MMU_KERNEL_IDX entries */
3005 tlb_flush(env, 1);
3006 break;
3007 case 2: // Secondary context
3008 env->dmmu.mmu_secondary_context = val;
3009 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3010 and MMU_KERNEL_SECONDARY_IDX entries */
3011 tlb_flush(env, 1);
3012 break;
3013 case 5: // TSB access
3014 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3015 PRIx64 "\n", env->dmmu.tsb, val);
3016 env->dmmu.tsb = val;
3017 break;
3018 case 6: // Tag access
3019 env->dmmu.tag_access = val;
3020 break;
3021 case 7: // Virtual Watchpoint
3022 case 8: // Physical Watchpoint
3023 default:
3024 env->dmmuregs[reg] = val;
3025 break;
3028 if (oldreg != env->dmmuregs[reg]) {
3029 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3030 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3032 #ifdef DEBUG_MMU
3033 dump_mmu(env);
3034 #endif
3035 return;
3037 case 0x5c: // D-MMU data in
3038 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3039 return;
3040 case 0x5d: // D-MMU data access
3042 unsigned int i = (addr >> 3) & 0x3f;
3044 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3046 #ifdef DEBUG_MMU
3047 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3048 dump_mmu(env);
3049 #endif
3050 return;
3052 case 0x5f: // D-MMU demap
3053 demap_tlb(env->dtlb, addr, "dmmu", env);
3054 return;
3055 case 0x49: // Interrupt data receive
3056 // XXX
3057 return;
3058 case 0x46: // D-cache data
3059 case 0x47: // D-cache tag access
3060 case 0x4b: // E-cache error enable
3061 case 0x4c: // E-cache asynchronous fault status
3062 case 0x4d: // E-cache asynchronous fault address
3063 case 0x4e: // E-cache tag data
3064 case 0x66: // I-cache instruction access
3065 case 0x67: // I-cache tag access
3066 case 0x6e: // I-cache predecode
3067 case 0x6f: // I-cache LRU etc.
3068 case 0x76: // E-cache tag
3069 case 0x7e: // E-cache tag
3070 return;
3071 case 0x51: // I-MMU 8k TSB pointer, RO
3072 case 0x52: // I-MMU 64k TSB pointer, RO
3073 case 0x56: // I-MMU tag read, RO
3074 case 0x59: // D-MMU 8k TSB pointer, RO
3075 case 0x5a: // D-MMU 64k TSB pointer, RO
3076 case 0x5b: // D-MMU data pointer, RO
3077 case 0x5e: // D-MMU tag read, RO
3078 case 0x48: // Interrupt dispatch, RO
3079 case 0x7f: // Incoming interrupt vector, RO
3080 case 0x82: // Primary no-fault, RO
3081 case 0x83: // Secondary no-fault, RO
3082 case 0x8a: // Primary no-fault LE, RO
3083 case 0x8b: // Secondary no-fault LE, RO
3084 default:
3085 do_unassigned_access(addr, 1, 0, 1, size);
3086 return;
3089 #endif /* CONFIG_USER_ONLY */
3091 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3093 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3094 || (cpu_has_hypervisor(env)
3095 && asi >= 0x30 && asi < 0x80
3096 && !(env->hpstate & HS_PRIV)))
3097 raise_exception(TT_PRIV_ACT);
3099 addr = asi_address_mask(env, asi, addr);
3101 switch (asi) {
3102 #if !defined(CONFIG_USER_ONLY)
3103 case 0x24: // Nucleus quad LDD 128 bit atomic
3104 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3105 helper_check_align(addr, 0xf);
3106 if (rd == 0) {
3107 env->gregs[1] = ldq_nucleus(addr + 8);
3108 if (asi == 0x2c)
3109 bswap64s(&env->gregs[1]);
3110 } else if (rd < 8) {
3111 env->gregs[rd] = ldq_nucleus(addr);
3112 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3113 if (asi == 0x2c) {
3114 bswap64s(&env->gregs[rd]);
3115 bswap64s(&env->gregs[rd + 1]);
3117 } else {
3118 env->regwptr[rd] = ldq_nucleus(addr);
3119 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3120 if (asi == 0x2c) {
3121 bswap64s(&env->regwptr[rd]);
3122 bswap64s(&env->regwptr[rd + 1]);
3125 break;
3126 #endif
3127 default:
3128 helper_check_align(addr, 0x3);
3129 if (rd == 0)
3130 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3131 else if (rd < 8) {
3132 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3133 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3134 } else {
3135 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3136 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3138 break;
3142 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3144 unsigned int i;
3145 target_ulong val;
3147 helper_check_align(addr, 3);
3148 addr = asi_address_mask(env, asi, addr);
3150 switch (asi) {
3151 case 0xf0: // Block load primary
3152 case 0xf1: // Block load secondary
3153 case 0xf8: // Block load primary LE
3154 case 0xf9: // Block load secondary LE
3155 if (rd & 7) {
3156 raise_exception(TT_ILL_INSN);
3157 return;
3159 helper_check_align(addr, 0x3f);
3160 for (i = 0; i < 16; i++) {
3161 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3163 addr += 4;
3166 return;
3167 case 0x70: // Block load primary, user privilege
3168 case 0x71: // Block load secondary, user privilege
3169 if (rd & 7) {
3170 raise_exception(TT_ILL_INSN);
3171 return;
3173 helper_check_align(addr, 0x3f);
3174 for (i = 0; i < 16; i++) {
3175 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4,
3177 addr += 4;
3180 return;
3181 default:
3182 break;
3185 val = helper_ld_asi(addr, asi, size, 0);
3186 switch(size) {
3187 default:
3188 case 4:
3189 *((uint32_t *)&env->fpr[rd]) = val;
3190 break;
3191 case 8:
3192 *((int64_t *)&DT0) = val;
3193 break;
3194 case 16:
3195 // XXX
3196 break;
3200 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3202 unsigned int i;
3203 target_ulong val = 0;
3205 helper_check_align(addr, 3);
3206 addr = asi_address_mask(env, asi, addr);
3208 switch (asi) {
3209 case 0xe0: // UA2007 Block commit store primary (cache flush)
3210 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3211 case 0xf0: // Block store primary
3212 case 0xf1: // Block store secondary
3213 case 0xf8: // Block store primary LE
3214 case 0xf9: // Block store secondary LE
3215 if (rd & 7) {
3216 raise_exception(TT_ILL_INSN);
3217 return;
3219 helper_check_align(addr, 0x3f);
3220 for (i = 0; i < 16; i++) {
3221 val = *(uint32_t *)&env->fpr[rd++];
3222 helper_st_asi(addr, val, asi & 0x8f, 4);
3223 addr += 4;
3226 return;
3227 case 0x70: // Block store primary, user privilege
3228 case 0x71: // Block store secondary, user privilege
3229 if (rd & 7) {
3230 raise_exception(TT_ILL_INSN);
3231 return;
3233 helper_check_align(addr, 0x3f);
3234 for (i = 0; i < 16; i++) {
3235 val = *(uint32_t *)&env->fpr[rd++];
3236 helper_st_asi(addr, val, asi & 0x1f, 4);
3237 addr += 4;
3240 return;
3241 default:
3242 break;
3245 switch(size) {
3246 default:
3247 case 4:
3248 val = *((uint32_t *)&env->fpr[rd]);
3249 break;
3250 case 8:
3251 val = *((int64_t *)&DT0);
3252 break;
3253 case 16:
3254 // XXX
3255 break;
3257 helper_st_asi(addr, val, asi, size);
3260 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3261 target_ulong val2, uint32_t asi)
3263 target_ulong ret;
3265 val2 &= 0xffffffffUL;
3266 ret = helper_ld_asi(addr, asi, 4, 0);
3267 ret &= 0xffffffffUL;
3268 if (val2 == ret)
3269 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3270 return ret;
3273 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3274 target_ulong val2, uint32_t asi)
3276 target_ulong ret;
3278 ret = helper_ld_asi(addr, asi, 8, 0);
3279 if (val2 == ret)
3280 helper_st_asi(addr, val1, asi, 8);
3281 return ret;
3283 #endif /* TARGET_SPARC64 */
3285 #ifndef TARGET_SPARC64
3286 void helper_rett(void)
3288 unsigned int cwp;
3290 if (env->psret == 1)
3291 raise_exception(TT_ILL_INSN);
3293 env->psret = 1;
3294 cwp = cwp_inc(env->cwp + 1) ;
3295 if (env->wim & (1 << cwp)) {
3296 raise_exception(TT_WIN_UNF);
3298 set_cwp(cwp);
3299 env->psrs = env->psrps;
3301 #endif
3303 target_ulong helper_udiv(target_ulong a, target_ulong b)
3305 uint64_t x0;
3306 uint32_t x1;
3308 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3309 x1 = (b & 0xffffffff);
3311 if (x1 == 0) {
3312 raise_exception(TT_DIV_ZERO);
3315 x0 = x0 / x1;
3316 if (x0 > 0xffffffff) {
3317 env->cc_src2 = 1;
3318 return 0xffffffff;
3319 } else {
3320 env->cc_src2 = 0;
3321 return x0;
3325 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3327 int64_t x0;
3328 int32_t x1;
3330 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3331 x1 = (b & 0xffffffff);
3333 if (x1 == 0) {
3334 raise_exception(TT_DIV_ZERO);
3337 x0 = x0 / x1;
3338 if ((int32_t) x0 != x0) {
3339 env->cc_src2 = 1;
3340 return x0 < 0? 0x80000000: 0x7fffffff;
3341 } else {
3342 env->cc_src2 = 0;
3343 return x0;
3347 void helper_stdf(target_ulong addr, int mem_idx)
3349 helper_check_align(addr, 7);
3350 #if !defined(CONFIG_USER_ONLY)
3351 switch (mem_idx) {
3352 case MMU_USER_IDX:
3353 stfq_user(addr, DT0);
3354 break;
3355 case MMU_KERNEL_IDX:
3356 stfq_kernel(addr, DT0);
3357 break;
3358 #ifdef TARGET_SPARC64
3359 case MMU_HYPV_IDX:
3360 stfq_hypv(addr, DT0);
3361 break;
3362 #endif
3363 default:
3364 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3365 break;
3367 #else
3368 stfq_raw(address_mask(env, addr), DT0);
3369 #endif
3372 void helper_lddf(target_ulong addr, int mem_idx)
3374 helper_check_align(addr, 7);
3375 #if !defined(CONFIG_USER_ONLY)
3376 switch (mem_idx) {
3377 case MMU_USER_IDX:
3378 DT0 = ldfq_user(addr);
3379 break;
3380 case MMU_KERNEL_IDX:
3381 DT0 = ldfq_kernel(addr);
3382 break;
3383 #ifdef TARGET_SPARC64
3384 case MMU_HYPV_IDX:
3385 DT0 = ldfq_hypv(addr);
3386 break;
3387 #endif
3388 default:
3389 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3390 break;
3392 #else
3393 DT0 = ldfq_raw(address_mask(env, addr));
3394 #endif
3397 void helper_ldqf(target_ulong addr, int mem_idx)
3399 // XXX add 128 bit load
3400 CPU_QuadU u;
3402 helper_check_align(addr, 7);
3403 #if !defined(CONFIG_USER_ONLY)
3404 switch (mem_idx) {
3405 case MMU_USER_IDX:
3406 u.ll.upper = ldq_user(addr);
3407 u.ll.lower = ldq_user(addr + 8);
3408 QT0 = u.q;
3409 break;
3410 case MMU_KERNEL_IDX:
3411 u.ll.upper = ldq_kernel(addr);
3412 u.ll.lower = ldq_kernel(addr + 8);
3413 QT0 = u.q;
3414 break;
3415 #ifdef TARGET_SPARC64
3416 case MMU_HYPV_IDX:
3417 u.ll.upper = ldq_hypv(addr);
3418 u.ll.lower = ldq_hypv(addr + 8);
3419 QT0 = u.q;
3420 break;
3421 #endif
3422 default:
3423 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3424 break;
3426 #else
3427 u.ll.upper = ldq_raw(address_mask(env, addr));
3428 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3429 QT0 = u.q;
3430 #endif
3433 void helper_stqf(target_ulong addr, int mem_idx)
3435 // XXX add 128 bit store
3436 CPU_QuadU u;
3438 helper_check_align(addr, 7);
3439 #if !defined(CONFIG_USER_ONLY)
3440 switch (mem_idx) {
3441 case MMU_USER_IDX:
3442 u.q = QT0;
3443 stq_user(addr, u.ll.upper);
3444 stq_user(addr + 8, u.ll.lower);
3445 break;
3446 case MMU_KERNEL_IDX:
3447 u.q = QT0;
3448 stq_kernel(addr, u.ll.upper);
3449 stq_kernel(addr + 8, u.ll.lower);
3450 break;
3451 #ifdef TARGET_SPARC64
3452 case MMU_HYPV_IDX:
3453 u.q = QT0;
3454 stq_hypv(addr, u.ll.upper);
3455 stq_hypv(addr + 8, u.ll.lower);
3456 break;
3457 #endif
3458 default:
3459 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3460 break;
3462 #else
3463 u.q = QT0;
3464 stq_raw(address_mask(env, addr), u.ll.upper);
3465 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3466 #endif
3469 static inline void set_fsr(void)
3471 int rnd_mode;
3473 switch (env->fsr & FSR_RD_MASK) {
3474 case FSR_RD_NEAREST:
3475 rnd_mode = float_round_nearest_even;
3476 break;
3477 default:
3478 case FSR_RD_ZERO:
3479 rnd_mode = float_round_to_zero;
3480 break;
3481 case FSR_RD_POS:
3482 rnd_mode = float_round_up;
3483 break;
3484 case FSR_RD_NEG:
3485 rnd_mode = float_round_down;
3486 break;
3488 set_float_rounding_mode(rnd_mode, &env->fp_status);
3491 void helper_ldfsr(uint32_t new_fsr)
3493 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3494 set_fsr();
3497 #ifdef TARGET_SPARC64
3498 void helper_ldxfsr(uint64_t new_fsr)
3500 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3501 set_fsr();
3503 #endif
3505 void helper_debug(void)
3507 env->exception_index = EXCP_DEBUG;
3508 cpu_loop_exit();
3511 #ifndef TARGET_SPARC64
3512 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3513 handling ? */
3514 void helper_save(void)
3516 uint32_t cwp;
3518 cwp = cwp_dec(env->cwp - 1);
3519 if (env->wim & (1 << cwp)) {
3520 raise_exception(TT_WIN_OVF);
3522 set_cwp(cwp);
3525 void helper_restore(void)
3527 uint32_t cwp;
3529 cwp = cwp_inc(env->cwp + 1);
3530 if (env->wim & (1 << cwp)) {
3531 raise_exception(TT_WIN_UNF);
3533 set_cwp(cwp);
3536 void helper_wrpsr(target_ulong new_psr)
3538 if ((new_psr & PSR_CWP) >= env->nwindows) {
3539 raise_exception(TT_ILL_INSN);
3540 } else {
3541 cpu_put_psr(env, new_psr);
3545 target_ulong helper_rdpsr(void)
3547 return get_psr();
3550 #else
3551 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3552 handling ? */
3553 void helper_save(void)
3555 uint32_t cwp;
3557 cwp = cwp_dec(env->cwp - 1);
3558 if (env->cansave == 0) {
3559 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3560 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3561 ((env->wstate & 0x7) << 2)));
3562 } else {
3563 if (env->cleanwin - env->canrestore == 0) {
3564 // XXX Clean windows without trap
3565 raise_exception(TT_CLRWIN);
3566 } else {
3567 env->cansave--;
3568 env->canrestore++;
3569 set_cwp(cwp);
3574 void helper_restore(void)
3576 uint32_t cwp;
3578 cwp = cwp_inc(env->cwp + 1);
3579 if (env->canrestore == 0) {
3580 raise_exception(TT_FILL | (env->otherwin != 0 ?
3581 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3582 ((env->wstate & 0x7) << 2)));
3583 } else {
3584 env->cansave++;
3585 env->canrestore--;
3586 set_cwp(cwp);
3590 void helper_flushw(void)
3592 if (env->cansave != env->nwindows - 2) {
3593 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3594 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3595 ((env->wstate & 0x7) << 2)));
3599 void helper_saved(void)
3601 env->cansave++;
3602 if (env->otherwin == 0)
3603 env->canrestore--;
3604 else
3605 env->otherwin--;
3608 void helper_restored(void)
3610 env->canrestore++;
3611 if (env->cleanwin < env->nwindows - 1)
3612 env->cleanwin++;
3613 if (env->otherwin == 0)
3614 env->cansave--;
3615 else
3616 env->otherwin--;
3619 static target_ulong get_ccr(void)
3621 target_ulong psr;
3623 psr = get_psr();
3625 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3628 target_ulong cpu_get_ccr(CPUState *env1)
3630 CPUState *saved_env;
3631 target_ulong ret;
3633 saved_env = env;
3634 env = env1;
3635 ret = get_ccr();
3636 env = saved_env;
3637 return ret;
3640 static void put_ccr(target_ulong val)
3642 target_ulong tmp = val;
3644 env->xcc = (tmp >> 4) << 20;
3645 env->psr = (tmp & 0xf) << 20;
3646 CC_OP = CC_OP_FLAGS;
3649 void cpu_put_ccr(CPUState *env1, target_ulong val)
3651 CPUState *saved_env;
3653 saved_env = env;
3654 env = env1;
3655 put_ccr(val);
3656 env = saved_env;
3659 static target_ulong get_cwp64(void)
3661 return env->nwindows - 1 - env->cwp;
3664 target_ulong cpu_get_cwp64(CPUState *env1)
3666 CPUState *saved_env;
3667 target_ulong ret;
3669 saved_env = env;
3670 env = env1;
3671 ret = get_cwp64();
3672 env = saved_env;
3673 return ret;
3676 static void put_cwp64(int cwp)
3678 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3679 cwp %= env->nwindows;
3681 set_cwp(env->nwindows - 1 - cwp);
3684 void cpu_put_cwp64(CPUState *env1, int cwp)
3686 CPUState *saved_env;
3688 saved_env = env;
3689 env = env1;
3690 put_cwp64(cwp);
3691 env = saved_env;
3694 target_ulong helper_rdccr(void)
3696 return get_ccr();
3699 void helper_wrccr(target_ulong new_ccr)
3701 put_ccr(new_ccr);
3704 // CWP handling is reversed in V9, but we still use the V8 register
3705 // order.
3706 target_ulong helper_rdcwp(void)
3708 return get_cwp64();
3711 void helper_wrcwp(target_ulong new_cwp)
3713 put_cwp64(new_cwp);
3716 // This function uses non-native bit order
3717 #define GET_FIELD(X, FROM, TO) \
3718 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3720 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3721 #define GET_FIELD_SP(X, FROM, TO) \
3722 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3724 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3726 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3727 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3728 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3729 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3730 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3731 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3732 (((pixel_addr >> 55) & 1) << 4) |
3733 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3734 GET_FIELD_SP(pixel_addr, 11, 12);
3737 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3739 uint64_t tmp;
3741 tmp = addr + offset;
3742 env->gsr &= ~7ULL;
3743 env->gsr |= tmp & 7ULL;
3744 return tmp & ~7ULL;
3747 target_ulong helper_popc(target_ulong val)