tests: acpi: add pvpanic-isa: testcase
[qemu.git] / target / arm / cpu.c
blobd2bd74c2ed42c11aa060ca829094f6d739addadc
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 ARMCPU *cpu = ARM_CPU(cs);
51 CPUARMState *env = &cpu->env;
53 if (is_a64(env)) {
54 env->pc = value;
55 env->thumb = false;
56 } else {
57 env->regs[15] = value & ~1;
58 env->thumb = value & 1;
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64 const TranslationBlock *tb)
66 ARMCPU *cpu = ARM_CPU(cs);
67 CPUARMState *env = &cpu->env;
70 * It's OK to look at env for the current mode here, because it's
71 * never possible for an AArch64 TB to chain to an AArch32 TB.
73 if (is_a64(env)) {
74 env->pc = tb->pc;
75 } else {
76 env->regs[15] = tb->pc;
79 #endif /* CONFIG_TCG */
81 static bool arm_cpu_has_work(CPUState *cs)
83 ARMCPU *cpu = ARM_CPU(cs);
85 return (cpu->power_state != PSCI_OFF)
86 && cs->interrupt_request &
87 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89 | CPU_INTERRUPT_EXITTB);
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93 void *opaque)
95 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 entry->hook = hook;
98 entry->opaque = opaque;
100 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104 void *opaque)
106 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
108 entry->hook = hook;
109 entry->opaque = opaque;
111 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
116 /* Reset a single ARMCPRegInfo register */
117 ARMCPRegInfo *ri = value;
118 ARMCPU *cpu = opaque;
120 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121 return;
124 if (ri->resetfn) {
125 ri->resetfn(&cpu->env, ri);
126 return;
129 /* A zero offset is never possible as it would be regs[0]
130 * so we use it to indicate that reset is being handled elsewhere.
131 * This is basically only used for fields in non-core coprocessors
132 * (like the pxa2xx ones).
134 if (!ri->fieldoffset) {
135 return;
138 if (cpreg_field_is_64bit(ri)) {
139 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140 } else {
141 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
145 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
147 /* Purely an assertion check: we've already done reset once,
148 * so now check that running the reset for the cpreg doesn't
149 * change its value. This traps bugs where two different cpregs
150 * both try to reset the same state field but to different values.
152 ARMCPRegInfo *ri = value;
153 ARMCPU *cpu = opaque;
154 uint64_t oldvalue, newvalue;
156 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157 return;
160 oldvalue = read_raw_cp_reg(&cpu->env, ri);
161 cp_reg_reset(key, value, opaque);
162 newvalue = read_raw_cp_reg(&cpu->env, ri);
163 assert(oldvalue == newvalue);
166 static void arm_cpu_reset(DeviceState *dev)
168 CPUState *s = CPU(dev);
169 ARMCPU *cpu = ARM_CPU(s);
170 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171 CPUARMState *env = &cpu->env;
173 acc->parent_reset(dev);
175 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
177 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
180 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
185 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
187 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
191 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192 /* 64 bit CPUs always start in 64 bit mode */
193 env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195 env->pstate = PSTATE_MODE_EL0t;
196 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198 /* Enable all PAC keys. */
199 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200 SCTLR_EnDA | SCTLR_EnDB);
201 /* Trap on btype=3 for PACIxSP. */
202 env->cp15.sctlr_el[1] |= SCTLR_BT0;
203 /* and to the FP/Neon instructions */
204 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
205 CPACR_EL1, FPEN, 3);
206 /* and to the SVE instructions */
207 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
208 CPACR_EL1, ZEN, 3);
209 /* with reasonable vector length */
210 if (cpu_isar_feature(aa64_sve, cpu)) {
211 env->vfp.zcr_el[1] =
212 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
215 * Enable 48-bit address space (TODO: take reserved_va into account).
216 * Enable TBI0 but not TBI1.
217 * Note that this must match useronly_clean_ptr.
219 env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
221 /* Enable MTE */
222 if (cpu_isar_feature(aa64_mte, cpu)) {
223 /* Enable tag access, but leave TCF0 as No Effect (0). */
224 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
226 * Exclude all tags, so that tag 0 is always used.
227 * This corresponds to Linux current->thread.gcr_incl = 0.
229 * Set RRND, so that helper_irg() will generate a seed later.
230 * Here in cpu_reset(), the crypto subsystem has not yet been
231 * initialized.
233 env->cp15.gcr_el1 = 0x1ffff;
236 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
237 * This is not yet exposed from the Linux kernel in any way.
239 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
240 #else
241 /* Reset into the highest available EL */
242 if (arm_feature(env, ARM_FEATURE_EL3)) {
243 env->pstate = PSTATE_MODE_EL3h;
244 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
245 env->pstate = PSTATE_MODE_EL2h;
246 } else {
247 env->pstate = PSTATE_MODE_EL1h;
250 /* Sample rvbar at reset. */
251 env->cp15.rvbar = cpu->rvbar_prop;
252 env->pc = env->cp15.rvbar;
253 #endif
254 } else {
255 #if defined(CONFIG_USER_ONLY)
256 /* Userspace expects access to cp10 and cp11 for FP/Neon */
257 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
258 CPACR, CP10, 3);
259 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260 CPACR, CP11, 3);
261 #endif
264 #if defined(CONFIG_USER_ONLY)
265 env->uncached_cpsr = ARM_CPU_MODE_USR;
266 /* For user mode we must enable access to coprocessors */
267 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
268 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
269 env->cp15.c15_cpar = 3;
270 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
271 env->cp15.c15_cpar = 1;
273 #else
276 * If the highest available EL is EL2, AArch32 will start in Hyp
277 * mode; otherwise it starts in SVC. Note that if we start in
278 * AArch64 then these values in the uncached_cpsr will be ignored.
280 if (arm_feature(env, ARM_FEATURE_EL2) &&
281 !arm_feature(env, ARM_FEATURE_EL3)) {
282 env->uncached_cpsr = ARM_CPU_MODE_HYP;
283 } else {
284 env->uncached_cpsr = ARM_CPU_MODE_SVC;
286 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
288 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
289 * executing as AArch32 then check if highvecs are enabled and
290 * adjust the PC accordingly.
292 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
293 env->regs[15] = 0xFFFF0000;
296 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
297 #endif
299 if (arm_feature(env, ARM_FEATURE_M)) {
300 #ifndef CONFIG_USER_ONLY
301 uint32_t initial_msp; /* Loaded from 0x0 */
302 uint32_t initial_pc; /* Loaded from 0x4 */
303 uint8_t *rom;
304 uint32_t vecbase;
305 #endif
307 if (cpu_isar_feature(aa32_lob, cpu)) {
309 * LTPSIZE is constant 4 if MVE not implemented, and resets
310 * to an UNKNOWN value if MVE is implemented. We choose to
311 * always reset to 4.
313 env->v7m.ltpsize = 4;
314 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
315 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
316 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
319 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320 env->v7m.secure = true;
321 } else {
322 /* This bit resets to 0 if security is supported, but 1 if
323 * it is not. The bit is not present in v7M, but we set it
324 * here so we can avoid having to make checks on it conditional
325 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
327 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
329 * Set NSACR to indicate "NS access permitted to everything";
330 * this avoids having to have all the tests of it being
331 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
332 * v8.1M the guest-visible value of NSACR in a CPU without the
333 * Security Extension is 0xcff.
335 env->v7m.nsacr = 0xcff;
338 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
339 * that it resets to 1, so QEMU always does that rather than making
340 * it dependent on CPU model. In v8M it is RES1.
342 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
343 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
344 if (arm_feature(env, ARM_FEATURE_V8)) {
345 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
346 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
349 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
350 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
354 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
355 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
356 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
357 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
360 #ifndef CONFIG_USER_ONLY
361 /* Unlike A/R profile, M profile defines the reset LR value */
362 env->regs[14] = 0xffffffff;
364 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
365 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
367 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
368 vecbase = env->v7m.vecbase[env->v7m.secure];
369 rom = rom_ptr_for_as(s->as, vecbase, 8);
370 if (rom) {
371 /* Address zero is covered by ROM which hasn't yet been
372 * copied into physical memory.
374 initial_msp = ldl_p(rom);
375 initial_pc = ldl_p(rom + 4);
376 } else {
377 /* Address zero not covered by a ROM blob, or the ROM blob
378 * is in non-modifiable memory and this is a second reset after
379 * it got copied into memory. In the latter case, rom_ptr
380 * will return a NULL pointer and we should use ldl_phys instead.
382 initial_msp = ldl_phys(s->as, vecbase);
383 initial_pc = ldl_phys(s->as, vecbase + 4);
386 qemu_log_mask(CPU_LOG_INT,
387 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
388 initial_msp, initial_pc);
390 env->regs[13] = initial_msp & 0xFFFFFFFC;
391 env->regs[15] = initial_pc & ~1;
392 env->thumb = initial_pc & 1;
393 #else
395 * For user mode we run non-secure and with access to the FPU.
396 * The FPU context is active (ie does not need further setup)
397 * and is owned by non-secure.
399 env->v7m.secure = false;
400 env->v7m.nsacr = 0xcff;
401 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
402 env->v7m.fpccr[M_REG_S] &=
403 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
404 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
405 #endif
408 /* M profile requires that reset clears the exclusive monitor;
409 * A profile does not, but clearing it makes more sense than having it
410 * set with an exclusive access on address zero.
412 arm_clear_exclusive(env);
414 if (arm_feature(env, ARM_FEATURE_PMSA)) {
415 if (cpu->pmsav7_dregion > 0) {
416 if (arm_feature(env, ARM_FEATURE_V8)) {
417 memset(env->pmsav8.rbar[M_REG_NS], 0,
418 sizeof(*env->pmsav8.rbar[M_REG_NS])
419 * cpu->pmsav7_dregion);
420 memset(env->pmsav8.rlar[M_REG_NS], 0,
421 sizeof(*env->pmsav8.rlar[M_REG_NS])
422 * cpu->pmsav7_dregion);
423 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
424 memset(env->pmsav8.rbar[M_REG_S], 0,
425 sizeof(*env->pmsav8.rbar[M_REG_S])
426 * cpu->pmsav7_dregion);
427 memset(env->pmsav8.rlar[M_REG_S], 0,
428 sizeof(*env->pmsav8.rlar[M_REG_S])
429 * cpu->pmsav7_dregion);
431 } else if (arm_feature(env, ARM_FEATURE_V7)) {
432 memset(env->pmsav7.drbar, 0,
433 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
434 memset(env->pmsav7.drsr, 0,
435 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
436 memset(env->pmsav7.dracr, 0,
437 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
440 env->pmsav7.rnr[M_REG_NS] = 0;
441 env->pmsav7.rnr[M_REG_S] = 0;
442 env->pmsav8.mair0[M_REG_NS] = 0;
443 env->pmsav8.mair0[M_REG_S] = 0;
444 env->pmsav8.mair1[M_REG_NS] = 0;
445 env->pmsav8.mair1[M_REG_S] = 0;
448 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
449 if (cpu->sau_sregion > 0) {
450 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
451 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
453 env->sau.rnr = 0;
454 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
455 * the Cortex-M33 does.
457 env->sau.ctrl = 0;
460 set_flush_to_zero(1, &env->vfp.standard_fp_status);
461 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
462 set_default_nan_mode(1, &env->vfp.standard_fp_status);
463 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
464 set_float_detect_tininess(float_tininess_before_rounding,
465 &env->vfp.fp_status);
466 set_float_detect_tininess(float_tininess_before_rounding,
467 &env->vfp.standard_fp_status);
468 set_float_detect_tininess(float_tininess_before_rounding,
469 &env->vfp.fp_status_f16);
470 set_float_detect_tininess(float_tininess_before_rounding,
471 &env->vfp.standard_fp_status_f16);
472 #ifndef CONFIG_USER_ONLY
473 if (kvm_enabled()) {
474 kvm_arm_reset_vcpu(cpu);
476 #endif
478 hw_breakpoint_update_all(cpu);
479 hw_watchpoint_update_all(cpu);
480 arm_rebuild_hflags(env);
483 #ifndef CONFIG_USER_ONLY
485 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
486 unsigned int target_el,
487 unsigned int cur_el, bool secure,
488 uint64_t hcr_el2)
490 CPUARMState *env = cs->env_ptr;
491 bool pstate_unmasked;
492 bool unmasked = false;
495 * Don't take exceptions if they target a lower EL.
496 * This check should catch any exceptions that would not be taken
497 * but left pending.
499 if (cur_el > target_el) {
500 return false;
503 switch (excp_idx) {
504 case EXCP_FIQ:
505 pstate_unmasked = !(env->daif & PSTATE_F);
506 break;
508 case EXCP_IRQ:
509 pstate_unmasked = !(env->daif & PSTATE_I);
510 break;
512 case EXCP_VFIQ:
513 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
514 /* VFIQs are only taken when hypervized. */
515 return false;
517 return !(env->daif & PSTATE_F);
518 case EXCP_VIRQ:
519 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
520 /* VIRQs are only taken when hypervized. */
521 return false;
523 return !(env->daif & PSTATE_I);
524 case EXCP_VSERR:
525 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
526 /* VIRQs are only taken when hypervized. */
527 return false;
529 return !(env->daif & PSTATE_A);
530 default:
531 g_assert_not_reached();
535 * Use the target EL, current execution state and SCR/HCR settings to
536 * determine whether the corresponding CPSR bit is used to mask the
537 * interrupt.
539 if ((target_el > cur_el) && (target_el != 1)) {
540 /* Exceptions targeting a higher EL may not be maskable */
541 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
543 * 64-bit masking rules are simple: exceptions to EL3
544 * can't be masked, and exceptions to EL2 can only be
545 * masked from Secure state. The HCR and SCR settings
546 * don't affect the masking logic, only the interrupt routing.
548 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
549 unmasked = true;
551 } else {
553 * The old 32-bit-only environment has a more complicated
554 * masking setup. HCR and SCR bits not only affect interrupt
555 * routing but also change the behaviour of masking.
557 bool hcr, scr;
559 switch (excp_idx) {
560 case EXCP_FIQ:
562 * If FIQs are routed to EL3 or EL2 then there are cases where
563 * we override the CPSR.F in determining if the exception is
564 * masked or not. If neither of these are set then we fall back
565 * to the CPSR.F setting otherwise we further assess the state
566 * below.
568 hcr = hcr_el2 & HCR_FMO;
569 scr = (env->cp15.scr_el3 & SCR_FIQ);
572 * When EL3 is 32-bit, the SCR.FW bit controls whether the
573 * CPSR.F bit masks FIQ interrupts when taken in non-secure
574 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
575 * when non-secure but only when FIQs are only routed to EL3.
577 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
578 break;
579 case EXCP_IRQ:
581 * When EL3 execution state is 32-bit, if HCR.IMO is set then
582 * we may override the CPSR.I masking when in non-secure state.
583 * The SCR.IRQ setting has already been taken into consideration
584 * when setting the target EL, so it does not have a further
585 * affect here.
587 hcr = hcr_el2 & HCR_IMO;
588 scr = false;
589 break;
590 default:
591 g_assert_not_reached();
594 if ((scr || hcr) && !secure) {
595 unmasked = true;
601 * The PSTATE bits only mask the interrupt if we have not overriden the
602 * ability above.
604 return unmasked || pstate_unmasked;
607 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
609 CPUClass *cc = CPU_GET_CLASS(cs);
610 CPUARMState *env = cs->env_ptr;
611 uint32_t cur_el = arm_current_el(env);
612 bool secure = arm_is_secure(env);
613 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
614 uint32_t target_el;
615 uint32_t excp_idx;
617 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
619 if (interrupt_request & CPU_INTERRUPT_FIQ) {
620 excp_idx = EXCP_FIQ;
621 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
622 if (arm_excp_unmasked(cs, excp_idx, target_el,
623 cur_el, secure, hcr_el2)) {
624 goto found;
627 if (interrupt_request & CPU_INTERRUPT_HARD) {
628 excp_idx = EXCP_IRQ;
629 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
630 if (arm_excp_unmasked(cs, excp_idx, target_el,
631 cur_el, secure, hcr_el2)) {
632 goto found;
635 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
636 excp_idx = EXCP_VIRQ;
637 target_el = 1;
638 if (arm_excp_unmasked(cs, excp_idx, target_el,
639 cur_el, secure, hcr_el2)) {
640 goto found;
643 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
644 excp_idx = EXCP_VFIQ;
645 target_el = 1;
646 if (arm_excp_unmasked(cs, excp_idx, target_el,
647 cur_el, secure, hcr_el2)) {
648 goto found;
651 if (interrupt_request & CPU_INTERRUPT_VSERR) {
652 excp_idx = EXCP_VSERR;
653 target_el = 1;
654 if (arm_excp_unmasked(cs, excp_idx, target_el,
655 cur_el, secure, hcr_el2)) {
656 /* Taking a virtual abort clears HCR_EL2.VSE */
657 env->cp15.hcr_el2 &= ~HCR_VSE;
658 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
659 goto found;
662 return false;
664 found:
665 cs->exception_index = excp_idx;
666 env->exception.target_el = target_el;
667 cc->tcg_ops->do_interrupt(cs);
668 return true;
670 #endif /* !CONFIG_USER_ONLY */
672 void arm_cpu_update_virq(ARMCPU *cpu)
675 * Update the interrupt level for VIRQ, which is the logical OR of
676 * the HCR_EL2.VI bit and the input line level from the GIC.
678 CPUARMState *env = &cpu->env;
679 CPUState *cs = CPU(cpu);
681 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
682 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
684 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
685 if (new_state) {
686 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
687 } else {
688 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
693 void arm_cpu_update_vfiq(ARMCPU *cpu)
696 * Update the interrupt level for VFIQ, which is the logical OR of
697 * the HCR_EL2.VF bit and the input line level from the GIC.
699 CPUARMState *env = &cpu->env;
700 CPUState *cs = CPU(cpu);
702 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
703 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
705 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
706 if (new_state) {
707 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
708 } else {
709 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
714 void arm_cpu_update_vserr(ARMCPU *cpu)
717 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
719 CPUARMState *env = &cpu->env;
720 CPUState *cs = CPU(cpu);
722 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
724 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
725 if (new_state) {
726 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
727 } else {
728 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
733 #ifndef CONFIG_USER_ONLY
734 static void arm_cpu_set_irq(void *opaque, int irq, int level)
736 ARMCPU *cpu = opaque;
737 CPUARMState *env = &cpu->env;
738 CPUState *cs = CPU(cpu);
739 static const int mask[] = {
740 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
741 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
742 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
743 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
746 if (!arm_feature(env, ARM_FEATURE_EL2) &&
747 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
749 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
750 * have EL2 support we don't care. (Unless the guest is doing something
751 * silly this will only be calls saying "level is still 0".)
753 return;
756 if (level) {
757 env->irq_line_state |= mask[irq];
758 } else {
759 env->irq_line_state &= ~mask[irq];
762 switch (irq) {
763 case ARM_CPU_VIRQ:
764 arm_cpu_update_virq(cpu);
765 break;
766 case ARM_CPU_VFIQ:
767 arm_cpu_update_vfiq(cpu);
768 break;
769 case ARM_CPU_IRQ:
770 case ARM_CPU_FIQ:
771 if (level) {
772 cpu_interrupt(cs, mask[irq]);
773 } else {
774 cpu_reset_interrupt(cs, mask[irq]);
776 break;
777 default:
778 g_assert_not_reached();
782 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
784 #ifdef CONFIG_KVM
785 ARMCPU *cpu = opaque;
786 CPUARMState *env = &cpu->env;
787 CPUState *cs = CPU(cpu);
788 uint32_t linestate_bit;
789 int irq_id;
791 switch (irq) {
792 case ARM_CPU_IRQ:
793 irq_id = KVM_ARM_IRQ_CPU_IRQ;
794 linestate_bit = CPU_INTERRUPT_HARD;
795 break;
796 case ARM_CPU_FIQ:
797 irq_id = KVM_ARM_IRQ_CPU_FIQ;
798 linestate_bit = CPU_INTERRUPT_FIQ;
799 break;
800 default:
801 g_assert_not_reached();
804 if (level) {
805 env->irq_line_state |= linestate_bit;
806 } else {
807 env->irq_line_state &= ~linestate_bit;
809 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
810 #endif
813 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
815 ARMCPU *cpu = ARM_CPU(cs);
816 CPUARMState *env = &cpu->env;
818 cpu_synchronize_state(cs);
819 return arm_cpu_data_is_big_endian(env);
822 #endif
824 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
826 ARMCPU *ac = ARM_CPU(cpu);
827 CPUARMState *env = &ac->env;
828 bool sctlr_b;
830 if (is_a64(env)) {
831 /* We might not be compiled with the A64 disassembler
832 * because it needs a C++ compiler. Leave print_insn
833 * unset in this case to use the caller default behaviour.
835 #if defined(CONFIG_ARM_A64_DIS)
836 info->print_insn = print_insn_arm_a64;
837 #endif
838 info->cap_arch = CS_ARCH_ARM64;
839 info->cap_insn_unit = 4;
840 info->cap_insn_split = 4;
841 } else {
842 int cap_mode;
843 if (env->thumb) {
844 info->cap_insn_unit = 2;
845 info->cap_insn_split = 4;
846 cap_mode = CS_MODE_THUMB;
847 } else {
848 info->cap_insn_unit = 4;
849 info->cap_insn_split = 4;
850 cap_mode = CS_MODE_ARM;
852 if (arm_feature(env, ARM_FEATURE_V8)) {
853 cap_mode |= CS_MODE_V8;
855 if (arm_feature(env, ARM_FEATURE_M)) {
856 cap_mode |= CS_MODE_MCLASS;
858 info->cap_arch = CS_ARCH_ARM;
859 info->cap_mode = cap_mode;
862 sctlr_b = arm_sctlr_b(env);
863 if (bswap_code(sctlr_b)) {
864 #if TARGET_BIG_ENDIAN
865 info->endian = BFD_ENDIAN_LITTLE;
866 #else
867 info->endian = BFD_ENDIAN_BIG;
868 #endif
870 info->flags &= ~INSN_ARM_BE32;
871 #ifndef CONFIG_USER_ONLY
872 if (sctlr_b) {
873 info->flags |= INSN_ARM_BE32;
875 #endif
878 #ifdef TARGET_AARCH64
880 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
882 ARMCPU *cpu = ARM_CPU(cs);
883 CPUARMState *env = &cpu->env;
884 uint32_t psr = pstate_read(env);
885 int i;
886 int el = arm_current_el(env);
887 const char *ns_status;
889 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
890 for (i = 0; i < 32; i++) {
891 if (i == 31) {
892 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
893 } else {
894 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
895 (i + 2) % 3 ? " " : "\n");
899 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
900 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
901 } else {
902 ns_status = "";
904 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
905 psr,
906 psr & PSTATE_N ? 'N' : '-',
907 psr & PSTATE_Z ? 'Z' : '-',
908 psr & PSTATE_C ? 'C' : '-',
909 psr & PSTATE_V ? 'V' : '-',
910 ns_status,
912 psr & PSTATE_SP ? 'h' : 't');
914 if (cpu_isar_feature(aa64_bti, cpu)) {
915 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
917 if (!(flags & CPU_DUMP_FPU)) {
918 qemu_fprintf(f, "\n");
919 return;
921 if (fp_exception_el(env, el) != 0) {
922 qemu_fprintf(f, " FPU disabled\n");
923 return;
925 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
926 vfp_get_fpcr(env), vfp_get_fpsr(env));
928 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
929 int j, zcr_len = sve_zcr_len_for_el(env, el);
931 for (i = 0; i <= FFR_PRED_NUM; i++) {
932 bool eol;
933 if (i == FFR_PRED_NUM) {
934 qemu_fprintf(f, "FFR=");
935 /* It's last, so end the line. */
936 eol = true;
937 } else {
938 qemu_fprintf(f, "P%02d=", i);
939 switch (zcr_len) {
940 case 0:
941 eol = i % 8 == 7;
942 break;
943 case 1:
944 eol = i % 6 == 5;
945 break;
946 case 2:
947 case 3:
948 eol = i % 3 == 2;
949 break;
950 default:
951 /* More than one quadword per predicate. */
952 eol = true;
953 break;
956 for (j = zcr_len / 4; j >= 0; j--) {
957 int digits;
958 if (j * 4 + 4 <= zcr_len + 1) {
959 digits = 16;
960 } else {
961 digits = (zcr_len % 4 + 1) * 4;
963 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
964 env->vfp.pregs[i].p[j],
965 j ? ":" : eol ? "\n" : " ");
969 for (i = 0; i < 32; i++) {
970 if (zcr_len == 0) {
971 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
972 i, env->vfp.zregs[i].d[1],
973 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
974 } else if (zcr_len == 1) {
975 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
976 ":%016" PRIx64 ":%016" PRIx64 "\n",
977 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
978 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
979 } else {
980 for (j = zcr_len; j >= 0; j--) {
981 bool odd = (zcr_len - j) % 2 != 0;
982 if (j == zcr_len) {
983 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
984 } else if (!odd) {
985 if (j > 0) {
986 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
987 } else {
988 qemu_fprintf(f, " [%x]=", j);
991 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
992 env->vfp.zregs[i].d[j * 2 + 1],
993 env->vfp.zregs[i].d[j * 2],
994 odd || j == 0 ? "\n" : ":");
998 } else {
999 for (i = 0; i < 32; i++) {
1000 uint64_t *q = aa64_vfp_qreg(env, i);
1001 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1002 i, q[1], q[0], (i & 1 ? "\n" : " "));
1007 #else
1009 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1011 g_assert_not_reached();
1014 #endif
1016 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1018 ARMCPU *cpu = ARM_CPU(cs);
1019 CPUARMState *env = &cpu->env;
1020 int i;
1022 if (is_a64(env)) {
1023 aarch64_cpu_dump_state(cs, f, flags);
1024 return;
1027 for (i = 0; i < 16; i++) {
1028 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1029 if ((i % 4) == 3) {
1030 qemu_fprintf(f, "\n");
1031 } else {
1032 qemu_fprintf(f, " ");
1036 if (arm_feature(env, ARM_FEATURE_M)) {
1037 uint32_t xpsr = xpsr_read(env);
1038 const char *mode;
1039 const char *ns_status = "";
1041 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1042 ns_status = env->v7m.secure ? "S " : "NS ";
1045 if (xpsr & XPSR_EXCP) {
1046 mode = "handler";
1047 } else {
1048 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1049 mode = "unpriv-thread";
1050 } else {
1051 mode = "priv-thread";
1055 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1056 xpsr,
1057 xpsr & XPSR_N ? 'N' : '-',
1058 xpsr & XPSR_Z ? 'Z' : '-',
1059 xpsr & XPSR_C ? 'C' : '-',
1060 xpsr & XPSR_V ? 'V' : '-',
1061 xpsr & XPSR_T ? 'T' : 'A',
1062 ns_status,
1063 mode);
1064 } else {
1065 uint32_t psr = cpsr_read(env);
1066 const char *ns_status = "";
1068 if (arm_feature(env, ARM_FEATURE_EL3) &&
1069 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1070 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1073 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1074 psr,
1075 psr & CPSR_N ? 'N' : '-',
1076 psr & CPSR_Z ? 'Z' : '-',
1077 psr & CPSR_C ? 'C' : '-',
1078 psr & CPSR_V ? 'V' : '-',
1079 psr & CPSR_T ? 'T' : 'A',
1080 ns_status,
1081 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1084 if (flags & CPU_DUMP_FPU) {
1085 int numvfpregs = 0;
1086 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1087 numvfpregs = 32;
1088 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1089 numvfpregs = 16;
1091 for (i = 0; i < numvfpregs; i++) {
1092 uint64_t v = *aa32_vfp_dreg(env, i);
1093 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1094 i * 2, (uint32_t)v,
1095 i * 2 + 1, (uint32_t)(v >> 32),
1096 i, v);
1098 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1099 if (cpu_isar_feature(aa32_mve, cpu)) {
1100 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1105 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1107 uint32_t Aff1 = idx / clustersz;
1108 uint32_t Aff0 = idx % clustersz;
1109 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1112 static void arm_cpu_initfn(Object *obj)
1114 ARMCPU *cpu = ARM_CPU(obj);
1116 cpu_set_cpustate_pointers(cpu);
1117 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1118 NULL, g_free);
1120 QLIST_INIT(&cpu->pre_el_change_hooks);
1121 QLIST_INIT(&cpu->el_change_hooks);
1123 #ifdef CONFIG_USER_ONLY
1124 # ifdef TARGET_AARCH64
1126 * The linux kernel defaults to 512-bit vectors, when sve is supported.
1127 * See documentation for /proc/sys/abi/sve_default_vector_length, and
1128 * our corresponding sve-default-vector-length cpu property.
1130 cpu->sve_default_vq = 4;
1131 # endif
1132 #else
1133 /* Our inbound IRQ and FIQ lines */
1134 if (kvm_enabled()) {
1135 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1136 * the same interface as non-KVM CPUs.
1138 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1139 } else {
1140 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1143 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1144 ARRAY_SIZE(cpu->gt_timer_outputs));
1146 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1147 "gicv3-maintenance-interrupt", 1);
1148 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1149 "pmu-interrupt", 1);
1150 #endif
1152 /* DTB consumers generally don't in fact care what the 'compatible'
1153 * string is, so always provide some string and trust that a hypothetical
1154 * picky DTB consumer will also provide a helpful error message.
1156 cpu->dtb_compatible = "qemu,unknown";
1157 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1158 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1160 if (tcg_enabled() || hvf_enabled()) {
1161 /* TCG and HVF implement PSCI 1.1 */
1162 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1166 static Property arm_cpu_gt_cntfrq_property =
1167 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1168 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1170 static Property arm_cpu_reset_cbar_property =
1171 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1173 static Property arm_cpu_reset_hivecs_property =
1174 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1176 #ifndef CONFIG_USER_ONLY
1177 static Property arm_cpu_has_el2_property =
1178 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1180 static Property arm_cpu_has_el3_property =
1181 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1182 #endif
1184 static Property arm_cpu_cfgend_property =
1185 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1187 static Property arm_cpu_has_vfp_property =
1188 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1190 static Property arm_cpu_has_neon_property =
1191 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1193 static Property arm_cpu_has_dsp_property =
1194 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1196 static Property arm_cpu_has_mpu_property =
1197 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1199 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1200 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1201 * the right value for that particular CPU type, and we don't want
1202 * to override that with an incorrect constant value.
1204 static Property arm_cpu_pmsav7_dregion_property =
1205 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1206 pmsav7_dregion,
1207 qdev_prop_uint32, uint32_t);
1209 static bool arm_get_pmu(Object *obj, Error **errp)
1211 ARMCPU *cpu = ARM_CPU(obj);
1213 return cpu->has_pmu;
1216 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1218 ARMCPU *cpu = ARM_CPU(obj);
1220 if (value) {
1221 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1222 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1223 return;
1225 set_feature(&cpu->env, ARM_FEATURE_PMU);
1226 } else {
1227 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1229 cpu->has_pmu = value;
1232 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1235 * The exact approach to calculating guest ticks is:
1237 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1238 * NANOSECONDS_PER_SECOND);
1240 * We don't do that. Rather we intentionally use integer division
1241 * truncation below and in the caller for the conversion of host monotonic
1242 * time to guest ticks to provide the exact inverse for the semantics of
1243 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1244 * it loses precision when representing frequencies where
1245 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1246 * provide an exact inverse leads to scheduling timers with negative
1247 * periods, which in turn leads to sticky behaviour in the guest.
1249 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1250 * cannot become zero.
1252 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1253 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1256 void arm_cpu_post_init(Object *obj)
1258 ARMCPU *cpu = ARM_CPU(obj);
1260 /* M profile implies PMSA. We have to do this here rather than
1261 * in realize with the other feature-implication checks because
1262 * we look at the PMSA bit to see if we should add some properties.
1264 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1265 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1268 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1269 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1270 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1273 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1274 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1277 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1278 object_property_add_uint64_ptr(obj, "rvbar",
1279 &cpu->rvbar_prop,
1280 OBJ_PROP_FLAG_READWRITE);
1283 #ifndef CONFIG_USER_ONLY
1284 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1285 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1286 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1288 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1290 object_property_add_link(obj, "secure-memory",
1291 TYPE_MEMORY_REGION,
1292 (Object **)&cpu->secure_memory,
1293 qdev_prop_allow_set_link_before_realize,
1294 OBJ_PROP_LINK_STRONG);
1297 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1298 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1300 #endif
1302 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1303 cpu->has_pmu = true;
1304 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1308 * Allow user to turn off VFP and Neon support, but only for TCG --
1309 * KVM does not currently allow us to lie to the guest about its
1310 * ID/feature registers, so the guest always sees what the host has.
1312 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1313 ? cpu_isar_feature(aa64_fp_simd, cpu)
1314 : cpu_isar_feature(aa32_vfp, cpu)) {
1315 cpu->has_vfp = true;
1316 if (!kvm_enabled()) {
1317 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1321 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1322 cpu->has_neon = true;
1323 if (!kvm_enabled()) {
1324 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1328 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1329 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1330 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1333 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1334 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1335 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1336 qdev_property_add_static(DEVICE(obj),
1337 &arm_cpu_pmsav7_dregion_property);
1341 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1342 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1343 qdev_prop_allow_set_link_before_realize,
1344 OBJ_PROP_LINK_STRONG);
1346 * M profile: initial value of the Secure VTOR. We can't just use
1347 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1348 * the property to be set after realize.
1350 object_property_add_uint32_ptr(obj, "init-svtor",
1351 &cpu->init_svtor,
1352 OBJ_PROP_FLAG_READWRITE);
1354 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1356 * Initial value of the NS VTOR (for cores without the Security
1357 * extension, this is the only VTOR)
1359 object_property_add_uint32_ptr(obj, "init-nsvtor",
1360 &cpu->init_nsvtor,
1361 OBJ_PROP_FLAG_READWRITE);
1364 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1365 object_property_add_uint32_ptr(obj, "psci-conduit",
1366 &cpu->psci_conduit,
1367 OBJ_PROP_FLAG_READWRITE);
1369 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1371 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1372 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1375 if (kvm_enabled()) {
1376 kvm_arm_add_vcpu_properties(obj);
1379 #ifndef CONFIG_USER_ONLY
1380 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1381 cpu_isar_feature(aa64_mte, cpu)) {
1382 object_property_add_link(obj, "tag-memory",
1383 TYPE_MEMORY_REGION,
1384 (Object **)&cpu->tag_memory,
1385 qdev_prop_allow_set_link_before_realize,
1386 OBJ_PROP_LINK_STRONG);
1388 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1389 object_property_add_link(obj, "secure-tag-memory",
1390 TYPE_MEMORY_REGION,
1391 (Object **)&cpu->secure_tag_memory,
1392 qdev_prop_allow_set_link_before_realize,
1393 OBJ_PROP_LINK_STRONG);
1396 #endif
1399 static void arm_cpu_finalizefn(Object *obj)
1401 ARMCPU *cpu = ARM_CPU(obj);
1402 ARMELChangeHook *hook, *next;
1404 g_hash_table_destroy(cpu->cp_regs);
1406 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1407 QLIST_REMOVE(hook, node);
1408 g_free(hook);
1410 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1411 QLIST_REMOVE(hook, node);
1412 g_free(hook);
1414 #ifndef CONFIG_USER_ONLY
1415 if (cpu->pmu_timer) {
1416 timer_free(cpu->pmu_timer);
1418 #endif
1421 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1423 Error *local_err = NULL;
1425 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1426 arm_cpu_sve_finalize(cpu, &local_err);
1427 if (local_err != NULL) {
1428 error_propagate(errp, local_err);
1429 return;
1432 arm_cpu_pauth_finalize(cpu, &local_err);
1433 if (local_err != NULL) {
1434 error_propagate(errp, local_err);
1435 return;
1438 arm_cpu_lpa2_finalize(cpu, &local_err);
1439 if (local_err != NULL) {
1440 error_propagate(errp, local_err);
1441 return;
1445 if (kvm_enabled()) {
1446 kvm_arm_steal_time_finalize(cpu, &local_err);
1447 if (local_err != NULL) {
1448 error_propagate(errp, local_err);
1449 return;
1454 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1456 CPUState *cs = CPU(dev);
1457 ARMCPU *cpu = ARM_CPU(dev);
1458 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1459 CPUARMState *env = &cpu->env;
1460 int pagebits;
1461 Error *local_err = NULL;
1462 bool no_aa32 = false;
1464 /* If we needed to query the host kernel for the CPU features
1465 * then it's possible that might have failed in the initfn, but
1466 * this is the first point where we can report it.
1468 if (cpu->host_cpu_probe_failed) {
1469 if (!kvm_enabled() && !hvf_enabled()) {
1470 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1471 } else {
1472 error_setg(errp, "Failed to retrieve host CPU features");
1474 return;
1477 #ifndef CONFIG_USER_ONLY
1478 /* The NVIC and M-profile CPU are two halves of a single piece of
1479 * hardware; trying to use one without the other is a command line
1480 * error and will result in segfaults if not caught here.
1482 if (arm_feature(env, ARM_FEATURE_M)) {
1483 if (!env->nvic) {
1484 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1485 return;
1487 } else {
1488 if (env->nvic) {
1489 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1490 return;
1494 if (kvm_enabled()) {
1496 * Catch all the cases which might cause us to create more than one
1497 * address space for the CPU (otherwise we will assert() later in
1498 * cpu_address_space_init()).
1500 if (arm_feature(env, ARM_FEATURE_M)) {
1501 error_setg(errp,
1502 "Cannot enable KVM when using an M-profile guest CPU");
1503 return;
1505 if (cpu->has_el3) {
1506 error_setg(errp,
1507 "Cannot enable KVM when guest CPU has EL3 enabled");
1508 return;
1510 if (cpu->tag_memory) {
1511 error_setg(errp,
1512 "Cannot enable KVM when guest CPUs has MTE enabled");
1513 return;
1518 uint64_t scale;
1520 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1521 if (!cpu->gt_cntfrq_hz) {
1522 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1523 cpu->gt_cntfrq_hz);
1524 return;
1526 scale = gt_cntfrq_period_ns(cpu);
1527 } else {
1528 scale = GTIMER_SCALE;
1531 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1532 arm_gt_ptimer_cb, cpu);
1533 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1534 arm_gt_vtimer_cb, cpu);
1535 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1536 arm_gt_htimer_cb, cpu);
1537 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1538 arm_gt_stimer_cb, cpu);
1539 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1540 arm_gt_hvtimer_cb, cpu);
1542 #endif
1544 cpu_exec_realizefn(cs, &local_err);
1545 if (local_err != NULL) {
1546 error_propagate(errp, local_err);
1547 return;
1550 arm_cpu_finalize_features(cpu, &local_err);
1551 if (local_err != NULL) {
1552 error_propagate(errp, local_err);
1553 return;
1556 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1557 cpu->has_vfp != cpu->has_neon) {
1559 * This is an architectural requirement for AArch64; AArch32 is
1560 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1562 error_setg(errp,
1563 "AArch64 CPUs must have both VFP and Neon or neither");
1564 return;
1567 if (!cpu->has_vfp) {
1568 uint64_t t;
1569 uint32_t u;
1571 t = cpu->isar.id_aa64isar1;
1572 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1573 cpu->isar.id_aa64isar1 = t;
1575 t = cpu->isar.id_aa64pfr0;
1576 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1577 cpu->isar.id_aa64pfr0 = t;
1579 u = cpu->isar.id_isar6;
1580 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1581 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1582 cpu->isar.id_isar6 = u;
1584 u = cpu->isar.mvfr0;
1585 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1586 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1587 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1588 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1589 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1590 if (!arm_feature(env, ARM_FEATURE_M)) {
1591 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1592 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1594 cpu->isar.mvfr0 = u;
1596 u = cpu->isar.mvfr1;
1597 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1598 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1599 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1600 if (arm_feature(env, ARM_FEATURE_M)) {
1601 u = FIELD_DP32(u, MVFR1, FP16, 0);
1603 cpu->isar.mvfr1 = u;
1605 u = cpu->isar.mvfr2;
1606 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1607 cpu->isar.mvfr2 = u;
1610 if (!cpu->has_neon) {
1611 uint64_t t;
1612 uint32_t u;
1614 unset_feature(env, ARM_FEATURE_NEON);
1616 t = cpu->isar.id_aa64isar0;
1617 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1618 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1619 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1620 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1621 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1622 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1623 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1624 cpu->isar.id_aa64isar0 = t;
1626 t = cpu->isar.id_aa64isar1;
1627 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1628 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1629 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1630 cpu->isar.id_aa64isar1 = t;
1632 t = cpu->isar.id_aa64pfr0;
1633 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1634 cpu->isar.id_aa64pfr0 = t;
1636 u = cpu->isar.id_isar5;
1637 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1638 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1639 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1640 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1641 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1642 cpu->isar.id_isar5 = u;
1644 u = cpu->isar.id_isar6;
1645 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1646 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1647 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1648 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1649 cpu->isar.id_isar6 = u;
1651 if (!arm_feature(env, ARM_FEATURE_M)) {
1652 u = cpu->isar.mvfr1;
1653 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1654 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1655 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1656 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1657 cpu->isar.mvfr1 = u;
1659 u = cpu->isar.mvfr2;
1660 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1661 cpu->isar.mvfr2 = u;
1665 if (!cpu->has_neon && !cpu->has_vfp) {
1666 uint64_t t;
1667 uint32_t u;
1669 t = cpu->isar.id_aa64isar0;
1670 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1671 cpu->isar.id_aa64isar0 = t;
1673 t = cpu->isar.id_aa64isar1;
1674 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1675 cpu->isar.id_aa64isar1 = t;
1677 u = cpu->isar.mvfr0;
1678 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1679 cpu->isar.mvfr0 = u;
1681 /* Despite the name, this field covers both VFP and Neon */
1682 u = cpu->isar.mvfr1;
1683 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1684 cpu->isar.mvfr1 = u;
1687 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1688 uint32_t u;
1690 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1692 u = cpu->isar.id_isar1;
1693 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1694 cpu->isar.id_isar1 = u;
1696 u = cpu->isar.id_isar2;
1697 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1698 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1699 cpu->isar.id_isar2 = u;
1701 u = cpu->isar.id_isar3;
1702 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1703 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1704 cpu->isar.id_isar3 = u;
1707 /* Some features automatically imply others: */
1708 if (arm_feature(env, ARM_FEATURE_V8)) {
1709 if (arm_feature(env, ARM_FEATURE_M)) {
1710 set_feature(env, ARM_FEATURE_V7);
1711 } else {
1712 set_feature(env, ARM_FEATURE_V7VE);
1717 * There exist AArch64 cpus without AArch32 support. When KVM
1718 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1719 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1720 * As a general principle, we also do not make ID register
1721 * consistency checks anywhere unless using TCG, because only
1722 * for TCG would a consistency-check failure be a QEMU bug.
1724 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1725 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1728 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1729 /* v7 Virtualization Extensions. In real hardware this implies
1730 * EL2 and also the presence of the Security Extensions.
1731 * For QEMU, for backwards-compatibility we implement some
1732 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1733 * include the various other features that V7VE implies.
1734 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1735 * Security Extensions is ARM_FEATURE_EL3.
1737 assert(!tcg_enabled() || no_aa32 ||
1738 cpu_isar_feature(aa32_arm_div, cpu));
1739 set_feature(env, ARM_FEATURE_LPAE);
1740 set_feature(env, ARM_FEATURE_V7);
1742 if (arm_feature(env, ARM_FEATURE_V7)) {
1743 set_feature(env, ARM_FEATURE_VAPA);
1744 set_feature(env, ARM_FEATURE_THUMB2);
1745 set_feature(env, ARM_FEATURE_MPIDR);
1746 if (!arm_feature(env, ARM_FEATURE_M)) {
1747 set_feature(env, ARM_FEATURE_V6K);
1748 } else {
1749 set_feature(env, ARM_FEATURE_V6);
1752 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1753 * non-EL3 configs. This is needed by some legacy boards.
1755 set_feature(env, ARM_FEATURE_VBAR);
1757 if (arm_feature(env, ARM_FEATURE_V6K)) {
1758 set_feature(env, ARM_FEATURE_V6);
1759 set_feature(env, ARM_FEATURE_MVFR);
1761 if (arm_feature(env, ARM_FEATURE_V6)) {
1762 set_feature(env, ARM_FEATURE_V5);
1763 if (!arm_feature(env, ARM_FEATURE_M)) {
1764 assert(!tcg_enabled() || no_aa32 ||
1765 cpu_isar_feature(aa32_jazelle, cpu));
1766 set_feature(env, ARM_FEATURE_AUXCR);
1769 if (arm_feature(env, ARM_FEATURE_V5)) {
1770 set_feature(env, ARM_FEATURE_V4T);
1772 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1773 set_feature(env, ARM_FEATURE_V7MP);
1775 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1776 set_feature(env, ARM_FEATURE_CBAR);
1778 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1779 !arm_feature(env, ARM_FEATURE_M)) {
1780 set_feature(env, ARM_FEATURE_THUMB_DSP);
1784 * We rely on no XScale CPU having VFP so we can use the same bits in the
1785 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1787 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1788 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1789 !arm_feature(env, ARM_FEATURE_XSCALE));
1791 if (arm_feature(env, ARM_FEATURE_V7) &&
1792 !arm_feature(env, ARM_FEATURE_M) &&
1793 !arm_feature(env, ARM_FEATURE_PMSA)) {
1794 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1795 * can use 4K pages.
1797 pagebits = 12;
1798 } else {
1799 /* For CPUs which might have tiny 1K pages, or which have an
1800 * MPU and might have small region sizes, stick with 1K pages.
1802 pagebits = 10;
1804 if (!set_preferred_target_page_bits(pagebits)) {
1805 /* This can only ever happen for hotplugging a CPU, or if
1806 * the board code incorrectly creates a CPU which it has
1807 * promised via minimum_page_size that it will not.
1809 error_setg(errp, "This CPU requires a smaller page size than the "
1810 "system is using");
1811 return;
1814 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1815 * We don't support setting cluster ID ([16..23]) (known as Aff2
1816 * in later ARM ARM versions), or any of the higher affinity level fields,
1817 * so these bits always RAZ.
1819 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1820 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1821 ARM_DEFAULT_CPUS_PER_CLUSTER);
1824 if (cpu->reset_hivecs) {
1825 cpu->reset_sctlr |= (1 << 13);
1828 if (cpu->cfgend) {
1829 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1830 cpu->reset_sctlr |= SCTLR_EE;
1831 } else {
1832 cpu->reset_sctlr |= SCTLR_B;
1836 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1837 /* If the has_el3 CPU property is disabled then we need to disable the
1838 * feature.
1840 unset_feature(env, ARM_FEATURE_EL3);
1843 * Disable the security extension feature bits in the processor
1844 * feature registers as well.
1846 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1847 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1848 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1849 ID_AA64PFR0, EL3, 0);
1852 if (!cpu->has_el2) {
1853 unset_feature(env, ARM_FEATURE_EL2);
1856 if (!cpu->has_pmu) {
1857 unset_feature(env, ARM_FEATURE_PMU);
1859 if (arm_feature(env, ARM_FEATURE_PMU)) {
1860 pmu_init(cpu);
1862 if (!kvm_enabled()) {
1863 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1864 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1867 #ifndef CONFIG_USER_ONLY
1868 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1869 cpu);
1870 #endif
1871 } else {
1872 cpu->isar.id_aa64dfr0 =
1873 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1874 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1875 cpu->pmceid0 = 0;
1876 cpu->pmceid1 = 0;
1879 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1881 * Disable the hypervisor feature bits in the processor feature
1882 * registers if we don't have EL2.
1884 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1885 ID_AA64PFR0, EL2, 0);
1886 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1887 ID_PFR1, VIRTUALIZATION, 0);
1890 #ifndef CONFIG_USER_ONLY
1891 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1893 * Disable the MTE feature bits if we do not have tag-memory
1894 * provided by the machine.
1896 cpu->isar.id_aa64pfr1 =
1897 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1899 #endif
1901 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1902 * to false or by setting pmsav7-dregion to 0.
1904 if (!cpu->has_mpu) {
1905 cpu->pmsav7_dregion = 0;
1907 if (cpu->pmsav7_dregion == 0) {
1908 cpu->has_mpu = false;
1911 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1912 arm_feature(env, ARM_FEATURE_V7)) {
1913 uint32_t nr = cpu->pmsav7_dregion;
1915 if (nr > 0xff) {
1916 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1917 return;
1920 if (nr) {
1921 if (arm_feature(env, ARM_FEATURE_V8)) {
1922 /* PMSAv8 */
1923 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1924 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1925 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1926 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1927 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1929 } else {
1930 env->pmsav7.drbar = g_new0(uint32_t, nr);
1931 env->pmsav7.drsr = g_new0(uint32_t, nr);
1932 env->pmsav7.dracr = g_new0(uint32_t, nr);
1937 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1938 uint32_t nr = cpu->sau_sregion;
1940 if (nr > 0xff) {
1941 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1942 return;
1945 if (nr) {
1946 env->sau.rbar = g_new0(uint32_t, nr);
1947 env->sau.rlar = g_new0(uint32_t, nr);
1951 if (arm_feature(env, ARM_FEATURE_EL3)) {
1952 set_feature(env, ARM_FEATURE_VBAR);
1955 register_cp_regs_for_features(cpu);
1956 arm_cpu_register_gdb_regs_for_features(cpu);
1958 init_cpreg_list(cpu);
1960 #ifndef CONFIG_USER_ONLY
1961 MachineState *ms = MACHINE(qdev_get_machine());
1962 unsigned int smp_cpus = ms->smp.cpus;
1963 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1966 * We must set cs->num_ases to the final value before
1967 * the first call to cpu_address_space_init.
1969 if (cpu->tag_memory != NULL) {
1970 cs->num_ases = 3 + has_secure;
1971 } else {
1972 cs->num_ases = 1 + has_secure;
1975 if (has_secure) {
1976 if (!cpu->secure_memory) {
1977 cpu->secure_memory = cs->memory;
1979 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1980 cpu->secure_memory);
1983 if (cpu->tag_memory != NULL) {
1984 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1985 cpu->tag_memory);
1986 if (has_secure) {
1987 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1988 cpu->secure_tag_memory);
1992 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1994 /* No core_count specified, default to smp_cpus. */
1995 if (cpu->core_count == -1) {
1996 cpu->core_count = smp_cpus;
1998 #endif
2000 if (tcg_enabled()) {
2001 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2004 * We only support DCZ blocklen that fits on one page.
2006 * Architectually this is always true. However TARGET_PAGE_SIZE
2007 * is variable and, for compatibility with -machine virt-2.7,
2008 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2009 * But even then, while the largest architectural DCZ blocklen
2010 * is 2KiB, no cpu actually uses such a large blocklen.
2012 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2015 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2016 * both nibbles of each byte storing tag data may be written at once.
2017 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2019 if (cpu_isar_feature(aa64_mte, cpu)) {
2020 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2024 qemu_init_vcpu(cs);
2025 cpu_reset(cs);
2027 acc->parent_realize(dev, errp);
2030 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2032 ObjectClass *oc;
2033 char *typename;
2034 char **cpuname;
2035 const char *cpunamestr;
2037 cpuname = g_strsplit(cpu_model, ",", 1);
2038 cpunamestr = cpuname[0];
2039 #ifdef CONFIG_USER_ONLY
2040 /* For backwards compatibility usermode emulation allows "-cpu any",
2041 * which has the same semantics as "-cpu max".
2043 if (!strcmp(cpunamestr, "any")) {
2044 cpunamestr = "max";
2046 #endif
2047 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2048 oc = object_class_by_name(typename);
2049 g_strfreev(cpuname);
2050 g_free(typename);
2051 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2052 object_class_is_abstract(oc)) {
2053 return NULL;
2055 return oc;
2058 static Property arm_cpu_properties[] = {
2059 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2060 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2061 mp_affinity, ARM64_AFFINITY_INVALID),
2062 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2063 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2064 DEFINE_PROP_END_OF_LIST()
2067 static gchar *arm_gdb_arch_name(CPUState *cs)
2069 ARMCPU *cpu = ARM_CPU(cs);
2070 CPUARMState *env = &cpu->env;
2072 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2073 return g_strdup("iwmmxt");
2075 return g_strdup("arm");
2078 #ifndef CONFIG_USER_ONLY
2079 #include "hw/core/sysemu-cpu-ops.h"
2081 static const struct SysemuCPUOps arm_sysemu_ops = {
2082 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2083 .asidx_from_attrs = arm_asidx_from_attrs,
2084 .write_elf32_note = arm_cpu_write_elf32_note,
2085 .write_elf64_note = arm_cpu_write_elf64_note,
2086 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2087 .legacy_vmsd = &vmstate_arm_cpu,
2089 #endif
2091 #ifdef CONFIG_TCG
2092 static const struct TCGCPUOps arm_tcg_ops = {
2093 .initialize = arm_translate_init,
2094 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2095 .debug_excp_handler = arm_debug_excp_handler,
2097 #ifdef CONFIG_USER_ONLY
2098 .record_sigsegv = arm_cpu_record_sigsegv,
2099 .record_sigbus = arm_cpu_record_sigbus,
2100 #else
2101 .tlb_fill = arm_cpu_tlb_fill,
2102 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2103 .do_interrupt = arm_cpu_do_interrupt,
2104 .do_transaction_failed = arm_cpu_do_transaction_failed,
2105 .do_unaligned_access = arm_cpu_do_unaligned_access,
2106 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2107 .debug_check_watchpoint = arm_debug_check_watchpoint,
2108 .debug_check_breakpoint = arm_debug_check_breakpoint,
2109 #endif /* !CONFIG_USER_ONLY */
2111 #endif /* CONFIG_TCG */
2113 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2115 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2116 CPUClass *cc = CPU_CLASS(acc);
2117 DeviceClass *dc = DEVICE_CLASS(oc);
2119 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2120 &acc->parent_realize);
2122 device_class_set_props(dc, arm_cpu_properties);
2123 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2125 cc->class_by_name = arm_cpu_class_by_name;
2126 cc->has_work = arm_cpu_has_work;
2127 cc->dump_state = arm_cpu_dump_state;
2128 cc->set_pc = arm_cpu_set_pc;
2129 cc->gdb_read_register = arm_cpu_gdb_read_register;
2130 cc->gdb_write_register = arm_cpu_gdb_write_register;
2131 #ifndef CONFIG_USER_ONLY
2132 cc->sysemu_ops = &arm_sysemu_ops;
2133 #endif
2134 cc->gdb_num_core_regs = 26;
2135 cc->gdb_core_xml_file = "arm-core.xml";
2136 cc->gdb_arch_name = arm_gdb_arch_name;
2137 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2138 cc->gdb_stop_before_watchpoint = true;
2139 cc->disas_set_info = arm_disas_set_info;
2141 #ifdef CONFIG_TCG
2142 cc->tcg_ops = &arm_tcg_ops;
2143 #endif /* CONFIG_TCG */
2146 static void arm_cpu_instance_init(Object *obj)
2148 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2150 acc->info->initfn(obj);
2151 arm_cpu_post_init(obj);
2154 static void cpu_register_class_init(ObjectClass *oc, void *data)
2156 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2158 acc->info = data;
2161 void arm_cpu_register(const ARMCPUInfo *info)
2163 TypeInfo type_info = {
2164 .parent = TYPE_ARM_CPU,
2165 .instance_size = sizeof(ARMCPU),
2166 .instance_align = __alignof__(ARMCPU),
2167 .instance_init = arm_cpu_instance_init,
2168 .class_size = sizeof(ARMCPUClass),
2169 .class_init = info->class_init ?: cpu_register_class_init,
2170 .class_data = (void *)info,
2173 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2174 type_register(&type_info);
2175 g_free((void *)type_info.name);
2178 static const TypeInfo arm_cpu_type_info = {
2179 .name = TYPE_ARM_CPU,
2180 .parent = TYPE_CPU,
2181 .instance_size = sizeof(ARMCPU),
2182 .instance_align = __alignof__(ARMCPU),
2183 .instance_init = arm_cpu_initfn,
2184 .instance_finalize = arm_cpu_finalizefn,
2185 .abstract = true,
2186 .class_size = sizeof(ARMCPUClass),
2187 .class_init = arm_cpu_class_init,
2190 static void arm_cpu_register_types(void)
2192 type_register_static(&arm_cpu_type_info);
2195 type_init(arm_cpu_register_types)