kvm: Kill CR3_CACHE feature references
[qemu.git] / target-i386 / kvm.c
blob5d9aecc89d9493a9fe434395ec266be0c2f8e6de
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
28 #ifdef CONFIG_KVM_PARA
29 #include <linux/kvm_para.h>
30 #endif
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 #define MSR_KVM_WALL_CLOCK 0x11
43 #define MSR_KVM_SYSTEM_TIME 0x12
45 #ifdef KVM_CAP_EXT_CPUID
47 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
49 struct kvm_cpuid2 *cpuid;
50 int r, size;
52 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
53 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
54 cpuid->nent = max;
55 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
56 if (r == 0 && cpuid->nent >= max) {
57 r = -E2BIG;
59 if (r < 0) {
60 if (r == -E2BIG) {
61 qemu_free(cpuid);
62 return NULL;
63 } else {
64 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
65 strerror(-r));
66 exit(1);
69 return cpuid;
72 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
74 struct kvm_cpuid2 *cpuid;
75 int i, max;
76 uint32_t ret = 0;
77 uint32_t cpuid_1_edx;
79 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
80 return -1U;
83 max = 1;
84 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
85 max *= 2;
88 for (i = 0; i < cpuid->nent; ++i) {
89 if (cpuid->entries[i].function == function) {
90 switch (reg) {
91 case R_EAX:
92 ret = cpuid->entries[i].eax;
93 break;
94 case R_EBX:
95 ret = cpuid->entries[i].ebx;
96 break;
97 case R_ECX:
98 ret = cpuid->entries[i].ecx;
99 break;
100 case R_EDX:
101 ret = cpuid->entries[i].edx;
102 switch (function) {
103 case 1:
104 /* KVM before 2.6.30 misreports the following features */
105 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
106 break;
107 case 0x80000001:
108 /* On Intel, kvm returns cpuid according to the Intel spec,
109 * so add missing bits according to the AMD spec:
111 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
112 ret |= cpuid_1_edx & 0xdfeff7ff;
113 break;
115 break;
120 qemu_free(cpuid);
122 return ret;
125 #else
127 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
129 return -1U;
132 #endif
134 static void kvm_trim_features(uint32_t *features, uint32_t supported)
136 int i;
137 uint32_t mask;
139 for (i = 0; i < 32; ++i) {
140 mask = 1U << i;
141 if ((*features & mask) && !(supported & mask)) {
142 *features &= ~mask;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 #ifdef KVM_CAP_CLOCKSOURCE
153 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
154 #endif
155 #ifdef KVM_CAP_NOP_IO_DELAY
156 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
157 #endif
158 #ifdef KVM_CAP_PV_MMU
159 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
160 #endif
161 { -1, -1 }
164 static int get_para_features(CPUState *env)
166 int i, features = 0;
168 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
169 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
170 features |= (1 << para_features[i].feature);
173 return features;
175 #endif
177 int kvm_arch_init_vcpu(CPUState *env)
179 struct {
180 struct kvm_cpuid2 cpuid;
181 struct kvm_cpuid_entry2 entries[100];
182 } __attribute__((packed)) cpuid_data;
183 uint32_t limit, i, j, cpuid_i;
184 uint32_t unused;
185 struct kvm_cpuid_entry2 *c;
186 #ifdef KVM_CPUID_SIGNATURE
187 uint32_t signature[3];
188 #endif
190 env->mp_state = KVM_MP_STATE_RUNNABLE;
192 kvm_trim_features(&env->cpuid_features,
193 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
195 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
196 kvm_trim_features(&env->cpuid_ext_features,
197 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
198 env->cpuid_ext_features |= i;
200 kvm_trim_features(&env->cpuid_ext2_features,
201 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
202 kvm_trim_features(&env->cpuid_ext3_features,
203 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
205 cpuid_i = 0;
207 #ifdef CONFIG_KVM_PARA
208 /* Paravirtualization CPUIDs */
209 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
210 c = &cpuid_data.entries[cpuid_i++];
211 memset(c, 0, sizeof(*c));
212 c->function = KVM_CPUID_SIGNATURE;
213 c->eax = 0;
214 c->ebx = signature[0];
215 c->ecx = signature[1];
216 c->edx = signature[2];
218 c = &cpuid_data.entries[cpuid_i++];
219 memset(c, 0, sizeof(*c));
220 c->function = KVM_CPUID_FEATURES;
221 c->eax = env->cpuid_kvm_features & get_para_features(env);
222 #endif
224 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
226 for (i = 0; i <= limit; i++) {
227 c = &cpuid_data.entries[cpuid_i++];
229 switch (i) {
230 case 2: {
231 /* Keep reading function 2 till all the input is received */
232 int times;
234 c->function = i;
235 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
236 KVM_CPUID_FLAG_STATE_READ_NEXT;
237 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
238 times = c->eax & 0xff;
240 for (j = 1; j < times; ++j) {
241 c = &cpuid_data.entries[cpuid_i++];
242 c->function = i;
243 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
244 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
246 break;
248 case 4:
249 case 0xb:
250 case 0xd:
251 for (j = 0; ; j++) {
252 c->function = i;
253 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
254 c->index = j;
255 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
257 if (i == 4 && c->eax == 0)
258 break;
259 if (i == 0xb && !(c->ecx & 0xff00))
260 break;
261 if (i == 0xd && c->eax == 0)
262 break;
264 c = &cpuid_data.entries[cpuid_i++];
266 break;
267 default:
268 c->function = i;
269 c->flags = 0;
270 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
271 break;
274 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
276 for (i = 0x80000000; i <= limit; i++) {
277 c = &cpuid_data.entries[cpuid_i++];
279 c->function = i;
280 c->flags = 0;
281 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
284 cpuid_data.cpuid.nent = cpuid_i;
286 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
289 void kvm_arch_reset_vcpu(CPUState *env)
291 env->exception_injected = -1;
292 env->interrupt_injected = -1;
293 env->nmi_injected = 0;
294 env->nmi_pending = 0;
297 static int kvm_has_msr_star(CPUState *env)
299 static int has_msr_star;
300 int ret;
302 /* first time */
303 if (has_msr_star == 0) {
304 struct kvm_msr_list msr_list, *kvm_msr_list;
306 has_msr_star = -1;
308 /* Obtain MSR list from KVM. These are the MSRs that we must
309 * save/restore */
310 msr_list.nmsrs = 0;
311 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
312 if (ret < 0 && ret != -E2BIG) {
313 return 0;
315 /* Old kernel modules had a bug and could write beyond the provided
316 memory. Allocate at least a safe amount of 1K. */
317 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
318 msr_list.nmsrs *
319 sizeof(msr_list.indices[0])));
321 kvm_msr_list->nmsrs = msr_list.nmsrs;
322 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
323 if (ret >= 0) {
324 int i;
326 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
327 if (kvm_msr_list->indices[i] == MSR_STAR) {
328 has_msr_star = 1;
329 break;
334 free(kvm_msr_list);
337 if (has_msr_star == 1)
338 return 1;
339 return 0;
342 int kvm_arch_init(KVMState *s, int smp_cpus)
344 int ret;
346 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
347 * directly. In order to use vm86 mode, a TSS is needed. Since this
348 * must be part of guest physical memory, we need to allocate it. Older
349 * versions of KVM just assumed that it would be at the end of physical
350 * memory but that doesn't work with more than 4GB of memory. We simply
351 * refuse to work with those older versions of KVM. */
352 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
353 if (ret <= 0) {
354 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
355 return ret;
358 /* this address is 3 pages before the bios, and the bios should present
359 * as unavaible memory. FIXME, need to ensure the e820 map deals with
360 * this?
362 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
365 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
367 lhs->selector = rhs->selector;
368 lhs->base = rhs->base;
369 lhs->limit = rhs->limit;
370 lhs->type = 3;
371 lhs->present = 1;
372 lhs->dpl = 3;
373 lhs->db = 0;
374 lhs->s = 1;
375 lhs->l = 0;
376 lhs->g = 0;
377 lhs->avl = 0;
378 lhs->unusable = 0;
381 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
383 unsigned flags = rhs->flags;
384 lhs->selector = rhs->selector;
385 lhs->base = rhs->base;
386 lhs->limit = rhs->limit;
387 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
388 lhs->present = (flags & DESC_P_MASK) != 0;
389 lhs->dpl = rhs->selector & 3;
390 lhs->db = (flags >> DESC_B_SHIFT) & 1;
391 lhs->s = (flags & DESC_S_MASK) != 0;
392 lhs->l = (flags >> DESC_L_SHIFT) & 1;
393 lhs->g = (flags & DESC_G_MASK) != 0;
394 lhs->avl = (flags & DESC_AVL_MASK) != 0;
395 lhs->unusable = 0;
398 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
400 lhs->selector = rhs->selector;
401 lhs->base = rhs->base;
402 lhs->limit = rhs->limit;
403 lhs->flags =
404 (rhs->type << DESC_TYPE_SHIFT)
405 | (rhs->present * DESC_P_MASK)
406 | (rhs->dpl << DESC_DPL_SHIFT)
407 | (rhs->db << DESC_B_SHIFT)
408 | (rhs->s * DESC_S_MASK)
409 | (rhs->l << DESC_L_SHIFT)
410 | (rhs->g * DESC_G_MASK)
411 | (rhs->avl * DESC_AVL_MASK);
414 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
416 if (set)
417 *kvm_reg = *qemu_reg;
418 else
419 *qemu_reg = *kvm_reg;
422 static int kvm_getput_regs(CPUState *env, int set)
424 struct kvm_regs regs;
425 int ret = 0;
427 if (!set) {
428 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
429 if (ret < 0)
430 return ret;
433 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
434 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
435 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
436 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
437 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
438 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
439 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
440 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
441 #ifdef TARGET_X86_64
442 kvm_getput_reg(&regs.r8, &env->regs[8], set);
443 kvm_getput_reg(&regs.r9, &env->regs[9], set);
444 kvm_getput_reg(&regs.r10, &env->regs[10], set);
445 kvm_getput_reg(&regs.r11, &env->regs[11], set);
446 kvm_getput_reg(&regs.r12, &env->regs[12], set);
447 kvm_getput_reg(&regs.r13, &env->regs[13], set);
448 kvm_getput_reg(&regs.r14, &env->regs[14], set);
449 kvm_getput_reg(&regs.r15, &env->regs[15], set);
450 #endif
452 kvm_getput_reg(&regs.rflags, &env->eflags, set);
453 kvm_getput_reg(&regs.rip, &env->eip, set);
455 if (set)
456 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
458 return ret;
461 static int kvm_put_fpu(CPUState *env)
463 struct kvm_fpu fpu;
464 int i;
466 memset(&fpu, 0, sizeof fpu);
467 fpu.fsw = env->fpus & ~(7 << 11);
468 fpu.fsw |= (env->fpstt & 7) << 11;
469 fpu.fcw = env->fpuc;
470 for (i = 0; i < 8; ++i)
471 fpu.ftwx |= (!env->fptags[i]) << i;
472 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
473 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
474 fpu.mxcsr = env->mxcsr;
476 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
479 static int kvm_put_sregs(CPUState *env)
481 struct kvm_sregs sregs;
483 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
484 if (env->interrupt_injected >= 0) {
485 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
486 (uint64_t)1 << (env->interrupt_injected % 64);
489 if ((env->eflags & VM_MASK)) {
490 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
491 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
492 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
493 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
494 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
495 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
496 } else {
497 set_seg(&sregs.cs, &env->segs[R_CS]);
498 set_seg(&sregs.ds, &env->segs[R_DS]);
499 set_seg(&sregs.es, &env->segs[R_ES]);
500 set_seg(&sregs.fs, &env->segs[R_FS]);
501 set_seg(&sregs.gs, &env->segs[R_GS]);
502 set_seg(&sregs.ss, &env->segs[R_SS]);
504 if (env->cr[0] & CR0_PE_MASK) {
505 /* force ss cpl to cs cpl */
506 sregs.ss.selector = (sregs.ss.selector & ~3) |
507 (sregs.cs.selector & 3);
508 sregs.ss.dpl = sregs.ss.selector & 3;
512 set_seg(&sregs.tr, &env->tr);
513 set_seg(&sregs.ldt, &env->ldt);
515 sregs.idt.limit = env->idt.limit;
516 sregs.idt.base = env->idt.base;
517 sregs.gdt.limit = env->gdt.limit;
518 sregs.gdt.base = env->gdt.base;
520 sregs.cr0 = env->cr[0];
521 sregs.cr2 = env->cr[2];
522 sregs.cr3 = env->cr[3];
523 sregs.cr4 = env->cr[4];
525 sregs.cr8 = cpu_get_apic_tpr(env);
526 sregs.apic_base = cpu_get_apic_base(env);
528 sregs.efer = env->efer;
530 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
533 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
534 uint32_t index, uint64_t value)
536 entry->index = index;
537 entry->data = value;
540 static int kvm_put_msrs(CPUState *env)
542 struct {
543 struct kvm_msrs info;
544 struct kvm_msr_entry entries[100];
545 } msr_data;
546 struct kvm_msr_entry *msrs = msr_data.entries;
547 int n = 0;
549 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
550 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
551 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
552 if (kvm_has_msr_star(env))
553 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
554 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
555 #ifdef TARGET_X86_64
556 /* FIXME if lm capable */
557 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
558 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
559 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
560 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
561 #endif
562 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr);
563 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
565 msr_data.info.nmsrs = n;
567 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
572 static int kvm_get_fpu(CPUState *env)
574 struct kvm_fpu fpu;
575 int i, ret;
577 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
578 if (ret < 0)
579 return ret;
581 env->fpstt = (fpu.fsw >> 11) & 7;
582 env->fpus = fpu.fsw;
583 env->fpuc = fpu.fcw;
584 for (i = 0; i < 8; ++i)
585 env->fptags[i] = !((fpu.ftwx >> i) & 1);
586 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
587 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
588 env->mxcsr = fpu.mxcsr;
590 return 0;
593 static int kvm_get_sregs(CPUState *env)
595 struct kvm_sregs sregs;
596 uint32_t hflags;
597 int bit, i, ret;
599 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
600 if (ret < 0)
601 return ret;
603 /* There can only be one pending IRQ set in the bitmap at a time, so try
604 to find it and save its number instead (-1 for none). */
605 env->interrupt_injected = -1;
606 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
607 if (sregs.interrupt_bitmap[i]) {
608 bit = ctz64(sregs.interrupt_bitmap[i]);
609 env->interrupt_injected = i * 64 + bit;
610 break;
614 get_seg(&env->segs[R_CS], &sregs.cs);
615 get_seg(&env->segs[R_DS], &sregs.ds);
616 get_seg(&env->segs[R_ES], &sregs.es);
617 get_seg(&env->segs[R_FS], &sregs.fs);
618 get_seg(&env->segs[R_GS], &sregs.gs);
619 get_seg(&env->segs[R_SS], &sregs.ss);
621 get_seg(&env->tr, &sregs.tr);
622 get_seg(&env->ldt, &sregs.ldt);
624 env->idt.limit = sregs.idt.limit;
625 env->idt.base = sregs.idt.base;
626 env->gdt.limit = sregs.gdt.limit;
627 env->gdt.base = sregs.gdt.base;
629 env->cr[0] = sregs.cr0;
630 env->cr[2] = sregs.cr2;
631 env->cr[3] = sregs.cr3;
632 env->cr[4] = sregs.cr4;
634 cpu_set_apic_base(env, sregs.apic_base);
636 env->efer = sregs.efer;
637 //cpu_set_apic_tpr(env, sregs.cr8);
639 #define HFLAG_COPY_MASK ~( \
640 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
641 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
642 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
643 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
647 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
648 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
649 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
650 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
651 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
652 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
653 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
655 if (env->efer & MSR_EFER_LMA) {
656 hflags |= HF_LMA_MASK;
659 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
660 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
661 } else {
662 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
663 (DESC_B_SHIFT - HF_CS32_SHIFT);
664 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
665 (DESC_B_SHIFT - HF_SS32_SHIFT);
666 if (!(env->cr[0] & CR0_PE_MASK) ||
667 (env->eflags & VM_MASK) ||
668 !(hflags & HF_CS32_MASK)) {
669 hflags |= HF_ADDSEG_MASK;
670 } else {
671 hflags |= ((env->segs[R_DS].base |
672 env->segs[R_ES].base |
673 env->segs[R_SS].base) != 0) <<
674 HF_ADDSEG_SHIFT;
677 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
679 return 0;
682 static int kvm_get_msrs(CPUState *env)
684 struct {
685 struct kvm_msrs info;
686 struct kvm_msr_entry entries[100];
687 } msr_data;
688 struct kvm_msr_entry *msrs = msr_data.entries;
689 int ret, i, n;
691 n = 0;
692 msrs[n++].index = MSR_IA32_SYSENTER_CS;
693 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
694 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
695 if (kvm_has_msr_star(env))
696 msrs[n++].index = MSR_STAR;
697 msrs[n++].index = MSR_IA32_TSC;
698 #ifdef TARGET_X86_64
699 /* FIXME lm_capable_kernel */
700 msrs[n++].index = MSR_CSTAR;
701 msrs[n++].index = MSR_KERNELGSBASE;
702 msrs[n++].index = MSR_FMASK;
703 msrs[n++].index = MSR_LSTAR;
704 #endif
705 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
706 msrs[n++].index = MSR_KVM_WALL_CLOCK;
708 msr_data.info.nmsrs = n;
709 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
710 if (ret < 0)
711 return ret;
713 for (i = 0; i < ret; i++) {
714 switch (msrs[i].index) {
715 case MSR_IA32_SYSENTER_CS:
716 env->sysenter_cs = msrs[i].data;
717 break;
718 case MSR_IA32_SYSENTER_ESP:
719 env->sysenter_esp = msrs[i].data;
720 break;
721 case MSR_IA32_SYSENTER_EIP:
722 env->sysenter_eip = msrs[i].data;
723 break;
724 case MSR_STAR:
725 env->star = msrs[i].data;
726 break;
727 #ifdef TARGET_X86_64
728 case MSR_CSTAR:
729 env->cstar = msrs[i].data;
730 break;
731 case MSR_KERNELGSBASE:
732 env->kernelgsbase = msrs[i].data;
733 break;
734 case MSR_FMASK:
735 env->fmask = msrs[i].data;
736 break;
737 case MSR_LSTAR:
738 env->lstar = msrs[i].data;
739 break;
740 #endif
741 case MSR_IA32_TSC:
742 env->tsc = msrs[i].data;
743 break;
744 case MSR_KVM_SYSTEM_TIME:
745 env->system_time_msr = msrs[i].data;
746 break;
747 case MSR_KVM_WALL_CLOCK:
748 env->wall_clock_msr = msrs[i].data;
749 break;
753 return 0;
756 static int kvm_put_mp_state(CPUState *env)
758 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
760 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
763 static int kvm_get_mp_state(CPUState *env)
765 struct kvm_mp_state mp_state;
766 int ret;
768 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
769 if (ret < 0) {
770 return ret;
772 env->mp_state = mp_state.mp_state;
773 return 0;
776 static int kvm_put_vcpu_events(CPUState *env)
778 #ifdef KVM_CAP_VCPU_EVENTS
779 struct kvm_vcpu_events events;
781 if (!kvm_has_vcpu_events()) {
782 return 0;
785 events.exception.injected = (env->exception_injected >= 0);
786 events.exception.nr = env->exception_injected;
787 events.exception.has_error_code = env->has_error_code;
788 events.exception.error_code = env->error_code;
790 events.interrupt.injected = (env->interrupt_injected >= 0);
791 events.interrupt.nr = env->interrupt_injected;
792 events.interrupt.soft = env->soft_interrupt;
794 events.nmi.injected = env->nmi_injected;
795 events.nmi.pending = env->nmi_pending;
796 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
798 events.sipi_vector = env->sipi_vector;
800 events.flags =
801 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
803 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
804 #else
805 return 0;
806 #endif
809 static int kvm_get_vcpu_events(CPUState *env)
811 #ifdef KVM_CAP_VCPU_EVENTS
812 struct kvm_vcpu_events events;
813 int ret;
815 if (!kvm_has_vcpu_events()) {
816 return 0;
819 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
820 if (ret < 0) {
821 return ret;
823 env->exception_injected =
824 events.exception.injected ? events.exception.nr : -1;
825 env->has_error_code = events.exception.has_error_code;
826 env->error_code = events.exception.error_code;
828 env->interrupt_injected =
829 events.interrupt.injected ? events.interrupt.nr : -1;
830 env->soft_interrupt = events.interrupt.soft;
832 env->nmi_injected = events.nmi.injected;
833 env->nmi_pending = events.nmi.pending;
834 if (events.nmi.masked) {
835 env->hflags2 |= HF2_NMI_MASK;
836 } else {
837 env->hflags2 &= ~HF2_NMI_MASK;
840 env->sipi_vector = events.sipi_vector;
841 #endif
843 return 0;
846 int kvm_arch_put_registers(CPUState *env)
848 int ret;
850 ret = kvm_getput_regs(env, 1);
851 if (ret < 0)
852 return ret;
854 ret = kvm_put_fpu(env);
855 if (ret < 0)
856 return ret;
858 ret = kvm_put_sregs(env);
859 if (ret < 0)
860 return ret;
862 ret = kvm_put_msrs(env);
863 if (ret < 0)
864 return ret;
866 ret = kvm_put_mp_state(env);
867 if (ret < 0)
868 return ret;
870 ret = kvm_put_vcpu_events(env);
871 if (ret < 0)
872 return ret;
874 return 0;
877 int kvm_arch_get_registers(CPUState *env)
879 int ret;
881 ret = kvm_getput_regs(env, 0);
882 if (ret < 0)
883 return ret;
885 ret = kvm_get_fpu(env);
886 if (ret < 0)
887 return ret;
889 ret = kvm_get_sregs(env);
890 if (ret < 0)
891 return ret;
893 ret = kvm_get_msrs(env);
894 if (ret < 0)
895 return ret;
897 ret = kvm_get_mp_state(env);
898 if (ret < 0)
899 return ret;
901 ret = kvm_get_vcpu_events(env);
902 if (ret < 0)
903 return ret;
905 return 0;
908 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
910 /* Try to inject an interrupt if the guest can accept it */
911 if (run->ready_for_interrupt_injection &&
912 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
913 (env->eflags & IF_MASK)) {
914 int irq;
916 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
917 irq = cpu_get_pic_interrupt(env);
918 if (irq >= 0) {
919 struct kvm_interrupt intr;
920 intr.irq = irq;
921 /* FIXME: errors */
922 dprintf("injected interrupt %d\n", irq);
923 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
927 /* If we have an interrupt but the guest is not ready to receive an
928 * interrupt, request an interrupt window exit. This will
929 * cause a return to userspace as soon as the guest is ready to
930 * receive interrupts. */
931 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
932 run->request_interrupt_window = 1;
933 else
934 run->request_interrupt_window = 0;
936 dprintf("setting tpr\n");
937 run->cr8 = cpu_get_apic_tpr(env);
939 return 0;
942 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
944 if (run->if_flag)
945 env->eflags |= IF_MASK;
946 else
947 env->eflags &= ~IF_MASK;
949 cpu_set_apic_tpr(env, run->cr8);
950 cpu_set_apic_base(env, run->apic_base);
952 return 0;
955 static int kvm_handle_halt(CPUState *env)
957 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
958 (env->eflags & IF_MASK)) &&
959 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
960 env->halted = 1;
961 env->exception_index = EXCP_HLT;
962 return 0;
965 return 1;
968 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
970 int ret = 0;
972 switch (run->exit_reason) {
973 case KVM_EXIT_HLT:
974 dprintf("handle_hlt\n");
975 ret = kvm_handle_halt(env);
976 break;
979 return ret;
982 #ifdef KVM_CAP_SET_GUEST_DEBUG
983 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
985 static const uint8_t int3 = 0xcc;
987 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
988 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
989 return -EINVAL;
990 return 0;
993 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
995 uint8_t int3;
997 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
998 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
999 return -EINVAL;
1000 return 0;
1003 static struct {
1004 target_ulong addr;
1005 int len;
1006 int type;
1007 } hw_breakpoint[4];
1009 static int nb_hw_breakpoint;
1011 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1013 int n;
1015 for (n = 0; n < nb_hw_breakpoint; n++)
1016 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1017 (hw_breakpoint[n].len == len || len == -1))
1018 return n;
1019 return -1;
1022 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1023 target_ulong len, int type)
1025 switch (type) {
1026 case GDB_BREAKPOINT_HW:
1027 len = 1;
1028 break;
1029 case GDB_WATCHPOINT_WRITE:
1030 case GDB_WATCHPOINT_ACCESS:
1031 switch (len) {
1032 case 1:
1033 break;
1034 case 2:
1035 case 4:
1036 case 8:
1037 if (addr & (len - 1))
1038 return -EINVAL;
1039 break;
1040 default:
1041 return -EINVAL;
1043 break;
1044 default:
1045 return -ENOSYS;
1048 if (nb_hw_breakpoint == 4)
1049 return -ENOBUFS;
1051 if (find_hw_breakpoint(addr, len, type) >= 0)
1052 return -EEXIST;
1054 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1055 hw_breakpoint[nb_hw_breakpoint].len = len;
1056 hw_breakpoint[nb_hw_breakpoint].type = type;
1057 nb_hw_breakpoint++;
1059 return 0;
1062 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1063 target_ulong len, int type)
1065 int n;
1067 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1068 if (n < 0)
1069 return -ENOENT;
1071 nb_hw_breakpoint--;
1072 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1074 return 0;
1077 void kvm_arch_remove_all_hw_breakpoints(void)
1079 nb_hw_breakpoint = 0;
1082 static CPUWatchpoint hw_watchpoint;
1084 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1086 int handle = 0;
1087 int n;
1089 if (arch_info->exception == 1) {
1090 if (arch_info->dr6 & (1 << 14)) {
1091 if (cpu_single_env->singlestep_enabled)
1092 handle = 1;
1093 } else {
1094 for (n = 0; n < 4; n++)
1095 if (arch_info->dr6 & (1 << n))
1096 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1097 case 0x0:
1098 handle = 1;
1099 break;
1100 case 0x1:
1101 handle = 1;
1102 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1103 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1104 hw_watchpoint.flags = BP_MEM_WRITE;
1105 break;
1106 case 0x3:
1107 handle = 1;
1108 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1109 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1110 hw_watchpoint.flags = BP_MEM_ACCESS;
1111 break;
1114 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1115 handle = 1;
1117 if (!handle)
1118 kvm_update_guest_debug(cpu_single_env,
1119 (arch_info->exception == 1) ?
1120 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1122 return handle;
1125 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1127 const uint8_t type_code[] = {
1128 [GDB_BREAKPOINT_HW] = 0x0,
1129 [GDB_WATCHPOINT_WRITE] = 0x1,
1130 [GDB_WATCHPOINT_ACCESS] = 0x3
1132 const uint8_t len_code[] = {
1133 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1135 int n;
1137 if (kvm_sw_breakpoints_active(env))
1138 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1140 if (nb_hw_breakpoint > 0) {
1141 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1142 dbg->arch.debugreg[7] = 0x0600;
1143 for (n = 0; n < nb_hw_breakpoint; n++) {
1144 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1145 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1146 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1147 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1151 #endif /* KVM_CAP_SET_GUEST_DEBUG */