ppc/pnv: Change the maximum of PHB3 devices for Power8NVL
[qemu.git] / hw / i386 / x86.c
blobb84840a1bb99a9072375f9784dc5068c23fb00ca
1 /*
2 * Copyright (c) 2003-2004 Fabrice Bellard
3 * Copyright (c) 2019 Red Hat, Inc.
5 * Permission is hereby granted, free of charge, to any person obtaining a copy
6 * of this software and associated documentation files (the "Software"), to deal
7 * in the Software without restriction, including without limitation the rights
8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 * copies of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21 * THE SOFTWARE.
23 #include "qemu/osdep.h"
24 #include "qemu/error-report.h"
25 #include "qemu/option.h"
26 #include "qemu/cutils.h"
27 #include "qemu/units.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qmp/qerror.h"
32 #include "qapi/qapi-visit-common.h"
33 #include "qapi/clone-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "qapi/visitor.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/whpx.h"
38 #include "sysemu/numa.h"
39 #include "sysemu/replay.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/cpu-timers.h"
42 #include "trace.h"
44 #include "hw/i386/x86.h"
45 #include "target/i386/cpu.h"
46 #include "hw/i386/topology.h"
47 #include "hw/i386/fw_cfg.h"
48 #include "hw/intc/i8259.h"
49 #include "hw/rtc/mc146818rtc.h"
50 #include "target/i386/sev.h"
52 #include "hw/acpi/cpu_hotplug.h"
53 #include "hw/irq.h"
54 #include "hw/nmi.h"
55 #include "hw/loader.h"
56 #include "multiboot.h"
57 #include "elf.h"
58 #include "standard-headers/asm-x86/bootparam.h"
59 #include CONFIG_DEVICES
60 #include "kvm/kvm_i386.h"
62 /* Physical Address of PVH entry point read from kernel ELF NOTE */
63 static size_t pvh_start_addr;
65 inline void init_topo_info(X86CPUTopoInfo *topo_info,
66 const X86MachineState *x86ms)
68 MachineState *ms = MACHINE(x86ms);
70 topo_info->dies_per_pkg = ms->smp.dies;
71 topo_info->cores_per_die = ms->smp.cores;
72 topo_info->threads_per_core = ms->smp.threads;
76 * Calculates initial APIC ID for a specific CPU index
78 * Currently we need to be able to calculate the APIC ID from the CPU index
79 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
80 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
81 * all CPUs up to max_cpus.
83 uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
84 unsigned int cpu_index)
86 X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
87 X86CPUTopoInfo topo_info;
88 uint32_t correct_id;
89 static bool warned;
91 init_topo_info(&topo_info, x86ms);
93 correct_id = x86_apicid_from_cpu_idx(&topo_info, cpu_index);
94 if (x86mc->compat_apic_id_mode) {
95 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
96 error_report("APIC IDs set in compatibility mode, "
97 "CPU topology won't match the configuration");
98 warned = true;
100 return cpu_index;
101 } else {
102 return correct_id;
107 void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
109 Object *cpu = object_new(MACHINE(x86ms)->cpu_type);
111 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) {
112 goto out;
114 qdev_realize(DEVICE(cpu), NULL, errp);
116 out:
117 object_unref(cpu);
120 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
122 int i;
123 const CPUArchIdList *possible_cpus;
124 MachineState *ms = MACHINE(x86ms);
125 MachineClass *mc = MACHINE_GET_CLASS(x86ms);
127 x86_cpu_set_default_version(default_cpu_version);
130 * Calculates the limit to CPU APIC ID values
132 * Limit for the APIC ID value, so that all
133 * CPU APIC IDs are < x86ms->apic_id_limit.
135 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
137 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
138 ms->smp.max_cpus - 1) + 1;
139 possible_cpus = mc->possible_cpu_arch_ids(ms);
140 for (i = 0; i < ms->smp.cpus; i++) {
141 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
145 void x86_rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
147 if (cpus_count > 0xff) {
149 * If the number of CPUs can't be represented in 8 bits, the
150 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
151 * to make old BIOSes fail more predictably.
153 rtc_set_memory(rtc, 0x5f, 0);
154 } else {
155 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
159 static int x86_apic_cmp(const void *a, const void *b)
161 CPUArchId *apic_a = (CPUArchId *)a;
162 CPUArchId *apic_b = (CPUArchId *)b;
164 return apic_a->arch_id - apic_b->arch_id;
168 * returns pointer to CPUArchId descriptor that matches CPU's apic_id
169 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
170 * entry corresponding to CPU's apic_id returns NULL.
172 CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
174 CPUArchId apic_id, *found_cpu;
176 apic_id.arch_id = id;
177 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
178 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
179 x86_apic_cmp);
180 if (found_cpu && idx) {
181 *idx = found_cpu - ms->possible_cpus->cpus;
183 return found_cpu;
186 void x86_cpu_plug(HotplugHandler *hotplug_dev,
187 DeviceState *dev, Error **errp)
189 CPUArchId *found_cpu;
190 Error *local_err = NULL;
191 X86CPU *cpu = X86_CPU(dev);
192 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
194 if (x86ms->acpi_dev) {
195 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err);
196 if (local_err) {
197 goto out;
201 /* increment the number of CPUs */
202 x86ms->boot_cpus++;
203 if (x86ms->rtc) {
204 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
206 if (x86ms->fw_cfg) {
207 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
210 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
211 found_cpu->cpu = OBJECT(dev);
212 out:
213 error_propagate(errp, local_err);
216 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
217 DeviceState *dev, Error **errp)
219 int idx = -1;
220 X86CPU *cpu = X86_CPU(dev);
221 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
223 if (!x86ms->acpi_dev) {
224 error_setg(errp, "CPU hot unplug not supported without ACPI");
225 return;
228 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
229 assert(idx != -1);
230 if (idx == 0) {
231 error_setg(errp, "Boot CPU is unpluggable");
232 return;
235 hotplug_handler_unplug_request(x86ms->acpi_dev, dev,
236 errp);
239 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev,
240 DeviceState *dev, Error **errp)
242 CPUArchId *found_cpu;
243 Error *local_err = NULL;
244 X86CPU *cpu = X86_CPU(dev);
245 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
247 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err);
248 if (local_err) {
249 goto out;
252 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL);
253 found_cpu->cpu = NULL;
254 qdev_unrealize(dev);
256 /* decrement the number of CPUs */
257 x86ms->boot_cpus--;
258 /* Update the number of CPUs in CMOS */
259 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus);
260 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus);
261 out:
262 error_propagate(errp, local_err);
265 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev,
266 DeviceState *dev, Error **errp)
268 int idx;
269 CPUState *cs;
270 CPUArchId *cpu_slot;
271 X86CPUTopoIDs topo_ids;
272 X86CPU *cpu = X86_CPU(dev);
273 CPUX86State *env = &cpu->env;
274 MachineState *ms = MACHINE(hotplug_dev);
275 X86MachineState *x86ms = X86_MACHINE(hotplug_dev);
276 unsigned int smp_cores = ms->smp.cores;
277 unsigned int smp_threads = ms->smp.threads;
278 X86CPUTopoInfo topo_info;
280 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
281 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
282 ms->cpu_type);
283 return;
286 if (x86ms->acpi_dev) {
287 Error *local_err = NULL;
289 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev,
290 &local_err);
291 if (local_err) {
292 error_propagate(errp, local_err);
293 return;
297 init_topo_info(&topo_info, x86ms);
299 env->nr_dies = ms->smp.dies;
302 * If APIC ID is not set,
303 * set it based on socket/die/core/thread properties.
305 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
306 int max_socket = (ms->smp.max_cpus - 1) /
307 smp_threads / smp_cores / ms->smp.dies;
310 * die-id was optional in QEMU 4.0 and older, so keep it optional
311 * if there's only one die per socket.
313 if (cpu->die_id < 0 && ms->smp.dies == 1) {
314 cpu->die_id = 0;
317 if (cpu->socket_id < 0) {
318 error_setg(errp, "CPU socket-id is not set");
319 return;
320 } else if (cpu->socket_id > max_socket) {
321 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
322 cpu->socket_id, max_socket);
323 return;
325 if (cpu->die_id < 0) {
326 error_setg(errp, "CPU die-id is not set");
327 return;
328 } else if (cpu->die_id > ms->smp.dies - 1) {
329 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
330 cpu->die_id, ms->smp.dies - 1);
331 return;
333 if (cpu->core_id < 0) {
334 error_setg(errp, "CPU core-id is not set");
335 return;
336 } else if (cpu->core_id > (smp_cores - 1)) {
337 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
338 cpu->core_id, smp_cores - 1);
339 return;
341 if (cpu->thread_id < 0) {
342 error_setg(errp, "CPU thread-id is not set");
343 return;
344 } else if (cpu->thread_id > (smp_threads - 1)) {
345 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
346 cpu->thread_id, smp_threads - 1);
347 return;
350 topo_ids.pkg_id = cpu->socket_id;
351 topo_ids.die_id = cpu->die_id;
352 topo_ids.core_id = cpu->core_id;
353 topo_ids.smt_id = cpu->thread_id;
354 cpu->apic_id = x86_apicid_from_topo_ids(&topo_info, &topo_ids);
357 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx);
358 if (!cpu_slot) {
359 MachineState *ms = MACHINE(x86ms);
361 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
362 error_setg(errp,
363 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
364 " APIC ID %" PRIu32 ", valid index range 0:%d",
365 topo_ids.pkg_id, topo_ids.die_id, topo_ids.core_id, topo_ids.smt_id,
366 cpu->apic_id, ms->possible_cpus->len - 1);
367 return;
370 if (cpu_slot->cpu) {
371 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
372 idx, cpu->apic_id);
373 return;
376 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
377 * so that machine_query_hotpluggable_cpus would show correct values
379 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
380 * once -smp refactoring is complete and there will be CPU private
381 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
382 x86_topo_ids_from_apicid(cpu->apic_id, &topo_info, &topo_ids);
383 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) {
384 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
385 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id,
386 topo_ids.pkg_id);
387 return;
389 cpu->socket_id = topo_ids.pkg_id;
391 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) {
392 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
393 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id);
394 return;
396 cpu->die_id = topo_ids.die_id;
398 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) {
399 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
400 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id,
401 topo_ids.core_id);
402 return;
404 cpu->core_id = topo_ids.core_id;
406 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) {
407 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
408 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id,
409 topo_ids.smt_id);
410 return;
412 cpu->thread_id = topo_ids.smt_id;
414 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
415 !kvm_hv_vpindex_settable()) {
416 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
417 return;
420 cs = CPU(cpu);
421 cs->cpu_index = idx;
423 numa_cpu_pre_plug(cpu_slot, dev, errp);
426 CpuInstanceProperties
427 x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
429 MachineClass *mc = MACHINE_GET_CLASS(ms);
430 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
432 assert(cpu_index < possible_cpus->len);
433 return possible_cpus->cpus[cpu_index].props;
436 int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
438 X86CPUTopoIDs topo_ids;
439 X86MachineState *x86ms = X86_MACHINE(ms);
440 X86CPUTopoInfo topo_info;
442 init_topo_info(&topo_info, x86ms);
444 assert(idx < ms->possible_cpus->len);
445 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
446 &topo_info, &topo_ids);
447 return topo_ids.pkg_id % ms->numa_state->num_nodes;
450 const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
452 X86MachineState *x86ms = X86_MACHINE(ms);
453 unsigned int max_cpus = ms->smp.max_cpus;
454 X86CPUTopoInfo topo_info;
455 int i;
457 if (ms->possible_cpus) {
459 * make sure that max_cpus hasn't changed since the first use, i.e.
460 * -smp hasn't been parsed after it
462 assert(ms->possible_cpus->len == max_cpus);
463 return ms->possible_cpus;
466 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
467 sizeof(CPUArchId) * max_cpus);
468 ms->possible_cpus->len = max_cpus;
470 init_topo_info(&topo_info, x86ms);
472 for (i = 0; i < ms->possible_cpus->len; i++) {
473 X86CPUTopoIDs topo_ids;
475 ms->possible_cpus->cpus[i].type = ms->cpu_type;
476 ms->possible_cpus->cpus[i].vcpus_count = 1;
477 ms->possible_cpus->cpus[i].arch_id =
478 x86_cpu_apic_id_from_index(x86ms, i);
479 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
480 &topo_info, &topo_ids);
481 ms->possible_cpus->cpus[i].props.has_socket_id = true;
482 ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
483 if (ms->smp.dies > 1) {
484 ms->possible_cpus->cpus[i].props.has_die_id = true;
485 ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
487 ms->possible_cpus->cpus[i].props.has_core_id = true;
488 ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
489 ms->possible_cpus->cpus[i].props.has_thread_id = true;
490 ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
492 return ms->possible_cpus;
495 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
497 /* cpu index isn't used */
498 CPUState *cs;
500 CPU_FOREACH(cs) {
501 X86CPU *cpu = X86_CPU(cs);
503 if (!cpu->apic_state) {
504 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
505 } else {
506 apic_deliver_nmi(cpu->apic_state);
511 static long get_file_size(FILE *f)
513 long where, size;
515 /* XXX: on Unix systems, using fstat() probably makes more sense */
517 where = ftell(f);
518 fseek(f, 0, SEEK_END);
519 size = ftell(f);
520 fseek(f, where, SEEK_SET);
522 return size;
525 /* TSC handling */
526 uint64_t cpu_get_tsc(CPUX86State *env)
528 return cpus_get_elapsed_ticks();
531 /* IRQ handling */
532 static void pic_irq_request(void *opaque, int irq, int level)
534 CPUState *cs = first_cpu;
535 X86CPU *cpu = X86_CPU(cs);
537 trace_x86_pic_interrupt(irq, level);
538 if (cpu->apic_state && !kvm_irqchip_in_kernel() &&
539 !whpx_apic_in_platform()) {
540 CPU_FOREACH(cs) {
541 cpu = X86_CPU(cs);
542 if (apic_accept_pic_intr(cpu->apic_state)) {
543 apic_deliver_pic_intr(cpu->apic_state, level);
546 } else {
547 if (level) {
548 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
549 } else {
550 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
555 qemu_irq x86_allocate_cpu_irq(void)
557 return qemu_allocate_irq(pic_irq_request, NULL, 0);
560 int cpu_get_pic_interrupt(CPUX86State *env)
562 X86CPU *cpu = env_archcpu(env);
563 int intno;
565 if (!kvm_irqchip_in_kernel() && !whpx_apic_in_platform()) {
566 intno = apic_get_interrupt(cpu->apic_state);
567 if (intno >= 0) {
568 return intno;
570 /* read the irq from the PIC */
571 if (!apic_accept_pic_intr(cpu->apic_state)) {
572 return -1;
576 intno = pic_read_irq(isa_pic);
577 return intno;
580 DeviceState *cpu_get_current_apic(void)
582 if (current_cpu) {
583 X86CPU *cpu = X86_CPU(current_cpu);
584 return cpu->apic_state;
585 } else {
586 return NULL;
590 void gsi_handler(void *opaque, int n, int level)
592 GSIState *s = opaque;
594 trace_x86_gsi_interrupt(n, level);
595 switch (n) {
596 case 0 ... ISA_NUM_IRQS - 1:
597 if (s->i8259_irq[n]) {
598 /* Under KVM, Kernel will forward to both PIC and IOAPIC */
599 qemu_set_irq(s->i8259_irq[n], level);
601 /* fall through */
602 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1:
603 qemu_set_irq(s->ioapic_irq[n], level);
604 break;
605 case IO_APIC_SECONDARY_IRQBASE
606 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1:
607 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level);
608 break;
612 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
614 DeviceState *dev;
615 SysBusDevice *d;
616 unsigned int i;
618 assert(parent_name);
619 if (kvm_ioapic_in_kernel()) {
620 dev = qdev_new(TYPE_KVM_IOAPIC);
621 } else {
622 dev = qdev_new(TYPE_IOAPIC);
624 object_property_add_child(object_resolve_path(parent_name, NULL),
625 "ioapic", OBJECT(dev));
626 d = SYS_BUS_DEVICE(dev);
627 sysbus_realize_and_unref(d, &error_fatal);
628 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
630 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
631 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
635 DeviceState *ioapic_init_secondary(GSIState *gsi_state)
637 DeviceState *dev;
638 SysBusDevice *d;
639 unsigned int i;
641 dev = qdev_new(TYPE_IOAPIC);
642 d = SYS_BUS_DEVICE(dev);
643 sysbus_realize_and_unref(d, &error_fatal);
644 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS);
646 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
647 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i);
649 return dev;
652 struct setup_data {
653 uint64_t next;
654 uint32_t type;
655 uint32_t len;
656 uint8_t data[];
657 } __attribute__((packed));
661 * The entry point into the kernel for PVH boot is different from
662 * the native entry point. The PVH entry is defined by the x86/HVM
663 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
665 * This function is passed to load_elf() when it is called from
666 * load_elfboot() which then additionally checks for an ELF Note of
667 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
668 * parse the PVH entry address from the ELF Note.
670 * Due to trickery in elf_opts.h, load_elf() is actually available as
671 * load_elf32() or load_elf64() and this routine needs to be able
672 * to deal with being called as 32 or 64 bit.
674 * The address of the PVH entry point is saved to the 'pvh_start_addr'
675 * global variable. (although the entry point is 32-bit, the kernel
676 * binary can be either 32-bit or 64-bit).
678 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
680 size_t *elf_note_data_addr;
682 /* Check if ELF Note header passed in is valid */
683 if (arg1 == NULL) {
684 return 0;
687 if (is64) {
688 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
689 uint64_t nhdr_size64 = sizeof(struct elf64_note);
690 uint64_t phdr_align = *(uint64_t *)arg2;
691 uint64_t nhdr_namesz = nhdr64->n_namesz;
693 elf_note_data_addr =
694 ((void *)nhdr64) + nhdr_size64 +
695 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
697 pvh_start_addr = *elf_note_data_addr;
698 } else {
699 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
700 uint32_t nhdr_size32 = sizeof(struct elf32_note);
701 uint32_t phdr_align = *(uint32_t *)arg2;
702 uint32_t nhdr_namesz = nhdr32->n_namesz;
704 elf_note_data_addr =
705 ((void *)nhdr32) + nhdr_size32 +
706 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
708 pvh_start_addr = *(uint32_t *)elf_note_data_addr;
711 return pvh_start_addr;
714 static bool load_elfboot(const char *kernel_filename,
715 int kernel_file_size,
716 uint8_t *header,
717 size_t pvh_xen_start_addr,
718 FWCfgState *fw_cfg)
720 uint32_t flags = 0;
721 uint32_t mh_load_addr = 0;
722 uint32_t elf_kernel_size = 0;
723 uint64_t elf_entry;
724 uint64_t elf_low, elf_high;
725 int kernel_size;
727 if (ldl_p(header) != 0x464c457f) {
728 return false; /* no elfboot */
731 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
732 flags = elf_is64 ?
733 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
735 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
736 error_report("elfboot unsupported flags = %x", flags);
737 exit(1);
740 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
741 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
742 NULL, &elf_note_type, &elf_entry,
743 &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
744 0, 0);
746 if (kernel_size < 0) {
747 error_report("Error while loading elf kernel");
748 exit(1);
750 mh_load_addr = elf_low;
751 elf_kernel_size = elf_high - elf_low;
753 if (pvh_start_addr == 0) {
754 error_report("Error loading uncompressed kernel without PVH ELF Note");
755 exit(1);
757 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
758 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
759 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
761 return true;
764 void x86_load_linux(X86MachineState *x86ms,
765 FWCfgState *fw_cfg,
766 int acpi_data_size,
767 bool pvh_enabled)
769 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled;
770 uint16_t protocol;
771 int setup_size, kernel_size, cmdline_size;
772 int dtb_size, setup_data_offset;
773 uint32_t initrd_max;
774 uint8_t header[8192], *setup, *kernel;
775 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
776 FILE *f;
777 char *vmode;
778 MachineState *machine = MACHINE(x86ms);
779 struct setup_data *setup_data;
780 const char *kernel_filename = machine->kernel_filename;
781 const char *initrd_filename = machine->initrd_filename;
782 const char *dtb_filename = machine->dtb;
783 const char *kernel_cmdline = machine->kernel_cmdline;
784 SevKernelLoaderContext sev_load_ctx = {};
786 /* Align to 16 bytes as a paranoia measure */
787 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
789 /* load the kernel header */
790 f = fopen(kernel_filename, "rb");
791 if (!f) {
792 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
793 kernel_filename, strerror(errno));
794 exit(1);
797 kernel_size = get_file_size(f);
798 if (!kernel_size ||
799 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
800 MIN(ARRAY_SIZE(header), kernel_size)) {
801 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
802 kernel_filename, strerror(errno));
803 exit(1);
806 /* kernel protocol version */
807 if (ldl_p(header + 0x202) == 0x53726448) {
808 protocol = lduw_p(header + 0x206);
809 } else {
811 * This could be a multiboot kernel. If it is, let's stop treating it
812 * like a Linux kernel.
813 * Note: some multiboot images could be in the ELF format (the same of
814 * PVH), so we try multiboot first since we check the multiboot magic
815 * header before to load it.
817 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename,
818 kernel_cmdline, kernel_size, header)) {
819 return;
822 * Check if the file is an uncompressed kernel file (ELF) and load it,
823 * saving the PVH entry point used by the x86/HVM direct boot ABI.
824 * If load_elfboot() is successful, populate the fw_cfg info.
826 if (pvh_enabled &&
827 load_elfboot(kernel_filename, kernel_size,
828 header, pvh_start_addr, fw_cfg)) {
829 fclose(f);
831 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
832 strlen(kernel_cmdline) + 1);
833 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
835 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
836 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
837 header, sizeof(header));
839 /* load initrd */
840 if (initrd_filename) {
841 GMappedFile *mapped_file;
842 gsize initrd_size;
843 gchar *initrd_data;
844 GError *gerr = NULL;
846 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
847 if (!mapped_file) {
848 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
849 initrd_filename, gerr->message);
850 exit(1);
852 x86ms->initrd_mapped_file = mapped_file;
854 initrd_data = g_mapped_file_get_contents(mapped_file);
855 initrd_size = g_mapped_file_get_length(mapped_file);
856 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
857 if (initrd_size >= initrd_max) {
858 fprintf(stderr, "qemu: initrd is too large, cannot support."
859 "(max: %"PRIu32", need %"PRId64")\n",
860 initrd_max, (uint64_t)initrd_size);
861 exit(1);
864 initrd_addr = (initrd_max - initrd_size) & ~4095;
866 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
867 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
868 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
869 initrd_size);
872 option_rom[nb_option_roms].bootindex = 0;
873 option_rom[nb_option_roms].name = "pvh.bin";
874 nb_option_roms++;
876 return;
878 protocol = 0;
881 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
882 /* Low kernel */
883 real_addr = 0x90000;
884 cmdline_addr = 0x9a000 - cmdline_size;
885 prot_addr = 0x10000;
886 } else if (protocol < 0x202) {
887 /* High but ancient kernel */
888 real_addr = 0x90000;
889 cmdline_addr = 0x9a000 - cmdline_size;
890 prot_addr = 0x100000;
891 } else {
892 /* High and recent kernel */
893 real_addr = 0x10000;
894 cmdline_addr = 0x20000;
895 prot_addr = 0x100000;
898 /* highest address for loading the initrd */
899 if (protocol >= 0x20c &&
900 lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
902 * Linux has supported initrd up to 4 GB for a very long time (2007,
903 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
904 * though it only sets initrd_max to 2 GB to "work around bootloader
905 * bugs". Luckily, QEMU firmware(which does something like bootloader)
906 * has supported this.
908 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
909 * be loaded into any address.
911 * In addition, initrd_max is uint32_t simply because QEMU doesn't
912 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
913 * field).
915 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
917 initrd_max = UINT32_MAX;
918 } else if (protocol >= 0x203) {
919 initrd_max = ldl_p(header + 0x22c);
920 } else {
921 initrd_max = 0x37ffffff;
924 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
925 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
928 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
929 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
930 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
931 sev_load_ctx.cmdline_data = (char *)kernel_cmdline;
932 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1;
934 if (protocol >= 0x202) {
935 stl_p(header + 0x228, cmdline_addr);
936 } else {
937 stw_p(header + 0x20, 0xA33F);
938 stw_p(header + 0x22, cmdline_addr - real_addr);
941 /* handle vga= parameter */
942 vmode = strstr(kernel_cmdline, "vga=");
943 if (vmode) {
944 unsigned int video_mode;
945 const char *end;
946 int ret;
947 /* skip "vga=" */
948 vmode += 4;
949 if (!strncmp(vmode, "normal", 6)) {
950 video_mode = 0xffff;
951 } else if (!strncmp(vmode, "ext", 3)) {
952 video_mode = 0xfffe;
953 } else if (!strncmp(vmode, "ask", 3)) {
954 video_mode = 0xfffd;
955 } else {
956 ret = qemu_strtoui(vmode, &end, 0, &video_mode);
957 if (ret != 0 || (*end && *end != ' ')) {
958 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
959 exit(1);
962 stw_p(header + 0x1fa, video_mode);
965 /* loader type */
967 * High nybble = B reserved for QEMU; low nybble is revision number.
968 * If this code is substantially changed, you may want to consider
969 * incrementing the revision.
971 if (protocol >= 0x200) {
972 header[0x210] = 0xB0;
974 /* heap */
975 if (protocol >= 0x201) {
976 header[0x211] |= 0x80; /* CAN_USE_HEAP */
977 stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
980 /* load initrd */
981 if (initrd_filename) {
982 GMappedFile *mapped_file;
983 gsize initrd_size;
984 gchar *initrd_data;
985 GError *gerr = NULL;
987 if (protocol < 0x200) {
988 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
989 exit(1);
992 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
993 if (!mapped_file) {
994 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
995 initrd_filename, gerr->message);
996 exit(1);
998 x86ms->initrd_mapped_file = mapped_file;
1000 initrd_data = g_mapped_file_get_contents(mapped_file);
1001 initrd_size = g_mapped_file_get_length(mapped_file);
1002 if (initrd_size >= initrd_max) {
1003 fprintf(stderr, "qemu: initrd is too large, cannot support."
1004 "(max: %"PRIu32", need %"PRId64")\n",
1005 initrd_max, (uint64_t)initrd_size);
1006 exit(1);
1009 initrd_addr = (initrd_max - initrd_size) & ~4095;
1011 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1012 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1013 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1014 sev_load_ctx.initrd_data = initrd_data;
1015 sev_load_ctx.initrd_size = initrd_size;
1017 stl_p(header + 0x218, initrd_addr);
1018 stl_p(header + 0x21c, initrd_size);
1021 /* load kernel and setup */
1022 setup_size = header[0x1f1];
1023 if (setup_size == 0) {
1024 setup_size = 4;
1026 setup_size = (setup_size + 1) * 512;
1027 if (setup_size > kernel_size) {
1028 fprintf(stderr, "qemu: invalid kernel header\n");
1029 exit(1);
1031 kernel_size -= setup_size;
1033 setup = g_malloc(setup_size);
1034 kernel = g_malloc(kernel_size);
1035 fseek(f, 0, SEEK_SET);
1036 if (fread(setup, 1, setup_size, f) != setup_size) {
1037 fprintf(stderr, "fread() failed\n");
1038 exit(1);
1040 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1041 fprintf(stderr, "fread() failed\n");
1042 exit(1);
1044 fclose(f);
1046 /* append dtb to kernel */
1047 if (dtb_filename) {
1048 if (protocol < 0x209) {
1049 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1050 exit(1);
1053 dtb_size = get_image_size(dtb_filename);
1054 if (dtb_size <= 0) {
1055 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1056 dtb_filename, strerror(errno));
1057 exit(1);
1060 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1061 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1062 kernel = g_realloc(kernel, kernel_size);
1064 stq_p(header + 0x250, prot_addr + setup_data_offset);
1066 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1067 setup_data->next = 0;
1068 setup_data->type = cpu_to_le32(SETUP_DTB);
1069 setup_data->len = cpu_to_le32(dtb_size);
1071 load_image_size(dtb_filename, setup_data->data, dtb_size);
1075 * If we're starting an encrypted VM, it will be OVMF based, which uses the
1076 * efi stub for booting and doesn't require any values to be placed in the
1077 * kernel header. We therefore don't update the header so the hash of the
1078 * kernel on the other side of the fw_cfg interface matches the hash of the
1079 * file the user passed in.
1081 if (!sev_enabled()) {
1082 memcpy(setup, header, MIN(sizeof(header), setup_size));
1085 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1086 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1087 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1088 sev_load_ctx.kernel_data = (char *)kernel;
1089 sev_load_ctx.kernel_size = kernel_size;
1091 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1092 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1093 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1094 sev_load_ctx.setup_data = (char *)setup;
1095 sev_load_ctx.setup_size = setup_size;
1097 if (sev_enabled()) {
1098 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal);
1101 option_rom[nb_option_roms].bootindex = 0;
1102 option_rom[nb_option_roms].name = "linuxboot.bin";
1103 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1104 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1106 nb_option_roms++;
1109 void x86_bios_rom_init(MachineState *ms, const char *default_firmware,
1110 MemoryRegion *rom_memory, bool isapc_ram_fw)
1112 const char *bios_name;
1113 char *filename;
1114 MemoryRegion *bios, *isa_bios;
1115 int bios_size, isa_bios_size;
1116 int ret;
1118 /* BIOS load */
1119 bios_name = ms->firmware ?: default_firmware;
1120 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1121 if (filename) {
1122 bios_size = get_image_size(filename);
1123 } else {
1124 bios_size = -1;
1126 if (bios_size <= 0 ||
1127 (bios_size % 65536) != 0) {
1128 goto bios_error;
1130 bios = g_malloc(sizeof(*bios));
1131 memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
1132 if (!isapc_ram_fw) {
1133 memory_region_set_readonly(bios, true);
1135 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
1136 if (ret != 0) {
1137 bios_error:
1138 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
1139 exit(1);
1141 g_free(filename);
1143 /* map the last 128KB of the BIOS in ISA space */
1144 isa_bios_size = MIN(bios_size, 128 * KiB);
1145 isa_bios = g_malloc(sizeof(*isa_bios));
1146 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
1147 bios_size - isa_bios_size, isa_bios_size);
1148 memory_region_add_subregion_overlap(rom_memory,
1149 0x100000 - isa_bios_size,
1150 isa_bios,
1152 if (!isapc_ram_fw) {
1153 memory_region_set_readonly(isa_bios, true);
1156 /* map all the bios at the top of memory */
1157 memory_region_add_subregion(rom_memory,
1158 (uint32_t)(-bios_size),
1159 bios);
1162 bool x86_machine_is_smm_enabled(const X86MachineState *x86ms)
1164 bool smm_available = false;
1166 if (x86ms->smm == ON_OFF_AUTO_OFF) {
1167 return false;
1170 if (tcg_enabled() || qtest_enabled()) {
1171 smm_available = true;
1172 } else if (kvm_enabled()) {
1173 smm_available = kvm_has_smm();
1176 if (smm_available) {
1177 return true;
1180 if (x86ms->smm == ON_OFF_AUTO_ON) {
1181 error_report("System Management Mode not supported by this hypervisor.");
1182 exit(1);
1184 return false;
1187 static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
1188 void *opaque, Error **errp)
1190 X86MachineState *x86ms = X86_MACHINE(obj);
1191 OnOffAuto smm = x86ms->smm;
1193 visit_type_OnOffAuto(v, name, &smm, errp);
1196 static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
1197 void *opaque, Error **errp)
1199 X86MachineState *x86ms = X86_MACHINE(obj);
1201 visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
1204 bool x86_machine_is_acpi_enabled(const X86MachineState *x86ms)
1206 if (x86ms->acpi == ON_OFF_AUTO_OFF) {
1207 return false;
1209 return true;
1212 static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
1213 void *opaque, Error **errp)
1215 X86MachineState *x86ms = X86_MACHINE(obj);
1216 OnOffAuto acpi = x86ms->acpi;
1218 visit_type_OnOffAuto(v, name, &acpi, errp);
1221 static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
1222 void *opaque, Error **errp)
1224 X86MachineState *x86ms = X86_MACHINE(obj);
1226 visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
1229 static char *x86_machine_get_oem_id(Object *obj, Error **errp)
1231 X86MachineState *x86ms = X86_MACHINE(obj);
1233 return g_strdup(x86ms->oem_id);
1236 static void x86_machine_set_oem_id(Object *obj, const char *value, Error **errp)
1238 X86MachineState *x86ms = X86_MACHINE(obj);
1239 size_t len = strlen(value);
1241 if (len > 6) {
1242 error_setg(errp,
1243 "User specified "X86_MACHINE_OEM_ID" value is bigger than "
1244 "6 bytes in size");
1245 return;
1248 strncpy(x86ms->oem_id, value, 6);
1251 static char *x86_machine_get_oem_table_id(Object *obj, Error **errp)
1253 X86MachineState *x86ms = X86_MACHINE(obj);
1255 return g_strdup(x86ms->oem_table_id);
1258 static void x86_machine_set_oem_table_id(Object *obj, const char *value,
1259 Error **errp)
1261 X86MachineState *x86ms = X86_MACHINE(obj);
1262 size_t len = strlen(value);
1264 if (len > 8) {
1265 error_setg(errp,
1266 "User specified "X86_MACHINE_OEM_TABLE_ID
1267 " value is bigger than "
1268 "8 bytes in size");
1269 return;
1271 strncpy(x86ms->oem_table_id, value, 8);
1274 static void x86_machine_get_bus_lock_ratelimit(Object *obj, Visitor *v,
1275 const char *name, void *opaque, Error **errp)
1277 X86MachineState *x86ms = X86_MACHINE(obj);
1278 uint64_t bus_lock_ratelimit = x86ms->bus_lock_ratelimit;
1280 visit_type_uint64(v, name, &bus_lock_ratelimit, errp);
1283 static void x86_machine_set_bus_lock_ratelimit(Object *obj, Visitor *v,
1284 const char *name, void *opaque, Error **errp)
1286 X86MachineState *x86ms = X86_MACHINE(obj);
1288 visit_type_uint64(v, name, &x86ms->bus_lock_ratelimit, errp);
1291 static void machine_get_sgx_epc(Object *obj, Visitor *v, const char *name,
1292 void *opaque, Error **errp)
1294 X86MachineState *x86ms = X86_MACHINE(obj);
1295 SgxEPCList *list = x86ms->sgx_epc_list;
1297 visit_type_SgxEPCList(v, name, &list, errp);
1300 static void machine_set_sgx_epc(Object *obj, Visitor *v, const char *name,
1301 void *opaque, Error **errp)
1303 X86MachineState *x86ms = X86_MACHINE(obj);
1304 SgxEPCList *list;
1306 list = x86ms->sgx_epc_list;
1307 visit_type_SgxEPCList(v, name, &x86ms->sgx_epc_list, errp);
1309 qapi_free_SgxEPCList(list);
1312 static void x86_machine_initfn(Object *obj)
1314 X86MachineState *x86ms = X86_MACHINE(obj);
1316 x86ms->smm = ON_OFF_AUTO_AUTO;
1317 x86ms->acpi = ON_OFF_AUTO_AUTO;
1318 x86ms->pci_irq_mask = ACPI_BUILD_PCI_IRQS;
1319 x86ms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
1320 x86ms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
1321 x86ms->bus_lock_ratelimit = 0;
1324 static void x86_machine_class_init(ObjectClass *oc, void *data)
1326 MachineClass *mc = MACHINE_CLASS(oc);
1327 X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
1328 NMIClass *nc = NMI_CLASS(oc);
1330 mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
1331 mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
1332 mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
1333 x86mc->compat_apic_id_mode = false;
1334 x86mc->save_tsc_khz = true;
1335 x86mc->fwcfg_dma_enabled = true;
1336 nc->nmi_monitor_handler = x86_nmi;
1338 object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
1339 x86_machine_get_smm, x86_machine_set_smm,
1340 NULL, NULL);
1341 object_class_property_set_description(oc, X86_MACHINE_SMM,
1342 "Enable SMM");
1344 object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
1345 x86_machine_get_acpi, x86_machine_set_acpi,
1346 NULL, NULL);
1347 object_class_property_set_description(oc, X86_MACHINE_ACPI,
1348 "Enable ACPI");
1350 object_class_property_add_str(oc, X86_MACHINE_OEM_ID,
1351 x86_machine_get_oem_id,
1352 x86_machine_set_oem_id);
1353 object_class_property_set_description(oc, X86_MACHINE_OEM_ID,
1354 "Override the default value of field OEMID "
1355 "in ACPI table header."
1356 "The string may be up to 6 bytes in size");
1359 object_class_property_add_str(oc, X86_MACHINE_OEM_TABLE_ID,
1360 x86_machine_get_oem_table_id,
1361 x86_machine_set_oem_table_id);
1362 object_class_property_set_description(oc, X86_MACHINE_OEM_TABLE_ID,
1363 "Override the default value of field OEM Table ID "
1364 "in ACPI table header."
1365 "The string may be up to 8 bytes in size");
1367 object_class_property_add(oc, X86_MACHINE_BUS_LOCK_RATELIMIT, "uint64_t",
1368 x86_machine_get_bus_lock_ratelimit,
1369 x86_machine_set_bus_lock_ratelimit, NULL, NULL);
1370 object_class_property_set_description(oc, X86_MACHINE_BUS_LOCK_RATELIMIT,
1371 "Set the ratelimit for the bus locks acquired in VMs");
1373 object_class_property_add(oc, "sgx-epc", "SgxEPC",
1374 machine_get_sgx_epc, machine_set_sgx_epc,
1375 NULL, NULL);
1376 object_class_property_set_description(oc, "sgx-epc",
1377 "SGX EPC device");
1380 static const TypeInfo x86_machine_info = {
1381 .name = TYPE_X86_MACHINE,
1382 .parent = TYPE_MACHINE,
1383 .abstract = true,
1384 .instance_size = sizeof(X86MachineState),
1385 .instance_init = x86_machine_initfn,
1386 .class_size = sizeof(X86MachineClass),
1387 .class_init = x86_machine_class_init,
1388 .interfaces = (InterfaceInfo[]) {
1389 { TYPE_NMI },
1394 static void x86_machine_register_types(void)
1396 type_register_static(&x86_machine_info);
1399 type_init(x86_machine_register_types)