spapr: ensure core_slot isn't NULL in spapr_core_unplug()
[qemu.git] / hw / ppc / spapr.c
blobc912eaa2befa8aa72db6b45c899b9a3647a39a4d
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/migration.h"
42 #include "mmu-hash64.h"
43 #include "mmu-book3s-v3.h"
44 #include "qom/cpu.h"
46 #include "hw/boards.h"
47 #include "hw/ppc/ppc.h"
48 #include "hw/loader.h"
50 #include "hw/ppc/fdt.h"
51 #include "hw/ppc/spapr.h"
52 #include "hw/ppc/spapr_vio.h"
53 #include "hw/pci-host/spapr.h"
54 #include "hw/ppc/xics.h"
55 #include "hw/pci/msi.h"
57 #include "hw/pci/pci.h"
58 #include "hw/scsi/scsi.h"
59 #include "hw/virtio/virtio-scsi.h"
61 #include "exec/address-spaces.h"
62 #include "hw/usb.h"
63 #include "qemu/config-file.h"
64 #include "qemu/error-report.h"
65 #include "trace.h"
66 #include "hw/nmi.h"
67 #include "hw/intc/intc.h"
69 #include "hw/compat.h"
70 #include "qemu/cutils.h"
71 #include "hw/ppc/spapr_cpu_core.h"
72 #include "qmp-commands.h"
74 #include <libfdt.h>
76 /* SLOF memory layout:
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
84 * We load our kernel at 4M, leaving space for SLOF initial image
86 #define FDT_MAX_SIZE 0x100000
87 #define RTAS_MAX_SIZE 0x10000
88 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
89 #define FW_MAX_SIZE 0x400000
90 #define FW_FILE_NAME "slof.bin"
91 #define FW_OVERHEAD 0x2800000
92 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
94 #define MIN_RMA_SLOF 128UL
96 #define PHANDLE_XICP 0x00001111
98 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
100 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
101 const char *type_ics,
102 int nr_irqs, Error **errp)
104 Error *local_err = NULL;
105 Object *obj;
107 obj = object_new(type_ics);
108 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
109 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
110 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
111 if (local_err) {
112 goto error;
114 object_property_set_bool(obj, true, "realized", &local_err);
115 if (local_err) {
116 goto error;
119 return ICS_SIMPLE(obj);
121 error:
122 error_propagate(errp, local_err);
123 return NULL;
126 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
128 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
130 if (kvm_enabled()) {
131 Error *err = NULL;
133 if (machine_kernel_irqchip_allowed(machine) &&
134 !xics_kvm_init(spapr, errp)) {
135 spapr->icp_type = TYPE_KVM_ICP;
136 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
138 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
139 error_reportf_err(err,
140 "kernel_irqchip requested but unavailable: ");
141 } else {
142 error_free(err);
146 if (!spapr->ics) {
147 xics_spapr_init(spapr);
148 spapr->icp_type = TYPE_ICP;
149 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
153 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
154 int smt_threads)
156 int i, ret = 0;
157 uint32_t servers_prop[smt_threads];
158 uint32_t gservers_prop[smt_threads * 2];
159 int index = ppc_get_vcpu_dt_id(cpu);
161 if (cpu->compat_pvr) {
162 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
163 if (ret < 0) {
164 return ret;
168 /* Build interrupt servers and gservers properties */
169 for (i = 0; i < smt_threads; i++) {
170 servers_prop[i] = cpu_to_be32(index + i);
171 /* Hack, direct the group queues back to cpu 0 */
172 gservers_prop[i*2] = cpu_to_be32(index + i);
173 gservers_prop[i*2 + 1] = 0;
175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
176 servers_prop, sizeof(servers_prop));
177 if (ret < 0) {
178 return ret;
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
181 gservers_prop, sizeof(gservers_prop));
183 return ret;
186 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
188 int ret = 0;
189 PowerPCCPU *cpu = POWERPC_CPU(cs);
190 int index = ppc_get_vcpu_dt_id(cpu);
191 uint32_t associativity[] = {cpu_to_be32(0x5),
192 cpu_to_be32(0x0),
193 cpu_to_be32(0x0),
194 cpu_to_be32(0x0),
195 cpu_to_be32(cs->numa_node),
196 cpu_to_be32(index)};
198 /* Advertise NUMA via ibm,associativity */
199 if (nb_numa_nodes > 1) {
200 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
201 sizeof(associativity));
204 return ret;
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
209 bool legacy_guest)
211 uint8_t pa_features_206[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218 uint8_t pa_features_300[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222 /* 6: DS207 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224 /* 16: Vector */
225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243 uint8_t *pa_features;
244 size_t pa_size;
246 switch (POWERPC_MMU_VER(env->mmu_model)) {
247 case POWERPC_MMU_VER_2_06:
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 break;
251 case POWERPC_MMU_VER_2_07:
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 break;
255 case POWERPC_MMU_VER_3_00:
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 break;
259 default:
260 return;
263 if (env->ci_large_pages) {
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
271 pa_features[3] |= 0x20;
273 if (kvmppc_has_cap_htm() && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
290 char cpu_model[32];
291 int smt = kvmppc_smt_threads();
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 CPUPPCState *env = &cpu->env;
297 DeviceClass *dc = DEVICE_GET_CLASS(cs);
298 int index = ppc_get_vcpu_dt_id(cpu);
299 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
301 if ((index % smt) != 0) {
302 continue;
305 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
307 cpus_offset = fdt_path_offset(fdt, "/cpus");
308 if (cpus_offset < 0) {
309 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
310 "cpus");
311 if (cpus_offset < 0) {
312 return cpus_offset;
315 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
316 if (offset < 0) {
317 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
318 if (offset < 0) {
319 return offset;
323 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
324 pft_size_prop, sizeof(pft_size_prop));
325 if (ret < 0) {
326 return ret;
329 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
330 if (ret < 0) {
331 return ret;
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
335 if (ret < 0) {
336 return ret;
339 spapr_populate_pa_features(env, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
342 return ret;
345 static hwaddr spapr_node0_size(void)
347 MachineState *machine = MACHINE(qdev_get_machine());
349 if (nb_numa_nodes) {
350 int i;
351 for (i = 0; i < nb_numa_nodes; ++i) {
352 if (numa_info[i].node_mem) {
353 return MIN(pow2floor(numa_info[i].node_mem),
354 machine->ram_size);
358 return machine->ram_size;
361 static void add_str(GString *s, const gchar *s1)
363 g_string_append_len(s, s1, strlen(s1) + 1);
366 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
367 hwaddr size)
369 uint32_t associativity[] = {
370 cpu_to_be32(0x4), /* length */
371 cpu_to_be32(0x0), cpu_to_be32(0x0),
372 cpu_to_be32(0x0), cpu_to_be32(nodeid)
374 char mem_name[32];
375 uint64_t mem_reg_property[2];
376 int off;
378 mem_reg_property[0] = cpu_to_be64(start);
379 mem_reg_property[1] = cpu_to_be64(size);
381 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
382 off = fdt_add_subnode(fdt, 0, mem_name);
383 _FDT(off);
384 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
385 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
386 sizeof(mem_reg_property))));
387 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
388 sizeof(associativity))));
389 return off;
392 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
394 MachineState *machine = MACHINE(spapr);
395 hwaddr mem_start, node_size;
396 int i, nb_nodes = nb_numa_nodes;
397 NodeInfo *nodes = numa_info;
398 NodeInfo ramnode;
400 /* No NUMA nodes, assume there is just one node with whole RAM */
401 if (!nb_numa_nodes) {
402 nb_nodes = 1;
403 ramnode.node_mem = machine->ram_size;
404 nodes = &ramnode;
407 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
408 if (!nodes[i].node_mem) {
409 continue;
411 if (mem_start >= machine->ram_size) {
412 node_size = 0;
413 } else {
414 node_size = nodes[i].node_mem;
415 if (node_size > machine->ram_size - mem_start) {
416 node_size = machine->ram_size - mem_start;
419 if (!mem_start) {
420 /* ppc_spapr_init() checks for rma_size <= node0_size already */
421 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
422 mem_start += spapr->rma_size;
423 node_size -= spapr->rma_size;
425 for ( ; node_size; ) {
426 hwaddr sizetmp = pow2floor(node_size);
428 /* mem_start != 0 here */
429 if (ctzl(mem_start) < ctzl(sizetmp)) {
430 sizetmp = 1ULL << ctzl(mem_start);
433 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
434 node_size -= sizetmp;
435 mem_start += sizetmp;
439 return 0;
442 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443 sPAPRMachineState *spapr)
445 PowerPCCPU *cpu = POWERPC_CPU(cs);
446 CPUPPCState *env = &cpu->env;
447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448 int index = ppc_get_vcpu_dt_id(cpu);
449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452 : SPAPR_TIMEBASE_FREQ;
453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454 uint32_t page_sizes_prop[64];
455 size_t page_sizes_prop_size;
456 uint32_t vcpus_per_socket = smp_threads * smp_cores;
457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
459 sPAPRDRConnector *drc;
460 sPAPRDRConnectorClass *drck;
461 int drc_index;
462 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
463 int i;
465 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
466 if (drc) {
467 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
468 drc_index = drck->get_index(drc);
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
472 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
473 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
475 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
477 env->dcache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
479 env->dcache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
481 env->icache_line_size)));
482 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
483 env->icache_line_size)));
485 if (pcc->l1_dcache_size) {
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
487 pcc->l1_dcache_size)));
488 } else {
489 error_report("Warning: Unknown L1 dcache size for cpu");
491 if (pcc->l1_icache_size) {
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
493 pcc->l1_icache_size)));
494 } else {
495 error_report("Warning: Unknown L1 icache size for cpu");
498 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
499 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
500 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
501 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
502 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
503 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
505 if (env->spr_cb[SPR_PURR].oea_read) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
509 if (env->mmu_model & POWERPC_MMU_1TSEG) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
514 /* Advertise VMX/VSX (vector extensions) if available
515 * 0 / no property == no vector extensions
516 * 1 == VMX / Altivec available
517 * 2 == VSX available */
518 if (env->insns_flags & PPC_ALTIVEC) {
519 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
524 /* Advertise DFP (Decimal Floating Point) if available
525 * 0 / no property == no DFP
526 * 1 == DFP available */
527 if (env->insns_flags2 & PPC2_DFP) {
528 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
531 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
532 sizeof(page_sizes_prop));
533 if (page_sizes_prop_size) {
534 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
535 page_sizes_prop, page_sizes_prop_size)));
538 spapr_populate_pa_features(env, fdt, offset, false);
540 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
541 cs->cpu_index / vcpus_per_socket)));
543 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
544 pft_size_prop, sizeof(pft_size_prop))));
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
564 CPUState *cs;
565 int cpus_offset;
566 char *nodename;
567 int smt = kvmppc_smt_threads();
569 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
570 _FDT(cpus_offset);
571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
572 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575 * We walk the CPUs in reverse order to ensure that CPU DT nodes
576 * created by fdt_add_subnode() end up in the right order in FDT
577 * for the guest kernel the enumerate the CPUs correctly.
579 CPU_FOREACH_REVERSE(cs) {
580 PowerPCCPU *cpu = POWERPC_CPU(cs);
581 int index = ppc_get_vcpu_dt_id(cpu);
582 DeviceClass *dc = DEVICE_GET_CLASS(cs);
583 int offset;
585 if ((index % smt) != 0) {
586 continue;
589 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
590 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
591 g_free(nodename);
592 _FDT(offset);
593 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
599 * Adds ibm,dynamic-reconfiguration-memory node.
600 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
601 * of this device tree node.
603 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
605 MachineState *machine = MACHINE(spapr);
606 int ret, i, offset;
607 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
608 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
609 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
610 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
611 memory_region_size(&spapr->hotplug_memory.mr)) /
612 lmb_size;
613 uint32_t *int_buf, *cur_index, buf_len;
614 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
617 * Don't create the node if there is no hotpluggable memory
619 if (machine->ram_size == machine->maxram_size) {
620 return 0;
624 * Allocate enough buffer size to fit in ibm,dynamic-memory
625 * or ibm,associativity-lookup-arrays
627 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
628 * sizeof(uint32_t);
629 cur_index = int_buf = g_malloc0(buf_len);
631 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
633 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
634 sizeof(prop_lmb_size));
635 if (ret < 0) {
636 goto out;
639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
640 if (ret < 0) {
641 goto out;
644 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
645 if (ret < 0) {
646 goto out;
649 /* ibm,dynamic-memory */
650 int_buf[0] = cpu_to_be32(nr_lmbs);
651 cur_index++;
652 for (i = 0; i < nr_lmbs; i++) {
653 uint64_t addr = i * lmb_size;
654 uint32_t *dynamic_memory = cur_index;
656 if (i >= hotplug_lmb_start) {
657 sPAPRDRConnector *drc;
658 sPAPRDRConnectorClass *drck;
660 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
661 g_assert(drc);
662 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
664 dynamic_memory[0] = cpu_to_be32(addr >> 32);
665 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
666 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
667 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
668 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
669 if (memory_region_present(get_system_memory(), addr)) {
670 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
671 } else {
672 dynamic_memory[5] = cpu_to_be32(0);
674 } else {
676 * LMB information for RMA, boot time RAM and gap b/n RAM and
677 * hotplug memory region -- all these are marked as reserved
678 * and as having no valid DRC.
680 dynamic_memory[0] = cpu_to_be32(addr >> 32);
681 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
682 dynamic_memory[2] = cpu_to_be32(0);
683 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
684 dynamic_memory[4] = cpu_to_be32(-1);
685 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
686 SPAPR_LMB_FLAGS_DRC_INVALID);
689 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
691 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
692 if (ret < 0) {
693 goto out;
696 /* ibm,associativity-lookup-arrays */
697 cur_index = int_buf;
698 int_buf[0] = cpu_to_be32(nr_nodes);
699 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
700 cur_index += 2;
701 for (i = 0; i < nr_nodes; i++) {
702 uint32_t associativity[] = {
703 cpu_to_be32(0x0),
704 cpu_to_be32(0x0),
705 cpu_to_be32(0x0),
706 cpu_to_be32(i)
708 memcpy(cur_index, associativity, sizeof(associativity));
709 cur_index += 4;
711 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
712 (cur_index - int_buf) * sizeof(uint32_t));
713 out:
714 g_free(int_buf);
715 return ret;
718 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
719 sPAPROptionVector *ov5_updates)
721 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
722 int ret = 0, offset;
724 /* Generate ibm,dynamic-reconfiguration-memory node if required */
725 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
726 g_assert(smc->dr_lmb_enabled);
727 ret = spapr_populate_drconf_memory(spapr, fdt);
728 if (ret) {
729 goto out;
733 offset = fdt_path_offset(fdt, "/chosen");
734 if (offset < 0) {
735 offset = fdt_add_subnode(fdt, 0, "chosen");
736 if (offset < 0) {
737 return offset;
740 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
741 "ibm,architecture-vec-5");
743 out:
744 return ret;
747 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
748 target_ulong addr, target_ulong size,
749 sPAPROptionVector *ov5_updates)
751 void *fdt, *fdt_skel;
752 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
754 size -= sizeof(hdr);
756 /* Create sceleton */
757 fdt_skel = g_malloc0(size);
758 _FDT((fdt_create(fdt_skel, size)));
759 _FDT((fdt_begin_node(fdt_skel, "")));
760 _FDT((fdt_end_node(fdt_skel)));
761 _FDT((fdt_finish(fdt_skel)));
762 fdt = g_malloc0(size);
763 _FDT((fdt_open_into(fdt_skel, fdt, size)));
764 g_free(fdt_skel);
766 /* Fixup cpu nodes */
767 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
769 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
770 return -1;
773 /* Pack resulting tree */
774 _FDT((fdt_pack(fdt)));
776 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
777 trace_spapr_cas_failed(size);
778 return -1;
781 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
782 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
783 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
784 g_free(fdt);
786 return 0;
789 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
791 int rtas;
792 GString *hypertas = g_string_sized_new(256);
793 GString *qemu_hypertas = g_string_sized_new(256);
794 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
795 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
796 memory_region_size(&spapr->hotplug_memory.mr);
797 uint32_t lrdr_capacity[] = {
798 cpu_to_be32(max_hotplug_addr >> 32),
799 cpu_to_be32(max_hotplug_addr & 0xffffffff),
800 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
801 cpu_to_be32(max_cpus / smp_threads),
804 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
806 /* hypertas */
807 add_str(hypertas, "hcall-pft");
808 add_str(hypertas, "hcall-term");
809 add_str(hypertas, "hcall-dabr");
810 add_str(hypertas, "hcall-interrupt");
811 add_str(hypertas, "hcall-tce");
812 add_str(hypertas, "hcall-vio");
813 add_str(hypertas, "hcall-splpar");
814 add_str(hypertas, "hcall-bulk");
815 add_str(hypertas, "hcall-set-mode");
816 add_str(hypertas, "hcall-sprg0");
817 add_str(hypertas, "hcall-copy");
818 add_str(hypertas, "hcall-debug");
819 add_str(qemu_hypertas, "hcall-memop1");
821 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
822 add_str(hypertas, "hcall-multi-tce");
824 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
825 hypertas->str, hypertas->len));
826 g_string_free(hypertas, TRUE);
827 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
828 qemu_hypertas->str, qemu_hypertas->len));
829 g_string_free(qemu_hypertas, TRUE);
831 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
832 refpoints, sizeof(refpoints)));
834 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
835 RTAS_ERROR_LOG_MAX));
836 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
837 RTAS_EVENT_SCAN_RATE));
839 if (msi_nonbroken) {
840 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
844 * According to PAPR, rtas ibm,os-term does not guarantee a return
845 * back to the guest cpu.
847 * While an additional ibm,extended-os-term property indicates
848 * that rtas call return will always occur. Set this property.
850 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
852 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
853 lrdr_capacity, sizeof(lrdr_capacity)));
855 spapr_dt_rtas_tokens(fdt, rtas);
858 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
859 * that the guest may request and thus the valid values for bytes 24..26 of
860 * option vector 5: */
861 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
863 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
865 char val[2 * 3] = {
866 24, 0x00, /* Hash/Radix, filled in below. */
867 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
868 26, 0x40, /* Radix options: GTSE == yes. */
871 if (kvm_enabled()) {
872 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
873 val[1] = 0x80; /* OV5_MMU_BOTH */
874 } else if (kvmppc_has_cap_mmu_radix()) {
875 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
876 } else {
877 val[1] = 0x00; /* Hash */
879 } else {
880 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
881 /* V3 MMU supports both hash and radix (with dynamic switching) */
882 val[1] = 0xC0;
883 } else {
884 /* Otherwise we can only do hash */
885 val[1] = 0x00;
888 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
889 val, sizeof(val)));
892 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
894 MachineState *machine = MACHINE(spapr);
895 int chosen;
896 const char *boot_device = machine->boot_order;
897 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
898 size_t cb = 0;
899 char *bootlist = get_boot_devices_list(&cb, true);
901 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
903 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
904 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
905 spapr->initrd_base));
906 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
907 spapr->initrd_base + spapr->initrd_size));
909 if (spapr->kernel_size) {
910 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
911 cpu_to_be64(spapr->kernel_size) };
913 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
914 &kprop, sizeof(kprop)));
915 if (spapr->kernel_le) {
916 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
919 if (boot_menu) {
920 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
922 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
923 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
924 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
926 if (cb && bootlist) {
927 int i;
929 for (i = 0; i < cb; i++) {
930 if (bootlist[i] == '\n') {
931 bootlist[i] = ' ';
934 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
937 if (boot_device && strlen(boot_device)) {
938 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
941 if (!spapr->has_graphics && stdout_path) {
942 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
945 spapr_dt_ov5_platform_support(fdt, chosen);
947 g_free(stdout_path);
948 g_free(bootlist);
951 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
953 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
954 * KVM to work under pHyp with some guest co-operation */
955 int hypervisor;
956 uint8_t hypercall[16];
958 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
959 /* indicate KVM hypercall interface */
960 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
961 if (kvmppc_has_cap_fixup_hcalls()) {
963 * Older KVM versions with older guest kernels were broken
964 * with the magic page, don't allow the guest to map it.
966 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
967 sizeof(hypercall))) {
968 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
969 hypercall, sizeof(hypercall)));
974 static void *spapr_build_fdt(sPAPRMachineState *spapr,
975 hwaddr rtas_addr,
976 hwaddr rtas_size)
978 MachineState *machine = MACHINE(qdev_get_machine());
979 MachineClass *mc = MACHINE_GET_CLASS(machine);
980 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
981 int ret;
982 void *fdt;
983 sPAPRPHBState *phb;
984 char *buf;
985 int smt = kvmppc_smt_threads();
987 fdt = g_malloc0(FDT_MAX_SIZE);
988 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
990 /* Root node */
991 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
992 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
993 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
996 * Add info to guest to indentify which host is it being run on
997 * and what is the uuid of the guest
999 if (kvmppc_get_host_model(&buf)) {
1000 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1001 g_free(buf);
1003 if (kvmppc_get_host_serial(&buf)) {
1004 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1005 g_free(buf);
1008 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1010 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1011 if (qemu_uuid_set) {
1012 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1014 g_free(buf);
1016 if (qemu_get_vm_name()) {
1017 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1018 qemu_get_vm_name()));
1021 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1022 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1024 /* /interrupt controller */
1025 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
1027 ret = spapr_populate_memory(spapr, fdt);
1028 if (ret < 0) {
1029 error_report("couldn't setup memory nodes in fdt");
1030 exit(1);
1033 /* /vdevice */
1034 spapr_dt_vdevice(spapr->vio_bus, fdt);
1036 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1037 ret = spapr_rng_populate_dt(fdt);
1038 if (ret < 0) {
1039 error_report("could not set up rng device in the fdt");
1040 exit(1);
1044 QLIST_FOREACH(phb, &spapr->phbs, list) {
1045 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1046 if (ret < 0) {
1047 error_report("couldn't setup PCI devices in fdt");
1048 exit(1);
1052 /* cpus */
1053 spapr_populate_cpus_dt_node(fdt, spapr);
1055 if (smc->dr_lmb_enabled) {
1056 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1059 if (mc->has_hotpluggable_cpus) {
1060 int offset = fdt_path_offset(fdt, "/cpus");
1061 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1062 SPAPR_DR_CONNECTOR_TYPE_CPU);
1063 if (ret < 0) {
1064 error_report("Couldn't set up CPU DR device tree properties");
1065 exit(1);
1069 /* /event-sources */
1070 spapr_dt_events(spapr, fdt);
1072 /* /rtas */
1073 spapr_dt_rtas(spapr, fdt);
1075 /* /chosen */
1076 spapr_dt_chosen(spapr, fdt);
1078 /* /hypervisor */
1079 if (kvm_enabled()) {
1080 spapr_dt_hypervisor(spapr, fdt);
1083 /* Build memory reserve map */
1084 if (spapr->kernel_size) {
1085 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1087 if (spapr->initrd_size) {
1088 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1091 /* ibm,client-architecture-support updates */
1092 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1093 if (ret < 0) {
1094 error_report("couldn't setup CAS properties fdt");
1095 exit(1);
1098 return fdt;
1101 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1103 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1106 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1107 PowerPCCPU *cpu)
1109 CPUPPCState *env = &cpu->env;
1111 /* The TCG path should also be holding the BQL at this point */
1112 g_assert(qemu_mutex_iothread_locked());
1114 if (msr_pr) {
1115 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1116 env->gpr[3] = H_PRIVILEGE;
1117 } else {
1118 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1122 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1124 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1126 return spapr->patb_entry;
1129 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1130 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1131 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1132 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1133 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1136 * Get the fd to access the kernel htab, re-opening it if necessary
1138 static int get_htab_fd(sPAPRMachineState *spapr)
1140 if (spapr->htab_fd >= 0) {
1141 return spapr->htab_fd;
1144 spapr->htab_fd = kvmppc_get_htab_fd(false);
1145 if (spapr->htab_fd < 0) {
1146 error_report("Unable to open fd for reading hash table from KVM: %s",
1147 strerror(errno));
1150 return spapr->htab_fd;
1153 void close_htab_fd(sPAPRMachineState *spapr)
1155 if (spapr->htab_fd >= 0) {
1156 close(spapr->htab_fd);
1158 spapr->htab_fd = -1;
1161 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1163 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1165 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1168 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1169 hwaddr ptex, int n)
1171 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1172 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1174 if (!spapr->htab) {
1176 * HTAB is controlled by KVM. Fetch into temporary buffer
1178 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1179 kvmppc_read_hptes(hptes, ptex, n);
1180 return hptes;
1184 * HTAB is controlled by QEMU. Just point to the internally
1185 * accessible PTEG.
1187 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1190 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1191 const ppc_hash_pte64_t *hptes,
1192 hwaddr ptex, int n)
1194 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1196 if (!spapr->htab) {
1197 g_free((void *)hptes);
1200 /* Nothing to do for qemu managed HPT */
1203 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1204 uint64_t pte0, uint64_t pte1)
1206 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1207 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1209 if (!spapr->htab) {
1210 kvmppc_write_hpte(ptex, pte0, pte1);
1211 } else {
1212 stq_p(spapr->htab + offset, pte0);
1213 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1217 static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1219 int shift;
1221 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1222 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1223 * that's much more than is needed for Linux guests */
1224 shift = ctz64(pow2ceil(ramsize)) - 7;
1225 shift = MAX(shift, 18); /* Minimum architected size */
1226 shift = MIN(shift, 46); /* Maximum architected size */
1227 return shift;
1230 void spapr_free_hpt(sPAPRMachineState *spapr)
1232 g_free(spapr->htab);
1233 spapr->htab = NULL;
1234 spapr->htab_shift = 0;
1235 close_htab_fd(spapr);
1238 static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1239 Error **errp)
1241 long rc;
1243 /* Clean up any HPT info from a previous boot */
1244 spapr_free_hpt(spapr);
1246 rc = kvmppc_reset_htab(shift);
1247 if (rc < 0) {
1248 /* kernel-side HPT needed, but couldn't allocate one */
1249 error_setg_errno(errp, errno,
1250 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1251 shift);
1252 /* This is almost certainly fatal, but if the caller really
1253 * wants to carry on with shift == 0, it's welcome to try */
1254 } else if (rc > 0) {
1255 /* kernel-side HPT allocated */
1256 if (rc != shift) {
1257 error_setg(errp,
1258 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1259 shift, rc);
1262 spapr->htab_shift = shift;
1263 spapr->htab = NULL;
1264 } else {
1265 /* kernel-side HPT not needed, allocate in userspace instead */
1266 size_t size = 1ULL << shift;
1267 int i;
1269 spapr->htab = qemu_memalign(size, size);
1270 if (!spapr->htab) {
1271 error_setg_errno(errp, errno,
1272 "Could not allocate HPT of order %d", shift);
1273 return;
1276 memset(spapr->htab, 0, size);
1277 spapr->htab_shift = shift;
1279 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1280 DIRTY_HPTE(HPTE(spapr->htab, i));
1285 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1287 spapr_reallocate_hpt(spapr,
1288 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1289 &error_fatal);
1290 if (spapr->vrma_adjust) {
1291 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1292 spapr->htab_shift);
1294 /* We're setting up a hash table, so that means we're not radix */
1295 spapr->patb_entry = 0;
1298 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1300 bool matched = false;
1302 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1303 matched = true;
1306 if (!matched) {
1307 error_report("Device %s is not supported by this machine yet.",
1308 qdev_fw_name(DEVICE(sbdev)));
1309 exit(1);
1313 static void ppc_spapr_reset(void)
1315 MachineState *machine = MACHINE(qdev_get_machine());
1316 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1317 PowerPCCPU *first_ppc_cpu;
1318 uint32_t rtas_limit;
1319 hwaddr rtas_addr, fdt_addr;
1320 void *fdt;
1321 int rc;
1323 /* Check for unknown sysbus devices */
1324 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1326 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1327 /* If using KVM with radix mode available, VCPUs can be started
1328 * without a HPT because KVM will start them in radix mode.
1329 * Set the GR bit in PATB so that we know there is no HPT. */
1330 spapr->patb_entry = PATBE1_GR;
1331 } else {
1332 spapr->patb_entry = 0;
1333 spapr_setup_hpt_and_vrma(spapr);
1336 qemu_devices_reset();
1339 * We place the device tree and RTAS just below either the top of the RMA,
1340 * or just below 2GB, whichever is lowere, so that it can be
1341 * processed with 32-bit real mode code if necessary
1343 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1344 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1345 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1347 /* if this reset wasn't generated by CAS, we should reset our
1348 * negotiated options and start from scratch */
1349 if (!spapr->cas_reboot) {
1350 spapr_ovec_cleanup(spapr->ov5_cas);
1351 spapr->ov5_cas = spapr_ovec_new();
1354 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1356 spapr_load_rtas(spapr, fdt, rtas_addr);
1358 rc = fdt_pack(fdt);
1360 /* Should only fail if we've built a corrupted tree */
1361 assert(rc == 0);
1363 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1364 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1365 fdt_totalsize(fdt), FDT_MAX_SIZE);
1366 exit(1);
1369 /* Load the fdt */
1370 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1371 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1372 g_free(fdt);
1374 /* Set up the entry state */
1375 first_ppc_cpu = POWERPC_CPU(first_cpu);
1376 first_ppc_cpu->env.gpr[3] = fdt_addr;
1377 first_ppc_cpu->env.gpr[5] = 0;
1378 first_cpu->halted = 0;
1379 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1381 spapr->cas_reboot = false;
1384 static void spapr_create_nvram(sPAPRMachineState *spapr)
1386 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1387 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1389 if (dinfo) {
1390 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1391 &error_fatal);
1394 qdev_init_nofail(dev);
1396 spapr->nvram = (struct sPAPRNVRAM *)dev;
1399 static void spapr_rtc_create(sPAPRMachineState *spapr)
1401 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1402 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1403 &error_fatal);
1404 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1405 &error_fatal);
1406 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1407 "date", &error_fatal);
1410 /* Returns whether we want to use VGA or not */
1411 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1413 switch (vga_interface_type) {
1414 case VGA_NONE:
1415 return false;
1416 case VGA_DEVICE:
1417 return true;
1418 case VGA_STD:
1419 case VGA_VIRTIO:
1420 return pci_vga_init(pci_bus) != NULL;
1421 default:
1422 error_setg(errp,
1423 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1424 return false;
1428 static int spapr_post_load(void *opaque, int version_id)
1430 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1431 int err = 0;
1433 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1434 CPUState *cs;
1435 CPU_FOREACH(cs) {
1436 PowerPCCPU *cpu = POWERPC_CPU(cs);
1437 icp_resend(ICP(cpu->intc));
1441 /* In earlier versions, there was no separate qdev for the PAPR
1442 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1443 * So when migrating from those versions, poke the incoming offset
1444 * value into the RTC device */
1445 if (version_id < 3) {
1446 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1449 return err;
1452 static bool version_before_3(void *opaque, int version_id)
1454 return version_id < 3;
1457 static bool spapr_ov5_cas_needed(void *opaque)
1459 sPAPRMachineState *spapr = opaque;
1460 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1461 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1462 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1463 bool cas_needed;
1465 /* Prior to the introduction of sPAPROptionVector, we had two option
1466 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1467 * Both of these options encode machine topology into the device-tree
1468 * in such a way that the now-booted OS should still be able to interact
1469 * appropriately with QEMU regardless of what options were actually
1470 * negotiatied on the source side.
1472 * As such, we can avoid migrating the CAS-negotiated options if these
1473 * are the only options available on the current machine/platform.
1474 * Since these are the only options available for pseries-2.7 and
1475 * earlier, this allows us to maintain old->new/new->old migration
1476 * compatibility.
1478 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1479 * via default pseries-2.8 machines and explicit command-line parameters.
1480 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1481 * of the actual CAS-negotiated values to continue working properly. For
1482 * example, availability of memory unplug depends on knowing whether
1483 * OV5_HP_EVT was negotiated via CAS.
1485 * Thus, for any cases where the set of available CAS-negotiatable
1486 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1487 * include the CAS-negotiated options in the migration stream.
1489 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1490 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1492 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1493 * the mask itself since in the future it's possible "legacy" bits may be
1494 * removed via machine options, which could generate a false positive
1495 * that breaks migration.
1497 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1498 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1500 spapr_ovec_cleanup(ov5_mask);
1501 spapr_ovec_cleanup(ov5_legacy);
1502 spapr_ovec_cleanup(ov5_removed);
1504 return cas_needed;
1507 static const VMStateDescription vmstate_spapr_ov5_cas = {
1508 .name = "spapr_option_vector_ov5_cas",
1509 .version_id = 1,
1510 .minimum_version_id = 1,
1511 .needed = spapr_ov5_cas_needed,
1512 .fields = (VMStateField[]) {
1513 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1514 vmstate_spapr_ovec, sPAPROptionVector),
1515 VMSTATE_END_OF_LIST()
1519 static bool spapr_patb_entry_needed(void *opaque)
1521 sPAPRMachineState *spapr = opaque;
1523 return !!spapr->patb_entry;
1526 static const VMStateDescription vmstate_spapr_patb_entry = {
1527 .name = "spapr_patb_entry",
1528 .version_id = 1,
1529 .minimum_version_id = 1,
1530 .needed = spapr_patb_entry_needed,
1531 .fields = (VMStateField[]) {
1532 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1533 VMSTATE_END_OF_LIST()
1537 static const VMStateDescription vmstate_spapr = {
1538 .name = "spapr",
1539 .version_id = 3,
1540 .minimum_version_id = 1,
1541 .post_load = spapr_post_load,
1542 .fields = (VMStateField[]) {
1543 /* used to be @next_irq */
1544 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1546 /* RTC offset */
1547 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1549 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1550 VMSTATE_END_OF_LIST()
1552 .subsections = (const VMStateDescription*[]) {
1553 &vmstate_spapr_ov5_cas,
1554 &vmstate_spapr_patb_entry,
1555 NULL
1559 static int htab_save_setup(QEMUFile *f, void *opaque)
1561 sPAPRMachineState *spapr = opaque;
1563 /* "Iteration" header */
1564 qemu_put_be32(f, spapr->htab_shift);
1566 if (spapr->htab) {
1567 spapr->htab_save_index = 0;
1568 spapr->htab_first_pass = true;
1569 } else {
1570 assert(kvm_enabled());
1574 return 0;
1577 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1578 int64_t max_ns)
1580 bool has_timeout = max_ns != -1;
1581 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1582 int index = spapr->htab_save_index;
1583 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1585 assert(spapr->htab_first_pass);
1587 do {
1588 int chunkstart;
1590 /* Consume invalid HPTEs */
1591 while ((index < htabslots)
1592 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1593 CLEAN_HPTE(HPTE(spapr->htab, index));
1594 index++;
1597 /* Consume valid HPTEs */
1598 chunkstart = index;
1599 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1600 && HPTE_VALID(HPTE(spapr->htab, index))) {
1601 CLEAN_HPTE(HPTE(spapr->htab, index));
1602 index++;
1605 if (index > chunkstart) {
1606 int n_valid = index - chunkstart;
1608 qemu_put_be32(f, chunkstart);
1609 qemu_put_be16(f, n_valid);
1610 qemu_put_be16(f, 0);
1611 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1612 HASH_PTE_SIZE_64 * n_valid);
1614 if (has_timeout &&
1615 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1616 break;
1619 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1621 if (index >= htabslots) {
1622 assert(index == htabslots);
1623 index = 0;
1624 spapr->htab_first_pass = false;
1626 spapr->htab_save_index = index;
1629 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1630 int64_t max_ns)
1632 bool final = max_ns < 0;
1633 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1634 int examined = 0, sent = 0;
1635 int index = spapr->htab_save_index;
1636 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1638 assert(!spapr->htab_first_pass);
1640 do {
1641 int chunkstart, invalidstart;
1643 /* Consume non-dirty HPTEs */
1644 while ((index < htabslots)
1645 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1646 index++;
1647 examined++;
1650 chunkstart = index;
1651 /* Consume valid dirty HPTEs */
1652 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1653 && HPTE_DIRTY(HPTE(spapr->htab, index))
1654 && HPTE_VALID(HPTE(spapr->htab, index))) {
1655 CLEAN_HPTE(HPTE(spapr->htab, index));
1656 index++;
1657 examined++;
1660 invalidstart = index;
1661 /* Consume invalid dirty HPTEs */
1662 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1663 && HPTE_DIRTY(HPTE(spapr->htab, index))
1664 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1665 CLEAN_HPTE(HPTE(spapr->htab, index));
1666 index++;
1667 examined++;
1670 if (index > chunkstart) {
1671 int n_valid = invalidstart - chunkstart;
1672 int n_invalid = index - invalidstart;
1674 qemu_put_be32(f, chunkstart);
1675 qemu_put_be16(f, n_valid);
1676 qemu_put_be16(f, n_invalid);
1677 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1678 HASH_PTE_SIZE_64 * n_valid);
1679 sent += index - chunkstart;
1681 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1682 break;
1686 if (examined >= htabslots) {
1687 break;
1690 if (index >= htabslots) {
1691 assert(index == htabslots);
1692 index = 0;
1694 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1696 if (index >= htabslots) {
1697 assert(index == htabslots);
1698 index = 0;
1701 spapr->htab_save_index = index;
1703 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1706 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1707 #define MAX_KVM_BUF_SIZE 2048
1709 static int htab_save_iterate(QEMUFile *f, void *opaque)
1711 sPAPRMachineState *spapr = opaque;
1712 int fd;
1713 int rc = 0;
1715 /* Iteration header */
1716 qemu_put_be32(f, 0);
1718 if (!spapr->htab) {
1719 assert(kvm_enabled());
1721 fd = get_htab_fd(spapr);
1722 if (fd < 0) {
1723 return fd;
1726 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1727 if (rc < 0) {
1728 return rc;
1730 } else if (spapr->htab_first_pass) {
1731 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1732 } else {
1733 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1736 /* End marker */
1737 qemu_put_be32(f, 0);
1738 qemu_put_be16(f, 0);
1739 qemu_put_be16(f, 0);
1741 return rc;
1744 static int htab_save_complete(QEMUFile *f, void *opaque)
1746 sPAPRMachineState *spapr = opaque;
1747 int fd;
1749 /* Iteration header */
1750 qemu_put_be32(f, 0);
1752 if (!spapr->htab) {
1753 int rc;
1755 assert(kvm_enabled());
1757 fd = get_htab_fd(spapr);
1758 if (fd < 0) {
1759 return fd;
1762 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1763 if (rc < 0) {
1764 return rc;
1766 } else {
1767 if (spapr->htab_first_pass) {
1768 htab_save_first_pass(f, spapr, -1);
1770 htab_save_later_pass(f, spapr, -1);
1773 /* End marker */
1774 qemu_put_be32(f, 0);
1775 qemu_put_be16(f, 0);
1776 qemu_put_be16(f, 0);
1778 return 0;
1781 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1783 sPAPRMachineState *spapr = opaque;
1784 uint32_t section_hdr;
1785 int fd = -1;
1787 if (version_id < 1 || version_id > 1) {
1788 error_report("htab_load() bad version");
1789 return -EINVAL;
1792 section_hdr = qemu_get_be32(f);
1794 if (section_hdr) {
1795 Error *local_err = NULL;
1797 /* First section gives the htab size */
1798 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1799 if (local_err) {
1800 error_report_err(local_err);
1801 return -EINVAL;
1803 return 0;
1806 if (!spapr->htab) {
1807 assert(kvm_enabled());
1809 fd = kvmppc_get_htab_fd(true);
1810 if (fd < 0) {
1811 error_report("Unable to open fd to restore KVM hash table: %s",
1812 strerror(errno));
1816 while (true) {
1817 uint32_t index;
1818 uint16_t n_valid, n_invalid;
1820 index = qemu_get_be32(f);
1821 n_valid = qemu_get_be16(f);
1822 n_invalid = qemu_get_be16(f);
1824 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1825 /* End of Stream */
1826 break;
1829 if ((index + n_valid + n_invalid) >
1830 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1831 /* Bad index in stream */
1832 error_report(
1833 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1834 index, n_valid, n_invalid, spapr->htab_shift);
1835 return -EINVAL;
1838 if (spapr->htab) {
1839 if (n_valid) {
1840 qemu_get_buffer(f, HPTE(spapr->htab, index),
1841 HASH_PTE_SIZE_64 * n_valid);
1843 if (n_invalid) {
1844 memset(HPTE(spapr->htab, index + n_valid), 0,
1845 HASH_PTE_SIZE_64 * n_invalid);
1847 } else {
1848 int rc;
1850 assert(fd >= 0);
1852 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1853 if (rc < 0) {
1854 return rc;
1859 if (!spapr->htab) {
1860 assert(fd >= 0);
1861 close(fd);
1864 return 0;
1867 static void htab_cleanup(void *opaque)
1869 sPAPRMachineState *spapr = opaque;
1871 close_htab_fd(spapr);
1874 static SaveVMHandlers savevm_htab_handlers = {
1875 .save_live_setup = htab_save_setup,
1876 .save_live_iterate = htab_save_iterate,
1877 .save_live_complete_precopy = htab_save_complete,
1878 .cleanup = htab_cleanup,
1879 .load_state = htab_load,
1882 static void spapr_boot_set(void *opaque, const char *boot_device,
1883 Error **errp)
1885 MachineState *machine = MACHINE(qdev_get_machine());
1886 machine->boot_order = g_strdup(boot_device);
1890 * Reset routine for LMB DR devices.
1892 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1893 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1894 * when it walks all its children devices. LMB devices reset occurs
1895 * as part of spapr_ppc_reset().
1897 static void spapr_drc_reset(void *opaque)
1899 sPAPRDRConnector *drc = opaque;
1900 DeviceState *d = DEVICE(drc);
1902 if (d) {
1903 device_reset(d);
1907 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1909 MachineState *machine = MACHINE(spapr);
1910 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1911 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
1912 int i;
1914 for (i = 0; i < nr_lmbs; i++) {
1915 sPAPRDRConnector *drc;
1916 uint64_t addr;
1918 addr = i * lmb_size + spapr->hotplug_memory.base;
1919 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1920 addr/lmb_size);
1921 qemu_register_reset(spapr_drc_reset, drc);
1926 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1927 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1928 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1930 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
1932 int i;
1934 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1935 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1936 " is not aligned to %llu MiB",
1937 machine->ram_size,
1938 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1939 return;
1942 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1943 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1944 " is not aligned to %llu MiB",
1945 machine->ram_size,
1946 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1947 return;
1950 for (i = 0; i < nb_numa_nodes; i++) {
1951 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1952 error_setg(errp,
1953 "Node %d memory size 0x%" PRIx64
1954 " is not aligned to %llu MiB",
1955 i, numa_info[i].node_mem,
1956 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1957 return;
1962 /* find cpu slot in machine->possible_cpus by core_id */
1963 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1965 int index = id / smp_threads;
1967 if (index >= ms->possible_cpus->len) {
1968 return NULL;
1970 if (idx) {
1971 *idx = index;
1973 return &ms->possible_cpus->cpus[index];
1976 static void spapr_init_cpus(sPAPRMachineState *spapr)
1978 MachineState *machine = MACHINE(spapr);
1979 MachineClass *mc = MACHINE_GET_CLASS(machine);
1980 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1981 int smt = kvmppc_smt_threads();
1982 const CPUArchIdList *possible_cpus;
1983 int boot_cores_nr = smp_cpus / smp_threads;
1984 int i;
1986 if (!type) {
1987 error_report("Unable to find sPAPR CPU Core definition");
1988 exit(1);
1991 possible_cpus = mc->possible_cpu_arch_ids(machine);
1992 if (mc->has_hotpluggable_cpus) {
1993 if (smp_cpus % smp_threads) {
1994 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1995 smp_cpus, smp_threads);
1996 exit(1);
1998 if (max_cpus % smp_threads) {
1999 error_report("max_cpus (%u) must be multiple of threads (%u)",
2000 max_cpus, smp_threads);
2001 exit(1);
2003 } else {
2004 if (max_cpus != smp_cpus) {
2005 error_report("This machine version does not support CPU hotplug");
2006 exit(1);
2008 boot_cores_nr = possible_cpus->len;
2011 for (i = 0; i < possible_cpus->len; i++) {
2012 int core_id = i * smp_threads;
2014 if (mc->has_hotpluggable_cpus) {
2015 sPAPRDRConnector *drc =
2016 spapr_dr_connector_new(OBJECT(spapr),
2017 SPAPR_DR_CONNECTOR_TYPE_CPU,
2018 (core_id / smp_threads) * smt);
2020 qemu_register_reset(spapr_drc_reset, drc);
2023 if (i < boot_cores_nr) {
2024 Object *core = object_new(type);
2025 int nr_threads = smp_threads;
2027 /* Handle the partially filled core for older machine types */
2028 if ((i + 1) * smp_threads >= smp_cpus) {
2029 nr_threads = smp_cpus - i * smp_threads;
2032 object_property_set_int(core, nr_threads, "nr-threads",
2033 &error_fatal);
2034 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2035 &error_fatal);
2036 object_property_set_bool(core, true, "realized", &error_fatal);
2039 g_free(type);
2042 /* pSeries LPAR / sPAPR hardware init */
2043 static void ppc_spapr_init(MachineState *machine)
2045 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2046 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2047 const char *kernel_filename = machine->kernel_filename;
2048 const char *initrd_filename = machine->initrd_filename;
2049 PCIHostState *phb;
2050 int i;
2051 MemoryRegion *sysmem = get_system_memory();
2052 MemoryRegion *ram = g_new(MemoryRegion, 1);
2053 MemoryRegion *rma_region;
2054 void *rma = NULL;
2055 hwaddr rma_alloc_size;
2056 hwaddr node0_size = spapr_node0_size();
2057 long load_limit, fw_size;
2058 char *filename;
2060 msi_nonbroken = true;
2062 QLIST_INIT(&spapr->phbs);
2064 /* Allocate RMA if necessary */
2065 rma_alloc_size = kvmppc_alloc_rma(&rma);
2067 if (rma_alloc_size == -1) {
2068 error_report("Unable to create RMA");
2069 exit(1);
2072 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2073 spapr->rma_size = rma_alloc_size;
2074 } else {
2075 spapr->rma_size = node0_size;
2077 /* With KVM, we don't actually know whether KVM supports an
2078 * unbounded RMA (PR KVM) or is limited by the hash table size
2079 * (HV KVM using VRMA), so we always assume the latter
2081 * In that case, we also limit the initial allocations for RTAS
2082 * etc... to 256M since we have no way to know what the VRMA size
2083 * is going to be as it depends on the size of the hash table
2084 * isn't determined yet.
2086 if (kvm_enabled()) {
2087 spapr->vrma_adjust = 1;
2088 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2091 /* Actually we don't support unbounded RMA anymore since we
2092 * added proper emulation of HV mode. The max we can get is
2093 * 16G which also happens to be what we configure for PAPR
2094 * mode so make sure we don't do anything bigger than that
2096 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2099 if (spapr->rma_size > node0_size) {
2100 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2101 spapr->rma_size);
2102 exit(1);
2105 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2106 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2108 /* Set up Interrupt Controller before we create the VCPUs */
2109 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2111 /* Set up containers for ibm,client-set-architecture negotiated options */
2112 spapr->ov5 = spapr_ovec_new();
2113 spapr->ov5_cas = spapr_ovec_new();
2115 if (smc->dr_lmb_enabled) {
2116 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2117 spapr_validate_node_memory(machine, &error_fatal);
2120 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2121 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2122 /* KVM and TCG always allow GTSE with radix... */
2123 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2125 /* ... but not with hash (currently). */
2127 /* advertise support for dedicated HP event source to guests */
2128 if (spapr->use_hotplug_event_source) {
2129 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2132 /* init CPUs */
2133 if (machine->cpu_model == NULL) {
2134 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2137 ppc_cpu_parse_features(machine->cpu_model);
2139 spapr_init_cpus(spapr);
2141 if (kvm_enabled()) {
2142 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2143 kvmppc_enable_logical_ci_hcalls();
2144 kvmppc_enable_set_mode_hcall();
2146 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2147 kvmppc_enable_clear_ref_mod_hcalls();
2150 /* allocate RAM */
2151 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2152 machine->ram_size);
2153 memory_region_add_subregion(sysmem, 0, ram);
2155 if (rma_alloc_size && rma) {
2156 rma_region = g_new(MemoryRegion, 1);
2157 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2158 rma_alloc_size, rma);
2159 vmstate_register_ram_global(rma_region);
2160 memory_region_add_subregion(sysmem, 0, rma_region);
2163 /* initialize hotplug memory address space */
2164 if (machine->ram_size < machine->maxram_size) {
2165 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2167 * Limit the number of hotpluggable memory slots to half the number
2168 * slots that KVM supports, leaving the other half for PCI and other
2169 * devices. However ensure that number of slots doesn't drop below 32.
2171 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2172 SPAPR_MAX_RAM_SLOTS;
2174 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2175 max_memslots = SPAPR_MAX_RAM_SLOTS;
2177 if (machine->ram_slots > max_memslots) {
2178 error_report("Specified number of memory slots %"
2179 PRIu64" exceeds max supported %d",
2180 machine->ram_slots, max_memslots);
2181 exit(1);
2184 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2185 SPAPR_HOTPLUG_MEM_ALIGN);
2186 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2187 "hotplug-memory", hotplug_mem_size);
2188 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2189 &spapr->hotplug_memory.mr);
2192 if (smc->dr_lmb_enabled) {
2193 spapr_create_lmb_dr_connectors(spapr);
2196 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2197 if (!filename) {
2198 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2199 exit(1);
2201 spapr->rtas_size = get_image_size(filename);
2202 if (spapr->rtas_size < 0) {
2203 error_report("Could not get size of LPAR rtas '%s'", filename);
2204 exit(1);
2206 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2207 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2208 error_report("Could not load LPAR rtas '%s'", filename);
2209 exit(1);
2211 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2212 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2213 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2214 exit(1);
2216 g_free(filename);
2218 /* Set up RTAS event infrastructure */
2219 spapr_events_init(spapr);
2221 /* Set up the RTC RTAS interfaces */
2222 spapr_rtc_create(spapr);
2224 /* Set up VIO bus */
2225 spapr->vio_bus = spapr_vio_bus_init();
2227 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2228 if (serial_hds[i]) {
2229 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2233 /* We always have at least the nvram device on VIO */
2234 spapr_create_nvram(spapr);
2236 /* Set up PCI */
2237 spapr_pci_rtas_init();
2239 phb = spapr_create_phb(spapr, 0);
2241 for (i = 0; i < nb_nics; i++) {
2242 NICInfo *nd = &nd_table[i];
2244 if (!nd->model) {
2245 nd->model = g_strdup("ibmveth");
2248 if (strcmp(nd->model, "ibmveth") == 0) {
2249 spapr_vlan_create(spapr->vio_bus, nd);
2250 } else {
2251 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2255 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2256 spapr_vscsi_create(spapr->vio_bus);
2259 /* Graphics */
2260 if (spapr_vga_init(phb->bus, &error_fatal)) {
2261 spapr->has_graphics = true;
2262 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2265 if (machine->usb) {
2266 if (smc->use_ohci_by_default) {
2267 pci_create_simple(phb->bus, -1, "pci-ohci");
2268 } else {
2269 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2272 if (spapr->has_graphics) {
2273 USBBus *usb_bus = usb_bus_find(-1);
2275 usb_create_simple(usb_bus, "usb-kbd");
2276 usb_create_simple(usb_bus, "usb-mouse");
2280 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2281 error_report(
2282 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2283 MIN_RMA_SLOF);
2284 exit(1);
2287 if (kernel_filename) {
2288 uint64_t lowaddr = 0;
2290 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2291 NULL, NULL, &lowaddr, NULL, 1,
2292 PPC_ELF_MACHINE, 0, 0);
2293 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2294 spapr->kernel_size = load_elf(kernel_filename,
2295 translate_kernel_address, NULL, NULL,
2296 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2297 0, 0);
2298 spapr->kernel_le = spapr->kernel_size > 0;
2300 if (spapr->kernel_size < 0) {
2301 error_report("error loading %s: %s", kernel_filename,
2302 load_elf_strerror(spapr->kernel_size));
2303 exit(1);
2306 /* load initrd */
2307 if (initrd_filename) {
2308 /* Try to locate the initrd in the gap between the kernel
2309 * and the firmware. Add a bit of space just in case
2311 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2312 + 0x1ffff) & ~0xffff;
2313 spapr->initrd_size = load_image_targphys(initrd_filename,
2314 spapr->initrd_base,
2315 load_limit
2316 - spapr->initrd_base);
2317 if (spapr->initrd_size < 0) {
2318 error_report("could not load initial ram disk '%s'",
2319 initrd_filename);
2320 exit(1);
2325 if (bios_name == NULL) {
2326 bios_name = FW_FILE_NAME;
2328 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2329 if (!filename) {
2330 error_report("Could not find LPAR firmware '%s'", bios_name);
2331 exit(1);
2333 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2334 if (fw_size <= 0) {
2335 error_report("Could not load LPAR firmware '%s'", filename);
2336 exit(1);
2338 g_free(filename);
2340 /* FIXME: Should register things through the MachineState's qdev
2341 * interface, this is a legacy from the sPAPREnvironment structure
2342 * which predated MachineState but had a similar function */
2343 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2344 register_savevm_live(NULL, "spapr/htab", -1, 1,
2345 &savevm_htab_handlers, spapr);
2347 /* used by RTAS */
2348 QTAILQ_INIT(&spapr->ccs_list);
2349 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2351 qemu_register_boot_set(spapr_boot_set, spapr);
2353 if (kvm_enabled()) {
2354 /* to stop and start vmclock */
2355 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2356 &spapr->tb);
2358 kvmppc_spapr_enable_inkernel_multitce();
2362 static int spapr_kvm_type(const char *vm_type)
2364 if (!vm_type) {
2365 return 0;
2368 if (!strcmp(vm_type, "HV")) {
2369 return 1;
2372 if (!strcmp(vm_type, "PR")) {
2373 return 2;
2376 error_report("Unknown kvm-type specified '%s'", vm_type);
2377 exit(1);
2381 * Implementation of an interface to adjust firmware path
2382 * for the bootindex property handling.
2384 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2385 DeviceState *dev)
2387 #define CAST(type, obj, name) \
2388 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2389 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2390 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2392 if (d) {
2393 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2394 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2395 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2397 if (spapr) {
2399 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2400 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2401 * in the top 16 bits of the 64-bit LUN
2403 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2404 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2405 (uint64_t)id << 48);
2406 } else if (virtio) {
2408 * We use SRP luns of the form 01000000 | (target << 8) | lun
2409 * in the top 32 bits of the 64-bit LUN
2410 * Note: the quote above is from SLOF and it is wrong,
2411 * the actual binding is:
2412 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2414 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2415 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2416 (uint64_t)id << 32);
2417 } else if (usb) {
2419 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2420 * in the top 32 bits of the 64-bit LUN
2422 unsigned usb_port = atoi(usb->port->path);
2423 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2424 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2425 (uint64_t)id << 32);
2430 * SLOF probes the USB devices, and if it recognizes that the device is a
2431 * storage device, it changes its name to "storage" instead of "usb-host",
2432 * and additionally adds a child node for the SCSI LUN, so the correct
2433 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2435 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2436 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2437 if (usb_host_dev_is_scsi_storage(usbdev)) {
2438 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2442 if (phb) {
2443 /* Replace "pci" with "pci@800000020000000" */
2444 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2447 return NULL;
2450 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2452 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2454 return g_strdup(spapr->kvm_type);
2457 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2459 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2461 g_free(spapr->kvm_type);
2462 spapr->kvm_type = g_strdup(value);
2465 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2467 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2469 return spapr->use_hotplug_event_source;
2472 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2473 Error **errp)
2475 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2477 spapr->use_hotplug_event_source = value;
2480 static void spapr_machine_initfn(Object *obj)
2482 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2484 spapr->htab_fd = -1;
2485 spapr->use_hotplug_event_source = true;
2486 object_property_add_str(obj, "kvm-type",
2487 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2488 object_property_set_description(obj, "kvm-type",
2489 "Specifies the KVM virtualization mode (HV, PR)",
2490 NULL);
2491 object_property_add_bool(obj, "modern-hotplug-events",
2492 spapr_get_modern_hotplug_events,
2493 spapr_set_modern_hotplug_events,
2494 NULL);
2495 object_property_set_description(obj, "modern-hotplug-events",
2496 "Use dedicated hotplug event mechanism in"
2497 " place of standard EPOW events when possible"
2498 " (required for memory hot-unplug support)",
2499 NULL);
2502 static void spapr_machine_finalizefn(Object *obj)
2504 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2506 g_free(spapr->kvm_type);
2509 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2511 cpu_synchronize_state(cs);
2512 ppc_cpu_do_system_reset(cs);
2515 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2517 CPUState *cs;
2519 CPU_FOREACH(cs) {
2520 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2524 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2525 uint32_t node, bool dedicated_hp_event_source,
2526 Error **errp)
2528 sPAPRDRConnector *drc;
2529 sPAPRDRConnectorClass *drck;
2530 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2531 int i, fdt_offset, fdt_size;
2532 void *fdt;
2533 uint64_t addr = addr_start;
2535 for (i = 0; i < nr_lmbs; i++) {
2536 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2537 addr/SPAPR_MEMORY_BLOCK_SIZE);
2538 g_assert(drc);
2540 fdt = create_device_tree(&fdt_size);
2541 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2542 SPAPR_MEMORY_BLOCK_SIZE);
2544 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2545 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2546 addr += SPAPR_MEMORY_BLOCK_SIZE;
2547 if (!dev->hotplugged) {
2548 /* guests expect coldplugged LMBs to be pre-allocated */
2549 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2550 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2553 /* send hotplug notification to the
2554 * guest only in case of hotplugged memory
2556 if (dev->hotplugged) {
2557 if (dedicated_hp_event_source) {
2558 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2559 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2560 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2561 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2562 nr_lmbs,
2563 drck->get_index(drc));
2564 } else {
2565 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2566 nr_lmbs);
2571 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2572 uint32_t node, Error **errp)
2574 Error *local_err = NULL;
2575 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2576 PCDIMMDevice *dimm = PC_DIMM(dev);
2577 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2578 MemoryRegion *mr = ddc->get_memory_region(dimm);
2579 uint64_t align = memory_region_get_alignment(mr);
2580 uint64_t size = memory_region_size(mr);
2581 uint64_t addr;
2582 char *mem_dev;
2584 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2585 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2586 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2587 goto out;
2590 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2591 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2592 error_setg(&local_err, "Memory backend has bad page size. "
2593 "Use 'memory-backend-file' with correct mem-path.");
2594 goto out;
2597 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2598 if (local_err) {
2599 goto out;
2602 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2603 if (local_err) {
2604 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2605 goto out;
2608 spapr_add_lmbs(dev, addr, size, node,
2609 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2610 &error_abort);
2612 out:
2613 error_propagate(errp, local_err);
2616 typedef struct sPAPRDIMMState {
2617 uint32_t nr_lmbs;
2618 } sPAPRDIMMState;
2620 static void spapr_lmb_release(DeviceState *dev, void *opaque)
2622 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2623 HotplugHandler *hotplug_ctrl;
2625 if (--ds->nr_lmbs) {
2626 return;
2629 g_free(ds);
2632 * Now that all the LMBs have been removed by the guest, call the
2633 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2635 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2636 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2639 static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2640 Error **errp)
2642 sPAPRDRConnector *drc;
2643 sPAPRDRConnectorClass *drck;
2644 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2645 int i;
2646 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2647 uint64_t addr = addr_start;
2649 ds->nr_lmbs = nr_lmbs;
2650 for (i = 0; i < nr_lmbs; i++) {
2651 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2652 addr / SPAPR_MEMORY_BLOCK_SIZE);
2653 g_assert(drc);
2655 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2656 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2657 addr += SPAPR_MEMORY_BLOCK_SIZE;
2660 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2661 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2662 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2663 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2664 nr_lmbs,
2665 drck->get_index(drc));
2668 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2669 Error **errp)
2671 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2672 PCDIMMDevice *dimm = PC_DIMM(dev);
2673 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2674 MemoryRegion *mr = ddc->get_memory_region(dimm);
2676 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2677 object_unparent(OBJECT(dev));
2680 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2681 DeviceState *dev, Error **errp)
2683 Error *local_err = NULL;
2684 PCDIMMDevice *dimm = PC_DIMM(dev);
2685 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2686 MemoryRegion *mr = ddc->get_memory_region(dimm);
2687 uint64_t size = memory_region_size(mr);
2688 uint64_t addr;
2690 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2691 if (local_err) {
2692 goto out;
2695 spapr_del_lmbs(dev, addr, size, &error_abort);
2696 out:
2697 error_propagate(errp, local_err);
2700 void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2701 sPAPRMachineState *spapr)
2703 PowerPCCPU *cpu = POWERPC_CPU(cs);
2704 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2705 int id = ppc_get_vcpu_dt_id(cpu);
2706 void *fdt;
2707 int offset, fdt_size;
2708 char *nodename;
2710 fdt = create_device_tree(&fdt_size);
2711 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2712 offset = fdt_add_subnode(fdt, 0, nodename);
2714 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2715 g_free(nodename);
2717 *fdt_offset = offset;
2718 return fdt;
2721 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2722 Error **errp)
2724 MachineState *ms = MACHINE(qdev_get_machine());
2725 CPUCore *cc = CPU_CORE(dev);
2726 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2728 assert(core_slot);
2729 core_slot->cpu = NULL;
2730 object_unparent(OBJECT(dev));
2733 static void spapr_core_release(DeviceState *dev, void *opaque)
2735 HotplugHandler *hotplug_ctrl;
2737 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2738 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2741 static
2742 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2743 Error **errp)
2745 int index;
2746 sPAPRDRConnector *drc;
2747 sPAPRDRConnectorClass *drck;
2748 Error *local_err = NULL;
2749 CPUCore *cc = CPU_CORE(dev);
2750 int smt = kvmppc_smt_threads();
2752 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2753 error_setg(errp, "Unable to find CPU core with core-id: %d",
2754 cc->core_id);
2755 return;
2757 if (index == 0) {
2758 error_setg(errp, "Boot CPU core may not be unplugged");
2759 return;
2762 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2763 g_assert(drc);
2765 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2766 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2767 if (local_err) {
2768 error_propagate(errp, local_err);
2769 return;
2772 spapr_hotplug_req_remove_by_index(drc);
2775 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2776 Error **errp)
2778 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2779 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2780 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2781 CPUCore *cc = CPU_CORE(dev);
2782 CPUState *cs = CPU(core->threads);
2783 sPAPRDRConnector *drc;
2784 Error *local_err = NULL;
2785 void *fdt = NULL;
2786 int fdt_offset = 0;
2787 int smt = kvmppc_smt_threads();
2788 CPUArchId *core_slot;
2789 int index;
2791 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2792 if (!core_slot) {
2793 error_setg(errp, "Unable to find CPU core with core-id: %d",
2794 cc->core_id);
2795 return;
2797 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2799 g_assert(drc || !mc->has_hotpluggable_cpus);
2802 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2803 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2805 if (dev->hotplugged) {
2806 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2809 if (drc) {
2810 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2811 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2812 if (local_err) {
2813 g_free(fdt);
2814 error_propagate(errp, local_err);
2815 return;
2819 if (dev->hotplugged) {
2821 * Send hotplug notification interrupt to the guest only in case
2822 * of hotplugged CPUs.
2824 spapr_hotplug_req_add_by_index(drc);
2825 } else {
2827 * Set the right DRC states for cold plugged CPU.
2829 if (drc) {
2830 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2831 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2832 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2835 core_slot->cpu = OBJECT(dev);
2838 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2839 Error **errp)
2841 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2842 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
2843 Error *local_err = NULL;
2844 CPUCore *cc = CPU_CORE(dev);
2845 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
2846 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2847 const char *type = object_get_typename(OBJECT(dev));
2848 CPUArchId *core_slot;
2849 int node_id;
2850 int index;
2852 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2853 error_setg(&local_err, "CPU hotplug not supported for this machine");
2854 goto out;
2857 if (strcmp(base_core_type, type)) {
2858 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2859 goto out;
2862 if (cc->core_id % smp_threads) {
2863 error_setg(&local_err, "invalid core id %d", cc->core_id);
2864 goto out;
2867 if (cc->nr_threads != smp_threads) {
2868 error_setg(errp, "invalid nr-threads %d, must be %d",
2869 cc->nr_threads, smp_threads);
2870 return;
2873 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2874 if (!core_slot) {
2875 error_setg(&local_err, "core id %d out of range", cc->core_id);
2876 goto out;
2879 if (core_slot->cpu) {
2880 error_setg(&local_err, "core %d already populated", cc->core_id);
2881 goto out;
2884 node_id = core_slot->props.node_id;
2885 if (!core_slot->props.has_node_id) {
2886 /* by default CPUState::numa_node was 0 if it's not set via CLI
2887 * keep it this way for now but in future we probably should
2888 * refuse to start up with incomplete numa mapping */
2889 node_id = 0;
2891 if (sc->node_id == CPU_UNSET_NUMA_NODE_ID) {
2892 sc->node_id = node_id;
2893 } else if (sc->node_id != node_id) {
2894 error_setg(&local_err, "node-id %d must match numa node specified"
2895 "with -numa option for cpu-index %d", sc->node_id, cc->core_id);
2896 goto out;
2899 out:
2900 g_free(base_core_type);
2901 error_propagate(errp, local_err);
2904 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2905 DeviceState *dev, Error **errp)
2907 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2909 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2910 int node;
2912 if (!smc->dr_lmb_enabled) {
2913 error_setg(errp, "Memory hotplug not supported for this machine");
2914 return;
2916 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2917 if (*errp) {
2918 return;
2920 if (node < 0 || node >= MAX_NODES) {
2921 error_setg(errp, "Invaild node %d", node);
2922 return;
2926 * Currently PowerPC kernel doesn't allow hot-adding memory to
2927 * memory-less node, but instead will silently add the memory
2928 * to the first node that has some memory. This causes two
2929 * unexpected behaviours for the user.
2931 * - Memory gets hotplugged to a different node than what the user
2932 * specified.
2933 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2934 * to memory-less node, a reboot will set things accordingly
2935 * and the previously hotplugged memory now ends in the right node.
2936 * This appears as if some memory moved from one node to another.
2938 * So until kernel starts supporting memory hotplug to memory-less
2939 * nodes, just prevent such attempts upfront in QEMU.
2941 if (nb_numa_nodes && !numa_info[node].node_mem) {
2942 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2943 node);
2944 return;
2947 spapr_memory_plug(hotplug_dev, dev, node, errp);
2948 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2949 spapr_core_plug(hotplug_dev, dev, errp);
2953 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2954 DeviceState *dev, Error **errp)
2956 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2957 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2959 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2960 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2961 spapr_memory_unplug(hotplug_dev, dev, errp);
2962 } else {
2963 error_setg(errp, "Memory hot unplug not supported for this guest");
2965 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2966 if (!mc->has_hotpluggable_cpus) {
2967 error_setg(errp, "CPU hot unplug not supported on this machine");
2968 return;
2970 spapr_core_unplug(hotplug_dev, dev, errp);
2974 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2975 DeviceState *dev, Error **errp)
2977 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2978 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2980 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2981 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2982 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2983 } else {
2984 /* NOTE: this means there is a window after guest reset, prior to
2985 * CAS negotiation, where unplug requests will fail due to the
2986 * capability not being detected yet. This is a bit different than
2987 * the case with PCI unplug, where the events will be queued and
2988 * eventually handled by the guest after boot
2990 error_setg(errp, "Memory hot unplug not supported for this guest");
2992 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2993 if (!mc->has_hotpluggable_cpus) {
2994 error_setg(errp, "CPU hot unplug not supported on this machine");
2995 return;
2997 spapr_core_unplug_request(hotplug_dev, dev, errp);
3001 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3002 DeviceState *dev, Error **errp)
3004 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3005 spapr_core_pre_plug(hotplug_dev, dev, errp);
3009 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3010 DeviceState *dev)
3012 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3013 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3014 return HOTPLUG_HANDLER(machine);
3016 return NULL;
3019 static CpuInstanceProperties
3020 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3022 CPUArchId *core_slot;
3023 MachineClass *mc = MACHINE_GET_CLASS(machine);
3025 /* make sure possible_cpu are intialized */
3026 mc->possible_cpu_arch_ids(machine);
3027 /* get CPU core slot containing thread that matches cpu_index */
3028 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3029 assert(core_slot);
3030 return core_slot->props;
3033 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3035 int i;
3036 int spapr_max_cores = max_cpus / smp_threads;
3037 MachineClass *mc = MACHINE_GET_CLASS(machine);
3039 if (!mc->has_hotpluggable_cpus) {
3040 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3042 if (machine->possible_cpus) {
3043 assert(machine->possible_cpus->len == spapr_max_cores);
3044 return machine->possible_cpus;
3047 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3048 sizeof(CPUArchId) * spapr_max_cores);
3049 machine->possible_cpus->len = spapr_max_cores;
3050 for (i = 0; i < machine->possible_cpus->len; i++) {
3051 int core_id = i * smp_threads;
3053 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3054 machine->possible_cpus->cpus[i].arch_id = core_id;
3055 machine->possible_cpus->cpus[i].props.has_core_id = true;
3056 machine->possible_cpus->cpus[i].props.core_id = core_id;
3058 /* default distribution of CPUs over NUMA nodes */
3059 if (nb_numa_nodes) {
3060 /* preset values but do not enable them i.e. 'has_node_id = false',
3061 * numa init code will enable them later if manual mapping wasn't
3062 * present on CLI */
3063 machine->possible_cpus->cpus[i].props.node_id =
3064 core_id / smp_threads / smp_cores % nb_numa_nodes;
3067 return machine->possible_cpus;
3070 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3071 uint64_t *buid, hwaddr *pio,
3072 hwaddr *mmio32, hwaddr *mmio64,
3073 unsigned n_dma, uint32_t *liobns, Error **errp)
3076 * New-style PHB window placement.
3078 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3079 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3080 * windows.
3082 * Some guest kernels can't work with MMIO windows above 1<<46
3083 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3085 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3086 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3087 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3088 * 1TiB 64-bit MMIO windows for each PHB.
3090 const uint64_t base_buid = 0x800000020000000ULL;
3091 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3092 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3093 int i;
3095 /* Sanity check natural alignments */
3096 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3097 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3098 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3099 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3100 /* Sanity check bounds */
3101 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3102 SPAPR_PCI_MEM32_WIN_SIZE);
3103 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3104 SPAPR_PCI_MEM64_WIN_SIZE);
3106 if (index >= SPAPR_MAX_PHBS) {
3107 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3108 SPAPR_MAX_PHBS - 1);
3109 return;
3112 *buid = base_buid + index;
3113 for (i = 0; i < n_dma; ++i) {
3114 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3117 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3118 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3119 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3122 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3124 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3126 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3129 static void spapr_ics_resend(XICSFabric *dev)
3131 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3133 ics_resend(spapr->ics);
3136 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3138 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3140 return cpu ? ICP(cpu->intc) : NULL;
3143 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3144 Monitor *mon)
3146 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3147 CPUState *cs;
3149 CPU_FOREACH(cs) {
3150 PowerPCCPU *cpu = POWERPC_CPU(cs);
3152 icp_pic_print_info(ICP(cpu->intc), mon);
3155 ics_pic_print_info(spapr->ics, mon);
3158 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3160 MachineClass *mc = MACHINE_CLASS(oc);
3161 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3162 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3163 NMIClass *nc = NMI_CLASS(oc);
3164 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3165 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3166 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3167 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3169 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3172 * We set up the default / latest behaviour here. The class_init
3173 * functions for the specific versioned machine types can override
3174 * these details for backwards compatibility
3176 mc->init = ppc_spapr_init;
3177 mc->reset = ppc_spapr_reset;
3178 mc->block_default_type = IF_SCSI;
3179 mc->max_cpus = 1024;
3180 mc->no_parallel = 1;
3181 mc->default_boot_order = "";
3182 mc->default_ram_size = 512 * M_BYTE;
3183 mc->kvm_type = spapr_kvm_type;
3184 mc->has_dynamic_sysbus = true;
3185 mc->pci_allow_0_address = true;
3186 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3187 hc->pre_plug = spapr_machine_device_pre_plug;
3188 hc->plug = spapr_machine_device_plug;
3189 hc->unplug = spapr_machine_device_unplug;
3190 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3191 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3192 hc->unplug_request = spapr_machine_device_unplug_request;
3194 smc->dr_lmb_enabled = true;
3195 smc->tcg_default_cpu = "POWER8";
3196 mc->has_hotpluggable_cpus = true;
3197 fwc->get_dev_path = spapr_get_fw_dev_path;
3198 nc->nmi_monitor_handler = spapr_nmi;
3199 smc->phb_placement = spapr_phb_placement;
3200 vhc->hypercall = emulate_spapr_hypercall;
3201 vhc->hpt_mask = spapr_hpt_mask;
3202 vhc->map_hptes = spapr_map_hptes;
3203 vhc->unmap_hptes = spapr_unmap_hptes;
3204 vhc->store_hpte = spapr_store_hpte;
3205 vhc->get_patbe = spapr_get_patbe;
3206 xic->ics_get = spapr_ics_get;
3207 xic->ics_resend = spapr_ics_resend;
3208 xic->icp_get = spapr_icp_get;
3209 ispc->print_info = spapr_pic_print_info;
3210 /* Force NUMA node memory size to be a multiple of
3211 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3212 * in which LMBs are represented and hot-added
3214 mc->numa_mem_align_shift = 28;
3217 static const TypeInfo spapr_machine_info = {
3218 .name = TYPE_SPAPR_MACHINE,
3219 .parent = TYPE_MACHINE,
3220 .abstract = true,
3221 .instance_size = sizeof(sPAPRMachineState),
3222 .instance_init = spapr_machine_initfn,
3223 .instance_finalize = spapr_machine_finalizefn,
3224 .class_size = sizeof(sPAPRMachineClass),
3225 .class_init = spapr_machine_class_init,
3226 .interfaces = (InterfaceInfo[]) {
3227 { TYPE_FW_PATH_PROVIDER },
3228 { TYPE_NMI },
3229 { TYPE_HOTPLUG_HANDLER },
3230 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3231 { TYPE_XICS_FABRIC },
3232 { TYPE_INTERRUPT_STATS_PROVIDER },
3237 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3238 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3239 void *data) \
3241 MachineClass *mc = MACHINE_CLASS(oc); \
3242 spapr_machine_##suffix##_class_options(mc); \
3243 if (latest) { \
3244 mc->alias = "pseries"; \
3245 mc->is_default = 1; \
3248 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3250 MachineState *machine = MACHINE(obj); \
3251 spapr_machine_##suffix##_instance_options(machine); \
3253 static const TypeInfo spapr_machine_##suffix##_info = { \
3254 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3255 .parent = TYPE_SPAPR_MACHINE, \
3256 .class_init = spapr_machine_##suffix##_class_init, \
3257 .instance_init = spapr_machine_##suffix##_instance_init, \
3258 }; \
3259 static void spapr_machine_register_##suffix(void) \
3261 type_register(&spapr_machine_##suffix##_info); \
3263 type_init(spapr_machine_register_##suffix)
3266 * pseries-2.10
3268 static void spapr_machine_2_10_instance_options(MachineState *machine)
3272 static void spapr_machine_2_10_class_options(MachineClass *mc)
3274 /* Defaults for the latest behaviour inherited from the base class */
3277 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3280 * pseries-2.9
3282 #define SPAPR_COMPAT_2_9 \
3283 HW_COMPAT_2_9
3285 static void spapr_machine_2_9_instance_options(MachineState *machine)
3287 spapr_machine_2_10_instance_options(machine);
3290 static void spapr_machine_2_9_class_options(MachineClass *mc)
3292 spapr_machine_2_10_class_options(mc);
3293 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3294 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3297 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3300 * pseries-2.8
3302 #define SPAPR_COMPAT_2_8 \
3303 HW_COMPAT_2_8 \
3305 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3306 .property = "pcie-extended-configuration-space", \
3307 .value = "off", \
3310 static void spapr_machine_2_8_instance_options(MachineState *machine)
3312 spapr_machine_2_9_instance_options(machine);
3315 static void spapr_machine_2_8_class_options(MachineClass *mc)
3317 spapr_machine_2_9_class_options(mc);
3318 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3319 mc->numa_mem_align_shift = 23;
3322 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3325 * pseries-2.7
3327 #define SPAPR_COMPAT_2_7 \
3328 HW_COMPAT_2_7 \
3330 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3331 .property = "mem_win_size", \
3332 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3333 }, \
3335 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3336 .property = "mem64_win_size", \
3337 .value = "0", \
3338 }, \
3340 .driver = TYPE_POWERPC_CPU, \
3341 .property = "pre-2.8-migration", \
3342 .value = "on", \
3343 }, \
3345 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3346 .property = "pre-2.8-migration", \
3347 .value = "on", \
3350 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3351 uint64_t *buid, hwaddr *pio,
3352 hwaddr *mmio32, hwaddr *mmio64,
3353 unsigned n_dma, uint32_t *liobns, Error **errp)
3355 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3356 const uint64_t base_buid = 0x800000020000000ULL;
3357 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3358 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3359 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3360 const uint32_t max_index = 255;
3361 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3363 uint64_t ram_top = MACHINE(spapr)->ram_size;
3364 hwaddr phb0_base, phb_base;
3365 int i;
3367 /* Do we have hotpluggable memory? */
3368 if (MACHINE(spapr)->maxram_size > ram_top) {
3369 /* Can't just use maxram_size, because there may be an
3370 * alignment gap between normal and hotpluggable memory
3371 * regions */
3372 ram_top = spapr->hotplug_memory.base +
3373 memory_region_size(&spapr->hotplug_memory.mr);
3376 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3378 if (index > max_index) {
3379 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3380 max_index);
3381 return;
3384 *buid = base_buid + index;
3385 for (i = 0; i < n_dma; ++i) {
3386 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3389 phb_base = phb0_base + index * phb_spacing;
3390 *pio = phb_base + pio_offset;
3391 *mmio32 = phb_base + mmio_offset;
3393 * We don't set the 64-bit MMIO window, relying on the PHB's
3394 * fallback behaviour of automatically splitting a large "32-bit"
3395 * window into contiguous 32-bit and 64-bit windows
3399 static void spapr_machine_2_7_instance_options(MachineState *machine)
3401 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3403 spapr_machine_2_8_instance_options(machine);
3404 spapr->use_hotplug_event_source = false;
3407 static void spapr_machine_2_7_class_options(MachineClass *mc)
3409 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3411 spapr_machine_2_8_class_options(mc);
3412 smc->tcg_default_cpu = "POWER7";
3413 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3414 smc->phb_placement = phb_placement_2_7;
3417 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3420 * pseries-2.6
3422 #define SPAPR_COMPAT_2_6 \
3423 HW_COMPAT_2_6 \
3425 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3426 .property = "ddw",\
3427 .value = stringify(off),\
3430 static void spapr_machine_2_6_instance_options(MachineState *machine)
3432 spapr_machine_2_7_instance_options(machine);
3435 static void spapr_machine_2_6_class_options(MachineClass *mc)
3437 spapr_machine_2_7_class_options(mc);
3438 mc->has_hotpluggable_cpus = false;
3439 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3442 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3445 * pseries-2.5
3447 #define SPAPR_COMPAT_2_5 \
3448 HW_COMPAT_2_5 \
3450 .driver = "spapr-vlan", \
3451 .property = "use-rx-buffer-pools", \
3452 .value = "off", \
3455 static void spapr_machine_2_5_instance_options(MachineState *machine)
3457 spapr_machine_2_6_instance_options(machine);
3460 static void spapr_machine_2_5_class_options(MachineClass *mc)
3462 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3464 spapr_machine_2_6_class_options(mc);
3465 smc->use_ohci_by_default = true;
3466 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3469 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3472 * pseries-2.4
3474 #define SPAPR_COMPAT_2_4 \
3475 HW_COMPAT_2_4
3477 static void spapr_machine_2_4_instance_options(MachineState *machine)
3479 spapr_machine_2_5_instance_options(machine);
3482 static void spapr_machine_2_4_class_options(MachineClass *mc)
3484 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3486 spapr_machine_2_5_class_options(mc);
3487 smc->dr_lmb_enabled = false;
3488 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3491 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3494 * pseries-2.3
3496 #define SPAPR_COMPAT_2_3 \
3497 HW_COMPAT_2_3 \
3499 .driver = "spapr-pci-host-bridge",\
3500 .property = "dynamic-reconfiguration",\
3501 .value = "off",\
3504 static void spapr_machine_2_3_instance_options(MachineState *machine)
3506 spapr_machine_2_4_instance_options(machine);
3507 savevm_skip_section_footers();
3508 global_state_set_optional();
3509 savevm_skip_configuration();
3512 static void spapr_machine_2_3_class_options(MachineClass *mc)
3514 spapr_machine_2_4_class_options(mc);
3515 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3517 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3520 * pseries-2.2
3523 #define SPAPR_COMPAT_2_2 \
3524 HW_COMPAT_2_2 \
3526 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3527 .property = "mem_win_size",\
3528 .value = "0x20000000",\
3531 static void spapr_machine_2_2_instance_options(MachineState *machine)
3533 spapr_machine_2_3_instance_options(machine);
3534 machine->suppress_vmdesc = true;
3537 static void spapr_machine_2_2_class_options(MachineClass *mc)
3539 spapr_machine_2_3_class_options(mc);
3540 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3542 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3545 * pseries-2.1
3547 #define SPAPR_COMPAT_2_1 \
3548 HW_COMPAT_2_1
3550 static void spapr_machine_2_1_instance_options(MachineState *machine)
3552 spapr_machine_2_2_instance_options(machine);
3555 static void spapr_machine_2_1_class_options(MachineClass *mc)
3557 spapr_machine_2_2_class_options(mc);
3558 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3560 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3562 static void spapr_machine_register_types(void)
3564 type_register_static(&spapr_machine_info);
3567 type_init(spapr_machine_register_types)