i386: kvm: extract try_get_cpuid() loop to get_supported_cpuid() function
[qemu-kvm.git] / target-i386 / kvm.c
blobd74dbc152ccef67ce3f5060d5ec53709368b22f0
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
36 //#define DEBUG_KVM
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
71 bool kvm_allows_irq0_override(void)
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
98 return cpuid;
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
111 return cpuid;
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
125 static int get_para_features(KVMState *s)
127 int i, features = 0;
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
135 return features;
139 /* Returns the value for a specific register on the cpuid entry
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
158 return ret;
161 /* Find matching entry for function/index on kvm_cpuid2 struct
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
174 /* not found: */
175 return NULL;
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
186 cpuid = get_supported_cpuid(s);
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
194 /* Fixups for the data returned by KVM, below */
196 if (reg == R_EDX) {
197 switch (function) {
198 case 1:
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 break;
202 case 0x80000001:
203 /* On Intel, kvm returns cpuid according to the Intel spec,
204 * so add missing bits according to the AMD spec:
206 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
207 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
208 break;
212 g_free(cpuid);
214 /* fallback for older kernels */
215 if ((function == KVM_CPUID_FEATURES) && !found) {
216 ret = get_para_features(s);
219 return ret;
222 typedef struct HWPoisonPage {
223 ram_addr_t ram_addr;
224 QLIST_ENTRY(HWPoisonPage) list;
225 } HWPoisonPage;
227 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
228 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
230 static void kvm_unpoison_all(void *param)
232 HWPoisonPage *page, *next_page;
234 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
235 QLIST_REMOVE(page, list);
236 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
237 g_free(page);
241 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
243 HWPoisonPage *page;
245 QLIST_FOREACH(page, &hwpoison_page_list, list) {
246 if (page->ram_addr == ram_addr) {
247 return;
250 page = g_malloc(sizeof(HWPoisonPage));
251 page->ram_addr = ram_addr;
252 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
255 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
256 int *max_banks)
258 int r;
260 r = kvm_check_extension(s, KVM_CAP_MCE);
261 if (r > 0) {
262 *max_banks = r;
263 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
265 return -ENOSYS;
268 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
270 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
271 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
272 uint64_t mcg_status = MCG_STATUS_MCIP;
274 if (code == BUS_MCEERR_AR) {
275 status |= MCI_STATUS_AR | 0x134;
276 mcg_status |= MCG_STATUS_EIPV;
277 } else {
278 status |= 0xc0;
279 mcg_status |= MCG_STATUS_RIPV;
281 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
282 (MCM_ADDR_PHYS << 6) | 0xc,
283 cpu_x86_support_mca_broadcast(env) ?
284 MCE_INJECT_BROADCAST : 0);
287 static void hardware_memory_error(void)
289 fprintf(stderr, "Hardware memory error!\n");
290 exit(1);
293 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
295 ram_addr_t ram_addr;
296 hwaddr paddr;
298 if ((env->mcg_cap & MCG_SER_P) && addr
299 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
300 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
301 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
302 fprintf(stderr, "Hardware memory error for memory used by "
303 "QEMU itself instead of guest system!\n");
304 /* Hope we are lucky for AO MCE */
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else {
308 hardware_memory_error();
311 kvm_hwpoison_page_add(ram_addr);
312 kvm_mce_inject(env, paddr, code);
313 } else {
314 if (code == BUS_MCEERR_AO) {
315 return 0;
316 } else if (code == BUS_MCEERR_AR) {
317 hardware_memory_error();
318 } else {
319 return 1;
322 return 0;
325 int kvm_arch_on_sigbus(int code, void *addr)
327 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
328 ram_addr_t ram_addr;
329 hwaddr paddr;
331 /* Hope we are lucky for AO MCE */
332 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
333 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
334 &paddr)) {
335 fprintf(stderr, "Hardware memory error for memory used by "
336 "QEMU itself instead of guest system!: %p\n", addr);
337 return 0;
339 kvm_hwpoison_page_add(ram_addr);
340 kvm_mce_inject(first_cpu, paddr, code);
341 } else {
342 if (code == BUS_MCEERR_AO) {
343 return 0;
344 } else if (code == BUS_MCEERR_AR) {
345 hardware_memory_error();
346 } else {
347 return 1;
350 return 0;
353 static int kvm_inject_mce_oldstyle(CPUX86State *env)
355 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
356 unsigned int bank, bank_num = env->mcg_cap & 0xff;
357 struct kvm_x86_mce mce;
359 env->exception_injected = -1;
362 * There must be at least one bank in use if an MCE is pending.
363 * Find it and use its values for the event injection.
365 for (bank = 0; bank < bank_num; bank++) {
366 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
367 break;
370 assert(bank < bank_num);
372 mce.bank = bank;
373 mce.status = env->mce_banks[bank * 4 + 1];
374 mce.mcg_status = env->mcg_status;
375 mce.addr = env->mce_banks[bank * 4 + 2];
376 mce.misc = env->mce_banks[bank * 4 + 3];
378 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
380 return 0;
383 static void cpu_update_state(void *opaque, int running, RunState state)
385 CPUX86State *env = opaque;
387 if (running) {
388 env->tsc_valid = false;
392 int kvm_arch_init_vcpu(CPUX86State *env)
394 struct {
395 struct kvm_cpuid2 cpuid;
396 struct kvm_cpuid_entry2 entries[100];
397 } QEMU_PACKED cpuid_data;
398 KVMState *s = env->kvm_state;
399 uint32_t limit, i, j, cpuid_i;
400 uint32_t unused;
401 struct kvm_cpuid_entry2 *c;
402 uint32_t signature[3];
403 int r;
405 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
407 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
408 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
409 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
410 env->cpuid_ext_features |= i;
411 if (j && kvm_irqchip_in_kernel() &&
412 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
413 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
416 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
417 0, R_EDX);
418 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
419 0, R_ECX);
420 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
421 0, R_EDX);
423 cpuid_i = 0;
425 /* Paravirtualization CPUIDs */
426 c = &cpuid_data.entries[cpuid_i++];
427 memset(c, 0, sizeof(*c));
428 c->function = KVM_CPUID_SIGNATURE;
429 if (!hyperv_enabled()) {
430 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
431 c->eax = 0;
432 } else {
433 memcpy(signature, "Microsoft Hv", 12);
434 c->eax = HYPERV_CPUID_MIN;
436 c->ebx = signature[0];
437 c->ecx = signature[1];
438 c->edx = signature[2];
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = KVM_CPUID_FEATURES;
443 c->eax = env->cpuid_kvm_features &
444 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
446 if (hyperv_enabled()) {
447 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
448 c->eax = signature[0];
450 c = &cpuid_data.entries[cpuid_i++];
451 memset(c, 0, sizeof(*c));
452 c->function = HYPERV_CPUID_VERSION;
453 c->eax = 0x00001bbc;
454 c->ebx = 0x00060001;
456 c = &cpuid_data.entries[cpuid_i++];
457 memset(c, 0, sizeof(*c));
458 c->function = HYPERV_CPUID_FEATURES;
459 if (hyperv_relaxed_timing_enabled()) {
460 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
462 if (hyperv_vapic_recommended()) {
463 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
464 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
467 c = &cpuid_data.entries[cpuid_i++];
468 memset(c, 0, sizeof(*c));
469 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
470 if (hyperv_relaxed_timing_enabled()) {
471 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
473 if (hyperv_vapic_recommended()) {
474 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
476 c->ebx = hyperv_get_spinlock_retries();
478 c = &cpuid_data.entries[cpuid_i++];
479 memset(c, 0, sizeof(*c));
480 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
481 c->eax = 0x40;
482 c->ebx = 0x40;
484 c = &cpuid_data.entries[cpuid_i++];
485 memset(c, 0, sizeof(*c));
486 c->function = KVM_CPUID_SIGNATURE_NEXT;
487 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
488 c->eax = 0;
489 c->ebx = signature[0];
490 c->ecx = signature[1];
491 c->edx = signature[2];
494 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
496 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
498 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
500 for (i = 0; i <= limit; i++) {
501 c = &cpuid_data.entries[cpuid_i++];
503 switch (i) {
504 case 2: {
505 /* Keep reading function 2 till all the input is received */
506 int times;
508 c->function = i;
509 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
510 KVM_CPUID_FLAG_STATE_READ_NEXT;
511 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
512 times = c->eax & 0xff;
514 for (j = 1; j < times; ++j) {
515 c = &cpuid_data.entries[cpuid_i++];
516 c->function = i;
517 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
518 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
520 break;
522 case 4:
523 case 0xb:
524 case 0xd:
525 for (j = 0; ; j++) {
526 if (i == 0xd && j == 64) {
527 break;
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
531 c->index = j;
532 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
534 if (i == 4 && c->eax == 0) {
535 break;
537 if (i == 0xb && !(c->ecx & 0xff00)) {
538 break;
540 if (i == 0xd && c->eax == 0) {
541 continue;
543 c = &cpuid_data.entries[cpuid_i++];
545 break;
546 default:
547 c->function = i;
548 c->flags = 0;
549 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
550 break;
553 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
555 for (i = 0x80000000; i <= limit; i++) {
556 c = &cpuid_data.entries[cpuid_i++];
558 c->function = i;
559 c->flags = 0;
560 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
563 /* Call Centaur's CPUID instructions they are supported. */
564 if (env->cpuid_xlevel2 > 0) {
565 env->cpuid_ext4_features &=
566 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
567 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
569 for (i = 0xC0000000; i <= limit; i++) {
570 c = &cpuid_data.entries[cpuid_i++];
572 c->function = i;
573 c->flags = 0;
574 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
578 cpuid_data.cpuid.nent = cpuid_i;
580 if (((env->cpuid_version >> 8)&0xF) >= 6
581 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
582 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
583 uint64_t mcg_cap;
584 int banks;
585 int ret;
587 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
588 if (ret < 0) {
589 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
590 return ret;
593 if (banks > MCE_BANKS_DEF) {
594 banks = MCE_BANKS_DEF;
596 mcg_cap &= MCE_CAP_DEF;
597 mcg_cap |= banks;
598 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
599 if (ret < 0) {
600 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
601 return ret;
604 env->mcg_cap = mcg_cap;
607 qemu_add_vm_change_state_handler(cpu_update_state, env);
609 cpuid_data.cpuid.padding = 0;
610 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
611 if (r) {
612 return r;
615 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
616 if (r && env->tsc_khz) {
617 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
618 if (r < 0) {
619 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
620 return r;
624 if (kvm_has_xsave()) {
625 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
628 return 0;
631 void kvm_arch_reset_vcpu(CPUX86State *env)
633 X86CPU *cpu = x86_env_get_cpu(env);
635 env->exception_injected = -1;
636 env->interrupt_injected = -1;
637 env->xcr0 = 1;
638 if (kvm_irqchip_in_kernel()) {
639 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
640 KVM_MP_STATE_UNINITIALIZED;
641 } else {
642 env->mp_state = KVM_MP_STATE_RUNNABLE;
646 static int kvm_get_supported_msrs(KVMState *s)
648 static int kvm_supported_msrs;
649 int ret = 0;
651 /* first time */
652 if (kvm_supported_msrs == 0) {
653 struct kvm_msr_list msr_list, *kvm_msr_list;
655 kvm_supported_msrs = -1;
657 /* Obtain MSR list from KVM. These are the MSRs that we must
658 * save/restore */
659 msr_list.nmsrs = 0;
660 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
661 if (ret < 0 && ret != -E2BIG) {
662 return ret;
664 /* Old kernel modules had a bug and could write beyond the provided
665 memory. Allocate at least a safe amount of 1K. */
666 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
667 msr_list.nmsrs *
668 sizeof(msr_list.indices[0])));
670 kvm_msr_list->nmsrs = msr_list.nmsrs;
671 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
672 if (ret >= 0) {
673 int i;
675 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
676 if (kvm_msr_list->indices[i] == MSR_STAR) {
677 has_msr_star = true;
678 continue;
680 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
681 has_msr_hsave_pa = true;
682 continue;
684 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
685 has_msr_tsc_deadline = true;
686 continue;
688 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
689 has_msr_misc_enable = true;
690 continue;
695 g_free(kvm_msr_list);
698 return ret;
701 int kvm_arch_init(KVMState *s)
703 QemuOptsList *list = qemu_find_opts("machine");
704 uint64_t identity_base = 0xfffbc000;
705 uint64_t shadow_mem;
706 int ret;
707 struct utsname utsname;
709 ret = kvm_get_supported_msrs(s);
710 if (ret < 0) {
711 return ret;
714 uname(&utsname);
715 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
718 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
719 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
720 * Since these must be part of guest physical memory, we need to allocate
721 * them, both by setting their start addresses in the kernel and by
722 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
724 * Older KVM versions may not support setting the identity map base. In
725 * that case we need to stick with the default, i.e. a 256K maximum BIOS
726 * size.
728 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
729 /* Allows up to 16M BIOSes. */
730 identity_base = 0xfeffc000;
732 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
733 if (ret < 0) {
734 return ret;
738 /* Set TSS base one page after EPT identity map. */
739 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
740 if (ret < 0) {
741 return ret;
744 /* Tell fw_cfg to notify the BIOS to reserve the range. */
745 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
746 if (ret < 0) {
747 fprintf(stderr, "e820_add_entry() table is full\n");
748 return ret;
750 qemu_register_reset(kvm_unpoison_all, NULL);
752 if (!QTAILQ_EMPTY(&list->head)) {
753 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
754 "kvm_shadow_mem", -1);
755 if (shadow_mem != -1) {
756 shadow_mem /= 4096;
757 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
758 if (ret < 0) {
759 return ret;
763 return 0;
766 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
768 lhs->selector = rhs->selector;
769 lhs->base = rhs->base;
770 lhs->limit = rhs->limit;
771 lhs->type = 3;
772 lhs->present = 1;
773 lhs->dpl = 3;
774 lhs->db = 0;
775 lhs->s = 1;
776 lhs->l = 0;
777 lhs->g = 0;
778 lhs->avl = 0;
779 lhs->unusable = 0;
782 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
784 unsigned flags = rhs->flags;
785 lhs->selector = rhs->selector;
786 lhs->base = rhs->base;
787 lhs->limit = rhs->limit;
788 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
789 lhs->present = (flags & DESC_P_MASK) != 0;
790 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
791 lhs->db = (flags >> DESC_B_SHIFT) & 1;
792 lhs->s = (flags & DESC_S_MASK) != 0;
793 lhs->l = (flags >> DESC_L_SHIFT) & 1;
794 lhs->g = (flags & DESC_G_MASK) != 0;
795 lhs->avl = (flags & DESC_AVL_MASK) != 0;
796 lhs->unusable = 0;
797 lhs->padding = 0;
800 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
802 lhs->selector = rhs->selector;
803 lhs->base = rhs->base;
804 lhs->limit = rhs->limit;
805 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
806 (rhs->present * DESC_P_MASK) |
807 (rhs->dpl << DESC_DPL_SHIFT) |
808 (rhs->db << DESC_B_SHIFT) |
809 (rhs->s * DESC_S_MASK) |
810 (rhs->l << DESC_L_SHIFT) |
811 (rhs->g * DESC_G_MASK) |
812 (rhs->avl * DESC_AVL_MASK);
815 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
817 if (set) {
818 *kvm_reg = *qemu_reg;
819 } else {
820 *qemu_reg = *kvm_reg;
824 static int kvm_getput_regs(CPUX86State *env, int set)
826 struct kvm_regs regs;
827 int ret = 0;
829 if (!set) {
830 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
831 if (ret < 0) {
832 return ret;
836 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
837 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
838 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
839 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
840 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
841 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
842 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
843 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
844 #ifdef TARGET_X86_64
845 kvm_getput_reg(&regs.r8, &env->regs[8], set);
846 kvm_getput_reg(&regs.r9, &env->regs[9], set);
847 kvm_getput_reg(&regs.r10, &env->regs[10], set);
848 kvm_getput_reg(&regs.r11, &env->regs[11], set);
849 kvm_getput_reg(&regs.r12, &env->regs[12], set);
850 kvm_getput_reg(&regs.r13, &env->regs[13], set);
851 kvm_getput_reg(&regs.r14, &env->regs[14], set);
852 kvm_getput_reg(&regs.r15, &env->regs[15], set);
853 #endif
855 kvm_getput_reg(&regs.rflags, &env->eflags, set);
856 kvm_getput_reg(&regs.rip, &env->eip, set);
858 if (set) {
859 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
862 return ret;
865 static int kvm_put_fpu(CPUX86State *env)
867 struct kvm_fpu fpu;
868 int i;
870 memset(&fpu, 0, sizeof fpu);
871 fpu.fsw = env->fpus & ~(7 << 11);
872 fpu.fsw |= (env->fpstt & 7) << 11;
873 fpu.fcw = env->fpuc;
874 fpu.last_opcode = env->fpop;
875 fpu.last_ip = env->fpip;
876 fpu.last_dp = env->fpdp;
877 for (i = 0; i < 8; ++i) {
878 fpu.ftwx |= (!env->fptags[i]) << i;
880 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
881 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
882 fpu.mxcsr = env->mxcsr;
884 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
887 #define XSAVE_FCW_FSW 0
888 #define XSAVE_FTW_FOP 1
889 #define XSAVE_CWD_RIP 2
890 #define XSAVE_CWD_RDP 4
891 #define XSAVE_MXCSR 6
892 #define XSAVE_ST_SPACE 8
893 #define XSAVE_XMM_SPACE 40
894 #define XSAVE_XSTATE_BV 128
895 #define XSAVE_YMMH_SPACE 144
897 static int kvm_put_xsave(CPUX86State *env)
899 struct kvm_xsave* xsave = env->kvm_xsave_buf;
900 uint16_t cwd, swd, twd;
901 int i, r;
903 if (!kvm_has_xsave()) {
904 return kvm_put_fpu(env);
907 memset(xsave, 0, sizeof(struct kvm_xsave));
908 twd = 0;
909 swd = env->fpus & ~(7 << 11);
910 swd |= (env->fpstt & 7) << 11;
911 cwd = env->fpuc;
912 for (i = 0; i < 8; ++i) {
913 twd |= (!env->fptags[i]) << i;
915 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
916 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
917 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
918 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
919 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
920 sizeof env->fpregs);
921 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
922 sizeof env->xmm_regs);
923 xsave->region[XSAVE_MXCSR] = env->mxcsr;
924 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
925 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
926 sizeof env->ymmh_regs);
927 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
928 return r;
931 static int kvm_put_xcrs(CPUX86State *env)
933 struct kvm_xcrs xcrs;
935 if (!kvm_has_xcrs()) {
936 return 0;
939 xcrs.nr_xcrs = 1;
940 xcrs.flags = 0;
941 xcrs.xcrs[0].xcr = 0;
942 xcrs.xcrs[0].value = env->xcr0;
943 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
946 static int kvm_put_sregs(CPUX86State *env)
948 struct kvm_sregs sregs;
950 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
951 if (env->interrupt_injected >= 0) {
952 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
953 (uint64_t)1 << (env->interrupt_injected % 64);
956 if ((env->eflags & VM_MASK)) {
957 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
958 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
959 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
960 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
961 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
962 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
963 } else {
964 set_seg(&sregs.cs, &env->segs[R_CS]);
965 set_seg(&sregs.ds, &env->segs[R_DS]);
966 set_seg(&sregs.es, &env->segs[R_ES]);
967 set_seg(&sregs.fs, &env->segs[R_FS]);
968 set_seg(&sregs.gs, &env->segs[R_GS]);
969 set_seg(&sregs.ss, &env->segs[R_SS]);
972 set_seg(&sregs.tr, &env->tr);
973 set_seg(&sregs.ldt, &env->ldt);
975 sregs.idt.limit = env->idt.limit;
976 sregs.idt.base = env->idt.base;
977 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
978 sregs.gdt.limit = env->gdt.limit;
979 sregs.gdt.base = env->gdt.base;
980 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
982 sregs.cr0 = env->cr[0];
983 sregs.cr2 = env->cr[2];
984 sregs.cr3 = env->cr[3];
985 sregs.cr4 = env->cr[4];
987 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
988 sregs.apic_base = cpu_get_apic_base(env->apic_state);
990 sregs.efer = env->efer;
992 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
995 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
996 uint32_t index, uint64_t value)
998 entry->index = index;
999 entry->data = value;
1002 static int kvm_put_msrs(CPUX86State *env, int level)
1004 struct {
1005 struct kvm_msrs info;
1006 struct kvm_msr_entry entries[100];
1007 } msr_data;
1008 struct kvm_msr_entry *msrs = msr_data.entries;
1009 int n = 0;
1011 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1012 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1013 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1014 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1015 if (has_msr_star) {
1016 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1018 if (has_msr_hsave_pa) {
1019 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1021 if (has_msr_tsc_deadline) {
1022 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1024 if (has_msr_misc_enable) {
1025 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1026 env->msr_ia32_misc_enable);
1028 #ifdef TARGET_X86_64
1029 if (lm_capable_kernel) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1031 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1032 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1033 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1035 #endif
1036 if (level == KVM_PUT_FULL_STATE) {
1038 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1039 * writeback. Until this is fixed, we only write the offset to SMP
1040 * guests after migration, desynchronizing the VCPUs, but avoiding
1041 * huge jump-backs that would occur without any writeback at all.
1043 if (smp_cpus == 1 || env->tsc != 0) {
1044 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1048 * The following paravirtual MSRs have side effects on the guest or are
1049 * too heavy for normal writeback. Limit them to reset or full state
1050 * updates.
1052 if (level >= KVM_PUT_RESET_STATE) {
1053 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1054 env->system_time_msr);
1055 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1056 if (has_msr_async_pf_en) {
1057 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1058 env->async_pf_en_msr);
1060 if (has_msr_pv_eoi_en) {
1061 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1062 env->pv_eoi_en_msr);
1064 if (hyperv_hypercall_available()) {
1065 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1066 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1068 if (hyperv_vapic_recommended()) {
1069 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1072 if (env->mcg_cap) {
1073 int i;
1075 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1076 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1077 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1078 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1082 msr_data.info.nmsrs = n;
1084 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1089 static int kvm_get_fpu(CPUX86State *env)
1091 struct kvm_fpu fpu;
1092 int i, ret;
1094 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1095 if (ret < 0) {
1096 return ret;
1099 env->fpstt = (fpu.fsw >> 11) & 7;
1100 env->fpus = fpu.fsw;
1101 env->fpuc = fpu.fcw;
1102 env->fpop = fpu.last_opcode;
1103 env->fpip = fpu.last_ip;
1104 env->fpdp = fpu.last_dp;
1105 for (i = 0; i < 8; ++i) {
1106 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1108 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1109 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1110 env->mxcsr = fpu.mxcsr;
1112 return 0;
1115 static int kvm_get_xsave(CPUX86State *env)
1117 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1118 int ret, i;
1119 uint16_t cwd, swd, twd;
1121 if (!kvm_has_xsave()) {
1122 return kvm_get_fpu(env);
1125 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1126 if (ret < 0) {
1127 return ret;
1130 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1131 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1132 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1133 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1134 env->fpstt = (swd >> 11) & 7;
1135 env->fpus = swd;
1136 env->fpuc = cwd;
1137 for (i = 0; i < 8; ++i) {
1138 env->fptags[i] = !((twd >> i) & 1);
1140 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1141 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1142 env->mxcsr = xsave->region[XSAVE_MXCSR];
1143 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1144 sizeof env->fpregs);
1145 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1146 sizeof env->xmm_regs);
1147 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1148 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1149 sizeof env->ymmh_regs);
1150 return 0;
1153 static int kvm_get_xcrs(CPUX86State *env)
1155 int i, ret;
1156 struct kvm_xcrs xcrs;
1158 if (!kvm_has_xcrs()) {
1159 return 0;
1162 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1163 if (ret < 0) {
1164 return ret;
1167 for (i = 0; i < xcrs.nr_xcrs; i++) {
1168 /* Only support xcr0 now */
1169 if (xcrs.xcrs[0].xcr == 0) {
1170 env->xcr0 = xcrs.xcrs[0].value;
1171 break;
1174 return 0;
1177 static int kvm_get_sregs(CPUX86State *env)
1179 struct kvm_sregs sregs;
1180 uint32_t hflags;
1181 int bit, i, ret;
1183 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1184 if (ret < 0) {
1185 return ret;
1188 /* There can only be one pending IRQ set in the bitmap at a time, so try
1189 to find it and save its number instead (-1 for none). */
1190 env->interrupt_injected = -1;
1191 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1192 if (sregs.interrupt_bitmap[i]) {
1193 bit = ctz64(sregs.interrupt_bitmap[i]);
1194 env->interrupt_injected = i * 64 + bit;
1195 break;
1199 get_seg(&env->segs[R_CS], &sregs.cs);
1200 get_seg(&env->segs[R_DS], &sregs.ds);
1201 get_seg(&env->segs[R_ES], &sregs.es);
1202 get_seg(&env->segs[R_FS], &sregs.fs);
1203 get_seg(&env->segs[R_GS], &sregs.gs);
1204 get_seg(&env->segs[R_SS], &sregs.ss);
1206 get_seg(&env->tr, &sregs.tr);
1207 get_seg(&env->ldt, &sregs.ldt);
1209 env->idt.limit = sregs.idt.limit;
1210 env->idt.base = sregs.idt.base;
1211 env->gdt.limit = sregs.gdt.limit;
1212 env->gdt.base = sregs.gdt.base;
1214 env->cr[0] = sregs.cr0;
1215 env->cr[2] = sregs.cr2;
1216 env->cr[3] = sregs.cr3;
1217 env->cr[4] = sregs.cr4;
1219 env->efer = sregs.efer;
1221 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1223 #define HFLAG_COPY_MASK \
1224 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1225 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1226 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1227 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1229 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1230 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1231 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1232 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1233 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1234 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1235 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1237 if (env->efer & MSR_EFER_LMA) {
1238 hflags |= HF_LMA_MASK;
1241 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1242 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1243 } else {
1244 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1245 (DESC_B_SHIFT - HF_CS32_SHIFT);
1246 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1247 (DESC_B_SHIFT - HF_SS32_SHIFT);
1248 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1249 !(hflags & HF_CS32_MASK)) {
1250 hflags |= HF_ADDSEG_MASK;
1251 } else {
1252 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1253 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1256 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1258 return 0;
1261 static int kvm_get_msrs(CPUX86State *env)
1263 struct {
1264 struct kvm_msrs info;
1265 struct kvm_msr_entry entries[100];
1266 } msr_data;
1267 struct kvm_msr_entry *msrs = msr_data.entries;
1268 int ret, i, n;
1270 n = 0;
1271 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1272 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1273 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1274 msrs[n++].index = MSR_PAT;
1275 if (has_msr_star) {
1276 msrs[n++].index = MSR_STAR;
1278 if (has_msr_hsave_pa) {
1279 msrs[n++].index = MSR_VM_HSAVE_PA;
1281 if (has_msr_tsc_deadline) {
1282 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1284 if (has_msr_misc_enable) {
1285 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1288 if (!env->tsc_valid) {
1289 msrs[n++].index = MSR_IA32_TSC;
1290 env->tsc_valid = !runstate_is_running();
1293 #ifdef TARGET_X86_64
1294 if (lm_capable_kernel) {
1295 msrs[n++].index = MSR_CSTAR;
1296 msrs[n++].index = MSR_KERNELGSBASE;
1297 msrs[n++].index = MSR_FMASK;
1298 msrs[n++].index = MSR_LSTAR;
1300 #endif
1301 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1302 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1303 if (has_msr_async_pf_en) {
1304 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1306 if (has_msr_pv_eoi_en) {
1307 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1310 if (env->mcg_cap) {
1311 msrs[n++].index = MSR_MCG_STATUS;
1312 msrs[n++].index = MSR_MCG_CTL;
1313 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1314 msrs[n++].index = MSR_MC0_CTL + i;
1318 msr_data.info.nmsrs = n;
1319 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1320 if (ret < 0) {
1321 return ret;
1324 for (i = 0; i < ret; i++) {
1325 switch (msrs[i].index) {
1326 case MSR_IA32_SYSENTER_CS:
1327 env->sysenter_cs = msrs[i].data;
1328 break;
1329 case MSR_IA32_SYSENTER_ESP:
1330 env->sysenter_esp = msrs[i].data;
1331 break;
1332 case MSR_IA32_SYSENTER_EIP:
1333 env->sysenter_eip = msrs[i].data;
1334 break;
1335 case MSR_PAT:
1336 env->pat = msrs[i].data;
1337 break;
1338 case MSR_STAR:
1339 env->star = msrs[i].data;
1340 break;
1341 #ifdef TARGET_X86_64
1342 case MSR_CSTAR:
1343 env->cstar = msrs[i].data;
1344 break;
1345 case MSR_KERNELGSBASE:
1346 env->kernelgsbase = msrs[i].data;
1347 break;
1348 case MSR_FMASK:
1349 env->fmask = msrs[i].data;
1350 break;
1351 case MSR_LSTAR:
1352 env->lstar = msrs[i].data;
1353 break;
1354 #endif
1355 case MSR_IA32_TSC:
1356 env->tsc = msrs[i].data;
1357 break;
1358 case MSR_IA32_TSCDEADLINE:
1359 env->tsc_deadline = msrs[i].data;
1360 break;
1361 case MSR_VM_HSAVE_PA:
1362 env->vm_hsave = msrs[i].data;
1363 break;
1364 case MSR_KVM_SYSTEM_TIME:
1365 env->system_time_msr = msrs[i].data;
1366 break;
1367 case MSR_KVM_WALL_CLOCK:
1368 env->wall_clock_msr = msrs[i].data;
1369 break;
1370 case MSR_MCG_STATUS:
1371 env->mcg_status = msrs[i].data;
1372 break;
1373 case MSR_MCG_CTL:
1374 env->mcg_ctl = msrs[i].data;
1375 break;
1376 case MSR_IA32_MISC_ENABLE:
1377 env->msr_ia32_misc_enable = msrs[i].data;
1378 break;
1379 default:
1380 if (msrs[i].index >= MSR_MC0_CTL &&
1381 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1382 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1384 break;
1385 case MSR_KVM_ASYNC_PF_EN:
1386 env->async_pf_en_msr = msrs[i].data;
1387 break;
1388 case MSR_KVM_PV_EOI_EN:
1389 env->pv_eoi_en_msr = msrs[i].data;
1390 break;
1394 return 0;
1397 static int kvm_put_mp_state(CPUX86State *env)
1399 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1401 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1404 static int kvm_get_mp_state(CPUX86State *env)
1406 struct kvm_mp_state mp_state;
1407 int ret;
1409 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1410 if (ret < 0) {
1411 return ret;
1413 env->mp_state = mp_state.mp_state;
1414 if (kvm_irqchip_in_kernel()) {
1415 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1417 return 0;
1420 static int kvm_get_apic(CPUX86State *env)
1422 DeviceState *apic = env->apic_state;
1423 struct kvm_lapic_state kapic;
1424 int ret;
1426 if (apic && kvm_irqchip_in_kernel()) {
1427 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1428 if (ret < 0) {
1429 return ret;
1432 kvm_get_apic_state(apic, &kapic);
1434 return 0;
1437 static int kvm_put_apic(CPUX86State *env)
1439 DeviceState *apic = env->apic_state;
1440 struct kvm_lapic_state kapic;
1442 if (apic && kvm_irqchip_in_kernel()) {
1443 kvm_put_apic_state(apic, &kapic);
1445 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1447 return 0;
1450 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1452 struct kvm_vcpu_events events;
1454 if (!kvm_has_vcpu_events()) {
1455 return 0;
1458 events.exception.injected = (env->exception_injected >= 0);
1459 events.exception.nr = env->exception_injected;
1460 events.exception.has_error_code = env->has_error_code;
1461 events.exception.error_code = env->error_code;
1462 events.exception.pad = 0;
1464 events.interrupt.injected = (env->interrupt_injected >= 0);
1465 events.interrupt.nr = env->interrupt_injected;
1466 events.interrupt.soft = env->soft_interrupt;
1468 events.nmi.injected = env->nmi_injected;
1469 events.nmi.pending = env->nmi_pending;
1470 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1471 events.nmi.pad = 0;
1473 events.sipi_vector = env->sipi_vector;
1475 events.flags = 0;
1476 if (level >= KVM_PUT_RESET_STATE) {
1477 events.flags |=
1478 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1481 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1484 static int kvm_get_vcpu_events(CPUX86State *env)
1486 struct kvm_vcpu_events events;
1487 int ret;
1489 if (!kvm_has_vcpu_events()) {
1490 return 0;
1493 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1494 if (ret < 0) {
1495 return ret;
1497 env->exception_injected =
1498 events.exception.injected ? events.exception.nr : -1;
1499 env->has_error_code = events.exception.has_error_code;
1500 env->error_code = events.exception.error_code;
1502 env->interrupt_injected =
1503 events.interrupt.injected ? events.interrupt.nr : -1;
1504 env->soft_interrupt = events.interrupt.soft;
1506 env->nmi_injected = events.nmi.injected;
1507 env->nmi_pending = events.nmi.pending;
1508 if (events.nmi.masked) {
1509 env->hflags2 |= HF2_NMI_MASK;
1510 } else {
1511 env->hflags2 &= ~HF2_NMI_MASK;
1514 env->sipi_vector = events.sipi_vector;
1516 return 0;
1519 static int kvm_guest_debug_workarounds(CPUX86State *env)
1521 int ret = 0;
1522 unsigned long reinject_trap = 0;
1524 if (!kvm_has_vcpu_events()) {
1525 if (env->exception_injected == 1) {
1526 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1527 } else if (env->exception_injected == 3) {
1528 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1530 env->exception_injected = -1;
1534 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1535 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1536 * by updating the debug state once again if single-stepping is on.
1537 * Another reason to call kvm_update_guest_debug here is a pending debug
1538 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1539 * reinject them via SET_GUEST_DEBUG.
1541 if (reinject_trap ||
1542 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1543 ret = kvm_update_guest_debug(env, reinject_trap);
1545 return ret;
1548 static int kvm_put_debugregs(CPUX86State *env)
1550 struct kvm_debugregs dbgregs;
1551 int i;
1553 if (!kvm_has_debugregs()) {
1554 return 0;
1557 for (i = 0; i < 4; i++) {
1558 dbgregs.db[i] = env->dr[i];
1560 dbgregs.dr6 = env->dr[6];
1561 dbgregs.dr7 = env->dr[7];
1562 dbgregs.flags = 0;
1564 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1567 static int kvm_get_debugregs(CPUX86State *env)
1569 struct kvm_debugregs dbgregs;
1570 int i, ret;
1572 if (!kvm_has_debugregs()) {
1573 return 0;
1576 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1577 if (ret < 0) {
1578 return ret;
1580 for (i = 0; i < 4; i++) {
1581 env->dr[i] = dbgregs.db[i];
1583 env->dr[4] = env->dr[6] = dbgregs.dr6;
1584 env->dr[5] = env->dr[7] = dbgregs.dr7;
1586 return 0;
1589 int kvm_arch_put_registers(CPUX86State *env, int level)
1591 int ret;
1593 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1595 ret = kvm_getput_regs(env, 1);
1596 if (ret < 0) {
1597 return ret;
1599 ret = kvm_put_xsave(env);
1600 if (ret < 0) {
1601 return ret;
1603 ret = kvm_put_xcrs(env);
1604 if (ret < 0) {
1605 return ret;
1607 ret = kvm_put_sregs(env);
1608 if (ret < 0) {
1609 return ret;
1611 /* must be before kvm_put_msrs */
1612 ret = kvm_inject_mce_oldstyle(env);
1613 if (ret < 0) {
1614 return ret;
1616 ret = kvm_put_msrs(env, level);
1617 if (ret < 0) {
1618 return ret;
1620 if (level >= KVM_PUT_RESET_STATE) {
1621 ret = kvm_put_mp_state(env);
1622 if (ret < 0) {
1623 return ret;
1625 ret = kvm_put_apic(env);
1626 if (ret < 0) {
1627 return ret;
1630 ret = kvm_put_vcpu_events(env, level);
1631 if (ret < 0) {
1632 return ret;
1634 ret = kvm_put_debugregs(env);
1635 if (ret < 0) {
1636 return ret;
1638 /* must be last */
1639 ret = kvm_guest_debug_workarounds(env);
1640 if (ret < 0) {
1641 return ret;
1643 return 0;
1646 int kvm_arch_get_registers(CPUX86State *env)
1648 int ret;
1650 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1652 ret = kvm_getput_regs(env, 0);
1653 if (ret < 0) {
1654 return ret;
1656 ret = kvm_get_xsave(env);
1657 if (ret < 0) {
1658 return ret;
1660 ret = kvm_get_xcrs(env);
1661 if (ret < 0) {
1662 return ret;
1664 ret = kvm_get_sregs(env);
1665 if (ret < 0) {
1666 return ret;
1668 ret = kvm_get_msrs(env);
1669 if (ret < 0) {
1670 return ret;
1672 ret = kvm_get_mp_state(env);
1673 if (ret < 0) {
1674 return ret;
1676 ret = kvm_get_apic(env);
1677 if (ret < 0) {
1678 return ret;
1680 ret = kvm_get_vcpu_events(env);
1681 if (ret < 0) {
1682 return ret;
1684 ret = kvm_get_debugregs(env);
1685 if (ret < 0) {
1686 return ret;
1688 return 0;
1691 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1693 int ret;
1695 /* Inject NMI */
1696 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1697 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1698 DPRINTF("injected NMI\n");
1699 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1700 if (ret < 0) {
1701 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1702 strerror(-ret));
1706 if (!kvm_irqchip_in_kernel()) {
1707 /* Force the VCPU out of its inner loop to process any INIT requests
1708 * or pending TPR access reports. */
1709 if (env->interrupt_request &
1710 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1711 env->exit_request = 1;
1714 /* Try to inject an interrupt if the guest can accept it */
1715 if (run->ready_for_interrupt_injection &&
1716 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1717 (env->eflags & IF_MASK)) {
1718 int irq;
1720 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1721 irq = cpu_get_pic_interrupt(env);
1722 if (irq >= 0) {
1723 struct kvm_interrupt intr;
1725 intr.irq = irq;
1726 DPRINTF("injected interrupt %d\n", irq);
1727 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1728 if (ret < 0) {
1729 fprintf(stderr,
1730 "KVM: injection failed, interrupt lost (%s)\n",
1731 strerror(-ret));
1736 /* If we have an interrupt but the guest is not ready to receive an
1737 * interrupt, request an interrupt window exit. This will
1738 * cause a return to userspace as soon as the guest is ready to
1739 * receive interrupts. */
1740 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1741 run->request_interrupt_window = 1;
1742 } else {
1743 run->request_interrupt_window = 0;
1746 DPRINTF("setting tpr\n");
1747 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1751 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1753 if (run->if_flag) {
1754 env->eflags |= IF_MASK;
1755 } else {
1756 env->eflags &= ~IF_MASK;
1758 cpu_set_apic_tpr(env->apic_state, run->cr8);
1759 cpu_set_apic_base(env->apic_state, run->apic_base);
1762 int kvm_arch_process_async_events(CPUX86State *env)
1764 X86CPU *cpu = x86_env_get_cpu(env);
1766 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1767 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1768 assert(env->mcg_cap);
1770 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1772 kvm_cpu_synchronize_state(env);
1774 if (env->exception_injected == EXCP08_DBLE) {
1775 /* this means triple fault */
1776 qemu_system_reset_request();
1777 env->exit_request = 1;
1778 return 0;
1780 env->exception_injected = EXCP12_MCHK;
1781 env->has_error_code = 0;
1783 env->halted = 0;
1784 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1785 env->mp_state = KVM_MP_STATE_RUNNABLE;
1789 if (kvm_irqchip_in_kernel()) {
1790 return 0;
1793 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1794 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1795 apic_poll_irq(env->apic_state);
1797 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1798 (env->eflags & IF_MASK)) ||
1799 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1800 env->halted = 0;
1802 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1803 kvm_cpu_synchronize_state(env);
1804 do_cpu_init(cpu);
1806 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1807 kvm_cpu_synchronize_state(env);
1808 do_cpu_sipi(cpu);
1810 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1811 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1812 kvm_cpu_synchronize_state(env);
1813 apic_handle_tpr_access_report(env->apic_state, env->eip,
1814 env->tpr_access_type);
1817 return env->halted;
1820 static int kvm_handle_halt(CPUX86State *env)
1822 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1823 (env->eflags & IF_MASK)) &&
1824 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1825 env->halted = 1;
1826 return EXCP_HLT;
1829 return 0;
1832 static int kvm_handle_tpr_access(CPUX86State *env)
1834 struct kvm_run *run = env->kvm_run;
1836 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1837 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1838 : TPR_ACCESS_READ);
1839 return 1;
1842 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1844 static const uint8_t int3 = 0xcc;
1846 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1847 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1848 return -EINVAL;
1850 return 0;
1853 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1855 uint8_t int3;
1857 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1858 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1859 return -EINVAL;
1861 return 0;
1864 static struct {
1865 target_ulong addr;
1866 int len;
1867 int type;
1868 } hw_breakpoint[4];
1870 static int nb_hw_breakpoint;
1872 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1874 int n;
1876 for (n = 0; n < nb_hw_breakpoint; n++) {
1877 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1878 (hw_breakpoint[n].len == len || len == -1)) {
1879 return n;
1882 return -1;
1885 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1886 target_ulong len, int type)
1888 switch (type) {
1889 case GDB_BREAKPOINT_HW:
1890 len = 1;
1891 break;
1892 case GDB_WATCHPOINT_WRITE:
1893 case GDB_WATCHPOINT_ACCESS:
1894 switch (len) {
1895 case 1:
1896 break;
1897 case 2:
1898 case 4:
1899 case 8:
1900 if (addr & (len - 1)) {
1901 return -EINVAL;
1903 break;
1904 default:
1905 return -EINVAL;
1907 break;
1908 default:
1909 return -ENOSYS;
1912 if (nb_hw_breakpoint == 4) {
1913 return -ENOBUFS;
1915 if (find_hw_breakpoint(addr, len, type) >= 0) {
1916 return -EEXIST;
1918 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1919 hw_breakpoint[nb_hw_breakpoint].len = len;
1920 hw_breakpoint[nb_hw_breakpoint].type = type;
1921 nb_hw_breakpoint++;
1923 return 0;
1926 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1927 target_ulong len, int type)
1929 int n;
1931 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1932 if (n < 0) {
1933 return -ENOENT;
1935 nb_hw_breakpoint--;
1936 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1938 return 0;
1941 void kvm_arch_remove_all_hw_breakpoints(void)
1943 nb_hw_breakpoint = 0;
1946 static CPUWatchpoint hw_watchpoint;
1948 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1950 int ret = 0;
1951 int n;
1953 if (arch_info->exception == 1) {
1954 if (arch_info->dr6 & (1 << 14)) {
1955 if (cpu_single_env->singlestep_enabled) {
1956 ret = EXCP_DEBUG;
1958 } else {
1959 for (n = 0; n < 4; n++) {
1960 if (arch_info->dr6 & (1 << n)) {
1961 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1962 case 0x0:
1963 ret = EXCP_DEBUG;
1964 break;
1965 case 0x1:
1966 ret = EXCP_DEBUG;
1967 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1968 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1969 hw_watchpoint.flags = BP_MEM_WRITE;
1970 break;
1971 case 0x3:
1972 ret = EXCP_DEBUG;
1973 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1974 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1975 hw_watchpoint.flags = BP_MEM_ACCESS;
1976 break;
1981 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1982 ret = EXCP_DEBUG;
1984 if (ret == 0) {
1985 cpu_synchronize_state(cpu_single_env);
1986 assert(cpu_single_env->exception_injected == -1);
1988 /* pass to guest */
1989 cpu_single_env->exception_injected = arch_info->exception;
1990 cpu_single_env->has_error_code = 0;
1993 return ret;
1996 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1998 const uint8_t type_code[] = {
1999 [GDB_BREAKPOINT_HW] = 0x0,
2000 [GDB_WATCHPOINT_WRITE] = 0x1,
2001 [GDB_WATCHPOINT_ACCESS] = 0x3
2003 const uint8_t len_code[] = {
2004 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2006 int n;
2008 if (kvm_sw_breakpoints_active(env)) {
2009 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2011 if (nb_hw_breakpoint > 0) {
2012 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2013 dbg->arch.debugreg[7] = 0x0600;
2014 for (n = 0; n < nb_hw_breakpoint; n++) {
2015 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2016 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2017 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2018 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2023 static bool host_supports_vmx(void)
2025 uint32_t ecx, unused;
2027 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2028 return ecx & CPUID_EXT_VMX;
2031 #define VMX_INVALID_GUEST_STATE 0x80000021
2033 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2035 uint64_t code;
2036 int ret;
2038 switch (run->exit_reason) {
2039 case KVM_EXIT_HLT:
2040 DPRINTF("handle_hlt\n");
2041 ret = kvm_handle_halt(env);
2042 break;
2043 case KVM_EXIT_SET_TPR:
2044 ret = 0;
2045 break;
2046 case KVM_EXIT_TPR_ACCESS:
2047 ret = kvm_handle_tpr_access(env);
2048 break;
2049 case KVM_EXIT_FAIL_ENTRY:
2050 code = run->fail_entry.hardware_entry_failure_reason;
2051 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2052 code);
2053 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2054 fprintf(stderr,
2055 "\nIf you're running a guest on an Intel machine without "
2056 "unrestricted mode\n"
2057 "support, the failure can be most likely due to the guest "
2058 "entering an invalid\n"
2059 "state for Intel VT. For example, the guest maybe running "
2060 "in big real mode\n"
2061 "which is not supported on less recent Intel processors."
2062 "\n\n");
2064 ret = -1;
2065 break;
2066 case KVM_EXIT_EXCEPTION:
2067 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2068 run->ex.exception, run->ex.error_code);
2069 ret = -1;
2070 break;
2071 case KVM_EXIT_DEBUG:
2072 DPRINTF("kvm_exit_debug\n");
2073 ret = kvm_handle_debug(&run->debug.arch);
2074 break;
2075 default:
2076 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2077 ret = -1;
2078 break;
2081 return ret;
2084 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2086 kvm_cpu_synchronize_state(env);
2087 return !(env->cr[0] & CR0_PE_MASK) ||
2088 ((env->segs[R_CS].selector & 3) != 3);
2091 void kvm_arch_init_irq_routing(KVMState *s)
2093 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2094 /* If kernel can't do irq routing, interrupt source
2095 * override 0->2 cannot be set up as required by HPET.
2096 * So we have to disable it.
2098 no_hpet = 1;
2100 /* We know at this point that we're using the in-kernel
2101 * irqchip, so we can use irqfds, and on x86 we know
2102 * we can use msi via irqfd and GSI routing.
2104 kvm_irqfds_allowed = true;
2105 kvm_msi_via_irqfd_allowed = true;
2106 kvm_gsi_routing_allowed = true;
2109 /* Classic KVM device assignment interface. Will remain x86 only. */
2110 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2111 uint32_t flags, uint32_t *dev_id)
2113 struct kvm_assigned_pci_dev dev_data = {
2114 .segnr = dev_addr->domain,
2115 .busnr = dev_addr->bus,
2116 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2117 .flags = flags,
2119 int ret;
2121 dev_data.assigned_dev_id =
2122 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2124 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2125 if (ret < 0) {
2126 return ret;
2129 *dev_id = dev_data.assigned_dev_id;
2131 return 0;
2134 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2136 struct kvm_assigned_pci_dev dev_data = {
2137 .assigned_dev_id = dev_id,
2140 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2143 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2144 uint32_t irq_type, uint32_t guest_irq)
2146 struct kvm_assigned_irq assigned_irq = {
2147 .assigned_dev_id = dev_id,
2148 .guest_irq = guest_irq,
2149 .flags = irq_type,
2152 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2153 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2154 } else {
2155 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2159 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2160 uint32_t guest_irq)
2162 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2163 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2165 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2168 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2170 struct kvm_assigned_pci_dev dev_data = {
2171 .assigned_dev_id = dev_id,
2172 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2175 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2178 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2179 uint32_t type)
2181 struct kvm_assigned_irq assigned_irq = {
2182 .assigned_dev_id = dev_id,
2183 .flags = type,
2186 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2189 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2191 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2192 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2195 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2197 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2198 KVM_DEV_IRQ_GUEST_MSI, virq);
2201 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2203 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2204 KVM_DEV_IRQ_HOST_MSI);
2207 bool kvm_device_msix_supported(KVMState *s)
2209 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2210 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2211 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2214 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2215 uint32_t nr_vectors)
2217 struct kvm_assigned_msix_nr msix_nr = {
2218 .assigned_dev_id = dev_id,
2219 .entry_nr = nr_vectors,
2222 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2225 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2226 int virq)
2228 struct kvm_assigned_msix_entry msix_entry = {
2229 .assigned_dev_id = dev_id,
2230 .gsi = virq,
2231 .entry = vector,
2234 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2237 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2239 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2240 KVM_DEV_IRQ_GUEST_MSIX, 0);
2243 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2245 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2246 KVM_DEV_IRQ_HOST_MSIX);