Don't abort on out of memory when creating page cache
[qemu-kvm.git] / arch_init.c
blob1fa5f1fdd437112331a23e9ee95738db31f7c3af
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "exec/ram_addr.h"
52 #include "hw/acpi/acpi.h"
53 #include "qemu/host-utils.h"
55 #ifdef DEBUG_ARCH_INIT
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #ifdef TARGET_SPARC
64 int graphic_width = 1024;
65 int graphic_height = 768;
66 int graphic_depth = 8;
67 #else
68 int graphic_width = 800;
69 int graphic_height = 600;
70 int graphic_depth = 32;
71 #endif
74 #if defined(TARGET_ALPHA)
75 #define QEMU_ARCH QEMU_ARCH_ALPHA
76 #elif defined(TARGET_ARM)
77 #define QEMU_ARCH QEMU_ARCH_ARM
78 #elif defined(TARGET_CRIS)
79 #define QEMU_ARCH QEMU_ARCH_CRIS
80 #elif defined(TARGET_I386)
81 #define QEMU_ARCH QEMU_ARCH_I386
82 #elif defined(TARGET_M68K)
83 #define QEMU_ARCH QEMU_ARCH_M68K
84 #elif defined(TARGET_LM32)
85 #define QEMU_ARCH QEMU_ARCH_LM32
86 #elif defined(TARGET_MICROBLAZE)
87 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
88 #elif defined(TARGET_MIPS)
89 #define QEMU_ARCH QEMU_ARCH_MIPS
90 #elif defined(TARGET_MOXIE)
91 #define QEMU_ARCH QEMU_ARCH_MOXIE
92 #elif defined(TARGET_OPENRISC)
93 #define QEMU_ARCH QEMU_ARCH_OPENRISC
94 #elif defined(TARGET_PPC)
95 #define QEMU_ARCH QEMU_ARCH_PPC
96 #elif defined(TARGET_S390X)
97 #define QEMU_ARCH QEMU_ARCH_S390X
98 #elif defined(TARGET_SH4)
99 #define QEMU_ARCH QEMU_ARCH_SH4
100 #elif defined(TARGET_SPARC)
101 #define QEMU_ARCH QEMU_ARCH_SPARC
102 #elif defined(TARGET_XTENSA)
103 #define QEMU_ARCH QEMU_ARCH_XTENSA
104 #elif defined(TARGET_UNICORE32)
105 #define QEMU_ARCH QEMU_ARCH_UNICORE32
106 #endif
108 const uint32_t arch_type = QEMU_ARCH;
109 static bool mig_throttle_on;
110 static int dirty_rate_high_cnt;
111 static void check_guest_throttling(void);
113 /***********************************************************/
114 /* ram save/restore */
116 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
117 #define RAM_SAVE_FLAG_COMPRESS 0x02
118 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
119 #define RAM_SAVE_FLAG_PAGE 0x08
120 #define RAM_SAVE_FLAG_EOS 0x10
121 #define RAM_SAVE_FLAG_CONTINUE 0x20
122 #define RAM_SAVE_FLAG_XBZRLE 0x40
123 /* 0x80 is reserved in migration.h start with 0x100 next */
126 static struct defconfig_file {
127 const char *filename;
128 /* Indicates it is an user config file (disabled by -no-user-config) */
129 bool userconfig;
130 } default_config_files[] = {
131 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
132 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
133 { NULL }, /* end of list */
137 int qemu_read_default_config_files(bool userconfig)
139 int ret;
140 struct defconfig_file *f;
142 for (f = default_config_files; f->filename; f++) {
143 if (!userconfig && f->userconfig) {
144 continue;
146 ret = qemu_read_config_file(f->filename);
147 if (ret < 0 && ret != -ENOENT) {
148 return ret;
152 return 0;
155 static inline bool is_zero_range(uint8_t *p, uint64_t size)
157 return buffer_find_nonzero_offset(p, size) == size;
160 /* struct contains XBZRLE cache and a static page
161 used by the compression */
162 static struct {
163 /* buffer used for XBZRLE encoding */
164 uint8_t *encoded_buf;
165 /* buffer for storing page content */
166 uint8_t *current_buf;
167 /* Cache for XBZRLE */
168 PageCache *cache;
169 } XBZRLE = {
170 .encoded_buf = NULL,
171 .current_buf = NULL,
172 .cache = NULL,
174 /* buffer used for XBZRLE decoding */
175 static uint8_t *xbzrle_decoded_buf;
177 int64_t xbzrle_cache_resize(int64_t new_size)
179 if (new_size < TARGET_PAGE_SIZE) {
180 return -1;
183 if (XBZRLE.cache != NULL) {
184 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
185 TARGET_PAGE_SIZE;
187 return pow2floor(new_size);
190 /* accounting for migration statistics */
191 typedef struct AccountingInfo {
192 uint64_t dup_pages;
193 uint64_t skipped_pages;
194 uint64_t norm_pages;
195 uint64_t iterations;
196 uint64_t xbzrle_bytes;
197 uint64_t xbzrle_pages;
198 uint64_t xbzrle_cache_miss;
199 uint64_t xbzrle_overflows;
200 } AccountingInfo;
202 static AccountingInfo acct_info;
204 static void acct_clear(void)
206 memset(&acct_info, 0, sizeof(acct_info));
209 uint64_t dup_mig_bytes_transferred(void)
211 return acct_info.dup_pages * TARGET_PAGE_SIZE;
214 uint64_t dup_mig_pages_transferred(void)
216 return acct_info.dup_pages;
219 uint64_t skipped_mig_bytes_transferred(void)
221 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
224 uint64_t skipped_mig_pages_transferred(void)
226 return acct_info.skipped_pages;
229 uint64_t norm_mig_bytes_transferred(void)
231 return acct_info.norm_pages * TARGET_PAGE_SIZE;
234 uint64_t norm_mig_pages_transferred(void)
236 return acct_info.norm_pages;
239 uint64_t xbzrle_mig_bytes_transferred(void)
241 return acct_info.xbzrle_bytes;
244 uint64_t xbzrle_mig_pages_transferred(void)
246 return acct_info.xbzrle_pages;
249 uint64_t xbzrle_mig_pages_cache_miss(void)
251 return acct_info.xbzrle_cache_miss;
254 uint64_t xbzrle_mig_pages_overflow(void)
256 return acct_info.xbzrle_overflows;
259 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
260 int cont, int flag)
262 size_t size;
264 qemu_put_be64(f, offset | cont | flag);
265 size = 8;
267 if (!cont) {
268 qemu_put_byte(f, strlen(block->idstr));
269 qemu_put_buffer(f, (uint8_t *)block->idstr,
270 strlen(block->idstr));
271 size += 1 + strlen(block->idstr);
273 return size;
276 #define ENCODING_FLAG_XBZRLE 0x1
278 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
279 ram_addr_t current_addr, RAMBlock *block,
280 ram_addr_t offset, int cont, bool last_stage)
282 int encoded_len = 0, bytes_sent = -1;
283 uint8_t *prev_cached_page;
285 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
286 if (!last_stage) {
287 cache_insert(XBZRLE.cache, current_addr, current_data);
289 acct_info.xbzrle_cache_miss++;
290 return -1;
293 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
295 /* save current buffer into memory */
296 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
298 /* XBZRLE encoding (if there is no overflow) */
299 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
300 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
301 TARGET_PAGE_SIZE);
302 if (encoded_len == 0) {
303 DPRINTF("Skipping unmodified page\n");
304 return 0;
305 } else if (encoded_len == -1) {
306 DPRINTF("Overflow\n");
307 acct_info.xbzrle_overflows++;
308 /* update data in the cache */
309 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
310 return -1;
313 /* we need to update the data in the cache, in order to get the same data */
314 if (!last_stage) {
315 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
318 /* Send XBZRLE based compressed page */
319 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
320 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
321 qemu_put_be16(f, encoded_len);
322 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
323 bytes_sent += encoded_len + 1 + 2;
324 acct_info.xbzrle_pages++;
325 acct_info.xbzrle_bytes += bytes_sent;
327 return bytes_sent;
331 /* This is the last block that we have visited serching for dirty pages
333 static RAMBlock *last_seen_block;
334 /* This is the last block from where we have sent data */
335 static RAMBlock *last_sent_block;
336 static ram_addr_t last_offset;
337 static unsigned long *migration_bitmap;
338 static uint64_t migration_dirty_pages;
339 static uint32_t last_version;
340 static bool ram_bulk_stage;
342 static inline
343 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
344 ram_addr_t start)
346 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
347 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
348 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
349 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
351 unsigned long next;
353 if (ram_bulk_stage && nr > base) {
354 next = nr + 1;
355 } else {
356 next = find_next_bit(migration_bitmap, size, nr);
359 if (next < size) {
360 clear_bit(next, migration_bitmap);
361 migration_dirty_pages--;
363 return (next - base) << TARGET_PAGE_BITS;
366 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
368 bool ret;
369 int nr = addr >> TARGET_PAGE_BITS;
371 ret = test_and_set_bit(nr, migration_bitmap);
373 if (!ret) {
374 migration_dirty_pages++;
376 return ret;
379 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
381 ram_addr_t addr;
382 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
384 /* start address is aligned at the start of a word? */
385 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
386 int k;
387 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
388 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
390 for (k = page; k < page + nr; k++) {
391 if (src[k]) {
392 unsigned long new_dirty;
393 new_dirty = ~migration_bitmap[k];
394 migration_bitmap[k] |= src[k];
395 new_dirty &= src[k];
396 migration_dirty_pages += ctpopl(new_dirty);
397 src[k] = 0;
400 } else {
401 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
402 if (cpu_physical_memory_get_dirty(start + addr,
403 TARGET_PAGE_SIZE,
404 DIRTY_MEMORY_MIGRATION)) {
405 cpu_physical_memory_reset_dirty(start + addr,
406 TARGET_PAGE_SIZE,
407 DIRTY_MEMORY_MIGRATION);
408 migration_bitmap_set_dirty(start + addr);
415 /* Needs iothread lock! */
417 static void migration_bitmap_sync(void)
419 RAMBlock *block;
420 uint64_t num_dirty_pages_init = migration_dirty_pages;
421 MigrationState *s = migrate_get_current();
422 static int64_t start_time;
423 static int64_t bytes_xfer_prev;
424 static int64_t num_dirty_pages_period;
425 int64_t end_time;
426 int64_t bytes_xfer_now;
428 if (!bytes_xfer_prev) {
429 bytes_xfer_prev = ram_bytes_transferred();
432 if (!start_time) {
433 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
436 trace_migration_bitmap_sync_start();
437 address_space_sync_dirty_bitmap(&address_space_memory);
439 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
440 migration_bitmap_sync_range(block->mr->ram_addr, block->length);
442 trace_migration_bitmap_sync_end(migration_dirty_pages
443 - num_dirty_pages_init);
444 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
445 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
447 /* more than 1 second = 1000 millisecons */
448 if (end_time > start_time + 1000) {
449 if (migrate_auto_converge()) {
450 /* The following detection logic can be refined later. For now:
451 Check to see if the dirtied bytes is 50% more than the approx.
452 amount of bytes that just got transferred since the last time we
453 were in this routine. If that happens >N times (for now N==4)
454 we turn on the throttle down logic */
455 bytes_xfer_now = ram_bytes_transferred();
456 if (s->dirty_pages_rate &&
457 (num_dirty_pages_period * TARGET_PAGE_SIZE >
458 (bytes_xfer_now - bytes_xfer_prev)/2) &&
459 (dirty_rate_high_cnt++ > 4)) {
460 trace_migration_throttle();
461 mig_throttle_on = true;
462 dirty_rate_high_cnt = 0;
464 bytes_xfer_prev = bytes_xfer_now;
465 } else {
466 mig_throttle_on = false;
468 s->dirty_pages_rate = num_dirty_pages_period * 1000
469 / (end_time - start_time);
470 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
471 start_time = end_time;
472 num_dirty_pages_period = 0;
477 * ram_save_block: Writes a page of memory to the stream f
479 * Returns: The number of bytes written.
480 * 0 means no dirty pages
483 static int ram_save_block(QEMUFile *f, bool last_stage)
485 RAMBlock *block = last_seen_block;
486 ram_addr_t offset = last_offset;
487 bool complete_round = false;
488 int bytes_sent = 0;
489 MemoryRegion *mr;
490 ram_addr_t current_addr;
492 if (!block)
493 block = QTAILQ_FIRST(&ram_list.blocks);
495 while (true) {
496 mr = block->mr;
497 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
498 if (complete_round && block == last_seen_block &&
499 offset >= last_offset) {
500 break;
502 if (offset >= block->length) {
503 offset = 0;
504 block = QTAILQ_NEXT(block, next);
505 if (!block) {
506 block = QTAILQ_FIRST(&ram_list.blocks);
507 complete_round = true;
508 ram_bulk_stage = false;
510 } else {
511 int ret;
512 uint8_t *p;
513 int cont = (block == last_sent_block) ?
514 RAM_SAVE_FLAG_CONTINUE : 0;
516 p = memory_region_get_ram_ptr(mr) + offset;
518 /* In doubt sent page as normal */
519 bytes_sent = -1;
520 ret = ram_control_save_page(f, block->offset,
521 offset, TARGET_PAGE_SIZE, &bytes_sent);
523 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
524 if (ret != RAM_SAVE_CONTROL_DELAYED) {
525 if (bytes_sent > 0) {
526 acct_info.norm_pages++;
527 } else if (bytes_sent == 0) {
528 acct_info.dup_pages++;
531 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
532 acct_info.dup_pages++;
533 bytes_sent = save_block_hdr(f, block, offset, cont,
534 RAM_SAVE_FLAG_COMPRESS);
535 qemu_put_byte(f, 0);
536 bytes_sent++;
537 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
538 current_addr = block->offset + offset;
539 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
540 offset, cont, last_stage);
541 if (!last_stage) {
542 p = get_cached_data(XBZRLE.cache, current_addr);
546 /* XBZRLE overflow or normal page */
547 if (bytes_sent == -1) {
548 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
549 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
550 bytes_sent += TARGET_PAGE_SIZE;
551 acct_info.norm_pages++;
554 /* if page is unmodified, continue to the next */
555 if (bytes_sent > 0) {
556 last_sent_block = block;
557 break;
561 last_seen_block = block;
562 last_offset = offset;
564 return bytes_sent;
567 static uint64_t bytes_transferred;
569 void acct_update_position(QEMUFile *f, size_t size, bool zero)
571 uint64_t pages = size / TARGET_PAGE_SIZE;
572 if (zero) {
573 acct_info.dup_pages += pages;
574 } else {
575 acct_info.norm_pages += pages;
576 bytes_transferred += size;
577 qemu_update_position(f, size);
581 static ram_addr_t ram_save_remaining(void)
583 return migration_dirty_pages;
586 uint64_t ram_bytes_remaining(void)
588 return ram_save_remaining() * TARGET_PAGE_SIZE;
591 uint64_t ram_bytes_transferred(void)
593 return bytes_transferred;
596 uint64_t ram_bytes_total(void)
598 RAMBlock *block;
599 uint64_t total = 0;
601 QTAILQ_FOREACH(block, &ram_list.blocks, next)
602 total += block->length;
604 return total;
607 void free_xbzrle_decoded_buf(void)
609 g_free(xbzrle_decoded_buf);
610 xbzrle_decoded_buf = NULL;
613 static void migration_end(void)
615 if (migration_bitmap) {
616 memory_global_dirty_log_stop();
617 g_free(migration_bitmap);
618 migration_bitmap = NULL;
621 if (XBZRLE.cache) {
622 cache_fini(XBZRLE.cache);
623 g_free(XBZRLE.cache);
624 g_free(XBZRLE.encoded_buf);
625 g_free(XBZRLE.current_buf);
626 XBZRLE.cache = NULL;
627 XBZRLE.encoded_buf = NULL;
628 XBZRLE.current_buf = NULL;
632 static void ram_migration_cancel(void *opaque)
634 migration_end();
637 static void reset_ram_globals(void)
639 last_seen_block = NULL;
640 last_sent_block = NULL;
641 last_offset = 0;
642 last_version = ram_list.version;
643 ram_bulk_stage = true;
646 #define MAX_WAIT 50 /* ms, half buffered_file limit */
648 static int ram_save_setup(QEMUFile *f, void *opaque)
650 RAMBlock *block;
651 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
653 migration_bitmap = bitmap_new(ram_pages);
654 bitmap_set(migration_bitmap, 0, ram_pages);
655 migration_dirty_pages = ram_pages;
656 mig_throttle_on = false;
657 dirty_rate_high_cnt = 0;
659 if (migrate_use_xbzrle()) {
660 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
661 TARGET_PAGE_SIZE,
662 TARGET_PAGE_SIZE);
663 if (!XBZRLE.cache) {
664 DPRINTF("Error creating cache\n");
665 return -1;
668 /* We prefer not to abort if there is no memory */
669 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
670 if (!XBZRLE.encoded_buf) {
671 DPRINTF("Error allocating encoded_buf\n");
672 return -1;
675 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
676 if (!XBZRLE.current_buf) {
677 DPRINTF("Error allocating current_buf\n");
678 g_free(XBZRLE.encoded_buf);
679 XBZRLE.encoded_buf = NULL;
680 return -1;
683 acct_clear();
686 qemu_mutex_lock_iothread();
687 qemu_mutex_lock_ramlist();
688 bytes_transferred = 0;
689 reset_ram_globals();
691 memory_global_dirty_log_start();
692 migration_bitmap_sync();
693 qemu_mutex_unlock_iothread();
695 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
697 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
698 qemu_put_byte(f, strlen(block->idstr));
699 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
700 qemu_put_be64(f, block->length);
703 qemu_mutex_unlock_ramlist();
705 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
706 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
708 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
710 return 0;
713 static int ram_save_iterate(QEMUFile *f, void *opaque)
715 int ret;
716 int i;
717 int64_t t0;
718 int total_sent = 0;
720 qemu_mutex_lock_ramlist();
722 if (ram_list.version != last_version) {
723 reset_ram_globals();
726 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
728 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
729 i = 0;
730 while ((ret = qemu_file_rate_limit(f)) == 0) {
731 int bytes_sent;
733 bytes_sent = ram_save_block(f, false);
734 /* no more blocks to sent */
735 if (bytes_sent == 0) {
736 break;
738 total_sent += bytes_sent;
739 acct_info.iterations++;
740 check_guest_throttling();
741 /* we want to check in the 1st loop, just in case it was the 1st time
742 and we had to sync the dirty bitmap.
743 qemu_get_clock_ns() is a bit expensive, so we only check each some
744 iterations
746 if ((i & 63) == 0) {
747 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
748 if (t1 > MAX_WAIT) {
749 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
750 t1, i);
751 break;
754 i++;
757 qemu_mutex_unlock_ramlist();
760 * Must occur before EOS (or any QEMUFile operation)
761 * because of RDMA protocol.
763 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
765 bytes_transferred += total_sent;
768 * Do not count these 8 bytes into total_sent, so that we can
769 * return 0 if no page had been dirtied.
771 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
772 bytes_transferred += 8;
774 ret = qemu_file_get_error(f);
775 if (ret < 0) {
776 return ret;
779 return total_sent;
782 static int ram_save_complete(QEMUFile *f, void *opaque)
784 qemu_mutex_lock_ramlist();
785 migration_bitmap_sync();
787 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
789 /* try transferring iterative blocks of memory */
791 /* flush all remaining blocks regardless of rate limiting */
792 while (true) {
793 int bytes_sent;
795 bytes_sent = ram_save_block(f, true);
796 /* no more blocks to sent */
797 if (bytes_sent == 0) {
798 break;
800 bytes_transferred += bytes_sent;
803 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
804 migration_end();
806 qemu_mutex_unlock_ramlist();
807 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
809 return 0;
812 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
814 uint64_t remaining_size;
816 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
818 if (remaining_size < max_size) {
819 qemu_mutex_lock_iothread();
820 migration_bitmap_sync();
821 qemu_mutex_unlock_iothread();
822 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
824 return remaining_size;
827 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
829 int ret, rc = 0;
830 unsigned int xh_len;
831 int xh_flags;
833 if (!xbzrle_decoded_buf) {
834 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
837 /* extract RLE header */
838 xh_flags = qemu_get_byte(f);
839 xh_len = qemu_get_be16(f);
841 if (xh_flags != ENCODING_FLAG_XBZRLE) {
842 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
843 return -1;
846 if (xh_len > TARGET_PAGE_SIZE) {
847 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
848 return -1;
850 /* load data and decode */
851 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
853 /* decode RLE */
854 ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
855 TARGET_PAGE_SIZE);
856 if (ret == -1) {
857 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
858 rc = -1;
859 } else if (ret > TARGET_PAGE_SIZE) {
860 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
861 ret, TARGET_PAGE_SIZE);
862 abort();
865 return rc;
868 static inline void *host_from_stream_offset(QEMUFile *f,
869 ram_addr_t offset,
870 int flags)
872 static RAMBlock *block = NULL;
873 char id[256];
874 uint8_t len;
876 if (flags & RAM_SAVE_FLAG_CONTINUE) {
877 if (!block) {
878 fprintf(stderr, "Ack, bad migration stream!\n");
879 return NULL;
882 return memory_region_get_ram_ptr(block->mr) + offset;
885 len = qemu_get_byte(f);
886 qemu_get_buffer(f, (uint8_t *)id, len);
887 id[len] = 0;
889 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
890 if (!strncmp(id, block->idstr, sizeof(id)))
891 return memory_region_get_ram_ptr(block->mr) + offset;
894 fprintf(stderr, "Can't find block %s!\n", id);
895 return NULL;
899 * If a page (or a whole RDMA chunk) has been
900 * determined to be zero, then zap it.
902 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
904 if (ch != 0 || !is_zero_range(host, size)) {
905 memset(host, ch, size);
909 static int ram_load(QEMUFile *f, void *opaque, int version_id)
911 ram_addr_t addr;
912 int flags, ret = 0;
913 int error;
914 static uint64_t seq_iter;
916 seq_iter++;
918 if (version_id < 4 || version_id > 4) {
919 return -EINVAL;
922 do {
923 addr = qemu_get_be64(f);
925 flags = addr & ~TARGET_PAGE_MASK;
926 addr &= TARGET_PAGE_MASK;
928 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
929 if (version_id == 4) {
930 /* Synchronize RAM block list */
931 char id[256];
932 ram_addr_t length;
933 ram_addr_t total_ram_bytes = addr;
935 while (total_ram_bytes) {
936 RAMBlock *block;
937 uint8_t len;
939 len = qemu_get_byte(f);
940 qemu_get_buffer(f, (uint8_t *)id, len);
941 id[len] = 0;
942 length = qemu_get_be64(f);
944 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
945 if (!strncmp(id, block->idstr, sizeof(id))) {
946 if (block->length != length) {
947 fprintf(stderr,
948 "Length mismatch: %s: " RAM_ADDR_FMT
949 " in != " RAM_ADDR_FMT "\n", id, length,
950 block->length);
951 ret = -EINVAL;
952 goto done;
954 break;
958 if (!block) {
959 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
960 "accept migration\n", id);
961 ret = -EINVAL;
962 goto done;
965 total_ram_bytes -= length;
970 if (flags & RAM_SAVE_FLAG_COMPRESS) {
971 void *host;
972 uint8_t ch;
974 host = host_from_stream_offset(f, addr, flags);
975 if (!host) {
976 return -EINVAL;
979 ch = qemu_get_byte(f);
980 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
981 } else if (flags & RAM_SAVE_FLAG_PAGE) {
982 void *host;
984 host = host_from_stream_offset(f, addr, flags);
985 if (!host) {
986 return -EINVAL;
989 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
990 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
991 void *host = host_from_stream_offset(f, addr, flags);
992 if (!host) {
993 return -EINVAL;
996 if (load_xbzrle(f, addr, host) < 0) {
997 ret = -EINVAL;
998 goto done;
1000 } else if (flags & RAM_SAVE_FLAG_HOOK) {
1001 ram_control_load_hook(f, flags);
1003 error = qemu_file_get_error(f);
1004 if (error) {
1005 ret = error;
1006 goto done;
1008 } while (!(flags & RAM_SAVE_FLAG_EOS));
1010 done:
1011 DPRINTF("Completed load of VM with exit code %d seq iteration "
1012 "%" PRIu64 "\n", ret, seq_iter);
1013 return ret;
1016 SaveVMHandlers savevm_ram_handlers = {
1017 .save_live_setup = ram_save_setup,
1018 .save_live_iterate = ram_save_iterate,
1019 .save_live_complete = ram_save_complete,
1020 .save_live_pending = ram_save_pending,
1021 .load_state = ram_load,
1022 .cancel = ram_migration_cancel,
1025 struct soundhw {
1026 const char *name;
1027 const char *descr;
1028 int enabled;
1029 int isa;
1030 union {
1031 int (*init_isa) (ISABus *bus);
1032 int (*init_pci) (PCIBus *bus);
1033 } init;
1036 static struct soundhw soundhw[9];
1037 static int soundhw_count;
1039 void isa_register_soundhw(const char *name, const char *descr,
1040 int (*init_isa)(ISABus *bus))
1042 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1043 soundhw[soundhw_count].name = name;
1044 soundhw[soundhw_count].descr = descr;
1045 soundhw[soundhw_count].isa = 1;
1046 soundhw[soundhw_count].init.init_isa = init_isa;
1047 soundhw_count++;
1050 void pci_register_soundhw(const char *name, const char *descr,
1051 int (*init_pci)(PCIBus *bus))
1053 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1054 soundhw[soundhw_count].name = name;
1055 soundhw[soundhw_count].descr = descr;
1056 soundhw[soundhw_count].isa = 0;
1057 soundhw[soundhw_count].init.init_pci = init_pci;
1058 soundhw_count++;
1061 void select_soundhw(const char *optarg)
1063 struct soundhw *c;
1065 if (is_help_option(optarg)) {
1066 show_valid_cards:
1068 if (soundhw_count) {
1069 printf("Valid sound card names (comma separated):\n");
1070 for (c = soundhw; c->name; ++c) {
1071 printf ("%-11s %s\n", c->name, c->descr);
1073 printf("\n-soundhw all will enable all of the above\n");
1074 } else {
1075 printf("Machine has no user-selectable audio hardware "
1076 "(it may or may not have always-present audio hardware).\n");
1078 exit(!is_help_option(optarg));
1080 else {
1081 size_t l;
1082 const char *p;
1083 char *e;
1084 int bad_card = 0;
1086 if (!strcmp(optarg, "all")) {
1087 for (c = soundhw; c->name; ++c) {
1088 c->enabled = 1;
1090 return;
1093 p = optarg;
1094 while (*p) {
1095 e = strchr(p, ',');
1096 l = !e ? strlen(p) : (size_t) (e - p);
1098 for (c = soundhw; c->name; ++c) {
1099 if (!strncmp(c->name, p, l) && !c->name[l]) {
1100 c->enabled = 1;
1101 break;
1105 if (!c->name) {
1106 if (l > 80) {
1107 fprintf(stderr,
1108 "Unknown sound card name (too big to show)\n");
1110 else {
1111 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1112 (int) l, p);
1114 bad_card = 1;
1116 p += l + (e != NULL);
1119 if (bad_card) {
1120 goto show_valid_cards;
1125 void audio_init(void)
1127 struct soundhw *c;
1128 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1129 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1131 for (c = soundhw; c->name; ++c) {
1132 if (c->enabled) {
1133 if (c->isa) {
1134 if (!isa_bus) {
1135 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1136 exit(1);
1138 c->init.init_isa(isa_bus);
1139 } else {
1140 if (!pci_bus) {
1141 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1142 exit(1);
1144 c->init.init_pci(pci_bus);
1150 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1152 int ret;
1154 if (strlen(str) != 36) {
1155 return -1;
1158 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1159 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1160 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1161 &uuid[15]);
1163 if (ret != 16) {
1164 return -1;
1166 return 0;
1169 void do_acpitable_option(const QemuOpts *opts)
1171 #ifdef TARGET_I386
1172 Error *err = NULL;
1174 acpi_table_add(opts, &err);
1175 if (err) {
1176 error_report("Wrong acpi table provided: %s",
1177 error_get_pretty(err));
1178 error_free(err);
1179 exit(1);
1181 #endif
1184 void do_smbios_option(QemuOpts *opts)
1186 #ifdef TARGET_I386
1187 smbios_entry_add(opts);
1188 #endif
1191 void cpudef_init(void)
1193 #if defined(cpudef_setup)
1194 cpudef_setup(); /* parse cpu definitions in target config file */
1195 #endif
1198 int tcg_available(void)
1200 return 1;
1203 int kvm_available(void)
1205 #ifdef CONFIG_KVM
1206 return 1;
1207 #else
1208 return 0;
1209 #endif
1212 int xen_available(void)
1214 #ifdef CONFIG_XEN
1215 return 1;
1216 #else
1217 return 0;
1218 #endif
1222 TargetInfo *qmp_query_target(Error **errp)
1224 TargetInfo *info = g_malloc0(sizeof(*info));
1226 info->arch = g_strdup(TARGET_NAME);
1228 return info;
1231 /* Stub function that's gets run on the vcpu when its brought out of the
1232 VM to run inside qemu via async_run_on_cpu()*/
1233 static void mig_sleep_cpu(void *opq)
1235 qemu_mutex_unlock_iothread();
1236 g_usleep(30*1000);
1237 qemu_mutex_lock_iothread();
1240 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1241 much time in the VM. The migration thread will try to catchup.
1242 Workload will experience a performance drop.
1244 static void mig_throttle_guest_down(void)
1246 CPUState *cpu;
1248 qemu_mutex_lock_iothread();
1249 CPU_FOREACH(cpu) {
1250 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1252 qemu_mutex_unlock_iothread();
1255 static void check_guest_throttling(void)
1257 static int64_t t0;
1258 int64_t t1;
1260 if (!mig_throttle_on) {
1261 return;
1264 if (!t0) {
1265 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1266 return;
1269 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1271 /* If it has been more than 40 ms since the last time the guest
1272 * was throttled then do it again.
1274 if (40 < (t1-t0)/1000000) {
1275 mig_throttle_guest_down();
1276 t0 = t1;