
Proto Language Reference

Jonathan Bachrach, Jacob Beal

Last Revision: July 8, 2008

This is a reference to all of the currently working functions in the Proto language. For a reference of
commonly used simulator and language commands, see the Proto Quick Start. For a tutorial on the Proto
language, see the document Thinking In Proto. For installation instructions, see the Proto Installation
Guide. For a user manual for the simulator, see the Proto Simulator User Manual. For information on
how to extend the functionality of the simulator, see the Proto Simulator Developer Reference.

This reference is intended as a “dictionary” to allow Proto programmers to look up whether the function
they are looking for already exists, and how to use it. This reference guide is organized by groups of
functionality. It gives only minimal explanation of the language, assuming that the programmer already
understands the basics.

A note on implementation: some functions are implemented directly by the Proto kernel, others are imple-
mented by a mixture of kernel functions and compiler pattern rewriting, and yet others are written in Proto
as part of the core library (lib/core/). This document does not distinguish between these implementation
decisions.

1 Credits for Proto

The Proto language was developed in partnership by Jonathan Bachrach and Jacob Beal. Jonathan Bachrach
is the primary programmer for the Proto compiler, kernel, and 1st generation simulator. Jacob Beal is the
primary programmer for the 2nd generation simulator.

Additional programming by: Joshua Horowitz, Omari Stephens, Mark Tobenkin, Dan Vickery

2 Notation

Functions and special forms in this document are specified in a pattern language closely related to the
quasiquote metasyntax used in LISPs.

• .name means name is a variable that matches only identifiers.

• ,name means name is a variable that matches any expression.

• ,@name means name is a variable that matches a list of expressions, at least one expression long.

• ... indicates zero or more of the preceding pattern element.

• ++ indicates one or more of the preceding pattern element.

• var|type means that var must be of data type type. If there is no type specified, it means the variable
can be any type.

Throughout the document Proto functions and special forms are expressed as:

pattern→ type
description

1

where type is the return type.
The names of functions are in all lower case; the names of special forms are in all upper case.

3 Evaluation

Proto is a purely functional language. Proto is written using s-expressions in a manner very similar to Scheme.
Evaluating a Proto expression produces a program: a dataflow graph that may be evaluated against a space
to produce an evolving field of values at every point on the space.

4 Data Types

All Proto expressions produce fields that map every point in space to a value. The values produced are
categorized into the type system shown in Figure 1.

Local

Number TupleField

VectorScalar

Boolean

#t #f

Lambda

Any

Figure 1: Proto data types; arrows indicate subset relationships.

• Any is the top type, encompassing all other types.

• Field is a function mapping a subset of the device’s neighborhood to Local values.

• Local is any non-Field value: a Number, Tuple, or Lambda.

• Lambda is a function.

• Tuple is an ordered set of k Local values.

• Scalar is a floating point number (including the special values Inf, -Inf, and NaN).

• Vector is a Tuple of Scalar values.

• Number is a Scalar or Vector.

• Boolean is a Scalar interpreted as a logical value. True is any non-zero value, canonically #t, which
is represented by 1; False, canonically #f, is represented by 0.

Throughout this document, types will be abbreviated by their first letter, except for Lambda, which will
be abbreviated as λ. Tuples and vectors may be further specified by a subscript indicating length (e.g. T3

is a tuple of 3 elements), and tuples may also have their types specified as a parenthetical list (e.g. T (T2, S)
is a tuple of a tuple of 2 elements and a scalar). Fields may be further specified by a subscript indicating
type of the range (e.g. FV is a field of vectors).

Some functions require that their arguments have the “same type.” The equivalence classes of type are:

2

• All Scalar values.

• All Lambda values. Not working!

• Tuples with equivalent values (implying the same number as well). There are known bugs.

• Fields with equivalent values.

Right now, lambdas are not first-class data types: they can only be passed around and manipulated
under certain circumstances.

(NULL ,expr)→ A
Returns a “null” form of the value that would be returned by expr. expr is not evaluated. For
scalars, this is zero, for tuples, a tuple of the same structure with zeros in place of every scalar,
for fields a field of null values, and for lambdas it is undefined.

(QUOTE ,form)→ A
A LISP quote operation. Identity on scalars, turns symbols into indexes into a symbol table, and
fails on tuples. Not working!

5 Namespaces and Bindings

Proto is a lexically scoped language. Names are not case sensitive. Bindings contain values and are looked up
by name. Lexical bindings are visible only within the scope in which they are bound, and shadow bindings
of the same name from enclosing scopes.

When the Proto compiler encounters an unknown identifier name, it searches its path for a file named
name.proto. If it finds such a file, then it loads the contents of the file and looks up the identifier again.
Definitions in subdirectories can be accessed with identifiers of the form dir/name.

(DEF .name (.arg ...) ,@body)→ A
Define a function name in the current scope, with as many arguments as there are arg identifiers.
The body is evaluated within an extended scope where the arg identifiers are bound to arguments
to the function.

(LET ((.var ,value) ...) ,@body)→ A
Extends scope, binding all var identifiers to their associated value in parallel. The body is
evaluated in the extended scope.

(LET* ((.var ,value) ...) ,@body)→ A
Extends scope, binding each var identifier to its associated value in sequence, so that later value
expressions can use earlier var identifiers. The body is evaluated in the extended scope.

6 Control Flow

(all ,@forms)→ A
All forms are evaluated in parallel and the value of the last form returned.

(SEQ ,form|T (L, B) ++)→ T (L, B)
A concatenation of streams: each form returns a tuple of two elements: the first is the value of
the stream, and the second is a boolean indicating whether there are more values in the stream.
When the second element is false, the sequence advances to the next stream, looping back to the
first after the last stream. seq returns a tuple where the first element is the current stream’s
value and the second is a boolean that is true during the first loop and false thereafter. Capable
of violating the continuous space/time abstraction.

3

(LOOP ,form|T (L, B) ++)→ L
Identical to seq, except that only the value is returned.

(mux ,test|B ,true ,false)→ A
Evaluates both true and false expressions. When test is true, returns the result of the true

expression, otherwise returns the result of the false expression. The true and false expressions
must return the same type.

(IF ,test|B ,true ,false)→ A
Restricts execution to subspaces based on test. Where test is true, the true expression is
evaluated; where test is false, the false expression is evaluated. The true and false expressions
must return the same type.

(SELECT ,nth|S ,form ++)→ A
A multi-way if, evaluating the ith form in the subspace where nth = i (counting from zero).
Where nth is not non-negative integer or is greater than the number of forms, a null value is
returned instead. All form expressions must return the same type.

(COND (,test|B ,@body) ...)→ A
Another multi-way if, evaluating the ith body in the subspace where the ith test is true and all
previous tests are false. Not working!

(CASE ,val|S (,key|S ,form) ...)→ A
Another multi-way if. The key expressions must all be literal numbers, and a key’s associated
form is evaluated in the subspace where val = key. All form expressions must return the same
type. There are known bugs.

Unimplemented: The following functions have previously been specified, but are not currently imple-
mented: where, when, unless.

7 Lambdas

(FUN (.arg ...) ,@body)→ λ
Creates an anonymous function with as many arguments as there are arg identifiers. The body
is evaluated within an extended scope where the arg identifiers are bound to arguments to the
function.

(apply ,f|λ ,args|T)→ A
Call function f with arguments bound to the elements of args. The arity of the function and
the length of args must be the same.

(id ,expr)→ A
The identity function: returns the value of expr.

8 State

Because Proto is a purely functional language, we create state using feedback loops. A state variable is
initialized at some value, then evolves that value forward in time. In regions where the feedback loop is
not evaluated, the state variable is reinitialized, resuming evolution when the feedback loop begins to be
evaluated again.

For example, the expression:

4

(rep t 0 (+ t (dt)))

creates a timer that returns how long evaluation has been proceeding at each device.

(dt)→ S
Returns the time between steps in evaluating a program.

(set-dt step|S)→ S
Requests that the time between steps in evaluating a program be no longer than step. Experi-
mental: behavior may be flawed and may be changed without warning.

(LETFED ((.var ,init|L ,evolve|L) ...) ,@body)→ L
Creates a state variable for each var. var is initially bound to the value of expression init, and
at each time step the state is evolved forward using expression evolve. The body is evaluated
within an extended scope including the state variables.

In the evolve expression, each var is bound to an old value and (dt) is set to the time since
the last step. All init and evolve expressions are evaluated in parallel, so no variable can
reference another value in its init, but variables can use one another’s old values in their evolve
statements. Capable of violating the continuous space/time abstraction..

(REP .var ,init|L ,evolve|L)→ L
Create a single feedback variable and return its value. Equivalent to (letfed ((.var ,init

,evolve)) .var). Capable of violating the continuous space/time abstraction.

(fold-time ,f|λ ,init|L ,val|L)→ L
Accumulate a value val across time, starting with value init and accumulating using function
f. Equivalent to (rep r ,init (,f r ,val)) Capable of violating the continuous space/time
abstraction.

(all-time ,expr|B)→ B
Returns false if expr was ever false, true otherwise.

(any-time ,expr|B)→ B
Returns true if expr was ever true, false otherwise.

(max-time ,expr|S)→ S
Returns the upper limit of values for expr to present.

(min-time ,expr|S)→ S
Returns the lower limit of values for expr to present.

(int-time ,expr|S)→ S
Returns the integral of expr over time, starting from zero.

(ONCE ,expr)→ A
Evaluates expr once, then always returns that value without evaluating expr again.

9 Logical

There are two types of logical operators, reflecting the difference between if and mux.

(AND ,x|B ,y|B)→ B
The expression y is only evaluated if x is true. Equivalent to (if ,x ,y #f)

5

(OR ,x|B ,y|B)→ B
The expression y is only evaluated if x is false. Equivalent to (if ,x ,x ,y)

(muxand ,x|B ,y|B)→ B
Both expressions are always evaluated. Equivalent to (mux ,x ,y #f)

(muxor ,x|B ,y|B)→ B
Both expressions are always evaluated. Equivalent to (mux ,x ,x y)

(not ,x|B)→ B
Returns #t if x is false, otherwise returns #f. Equivalent to (if ,x #t #f).

(xor ,x|B)→ B
Returns #f if x and y have the same value, otherwise returns #f. Equivalent to (if , x, (not

y), y).

10 Numbers

Some numerical functions are generic to both vectors and scalars, others are defined for only one or the
other.

Constants

(inf)→ S
Returns the floating point value for positive infinity.

(e)→ S
Returns the floating point value for the constant e.

(pi)→ S
Returns the floating point value for the constant π.

Arithmetic

(+ ,x|N ,y|N ++)→ N
Adds two or more numbers of the same type. The vector version can also be called as vadd. If
the two vectors do not have the same number of elements, the ”missing elements” in the smaller
vector are considered to be zero.

(- ,x|N ,y|N)→ N
Subtracts y from x. Requires numbers of the same type. The vector version can also be called
as vsub. If the two vectors do not have the same number of elements, the ”missing elements” in
the smaller vector are considered to be zero.

(neg ,x|S)→ S
Returns the negation of x.

(* ,x|S ++ ,y|N)→ N
Multiplies numbers together. If the last is a vector, then it performs scalar multiplication. The
vector version can also be called as vmul.

(/ ,x|S ,y|S)→ S
Divides x by y.

6

(mod ,num|S ,divisor|S)→ S
Returns the remainder when num is divided by divisor. If num is negative, the remainder will
be negative.

(pow ,x|S) ,y|S)→ S
Returns xy.

(exp ,x|S)→ S
Returns ex.

(log ,x|S)→ S
Returns the natural log of x.

(log10 ,x|S)→ S
Returns the base-10 log of x.

(logN ,x|S) ,n|S)→ S
Returns the base-n of x.

(floor ,n|S)→ S
Returns the largest integer value not greater than n.

(ceil ,n|S)→ S
Returns the smallest integer value greater than n.

(max ,x|N ,y|N)→ N
Compares x and y and returns the maximum. Numbers must be of the same type. Vectors are
compared lexicographically.

(min ,x|N ,y|N)→ N
Compares x and y and returns the minimum. Numbers must be of the same type. Vectors are
compared lexicographically.

(denormalize ,x|S ,newmin|S ,newmax|S)→ S
Denormalizes (Rescales) x, a value between 0 and 1 to a value between newmin and newmax. This
function supersedes the old ”units” function.

(denormalizeN ,x|S ,oldmin|S ,oldmax|S ,newmin|S ,newmax|S→ S
More general version of denormalize, allows you to set arbitrary boundaries.

Comparison & Related Convenience Functions

(= ,x|S ,y|S)→ B
Returns true iff x is equal to y. Vectors are considered to be equal iff every element is the same.

(< ,x|S ,y|S)→ B
Returns true iff x is less than y. Vectors are compared lexicographically.

(> ,x|S ,y|S)→ B
Returns true iff x is greater than y. Vectors are compared lexicographically.

(<= ,x|S ,y|S)→ B
Returns true iff x is not greater than y. Vectors are compared lexicographically.

(>= ,x|S ,y|S)→ B
Returns true iff x is not less than y. Vectors are compared lexicographically.

7

(is-zero ,x|S)→ B
Returns true if x is zero.

(is-neg ,x|S)→ B
Returns true if x is negative.

(is-pos ,x|S)→ B
Returns true if x is positive.

Trigonometric and Other Common Functions

(sqrt ,n|S)→ S
Returns the square root of n.

(abs ,n|S)→ S
Returns the absolute value of n.

(sin ,n|S)→ S
Returns the sine of n (in radians).

(cos ,n|S)→ S
Returns the cosine of n (in radians).

(tan ,n|S)→ S
Returns the tangent of n (in radians).

(asin ,n|S)→ S
Returns the arcsine of n (in radians).

(acos ,n|S)→ S
Returns the arccosine of n (in radians).

(atan2 ,y|S ,x|S)→ S
Returns the two-argument arc-tangent of x and y (in radians). Note: Range is -

(sinh ,n|S)→ S
Returns the hyperbolic sine of n.

(cosh ,n|S)→ S
Returns the hyperbolic cosine of n.

(tanh ,n|S)→ S
Returns the hyperbolic tangent of n.

(asinh ,n|S)→ S
Returns the inverse hyperbolic sine of n.

(acosh ,n|S)→ S
Returns the inverse hyperbolic cosine of n.

(atanh ,y|S ,x|S)→ S
Returns the inverse hyperbolic tangent of n.

(rnd ,min|S ,max|S)→ S
Returns a constantly changing random number between min and max. Capable of violating the
continuous space/time abstraction.

(rndint ,n|S)→ S
Returns a constantly changing random integer in the range [0, n − 1]. Capable of violating the
continuous space/time abstraction.

8

Vectors

(vdot ,a|V ,b|V)→ S
Returns the dot product of vectors a and b.

(vlen ,v|V)→ S
Returns the length of vector v, equivalent to (sqrt (vdot ,v ,v)).

(normalize ,v|V)→ V
Normalizes v to have the same direction, but length 1. If v is the zero vector, it remains the zero
vector.

(polar-to-rect ,v|V2)→ V2

Converts a 2D vector from polar to rectangular coordinates.

(rect-to-polar ,v|V2)→ V2

Converts a 2D vector from rectangular to polar coordinates.

(rotate ,angle|S ,v|V2)→ V2

Rotates a 2D vector v by angle radians, assuming rectangular coordinates.

Missing Functions The following functions should be implemented, but currently are not, for no partic-
ular reason: ∼= (not equal), rem (remainder), pos?, zero?, neg?, units (rescaling numbers).

11 Tuples

(tuple ,v|L ++)→ T
Creates a tuple with the set of v arguments as its elements.

(len ,tuple|T)→ S
Returns the length of the tuple. There are known bugs.

(elt ,tuple|T ,i|S)→ L
Returns the ith element of tuple, counting from zero.

(nul-tup)→ T0

Creates a zero-length tuple.

(map ,f|λ ,tuple|T)→ T
Return a tuple created by applying the one-argument function f to each element of tuple. Not
working!

(fold ,f|λ ,base|typeL ,tuple|T)→ L
Reduce tuple to a single value by folding in elements to the base value one at a time using
function f. The first argument of f is the accumulation, the second is the tuple element.

(slice ,tuple|T, start|S ,tuple|S)→ T
Returns a new tuple obtained by slicing the input tuple from start (inclusive) to stop (exclusive).
There are known bugs.

(1st ,tuple|T)→ L
Returns the first element of tuple.

(2nd ,tuple|T)→ L
Returns the second element of tuple.

9

(3rd ,tuple|T)→ L
Returns the third element of tuple.

(find ,value|S ,tuple|V)→ B
Returns true if the number value is an element of tuple.

(position, value|S ,tuple|V)→ S
Returns index of value in tuple. If the item is not in the list, -1 is returned. If it occurs more
than once, the last of the match is returned. There are known bugs.

(assoc ,value|S ,tuple|T)→ T (S, S)
Searches for value in the first element of each element of tuple. If at least one element of tuple
matches, return the last element that matches. There must be at least one element in tuple,
and all of its elements must be of the form T (S, S). There are known bugs.

12 Structures

Structures are just an assignment of names to tuples.

(DEFSTRUCT .name .parent .field ++)→ B
Defines a constructor and reader functions for structures of type name. The constructor, new-name,
takes the fields as arguments and returns a tuple containing the fields. The readers, named name-
field, take a tuple and return the element corresponding to field.

The parent identifier is intended to support inheritance between structures, but this is not yet
implemented.

For example,

(defstruct foo 0 a b)

expands into three statements:

(def new-foo (a b) (tup a b))

(def foo-a (foo) (elt foo 0))

(def foo-b (foo) (elt foo 1))

13 Neighborhoods

There are two types of neighborhood functions: functions that create fields, and functions that summarize
fields into local values. In between, any pointwise function can be applied to fields, producing a field whose
values are the result of applying the pointwise operation to the values of the input fields.

Field Functions

(nbr ,expr|L)→ F
Returns a field mapping neighbors to their values of expr.

(nbr-range)→ FS

Returns a field of distances to neighbors.

(nbr-angle)→ FS

Returns a field of bearings to neighbors.

10

(nbr-lag)→ FS

Returns a field of time lags to neighbors.

(nbr-vec)→ FV

Returns a field of vectors to neighbors, in local coordinates.

(is-self)→ FB

Returns a field that is true at the device and false at every other point in its neighborhood.

(infinitesimal)→ FS

Returns a field of the density of area at each neighbor, for use in integrals.

Summary Functions

(min-hood ,expr|FN)→ N
Returns the lower limit of values in the range of expr.

(min-hood+ ,expr|FS)→ S
Returns the lower limit of values in the range of expr, excluding the device itself. If there are no
neighbors, returns Inf. Capable of violating the continuous space/time abstraction.

(max-hood ,expr|FN)→ N
Returns the upper limit of values in the range of expr.

(max-hood+ ,expr|FS)→ S
Returns the upper limit of values in the range of expr, excluding the device itself. If there are
no neighbors, returns -Inf. Capable of violating the continuous space/time abstraction.

(all-hood ,expr|FB)→ B
Returns false if the range of expr includes false; otherwise returns true.

(any-hood ,expr|FB)→ B
Returns true if the range of expr includes true; otherwise returns false.

(sum-hood ,expr|FN)→ N
Returns the sum of expr over all devices in the neighborhood. Capable of violating the continuous
space/time abstraction.

(int-hood ,expr|FN)→ N
Returns the integral of expr over the neighborhood. Not working!

The fold-hood family of functions are used to implement the other summary functions. Although they
are made accessible to the user, they should be used with care as they will tend to break the abstraction
barrier.

(FOLD-HOOD ,fold|λ ,base|L ,value|L)→ L
Collects value from each of the neighbors, then folds these into a summary value, using fold

to combine elements into base one at a time. Capable of violating the continuous space/time
abstraction.

(fold-hood* ,fold|λ ,base|L ,field|F)→ L
Starting with base, use the accumulator function fold to combine all of the values in field.
Capable of violating the continuous space/time abstraction.

11

(FOLD-HOOD-PLUS ,fold|λ ,prep|λ ,value|L)→ L
Collects value from each of the neighbors, then applies prep on each value, then combines the
results together one at a time using fold. If there are is only one value, it is returned without
calling fold. Capable of violating the continuous space/time abstraction. There are known bugs.

(fold-hood-plus* ,fold|λ ,field|F)→ L
Use the accumulator function fold to combine all of the values in field. Capable of violating
the continuous space/time abstraction.

The function mix is an alias for fold-hood. Not working!.

14 Sensor and Actuators

Actuators reset themselves to a null value whenever they are not actively being invoked. Thus, for example,

(if (sense 1) (mov (tup 2)) (red (tup 1)))

will cause devices move to the right only when (sense 1) is true, and to turn on their red LED only when
(sense 1) is false.

Movement This collection of functions are actuators for moving devices and sensors for introspecting on
their motion.

(mov ,velocity|V)→ V
Attempt to move at velocity. If velocity is not 3 elements long, missing elements will be
treated as zero and extra elements will be ignored. The return echoes velocity.

(speed)→ S
Returns the current speed of the device.

(bearing)→ S
Returns the current 2D bearing of the device. Not working in 2nd generation simulator!

Debug I/O A simple package for debugging: LEDs and probes for output, and user-toggled sensors for
input.

(red ,n|S)→ S
Set red LED to intensity n. Intensity ranges from 0 to 1, but overloading of display can show
values outside this range. The return echoes n.

(green ,n|S)→ S
Like red, except it acts on the green LED.

(blue ,n|S)→ S
Like red, except it acts on the blue LED.

(leds ,n|S)→ S
Set blue LED to (> n 0.25), green LED to (> n 0.50), and red LED (> n 0.75). The return
echoes n.

(rgb ,v|V)→ V
Set red, green, and blue LEDs to first, second, and third elements of v respectively. Extra
elements are ignored. The return echoes v.

12

(probe ,value|L ,i|S)→ L
Posts value to the ith probe (valid indices are 0 to 2).

(sense ,i|S)→ S
Returns the ith user sensor value.

(is-orange)→ B
Alias for (sense 1); in the simulator, this is a boolean displayed as an orange disc when true.

(is-purple)→ B
Alias for (sense 2); in the simulator, this is a boolean displayed as an purple disc when true.

Life Cycle

(clone ,now|B)→ B
When now is true, the device attempts to reproduce. The return echoes now.

(die ,now|B)→ B
When now is true, the device attempts to suicide. The return echoes now.

Geometry

(coord)→ V3

Returns the device’s estimated coordinates.

(area)→ S
Returns each device’s estimate of the amount of area it represents.

(radio-range)→ S
Returns the maximum expected range at which devices can communicate.

Other Sensors and Actuators

(flex ,angle|S)→ S
Attempt to flex a Topobo joint to an angle in the range [−π/2, pi/2]. Angles outside that range
will be truncated. Not working in 2nd generation simulator!

(mid)→ S
Returns the device’s ID.

(radius)→ S
Return the estimated radius of the device’s body.

(radius-set ,r|S)→ S
Set the radius of the device’s body to r. The return echoes r.

(button ,i|S)→ B
Returns the current reading from the ith button. There are known bugs.

(grad-channel ,i|S)→ V
Ensure that chemical communication channel i is active and return a summary. Not working in
2nd generation simulator!

13

(new-channel ,alpha|S ,i|S)→ S
Set the diffusion constant of the ith chemical communication channel to be alpha. The return
echoes alpha. Note that the name and action of this function are not coherent. Not working in
2nd generation simulator!

(concentration ,i|S)→ S
Read the chemical concentration in the ith chemical communication channel. Not working in
2nd generation simulator!

(drip ,rate|S ,i|S)→ S
Increase the chemical in the ith chemical communication channel at rate. The return echoes r.
Not working in 2nd generation simulator!

(light)→ S
Returns the current reading from a light sensor. Not working in 2nd generation simulator!

(sound)→ S
Returns the current sound level recorded by a microphone. Not working in 2nd generation
simulator!

(speak ,value|S)→ S
Feed value to a speaker. Not working in 2nd generation simulator!

(temp)→ S
Returns the current reading from a temperature sensor. Not working in 2nd generation simulator!

(conductive)→ B
Returns the current reading from a short sensor. Not working in 2nd generation simulator!

(slider ,dkey|S ,ikey|S ,init|S ,increment|S ,min|S ,max|S)→ S
Returns the current reading from a slider control. Not working in 2nd generation simulator!

(mouse)→ V2

Returns the current location of the mouse. Not working in 2nd generation simulator!

(ranger)→ V8

Returns the readout of an 8-way sonar rangefinder. Not working in 2nd generation simulator!

(cam ,i|S)→ S
Returns a camera reading. Not working in 2nd generation simulator!

(bump)→ B
Returns true if the device’s body is in contact with something. Not working in 2nd generation
simulator!

(local-fold ,active|B ,i|S)→ B
Interface to a folding actuator for surfaces like epithelial sheets. The boolean active indicates
whether the ith fold should currently be folding. The return echoes active. Not working in 2nd
generation simulator!

(fold-complete ,i|S)→ B
Interface to a folding actuator for surfaces like epithelial sheets. This returns true when the ith
fold is no longer moving. Not working in 2nd generation simulator!

14

15 Library Functions

These are not primitive functions, but are frequently used building blocks which have been included in
Proto’s distribution library, in the directory lib/.

(distance-to ,source|B)→ S
Calculates the shortest-path distance from every device to the set of devices where source is
true. The function gradient is an alias.

(broadcast ,source|B ,value|L)→ L
Flow value outward from devices in the source to all other devices. Each device takes its value
from the nearest source device. The functions gradcast and grad-value are aliases.

(dilate ,source|B ,d|S)→ B
Returns true for every device within distance d of the source.

(distance ,region1|B ,region2|B)→ S
Calculates the distance between region1 and region2 and broadcasts it everywhere.

(disperse)→ V3

Devices repel from one another using spring forces.

(dither)→ V2

Devices wander randomly in a 2D plane.

(elect)→ B
Devices choose a leader by mutual exclusion and maintain precisely one leader within a given
distance.

(flip ,p|S t f)→ A
Continually flip a probability p coin: on heads evaluate t and on tails evaluate f. t and f must
be of the same type. Capable of violating the continuous space/time abstraction.

(timer)→ S
Return the length that this device has been evaluating this expression (i.e. not going in different
branches of an if)

.

15

