ppcg_kernel: initialize array field as soon as ppcg_kernel is created
[ppcg.git] / gpu.c
blob49314cf9068e12174ce1719f84720d80070ffca4
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2013 Ecole Normale Superieure
5 * Use of this software is governed by the MIT license
7 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
8 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
9 * 91893 Orsay, France
10 * and Ecole Normale Superieure, 45 rue d’Ulm, 75230 Paris, France
13 #include <assert.h>
14 #include <stdlib.h>
15 #include <string.h>
17 #include <isl/polynomial.h>
18 #include <isl/union_set.h>
19 #include <isl/aff.h>
20 #include <isl/ilp.h>
21 #include <isl/flow.h>
22 #include <isl/schedule.h>
23 #include <isl/schedule_node.h>
24 #include <isl/options.h>
25 #include <isl/ast_build.h>
27 #include "cpu.h"
28 #include "gpu.h"
29 #include "gpu_array_tile.h"
30 #include "gpu_group.h"
31 #include "schedule.h"
32 #include "ppcg_options.h"
33 #include "print.h"
35 struct gpu_array_info;
37 /* Collect all references to the given array and store pointers to them
38 * in array->refs.
40 * If the array contains structures, then there is no need to collect
41 * the references since we will not be computing any reference groups.
43 static void collect_references(struct gpu_prog *prog,
44 struct gpu_array_info *array)
46 int i;
47 int n;
49 if (array->has_compound_element)
50 return;
52 n = 0;
53 for (i = 0; i < prog->n_stmts; ++i) {
54 struct gpu_stmt *stmt = &prog->stmts[i];
55 struct gpu_stmt_access *access;
57 for (access = stmt->accesses; access; access = access->next) {
58 const char *name;
59 name = isl_map_get_tuple_name(access->access,
60 isl_dim_out);
61 if (name && !strcmp(array->name, name))
62 n++;
66 array->n_ref = n;
67 array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
68 assert(array->refs);
70 n = 0;
71 for (i = 0; i < prog->n_stmts; ++i) {
72 struct gpu_stmt *stmt = &prog->stmts[i];
73 struct gpu_stmt_access *access;
75 for (access = stmt->accesses; access; access = access->next) {
76 const char *name;
77 name = isl_map_get_tuple_name(access->access,
78 isl_dim_out);
79 if (!name || strcmp(array->name, name))
80 continue;
82 array->refs[n++] = access;
87 /* Compute and return the extent of "array", taking into account the set of
88 * accessed elements.
90 * In particular, the extent in the outer dimension is taken
91 * from "accessed", while the extents in the remaining dimensions
92 * are taken from array->extent.
94 * The extent in the outer dimension cannot be taken from array->extent
95 * because that may be unbounded. Furthermore, even if it is bounded,
96 * it may be larger than the piece of the array that is being accessed.
98 static __isl_give isl_set *compute_extent(struct pet_array *array,
99 __isl_keep isl_set *accessed)
101 int n_index;
102 isl_id *id;
103 isl_set *outer;
104 isl_set *extent;
106 extent = isl_set_copy(array->extent);
108 n_index = isl_set_dim(accessed, isl_dim_set);
109 if (n_index == 0)
110 return extent;
112 extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
113 outer = isl_set_copy(accessed);
114 outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
115 extent = isl_set_flat_product(outer, extent);
116 id = isl_set_get_tuple_id(accessed);
117 extent = isl_set_set_tuple_id(extent, id);
119 return extent;
122 /* Is the array "array" being extracted a read-only scalar?
124 * That is, is "array" a scalar that is never possibly written to.
125 * An array containing structures is never considered to be a scalar.
127 static int is_read_only_scalar(struct gpu_array_info *array,
128 struct gpu_prog *prog)
130 isl_set *space;
131 isl_union_map *write;
132 int empty;
134 if (array->has_compound_element)
135 return 0;
136 if (array->n_index != 0)
137 return 0;
139 write = isl_union_map_copy(prog->may_write);
140 space = isl_set_universe(isl_space_copy(array->space));
141 write = isl_union_map_intersect_range(write,
142 isl_union_set_from_set(space));
143 empty = isl_union_map_is_empty(write);
144 isl_union_map_free(write);
146 return empty;
149 /* Compute bounds on the host array "pa" based on the corresponding
150 * accessed elements in "arrays"
151 * and collect all references to the array.
152 * Store the results in "info".
154 * If the array is zero-dimensional and does not contain structures,
155 * i.e., if the array is a scalar, we check whether it is read-only.
156 * We also check whether the array is accessed at all.
158 static int extract_array_info(struct gpu_prog *prog,
159 struct gpu_array_info *info, struct pet_array *pa,
160 __isl_keep isl_union_set *arrays)
162 int i, empty;
163 const char *name;
164 int n_index;
165 isl_pw_aff **bounds;
166 isl_set *accessed, *extent;
168 n_index = isl_set_dim(pa->extent, isl_dim_set);
169 name = isl_set_get_tuple_name(pa->extent);
170 bounds = isl_alloc_array(prog->ctx, isl_pw_aff *, n_index);
171 if (!bounds)
172 return -1;
174 info->space = isl_set_get_space(pa->extent);
175 info->name = strdup(name);
176 info->n_index = n_index;
177 info->bound = bounds;
178 info->linearize = prog->scop->options->linearize_device_arrays;
180 info->type = strdup(pa->element_type);
181 info->size = pa->element_size;
182 info->local = pa->declared && !pa->exposed;
183 info->has_compound_element = pa->element_is_record;
184 info->read_only_scalar = is_read_only_scalar(info, prog);
186 accessed = isl_union_set_extract_set(arrays,
187 isl_space_copy(info->space));
188 empty = isl_set_is_empty(accessed);
189 extent = compute_extent(pa, accessed);
190 isl_set_free(accessed);
191 info->extent = extent;
192 if (empty < 0)
193 return -1;
194 info->accessed = !empty;
195 for (i = 0; i < n_index; ++i) {
196 isl_set *dom;
197 isl_local_space *ls;
198 isl_aff *one;
199 isl_pw_aff *bound;
201 dom = isl_set_copy(extent);
202 dom = isl_set_project_out(dom, isl_dim_set, i + 1,
203 n_index - (i + 1));
204 dom = isl_set_project_out(dom, isl_dim_set, 0, i);
205 if (!isl_set_dim_has_upper_bound(dom, isl_dim_set, 0)) {
206 fprintf(stderr, "unable to determine extent of '%s' "
207 "in dimension %d\n", info->name, i);
208 dom = isl_set_free(dom);
210 bound = isl_set_dim_max(dom, 0);
211 dom = isl_pw_aff_domain(isl_pw_aff_copy(bound));
212 ls = isl_local_space_from_space(isl_set_get_space(dom));
213 one = isl_aff_zero_on_domain(ls);
214 one = isl_aff_add_constant_si(one, 1);
215 bound = isl_pw_aff_add(bound, isl_pw_aff_alloc(dom, one));
216 bound = isl_pw_aff_gist(bound, isl_set_copy(prog->context));
218 bounds[i] = bound;
219 if (!isl_pw_aff_is_cst(bound))
220 info->linearize = 1;
223 collect_references(prog, info);
225 return 0;
228 /* Remove independence from the order constraints "order" on array "array".
229 * Since the pairs of iterations in the filter relation of an independence
230 * are guaranteed to be completely independent by the user, there is
231 * no need to ensure that live ranges are ordered along thong pairs.
232 * We make an exception for local variables, though, as the independence
233 * guarantee does not apply to those.
235 * The order constraints are used in two places.
236 * Those on scalars are used in check_scalar_live_ranges to check if
237 * we need to force the scalar to be private. Any non-local scalar
238 * should not be forced scalar if it only appears in independent loops.
239 * Those on non-scalars are added to the coincidence constraints
240 * in compute_schedule because we do not support any array expansion.
241 * Accesses to non-local arrays should not prevent a loop from being
242 * considered coincident so we should indeed remove those constraints
243 * from the order constraints.
245 static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
246 struct gpu_array_info *array, __isl_take isl_union_map *order)
248 int i;
250 for (i = 0; i < prog->scop->pet->n_independence; ++i) {
251 struct pet_independence *pi = prog->scop->pet->independences[i];
252 if (isl_union_set_contains(pi->local, array->space))
253 continue;
255 order = isl_union_map_subtract(order,
256 isl_union_map_copy(pi->filter));
259 return order;
262 /* For each array in "prog", store the (untagged) order dependences
263 * derived from the array in array->dep_order.
264 * In particular, consider all references that access the given array
265 * and take the order dependences that have one of these references
266 * as source. (Since an order dependence relates two references to
267 * the same array, the target of these order dependences will also
268 * be one of these references.)
269 * Additionally, store the union of these array->dep_order relations
270 * for all non-scalar arrays in prog->array_order.
272 void collect_order_dependences(struct gpu_prog *prog)
274 int i;
275 isl_space *space;
276 isl_union_map *accesses;
278 space = isl_union_map_get_space(prog->read);
279 prog->array_order = isl_union_map_empty(space);
281 accesses = isl_union_map_copy(prog->scop->tagged_reads);
282 accesses = isl_union_map_union(accesses,
283 isl_union_map_copy(prog->scop->tagged_may_writes));
284 accesses = isl_union_map_universe(accesses);
285 accesses = isl_union_map_apply_range(accesses,
286 isl_union_map_copy(prog->to_outer));
288 for (i = 0; i < prog->n_array; ++i) {
289 struct gpu_array_info *array = &prog->array[i];
290 isl_set *set;
291 isl_union_set *uset;
292 isl_union_map *order;
294 set = isl_set_universe(isl_space_copy(array->space));
295 uset = isl_union_set_from_set(set);
296 uset = isl_union_map_domain(
297 isl_union_map_intersect_range(isl_union_map_copy(accesses),
298 uset));
299 order = isl_union_map_copy(prog->scop->tagged_dep_order);
300 order = isl_union_map_intersect_domain(order, uset);
301 order = isl_union_map_zip(order);
302 order = isl_union_set_unwrap(isl_union_map_domain(order));
303 order = remove_independences(prog, array, order);
304 array->dep_order = order;
306 if (gpu_array_is_scalar(array) && !array->has_compound_element)
307 continue;
309 prog->array_order = isl_union_map_union(prog->array_order,
310 isl_union_map_copy(array->dep_order));
313 isl_union_map_free(accesses);
316 /* Construct a gpu_array_info for each array referenced by prog->scop and
317 * collect them in prog->array.
319 * The sizes are based on the extents and the set of possibly accessed
320 * elements by "prog".
321 * If there are any member accesses involved, then they are first mapped
322 * to the outer arrays of structs.
324 * If we are allowing live range reordering, then also set
325 * the dep_order field. Otherwise leave it NULL.
327 static int collect_array_info(struct gpu_prog *prog)
329 int i;
330 int r = 0;
331 isl_union_set *arrays;
333 arrays = isl_union_map_range(isl_union_map_copy(prog->read));
334 arrays = isl_union_set_union(arrays,
335 isl_union_map_range(isl_union_map_copy(prog->may_write)));
337 arrays = isl_union_set_apply(arrays,
338 isl_union_map_copy(prog->to_outer));
340 arrays = isl_union_set_coalesce(arrays);
342 prog->n_array = prog->scop->pet->n_array;
343 prog->array = isl_calloc_array(prog->ctx,
344 struct gpu_array_info, prog->n_array);
345 assert(prog->array);
346 for (i = 0; i < prog->scop->pet->n_array; ++i)
347 if (extract_array_info(prog, &prog->array[i],
348 prog->scop->pet->arrays[i], arrays) < 0)
349 r = -1;
351 isl_union_set_free(arrays);
353 if (prog->scop->options->live_range_reordering)
354 collect_order_dependences(prog);
356 return r;
359 static void free_array_info(struct gpu_prog *prog)
361 int i, j;
363 for (i = 0; i < prog->n_array; ++i) {
364 int n_index = prog->array[i].n_index;
365 free(prog->array[i].type);
366 free(prog->array[i].name);
367 for (j = 0; j < n_index; ++j)
368 isl_pw_aff_free(prog->array[i].bound[j]);
369 isl_space_free(prog->array[i].space);
370 isl_set_free(prog->array[i].extent);
371 free(prog->array[i].bound);
372 free(prog->array[i].refs);
373 isl_union_map_free(prog->array[i].dep_order);
375 free(prog->array);
378 /* Check if a gpu array is a scalar. A scalar is a value that is not stored
379 * as an array or through a pointer reference, but as a single data element.
380 * At the moment, scalars are represented as zero-dimensional arrays.
381 * Note that the single data element may be an entire structure.
383 int gpu_array_is_scalar(struct gpu_array_info *array)
385 return array->n_index == 0;
388 /* Is "array" a read-only scalar?
390 int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
392 return array->read_only_scalar;
395 /* Return the set of parameter values for which the array has a positive
396 * size in all dimensions.
397 * If the sizes are only valid for some parameter values, then those
398 * constraints are also taken into account.
400 __isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
402 int i;
403 isl_space *space;
404 isl_set *guard;
406 space = isl_space_params(isl_space_copy(array->space));
407 guard = isl_set_universe(space);
409 for (i = 0; i < array->n_index; ++i) {
410 isl_pw_aff *bound;
411 isl_set *guard_i, *zero;
413 bound = isl_pw_aff_copy(array->bound[i]);
414 guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
415 zero = isl_pw_aff_zero_set(bound);
416 guard_i = isl_set_subtract(guard_i, zero);
417 guard = isl_set_intersect(guard, guard_i);
420 return guard;
423 /* Internal data structure for extract_size_of_type.
424 * "type" specifies the name of the space that we want to extract.
425 * "res" is used to store the subset of that space.
427 struct ppcg_extract_size_data {
428 const char *type;
429 isl_set *res;
432 /* This function is called for each set in a union_set.
433 * If the name of the set matches data->type, we store the
434 * set in data->res.
436 static int extract_size_of_type(__isl_take isl_set *size, void *user)
438 struct ppcg_extract_size_data *data = user;
439 const char *name;
441 name = isl_set_get_tuple_name(size);
442 if (name && !strcmp(name, data->type)) {
443 data->res = size;
444 return -1;
447 isl_set_free(size);
448 return 0;
451 /* Given a union map { kernel[i] -> *[...] },
452 * return the range in the space called "type" for the kernel with
453 * sequence number "id".
455 static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
456 const char *type, int id)
458 isl_space *space;
459 isl_set *dom;
460 isl_union_set *local_sizes;
461 struct ppcg_extract_size_data data = { type, NULL };
463 if (!sizes)
464 return NULL;
466 space = isl_union_map_get_space(sizes);
467 space = isl_space_set_from_params(space);
468 space = isl_space_add_dims(space, isl_dim_set, 1);
469 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
470 dom = isl_set_universe(space);
471 dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
473 local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
474 isl_union_map_copy(sizes));
475 isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
476 isl_union_set_free(local_sizes);
477 return data.res;
480 /* Given a singleton set, extract the first (at most *len) elements
481 * of the single integer tuple into *sizes and update *len if needed.
483 static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
485 int i;
486 int dim;
488 if (!set)
489 return;
491 dim = isl_set_dim(set, isl_dim_set);
492 if (dim < *len)
493 *len = dim;
495 for (i = 0; i < *len; ++i) {
496 isl_val *v;
498 v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
499 assert(v);
501 sizes[i] = isl_val_get_num_si(v);
502 isl_val_free(v);
505 isl_set_free(set);
508 /* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
509 * if the option debug->dump_sizes is set.
511 static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
512 int *sizes, int len)
514 int i;
515 isl_space *space;
516 isl_map *map;
518 if (!gen->options->debug->dump_sizes)
519 return;
521 space = isl_union_map_get_space(gen->used_sizes);
522 space = isl_space_set_from_params(space);
523 space = isl_space_add_dims(space, isl_dim_set, 1);
524 space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
525 space = isl_space_from_domain(space);
526 space = isl_space_add_dims(space, isl_dim_out, len);
527 space = isl_space_set_tuple_name(space, isl_dim_out, type);
529 map = isl_map_universe(space);
530 map = isl_map_fix_si(map, isl_dim_in, 0, id);
531 for (i = 0; i < len; ++i)
532 map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
534 gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
537 /* Extract user specified "tile" sizes from the "sizes" command line option,
538 * defaulting to option->tile_size in each dimension.
539 * Add the effectively used sizes to gen->used_sizes.
541 static void read_tile_sizes(struct gpu_gen *gen)
543 int n;
544 isl_set *size;
546 gen->tile_size = isl_alloc_array(gen->ctx, int, gen->tile_len);
547 assert(gen->tile_size);
548 for (n = 0; n < gen->tile_len; ++n)
549 gen->tile_size[n] = gen->options->tile_size;
551 size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
552 read_sizes_from_set(size, gen->tile_size, &gen->tile_len);
553 set_used_sizes(gen, "tile", gen->kernel_id,
554 gen->tile_size, gen->tile_len);
556 if (gen->n_parallel > gen->tile_len)
557 gen->n_parallel = gen->tile_len;
560 /* Extract user specified "block" sizes from the "sizes" command line option,
561 * after filling in some potentially useful defaults.
562 * Add the effectively used sizes to gen->used_sizes.
564 static void read_block_sizes(struct gpu_gen *gen)
566 int n;
567 isl_set *size;
569 n = gen->n_parallel;
570 gen->n_block = (n <= 3) ? n : 3;
571 switch (gen->n_block) {
572 case 1:
573 gen->block_dim[0] = 512;
574 break;
575 case 2:
576 gen->block_dim[0] = 32;
577 gen->block_dim[1] = 16;
578 break;
579 default:
580 gen->block_dim[0] = 32;
581 gen->block_dim[1] = 4;
582 gen->block_dim[2] = 4;
583 break;
586 size = extract_sizes(gen->sizes, "block", gen->kernel_id);
587 read_sizes_from_set(size, gen->block_dim, &gen->n_block);
588 set_used_sizes(gen, "block", gen->kernel_id,
589 gen->block_dim, gen->n_block);
592 /* Extract user specified "grid" sizes from the "sizes" command line option,
593 * after filling in some potentially useful defaults.
594 * Add the effectively used sizes to gen->used_sizes.
596 static void read_grid_sizes(struct gpu_gen *gen)
598 int n = gen->n_parallel;
599 isl_set *size;
601 gen->n_grid = (n <= 2) ? n : 2;
602 switch (gen->n_grid) {
603 case 1:
604 gen->grid_dim[0] = 32768;
605 break;
606 default:
607 gen->grid_dim[0] = 256;
608 gen->grid_dim[1] = 256;
609 break;
612 size = extract_sizes(gen->sizes, "grid", gen->kernel_id);
613 read_sizes_from_set(size, gen->grid_dim, &gen->n_grid);
614 set_used_sizes(gen, "grid", gen->kernel_id, gen->grid_dim, gen->n_grid);
617 /* Extract user specified sizes from the "sizes" command line option
618 * after filling in some potentially useful defaults.
620 static void read_sizes(struct gpu_gen *gen)
622 read_tile_sizes(gen);
623 read_block_sizes(gen);
624 read_grid_sizes(gen);
627 static void *free_stmts(struct gpu_stmt *stmts, int n)
629 int i;
631 if (!stmts)
632 return NULL;
634 for (i = 0; i < n; ++i) {
635 struct gpu_stmt_access *access, *next;
637 for (access = stmts[i].accesses; access; access = next) {
638 next = access->next;
639 isl_id_free(access->ref_id);
640 isl_map_free(access->access);
641 isl_map_free(access->tagged_access);
642 free(access);
645 isl_id_free(stmts[i].id);
647 free(stmts);
649 return NULL;
652 /* Construct a map from a domain of dimensionality "len"
653 * to a domain of dimensionality "len" + "tile_len" that tiles
654 * the "tile_len" coordinates starting at "first".
655 * In particular, [s_i] -> [s_i / tile_size[i], s_i % tile_size[i]].
656 * "dim" prescribes the parameters.
658 static __isl_give isl_map *tile(__isl_take isl_space *dim, int len,
659 int first, int tile_len, int *tile_size)
661 int i;
662 isl_basic_map *bmap;
663 isl_constraint *c;
664 isl_local_space *ls;
666 dim = isl_space_add_dims(dim, isl_dim_in, len);
667 dim = isl_space_add_dims(dim, isl_dim_out, len + tile_len);
668 bmap = isl_basic_map_universe(isl_space_copy(dim));
669 ls = isl_local_space_from_space(dim);
671 for (i = 0; i < len - tile_len; ++i) {
672 int j = i < first ? i : i + tile_len;
673 int k = i < first ? i : i + 2 * tile_len;
675 c = isl_equality_alloc(isl_local_space_copy(ls));
676 c = isl_constraint_set_coefficient_si(c, isl_dim_in, j, -1);
677 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
678 bmap = isl_basic_map_add_constraint(bmap, c);
681 for (i = 0; i < tile_len; ++i) {
682 c = isl_equality_alloc(isl_local_space_copy(ls));
683 c = isl_constraint_set_coefficient_si(c, isl_dim_in,
684 first + i, -1);
685 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
686 first + i, tile_size[i]);
687 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
688 first + i + tile_len, 1);
689 bmap = isl_basic_map_add_constraint(bmap, c);
691 c = isl_inequality_alloc(isl_local_space_copy(ls));
692 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
693 first + i + tile_len, 1);
694 bmap = isl_basic_map_add_constraint(bmap, c);
696 c = isl_inequality_alloc(isl_local_space_copy(ls));
697 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
698 first + i + tile_len, -1);
699 c = isl_constraint_set_constant_si(c, tile_size[i] - 1);
700 bmap = isl_basic_map_add_constraint(bmap, c);
703 isl_local_space_free(ls);
705 return isl_map_from_basic_map(bmap);
708 /* Construct a map from a domain of dimensionality "len"
709 * to a domain of dimensionality "len" + "wrap_len" that "wraps"
710 * the "wrap_len" coordinates starting at "first" according to "wrap_size".
711 * In particular, [s_i] -> [s_i, s_i % wrap_size[i]].
712 * To do so, we need extra variables corresponding to [s_i / wrap_size[i]],
713 * that are projected out at the end.
714 * "dim" prescribes the parameters.
716 static __isl_give isl_map *wrap(__isl_take isl_space *dim, int len,
717 int first, int wrap_len, int *wrap_size)
719 int i;
720 isl_basic_map *bmap;
721 isl_constraint *c;
722 isl_local_space *ls;
724 dim = isl_space_add_dims(dim, isl_dim_in, len);
725 dim = isl_space_add_dims(dim, isl_dim_out, len + 2 * wrap_len);
726 bmap = isl_basic_map_universe(isl_space_copy(dim));
727 ls = isl_local_space_from_space(dim);
729 for (i = 0; i < len; ++i) {
730 int k = i < first + wrap_len ? i : i + 2 * wrap_len;
732 c = isl_equality_alloc(isl_local_space_copy(ls));
733 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, -1);
734 c = isl_constraint_set_coefficient_si(c, isl_dim_out, k, 1);
735 bmap = isl_basic_map_add_constraint(bmap, c);
738 for (i = 0; i < wrap_len; ++i) {
739 c = isl_equality_alloc(isl_local_space_copy(ls));
740 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
741 first + i, -1);
742 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
743 first + wrap_len + i, 1);
744 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
745 first + 2 * wrap_len + i, wrap_size[i]);
746 bmap = isl_basic_map_add_constraint(bmap, c);
748 c = isl_inequality_alloc(isl_local_space_copy(ls));
749 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
750 first + wrap_len + i, 1);
751 bmap = isl_basic_map_add_constraint(bmap, c);
753 c = isl_inequality_alloc(isl_local_space_copy(ls));
754 c = isl_constraint_set_coefficient_si(c, isl_dim_out,
755 first + wrap_len + i, -1);
756 c = isl_constraint_set_constant_si(c, wrap_size[i] - 1);
757 bmap = isl_basic_map_add_constraint(bmap, c);
760 isl_local_space_free(ls);
762 bmap = isl_basic_map_project_out(bmap, isl_dim_out,
763 first + 2 * wrap_len, wrap_len);
765 return isl_map_from_basic_map(bmap);
768 /* Tile the B loops over the tile sizes and then tile/wrap
769 * the T1 loops over the blocks.
771 static __isl_give isl_union_map *tile_schedule(struct gpu_gen *gen,
772 __isl_take isl_union_map *sched)
774 isl_space *dim;
775 isl_map *tiling, *block_tiling;
777 dim = isl_union_map_get_space(sched);
778 tiling = tile(isl_space_copy(dim), gen->untiled_len,
779 gen->tile_first, gen->tile_len, gen->tile_size);
781 if (gen->options->wrap)
782 block_tiling = wrap(dim, gen->untiled_len + gen->tile_len,
783 gen->tile_first, gen->n_grid, gen->grid_dim);
784 else
785 block_tiling = tile(dim, gen->untiled_len + gen->tile_len,
786 gen->tile_first, gen->n_grid, gen->grid_dim);
788 gen->tiled_len = gen->untiled_len + gen->tile_len + gen->n_grid;
790 tiling = isl_map_apply_range(tiling, block_tiling);
792 sched = isl_union_map_apply_range(sched,
793 isl_union_map_from_map(tiling));
795 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
797 return sched;
800 /* Equate the "T1P" iterators in the tiled schedule "sched"
801 * to the block dimensions.
803 static __isl_give isl_union_map *parametrize_tiled_schedule(
804 struct gpu_gen *gen, __isl_take isl_union_map *sched)
806 isl_space *dim;
807 isl_set *par;
809 dim = isl_union_map_get_space(sched);
810 par = parametrization(dim, gen->tiled_len,
811 gen->tile_first + gen->n_grid, gen->kernel->block_ids);
812 sched = isl_union_map_intersect_range(sched,
813 isl_union_set_from_set(par));
815 return sched;
818 /* Tile/wrap the P1 loops over the threads.
820 static __isl_give isl_union_map *thread_tile_schedule(struct gpu_gen *gen,
821 __isl_take isl_union_map *sched)
823 isl_space *dim;
824 isl_map *tiling;
825 isl_set *par;
827 dim = isl_union_map_get_space(sched);
829 if (gen->options->wrap)
830 tiling = wrap(isl_space_copy(dim), gen->tiled_len,
831 gen->shared_len, gen->n_block, gen->block_dim);
832 else
833 tiling = tile(isl_space_copy(dim), gen->tiled_len,
834 gen->shared_len, gen->n_block, gen->block_dim);
835 gen->thread_tiled_len = gen->tiled_len + gen->n_block;
837 sched = isl_union_map_apply_range(sched,
838 isl_union_map_from_map(tiling));
840 par = parametrization(dim, gen->thread_tiled_len,
841 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
842 gen->kernel->thread_ids);
843 sched = isl_union_map_intersect_range(sched,
844 isl_union_set_from_set(par));
846 gen->shared_len = gen->tile_first + gen->tile_len + gen->n_grid;
848 return sched;
851 /* If the user asked for it, scale the shared memory tile loops
852 * (T1T and T2) of "sched" by gen->tile_size[i].
853 * If we are not performing "wrapping", then additionally scale the T1P
854 * loops by gen->grid_dim[i].
856 static __isl_give isl_union_map *scale_tile_loops(struct gpu_gen *gen,
857 __isl_take isl_union_map *sched)
859 int i;
860 isl_space *dim;
861 isl_basic_map *scale;
862 isl_constraint *c;
863 isl_local_space *ls;
865 if (!gen->options->scale_tile_loops)
866 return sched;
868 dim = isl_union_map_get_space(sched);
869 dim = isl_space_add_dims(dim, isl_dim_in, gen->tiled_len);
870 dim = isl_space_add_dims(dim, isl_dim_out, gen->tiled_len);
871 scale = isl_basic_map_universe(isl_space_copy(dim));
872 ls = isl_local_space_from_space(dim);
874 for (i = 0; i < gen->tiled_len; ++i) {
875 int f = 1;
877 if (i >= gen->tile_first && i < gen->tile_first + gen->n_grid) {
878 f = gen->tile_size[i - gen->tile_first];
879 if (!gen->options->wrap)
880 f *= gen->grid_dim[i - gen->tile_first];
881 } else if (i >= gen->tile_first + gen->n_grid &&
882 i < gen->tile_first + gen->n_grid + gen->tile_len) {
883 f = gen->tile_size[i - (gen->tile_first + gen->n_grid)];
886 c = isl_equality_alloc(isl_local_space_copy(ls));
887 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
888 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
889 scale = isl_basic_map_add_constraint(scale, c);
892 isl_local_space_free(ls);
894 sched = isl_union_map_apply_range(sched,
895 isl_union_map_from_map(isl_map_from_basic_map(scale)));
897 return sched;
900 /* If we are not performing "wrapping" and if the user asked for it,
901 * scale the thread tile loops (P1T) of "sched" by gen->block_dim[i].
903 static __isl_give isl_union_map *scale_thread_tile_loops(struct gpu_gen *gen,
904 __isl_take isl_union_map *sched)
906 int i;
907 isl_space *dim;
908 isl_basic_map *scale;
909 isl_constraint *c;
910 isl_local_space *ls;
912 if (gen->options->wrap)
913 return sched;
914 if (!gen->options->scale_tile_loops)
915 return sched;
917 dim = isl_union_map_get_space(sched);
918 dim = isl_space_add_dims(dim, isl_dim_in, gen->thread_tiled_len);
919 dim = isl_space_add_dims(dim, isl_dim_out, gen->thread_tiled_len);
920 scale = isl_basic_map_universe(isl_space_copy(dim));
921 ls = isl_local_space_from_space(dim);
923 for (i = 0; i < gen->thread_tiled_len; ++i) {
924 int f = 1;
926 if (i >= gen->shared_len &&
927 i < gen->shared_len + gen->n_block)
928 f = gen->block_dim[i - gen->shared_len];
930 c = isl_equality_alloc(isl_local_space_copy(ls));
931 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
932 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
933 scale = isl_basic_map_add_constraint(scale, c);
936 isl_local_space_free(ls);
938 sched = isl_union_map_apply_range(sched,
939 isl_union_map_from_map(isl_map_from_basic_map(scale)));
941 return sched;
944 /* If we are not performing "wrapping" and if the user asked for it,
945 * scale the "n_tile" loops starting at "first" of "sched" by gen->block_dim[i].
947 static __isl_give isl_union_map *scale_access_tile_loops(struct gpu_gen *gen,
948 __isl_take isl_union_map *sched, int len, int first, int n_tile)
950 int i;
951 isl_space *dim;
952 isl_basic_map *scale;
953 isl_constraint *c;
954 isl_local_space *ls;
956 if (gen->options->wrap)
957 return sched;
958 if (!gen->options->scale_tile_loops)
959 return sched;
961 dim = isl_union_map_get_space(sched);
962 dim = isl_space_add_dims(dim, isl_dim_in, len);
963 dim = isl_space_add_dims(dim, isl_dim_out, len);
964 scale = isl_basic_map_universe(isl_space_copy(dim));
965 ls = isl_local_space_from_space(dim);
967 for (i = 0; i < len; ++i) {
968 int f = 1;
970 if (i >= first && i < first + n_tile)
971 f = gen->kernel->block_dim[i - first];
973 c = isl_equality_alloc(isl_local_space_copy(ls));
974 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i, f);
975 c = isl_constraint_set_coefficient_si(c, isl_dim_out, i, -1);
976 scale = isl_basic_map_add_constraint(scale, c);
979 isl_local_space_free(ls);
981 sched = isl_union_map_apply_range(sched,
982 isl_union_map_from_map(isl_map_from_basic_map(scale)));
984 return sched;
987 /* Add parameters p[i] with identifiers "ids" to "set",
988 * with bounds to 0 <= p[i] < size[i].
990 __isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
991 int *size, __isl_keep isl_id_list *ids)
993 int i, len;
994 unsigned nparam;
996 len = isl_id_list_n_id(ids);
997 nparam = isl_set_dim(set, isl_dim_param);
998 set = isl_set_add_dims(set, isl_dim_param, len);
1000 for (i = 0; i < len; ++i) {
1001 isl_id *id;
1003 id = isl_id_list_get_id(ids, i);
1004 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1005 set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
1006 set = isl_set_upper_bound_si(set, isl_dim_param,
1007 nparam + i, size[i] - 1);
1010 return set;
1013 /* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
1014 * with
1016 * { : 0 <= p[i] < size[i] }
1018 * or an overapproximation.
1020 static __isl_give isl_set *add_bounded_parameters_dynamic(
1021 __isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
1022 __isl_keep isl_id_list *ids)
1024 int i, len;
1025 unsigned nparam;
1026 isl_space *space;
1027 isl_local_space *ls;
1029 len = isl_multi_pw_aff_dim(size, isl_dim_out);
1030 nparam = isl_set_dim(set, isl_dim_param);
1031 set = isl_set_add_dims(set, isl_dim_param, len);
1033 for (i = 0; i < len; ++i) {
1034 isl_id *id;
1036 id = isl_id_list_get_id(ids, i);
1037 set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
1040 space = isl_space_params(isl_set_get_space(set));
1041 ls = isl_local_space_from_space(space);
1042 for (i = 0; i < len; ++i) {
1043 isl_pw_aff *param, *size_i, *zero;
1044 isl_set *bound;
1046 param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
1047 isl_dim_param, nparam + i);
1049 size_i = isl_multi_pw_aff_get_pw_aff(size, i);
1050 bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
1051 bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
1052 set = isl_set_intersect_params(set, bound);
1054 zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
1055 bound = isl_pw_aff_ge_set(param, zero);
1056 set = isl_set_intersect_params(set, bound);
1058 isl_local_space_free(ls);
1060 return set;
1063 /* Construct a map from an access to group->array to the corresponding
1064 * shared/private memory tile.
1065 * The map is of the form
1067 * { [D[i] -> A[a]] -> T[t] }
1069 * where D represents the initial shared_len dimensions
1070 * of the computed schedule.
1072 static __isl_give isl_map *shift_access(struct gpu_array_ref_group *group)
1074 struct gpu_array_tile *tile;
1075 isl_multi_aff *tiling;
1077 tile = group->private_tile;
1078 if (!tile)
1079 tile = group->shared_tile;
1081 tiling = isl_multi_aff_copy(tile->tiling);
1083 return isl_map_from_multi_aff(tiling);
1086 /* Given a schedule that iterates over all elements in a piece of an array,
1087 * perform tiling/wrapping over the threads.
1089 * In particular, we tile the final iterators so that the final thread
1090 * dimension runs over the final array dimension.
1091 * However, if those final iterators have only a single iteration,
1092 * we try to tile earlier iterators instead.
1094 static __isl_give isl_map *tile_access_schedule(struct gpu_gen *gen,
1095 __isl_take isl_map *sched)
1097 isl_space *dim;
1098 isl_union_map *usched;
1099 isl_map *tiling;
1100 isl_set *par;
1101 unsigned nvar = isl_map_dim(sched, isl_dim_out);
1102 int n_tile;
1103 int first;
1105 n_tile = gen->kernel->n_block;
1106 if (n_tile > nvar) {
1107 int i;
1108 sched = isl_map_insert_dims(sched,
1109 isl_dim_out, 0, n_tile - nvar);
1110 for (i = 0; i < n_tile - nvar; ++i)
1111 sched = isl_map_fix_si(sched, isl_dim_out, i, 0);
1112 nvar = n_tile;
1115 first = nvar - n_tile;
1117 for (; first > 0; first --)
1118 if (!map_plain_is_fixed(sched, isl_dim_out, first + n_tile - 1))
1119 break;
1121 dim = isl_map_get_space(sched);
1122 dim = isl_space_params(dim);
1123 if (gen->options->wrap)
1124 tiling = wrap(isl_space_copy(dim), nvar, first,
1125 n_tile, gen->kernel->block_dim);
1126 else
1127 tiling = tile(isl_space_copy(dim), nvar, first,
1128 n_tile, gen->kernel->block_dim);
1129 sched = isl_map_apply_range(sched, tiling);
1131 par = parametrization(dim, nvar + n_tile, first + n_tile,
1132 gen->kernel->thread_ids);
1133 sched = isl_map_intersect_range(sched, par);
1135 usched = isl_union_map_from_map(sched);
1136 usched = scale_access_tile_loops(gen, usched, nvar + n_tile,
1137 first, n_tile);
1138 sched = isl_map_from_union_map(usched);
1140 return sched;
1143 /* Return the union of all tagged access relations in the group.
1145 static __isl_give isl_union_map *group_tagged_access_relation(
1146 struct gpu_array_ref_group *group)
1148 int i;
1149 isl_union_map *access;
1151 access = isl_union_map_empty(isl_map_get_space(group->access));
1152 for (i = 0; i < group->n_ref; ++i) {
1153 isl_map *map_i;
1155 map_i = isl_map_copy(group->refs[i]->tagged_access);
1156 access = isl_union_map_union(access,
1157 isl_union_map_from_map(map_i));
1160 return access;
1163 /* Return the extent of "array", recomputed from the bounds.
1164 * The recomputed extent may be simpler than the original extent.
1166 static __isl_give isl_set *array_extent(struct gpu_array_info *array)
1168 int i;
1169 isl_id *id;
1170 isl_space *space;
1171 isl_local_space *ls;
1172 isl_set *extent;
1174 id = isl_set_get_tuple_id(array->extent);
1175 space = isl_set_get_space(array->extent);
1176 extent = isl_set_universe(isl_space_copy(space));
1177 ls = isl_local_space_from_space(space);
1178 for (i = 0; i < array->n_index; ++i) {
1179 isl_pw_aff *bound;
1180 isl_aff *aff;
1181 isl_pw_aff *index;
1182 isl_set *lt;
1184 extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
1186 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1187 isl_dim_set, i);
1188 index = isl_pw_aff_from_aff(aff);
1189 bound = isl_pw_aff_copy(array->bound[i]);
1190 bound = isl_pw_aff_from_range(bound);
1191 bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
1192 bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
1193 isl_id_copy(id));
1194 lt = isl_pw_aff_lt_set(index, bound);
1195 extent = isl_set_intersect(extent, lt);
1197 isl_local_space_free(ls);
1198 isl_id_free(id);
1200 return extent;
1203 /* Return a map from the first shared_len dimensions of the computed
1204 * schedule to the array tile in
1205 * global memory that corresponds to the shared memory copy.
1207 * In particular, return a map
1209 * { D[i] -> A[a] }
1211 * with constraints
1213 * tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
1215 * and
1217 * 0 <= a <= array_size - 1 (2)
1219 * Note that if some stride has been detected (i.e., when
1220 * group->shared_tile->bound[i].shift is set), then a in (1) refers
1221 * to the shifted and scaled down version.
1223 * Constraints (1) are obtained by mapping the size constraints on the
1224 * shared/private memory tile back to the access relation.
1225 * Constraints (2) are obtained from the (recomputed) extent.
1227 static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
1229 int i;
1230 int n_index = group->array->n_index;
1231 isl_map *tile;
1232 isl_space *space;
1233 isl_set *local;
1234 isl_set *extent;
1236 space = isl_multi_aff_get_space(group->shared_tile->tiling);
1237 space = isl_space_range(space);
1238 local = isl_set_universe(space);
1239 for (i = 0; i < n_index; ++i) {
1240 isl_val *bound;
1242 local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
1243 bound = isl_val_copy(group->shared_tile->bound[i].size);
1244 bound = isl_val_sub_ui(bound, 1);
1245 local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
1247 local = isl_set_preimage_multi_aff(local,
1248 isl_multi_aff_copy(group->shared_tile->tiling));
1249 tile = isl_set_unwrap(local);
1250 extent = array_extent(group->array);
1251 tile = isl_map_intersect_range(tile, extent);
1253 return tile;
1256 /* Given a mapping "iterator_map" from the AST schedule to a domain,
1257 * return the corresponding mapping from the AST schedule to
1258 * to the first shared_len dimensions of the schedule computed by PPCG.
1260 static __isl_give isl_pw_multi_aff *compute_sched_to_shared(struct gpu_gen *gen,
1261 __isl_take isl_pw_multi_aff *iterator_map)
1263 isl_union_map *umap;
1264 isl_space *space;
1265 isl_map *map, *sched;;
1267 space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
1268 space = isl_space_from_domain(space);
1269 space = isl_space_add_dims(space, isl_dim_out, gen->shared_len);
1271 umap = isl_union_map_copy(gen->shared_sched);
1272 umap = isl_union_map_apply_range(umap,
1273 isl_union_map_copy(gen->shared_proj));
1274 map = isl_union_map_extract_map(umap, space);
1275 isl_union_map_free(umap);
1277 sched = isl_map_preimage_domain_pw_multi_aff(map, iterator_map);
1278 sched = isl_map_detect_equalities(sched);
1280 return isl_pw_multi_aff_from_map(sched);
1283 /* Set unroll[j] if the input dimension j is involved in
1284 * the index expression represented by ma.
1286 static int check_unroll(__isl_take isl_set *set, __isl_take isl_multi_aff *ma,
1287 void *user)
1289 int i, j;
1290 int n_in = isl_multi_aff_dim(ma, isl_dim_in);
1291 int n_out = isl_multi_aff_dim(ma, isl_dim_out);
1292 int *unroll = user;
1294 for (i = 0; i < n_out; ++i) {
1295 isl_aff *aff;
1297 aff = isl_multi_aff_get_aff(ma, i);
1298 for (j = 0; j < n_in; ++j)
1299 if (isl_aff_involves_dims(aff, isl_dim_in, j, 1))
1300 unroll[j] = 1;
1301 isl_aff_free(aff);
1304 isl_set_free(set);
1305 isl_multi_aff_free(ma);
1306 return 0;
1309 /* Given an array pos mapping input dimensions to the corresponding
1310 * output dimension, construct the corresponding map.
1312 static __isl_give isl_map *permutation(__isl_take isl_space *dim,
1313 int *pos, int len)
1315 int i;
1316 isl_constraint *c;
1317 isl_basic_map *bmap;
1318 isl_local_space *ls;
1320 dim = isl_space_add_dims(dim, isl_dim_in, len);
1321 dim = isl_space_add_dims(dim, isl_dim_out, len);
1322 bmap = isl_basic_map_universe(isl_space_copy(dim));
1323 ls = isl_local_space_from_space(dim);
1325 for (i = 0; i < len; ++i) {
1326 c = isl_equality_alloc(isl_local_space_copy(ls));
1327 c = isl_constraint_set_coefficient_si(c, isl_dim_in, i,
1328 -1);
1329 c = isl_constraint_set_coefficient_si(c, isl_dim_out, pos[i],
1331 bmap = isl_basic_map_add_constraint(bmap, c);
1333 isl_local_space_free(ls);
1335 return isl_map_from_basic_map(bmap);
1338 /* Remove the private tiles from all array reference groups,
1339 * except for the groups of arrays that are marked force_private.
1341 static void remove_private_tiles(struct gpu_gen *gen)
1343 int i, j;
1345 for (i = 0; i < gen->prog->n_array; ++i) {
1346 struct gpu_array_info *array = &gen->prog->array[i];
1348 if (array->force_private)
1349 continue;
1351 for (j = 0; j < array->n_group; ++j) {
1352 struct gpu_array_ref_group *group = array->groups[j];
1354 group->private_tile =
1355 gpu_array_tile_free(group->private_tile);
1360 /* Find all loops involved in any of the index expressions for any of
1361 * the private accesses, move them innermost and then mark them as
1362 * requiring unrolling by setting gen->first_unroll.
1363 * The loops involved should all be parallel because of the checks
1364 * we performed in check_private_group_access. Moving them innermost
1365 * is therefore a valid transformation.
1367 * If any of the arrays are marked force_private, however, then
1368 * those loops may not be parallel with respect to the marked arrays.
1369 * If any of the loops would have to be moved innermost for the
1370 * (non forced) private accesses and if there are any force_private
1371 * arrays, then we revert the decision to map the selected arrays
1372 * to private memory. An alternative solution would be to expand
1373 * the force_private arrays.
1375 * Loops up to gen->shared_len are generated before the mapping to
1376 * threads is applied. They should therefore be ignored.
1378 * We compute the hidden equalities of the schedule first
1379 * since we will need them in our calls to isl_pw_multi_aff_from_map
1380 * and because we want to make sure that the same equalities
1381 * are also available to the code generator.
1383 static __isl_give isl_union_map *interchange_for_unroll(struct gpu_gen *gen,
1384 __isl_take isl_union_map *sched)
1386 int i, j;
1387 int unroll[gen->thread_tiled_len];
1388 int perm[gen->thread_tiled_len];
1389 isl_space *dim;
1390 isl_map *permute;
1391 int len = gen->shared_len + gen->n_parallel + gen->n_block;
1393 gen->first_unroll = -1;
1395 sched = isl_union_map_detect_equalities(sched);
1396 for (i = 0; i < gen->thread_tiled_len; ++i)
1397 unroll[i] = 0;
1398 for (i = 0; i < gen->prog->n_array; ++i) {
1399 struct gpu_array_info *array = &gen->prog->array[i];
1401 for (j = 0; j < array->n_group; ++j) {
1402 isl_union_map *access;
1403 isl_map *acc;
1404 isl_pw_multi_aff *pma;
1406 if (!array->groups[j]->private_tile)
1407 continue;
1409 access = gpu_array_ref_group_access_relation(
1410 array->groups[j], 1, 1);
1411 access = isl_union_map_apply_domain(access,
1412 isl_union_map_copy(sched));
1414 acc = isl_map_from_union_map(access);
1415 pma = isl_pw_multi_aff_from_map(acc);
1416 isl_pw_multi_aff_foreach_piece(pma,
1417 &check_unroll, unroll);
1419 isl_pw_multi_aff_free(pma);
1423 for (i = gen->shared_len; i < len; ++i)
1424 if (unroll[i])
1425 break;
1427 if (i >= len)
1428 return sched;
1430 for (i = len; i < gen->thread_tiled_len; ++i)
1431 if (unroll[i])
1432 return sched;
1434 if (gen->any_force_private) {
1435 remove_private_tiles(gen);
1436 return sched;
1439 j = 0;
1440 for (i = 0; i < gen->shared_len; ++i)
1441 perm[i] = j++;
1442 for (i = gen->shared_len; i < gen->thread_tiled_len; ++i)
1443 if (!unroll[i])
1444 perm[i] = j++;
1445 gen->first_unroll = j - gen->shared_len;
1446 for (i = gen->shared_len; i < len; ++i)
1447 if (unroll[i])
1448 perm[i] = j++;
1450 dim = isl_union_map_get_space(sched);
1451 permute = permutation(dim, perm, gen->thread_tiled_len);
1452 sched = isl_union_map_apply_range(sched,
1453 isl_union_map_from_map(permute));
1455 return sched;
1458 /* Construct a map with input the shared tile loops and the loops that
1459 * will be wrapped around the threads that relates these later loops
1460 * to the thread indices and then projects them out.
1462 static __isl_give isl_map *compute_privatization(struct gpu_gen *gen)
1464 isl_map *priv;
1465 isl_map *tiling;
1466 isl_map *proj;
1467 isl_set *par;
1468 isl_space *dim;
1470 dim = isl_union_map_get_space(gen->shared_sched);
1472 if (gen->options->wrap)
1473 tiling = wrap(isl_space_copy(dim), gen->shared_len + gen->n_block,
1474 gen->shared_len, gen->n_block, gen->block_dim);
1475 else
1476 tiling = tile(isl_space_copy(dim), gen->shared_len + gen->n_block,
1477 gen->shared_len, gen->n_block, gen->block_dim);
1479 priv = tiling;
1481 par = parametrization(dim, gen->shared_len + 2 * gen->n_block,
1482 gen->tile_first + gen->tile_len + gen->n_grid + gen->n_block,
1483 gen->kernel->thread_ids);
1485 priv = isl_map_align_params(priv, isl_set_get_space(par));
1486 priv = isl_map_intersect_range(priv, par);
1488 dim = isl_map_get_space(priv);
1489 dim = isl_space_drop_dims(dim, isl_dim_in, 0, isl_space_dim(dim, isl_dim_in));
1490 dim = isl_space_drop_dims(dim, isl_dim_out, 0, isl_space_dim(dim, isl_dim_out));
1491 proj = projection(dim, gen->shared_len + 2 * gen->n_block,
1492 gen->shared_len);
1494 priv = isl_map_apply_range(priv, proj);
1496 return priv;
1499 /* If max_shared_memory is not set to infinity (-1), then make
1500 * sure that the total amount of shared memory required by the
1501 * array reference groups mapped to shared memory is no larger
1502 * than this maximum.
1504 * We apply a greedy approach and discard (keep in global memory)
1505 * those groups that would result in a total memory size that
1506 * is larger than the maximum.
1508 * This function should be called after any function that may
1509 * affect the decision on whether to place a reference group
1510 * in private, shared or global memory.
1512 static void check_shared_memory_bound(struct gpu_gen *gen)
1514 int i, j;
1515 isl_val *left, *size;
1517 if (gen->options->max_shared_memory < 0)
1518 return;
1520 left = isl_val_int_from_si(gen->ctx, gen->options->max_shared_memory);
1522 for (i = 0; i < gen->prog->n_array; ++i) {
1523 struct gpu_array_info *array = &gen->prog->array[i];
1525 for (j = 0; j < array->n_group; ++j) {
1526 struct gpu_array_ref_group *group;
1528 group = array->groups[j];
1529 if (group->private_tile)
1530 continue;
1531 if (!group->shared_tile)
1532 continue;
1534 size = gpu_array_tile_size(group->shared_tile);
1535 size = isl_val_mul_ui(size, array->size);
1537 if (isl_val_le(size, left)) {
1538 left = isl_val_sub(left, size);
1539 continue;
1541 isl_val_free(size);
1543 group->shared_tile =
1544 gpu_array_tile_free(group->shared_tile);
1548 isl_val_free(left);
1551 /* Compute a tiling for all the array reference groups.
1553 static void compute_group_tilings(struct gpu_gen *gen)
1555 int i, j;
1557 for (i = 0; i < gen->prog->n_array; ++i) {
1558 struct gpu_array_info *array = &gen->prog->array[i];
1560 for (j = 0; j < array->n_group; ++j)
1561 gpu_array_ref_group_compute_tiling(array->groups[j]);
1565 /* Take tiled_sched, project it onto the shared tile loops and
1566 * the loops that will be wrapped over the threads and
1567 * store the result in gen->shared_sched.
1568 * Also compute a projection that projects out the loops that will be
1569 * wrapped over the threads and store this projection in gen->shared_proj.
1571 static void compute_shared_sched(struct gpu_gen *gen)
1573 isl_space *dim;
1574 isl_map *proj;
1575 isl_set *par;
1576 isl_union_map *sched;
1578 sched = isl_union_map_copy(gen->tiled_sched);
1580 dim = isl_union_map_get_space(sched);
1581 proj = projection(dim, gen->tiled_len, gen->shared_len + gen->n_block);
1582 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
1584 dim = isl_union_map_get_space(sched);
1585 proj = projection(dim, gen->shared_len + gen->n_block, gen->shared_len);
1587 gen->shared_sched = sched;
1588 gen->shared_proj = isl_union_map_from_map(proj);
1591 /* Free all array information that is local to the current kernel.
1593 static void free_local_array_info(struct gpu_gen *gen)
1595 int i, j;
1597 for (i = 0; i < gen->prog->n_array; ++i) {
1598 struct gpu_array_info *array = &gen->prog->array[i];
1600 for (j = 0; j < array->n_group; ++j)
1601 gpu_array_ref_group_free(array->groups[j]);
1602 free(array->groups);
1606 /* Compute the size of a bounding box around the origin and "set",
1607 * where "set" is assumed to contain only non-negative elements.
1608 * In particular, compute the maximal value of "set" in each direction
1609 * and add one.
1611 static __isl_give isl_multi_pw_aff *extract_size(__isl_take isl_set *set,
1612 __isl_keep isl_set *context)
1614 int i, n;
1615 isl_multi_pw_aff *mpa;
1617 n = isl_set_dim(set, isl_dim_set);
1618 mpa = isl_multi_pw_aff_zero(isl_set_get_space(set));
1619 for (i = 0; i < n; ++i) {
1620 isl_space *space;
1621 isl_aff *one;
1622 isl_pw_aff *bound;
1624 bound = isl_set_dim_max(isl_set_copy(set), i);
1625 bound = isl_pw_aff_coalesce(bound);
1626 bound = isl_pw_aff_gist(bound, isl_set_copy(context));
1628 space = isl_pw_aff_get_domain_space(bound);
1629 one = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1630 one = isl_aff_add_constant_si(one, 1);
1631 bound = isl_pw_aff_add(bound, isl_pw_aff_from_aff(one));
1632 mpa = isl_multi_pw_aff_set_pw_aff(mpa, i, bound);
1634 isl_set_free(set);
1636 return mpa;
1639 /* Compute the effective grid size as a list of the sizes in each dimension.
1641 * The grid size specified by the user or set by default
1642 * in read_grid_sizes() and applied in tile_schedule(),
1643 * may be too large for the given code in the sense that
1644 * it may contain blocks that don't need to execute anything.
1645 * We therefore don't return this grid size, but instead the
1646 * smallest grid size that ensures that all blocks that actually
1647 * execute code are included in the grid.
1649 * We first extract a description of the grid, i.e., the possible values
1650 * of the block ids, from gen->tiled_sched.
1651 * The block ids are parameters in gen->tiled_sched.
1652 * We simply need to change them into set dimensions.
1654 * Then, for each block dimension, we compute the maximal value of the block id
1655 * and add one.
1657 static __isl_give isl_multi_pw_aff *extract_grid_size(struct gpu_gen *gen,
1658 struct ppcg_kernel *kernel)
1660 int i;
1661 isl_set *grid;
1663 grid = isl_union_map_params(isl_union_map_copy(gen->tiled_sched));
1664 grid = isl_set_from_params(grid);
1665 grid = isl_set_add_dims(grid, isl_dim_set, gen->n_grid);
1666 for (i = 0; i < gen->n_grid; ++i) {
1667 int pos;
1668 isl_id *id;
1670 id = isl_id_list_get_id(kernel->block_ids, i);
1671 pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
1672 isl_id_free(id);
1673 assert(pos >= 0);
1674 grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
1675 grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
1678 return extract_size(grid, kernel->context);
1681 /* Compute the size of a fixed bounding box around the origin and "set",
1682 * where "set" is assumed to contain only non-negative elements,
1683 * and store the results in "size".
1684 * In particular, compute the maximal value of "set" in each direction
1685 * and add one.
1687 static void extract_fixed_size(__isl_take isl_set *set, int *size)
1689 int i, n;
1690 isl_local_space *ls;
1691 isl_aff *obj;
1693 n = isl_set_dim(set, isl_dim_set);
1694 ls = isl_local_space_from_space(isl_set_get_space(set));
1695 obj = isl_aff_zero_on_domain(ls);
1696 for (i = 0; i < n; ++i) {
1697 isl_val *max;
1699 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
1700 max = isl_set_max_val(set, obj);
1701 size[i] = isl_val_get_num_si(max) + 1;
1702 isl_val_free(max);
1703 obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
1705 isl_aff_free(obj);
1706 isl_set_free(set);
1709 /* Compute the effective block size as a list of the sizes in each dimension
1710 * and store the sizes in kernel->block_dim.
1712 * The block size specified by the user or set by default
1713 * in read_block_sizes() and applied in thread_tile_schedule(),
1714 * may be too large for the given code in the sense that
1715 * it may contain threads that don't need to execute anything.
1716 * We therefore don't store this block size in kernel->block_dim,
1717 * but instead the smallest block size that ensures that all threads
1718 * that actually execute code are included in the block.
1720 * The current implementation eliminates all parameters, ensuring
1721 * that the size is a fixed constant in each dimension.
1722 * In principle we could also compute parametric sizes.
1723 * We would have to make sure to project out all b%d and t%d parameters,
1724 * however.
1726 static void extract_block_size(struct gpu_gen *gen, struct ppcg_kernel *kernel)
1728 int i;
1729 int nparam;
1730 isl_set *block;
1731 isl_multi_pw_aff *mpa;
1733 block = isl_union_map_params(isl_union_map_copy(gen->local_sched));
1734 block = isl_set_from_params(block);
1735 block = isl_set_add_dims(block, isl_dim_set, gen->n_block);
1736 kernel->n_block = gen->n_block;
1737 for (i = 0; i < gen->n_block; ++i) {
1738 int pos;
1739 isl_id *id;
1741 id = isl_id_list_get_id(kernel->thread_ids, i);
1742 pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
1743 isl_id_free(id);
1744 assert(pos >= 0);
1745 block = isl_set_equate(block, isl_dim_param, pos,
1746 isl_dim_set, i);
1748 nparam = isl_set_dim(block, isl_dim_param);
1749 block = isl_set_project_out(block, isl_dim_param, 0, nparam);
1751 extract_fixed_size(block, kernel->block_dim);
1754 struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
1756 int i;
1758 if (!kernel)
1759 return NULL;
1761 isl_id_list_free(kernel->block_ids);
1762 isl_id_list_free(kernel->thread_ids);
1763 isl_multi_pw_aff_free(kernel->grid_size);
1764 isl_set_free(kernel->context);
1765 isl_union_set_free(kernel->arrays);
1766 isl_space_free(kernel->space);
1767 isl_ast_node_free(kernel->tree);
1769 for (i = 0; i < kernel->n_array; ++i)
1770 isl_pw_aff_list_free(kernel->array[i].bound);
1771 free(kernel->array);
1773 for (i = 0; i < kernel->n_var; ++i) {
1774 free(kernel->var[i].name);
1775 isl_vec_free(kernel->var[i].size);
1777 free(kernel->var);
1779 free(kernel);
1781 return NULL;
1784 /* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
1786 static void ppcg_kernel_free_wrap(void *user)
1788 struct ppcg_kernel *kernel = user;
1790 ppcg_kernel_free(kernel);
1793 static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
1794 struct ppcg_kernel_var *var)
1796 int j;
1797 struct gpu_array_tile *tile;
1798 isl_printer *p;
1799 char *name;
1801 var->array = group->array;
1803 tile = group->private_tile;
1804 var->type = ppcg_access_private;
1805 if (!tile) {
1806 tile = group->shared_tile;
1807 var->type = ppcg_access_shared;
1810 p = isl_printer_to_str(ctx);
1811 p = gpu_array_ref_group_print_name(group, p);
1812 var->name = isl_printer_get_str(p);
1813 isl_printer_free(p);
1815 var->size = isl_vec_alloc(ctx, group->array->n_index);
1817 for (j = 0; j < group->array->n_index; ++j)
1818 var->size = isl_vec_set_element_val(var->size, j,
1819 isl_val_copy(tile->bound[j].size));
1822 static void create_kernel_vars(struct gpu_gen *gen, struct ppcg_kernel *kernel)
1824 int i, j, n;
1826 n = 0;
1827 for (i = 0; i < gen->prog->n_array; ++i) {
1828 struct gpu_array_info *array = &gen->prog->array[i];
1830 for (j = 0; j < array->n_group; ++j) {
1831 struct gpu_array_ref_group *group = array->groups[j];
1832 if (group->private_tile || group->shared_tile)
1833 ++n;
1837 kernel->n_var = n;
1838 kernel->var = isl_calloc_array(gen->ctx, struct ppcg_kernel_var, n);
1839 assert(kernel->var);
1841 n = 0;
1842 for (i = 0; i < gen->prog->n_array; ++i) {
1843 struct gpu_array_info *array = &gen->prog->array[i];
1845 for (j = 0; j < array->n_group; ++j) {
1846 struct gpu_array_ref_group *group = array->groups[j];
1847 if (!group->private_tile && !group->shared_tile)
1848 continue;
1849 create_kernel_var(gen->ctx, group, &kernel->var[n]);
1850 ++n;
1855 /* Replace "pa" by the zero function defined over the universe domain
1856 * in the space of "pa".
1858 static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
1860 isl_space *space;
1861 isl_aff *zero;
1863 space = isl_space_domain(isl_pw_aff_get_space(pa));
1864 isl_pw_aff_free(pa);
1865 zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
1867 return isl_pw_aff_from_aff(zero);
1870 /* The sizes of the arrays on the host that have been computed by
1871 * extract_array_info may depend on the parameters. Use the extra
1872 * constraints on the parameters that are valid at "host_domain"
1873 * to simplify these expressions and store the results in kernel->array.
1875 * We only need these localized bounds for arrays that are accessed
1876 * by the current kernel. If we have found at least one reference group
1877 * then the array is accessed by the kernel. If the array has compound
1878 * elements then we skipped the construction of array reference groups.
1880 * The resulting sizes may be functions that are nowhere defined
1881 * in case the access function cannot possibly access anything inside
1882 * the kernel for some reason. If so, they are replaced by the zero
1883 * function. Since the access function cannot actually access anything,
1884 * there is no harm in printing the array sizes as zero.
1886 static void localize_bounds(struct gpu_gen *gen, struct ppcg_kernel *kernel,
1887 __isl_keep isl_set *host_domain)
1889 int i, j;
1890 isl_set *context;
1892 context = isl_set_copy(host_domain);
1893 context = isl_set_params(context);
1895 for (i = 0; i < gen->prog->n_array; ++i) {
1896 struct gpu_array_info *array = &gen->prog->array[i];
1897 isl_pw_aff_list *local;
1899 if (array->n_group == 0 && !array->has_compound_element)
1900 continue;
1902 local = isl_pw_aff_list_alloc(gen->ctx, array->n_index);
1904 for (j = 0; j < array->n_index; ++j) {
1905 isl_pw_aff *pwaff;
1906 int empty;
1908 pwaff = isl_pw_aff_copy(array->bound[j]);
1909 pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
1910 empty = isl_pw_aff_is_empty(pwaff);
1911 if (empty < 0)
1912 pwaff = isl_pw_aff_free(pwaff);
1913 else if (empty)
1914 pwaff = set_universally_zero(pwaff);
1915 local = isl_pw_aff_list_add(local, pwaff);
1918 kernel->array[i].n_index = array->n_index;
1919 kernel->array[i].bound = local;
1921 isl_set_free(context);
1924 /* Create the array of gpu_local_array_info structures "array"
1925 * inside "kernel". The number of elements in this array is
1926 * the same as the number of arrays in "prog".
1928 static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
1929 struct ppcg_kernel *kernel, struct gpu_prog *prog)
1931 isl_ctx *ctx;
1933 ctx = isl_set_get_ctx(prog->context);
1934 kernel->array = isl_calloc_array(ctx,
1935 struct gpu_local_array_info, prog->n_array);
1936 if (!kernel->array)
1937 return ppcg_kernel_free(kernel);
1938 kernel->n_array = prog->n_array;
1940 return kernel;
1943 /* Find the element in gen->stmt that has the given "id".
1944 * Return NULL if no such gpu_stmt can be found.
1946 static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
1948 int i;
1950 for (i = 0; i < prog->n_stmts; ++i) {
1951 if (id == prog->stmts[i].id)
1952 break;
1955 return i < prog->n_stmts ? &prog->stmts[i] : NULL;
1958 /* Set gen->tile_len and gen->n_parallel to those of the statement
1959 * affected by the first map (part of the schedule)
1960 * on which this function is called.
1961 * Because of the way the schedule is constructed, the other statements
1962 * in the list, if any, should have the same values for these properties.
1964 static int extract_tile_len(__isl_take isl_map *map, void *user)
1966 struct gpu_gen *gen = (struct gpu_gen *) user;
1967 isl_id *id;
1968 struct gpu_stmt *stmt;
1970 id = isl_map_get_tuple_id(map, isl_dim_in);
1971 stmt = find_stmt(gen->prog, id);
1972 isl_id_free(id);
1974 isl_map_free(map);
1976 if (!stmt)
1977 isl_die(gen->ctx, isl_error_unknown,
1978 "statement not found", return -1);
1980 gen->tile_len = stmt->tile_len;
1981 gen->n_parallel = stmt->n_parallel;
1983 return -1;
1986 void ppcg_kernel_stmt_free(void *user)
1988 int i;
1989 struct ppcg_kernel_stmt *stmt = user;
1991 if (!stmt)
1992 return;
1994 switch (stmt->type) {
1995 case ppcg_kernel_copy:
1996 isl_ast_expr_free(stmt->u.c.index);
1997 isl_ast_expr_free(stmt->u.c.local_index);
1998 break;
1999 case ppcg_kernel_domain:
2000 isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
2001 break;
2002 case ppcg_kernel_sync:
2003 break;
2006 free(stmt);
2009 /* Set the options of "context" to
2011 * { space -> [x] : x >= first }
2013 static __isl_give isl_ast_build *set_unroll(
2014 __isl_take isl_ast_build *build, __isl_take isl_space *space,
2015 int first)
2017 isl_ctx *ctx;
2018 isl_map *unroll;
2019 isl_union_map *opt;
2021 ctx = isl_ast_build_get_ctx(build);
2023 space = isl_space_from_domain(space);
2024 space = isl_space_add_dims(space, isl_dim_out, 1);
2025 space = isl_space_set_tuple_name(space, isl_dim_out, "unroll");
2026 unroll = isl_map_universe(space);
2027 unroll = isl_map_lower_bound_si(unroll, isl_dim_out, 0, first);
2028 opt = isl_union_map_from_map(unroll);
2030 build = isl_ast_build_set_options(build, opt);
2032 return build;
2035 /* Extend the schedule "schedule" with the part of "extension"
2036 * starting at "first" up to "len".
2038 static __isl_give isl_union_map *extend_schedule(
2039 __isl_take isl_union_map *schedule,
2040 __isl_take isl_union_map *extension, int first, int len)
2042 isl_space *space;
2043 isl_map *proj;
2044 isl_union_map *umap;
2045 isl_set *set;
2047 space = isl_union_map_get_space(schedule);
2048 space = isl_space_set_from_params(space);
2049 space = isl_space_add_dims(space, isl_dim_set, len);
2050 proj = isl_set_identity(isl_set_universe(space));
2051 proj = isl_map_project_out(proj, isl_dim_out, 0, first);
2052 extension = isl_union_map_apply_range(extension,
2053 isl_union_map_from_map(proj));
2055 schedule = isl_union_map_range_product(schedule, extension);
2057 return schedule;
2060 /* Return the gpu_stmt_access in the list "accesses" that corresponds
2061 * to "ref_id".
2063 static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
2064 __isl_keep isl_id *ref_id)
2066 struct gpu_stmt_access *access;
2068 for (access = accesses; access; access = access->next)
2069 if (access->ref_id == ref_id)
2070 return access;
2072 return NULL;
2075 /* Return the index of the array called "name" in the list of arrays.
2077 static int find_array_index(struct gpu_gen *gen, const char *name)
2079 int i;
2081 for (i = 0; i < gen->prog->n_array; ++i)
2082 if (!strcmp(name, gen->prog->array[i].name))
2083 return i;
2085 return -1;
2088 /* Internal data structure for the index and AST expression transformation
2089 * callbacks for pet_stmt_build_ast_exprs.
2091 * "accesses" is the list of gpu_stmt_access in the statement.
2092 * "iterator_map" expresses the statement iterators in terms of
2093 * the AST loop iterators.
2094 * "sched2shared" expresses the first shared_len dimensions of
2095 * the computed schedule in terms of the AST loop iterators.
2097 * The following fields are set in transform_index and used in transform_expr.
2098 * "array" is the array that is being accessed.
2099 * "global" is set if the global array is accessed (rather than
2100 * shared/private memory).
2101 * "local_array" refers to information on the array specialized
2102 * to the current kernel.
2104 struct ppcg_transform_data {
2105 struct gpu_gen *gen;
2106 struct gpu_stmt_access *accesses;
2107 isl_pw_multi_aff *iterator_map;
2108 isl_pw_multi_aff *sched2shared;
2110 struct gpu_array_info *array;
2111 int global;
2112 struct gpu_local_array_info *local_array;
2115 /* Return the name of the outer array (of structs) accessed by "access".
2117 static const char *get_outer_array_name(__isl_keep isl_map *access)
2119 isl_space *space;
2120 const char *name;
2122 space = isl_space_range(isl_map_get_space(access));
2123 while (space && isl_space_is_wrapping(space))
2124 space = isl_space_domain(isl_space_unwrap(space));
2125 name = isl_space_get_tuple_name(space, isl_dim_set);
2126 isl_space_free(space);
2128 return name;
2131 /* Index transformation callback for pet_stmt_build_ast_exprs.
2133 * "index" expresses the array indices in terms of statement iterators
2135 * We first reformulate "index" in terms of the AST loop iterators.
2136 * Then we check if we are accessing the global array or
2137 * a shared/private copy. In the former case, we simply return
2138 * the updated index. If "index" is an affine expression rather
2139 * than an array access, then we also return the updated index here.
2141 * If no reference groups have been computed for the array,
2142 * then we can only be accessing the global array.
2144 * Otherwise, we apply the tiling to the index.
2145 * This tiling is of the form
2147 * [D -> A] -> T
2149 * The index is of the form
2151 * L -> A
2153 * We update the tiling to refer to the AST loop iterators
2155 * [L -> A] -> T
2157 * and modify index to keep track of those iterators
2159 * L -> [L -> A]
2161 * Combining these two yields a tiled index expression in terms
2162 * of the AST loop iterators
2164 * L -> T
2166 static __isl_give isl_multi_pw_aff *transform_index(
2167 __isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
2168 void *user)
2170 struct ppcg_transform_data *data = user;
2171 struct gpu_stmt_access *access;
2172 struct gpu_array_ref_group *group;
2173 struct gpu_array_tile *tile;
2174 isl_pw_multi_aff *iterator_map;
2175 int i;
2176 const char *name;
2177 isl_space *space;
2178 isl_multi_pw_aff *tiling;
2179 isl_pw_multi_aff *pma;
2180 isl_multi_pw_aff *mpa;
2182 data->array = NULL;
2184 iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
2185 index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
2187 access = find_access(data->accesses, ref_id);
2188 if (!access)
2189 return index;
2190 if (!isl_map_has_tuple_name(access->access, isl_dim_out))
2191 return index;
2193 name = get_outer_array_name(access->access);
2194 i = find_array_index(data->gen, name);
2195 if (i < 0)
2196 isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
2197 "cannot find array",
2198 return isl_multi_pw_aff_free(index));
2199 data->array = &data->gen->prog->array[i];
2200 data->local_array = &data->gen->kernel->array[i];
2202 if (access->group < 0) {
2203 data->global = 1;
2204 return index;
2207 group = data->array->groups[access->group];
2208 tile = group->private_tile;
2209 if (!tile)
2210 tile = group->shared_tile;
2211 data->global = !tile;
2212 if (!tile)
2213 return index;
2215 space = isl_space_range(isl_multi_pw_aff_get_space(index));
2216 space = isl_space_map_from_set(space);
2217 pma = isl_pw_multi_aff_identity(space);
2218 pma = isl_pw_multi_aff_product(
2219 isl_pw_multi_aff_copy(data->sched2shared), pma);
2220 tiling = isl_multi_pw_aff_from_multi_aff(
2221 isl_multi_aff_copy(tile->tiling));
2222 tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
2224 space = isl_space_domain(isl_multi_pw_aff_get_space(index));
2225 space = isl_space_map_from_set(space);
2226 mpa = isl_multi_pw_aff_identity(space);
2227 index = isl_multi_pw_aff_range_product(mpa, index);
2228 index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
2230 return index;
2233 /* Dereference "expr" by adding an index [0].
2234 * The original "expr" is assumed not to have any indices.
2236 * If "expr" is a member access, then the dereferencing needs
2237 * to be applied to the structure argument of this member access.
2239 static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
2241 isl_ctx *ctx;
2242 isl_ast_expr *arg0, *res;
2243 isl_ast_expr_list *list;
2245 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2246 if (!arg0)
2247 return isl_ast_expr_free(expr);
2248 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2249 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2250 isl_ast_expr *arg;
2252 arg = isl_ast_expr_get_op_arg(arg0, 0);
2253 arg = dereference(arg);
2254 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2255 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2257 return expr;
2259 isl_ast_expr_free(arg0);
2261 ctx = isl_ast_expr_get_ctx(expr);
2262 res = isl_ast_expr_from_val(isl_val_zero(ctx));
2263 list = isl_ast_expr_list_from_ast_expr(res);
2264 res = isl_ast_expr_get_op_arg(expr, 0);
2265 res = isl_ast_expr_access(res, list);
2266 isl_ast_expr_free(expr);
2268 return res;
2271 /* Linearize the index expression "expr" based on the array bounds
2272 * of "array".
2274 * That is, transform expression
2276 * A[i_0][i_1]...[i_n]
2278 * to
2280 * A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
2282 * where b_0, b_1, ..., b_n are the bounds on the array.
2284 * If the base of "expr" is a member access, then the linearization needs
2285 * to be applied to the structure argument of this member access.
2287 * In the base case, if "expr" has no arguments (other than the name of
2288 * the array), then we are passing an entire array to a function.
2289 * In this case, there is nothing to linearize.
2290 * Note that at this point an expression with no arguments can
2291 * only be an entire array because the scalar case and
2292 * the case of single struct are handled by the caller.
2294 * If the number of specified index expressions in "expr"
2295 * is smaller than the dimension of the accessed array,
2296 * then the missing i_j also do not appear in the linearized expression.
2297 * Furthermore, since such an expression does not refer to a single
2298 * element while the default linearized expression would refer to
2299 * a single element, we return the expression
2301 * A + (..((i_0 * b_1 + i_1) ... ) * b_n]
2303 * instead. Note that because of the special case handling above,
2304 * we can assume here that here that there is at least one index expression.
2306 __isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
2307 struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
2309 int i, n;
2310 isl_ctx *ctx;
2311 isl_set *context;
2312 isl_ast_expr *arg0;
2313 isl_ast_expr *res;
2314 isl_ast_expr_list *list;
2315 isl_ast_build *build;
2317 arg0 = isl_ast_expr_get_op_arg(expr, 0);
2318 if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
2319 isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
2320 isl_ast_expr *arg;
2322 arg = isl_ast_expr_get_op_arg(arg0, 0);
2323 arg = gpu_local_array_info_linearize_index(array, arg);
2324 arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
2325 expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
2327 return expr;
2329 isl_ast_expr_free(arg0);
2331 if (isl_ast_expr_get_op_n_arg(expr) == 1)
2332 return expr;
2334 ctx = isl_ast_expr_get_ctx(expr);
2335 context = isl_set_universe(isl_space_params_alloc(ctx, 0));
2336 build = isl_ast_build_from_context(context);
2338 n = isl_ast_expr_get_op_n_arg(expr);
2339 res = isl_ast_expr_get_op_arg(expr, 1);
2340 for (i = 1; i < array->n_index; ++i) {
2341 isl_pw_aff *bound_i;
2342 isl_ast_expr *expr_i;
2344 bound_i = isl_pw_aff_list_get_pw_aff(array->bound, i);
2345 expr_i = isl_ast_build_expr_from_pw_aff(build, bound_i);
2346 res = isl_ast_expr_mul(res, expr_i);
2348 if (i + 1 >= n)
2349 continue;
2350 expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
2351 res = isl_ast_expr_add(res, expr_i);
2354 isl_ast_build_free(build);
2356 if (1 + array->n_index > n) {
2357 res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
2358 } else {
2359 list = isl_ast_expr_list_from_ast_expr(res);
2360 res = isl_ast_expr_get_op_arg(expr, 0);
2361 res = isl_ast_expr_access(res, list);
2364 isl_ast_expr_free(expr);
2366 return res;
2369 /* AST expression transformation callback for pet_stmt_build_ast_exprs.
2371 * If the AST expression refers to an array that is not accessed
2372 * at all, then this means the value of the expression is not used,
2373 * so we might as well print zero (NULL pointer) instead.
2375 * If the AST expression refers to a global scalar that is not
2376 * a read-only scalar, then its address was passed to the kernel and
2377 * we need to dereference it.
2379 * If the AST expression refers to an access to a global array,
2380 * then we linearize the access exploiting the bounds in data->local_array.
2382 static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
2383 __isl_keep isl_id *id, void *user)
2385 struct ppcg_transform_data *data = user;
2387 if (!data->array)
2388 return expr;
2389 if (!data->array->accessed) {
2390 isl_ctx *ctx;
2392 ctx = isl_ast_expr_get_ctx(expr);
2393 isl_ast_expr_free(expr);
2394 return isl_ast_expr_from_val(isl_val_zero(ctx));
2396 if (gpu_array_is_read_only_scalar(data->array))
2397 return expr;
2398 if (!data->global)
2399 return expr;
2400 if (data->array->n_index == 0)
2401 return dereference(expr);
2402 if (!data->array->linearize)
2403 return expr;
2405 return gpu_local_array_info_linearize_index(data->local_array, expr);
2408 /* This function is called for each instance of a user statement
2409 * in the kernel.
2411 * We attach a struct ppcg_kernel_stmt to the "node", containing
2412 * a computed AST expression for each access.
2413 * These AST expressions are computed from iterator_map,
2414 * which expresses the domain
2415 * elements in terms of the generated loops, and sched2shared,
2416 * which expresses the first shared_len dimensions of the schedule
2417 * computed by PPCG in terms of the generated loops.
2419 static __isl_give isl_ast_node *at_each_domain(__isl_take isl_ast_node *node,
2420 __isl_keep isl_ast_build *build, void *user)
2422 struct ppcg_transform_data data;
2423 struct gpu_gen *gen = (struct gpu_gen *) user;
2424 struct ppcg_kernel_stmt *stmt;
2425 isl_id *id;
2426 isl_pw_multi_aff *sched2shared;
2427 isl_map *map;
2428 isl_pw_multi_aff *iterator_map;
2429 isl_ast_expr *expr, *arg;
2430 isl_union_map *schedule;
2432 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2433 if (!stmt)
2434 return isl_ast_node_free(node);
2436 expr = isl_ast_node_user_get_expr(node);
2437 arg = isl_ast_expr_get_op_arg(expr, 0);
2438 id = isl_ast_expr_get_id(arg);
2440 schedule = isl_ast_build_get_schedule(build);
2441 map = isl_map_reverse(isl_map_from_union_map(schedule));
2442 iterator_map = isl_pw_multi_aff_from_map(map);
2443 sched2shared = compute_sched_to_shared(gen,
2444 isl_pw_multi_aff_copy(iterator_map));
2446 stmt->type = ppcg_kernel_domain;
2447 stmt->u.d.stmt = find_stmt(gen->prog, id);
2448 if (!stmt->u.d.stmt)
2449 isl_die(gen->ctx, isl_error_internal,
2450 "statement not found", goto error);
2452 data.gen = gen;
2453 data.accesses = stmt->u.d.stmt->accesses;
2454 data.iterator_map = iterator_map;
2455 data.sched2shared = sched2shared;
2456 stmt->u.d.ref2expr = pet_stmt_build_ast_exprs(stmt->u.d.stmt->stmt,
2457 build, &transform_index, &data,
2458 &transform_expr, &data);
2460 isl_id_free(id);
2461 isl_pw_multi_aff_free(iterator_map);
2462 isl_pw_multi_aff_free(sched2shared);
2463 isl_ast_expr_free(arg);
2464 isl_ast_expr_free(expr);
2466 id = isl_id_alloc(gen->ctx, NULL, stmt);
2467 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2468 return isl_ast_node_set_annotation(node, id);
2469 error:
2470 isl_id_free(id);
2471 isl_pw_multi_aff_free(iterator_map);
2472 ppcg_kernel_stmt_free(stmt);
2473 isl_pw_multi_aff_free(sched2shared);
2474 return isl_ast_node_free(node);
2477 /* This function is called when code has been generated for the shared
2478 * tile loops. The "schedule" refers only to the original statements.
2480 * We extend the schedule with that part of gen->local_sched that hasn't
2481 * been taken into account yet. This introduces parameters referring
2482 * to thread ids in the schedule, so we add them (with the appropriate
2483 * bounds to the context as well).
2484 * Finally, we set the appropriate unrolling options
2485 * if gen->first_unroll is set.
2487 static __isl_give isl_ast_node *create_domain_leaf(
2488 __isl_take isl_union_map *schedule, __isl_take isl_ast_build *build,
2489 void *user)
2491 struct gpu_gen *gen = (struct gpu_gen *) user;
2492 isl_space *space;
2493 isl_union_map *sched;
2494 isl_ast_node *tree;
2495 isl_set *set;
2496 isl_id_list *iterators;
2497 int n;
2499 schedule = extend_schedule(schedule,
2500 isl_union_map_copy(gen->local_sched),
2501 gen->shared_len, gen->thread_tiled_len);
2503 space = isl_ast_build_get_schedule_space(build);
2504 set = isl_set_universe(space);
2505 set = add_bounded_parameters(set, gen->kernel->block_dim,
2506 gen->kernel->thread_ids);
2507 build = isl_ast_build_restrict(build, set);
2509 n = gen->thread_tiled_len - gen->shared_len;
2511 if (gen->first_unroll >= 0) {
2512 space = isl_space_set_alloc(gen->ctx, 0, n);
2513 build = set_unroll(build, space, gen->first_unroll);
2515 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2516 build = isl_ast_build_set_iterators(build, iterators);
2517 build = isl_ast_build_set_at_each_domain(build, &at_each_domain, gen);
2518 tree = isl_ast_build_node_from_schedule_map(build, schedule);
2519 isl_ast_build_free(build);
2521 return tree;
2524 /* This function is called for each statement node in the AST of the code
2525 * for copying to or from shared/private memory.
2526 * Attach a pointer to a ppcg_kernel_stmt representing the copy
2527 * statement to the node.
2528 * The statement name is "read" or "write", depending on whether we are
2529 * reading from global memory or writing to global memory.
2530 * The name of the T space is {shared,private}_<array>.
2532 * The schedule is of the form
2534 * type[A -> T] -> L
2536 * where A refers to a piece of an array and T to the corresponding
2537 * shifted tile. We split this schedule into mappings L -> A and L -> T
2538 * and store the corresponding expressions in stmt->index and stmt->local_index,
2539 * where stmt points to the ppcg_kernel_stmt that is attached to the node.
2541 static __isl_give isl_ast_node *attach_copy_stmt(__isl_take isl_ast_node *node,
2542 __isl_keep isl_ast_build *build, void *user)
2544 struct gpu_gen *gen = (struct gpu_gen *) user;
2545 struct ppcg_kernel_stmt *stmt;
2546 isl_id *id;
2547 isl_ast_expr *expr;
2548 isl_space *space;
2549 isl_map *access, *local_access, *map;
2550 isl_pw_multi_aff *pma;
2551 const char *type;
2552 int array_index;
2554 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2555 if (!stmt)
2556 return isl_ast_node_free(node);
2558 access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
2559 type = isl_map_get_tuple_name(access, isl_dim_in);
2560 stmt->u.c.read = !strcmp(type, "read");
2561 access = isl_map_reverse(access);
2562 space = isl_space_unwrap(isl_space_range(isl_map_get_space(access)));
2563 local_access = isl_map_copy(access);
2565 map = isl_map_domain_map(isl_map_universe(isl_space_copy(space)));
2566 id = isl_map_get_tuple_id(access, isl_dim_out);
2567 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2568 access = isl_map_apply_range(access, map);
2569 pma = isl_pw_multi_aff_from_map(access);
2570 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2571 stmt->u.c.index = expr;
2573 map = isl_map_range_map(isl_map_universe(space));
2574 id = isl_map_get_tuple_id(local_access, isl_dim_out);
2575 map = isl_map_set_tuple_id(map, isl_dim_in, id);
2576 local_access = isl_map_apply_range(local_access, map);
2577 pma = isl_pw_multi_aff_from_map(local_access);
2578 expr = isl_ast_build_access_from_pw_multi_aff(build, pma);
2579 stmt->u.c.local_index = expr;
2581 stmt->u.c.array = gen->copy_group->array;
2582 array_index = stmt->u.c.array - gen->prog->array;
2583 stmt->u.c.local_array = &gen->kernel->array[array_index];
2584 stmt->type = ppcg_kernel_copy;
2586 id = isl_id_alloc(gen->ctx, NULL, stmt);
2587 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2588 return isl_ast_node_set_annotation(node, id);
2591 /* Given a schedule of the form
2593 * [S -> A] -> L
2595 * (with S the first shared_len dimensions of the computed schedule,
2596 * A the array and L the schedule correponding to the generated loops),
2597 * indicating where to copy the array elements that need to be copied,
2598 * construct code for performing the copying.
2600 * "group" is the array reference group that is being copied
2601 * "type" is either "read" or "write"
2602 * private is set if copying needs to be performed to/from registers
2604 * We first construct a mapping to a shifted tile of the array,
2606 * [S -> A] -> T(S,A) (1)
2608 * If private is set, then we also use this mapping as a schedule
2609 * (which is already thread-specific and will be completely unrolled).
2610 * Otherwise, we wrap/tile the range over the threads.
2611 * The result is
2613 * [S -> A] -> T'(S,A)
2615 * Combined with the given schedule, we have
2617 * [S -> A] -> [L -> T'(S,A)] (2)
2619 * From the shifted tile mapping, we construct a mapping
2621 * [S -> A] -> [A -> T(S,A)]
2623 * and apply it to the schedule (2), obtaining
2625 * [A -> T(S(L),A)] -> [L -> T'(S(L),A)]
2627 * Note that we can project out S because it is uniquely defined by L.
2629 static __isl_give isl_ast_node *copy_access(struct gpu_gen *gen,
2630 __isl_take isl_map *sched,
2631 const char *type, struct gpu_array_ref_group *group,
2632 __isl_take isl_ast_build *build, int private)
2634 isl_space *space;
2635 isl_ast_node *tree;
2636 isl_map *schedule, *shift, *map;
2637 isl_set *set;
2638 isl_id_list *iterators;
2639 int n;
2641 shift = shift_access(group);
2643 schedule = isl_map_copy(shift);
2644 schedule = isl_map_reset_tuple_id(schedule, isl_dim_out);
2645 if (!private)
2646 schedule = tile_access_schedule(gen, schedule);
2648 n = isl_map_dim(schedule, isl_dim_out);
2649 set = isl_set_universe(isl_ast_build_get_schedule_space(build));
2650 set = add_bounded_parameters(set, gen->kernel->block_dim,
2651 gen->kernel->thread_ids);
2653 schedule = isl_map_range_product(sched, schedule);
2655 space = isl_space_domain(isl_map_get_space(shift));
2656 map = isl_map_range_map(isl_map_universe(isl_space_unwrap(space)));
2657 map = isl_map_range_product(map, shift);
2659 schedule = isl_map_apply_domain(schedule, map);
2661 schedule = isl_map_set_tuple_name(schedule, isl_dim_in, type);
2663 build = isl_ast_build_restrict(build, set);
2665 gen->copy_group = group;
2667 if (private) {
2668 space = isl_space_range(isl_map_get_space(schedule));
2669 space = isl_space_range(isl_space_unwrap(space));
2670 build = set_unroll(build, space, 0);
2672 iterators = ppcg_scop_generate_names(gen->prog->scop, n, "c");
2673 build = isl_ast_build_set_iterators(build, iterators);
2674 build = isl_ast_build_set_at_each_domain(build, &attach_copy_stmt, gen);
2675 tree = isl_ast_build_node_from_schedule_map(build,
2676 isl_union_map_from_map(schedule));
2677 isl_ast_build_free(build);
2679 return tree;
2682 /* Return code for reading into or writing from shared memory
2683 * the given array reference group.
2685 * If we are performing a read from global memory to shared memory and
2686 * if the array involved is not a scalar, then we copy
2687 * the entire tile to shared memory. This may result in some extra
2688 * elements getting copied, but it should lead to simpler code
2689 * (which means that fewer registers may be needed) and less divergence.
2691 * Otherwise, we only copy the elements that will be read or have been written
2692 * in the kernel.
2695 * The input "sched" is of the form.
2697 * type[S -> A] -> L
2699 * with S the first shared_len dimensions of the computed schedule,
2700 * A the array and L the schedule correponding to the generated loops.
2702 * We first drop "type",
2704 * [S -> A] -> L
2706 * If the above conditions are satisfied, we project out A,
2707 * resulting in
2709 * S -> L
2711 * and then introduce the group tile [S -> T], resulting in
2713 * [S -> T] -> L
2715 static __isl_give isl_ast_node *copy_group_shared_accesses(
2716 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2717 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2719 const char *type;
2720 int read;
2721 isl_union_map *access;
2723 type = isl_map_get_tuple_name(sched, isl_dim_in);
2724 read = !strcmp(type, "read");
2726 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2728 if (read && !gpu_array_is_scalar(group->array)) {
2729 isl_space *space;
2730 isl_map *map;
2732 space = isl_space_domain(isl_map_get_space(sched));
2733 space = isl_space_unwrap(space);
2734 map = isl_map_domain_map(isl_map_universe(space));
2735 sched = isl_map_apply_domain(sched, map);
2737 map = group_tile(group);
2738 map = isl_map_reverse(isl_map_domain_map(map));
2739 sched = isl_map_apply_domain(sched, map);
2742 return copy_access(gen, sched, type, group, build, 0);
2745 /* Return code for reading into or writing from private memory
2746 * the given array reference group.
2748 * Let S be the first shared_len dimensions of the computed schedule,
2749 * D the iteration domains, A the array and L the schedule correponding
2750 * to the generated loops.
2751 * "sched" is of the form
2753 * type[S -> A] -> L
2755 * where type is either "read" or "write".
2756 * We apply the privatization D -> S(t), with t the thread ids,
2757 * to the access relation D -> A to obtain the privatized access relation
2759 * S(t) -> A
2761 * We drop the type from "sched" and intersect with the privatized access
2762 * relation to obtain
2764 * [S(t) -> A] -> L
2766 static __isl_give isl_ast_node *copy_group_private_accesses(
2767 struct gpu_gen *gen, struct gpu_array_ref_group *group,
2768 __isl_take isl_map *sched, __isl_take isl_ast_build *build)
2770 const char *type;
2771 int read;
2772 isl_union_map *priv;
2773 isl_union_map *access;
2774 isl_map *access_map;
2776 type = isl_map_get_tuple_name(sched, isl_dim_in);
2777 read = !strcmp(type, "read");
2779 priv = isl_union_map_from_map(isl_map_copy(gen->privatization));
2780 priv = isl_union_map_apply_range(isl_union_map_copy(gen->shared_sched),
2781 priv);
2783 access = gpu_array_ref_group_access_relation(group, read, !read);
2784 access = isl_union_map_apply_domain(access, priv);
2785 access_map = isl_map_from_union_map(access);
2787 sched = isl_map_reset_tuple_id(sched, isl_dim_in);
2788 sched = isl_map_intersect_domain(sched, isl_map_wrap(access_map));
2790 return copy_access(gen, sched, type, group, build, 1);
2793 /* Return code for reading into or writing from shared or private memory.
2795 * "schedule" is of the form
2797 * type[S -> A] -> L
2799 * with S be the first shared_len dimensions of the computed schedule,
2800 * A the array and L the schedule correponding to the generated loops.
2801 * The array reference group is attached to "type".
2803 static __isl_give isl_ast_node *create_access_leaf(
2804 struct gpu_gen *gen, __isl_take isl_map *schedule,
2805 __isl_take isl_ast_build *build)
2807 struct gpu_array_ref_group *group;
2808 isl_id *id;
2810 id = isl_map_get_tuple_id(schedule, isl_dim_in);
2811 group = isl_id_get_user(id);
2812 isl_id_free(id);
2814 if (group->private_tile)
2815 return copy_group_private_accesses(gen, group, schedule,
2816 build);
2817 else
2818 return copy_group_shared_accesses(gen, group, schedule,
2819 build);
2822 /* Create a domain node representing a synchronization.
2824 static __isl_give isl_ast_node *create_sync_leaf(
2825 struct gpu_gen *gen, __isl_take isl_map *schedule,
2826 __isl_take isl_ast_build *build)
2828 struct ppcg_kernel_stmt *stmt;
2829 isl_id *id;
2830 isl_space *space;
2831 isl_ast_node *node;
2832 isl_ast_expr *expr;
2834 isl_map_free(schedule);
2836 stmt = isl_calloc_type(gen->ctx, struct ppcg_kernel_stmt);
2837 if (!stmt)
2838 return NULL;
2840 stmt->type = ppcg_kernel_sync;
2842 space = isl_ast_build_get_schedule_space(build);
2843 space = isl_space_from_domain(space);
2844 space = isl_space_set_tuple_name(space, isl_dim_out, "sync");
2845 expr = isl_ast_build_call_from_pw_multi_aff(build,
2846 isl_pw_multi_aff_from_multi_aff(isl_multi_aff_zero(space)));
2847 node = isl_ast_node_alloc_user(expr);
2848 isl_ast_build_free(build);
2850 id = isl_id_alloc(gen->ctx, NULL, stmt);
2851 id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
2852 return isl_ast_node_set_annotation(node, id);
2855 /* This function is called during the code generation at the point
2856 * where the schedule domain element is completely determined by
2857 * the generated code. The input schedule contains the original
2858 * statements as well as synchronization and copy "statements".
2859 * The latter are scheduled at different points than any of the original
2860 * statements, so they will only arrive here in isolation.
2862 * If the current schedule only refers to a single statement,
2863 * we check if it is a copy or synchronization statement and
2864 * call the appropriate functions.
2865 * Otherwise, we assume we are dealing with the original statements
2866 * and we call create_domain_leaf.
2868 static __isl_give isl_ast_node *create_kernel_leaf(
2869 __isl_take isl_ast_build *build, void *user)
2871 struct gpu_gen *gen = (struct gpu_gen *) user;
2872 isl_map *map;
2873 isl_union_map *schedule;
2874 const char *name;
2876 schedule = isl_ast_build_get_schedule(build);
2878 if (isl_union_map_n_map(schedule) != 1)
2879 return create_domain_leaf(schedule, build, user);
2881 map = isl_map_from_union_map(schedule);
2882 name = isl_map_get_tuple_name(map, isl_dim_in);
2883 if (!strcmp(name, "read") || !strcmp(name, "write"))
2884 return create_access_leaf(gen, map, build);
2885 if (!strcmp(name, "sync"))
2886 return create_sync_leaf(gen, map, build);
2888 return create_domain_leaf(isl_union_map_from_map(map), build, user);
2891 /* Mark all odd schedule dimensions as "atomic" (when the even dimensions
2892 * have value 0) and all even schedule dimensions as "unroll".
2894 * That is, the options look as follows
2896 * { [0, b, 0, d, ..., 0] -> atomic[i] : exists a : i = 2 a + 1;
2897 * [a, b, c, d, ..., z] -> unroll[i] : exists a : i = 2 a }
2899 * The even positions are used to be able to schedule copying blocks
2900 * and synchronization before or after each level of the shared memory
2901 * tile loops and we want to make sure that code for these is generated
2902 * separately (within each level).
2904 static __isl_give isl_ast_build *set_atomic_and_unroll(
2905 __isl_take isl_ast_build *build,
2906 __isl_take isl_space *space, int sched_len)
2908 isl_ctx *ctx;
2909 isl_map *map;
2910 isl_constraint *c;
2911 isl_union_map *opt;
2912 isl_local_space *ls;
2913 int i, n;
2915 ctx = isl_ast_build_get_ctx(build);
2917 space = isl_space_params(space);
2918 space = isl_space_add_dims(space, isl_dim_set, sched_len);
2919 space = isl_space_from_domain(space);
2920 space = isl_space_add_dims(space, isl_dim_out, 2);
2921 map = isl_map_universe(isl_space_copy(space));
2922 for (i = 0; i < sched_len; i += 2)
2923 map = isl_map_fix_si(map, isl_dim_in, i, 0);
2924 ls = isl_local_space_from_space(isl_map_get_space(map));
2925 c = isl_equality_alloc(ls);
2926 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2927 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2928 c = isl_constraint_set_constant_si(c, 1);
2929 map = isl_map_add_constraint(map, c);
2930 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2931 map = isl_map_set_tuple_name(map, isl_dim_out, "atomic");
2932 opt = isl_union_map_from_map(map);
2934 map = isl_map_universe(space);
2935 ls = isl_local_space_from_space(isl_map_get_space(map));
2936 c = isl_equality_alloc(ls);
2937 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 0, 1);
2938 c = isl_constraint_set_coefficient_si(c, isl_dim_out, 1, 2);
2939 map = isl_map_add_constraint(map, c);
2940 map = isl_map_project_out(map, isl_dim_out, 1, 1);
2941 map = isl_map_set_tuple_name(map, isl_dim_out, "unroll");
2942 opt = isl_union_map_add_map(opt, map);
2944 build = isl_ast_build_set_options(build, opt);
2946 return build;
2949 /* Return a map that maps a space of dimension gen->shared_len
2950 * to its last dimensions starting at gen->tile_first.
2951 * The range is of dimension
2953 * 2 * (gen->shared_len - gen->tile_first) + 1
2955 * The input dimensions are mapped to the odd dimensions in the output,
2956 * while the even dimensions (except 2*pos) are fixed to 0.
2957 * Output dimension 2*pos (if pos >= 0) is fixed to "val".
2958 * If pos >= 0, then only the pos first dimensions starting at gen->tile_first
2959 * are mapped to the output. The remaining input dimensions are projected
2960 * out and the corresponding output dimensions are fixed to 0.
2962 static __isl_give isl_map *insert_even(struct gpu_gen *gen,
2963 __isl_take isl_space *space, int pos, int val)
2965 int i, n;
2966 isl_map *proj;
2968 space = isl_space_set_from_params(space);
2969 space = isl_space_add_dims(space, isl_dim_set, gen->shared_len);
2970 space = isl_space_map_from_set(space);
2971 proj = isl_map_identity(space);
2972 proj = isl_map_project_out(proj, isl_dim_out, 0, gen->tile_first);
2973 n = gen->shared_len - gen->tile_first;
2974 for (i = 0; i <= n; ++i) {
2975 proj = isl_map_insert_dims(proj, isl_dim_out, 2 * i, 1);
2976 if (i == pos)
2977 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, val);
2978 else
2979 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i, 0);
2982 if (pos < 0)
2983 return proj;
2985 proj = isl_map_eliminate(proj, isl_dim_in, gen->tile_first + pos,
2986 gen->shared_len - (gen->tile_first + pos));
2987 for (i = pos; i < n; ++i)
2988 proj = isl_map_fix_si(proj, isl_dim_out, 2 * i + 1, 0);
2990 return proj;
2993 /* Given the AST context schedule "schedule" and the mapping from
2994 * domains to the shared tile loops "shared_sched", add a schedule
2995 * for a synchronization operation at position "val" of loop level "pos".
2997 * schedule is of the form
2999 * D -> L
3001 * (with D the iteration domains and L the already generated loops),
3002 * while shared_sched is of the form
3004 * D -> S
3006 * We combine them into
3008 * L -> S
3010 * apply a mapping
3012 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3014 * and use the result as a schedule for "sync".
3016 static __isl_give isl_union_map *add_sync_schedule(struct gpu_gen *gen,
3017 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3018 __isl_keep isl_union_map *shared_sched, int pos, int val)
3020 isl_space *space;
3021 isl_map *proj, *map;
3023 shared_sched = isl_union_map_copy(shared_sched);
3024 schedule = isl_union_map_copy(schedule);
3026 space = isl_union_map_get_space(shared_sched);
3027 schedule = isl_union_map_apply_domain(shared_sched, schedule);
3028 map = isl_map_from_union_map(schedule);
3030 proj = insert_even(gen, space, pos, val);
3031 map = isl_map_apply_range(map, proj);
3032 map = isl_map_from_range(isl_map_wrap(map));
3033 map = isl_map_set_tuple_name(map, isl_dim_in, "sync");
3035 res = isl_union_map_add_map(res, map);
3037 return res;
3040 /* Given a set of wrapped references "ref", return the corresponding
3041 * access relations based on the tagged access relations "tagged".
3043 * The elements of "ref" are of the form
3045 * [D -> R]
3047 * with D an iteration domains and R a reference.
3048 * The elements of "tagged" are of the form
3050 * [D -> R] -> A
3052 * with A an array.
3054 * Extend "tagged" to include the iteration domain in the range, i.e.,
3056 * [D -> R] -> [D -> A]
3058 * apply the result to "ref" and then unwrap the resulting set
3059 * to obtain relations of the form
3061 * D -> A
3063 static __isl_give isl_union_map *wrapped_reference_to_access(
3064 __isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
3066 isl_union_map *tag2access;
3068 tag2access = isl_union_map_copy(tagged);
3069 tag2access = isl_union_map_universe(tag2access);
3070 tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
3071 tag2access = isl_union_map_domain_map(tag2access);
3072 tag2access = isl_union_map_range_product(tag2access, tagged);
3074 ref = isl_union_set_coalesce(ref);
3075 ref = isl_union_set_apply(ref, tag2access);
3077 return isl_union_set_unwrap(ref);
3080 /* Given an access relation "access" from "group", remove those reads
3081 * if ("read" is 1) or writes (if "read" is 0) that are only needed to
3082 * communicate data within the same iteration of the last_shared dimension
3083 * of the group.
3085 * If the access is a read then it is either an element of
3087 * live_in union (range flow)
3089 * where live_in and flow may be overapproximations, or
3090 * it reads an uninitialized value (that is not live-in because
3091 * there is an intermediate kill) or it reads a value that was
3092 * written within the same (compound) statement instance.
3093 * If the access is a write then it is either an element of
3095 * live_out union (domain flow)
3097 * or it writes a value that is never read (and is not live-out
3098 * because of an intermediate kill) or only
3099 * within the same (compound) statement instance.
3100 * In both cases, the access relation is also a subset of
3101 * the group access relation.
3103 * The cases where an uninitialized value is read or a value is written
3104 * that is never read or where the dataflow occurs within a statement
3105 * instance are also considered local and may also be removed.
3107 * Essentially, we compute the intersection of "access" with either
3109 * live_in union (range non-local-flow)
3111 * or
3113 * live_out union (domain non-local-flow)
3115 * We first construct a relation "local"
3117 * [[D -> R] -> [D' -> R']]
3119 * of pairs of domain iterations accessing the reference group
3120 * and references in the group that are scheduled to the same iteration
3121 * of the last_shared dimension.
3123 * If this relation does not intersect the dataflow dependences,
3124 * then there is nothing we can possibly remove, unless the dataflow
3125 * dependences themselves only relate a subset of the accesses.
3126 * In particular, the accesses may not be involved in any dataflow
3127 * dependences, either because they are uninitialized reads/dead writes
3128 * or because the dataflow occurs inside a statement instance.
3130 * Since the computation below may break up the access relation
3131 * into smaller pieces, we only perform the intersection with
3132 * the non-local dependent accesses if the local pairs
3133 * intersect the dataflow dependences. Otherwise, we intersect
3134 * with the universe of the non-local dependent accesses.
3135 * This should at least remove accesses from statements that
3136 * do not participate in any dependences.
3138 * In particular, we remove the "local" dataflow dependences from
3139 * the set of all dataflow dependences.
3140 * Note that if the potential dataflow dependences are an overapproximation
3141 * of the actual dataflow dependences, then the result remains an
3142 * overapproximation of the non-local dataflow dependences.
3143 * Copying to/from global memory is only needed for the references
3144 * in the domain/range of the result or for accesses that are live out/in
3145 * for the entire scop.
3147 * We therefore map the domain/range of the "external" relation
3148 * to the corresponding access relation and take the union with
3149 * the live out/in relation.
3151 static __isl_give isl_union_map *remove_local_accesses(struct gpu_gen *gen,
3152 struct gpu_array_ref_group *group, __isl_take isl_union_map *access,
3153 int read)
3155 int empty;
3156 isl_union_pw_multi_aff *tagger;
3157 isl_union_set *domain;
3158 isl_space *space;
3159 isl_union_map *sched, *local, *tagged, *external;
3160 isl_union_set *tag_set;
3161 isl_map *proj;
3163 if (isl_union_map_is_empty(access))
3164 return access;
3166 tagged = group_tagged_access_relation(group);
3168 sched = isl_union_map_copy(gen->sched);
3170 space = isl_union_map_get_space(sched);
3171 proj = projection(space, gen->untiled_len, group->last_shared + 1);
3172 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3174 tagger = isl_union_pw_multi_aff_copy(gen->prog->scop->tagger);
3175 domain = isl_union_map_domain(isl_union_map_copy(tagged));
3176 tagger = isl_union_pw_multi_aff_intersect_domain(tagger, domain);
3177 sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
3179 local = isl_union_map_apply_range(sched,
3180 isl_union_map_reverse(isl_union_map_copy(sched)));
3181 local = isl_union_map_intersect(local,
3182 isl_union_map_copy(gen->prog->scop->tagged_dep_flow));
3184 empty = isl_union_map_is_empty(local);
3186 external = isl_union_map_copy(gen->prog->scop->tagged_dep_flow);
3187 external = isl_union_map_intersect_params(external,
3188 isl_set_copy(gen->prog->scop->context));
3189 external = isl_union_map_subtract(external, local);
3191 if (read) {
3192 tag_set = isl_union_map_range(external);
3193 external = wrapped_reference_to_access(tag_set, tagged);
3194 external = isl_union_map_union(external,
3195 isl_union_map_copy(gen->prog->scop->live_in));
3196 } else {
3197 tag_set = isl_union_map_domain(external);
3198 external = wrapped_reference_to_access(tag_set, tagged);
3199 external = isl_union_map_union(external,
3200 isl_union_map_copy(gen->prog->scop->live_out));
3203 if (empty < 0)
3204 external = isl_union_map_free(external);
3205 else if (empty)
3206 external = isl_union_map_universe(external);
3208 access = isl_union_map_intersect(access, external);
3210 return access;
3213 /* Given the AST context schedule "schedule" and the mapping from
3214 * domains to the shared tile loops "shared_sched", add a schedule
3215 * for copying an array reference group to/from shared/private memory.
3216 * "read" is set if data should be copied from global memory
3217 * to shared/private memory.
3218 * "k" represents the current group
3219 * "s" is the total number of groups
3221 * We schedule an operation before or after the innermost loop
3222 * of "shared_sched" that affects the tile of the array reference group.
3224 * schedule is of the form
3226 * D -> L
3228 * (with D the iteration domains and L the already generated loops),
3229 * while shared_sched is of the form
3231 * D -> S
3233 * We first compute the access relation for the reference group
3235 * D -> A
3237 * and remove from this access relation those reads or writes
3238 * that only needed to communicate data within the same iteration
3239 * of the last_shared dimension of the group.
3240 * We then combine what is left with shared_sched into
3242 * D -> [S -> A]
3244 * If this results in an empty relation, no copying needs to be performed
3245 * at this point.
3246 * Otherwise, we invert the relation and combine it with "schedule" into
3248 * [S -> A] -> L
3250 * The actual additional piece of the schedule is obtained from combining
3252 * [S -> A] -> S
3254 * with a mapping
3256 * [s_0,...] -> [0,s_{tile_first},0,..., val, 0, 0, ... 0]
3258 * The position of "val" corresponds to the innermost loop that affects
3259 * the tile and the value indicates where the copying is scheduled
3260 * with respect to the actual kernel code (at value 0).
3261 * Reads are schedule before the code, writes to global memory from
3262 * private memory are scheduled at values 1 to s, writes to global
3263 * memory from shared memory are scheduled at values s + 2 to 2 * s + 1.
3265 * If we are scheduling a read from global memory to shared memory,
3266 * we insert a synchronization before the kernel code (at the innermost
3267 * level).
3268 * If we are scheduling a write to global memory, then we add
3269 * a synchronization after all writes (at value 2 *s + 2).
3270 * However, there is no need for a synchronization after the outermost loop.
3271 * A write to global memory from private memory at the innermost level
3272 * does not require a synchronization, because it is covered by
3273 * the synchronization after the kernel inserted by body_schedule.
3275 static __isl_give isl_union_map *add_group_schedule(struct gpu_gen *gen,
3276 __isl_take isl_union_map *res, __isl_keep isl_union_map *schedule,
3277 __isl_keep isl_union_map *shared_sched,
3278 struct gpu_array_ref_group *group, int read, int k, int s)
3280 int n;
3281 int pos, val;
3282 isl_space *space;
3283 isl_union_map *access;
3284 isl_map *map, *proj, *access_map;
3285 isl_id *id;
3287 access = gpu_array_ref_group_access_relation(group, read, !read);
3288 access = remove_local_accesses(gen, group, access, read);
3289 access = isl_union_map_range_product(isl_union_map_copy(shared_sched),
3290 access);
3292 if (isl_union_map_is_empty(access)) {
3293 isl_union_map_free(access);
3294 return res;
3297 access = isl_union_map_reverse(access);
3298 access = isl_union_map_apply_range(access,
3299 isl_union_map_copy(schedule));
3300 access_map = isl_map_from_union_map(access);
3302 space = isl_space_copy(group->array->space);
3303 space = isl_space_from_range(space);
3304 space = isl_space_add_dims(space, isl_dim_in, gen->shared_len);
3305 map = isl_map_domain_map(isl_map_universe(space));
3307 space = isl_union_map_get_space(schedule);
3308 pos = group->last_shared + 1 - gen->tile_first;
3309 assert(pos >= 0);
3310 if (read)
3311 val = -2 - k;
3312 else if (group->private_tile)
3313 val = 1 + k;
3314 else
3315 val = 1 + s + 1 + k;
3316 proj = insert_even(gen, space, pos, val);
3317 map = isl_map_apply_range(map, proj);
3319 access_map = isl_map_range_product(access_map, map);
3321 id = isl_id_alloc(gen->ctx, read ? "read" : "write", group);
3322 access_map = isl_map_set_tuple_id(access_map, isl_dim_in, id);
3324 res = isl_union_map_add_map(res, access_map);
3326 n = gen->shared_len - gen->tile_first;
3327 if (read) {
3328 if (!group->private_tile)
3329 res = add_sync_schedule(gen, res, schedule,
3330 shared_sched, n, -1);
3331 } else {
3332 if (pos == 0)
3333 return res;
3334 if (pos == n && group->private_tile)
3335 return res;
3336 res = add_sync_schedule(gen, res, schedule, shared_sched,
3337 pos, 2 * s + 2);
3340 return res;
3343 /* Return a schedule for the shared tile loops based on the current
3344 * AST context schedule.
3346 * We create a "shared_sched" that maps the domains to the first
3347 * shared_len dimensions of the computed schedule, project out the
3348 * first tile_first dimensions (as these are already covered by
3349 * the host code) and insert "statement-level" dimensions at even
3350 * positions so that we can schedule copy blocks and synchronization
3351 * before/after each level.
3353 * In particular, copy blocks are inserted inside the innermost
3354 * level that affect the tile. For the copying to global memory,
3355 * those from private memory are scheduled before those from shared
3356 * memory such that synchronization can be inserted between the two
3357 * at the innermost level.
3358 * Synchronization is inserted at the innermost level before the
3359 * actual kernel code if there is any copying from global memory
3360 * to shared memory. It is inserted unconditionally at the innermost
3361 * level after the actual kernel code and the copying to global memory
3362 * from private memory (if any). Finally, it is inserted after
3363 * any copying to global memory, except at the outermost level
3364 * and at the innermost level if there is no copying from shared
3365 * memory. The copying from private memory is covered by the unconditional
3366 * synchronization at the innermost level.
3368 static __isl_give isl_union_map *body_schedule(struct gpu_gen *gen,
3369 __isl_take isl_union_map *schedule)
3371 isl_space *space;
3372 isl_union_map *res;
3373 isl_union_map *shared_sched;
3374 isl_union_map *sched;
3375 isl_map *proj, *map;
3376 int i, j, k, s;
3378 shared_sched = isl_union_map_copy(gen->tiled_sched);
3379 proj = projection(isl_union_map_get_space(shared_sched),
3380 gen->tiled_len, gen->shared_len);
3381 shared_sched = isl_union_map_apply_range(shared_sched,
3382 isl_union_map_from_map(proj));
3383 space = isl_union_map_get_space(shared_sched);
3384 proj = insert_even(gen, space, -1, 0);
3385 sched = isl_union_map_apply_range(isl_union_map_copy(shared_sched),
3386 isl_union_map_from_map(proj));
3388 res = isl_union_map_range_product(isl_union_map_copy(schedule), sched);
3390 s = 0;
3391 for (i = 0; i < gen->prog->n_array; ++i)
3392 s += gen->prog->array[i].n_group;
3394 k = 0;
3395 for (i = 0; i < gen->prog->n_array; ++i) {
3396 struct gpu_array_info *array = &gen->prog->array[i];
3398 for (j = 0; j < array->n_group; ++j) {
3399 struct gpu_array_ref_group *group;
3401 group = array->groups[j];
3402 if (!group->private_tile && !group->shared_tile)
3403 continue;
3404 res = add_group_schedule(gen, res, schedule,
3405 shared_sched, group, 0, k, s);
3406 res = add_group_schedule(gen, res, schedule,
3407 shared_sched, group, 1, k, s);
3408 ++k;
3412 res = add_sync_schedule(gen, res, schedule, shared_sched,
3413 gen->shared_len - gen->tile_first, 1 + s);
3415 isl_union_map_free(shared_sched);
3416 isl_union_map_free(schedule);
3418 return res;
3421 /* Generate code for "kernel" in the given "context".
3423 * We first generate code for the shared tile loops (T1T, T1P and T2)
3424 * in a context that includes the block ids.
3425 * Within each iteration of these loops an additional code generation
3426 * is performed (within create_kernel_leaf) for the rest of the schedule
3427 * in a context that includes the thread ids.
3429 static __isl_give isl_ast_node *generate_kernel(struct gpu_gen *gen,
3430 __isl_keep isl_ast_build *build, __isl_keep isl_set *host_domain,
3431 __isl_keep isl_multi_pw_aff *grid_size)
3433 isl_space *space;
3434 isl_set *set;
3435 isl_id_list *iterators;
3436 isl_union_map *schedule;
3437 isl_ast_node *tree;
3438 int sched_len;
3440 schedule = isl_ast_build_get_schedule(build);
3442 build = isl_ast_build_copy(build);
3443 build = isl_ast_build_restrict(build, isl_set_copy(host_domain));
3444 space = isl_ast_build_get_schedule_space(build);
3445 set = isl_set_universe(isl_space_copy(space));
3446 set = add_bounded_parameters_dynamic(set, grid_size,
3447 gen->kernel->block_ids);
3448 build = isl_ast_build_restrict(build, set);
3450 schedule = body_schedule(gen, schedule);
3452 sched_len = 2 * (gen->shared_len - gen->tile_first) + 1;
3454 build = set_atomic_and_unroll(build, space, sched_len);
3455 iterators = ppcg_scop_generate_names(gen->prog->scop, sched_len, "g");
3456 build = isl_ast_build_set_iterators(build, iterators);
3457 build = isl_ast_build_set_create_leaf(build, &create_kernel_leaf, gen);
3458 tree = isl_ast_build_node_from_schedule_map(build, schedule);
3459 isl_ast_build_free(build);
3461 return tree;
3464 /* Attach "id" to the given node.
3466 static __isl_give isl_ast_node *attach_id(__isl_take isl_ast_node *node,
3467 __isl_keep isl_ast_build *build, void *user)
3469 isl_id *id = user;
3471 node = isl_ast_node_set_annotation(node, id);
3473 return node;
3476 /* Construct an AST node for performing a kernel launch and attach
3477 * the information about the kernel to that node.
3479 * The kernel AST has been constructed in the context of the range
3480 * of "schedule". In particular, the grid size has been computed
3481 * in the context. We therefore still need to make sure that these
3482 * constraints are expressed in the code. We do this by creating a schedule
3484 * kernel[] -> [S -> []]
3486 * where S is the schedule domain, i.e., the range of "schedule".
3487 * The AST generation will then create a single call surrounded by
3488 * all the condition in "S" that have not been expressed yet.
3490 * The kernel information is attached to this node in attach_id.
3492 static __isl_give isl_ast_node *construct_launch(
3493 __isl_take isl_ast_build *build, __isl_take isl_union_map *schedule,
3494 __isl_take struct ppcg_kernel *kernel)
3496 isl_id *id;
3497 isl_ctx *ctx;
3498 isl_union_set *domain;
3499 isl_set *set;
3500 isl_map *map;
3501 isl_ast_node *node;
3503 ctx = isl_ast_build_get_ctx(build);
3505 id = isl_id_alloc(ctx, NULL, kernel);
3506 id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
3508 domain = isl_union_map_range(schedule);
3509 set = isl_set_from_union_set(domain);
3510 map = isl_map_from_domain(set);
3511 map = isl_map_from_range(isl_map_wrap(map));
3512 map = isl_map_set_tuple_name(map, isl_dim_in, "kernel");
3513 schedule = isl_union_map_from_map(map);
3515 build = isl_ast_build_set_at_each_domain(build, &attach_id, id);
3516 node = isl_ast_build_node_from_schedule_map(build, schedule);
3517 isl_ast_build_free(build);
3519 return node;
3522 /* This function is called for each leaf in the AST of the host code.
3523 * We first specialize the schedule to the site of the leaf, compute
3524 * the size of shared memory and then construct the body of the host code
3525 * and the associated kernel.
3527 * The necessary information for printing the kernel launch is
3528 * stored in a struct ppcg_kernel and attached to the leaf node
3529 * created to represent the launch.
3531 static __isl_give isl_ast_node *create_host_leaf(
3532 __isl_take isl_ast_build *build, void *user)
3534 struct gpu_gen *gen = (struct gpu_gen *) user;
3535 isl_id *id;
3536 isl_ast_node *node;
3537 struct ppcg_kernel *kernel;
3538 isl_set *host_domain;
3539 isl_union_map *schedule;
3540 isl_union_map *local_sched;
3541 isl_union_map *access;
3542 isl_union_set *domain;
3543 int i;
3545 schedule = isl_ast_build_get_schedule(build);
3547 isl_union_map_foreach_map(schedule, &extract_tile_len, gen);
3548 read_sizes(gen);
3550 domain = isl_union_map_domain(isl_union_map_copy(schedule));
3552 local_sched = isl_union_map_copy(gen->sched);
3553 local_sched = isl_union_map_intersect_domain(local_sched, domain);
3554 access = isl_union_map_union(isl_union_map_copy(gen->prog->read),
3555 isl_union_map_copy(gen->prog->may_write));
3556 access = isl_union_map_apply_domain(access,
3557 isl_union_map_copy(local_sched));
3559 kernel = gen->kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
3560 kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
3561 if (!kernel)
3562 goto error;
3563 kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
3564 gen->n_grid, "b");
3565 kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
3566 gen->n_block, "t");
3568 gen->tiled_sched = tile_schedule(gen, local_sched);
3569 gen->tiled_sched = parametrize_tiled_schedule(gen, gen->tiled_sched);
3570 gen->tiled_sched = scale_tile_loops(gen, gen->tiled_sched);
3572 gen->local_sched = isl_union_map_copy(gen->tiled_sched);
3573 gen->local_sched = thread_tile_schedule(gen, gen->local_sched);
3574 gen->local_sched = scale_thread_tile_loops(gen, gen->local_sched);
3576 kernel->ctx = gen->ctx;
3577 kernel->options = gen->options;
3578 kernel->id = gen->kernel_id++;
3579 kernel->context = isl_union_map_params(isl_union_map_copy(schedule));
3580 kernel->grid_size = extract_grid_size(gen, kernel);
3581 extract_block_size(gen, kernel);
3582 kernel->arrays = isl_union_map_range(access);
3583 kernel->arrays = isl_union_set_apply(kernel->arrays,
3584 isl_union_map_copy(gen->prog->to_outer));
3585 kernel->space = isl_ast_build_get_schedule_space(build);
3587 compute_shared_sched(gen);
3588 gen->privatization = compute_privatization(gen);
3589 if (gpu_group_references(gen) < 0)
3590 schedule = isl_union_map_free(schedule);
3591 host_domain = isl_set_from_union_set(isl_union_map_range(
3592 isl_union_map_copy(schedule)));
3593 localize_bounds(gen, kernel, host_domain);
3595 gen->local_sched = interchange_for_unroll(gen, gen->local_sched);
3596 check_shared_memory_bound(gen);
3597 compute_group_tilings(gen);
3599 kernel->tree = generate_kernel(gen, build, host_domain,
3600 kernel->grid_size);
3601 create_kernel_vars(gen, kernel);
3603 free_local_array_info(gen);
3604 isl_map_free(gen->privatization);
3605 isl_union_map_free(gen->local_sched);
3606 isl_union_map_free(gen->tiled_sched);
3607 isl_union_map_free(gen->shared_sched);
3608 isl_union_map_free(gen->shared_proj);
3609 isl_set_free(host_domain);
3610 free(gen->tile_size);
3612 node = construct_launch(build, schedule, kernel);
3614 return node;
3615 error:
3616 isl_union_map_free(schedule);
3617 return NULL;
3620 /* Use isl to generate code for the outer gen->tile_first loops
3621 * of the global schedule in gen->sched, resulting in the host code.
3622 * Within each iteration of this partial schedule, i.e., for each kernel
3623 * launch, create_host_leaf takes care of generating the kernel code.
3625 static __isl_give isl_ast_node *generate_host_code(struct gpu_gen *gen)
3627 isl_ast_build *build;
3628 isl_ast_node *tree;
3629 isl_union_map *sched;
3630 isl_map *proj;
3631 isl_id_list *iterators;
3633 sched = isl_union_map_copy(gen->sched);
3634 proj = projection(isl_union_map_get_space(sched),
3635 gen->untiled_len, gen->tile_first);
3636 sched = isl_union_map_apply_range(sched, isl_union_map_from_map(proj));
3638 isl_options_set_ast_build_group_coscheduled(gen->ctx, 1);
3639 build = isl_ast_build_from_context(isl_set_copy(gen->prog->context));
3640 iterators = ppcg_scop_generate_names(gen->prog->scop,
3641 gen->tile_first, "h");
3642 build = isl_ast_build_set_iterators(build, iterators);
3643 build = isl_ast_build_set_create_leaf(build, &create_host_leaf, gen);
3644 tree = isl_ast_build_node_from_schedule_map(build, sched);
3645 isl_ast_build_free(build);
3647 return tree;
3650 __isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
3652 if (!str)
3653 return NULL;
3654 return isl_union_map_read_from_str(ctx, str);
3657 /* Information about the outermost tilable bands in the forest of bands.
3659 * tile_len and n_parallel are only sets on band_info structures
3660 * that correspond to outermost bands. For other bands (in particular,
3661 * ancestors of the outermost bands), n_parallal is set to 0.
3663 * prefix is the (padded) schedule leading up to the outermost tilable bands.
3665 * tile_first is the number of schedule dimensions in prefix.
3667 * suffix is the schedule of the outermost tilable bands and their descendants.
3669 struct band_info {
3670 struct gpu_gen *gen;
3671 int tile_first;
3672 int tile_len;
3673 int n_parallel;
3674 isl_union_map *prefix;
3675 isl_union_map *suffix;
3678 /* Set tile_len and n_parallel of the statement to that of
3679 * their outermost band, recorded in the band_info.
3681 static int set_stmt_tile_len(__isl_take isl_map *map, void *user)
3683 struct band_info *info = user;
3684 struct gpu_stmt *stmt;
3685 isl_id *id;
3687 id = isl_map_get_tuple_id(map, isl_dim_in);
3688 stmt = find_stmt(info->gen->prog, id);
3689 isl_id_free(id);
3691 stmt->tile_len = info->tile_len;
3692 stmt->n_parallel = info->n_parallel;
3694 isl_map_free(map);
3696 return 0;
3699 static void select_outer_band(struct gpu_gen *gen,
3700 __isl_take isl_schedule_node *node, int pos, struct band_info *info);
3702 /* Check if this band node is tilable and has any parallel loops. If so,
3703 * take it as the outermost tilable band. If not, continue looking for the
3704 * outermost tilable band in the children of the current band.
3706 static void band_select_outer_band(struct gpu_gen *gen,
3707 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
3709 int n = isl_schedule_node_band_n_member(node);
3710 int n_parallel;
3712 for (n_parallel = 0; n_parallel < n; ++n_parallel)
3713 if (!isl_schedule_node_band_member_get_coincident(node,
3714 n_parallel))
3715 break;
3717 if (!isl_schedule_node_band_get_permutable(node) || n_parallel == 0) {
3718 node = isl_schedule_node_child(node, 0);
3719 select_outer_band(gen, node, pos + n, info);
3720 return;
3723 info->n_parallel = n_parallel;
3724 gen->any_parallelism = 1;
3725 info->gen = gen;
3726 info->tile_first = pos;
3727 info->tile_len = n;
3728 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3729 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
3730 isl_union_map_foreach_map(info->prefix, &set_stmt_tile_len, info);
3732 isl_schedule_node_free(node);
3735 /* Comparison function that returns a non-zero value for band_infos
3736 * with different tile_len fields or different n_parallel fields.
3738 static int cmp_band(const void *p1, const void *p2)
3740 const struct band_info *info1 = p1;
3741 const struct band_info *info2 = p2;
3743 if (info1->tile_len != info2->tile_len)
3744 return info1->tile_len - info2->tile_len;
3746 return info1->n_parallel - info2->n_parallel;
3749 /* Extend "umap" with coordinates with fixed value "val"
3750 * to a total length of "dst_len", assuming the original dimension is "src_len".
3752 static __isl_give isl_union_map *extend_range(
3753 __isl_take isl_union_map *umap, int src_len, int dst_len, int val)
3755 isl_space *dim;
3756 isl_map *map;
3757 int i;
3759 dim = isl_union_map_get_space(umap);
3760 map = isl_map_reverse(projection(dim, dst_len, src_len));
3761 for (i = src_len; i < dst_len; ++i)
3762 map = isl_map_fix_si(map, isl_dim_out, i, val);
3764 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
3766 return umap;
3769 /* Insert a new dimension at position "pos" in the range of "umap"
3770 * with fixed value "val", assuming the original dimension of the range
3771 * of "umap" is "src_len".
3773 static __isl_give isl_union_map *insert_range(__isl_take isl_union_map *umap,
3774 int src_len, int pos, int val)
3776 isl_space *space;
3777 isl_map *map;
3779 space = isl_union_map_get_space(umap);
3780 map = project_out(space, src_len + 1, pos, 1);
3781 map = isl_map_reverse(map);
3782 map = isl_map_fix_si(map, isl_dim_out, pos, val);
3784 umap = isl_union_map_apply_range(umap, isl_union_map_from_map(map));
3786 return umap;
3789 /* Group bands with the same values for tile_len and n_parallel.
3790 * The prefix schedule is then extended with a fixed coordinate that
3791 * is different for each such group.
3792 * Note that the actual values for this coordinate are not important.
3793 * The bands have already been effectively separated at a higher level
3794 * or they are independent and may be executed in parallel.
3795 * The list of band_info has been sorted before this functions is called.
3797 static void separate_bands(struct band_info *info, int n)
3799 int i;
3800 int j = 0;
3802 for (i = 0; i < n; ++i) {
3803 int l = info[i].tile_first;
3805 if (i &&
3806 (info[i].tile_len != info[i - 1].tile_len ||
3807 info[i].n_parallel != info[i - 1].n_parallel))
3808 j++;
3810 info[i].prefix = extend_range(info[i].prefix,
3811 l, l + 1, j);
3812 info[i].tile_first = l + 1;
3816 /* Select the outermost bands in the elements of the sequence or set
3817 * node "node", align their prefix schedules. Separate all bands
3818 * if "serialize" is set and otherwise separate bands with different values
3819 * for tile_len and/or n_parallel. Finally, combine the resulting
3820 * prefix and suffix schedules into a single pair of prefix and
3821 * suffix schedules for the entire list.
3823 static void list_select_outer_band(struct gpu_gen *gen,
3824 __isl_take isl_schedule_node *node, int pos,
3825 struct band_info *list_info, int serialize)
3827 int i;
3828 int n = isl_schedule_node_n_children(node);
3829 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3830 struct band_info *info;
3831 int max_tile_first;
3832 isl_union_map *prefix;
3833 isl_union_map *suffix;
3835 assert(n >= 1);
3836 info = isl_calloc_array(ctx, struct band_info, n);
3837 assert(info);
3839 max_tile_first = 0;
3840 for (i = 0; i < n; ++i) {
3841 isl_schedule_node *child;
3842 child = isl_schedule_node_get_child(node, i);
3843 select_outer_band(gen, child, pos, &info[i]);
3844 if (info[i].tile_first > max_tile_first)
3845 max_tile_first = info[i].tile_first;
3848 for (i = 0; i < n; ++i) {
3849 if (info[i].tile_first == max_tile_first)
3850 continue;
3851 info[i].prefix = extend_range(info[i].prefix,
3852 info[i].tile_first, max_tile_first, 0);
3853 info[i].tile_first = max_tile_first;
3856 if (serialize) {
3857 for (i = 0; i < n; ++i) {
3858 int l = info[i].tile_first;
3859 info[i].prefix = insert_range(info[i].prefix, l,
3860 pos, i);
3861 info[i].tile_first = l + 1;
3863 } else {
3864 qsort(info, n, sizeof(struct band_info), &cmp_band);
3866 for (i = 0; i < n - 1; ++i)
3867 if (info[i].tile_len != info[i + 1].tile_len ||
3868 info[i].n_parallel != info[i + 1].n_parallel)
3869 break;
3871 if (i < n - 1)
3872 separate_bands(info, n);
3875 prefix = info[0].prefix;
3876 suffix = info[0].suffix;
3878 for (i = 1; i < n; ++i) {
3879 prefix = isl_union_map_union(prefix, info[i].prefix);
3880 suffix = isl_union_map_union(suffix, info[i].suffix);
3883 list_info->tile_first = info[0].tile_first;
3884 list_info->tile_len = -1;
3885 list_info->prefix = prefix;
3886 list_info->suffix = suffix;
3888 isl_schedule_node_free(node);
3889 free(info);
3892 /* Select the outermost bands in the elements of the set node "node".
3893 * If the schedule_separate_components is set, then separate all bands.
3895 static void set_select_outer_band(struct gpu_gen *gen,
3896 __isl_take isl_schedule_node *node, int pos,
3897 struct band_info *list_info)
3899 isl_ctx *ctx = isl_schedule_node_get_ctx(node);
3900 int serialize;
3902 serialize = isl_options_get_schedule_separate_components(ctx);
3903 list_select_outer_band(gen, node, pos, list_info, serialize);
3906 /* Select the outermost bands in the elements of the sequence node "node",
3907 * separating all bands.
3909 static void sequence_select_outer_band(struct gpu_gen *gen,
3910 __isl_take isl_schedule_node *node, int pos,
3911 struct band_info *list_info)
3913 list_select_outer_band(gen, node, pos, list_info, 1);
3916 /* If we reach a leaf node, then we have not found any outer tilable
3917 * band with parallel loops, so consider the leaf node as the outermost
3918 * tilable band.
3920 static void leaf_select_outer_band(struct gpu_gen *gen,
3921 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
3923 info->gen = gen;
3924 info->tile_first = pos;
3925 info->tile_len = 0;
3926 info->prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
3927 info->suffix = isl_schedule_node_get_subtree_schedule_union_map(node);
3928 isl_union_map_foreach_map(info->prefix, &set_stmt_tile_len, info);
3930 isl_schedule_node_free(node);
3933 /* Select the outermost tilable band in the subtree that "node" points to.
3935 static void select_outer_band(struct gpu_gen *gen,
3936 __isl_take isl_schedule_node *node, int pos, struct band_info *info)
3938 enum isl_schedule_node_type type;
3940 type = isl_schedule_node_get_type(node);
3941 switch (type) {
3942 case isl_schedule_node_domain:
3943 case isl_schedule_node_filter:
3944 node = isl_schedule_node_child(node, 0);
3945 select_outer_band(gen, node, pos, info);
3946 return;
3947 case isl_schedule_node_leaf:
3948 leaf_select_outer_band(gen, node, pos, info);
3949 return;
3950 case isl_schedule_node_band:
3951 band_select_outer_band(gen, node, pos, info);
3952 return;
3953 case isl_schedule_node_set:
3954 set_select_outer_band(gen, node, pos, info);
3955 return;
3956 case isl_schedule_node_sequence:
3957 sequence_select_outer_band(gen, node, pos, info);
3958 return;
3959 default:
3960 isl_die(isl_schedule_node_get_ctx(node),
3961 isl_error_unsupported, "unhandled schedule node type",
3962 node = node);
3963 case isl_schedule_node_error:
3964 info->prefix = NULL;
3965 info->suffix = NULL;
3966 break;
3969 isl_schedule_node_free(node);
3972 /* Select the outermost tilable band that (by construction)
3973 * has at least one parallel loop.
3974 * The starting position of the aligned band is stored in the pair
3975 * gen->tile_first.
3976 * The sizes and number of parallel loops may be different in different
3977 * parts of the band forest and are therefore stored in the gpu_stmts.
3979 * Return the complete schedule, with the tilable bands aligned
3980 * at gen->tile_first and padded with zero, if needed.
3982 static __isl_give isl_union_map *select_outer_tilable_band(struct gpu_gen *gen,
3983 __isl_keep isl_schedule *schedule)
3985 isl_schedule_node *node;
3986 struct band_info info;
3988 gen->n_parallel = 0;
3989 gen->tile_len = -1;
3991 node = isl_schedule_get_root(schedule);
3992 select_outer_band(gen, node, 0, &info);
3994 gen->tile_first = info.tile_first;
3995 info.suffix = align_range(info.suffix);
3997 return isl_union_map_flat_range_product(info.prefix, info.suffix);
4000 /* Set gen->untiled_len to the number of scheduling dimensions
4001 * for the schedule of the first domain.
4002 * We assume here that this number is the same for all domains.
4004 static int set_untiled_len(__isl_take isl_map *map, void *user)
4006 unsigned *untiled_len = user;
4008 *untiled_len = isl_map_dim(map, isl_dim_out);
4010 isl_map_free(map);
4011 return -1;
4014 /* Compute an appropriate schedule based on the accesses in
4015 * gen->read and gen->write.
4017 * We use the dependences in gen->prog->scop to compute
4018 * a schedule that has a parallel loop in each tilable band.
4019 * Finally, we select the outermost tilable band.
4021 * If live range reordering is allowed, then we need to make sure
4022 * that live ranges on arrays are not run in parallel since doing
4023 * so would require array expansion. We therefore add the array
4024 * order dependences to the coincidence dependences. Non-zero array
4025 * order dependences will then prevent a schedule dimension from being
4026 * considered parallel.
4027 * Live ranges derived from scalars are allowed to be run in parallel
4028 * since we force the scalars to be mapped to private memory in
4029 * check_scalar_live_ranges.
4030 * If live range reordering is allowed, then the false dependences
4031 * are not added to the validity constraints as that would prevent
4032 * reordering. Instead, the external false dependences that enforce that reads
4033 * from potentially live-in data precede any later write and
4034 * that writes of potentially live-out data follow any other earlier write
4035 * are added to the validity and the coincidence constraints.
4036 * The false dependences are still added to the proximity constraints
4037 * for consistency with the case where live range reordering is not allowed.
4038 * The coincidence constraints then consist of flow dependences,
4039 * external false dependences and array order dependences.
4040 * The independences can be filtered out from the first two sets.
4041 * They have already been filtered out from the array order dependences
4042 * on a per array basis in collect_order_dependences.
4043 * There is no need for a per array handling of the other two sets
4044 * as there should be no flow or external false dependence on local
4045 * variables that can be filtered out.
4047 static void compute_schedule(struct gpu_gen *gen)
4049 isl_union_set *domain;
4050 isl_union_map *dep_raw, *dep;
4051 isl_union_map *validity, *proximity, *coincidence;
4052 isl_union_map *sched;
4053 isl_schedule_constraints *sc;
4054 isl_schedule *schedule;
4056 domain = isl_union_set_copy(gen->prog->scop->domain);
4057 sc = isl_schedule_constraints_on_domain(isl_union_set_copy(domain));
4058 sc = isl_schedule_constraints_set_context(sc,
4059 isl_set_copy(gen->prog->scop->context));
4060 if (gen->options->live_range_reordering) {
4061 sc = isl_schedule_constraints_set_conditional_validity(sc,
4062 isl_union_map_copy(gen->prog->scop->tagged_dep_flow),
4063 isl_union_map_copy(gen->prog->scop->tagged_dep_order));
4064 proximity = isl_union_map_copy(gen->prog->scop->dep_flow);
4065 validity = isl_union_map_copy(proximity);
4066 validity = isl_union_map_union(validity,
4067 isl_union_map_copy(gen->prog->scop->dep_external));
4068 proximity = isl_union_map_union(proximity,
4069 isl_union_map_copy(gen->prog->scop->dep_false));
4070 coincidence = isl_union_map_copy(validity);
4071 coincidence = isl_union_map_subtract(coincidence,
4072 isl_union_map_copy(gen->prog->scop->independence));
4073 coincidence = isl_union_map_union(coincidence,
4074 isl_union_map_copy(gen->prog->array_order));
4075 } else {
4076 dep_raw = isl_union_map_copy(gen->prog->scop->dep_flow);
4077 dep = isl_union_map_copy(gen->prog->scop->dep_false);
4078 dep = isl_union_map_union(dep, dep_raw);
4079 dep = isl_union_map_coalesce(dep);
4080 proximity = isl_union_map_copy(dep);
4081 coincidence = isl_union_map_copy(dep);
4082 validity = dep;
4084 sc = isl_schedule_constraints_set_validity(sc, validity);
4085 sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
4086 sc = isl_schedule_constraints_set_proximity(sc, proximity);
4088 if (gen->options->debug->dump_schedule_constraints)
4089 isl_schedule_constraints_dump(sc);
4090 schedule = isl_schedule_constraints_compute_schedule(sc);
4091 if (gen->options->debug->dump_schedule)
4092 isl_schedule_dump(schedule);
4094 sched = select_outer_tilable_band(gen, schedule);
4096 isl_union_map_foreach_map(sched, &set_untiled_len, &gen->untiled_len);
4097 sched = isl_union_map_intersect_domain(sched, domain);
4098 gen->sched = sched;
4100 isl_schedule_free(schedule);
4103 /* Compute the sets of outer array elements that need to be copied in and out.
4105 * In particular, for each array that is possibly written anywhere in
4106 * gen->prog and that is visible outside the corresponding scop,
4107 * we copy out its entire extent.
4109 * Any array elements that is read without first being written needs
4110 * to be copied in. Furthermore, if there are any array elements that
4111 * are copied out, but that may not be written inside gen->prog, then
4112 * they also need to be copied in to ensure that the value after execution
4113 * is the same as the value before execution, at least for those array
4114 * elements that may have their values preserved by the scop.
4115 * In case the array elements are structures, we need to take into
4116 * account that all members of the structures need to be written
4117 * by gen->prog before we can avoid copying the data structure in.
4119 * While computing the set of array elements that are copied out but
4120 * not necessarily written, we intersect both sets with the context.
4121 * This helps in those cases where the arrays are declared with a fixed size,
4122 * while the accesses are parametric and the context assigns a fixed value
4123 * to the parameters.
4125 * If an element from a local array is read without first being written,
4126 * then there is no point in copying it in since it cannot have been
4127 * written prior to the scop. Warn about the uninitialized read instead.
4129 static void compute_copy_in_and_out(struct gpu_gen *gen)
4131 int i;
4132 isl_union_set *local;
4133 isl_union_set *may_write, *must_write;
4134 isl_union_set *copy_in, *copy_out;
4135 isl_union_set *not_written;
4136 isl_union_map *uninitialized;
4137 isl_union_map *local_uninitialized;
4139 must_write = isl_union_map_range(
4140 isl_union_map_copy(gen->prog->must_write));
4141 must_write = isl_union_set_intersect_params(must_write,
4142 isl_set_copy(gen->prog->context));
4143 may_write = isl_union_map_range(
4144 isl_union_map_copy(gen->prog->may_write));
4145 may_write = isl_union_set_intersect_params(may_write,
4146 isl_set_copy(gen->prog->context));
4147 may_write = isl_union_set_universe(may_write);
4148 may_write = isl_union_set_apply(may_write,
4149 isl_union_map_copy(gen->prog->to_outer));
4150 copy_out = isl_union_set_empty(isl_union_set_get_space(may_write));
4151 local = isl_union_set_copy(copy_out);
4153 for (i = 0; i < gen->prog->n_array; ++i) {
4154 isl_space *space;
4155 isl_set *write_i;
4156 int empty;
4158 space = isl_space_copy(gen->prog->array[i].space);
4160 if (gen->prog->array[i].local) {
4161 isl_set *set;
4163 set = isl_set_universe(space);
4164 local = isl_union_set_add_set(local, set);
4165 continue;
4168 write_i = isl_union_set_extract_set(may_write, space);
4169 empty = isl_set_plain_is_empty(write_i);
4170 isl_set_free(write_i);
4171 if (empty)
4172 continue;
4174 write_i = isl_set_copy(gen->prog->array[i].extent);
4175 copy_out = isl_union_set_add_set(copy_out, write_i);
4177 isl_union_set_free(may_write);
4179 copy_out = isl_union_set_intersect_params(copy_out,
4180 isl_set_copy(gen->prog->context));
4182 gen->prog->copy_out = isl_union_set_copy(copy_out);
4184 copy_out = isl_union_set_apply(copy_out,
4185 isl_union_map_copy(gen->prog->to_inner));
4186 copy_out = isl_union_set_intersect(copy_out,
4187 isl_union_set_copy(gen->prog->may_persist));
4188 not_written = isl_union_set_subtract(copy_out, must_write);
4190 uninitialized = isl_union_map_copy(gen->prog->scop->live_in);
4191 local_uninitialized = isl_union_map_copy(uninitialized);
4193 local = isl_union_set_apply(local,
4194 isl_union_map_copy(gen->prog->to_inner));
4195 local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
4196 local);
4197 if (!isl_union_map_is_empty(local_uninitialized)) {
4198 fprintf(stderr,
4199 "possibly uninitialized reads (not copied in):\n");
4200 isl_union_map_dump(local_uninitialized);
4202 uninitialized = isl_union_map_subtract(uninitialized,
4203 local_uninitialized);
4204 copy_in = isl_union_map_range(uninitialized);
4205 copy_in = isl_union_set_union(copy_in, not_written);
4206 copy_in = isl_union_set_apply(copy_in,
4207 isl_union_map_copy(gen->prog->to_outer));
4209 gen->prog->copy_in = copy_in;
4212 /* Internal data structure for extract_access.
4213 * "next_access" points to the end of a linked list that is extended
4214 * by extract_access.
4215 * "single_expression" is set if the access expressions belong to
4216 * an expression statement (i.e., a statement without internal control).
4217 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4219 struct ppcg_extract_access_data {
4220 struct gpu_stmt_access **next_access;
4221 int single_expression;
4222 isl_union_map *any_to_outer;
4225 /* Given a tagged access relation to a single array "tagged", extract it
4226 * as a map, taking into account that the input may be empty.
4227 * If the access relation is empty, then it does not contain
4228 * any space information, so we try to recover it from the index
4229 * expression.
4230 * The space of the index expression is of the form I -> A,
4231 * with I the statement instances and A the array, or [I -> F] -> A,
4232 * with F the filters corresponding to arguments.
4233 * We first drop F, if present, obtaining I -> A.
4234 * Then we construct I -> R, with R the reference tag,
4235 * combine the two into I -> [R -> A] and uncurry to obtain
4236 * the final result [I -> R] -> A.
4237 * Note that the index expression may have a lower dimension
4238 * than that of the array, but this dimension is not used
4239 * if the access relation is empty.
4241 static __isl_give isl_map *extract_single_tagged_access(
4242 __isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
4244 int empty;
4245 isl_id *id;
4246 isl_space *space, *space2;
4247 isl_multi_pw_aff *index;
4249 empty = isl_union_map_is_empty(tagged);
4250 if (empty < 0)
4251 goto error;
4252 if (!empty)
4253 return isl_map_from_union_map(tagged);
4254 isl_union_map_free(tagged);
4256 index = pet_expr_access_get_index(expr);
4257 space = isl_multi_pw_aff_get_space(index);
4258 isl_multi_pw_aff_free(index);
4259 if (isl_space_domain_is_wrapping(space))
4260 space = isl_space_domain_factor_domain(space);
4261 space2 = isl_space_copy(space);
4262 space2 = isl_space_from_domain(isl_space_domain(space));
4263 id = pet_expr_access_get_ref_id(expr);
4264 space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
4265 space = isl_space_range_product(space2, space);
4266 space = isl_space_uncurry(space);
4268 return isl_map_empty(space);
4269 error:
4270 isl_union_map_free(tagged);
4271 return NULL;
4274 /* Extract a gpu_stmt_access from "expr", append it to the list
4275 * that ends in *data->next_access and update the end of the list.
4276 * If the access expression performs a write, then it is considered
4277 * exact only if it appears in a single expression statement and
4278 * if its may access relation is equal to its must access relation.
4280 * The combined set of may accesses may be union if member accesses
4281 * are involved, but the entire set is derived from a single reference and
4282 * therefore from a single index expression. These accesses therefore
4283 * all map to the same outer array.
4285 static int extract_access(__isl_keep pet_expr *expr, void *user)
4287 struct ppcg_extract_access_data *data = user;
4288 isl_union_map *tagged;
4289 struct gpu_stmt_access *access;
4290 isl_ctx *ctx = pet_expr_get_ctx(expr);
4291 isl_multi_pw_aff *index;
4293 access = isl_alloc_type(ctx, struct gpu_stmt_access);
4294 assert(access);
4295 access->next = NULL;
4296 access->read = pet_expr_access_is_read(expr);
4297 access->write = pet_expr_access_is_write(expr);
4298 tagged = pet_expr_access_get_tagged_may_read(expr);
4299 tagged = isl_union_map_union(tagged,
4300 pet_expr_access_get_tagged_may_write(expr));
4301 tagged = isl_union_map_apply_range(tagged,
4302 isl_union_map_copy(data->any_to_outer));
4303 if (!access->write) {
4304 access->exact_write = 1;
4305 } else if (!data->single_expression) {
4306 access->exact_write = 0;
4307 } else {
4308 isl_union_map *must, *may;
4309 may = isl_union_map_copy(tagged);
4310 may = isl_union_map_domain_factor_domain(may);
4311 must = pet_expr_access_get_must_write(expr);
4312 access->exact_write = isl_union_map_is_equal(must, may);
4313 isl_union_map_free(must);
4314 isl_union_map_free(may);
4316 index = pet_expr_access_get_index(expr);
4317 access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
4318 isl_multi_pw_aff_free(index);
4319 access->ref_id = pet_expr_access_get_ref_id(expr);
4320 access->group = -1;
4321 access->tagged_access = extract_single_tagged_access(tagged, expr);
4322 access->access = isl_map_copy(access->tagged_access);
4323 access->access = isl_map_domain_factor_domain(access->access);
4325 *data->next_access = access;
4326 data->next_access = &(*data->next_access)->next;
4328 if (!access->access)
4329 return -1;
4331 return 0;
4334 /* Construct a linked list of gpu_stmt_access objects,
4335 * one for each access expression in the statement body.
4336 * "any_to_outer" maps all intermediate arrays to their outer arrays.
4338 static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
4339 __isl_keep isl_union_map *any_to_outer)
4341 struct ppcg_extract_access_data data;
4343 stmt->accesses = NULL;
4344 data.next_access = &stmt->accesses;
4345 data.single_expression =
4346 pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
4347 data.any_to_outer = any_to_outer;
4348 return pet_tree_foreach_access_expr(stmt->stmt->body,
4349 &extract_access, &data);
4352 /* Return an array of gpu_stmt representing the statements in "scop".
4354 static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
4355 __isl_keep isl_set *context, __isl_keep isl_union_map *any_to_outer)
4357 int i;
4358 struct gpu_stmt *stmts;
4360 stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
4361 if (!stmts)
4362 return NULL;
4364 for (i = 0; i < scop->pet->n_stmt; ++i) {
4365 struct gpu_stmt *s = &stmts[i];
4367 s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
4368 s->stmt = scop->pet->stmts[i];
4369 if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
4370 return free_stmts(stmts, i + 1);
4373 return stmts;
4376 /* Callback for ppcg_print_guarded that calls the callback for generate_gpu.
4378 static __isl_give isl_printer *print_gpu(__isl_take isl_printer *p, void *user)
4380 struct gpu_gen *gen = user;
4382 return gen->print(p, gen->prog, gen->tree, &gen->types,
4383 gen->print_user);
4386 /* Generate CUDA code for "scop" and print it to "p".
4387 * After generating an AST for the transformed scop as explained below,
4388 * we call "gen->print" to print the AST in the desired output format
4389 * to "p".
4391 * If it turns out that it does not make sense to generate GPU code,
4392 * then we generate CPU code instead.
4394 * The GPU code is generated in a context where at least one
4395 * statement instance is executed. The corresponding guard (if any) is printed
4396 * around the entire generated GPU code, except for the declaration
4397 * of the arrays that are visible outside of the scop and that therefore
4398 * cannot be declared inside the body of any possible guard.
4400 * We first compute a schedule that respects the dependences
4401 * of the original program and select the outermost band
4402 * of tilable dimensions that has at least one parallel loop.
4403 * We then have three blocks of dimensions
4405 * H B G
4407 * The tilable band "B" is first tiled according to "tile" sizes, resulting
4408 * in
4410 * H T P G
4412 * For each iteration of the T loop and for each array, we compute
4413 * the array elements accessed by that iteration, construct a rectangular
4414 * box around it and shift it to the origin. The result is used
4415 * as shared memory for the array.
4417 * We then split off at most 2 parallel loops from the T loops and
4418 * at most 3 parallel loops from the P loops
4420 * H T1 T2 P1 P2 G
4422 * The T1/P1 loops are then tiled or "wrapped" over the blocks/threads,
4423 * according to "grid"/"block" sizes.
4425 * H T1T T1P T2 P1T P1P P2 G
4427 * Finally, the T1P and P1P iterators are equated to the block and
4428 * thread dimensions respectively and so are effectively removed.
4429 * The H loops are run on the host. The T1T, T2, P1T, P2 and G loops
4430 * are run on the GPU.
4432 * Code is generated in three stages. We first generate code for the
4433 * host (the H loops), with iterators h%d. Then, for each leaf node
4434 * of the resulting AST, we generate code for the shared loops (up to
4435 * and including T2), with iterators g%d and after equating the H loops
4436 * to h%d parameters and the T1P loops to the block dimensions.
4437 * Finally, we generate code for the remaining loops in a similar fashion.
4439 static __isl_give isl_printer *generate(__isl_take isl_printer *p,
4440 struct gpu_gen *gen, struct ppcg_scop *scop,
4441 struct ppcg_options *options)
4443 struct gpu_prog *prog;
4444 isl_ctx *ctx;
4445 isl_set *context, *guard;
4447 if (!scop)
4448 return isl_printer_free(p);
4450 ctx = isl_printer_get_ctx(p);
4451 prog = gpu_prog_alloc(ctx, scop);
4452 if (!prog)
4453 return isl_printer_free(p);
4455 context = isl_set_copy(prog->context);
4456 guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
4457 prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
4459 gen->prog = prog;
4460 gen->any_parallelism = 0;
4461 compute_schedule(gen);
4463 if (!gen->any_parallelism) {
4464 isl_set_free(context);
4465 isl_set_free(guard);
4466 p = print_cpu(p, scop, options);
4467 } else {
4468 compute_copy_in_and_out(gen);
4469 gen->tree = generate_host_code(gen);
4470 p = ppcg_print_exposed_declarations(p, prog->scop);
4471 p = ppcg_print_guarded(p, guard, context, &print_gpu, gen);
4472 isl_ast_node_free(gen->tree);
4475 isl_union_map_free(gen->sched);
4477 gpu_prog_free(prog);
4479 return p;
4482 /* Wrapper around generate for use as a ppcg_transform callback.
4484 static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
4485 struct ppcg_scop *scop, void *user)
4487 struct gpu_gen *gen = user;
4489 return generate(p, gen, scop, gen->options);
4492 /* Transform the code in the file called "input" by replacing
4493 * all scops by corresponding GPU code and write the results to "out".
4495 int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
4496 struct ppcg_options *options,
4497 __isl_give isl_printer *(*print)(__isl_take isl_printer *p,
4498 struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
4499 struct gpu_types *types, void *user), void *user)
4501 struct gpu_gen gen;
4502 int r;
4503 int i;
4505 gen.ctx = ctx;
4506 gen.sizes = extract_sizes_from_str(ctx, options->sizes);
4507 gen.options = options;
4508 gen.kernel_id = 0;
4509 gen.print = print;
4510 gen.print_user = user;
4511 gen.types.n = 0;
4512 gen.types.name = NULL;
4514 if (options->debug->dump_sizes) {
4515 isl_space *space = isl_space_params_alloc(ctx, 0);
4516 gen.used_sizes = isl_union_map_empty(space);
4519 r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
4521 if (options->debug->dump_sizes) {
4522 isl_union_map_dump(gen.used_sizes);
4523 isl_union_map_free(gen.used_sizes);
4526 isl_union_map_free(gen.sizes);
4527 for (i = 0; i < gen.types.n; ++i)
4528 free(gen.types.name[i]);
4529 free(gen.types.name);
4531 return r;
4534 /* Compute the set of inner array elements that may have their values
4535 * preserved by "prog". In particular, collect the array elements of
4536 * arrays that are not local to "prog" and remove those elements that
4537 * are definitely killed or definitely written by "prog".
4539 static __isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
4541 int i;
4542 isl_union_set *may_persist, *killed;
4543 isl_union_map *must_kill;
4545 may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
4546 for (i = 0; i < prog->n_array; ++i) {
4547 isl_set *extent;
4549 if (prog->array[i].local)
4550 continue;
4552 extent = isl_set_copy(prog->array[i].extent);
4553 may_persist = isl_union_set_add_set(may_persist, extent);
4556 may_persist = isl_union_set_intersect_params(may_persist,
4557 isl_set_copy(prog->context));
4558 may_persist = isl_union_set_apply(may_persist,
4559 isl_union_map_copy(prog->to_inner));
4560 must_kill = isl_union_map_copy(prog->tagged_must_kill);
4561 killed = isl_union_map_range(must_kill);
4562 must_kill = isl_union_map_copy(prog->must_write);
4563 killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
4565 may_persist = isl_union_set_subtract(may_persist, killed);
4566 return may_persist;
4569 struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
4571 struct gpu_prog *prog;
4572 isl_space *space;
4573 isl_map *id;
4575 if (!scop)
4576 return NULL;
4578 prog = isl_calloc_type(ctx, struct gpu_prog);
4579 assert(prog);
4581 prog->ctx = ctx;
4582 prog->scop = scop;
4583 prog->context = isl_set_copy(scop->context);
4584 prog->n_stmts = scop->pet->n_stmt;
4585 prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
4586 prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
4587 space = isl_union_map_get_space(prog->any_to_outer);
4588 space = isl_space_set_from_params(space);
4589 space = isl_space_add_dims(space, isl_dim_set, 1);
4590 space = isl_space_map_from_set(space);
4591 id = isl_map_identity(space);
4592 prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
4593 prog->stmts = extract_stmts(ctx, scop,
4594 prog->context, prog->any_to_outer);
4595 prog->read = isl_union_map_copy(scop->reads);
4596 prog->may_write = isl_union_map_copy(scop->may_writes);
4597 prog->must_write = isl_union_map_copy(scop->must_writes);
4598 prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
4599 prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
4600 prog->to_outer = isl_union_map_copy(prog->to_inner);
4601 prog->to_outer = isl_union_map_reverse(prog->to_outer);
4603 if (!prog->stmts)
4604 return gpu_prog_free(prog);
4606 if (collect_array_info(prog) < 0)
4607 return gpu_prog_free(prog);
4608 prog->may_persist = compute_may_persist(prog);
4610 return prog;
4613 void *gpu_prog_free(struct gpu_prog *prog)
4615 if (!prog)
4616 return NULL;
4617 free_array_info(prog);
4618 free_stmts(prog->stmts, prog->n_stmts);
4619 isl_union_map_free(prog->any_to_outer);
4620 isl_union_map_free(prog->to_outer);
4621 isl_union_map_free(prog->to_inner);
4622 isl_union_set_free(prog->copy_in);
4623 isl_union_set_free(prog->copy_out);
4624 isl_union_map_free(prog->read);
4625 isl_union_map_free(prog->may_write);
4626 isl_union_map_free(prog->must_write);
4627 isl_union_map_free(prog->tagged_must_kill);
4628 isl_union_map_free(prog->array_order);
4629 isl_union_set_free(prog->may_persist);
4630 isl_set_free(prog->context);
4631 free(prog);
4632 return NULL;