gpu_group.c: add missing copyright information
[ppcg.git] / gpu_group.c
blob8ae5a47b3040629f1a45f780f4c26affa8a62cdc
1 /*
2 * Copyright 2010-2011 INRIA Saclay
3 * Copyright 2012-2014 Ecole Normale Superieure
4 * Copyright 2015 Sven Verdoolaege
6 * Use of this software is governed by the MIT license
8 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
9 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
10 * 91893 Orsay, France
11 * and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
14 #include <isl/constraint.h>
15 #include <isl/ilp.h>
17 #include "gpu_array_tile.h"
18 #include "gpu_group.h"
19 #include "gpu_tree.h"
20 #include "schedule.h"
22 /* Print the name of the local copy of a given group of array references.
24 __isl_give isl_printer *gpu_array_ref_group_print_name(
25 struct gpu_array_ref_group *group, __isl_take isl_printer *p)
27 int global = 0;
29 if (group->private_tile)
30 p = isl_printer_print_str(p, "private_");
31 else if (group->shared_tile)
32 p = isl_printer_print_str(p, "shared_");
33 else
34 global = 1;
35 p = isl_printer_print_str(p, group->array->name);
36 if (!global && group->local_array->n_group > 1) {
37 p = isl_printer_print_str(p, "_");
38 p = isl_printer_print_int(p, group->nr);
41 return p;
44 /* Return the union of all read (read = 1) and/or write (write = 1)
45 * access relations in the group.
47 __isl_give isl_union_map *gpu_array_ref_group_access_relation(
48 struct gpu_array_ref_group *group, int read, int write)
50 int i;
51 isl_union_map *access;
53 access = isl_union_map_empty(isl_map_get_space(group->access));
54 for (i = 0; i < group->n_ref; ++i) {
55 isl_map *map_i;
57 if (!((read && group->refs[i]->read) ||
58 (write && group->refs[i]->write)))
59 continue;
60 map_i = isl_map_copy(group->refs[i]->access);
61 access = isl_union_map_union(access,
62 isl_union_map_from_map(map_i));
65 return access;
68 /* Return the effective gpu_array_tile associated to "group" or
69 * NULL if there is no such gpu_array_tile.
70 * If we have computed both a private and a shared tile, then
71 * the private tile is used.
73 struct gpu_array_tile *gpu_array_ref_group_tile(
74 struct gpu_array_ref_group *group)
76 if (group->private_tile)
77 return group->private_tile;
78 if (group->shared_tile)
79 return group->shared_tile;
80 return NULL;
83 /* Does the tile associated to "group" require unrolling of the schedule
84 * dimensions mapped to threads?
85 * Note that this can only happen for private tiles.
87 int gpu_array_ref_group_requires_unroll(struct gpu_array_ref_group *group)
89 struct gpu_array_tile *tile;
91 tile = gpu_array_ref_group_tile(group);
92 if (!tile)
93 return 0;
94 return tile->requires_unroll;
97 /* Given a constraint
99 * a(p,i) + j = g f(e)
101 * or -a(p,i) - j = g f(e) if sign < 0,
102 * store a(p,i) in bound->shift and g (stride) in bound->stride.
103 * a(p,i) is assumed to be an expression in only the parameters
104 * and the input dimensions.
106 static void extract_stride(__isl_keep isl_constraint *c,
107 struct gpu_array_bound *bound, __isl_keep isl_val *stride, int sign)
109 int i;
110 isl_val *v;
111 isl_space *space;
112 unsigned nparam;
113 unsigned nvar;
114 isl_aff *aff;
116 isl_val_free(bound->stride);
117 bound->stride = isl_val_copy(stride);
119 space = isl_constraint_get_space(c);
120 space = isl_space_domain(space);
122 nparam = isl_space_dim(space, isl_dim_param);
123 nvar = isl_space_dim(space, isl_dim_set);
125 v = isl_constraint_get_constant_val(c);
126 if (sign < 0)
127 v = isl_val_neg(v);
128 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
129 aff = isl_aff_set_constant_val(aff, v);
131 for (i = 0; i < nparam; ++i) {
132 if (!isl_constraint_involves_dims(c, isl_dim_param, i, 1))
133 continue;
134 v = isl_constraint_get_coefficient_val(c, isl_dim_param, i);
135 if (sign < 0)
136 v = isl_val_neg(v);
137 aff = isl_aff_add_coefficient_val(aff, isl_dim_param, i, v);
140 for (i = 0; i < nvar; ++i) {
141 if (!isl_constraint_involves_dims(c, isl_dim_in, i, 1))
142 continue;
143 v = isl_constraint_get_coefficient_val(c, isl_dim_in, i);
144 if (sign < 0)
145 v = isl_val_neg(v);
146 aff = isl_aff_add_coefficient_val(aff, isl_dim_in, i, v);
149 bound->shift = aff;
152 /* Given an equality constraint of a map with a single output dimension j,
153 * check if the constraint is of the form
155 * a(p,i) + j = g f(e)
157 * with a(p,i) an expression in the parameters and input dimensions
158 * and f(e) an expression in the existentially quantified variables.
159 * If so, and if g is larger than any such g from a previously considered
160 * constraint, then call extract_stride to record the stride information
161 * in bound.
163 static isl_stat check_stride_constraint(__isl_take isl_constraint *c,
164 void *user)
166 int i;
167 isl_ctx *ctx;
168 isl_val *v;
169 unsigned n_div;
170 struct gpu_array_bound *bound = user;
172 ctx = isl_constraint_get_ctx(c);
173 n_div = isl_constraint_dim(c, isl_dim_div);
174 v = isl_constraint_get_coefficient_val(c, isl_dim_out, 0);
176 if (n_div && (isl_val_is_one(v) || isl_val_is_negone(v))) {
177 int s = isl_val_sgn(v);
178 isl_val *stride = isl_val_zero(ctx);
180 isl_val_free(v);
181 for (i = 0; i < n_div; ++i) {
182 v = isl_constraint_get_coefficient_val(c,
183 isl_dim_div, i);
184 stride = isl_val_gcd(stride, v);
186 if (!isl_val_is_zero(stride) &&
187 isl_val_gt(stride, bound->stride))
188 extract_stride(c, bound, stride, s);
190 isl_val_free(stride);
191 } else
192 isl_val_free(v);
194 isl_constraint_free(c);
195 return isl_stat_ok;
198 /* Given contraints on an array index i, check if we can find
199 * a shift a(p) and a stride g such that
201 * a(p) + i = 0 mod g
203 * If so, record the information in bound and apply the mapping
204 * i -> (i + a(p))/g to the array index in bounds and return
205 * the new constraints.
206 * If not, simply return the original constraints.
208 * If bounds is a subset of the space
210 * D -> i
212 * then the bound recorded in bound->shift is of the form
214 * D -> s(D)
216 * with s(D) equal to a(p) above.
217 * Next, we construct a mapping of the form
219 * [D -> i] -> [D -> (i + S(D))/g]
221 * This mapping is computed as follows.
222 * We first introduce "i" in the domain through precomposition
223 * with [D -> i] -> D obtaining
225 * [D -> i] -> s(D)
227 * Adding [D -> i] -> i produces
229 * [D -> i] -> i + s(D)
231 * and the domain product with [D -> i] -> D yields
233 * [D -> i] -> [D -> i + s(D)]
235 * Composition with [D -> i] -> [D -> i/g] gives the desired result.
237 static __isl_give isl_basic_map *check_stride(struct gpu_array_bound *bound,
238 __isl_take isl_basic_map *bounds)
240 isl_space *space;
241 isl_basic_map *hull;
242 isl_basic_map *shift, *id, *bmap, *scale;
243 isl_basic_set *bset;
244 isl_aff *aff;
246 bound->stride = NULL;
248 hull = isl_basic_map_affine_hull(isl_basic_map_copy(bounds));
250 isl_basic_map_foreach_constraint(hull, &check_stride_constraint, bound);
252 isl_basic_map_free(hull);
254 if (!bound->stride)
255 return bounds;
257 shift = isl_basic_map_from_aff(isl_aff_copy(bound->shift));
258 space = isl_basic_map_get_space(bounds);
259 bmap = isl_basic_map_domain_map(isl_basic_map_universe(space));
260 shift = isl_basic_map_apply_range(bmap, shift);
261 space = isl_basic_map_get_space(bounds);
262 id = isl_basic_map_range_map(isl_basic_map_universe(space));
263 shift = isl_basic_map_sum(id, shift);
264 space = isl_basic_map_get_space(bounds);
265 id = isl_basic_map_domain_map(isl_basic_map_universe(space));
266 shift = isl_basic_map_range_product(id, shift);
268 space = isl_space_domain(isl_basic_map_get_space(bounds));
269 id = isl_basic_map_identity(isl_space_map_from_set(space));
270 space = isl_space_range(isl_basic_map_get_space(bounds));
271 aff = isl_aff_zero_on_domain(isl_local_space_from_space(space));
272 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, 0, 1);
273 aff = isl_aff_scale_down_val(aff, isl_val_copy(bound->stride));
274 scale = isl_basic_map_from_aff(aff);
275 scale = isl_basic_map_product(id, scale);
277 bmap = isl_basic_map_apply_range(shift, scale);
278 bset = isl_basic_set_apply(isl_basic_map_wrap(bounds), bmap);
279 bounds = isl_basic_set_unwrap(bset);
281 return bounds;
284 /* Data used in compute_array_dim_size and compute_size_in_direction.
286 * pos is the position of the variable representing the array index,
287 * i.e., the variable for which want to compute the size. This variable
288 * is also the last variable in the set.
290 struct gpu_size_info {
291 isl_basic_set *bset;
292 struct gpu_array_bound *bound;
293 int pos;
296 /* Given a constraint from the basic set describing the bounds on
297 * an array index, check if it is a lower bound, say m i >= b(x), and,
298 * if so, check whether the expression "i - ceil(b(x)/m) + 1" has a constant
299 * upper bound. If so, and if this bound is smaller than any bound
300 * derived from earlier constraints, set the size to this bound on
301 * the expression and the lower bound to ceil(b(x)/m).
303 static isl_stat compute_size_in_direction(__isl_take isl_constraint *c,
304 void *user)
306 struct gpu_size_info *size = user;
307 unsigned nparam;
308 unsigned n_div;
309 isl_val *v;
310 isl_aff *aff;
311 isl_aff *lb;
313 nparam = isl_basic_set_dim(size->bset, isl_dim_param);
314 n_div = isl_constraint_dim(c, isl_dim_div);
316 if (isl_constraint_involves_dims(c, isl_dim_div, 0, n_div) ||
317 !isl_constraint_is_lower_bound(c, isl_dim_set, size->pos)) {
318 isl_constraint_free(c);
319 return isl_stat_ok;
322 aff = isl_constraint_get_bound(c, isl_dim_set, size->pos);
323 aff = isl_aff_ceil(aff);
325 lb = isl_aff_copy(aff);
327 aff = isl_aff_neg(aff);
328 aff = isl_aff_add_coefficient_si(aff, isl_dim_in, size->pos, 1);
330 v = isl_basic_set_max_val(size->bset, aff);
331 isl_aff_free(aff);
333 if (isl_val_is_int(v)) {
334 v = isl_val_add_ui(v, 1);
335 if (!size->bound->size || isl_val_lt(v, size->bound->size)) {
336 isl_val_free(size->bound->size);
337 size->bound->size = isl_val_copy(v);
338 lb = isl_aff_drop_dims(lb, isl_dim_in, size->pos, 1);
339 isl_aff_free(size->bound->lb);
340 size->bound->lb = isl_aff_copy(lb);
343 isl_val_free(v);
344 isl_aff_free(lb);
346 isl_constraint_free(c);
348 return isl_stat_ok;
351 /* Given a basic map "bounds" that maps parameters and input dimensions
352 * to a single output dimension, look for an expression in the parameters
353 * and input dimensions such that the range of the output dimension shifted
354 * by this expression is a constant.
356 * In particular, we currently only consider lower bounds on the output
357 * dimension as candidate expressions.
359 static int compute_array_dim_size(struct gpu_array_bound *bound,
360 __isl_take isl_basic_map *bounds)
362 struct gpu_size_info size;
364 bounds = isl_basic_map_detect_equalities(bounds);
365 bounds = check_stride(bound, bounds);
367 bound->size = NULL;
368 bound->lb = NULL;
370 size.bound = bound;
371 size.pos = isl_basic_map_dim(bounds, isl_dim_in);
372 size.bset = isl_basic_map_wrap(bounds);
373 size.bset = isl_basic_set_flatten(size.bset);
374 size.bset = isl_set_simple_hull(isl_basic_set_compute_divs(size.bset));
375 isl_basic_set_foreach_constraint(size.bset, &compute_size_in_direction,
376 &size);
377 isl_basic_set_free(size.bset);
379 return bound->size ? 0 : -1;
382 /* Check if we can find a memory tile for the given array
383 * based on the given accesses, and if so, put the results in "tile".
385 * We project the accesses on each index in turn and look for a parametric
386 * offset such that the size is constant.
388 static int can_tile(__isl_keep isl_map *access, struct gpu_array_tile *tile)
390 int i;
392 for (i = 0; i < tile->n; ++i) {
393 isl_map *access_i;
394 isl_basic_map *hull;
396 access_i = isl_map_copy(access);
397 access_i = isl_map_project_out(access_i, isl_dim_out, 0, i);
398 access_i = isl_map_project_out(access_i, isl_dim_out,
399 1, tile->n - (i + 1));
400 access_i = isl_map_compute_divs(access_i);
401 hull = isl_map_simple_hull(access_i);
402 if (compute_array_dim_size(&tile->bound[i], hull) < 0)
403 return 0;
406 return 1;
409 /* Internal data structure for gpu_group_references.
411 * scop represents the input scop.
412 * kernel_depth is the schedule depth where the kernel launch will
413 * be introduced, i.e., it is the depth of the band that is mapped
414 * to blocks.
415 * thread_depth is the schedule depth where the thread mark is located,
416 * i.e., it is the depth of the band that is mapped to threads and also
417 * the schedule depth at which the copying to/from shared/private memory
418 * is computed. The copy operation may then later be hoisted to
419 * a higher level.
420 * n_thread is the number of schedule dimensions in the band that
421 * is mapped to threads.
422 * privatization lives in the range of thread_sched (i.e., it is
423 * of dimension thread_depth + n_thread) and encodes the mapping
424 * to thread identifiers (as parameters).
425 * host_sched contains the kernel_depth dimensions of the host schedule.
426 * shared_sched contains the first thread_depth dimensions of the
427 * kernel schedule.
428 * thread_sched contains the first (thread_depth + n_thread) dimensions
429 * of the kernel schedule.
430 * full_sched is a union_map representation of the entire kernel schedule.
432 struct gpu_group_data {
433 struct ppcg_scop *scop;
434 int kernel_depth;
435 int thread_depth;
436 int n_thread;
437 isl_set *privatization;
438 isl_union_map *host_sched;
439 isl_union_map *shared_sched;
440 isl_union_map *thread_sched;
441 isl_union_map *full_sched;
444 /* Construct a map from domain_space to domain_space that increments
445 * the dimension at position "pos" and leaves all other dimensions
446 * constant.
448 static __isl_give isl_map *next(__isl_take isl_space *domain_space, int pos)
450 isl_space *space;
451 isl_aff *aff;
452 isl_multi_aff *next;
454 space = isl_space_map_from_set(domain_space);
455 next = isl_multi_aff_identity(space);
456 aff = isl_multi_aff_get_aff(next, pos);
457 aff = isl_aff_add_constant_si(aff, 1);
458 next = isl_multi_aff_set_aff(next, pos, aff);
460 return isl_map_from_multi_aff(next);
463 /* Check if the given access is coalesced (or if there is no point
464 * in trying to coalesce the access by mapping the array to shared memory).
465 * That is, check whether incrementing the dimension that will get
466 * wrapped over the last thread index results in incrementing
467 * the last array index.
469 * If no two consecutive array elements are ever accessed by "access",
470 * then mapping the corresponding array to shared memory will not
471 * improve coalescing. In fact, the copying will likely be performed
472 * by a single thread. Consider the access as coalesced such that
473 * the caller will not try and map the array to shared memory just
474 * to improve coalescing.
476 * This function is only called for access relations without reuse and
477 * kernels with at least one thread identifier.
479 static int access_is_coalesced(struct gpu_group_data *data,
480 __isl_keep isl_union_map *access)
482 int dim;
483 isl_space *space;
484 isl_set *accessed;
485 isl_map *access_map;
486 isl_map *next_thread_x;
487 isl_map *next_element;
488 isl_map *map;
489 int coalesced, empty;
491 access = isl_union_map_copy(access);
492 access = isl_union_map_apply_domain(access,
493 isl_union_map_copy(data->full_sched));
494 access_map = isl_map_from_union_map(access);
496 space = isl_map_get_space(access_map);
497 space = isl_space_range(space);
498 dim = isl_space_dim(space, isl_dim_set);
499 if (dim == 0)
500 next_element = isl_map_empty(isl_space_map_from_set(space));
501 else
502 next_element = next(space, dim - 1);
504 accessed = isl_map_range(isl_map_copy(access_map));
505 map = isl_map_copy(next_element);
506 map = isl_map_intersect_domain(map, isl_set_copy(accessed));
507 map = isl_map_intersect_range(map, accessed);
508 empty = isl_map_is_empty(map);
509 isl_map_free(map);
511 if (empty < 0 || empty) {
512 isl_map_free(next_element);
513 isl_map_free(access_map);
514 return empty;
517 space = isl_map_get_space(access_map);
518 space = isl_space_domain(space);
519 next_thread_x = next(space, data->thread_depth + data->n_thread - 1);
521 map = isl_map_apply_domain(next_thread_x, isl_map_copy(access_map));
522 map = isl_map_apply_range(map, access_map);
524 coalesced = isl_map_is_subset(map, next_element);
526 isl_map_free(next_element);
527 isl_map_free(map);
529 return coalesced;
532 /* Replace the host schedule dimensions in the access relation "access"
533 * by parameters, so that they are treated as fixed when checking for reuse
534 * (within a kernel) or whether two consecutive elements are accessed
535 * (within a kernel).
537 static __isl_give isl_union_map *localize_access(struct gpu_group_data *data,
538 __isl_take isl_union_map *access)
540 int n;
541 isl_space *space;
542 isl_set *param;
543 isl_union_map *umap;
544 isl_id_list *ids;
546 umap = isl_union_map_copy(data->host_sched);
547 space = isl_union_map_get_space(umap);
548 n = data->kernel_depth;
549 ids = ppcg_scop_generate_names(data->scop, n, "__ppcg_host_");
550 param = parametrization(space, n, 0, ids);
551 isl_id_list_free(ids);
552 umap = isl_union_map_intersect_range(umap,
553 isl_union_set_from_set(param));
554 access = isl_union_map_intersect_domain(access,
555 isl_union_map_domain(umap));
557 return access;
560 /* Given an access relation in terms of at least data->thread_depth initial
561 * dimensions of the computed schedule, check if it is bijective for
562 * fixed values of the first data->thread_depth dimensions.
563 * We perform this check by equating these dimensions to parameters.
565 static int access_is_bijective(struct gpu_group_data *data,
566 __isl_keep isl_map *access)
568 int res;
569 int dim;
570 isl_set *par;
571 isl_space *space;
572 isl_id_list *ids;
574 access = isl_map_copy(access);
575 space = isl_space_params(isl_map_get_space(access));
576 ids = ppcg_scop_generate_names(data->scop, data->thread_depth, "s");
577 dim = isl_map_dim(access, isl_dim_in);
578 par = parametrization(space, dim, 0, ids);
579 isl_id_list_free(ids);
580 access = isl_map_intersect_domain(access, par);
581 res = isl_map_is_bijective(access);
582 isl_map_free(access);
584 return res;
587 /* Compute the number of outer schedule tile dimensions that affect
588 * the offset of "tile".
589 * If there is no such dimension, then return the index
590 * of the first kernel dimension, i.e., data->kernel_depth.
592 static int compute_tile_depth(struct gpu_group_data *data,
593 struct gpu_array_tile *tile)
595 int i, j;
597 for (j = data->thread_depth - 1; j >= data->kernel_depth; --j) {
598 for (i = 0; i < tile->n; ++i) {
599 isl_aff *lb;
600 isl_aff *shift;
602 lb = tile->bound[i].lb;
603 if (isl_aff_involves_dims(lb, isl_dim_in, j, 1))
604 break;
606 shift = tile->bound[i].shift;
607 if (!shift)
608 continue;
609 if (isl_aff_involves_dims(shift, isl_dim_in, j, 1))
610 break;
612 if (i < tile->n)
613 break;
616 return ++j;
619 /* Adjust the fields of "tile" to reflect the new input dimension "new_dim",
620 * where "old_dim" is the old dimension.
621 * The dimension beyond "new_dim" are assumed not to affect the tile,
622 * so they can simply be dropped.
624 static int tile_adjust_depth(struct gpu_array_tile *tile,
625 int old_dim, int new_dim)
627 int i;
629 if (old_dim == new_dim)
630 return 0;
632 for (i = 0; i < tile->n; ++i) {
633 tile->bound[i].lb = isl_aff_drop_dims(tile->bound[i].lb,
634 isl_dim_in, new_dim, old_dim - new_dim);
635 if (!tile->bound[i].lb)
636 return -1;
637 if (!tile->bound[i].shift)
638 continue;
639 tile->bound[i].shift = isl_aff_drop_dims(tile->bound[i].shift,
640 isl_dim_in, new_dim, old_dim - new_dim);
641 if (!tile->bound[i].shift)
642 return -1;
645 return 0;
648 /* Determine the number of schedule dimensions that affect the offset of the
649 * shared or private tile and store the result in group->depth, with
650 * a lower bound of data->kernel_depth.
651 * If there is no tile defined on the array reference group,
652 * then set group->depth to data->thread_depth.
653 * Also adjust the fields of the tile to only refer to the group->depth
654 * outer schedule dimensions.
656 static int set_depth(struct gpu_group_data *data,
657 struct gpu_array_ref_group *group)
659 struct gpu_array_tile *tile;
661 group->depth = data->thread_depth;
663 tile = gpu_array_ref_group_tile(group);
664 if (!tile)
665 return 0;
667 group->depth = compute_tile_depth(data, tile);
668 if (tile_adjust_depth(tile, data->thread_depth, group->depth) < 0)
669 return -1;
671 return 0;
674 /* Fill up the groups array with singleton groups, i.e., one group
675 * per reference, initializing the array, access, write, n_ref and refs fields.
676 * In particular the access field is initialized to the scheduled
677 * access relation of the array reference.
679 * Return the number of elements initialized, i.e., the number of
680 * active references in the current kernel.
682 static int populate_array_references(struct gpu_local_array_info *local,
683 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
685 int i;
686 int n;
687 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
689 n = 0;
690 for (i = 0; i < local->array->n_ref; ++i) {
691 isl_union_map *umap;
692 isl_map *map;
693 struct gpu_array_ref_group *group;
694 struct gpu_stmt_access *access = local->array->refs[i];
696 map = isl_map_copy(access->access);
697 umap = isl_union_map_from_map(map);
698 umap = isl_union_map_apply_domain(umap,
699 isl_union_map_copy(data->shared_sched));
701 if (isl_union_map_is_empty(umap)) {
702 isl_union_map_free(umap);
703 continue;
706 map = isl_map_from_union_map(umap);
707 map = isl_map_detect_equalities(map);
709 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
710 if (!group)
711 return -1;
712 group->local_array = local;
713 group->array = local->array;
714 group->access = map;
715 group->write = access->write;
716 group->exact_write = access->exact_write;
717 group->slice = access->n_index < local->array->n_index;
718 group->refs = &local->array->refs[i];
719 group->n_ref = 1;
721 groups[n++] = group;
724 return n;
727 /* If group->n_ref == 1, then group->refs was set by
728 * populate_array_references to point directly into
729 * group->array->refs and should not be freed.
730 * If group->n_ref > 1, then group->refs was set by join_groups
731 * to point to a newly allocated array.
733 struct gpu_array_ref_group *gpu_array_ref_group_free(
734 struct gpu_array_ref_group *group)
736 if (!group)
737 return NULL;
738 gpu_array_tile_free(group->shared_tile);
739 gpu_array_tile_free(group->private_tile);
740 isl_map_free(group->access);
741 if (group->n_ref > 1)
742 free(group->refs);
743 free(group);
744 return NULL;
747 /* Check if the access relations of group1 and group2 overlap within
748 * shared_sched.
750 static int accesses_overlap(struct gpu_array_ref_group *group1,
751 struct gpu_array_ref_group *group2)
753 int disjoint;
755 disjoint = isl_map_is_disjoint(group1->access, group2->access);
756 if (disjoint < 0)
757 return -1;
759 return !disjoint;
762 /* Combine the given two groups into a single group, containing
763 * the references of both groups.
765 static struct gpu_array_ref_group *join_groups(
766 struct gpu_array_ref_group *group1,
767 struct gpu_array_ref_group *group2)
769 int i;
770 isl_ctx *ctx;
771 struct gpu_array_ref_group *group;
773 if (!group1 || !group2)
774 return NULL;
776 ctx = isl_map_get_ctx(group1->access);
777 group = isl_calloc_type(ctx, struct gpu_array_ref_group);
778 if (!group)
779 return NULL;
780 group->local_array = group1->local_array;
781 group->array = group1->array;
782 group->access = isl_map_union(isl_map_copy(group1->access),
783 isl_map_copy(group2->access));
784 group->write = group1->write || group2->write;
785 group->exact_write = group1->exact_write && group2->exact_write;
786 group->slice = group1->slice || group2->slice;
787 group->n_ref = group1->n_ref + group2->n_ref;
788 group->refs = isl_alloc_array(ctx, struct gpu_stmt_access *,
789 group->n_ref);
790 if (!group->refs)
791 return gpu_array_ref_group_free(group);
792 for (i = 0; i < group1->n_ref; ++i)
793 group->refs[i] = group1->refs[i];
794 for (i = 0; i < group2->n_ref; ++i)
795 group->refs[group1->n_ref + i] = group2->refs[i];
797 return group;
800 /* Combine the given two groups into a single group and free
801 * the original two groups.
803 static struct gpu_array_ref_group *join_groups_and_free(
804 struct gpu_array_ref_group *group1,
805 struct gpu_array_ref_group *group2)
807 struct gpu_array_ref_group *group;
809 group = join_groups(group1, group2);
810 gpu_array_ref_group_free(group1);
811 gpu_array_ref_group_free(group2);
812 return group;
815 /* Report that the array reference group with the given access relation
816 * is not mapped to shared memory in the given kernel because
817 * it does not exhibit any reuse and is considered to be coalesced.
819 static void report_no_reuse_and_coalesced(struct ppcg_kernel *kernel,
820 __isl_keep isl_union_map *access)
822 isl_ctx *ctx;
823 isl_printer *p;
825 ctx = isl_union_map_get_ctx(access);
826 p = isl_printer_to_file(ctx, stdout);
827 p = isl_printer_print_str(p, "Array reference group ");
828 p = isl_printer_print_union_map(p, access);
829 p = isl_printer_print_str(p,
830 " not considered for mapping to shared memory in kernel");
831 p = isl_printer_print_int(p, kernel->id);
832 p = isl_printer_print_str(p,
833 " because it exhibits no reuse and is considered to be coalesced");
834 p = isl_printer_end_line(p);
835 isl_printer_free(p);
838 /* Given an access relation in terms of the data->thread_depth initial
839 * dimensions of the computed schedule and the thread identifiers
840 * (as parameters), check if the use of the corresponding private tile
841 * requires unrolling.
843 * If we are creating a private tile because we are forced to,
844 * then no unrolling is required.
845 * Otherwise we check if "access" is bijective and unrolling
846 * is required if it is not. Note that the access relation
847 * has already been determined to be bijective before the introduction
848 * of the thread identifiers and the removal of the schedule dimensions
849 * that are mapped to these threads. If the access relation is no longer
850 * bijective, then this means that more than one value of one of those
851 * schedule dimensions is mapped to the same thread and therefore
852 * unrolling is required.
854 static int check_requires_unroll(struct gpu_group_data *data,
855 __isl_keep isl_map *access, int force_private)
857 int bijective;
859 if (force_private)
860 return 0;
861 bijective = access_is_bijective(data, access);
862 if (bijective < 0)
863 return -1;
864 return !bijective;
867 /* Compute the private and/or shared memory tiles for the array
868 * reference group "group" of array "array".
869 * Return 0 on success and -1 on error.
871 * If the array is a read-only scalar or if the user requested
872 * not to use shared or private memory, then we do not need to do anything.
874 * If any reference in the reference group accesses more than one element,
875 * then we would have to make sure that the layout in shared memory
876 * is the same as that in global memory. Since we do not handle this yet
877 * (and it may not even be possible), we refuse to map to private or
878 * shared memory in such cases.
880 * If the array group involves any may writes (that are not must writes),
881 * then we would have to make sure that we load the data into shared/private
882 * memory first in case the data is not written by the kernel
883 * (but still written back out to global memory).
884 * Since we don't have any such mechanism at the moment, we don't
885 * compute shared/private tiles for groups involving may writes.
887 * We only try to compute a shared memory tile if there is any reuse
888 * or if the access is not coalesced.
889 * Reuse and coalescing are checked within the given kernel.
891 * For computing a private memory tile, we also require that there is
892 * some reuse. Moreover, we require that the access is private
893 * to the thread. That is, we check that any given array element
894 * is only accessed by a single thread.
895 * We compute an access relation that maps the outer
896 * data->thread_depth + data->n_thread schedule dimensions.
897 * The latter data->n_thread will be mapped to thread identifiers.
898 * We actually check that those iterators that will be wrapped
899 * partition the array space. This check is stricter than necessary
900 * since several iterations may be mapped onto the same thread
901 * and then they could be allowed to access the same memory elements,
902 * but our check does not allow this situation.
904 * We also check that the index expression only depends on parallel
905 * loops. That way, we can move those loops innermost and unroll them.
906 * Again, we use a test that is stricter than necessary.
907 * We actually check whether the index expression only depends
908 * on the iterators that are wrapped over the threads.
909 * These are necessarily parallel, but there may be more parallel loops.
911 * Combining the injectivity of the first test with the single-valuedness
912 * of the second test, we simply test for bijectivity.
914 * If the use of the private tile requires unrolling, but some
915 * of the other arrays are forcibly mapped to private memory,
916 * then we do not allow the use of this private tile since
917 * we cannot move the schedule dimensions that need to be unrolled down
918 * without performing some kind of expansion on those arrays
919 * that are forcibly mapped to private memory.
921 * If the array is marked force_private, then we bypass all checks
922 * and assume we can (and should) use registers.
924 * If it turns out we can (or have to) use registers, we compute
925 * the private memory tile size using can_tile, after introducing a dependence
926 * on the thread indices.
928 static int compute_group_bounds_core(struct ppcg_kernel *kernel,
929 struct gpu_array_ref_group *group, struct gpu_group_data *data)
931 isl_ctx *ctx = isl_space_get_ctx(group->array->space);
932 isl_union_map *access, *local;
933 int n_index = group->array->n_index;
934 int no_reuse, coalesced;
935 isl_map *acc;
936 int force_private = group->local_array->force_private;
937 int use_shared = kernel->options->use_shared_memory &&
938 data->n_thread > 0;
939 int use_private = force_private || kernel->options->use_private_memory;
940 int r = 0;
941 int requires_unroll;
943 if (!use_shared && !use_private)
944 return 0;
945 if (gpu_array_is_read_only_scalar(group->array))
946 return 0;
947 if (!force_private && !group->exact_write)
948 return 0;
949 if (group->slice)
950 return 0;
952 access = gpu_array_ref_group_access_relation(group, 1, 1);
953 local = localize_access(data, isl_union_map_copy(access));
954 no_reuse = isl_union_map_is_injective(local);
955 if (no_reuse < 0)
956 r = -1;
957 if (use_shared && no_reuse)
958 coalesced = access_is_coalesced(data, local);
959 isl_union_map_free(local);
961 if (r >= 0 && kernel->options->debug->verbose &&
962 use_shared && no_reuse && coalesced)
963 report_no_reuse_and_coalesced(kernel, access);
965 if (use_shared && (!no_reuse || !coalesced)) {
966 group->shared_tile = gpu_array_tile_create(ctx,
967 group->array->n_index);
968 if (!group->shared_tile)
969 r = -1;
970 else if (!can_tile(group->access, group->shared_tile))
971 group->shared_tile =
972 gpu_array_tile_free(group->shared_tile);
975 if (r < 0 || (!force_private && (!use_private || no_reuse))) {
976 isl_union_map_free(access);
977 return r;
980 access = isl_union_map_apply_domain(access,
981 isl_union_map_copy(data->thread_sched));
983 acc = isl_map_from_union_map(access);
985 if (!force_private && !access_is_bijective(data, acc)) {
986 isl_map_free(acc);
987 return 0;
990 acc = isl_map_intersect_domain(acc, isl_set_copy(data->privatization));
991 acc = isl_map_project_out(acc, isl_dim_in, data->thread_depth,
992 data->n_thread);
993 requires_unroll = check_requires_unroll(data, acc, force_private);
994 if (requires_unroll < 0 ||
995 (requires_unroll && kernel->any_force_private)) {
996 isl_map_free(acc);
997 return requires_unroll < 0 ? -1 : 0;
1000 group->private_tile = gpu_array_tile_create(ctx, n_index);
1001 if (!group->private_tile) {
1002 isl_map_free(acc);
1003 return -1;
1005 group->private_tile->requires_unroll = requires_unroll;
1006 if (!can_tile(acc, group->private_tile))
1007 group->private_tile = gpu_array_tile_free(group->private_tile);
1009 isl_map_free(acc);
1011 if (force_private && !group->private_tile)
1012 isl_die(ctx, isl_error_internal,
1013 "unable to map array reference group to registers",
1014 return -1);
1016 return 0;
1019 /* Compute the private and/or shared memory tiles for the array
1020 * reference group "group" of array "array" and set the tile depth.
1021 * Return 0 on success and -1 on error.
1023 static int compute_group_bounds(struct ppcg_kernel *kernel,
1024 struct gpu_array_ref_group *group, struct gpu_group_data *data)
1026 if (!group)
1027 return -1;
1028 if (compute_group_bounds_core(kernel, group, data) < 0)
1029 return -1;
1030 if (set_depth(data, group) < 0)
1031 return -1;
1033 return 0;
1036 /* If two groups have overlapping access relations (as determined by
1037 * the "overlap" function) and if one of them involves a write,
1038 * then merge the two groups into one.
1039 * If "compute_bounds" is set, then call compute_group_bounds
1040 * on the merged groups.
1042 * Return the updated number of groups.
1043 * Return -1 on error.
1045 static int group_writes(struct ppcg_kernel *kernel,
1046 int n, struct gpu_array_ref_group **groups,
1047 int (*overlap)(struct gpu_array_ref_group *group1,
1048 struct gpu_array_ref_group *group2), int compute_bounds,
1049 struct gpu_group_data *data)
1051 int i, j;
1053 for (i = 0; i < n; ++i) {
1054 for (j = n - 1; j > i; --j) {
1055 if (!groups[i]->write && !groups[j]->write)
1056 continue;
1058 if (!overlap(groups[i], groups[j]))
1059 continue;
1061 groups[i] = join_groups_and_free(groups[i], groups[j]);
1062 if (j != n - 1)
1063 groups[j] = groups[n - 1];
1064 groups[n - 1] = NULL;
1065 n--;
1067 if (!groups[i])
1068 return -1;
1069 if (compute_bounds &&
1070 compute_group_bounds(kernel, groups[i], data) < 0)
1071 return -1;
1075 return n;
1078 /* If two groups have overlapping access relations (within the innermost
1079 * loop) and if one of them involves a write, then merge the two groups
1080 * into one.
1082 * Return the updated number of groups.
1084 static int group_overlapping_writes(struct ppcg_kernel *kernel,
1085 int n, struct gpu_array_ref_group **groups,
1086 struct gpu_group_data *data)
1088 return group_writes(kernel, n, groups, &accesses_overlap, 0, data);
1091 /* Check if the access relations of group1 and group2 overlap within
1092 * the outermost min(group1->depth, group2->depth) loops.
1094 static int depth_accesses_overlap(struct gpu_array_ref_group *group1,
1095 struct gpu_array_ref_group *group2)
1097 int depth;
1098 int dim;
1099 int empty;
1100 isl_map *map_i, *map_j, *map;
1102 depth = group1->depth;
1103 if (group2->depth < depth)
1104 depth = group2->depth;
1105 map_i = isl_map_copy(group1->access);
1106 dim = isl_map_dim(map_i, isl_dim_in);
1107 map_i = isl_map_eliminate(map_i, isl_dim_in, depth, dim - depth);
1108 map_j = isl_map_copy(group2->access);
1109 map_j = isl_map_eliminate(map_j, isl_dim_in, depth, dim - depth);
1110 map = isl_map_intersect(map_i, map_j);
1111 empty = isl_map_is_empty(map);
1112 isl_map_free(map);
1114 return !empty;
1117 /* If two groups have overlapping access relations (within the outer
1118 * depth loops) and if one of them involves a write,
1119 * then merge the two groups into one.
1121 * Return the updated number of groups.
1123 static int group_depth_overlapping_writes(struct ppcg_kernel *kernel,
1124 int n, struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1126 return group_writes(kernel, n, groups, &depth_accesses_overlap, 1,
1127 data);
1130 /* Is the size of the tile specified by "tile" smaller than the sum of
1131 * the sizes of the tiles specified by "tile1" and "tile2"?
1133 static int smaller_tile(struct gpu_array_tile *tile,
1134 struct gpu_array_tile *tile1, struct gpu_array_tile *tile2)
1136 int smaller;
1137 isl_val *size, *size1, *size2;
1139 size = gpu_array_tile_size(tile);
1140 size1 = gpu_array_tile_size(tile1);
1141 size2 = gpu_array_tile_size(tile2);
1143 size = isl_val_sub(size, size1);
1144 size = isl_val_sub(size, size2);
1145 smaller = isl_val_is_neg(size);
1147 isl_val_free(size);
1149 return smaller;
1152 /* Given an initial grouping of array references and shared memory tiles
1153 * for each group that allows for a shared memory tile, merge two groups
1154 * if both have a shared memory tile, the merged group also has
1155 * a shared memory tile and the size of the tile for the merge group
1156 * is smaller than the sum of the tile sizes of the individual groups.
1158 * If merging two groups decreases the depth of the tile of
1159 * one or both of the two groups, then we need to check for overlapping
1160 * writes again.
1162 * Return the number of groups after merging.
1163 * Return -1 on error.
1165 static int group_common_shared_memory_tile(struct ppcg_kernel *kernel,
1166 struct gpu_array_info *array, int n,
1167 struct gpu_array_ref_group **groups, struct gpu_group_data *data)
1169 int i, j;
1170 int recompute_overlap = 0;
1171 isl_ctx *ctx = isl_space_get_ctx(array->space);
1173 for (i = 0; i < n; ++i) {
1174 if (!groups[i]->shared_tile)
1175 continue;
1176 for (j = n - 1; j > i; --j) {
1177 struct gpu_array_ref_group *group;
1179 if (!groups[j]->shared_tile)
1180 continue;
1182 if (!depth_accesses_overlap(groups[i], groups[j]))
1183 continue;
1185 group = join_groups(groups[i], groups[j]);
1186 if (compute_group_bounds(kernel, group, data) < 0) {
1187 gpu_array_ref_group_free(group);
1188 return -1;
1190 if (!group->shared_tile ||
1191 !smaller_tile(group->shared_tile,
1192 groups[i]->shared_tile,
1193 groups[j]->shared_tile)) {
1194 gpu_array_ref_group_free(group);
1195 continue;
1198 if (group->depth < groups[i]->depth ||
1199 group->depth < groups[j]->depth)
1200 recompute_overlap = 1;
1201 gpu_array_ref_group_free(groups[i]);
1202 gpu_array_ref_group_free(groups[j]);
1203 groups[i] = group;
1204 if (j != n - 1)
1205 groups[j] = groups[n - 1];
1206 n--;
1210 if (recompute_overlap)
1211 n = group_depth_overlapping_writes(kernel, n, groups, data);
1212 return n;
1215 /* Set array->n_group and array->groups to n and groups.
1217 * Additionally, set the "nr" field of each group.
1219 static void set_array_groups(struct gpu_local_array_info *array,
1220 int n, struct gpu_array_ref_group **groups)
1222 int i, j;
1224 array->n_group = n;
1225 array->groups = groups;
1227 for (i = 0; i < n; ++i)
1228 groups[i]->nr = i;
1231 /* Combine all groups in "groups" into a single group and return
1232 * the new number of groups (1 or 0 if there were no groups to start with).
1234 static int join_all_groups(int n, struct gpu_array_ref_group **groups)
1236 int i;
1238 for (i = n - 1; i > 0; --i) {
1239 groups[0] = join_groups_and_free(groups[0], groups[i]);
1240 groups[i] = NULL;
1241 n--;
1244 return n;
1247 /* Group array references that should be considered together when
1248 * deciding whether to access them from private, shared or global memory.
1249 * Return -1 on error.
1251 * In particular, if two array references overlap and if one of them
1252 * is a write, then the two references are grouped together.
1253 * We first perform an initial grouping based only on the access relation.
1254 * After computing shared and private memory tiles, we check for
1255 * overlapping writes again, but this time taking into account
1256 * the depth of the effective tile.
1258 * Furthermore, if two groups admit a shared memory tile and if the
1259 * combination of the two also admits a shared memory tile, we merge
1260 * the two groups.
1262 * If the array contains structures, then we compute a single
1263 * reference group without trying to find any tiles
1264 * since we do not map such arrays to private or shared
1265 * memory.
1267 static int group_array_references(struct ppcg_kernel *kernel,
1268 struct gpu_local_array_info *local, struct gpu_group_data *data)
1270 int i;
1271 int n;
1272 isl_ctx *ctx = isl_union_map_get_ctx(data->shared_sched);
1273 struct gpu_array_ref_group **groups;
1275 groups = isl_calloc_array(ctx, struct gpu_array_ref_group *,
1276 local->array->n_ref);
1277 if (!groups)
1278 return -1;
1280 n = populate_array_references(local, groups, data);
1282 if (local->array->has_compound_element) {
1283 n = join_all_groups(n, groups);
1284 set_array_groups(local, n, groups);
1285 return 0;
1288 n = group_overlapping_writes(kernel, n, groups, data);
1290 for (i = 0; i < n; ++i)
1291 if (compute_group_bounds(kernel, groups[i], data) < 0)
1292 n = -1;
1294 n = group_depth_overlapping_writes(kernel, n, groups, data);
1296 n = group_common_shared_memory_tile(kernel, local->array,
1297 n, groups, data);
1299 set_array_groups(local, n, groups);
1301 if (n >= 0)
1302 return 0;
1304 for (i = 0; i < local->array->n_ref; ++i)
1305 gpu_array_ref_group_free(groups[i]);
1306 return -1;
1309 /* For each scalar in the input program, check if there are any
1310 * order dependences active inside the current kernel, within
1311 * the same iteration of "host_schedule".
1312 * If so, mark the scalar as force_private so that it will be
1313 * mapped to a register.
1315 static void check_scalar_live_ranges_in_host(struct ppcg_kernel *kernel,
1316 __isl_take isl_union_map *host_schedule)
1318 int i;
1319 isl_union_map *sched;
1320 isl_union_set *domain;
1321 isl_union_map *same_host_iteration;
1323 kernel->any_force_private = 0;
1325 sched = isl_union_map_universe(isl_union_map_copy(host_schedule));
1326 domain = isl_union_map_domain(sched);
1328 same_host_iteration = isl_union_map_apply_range(host_schedule,
1329 isl_union_map_reverse(isl_union_map_copy(host_schedule)));
1331 for (i = 0; i < kernel->n_array; ++i) {
1332 struct gpu_local_array_info *local = &kernel->array[i];
1333 isl_union_map *order;
1335 local->force_private = 0;
1336 if (local->array->n_index != 0)
1337 continue;
1338 order = isl_union_map_copy(local->array->dep_order);
1339 order = isl_union_map_intersect_domain(order,
1340 isl_union_set_copy(domain));
1341 order = isl_union_map_intersect_range(order,
1342 isl_union_set_copy(domain));
1343 order = isl_union_map_intersect(order,
1344 isl_union_map_copy(same_host_iteration));
1345 if (!isl_union_map_is_empty(order)) {
1346 local->force_private = 1;
1347 kernel->any_force_private = 1;
1349 isl_union_map_free(order);
1352 isl_union_map_free(same_host_iteration);
1353 isl_union_set_free(domain);
1356 /* For each scalar in the input program, check if there are any
1357 * order dependences active inside the current kernel, within
1358 * the same iteration of the host schedule, i.e., the prefix
1359 * schedule at "node".
1360 * If so, mark the scalar as force_private so that it will be
1361 * mapped to a register.
1363 static void check_scalar_live_ranges(struct ppcg_kernel *kernel,
1364 __isl_keep isl_schedule_node *node)
1366 isl_union_map *sched;
1368 if (!kernel->options->live_range_reordering)
1369 return;
1371 sched = isl_schedule_node_get_prefix_schedule_union_map(node);
1373 check_scalar_live_ranges_in_host(kernel, sched);
1376 /* Create a set of dimension data->thread_depth + data->n_thread
1377 * that equates the residue of the final data->n_thread dimensions
1378 * modulo the "sizes" to the thread identifiers.
1379 * "space" is a parameter space containing the thread identifiers.
1380 * Store the computed set in data->privatization.
1382 static void compute_privatization(struct gpu_group_data *data,
1383 __isl_take isl_space *space, int *sizes)
1385 int i;
1386 isl_ctx *ctx;
1387 isl_local_space *ls;
1388 isl_set *set;
1390 ctx = isl_union_map_get_ctx(data->shared_sched);
1391 space = isl_space_set_from_params(space);
1392 space = isl_space_add_dims(space, isl_dim_set,
1393 data->thread_depth + data->n_thread);
1394 set = isl_set_universe(space);
1395 space = isl_set_get_space(set);
1396 ls = isl_local_space_from_space(space);
1398 for (i = 0; i < data->n_thread; ++i) {
1399 isl_aff *aff, *aff2;
1400 isl_constraint *c;
1401 isl_val *v;
1402 char name[20];
1403 int pos;
1405 aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
1406 isl_dim_set, data->thread_depth + i);
1407 v = isl_val_int_from_si(ctx, sizes[i]);
1408 aff = isl_aff_mod_val(aff, v);
1409 snprintf(name, sizeof(name), "t%d", i);
1410 pos = isl_set_find_dim_by_name(set, isl_dim_param, name);
1411 aff2 = isl_aff_var_on_domain(isl_local_space_copy(ls),
1412 isl_dim_param, pos);
1413 aff = isl_aff_sub(aff, aff2);
1414 c = isl_equality_from_aff(aff);
1415 set = isl_set_add_constraint(set, c);
1418 isl_local_space_free(ls);
1419 data->privatization = set;
1422 /* Group references of all arrays in "kernel".
1423 * "node" points to the kernel mark.
1425 * We first extract all required schedule information into
1426 * a gpu_group_data structure and then consider each array
1427 * in turn.
1429 int gpu_group_references(struct ppcg_kernel *kernel,
1430 __isl_keep isl_schedule_node *node)
1432 int i;
1433 int r = 0;
1434 isl_space *space;
1435 struct gpu_group_data data;
1437 check_scalar_live_ranges(kernel, node);
1439 data.scop = kernel->prog->scop;
1441 data.kernel_depth = isl_schedule_node_get_schedule_depth(node);
1442 data.host_sched = isl_schedule_node_get_prefix_schedule_relation(node);
1444 node = isl_schedule_node_copy(node);
1445 node = gpu_tree_move_down_to_thread(node, kernel->core);
1446 data.shared_sched =
1447 isl_schedule_node_get_prefix_schedule_relation(node);
1448 data.shared_sched = isl_union_map_detect_equalities(data.shared_sched);
1450 node = isl_schedule_node_child(node, 0);
1451 data.thread_depth = isl_schedule_node_get_schedule_depth(node);
1452 data.n_thread = isl_schedule_node_band_n_member(node);
1453 data.thread_sched = isl_union_map_copy(data.shared_sched);
1454 data.thread_sched = isl_union_map_flat_range_product(data.thread_sched,
1455 isl_schedule_node_band_get_partial_schedule_union_map(node));
1456 data.thread_sched = isl_union_map_detect_equalities(data.thread_sched);
1457 node = isl_schedule_node_child(node, 0);
1458 data.full_sched = isl_union_map_copy(data.thread_sched);
1459 data.full_sched = isl_union_map_flat_range_product(data.full_sched,
1460 isl_schedule_node_get_subtree_schedule_union_map(node));
1461 isl_schedule_node_free(node);
1463 space = isl_union_set_get_space(kernel->thread_filter);
1464 compute_privatization(&data, space, kernel->block_dim);
1466 for (i = 0; i < kernel->n_array; ++i) {
1467 r = group_array_references(kernel, &kernel->array[i], &data);
1468 if (r < 0)
1469 break;
1472 isl_union_map_free(data.host_sched);
1473 isl_union_map_free(data.shared_sched);
1474 isl_union_map_free(data.thread_sched);
1475 isl_union_map_free(data.full_sched);
1476 isl_set_free(data.privatization);
1478 return r;
1481 /* Given a description of an array tile "tile" and the "space"
1483 * { D -> A }
1485 * where D represents the first group->depth schedule dimensions
1486 * and A represents the array, construct an isl_multi_aff
1488 * { [D[i] -> A[a]] -> A'[a'] }
1490 * with A' a scaled down copy of A according to the shifts and strides
1491 * in "tile". In particular,
1493 * a' = (a + shift(i))/stride
1495 * "insert_array" represents
1497 * { [D -> A] -> D }
1499 * and is used to insert A into the domain of functions that only
1500 * reference D.
1502 static __isl_give isl_multi_aff *strided_tile(
1503 struct gpu_array_tile *tile, __isl_keep isl_space *space,
1504 __isl_keep isl_multi_aff *insert_array)
1506 int i;
1507 isl_ctx *ctx;
1508 isl_multi_aff *shift;
1509 isl_multi_val *stride;
1510 isl_space *space2;
1511 isl_local_space *ls;
1512 isl_multi_aff *tiling;
1514 ctx = isl_space_get_ctx(space);
1515 space2 = isl_space_domain(isl_space_copy(space));
1516 ls = isl_local_space_from_space(space2);
1517 space2 = isl_space_range(isl_space_copy(space));
1518 stride = isl_multi_val_zero(space2);
1519 shift = isl_multi_aff_zero(isl_space_copy(space));
1521 for (i = 0; i < tile->n; ++i) {
1522 struct gpu_array_bound *bound = &tile->bound[i];
1523 isl_val *stride_i;
1524 isl_aff *shift_i;
1526 if (tile->bound[i].shift) {
1527 stride_i = isl_val_copy(bound->stride);
1528 shift_i = isl_aff_copy(bound->shift);
1529 } else {
1530 stride_i = isl_val_one(ctx);
1531 shift_i = isl_aff_zero_on_domain(
1532 isl_local_space_copy(ls));
1535 stride = isl_multi_val_set_val(stride, i, stride_i);
1536 shift = isl_multi_aff_set_aff(shift, i, shift_i);
1538 isl_local_space_free(ls);
1540 shift = isl_multi_aff_pullback_multi_aff(shift,
1541 isl_multi_aff_copy(insert_array));
1543 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1544 tiling = isl_multi_aff_add(tiling, shift);
1545 tiling = isl_multi_aff_scale_down_multi_val(tiling, stride);
1547 return tiling;
1550 /* Compute a tiling for the array reference group "group".
1552 * The tiling is of the form
1554 * { [D[i] -> A[a]] -> T[t] }
1556 * where D represents the first group->depth schedule dimensions,
1557 * A represents the global array and T represents the shared or
1558 * private memory tile. The name of T is the name of the local
1559 * array.
1561 * If there is any stride in the accesses, then the mapping is
1563 * t = (a + shift(i))/stride - lb(i)
1565 * otherwise, it is simply
1567 * t = a - lb(i)
1569 void gpu_array_ref_group_compute_tiling(struct gpu_array_ref_group *group)
1571 int i;
1572 int dim;
1573 struct gpu_array_tile *tile;
1574 struct gpu_array_info *array = group->array;
1575 isl_space *space;
1576 isl_multi_aff *tiling, *lb, *insert_array;
1577 isl_printer *p;
1578 char *local_name;
1580 tile = group->private_tile;
1581 if (!tile)
1582 tile = group->shared_tile;
1583 if (!tile)
1584 return;
1586 space = isl_map_get_space(group->access);
1587 dim = isl_space_dim(space, isl_dim_in);
1588 space = isl_space_drop_dims(space, isl_dim_in, group->depth,
1589 dim - group->depth);
1590 insert_array = isl_multi_aff_domain_map(isl_space_copy(space));
1592 for (i = 0; i < tile->n; ++i)
1593 if (tile->bound[i].shift)
1594 break;
1596 if (i < tile->n)
1597 tiling = strided_tile(tile, space, insert_array);
1598 else
1599 tiling = isl_multi_aff_range_map(isl_space_copy(space));
1601 lb = isl_multi_aff_zero(space);
1602 for (i = 0; i < tile->n; ++i) {
1603 isl_aff *lb_i = isl_aff_copy(tile->bound[i].lb);
1604 lb = isl_multi_aff_set_aff(lb, i, lb_i);
1606 lb = isl_multi_aff_pullback_multi_aff(lb, insert_array);
1608 tiling = isl_multi_aff_sub(tiling, lb);
1610 p = isl_printer_to_str(isl_multi_aff_get_ctx(tiling));
1611 p = gpu_array_ref_group_print_name(group, p);
1612 local_name = isl_printer_get_str(p);
1613 isl_printer_free(p);
1614 tiling = isl_multi_aff_set_tuple_name(tiling, isl_dim_out, local_name);
1615 free(local_name);
1617 tile->tiling = tiling;