Merge branch 'for-next' into for-linus
[pohmelfs.git] / drivers / net / cxgb3 / sge.c
blob67e61b2a8c42332b2b2d678d560111fb134a203c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <net/arp.h>
40 #include "common.h"
41 #include "regs.h"
42 #include "sge_defs.h"
43 #include "t3_cpl.h"
44 #include "firmware_exports.h"
45 #include "cxgb3_offload.h"
47 #define USE_GTS 0
49 #define SGE_RX_SM_BUF_SIZE 1536
51 #define SGE_RX_COPY_THRES 256
52 #define SGE_RX_PULL_LEN 128
54 #define SGE_PG_RSVD SMP_CACHE_BYTES
56 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
57 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
58 * directly.
60 #define FL0_PG_CHUNK_SIZE 2048
61 #define FL0_PG_ORDER 0
62 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
63 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
64 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
65 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
67 #define SGE_RX_DROP_THRES 16
68 #define RX_RECLAIM_PERIOD (HZ/4)
71 * Max number of Rx buffers we replenish at a time.
73 #define MAX_RX_REFILL 16U
75 * Period of the Tx buffer reclaim timer. This timer does not need to run
76 * frequently as Tx buffers are usually reclaimed by new Tx packets.
78 #define TX_RECLAIM_PERIOD (HZ / 4)
79 #define TX_RECLAIM_TIMER_CHUNK 64U
80 #define TX_RECLAIM_CHUNK 16U
82 /* WR size in bytes */
83 #define WR_LEN (WR_FLITS * 8)
86 * Types of Tx queues in each queue set. Order here matters, do not change.
88 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
90 /* Values for sge_txq.flags */
91 enum {
92 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
93 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
96 struct tx_desc {
97 __be64 flit[TX_DESC_FLITS];
100 struct rx_desc {
101 __be32 addr_lo;
102 __be32 len_gen;
103 __be32 gen2;
104 __be32 addr_hi;
107 struct tx_sw_desc { /* SW state per Tx descriptor */
108 struct sk_buff *skb;
109 u8 eop; /* set if last descriptor for packet */
110 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
111 u8 fragidx; /* first page fragment associated with descriptor */
112 s8 sflit; /* start flit of first SGL entry in descriptor */
115 struct rx_sw_desc { /* SW state per Rx descriptor */
116 union {
117 struct sk_buff *skb;
118 struct fl_pg_chunk pg_chunk;
120 DECLARE_PCI_UNMAP_ADDR(dma_addr);
123 struct rsp_desc { /* response queue descriptor */
124 struct rss_header rss_hdr;
125 __be32 flags;
126 __be32 len_cq;
127 u8 imm_data[47];
128 u8 intr_gen;
132 * Holds unmapping information for Tx packets that need deferred unmapping.
133 * This structure lives at skb->head and must be allocated by callers.
135 struct deferred_unmap_info {
136 struct pci_dev *pdev;
137 dma_addr_t addr[MAX_SKB_FRAGS + 1];
141 * Maps a number of flits to the number of Tx descriptors that can hold them.
142 * The formula is
144 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
146 * HW allows up to 4 descriptors to be combined into a WR.
148 static u8 flit_desc_map[] = {
150 #if SGE_NUM_GENBITS == 1
151 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
152 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
153 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
154 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
155 #elif SGE_NUM_GENBITS == 2
156 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
157 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
158 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
159 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
160 #else
161 # error "SGE_NUM_GENBITS must be 1 or 2"
162 #endif
165 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
167 return container_of(q, struct sge_qset, fl[qidx]);
170 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
172 return container_of(q, struct sge_qset, rspq);
175 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
177 return container_of(q, struct sge_qset, txq[qidx]);
181 * refill_rspq - replenish an SGE response queue
182 * @adapter: the adapter
183 * @q: the response queue to replenish
184 * @credits: how many new responses to make available
186 * Replenishes a response queue by making the supplied number of responses
187 * available to HW.
189 static inline void refill_rspq(struct adapter *adapter,
190 const struct sge_rspq *q, unsigned int credits)
192 rmb();
193 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
194 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
198 * need_skb_unmap - does the platform need unmapping of sk_buffs?
200 * Returns true if the platform needs sk_buff unmapping. The compiler
201 * optimizes away unecessary code if this returns true.
203 static inline int need_skb_unmap(void)
206 * This structure is used to tell if the platform needs buffer
207 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
209 struct dummy {
210 DECLARE_PCI_UNMAP_ADDR(addr);
213 return sizeof(struct dummy) != 0;
217 * unmap_skb - unmap a packet main body and its page fragments
218 * @skb: the packet
219 * @q: the Tx queue containing Tx descriptors for the packet
220 * @cidx: index of Tx descriptor
221 * @pdev: the PCI device
223 * Unmap the main body of an sk_buff and its page fragments, if any.
224 * Because of the fairly complicated structure of our SGLs and the desire
225 * to conserve space for metadata, the information necessary to unmap an
226 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
227 * descriptors (the physical addresses of the various data buffers), and
228 * the SW descriptor state (assorted indices). The send functions
229 * initialize the indices for the first packet descriptor so we can unmap
230 * the buffers held in the first Tx descriptor here, and we have enough
231 * information at this point to set the state for the next Tx descriptor.
233 * Note that it is possible to clean up the first descriptor of a packet
234 * before the send routines have written the next descriptors, but this
235 * race does not cause any problem. We just end up writing the unmapping
236 * info for the descriptor first.
238 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
239 unsigned int cidx, struct pci_dev *pdev)
241 const struct sg_ent *sgp;
242 struct tx_sw_desc *d = &q->sdesc[cidx];
243 int nfrags, frag_idx, curflit, j = d->addr_idx;
245 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
246 frag_idx = d->fragidx;
248 if (frag_idx == 0 && skb_headlen(skb)) {
249 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
250 skb_headlen(skb), PCI_DMA_TODEVICE);
251 j = 1;
254 curflit = d->sflit + 1 + j;
255 nfrags = skb_shinfo(skb)->nr_frags;
257 while (frag_idx < nfrags && curflit < WR_FLITS) {
258 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
259 skb_shinfo(skb)->frags[frag_idx].size,
260 PCI_DMA_TODEVICE);
261 j ^= 1;
262 if (j == 0) {
263 sgp++;
264 curflit++;
266 curflit++;
267 frag_idx++;
270 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
271 d = cidx + 1 == q->size ? q->sdesc : d + 1;
272 d->fragidx = frag_idx;
273 d->addr_idx = j;
274 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
279 * free_tx_desc - reclaims Tx descriptors and their buffers
280 * @adapter: the adapter
281 * @q: the Tx queue to reclaim descriptors from
282 * @n: the number of descriptors to reclaim
284 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
285 * Tx buffers. Called with the Tx queue lock held.
287 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
288 unsigned int n)
290 struct tx_sw_desc *d;
291 struct pci_dev *pdev = adapter->pdev;
292 unsigned int cidx = q->cidx;
294 const int need_unmap = need_skb_unmap() &&
295 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
297 d = &q->sdesc[cidx];
298 while (n--) {
299 if (d->skb) { /* an SGL is present */
300 if (need_unmap)
301 unmap_skb(d->skb, q, cidx, pdev);
302 if (d->eop)
303 kfree_skb(d->skb);
305 ++d;
306 if (++cidx == q->size) {
307 cidx = 0;
308 d = q->sdesc;
311 q->cidx = cidx;
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
318 * @chunk: maximum number of descriptors to reclaim
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
322 * queue's lock held.
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 struct sge_txq *q,
326 unsigned int chunk)
328 unsigned int reclaim = q->processed - q->cleaned;
330 reclaim = min(chunk, reclaim);
331 if (reclaim) {
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
336 return q->processed - q->cleaned;
340 * should_restart_tx - are there enough resources to restart a Tx queue?
341 * @q: the Tx queue
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
345 static inline int should_restart_tx(const struct sge_txq *q)
347 unsigned int r = q->processed - q->cleaned;
349 return q->in_use - r < (q->size >> 1);
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_page(pdev,
359 d->pg_chunk.mapping,
360 q->alloc_size, PCI_DMA_FROMDEVICE);
362 put_page(d->pg_chunk.page);
363 d->pg_chunk.page = NULL;
364 } else {
365 pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
366 q->buf_size, PCI_DMA_FROMDEVICE);
367 kfree_skb(d->skb);
368 d->skb = NULL;
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @rxq: the SGE free list to clean up
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
382 unsigned int cidx = q->cidx;
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
388 clear_rx_desc(pdev, q, d);
389 if (++cidx == q->size)
390 cidx = 0;
393 if (q->pg_chunk.page) {
394 __free_pages(q->pg_chunk.page, q->order);
395 q->pg_chunk.page = NULL;
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
401 * @va: buffer start VA
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
408 * Add a buffer of the given length to the supplied HW and SW Rx
409 * descriptors.
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
415 dma_addr_t mapping;
417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 return -ENOMEM;
421 pci_unmap_addr_set(sd, dma_addr, mapping);
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 wmb();
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 return 0;
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 unsigned int gen)
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 wmb();
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 return 0;
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
444 unsigned int order)
446 if (!q->pg_chunk.page) {
447 dma_addr_t mapping;
449 q->pg_chunk.page = alloc_pages(gfp, order);
450 if (unlikely(!q->pg_chunk.page))
451 return -ENOMEM;
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 SGE_PG_RSVD;
455 q->pg_chunk.offset = 0;
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 q->pg_chunk.mapping = mapping;
460 sd->pg_chunk = q->pg_chunk;
462 prefetch(sd->pg_chunk.p_cnt);
464 q->pg_chunk.offset += q->buf_size;
465 if (q->pg_chunk.offset == (PAGE_SIZE << order))
466 q->pg_chunk.page = NULL;
467 else {
468 q->pg_chunk.va += q->buf_size;
469 get_page(q->pg_chunk.page);
472 if (sd->pg_chunk.offset == 0)
473 *sd->pg_chunk.p_cnt = 1;
474 else
475 *sd->pg_chunk.p_cnt += 1;
477 return 0;
480 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
482 if (q->pend_cred >= q->credits / 4) {
483 q->pend_cred = 0;
484 wmb();
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
490 * refill_fl - refill an SGE free-buffer list
491 * @adapter: the adapter
492 * @q: the free-list to refill
493 * @n: the number of new buffers to allocate
494 * @gfp: the gfp flags for allocating new buffers
496 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
497 * allocated with the supplied gfp flags. The caller must assure that
498 * @n does not exceed the queue's capacity.
500 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
502 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
503 struct rx_desc *d = &q->desc[q->pidx];
504 unsigned int count = 0;
506 while (n--) {
507 dma_addr_t mapping;
508 int err;
510 if (q->use_pages) {
511 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
512 q->order))) {
513 nomem: q->alloc_failed++;
514 break;
516 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
517 pci_unmap_addr_set(sd, dma_addr, mapping);
519 add_one_rx_chunk(mapping, d, q->gen);
520 pci_dma_sync_single_for_device(adap->pdev, mapping,
521 q->buf_size - SGE_PG_RSVD,
522 PCI_DMA_FROMDEVICE);
523 } else {
524 void *buf_start;
526 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
527 if (!skb)
528 goto nomem;
530 sd->skb = skb;
531 buf_start = skb->data;
532 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
533 q->gen, adap->pdev);
534 if (unlikely(err)) {
535 clear_rx_desc(adap->pdev, q, sd);
536 break;
540 d++;
541 sd++;
542 if (++q->pidx == q->size) {
543 q->pidx = 0;
544 q->gen ^= 1;
545 sd = q->sdesc;
546 d = q->desc;
548 count++;
551 q->credits += count;
552 q->pend_cred += count;
553 ring_fl_db(adap, q);
555 return count;
558 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
560 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
561 GFP_ATOMIC | __GFP_COMP);
565 * recycle_rx_buf - recycle a receive buffer
566 * @adapter: the adapter
567 * @q: the SGE free list
568 * @idx: index of buffer to recycle
570 * Recycles the specified buffer on the given free list by adding it at
571 * the next available slot on the list.
573 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
574 unsigned int idx)
576 struct rx_desc *from = &q->desc[idx];
577 struct rx_desc *to = &q->desc[q->pidx];
579 q->sdesc[q->pidx] = q->sdesc[idx];
580 to->addr_lo = from->addr_lo; /* already big endian */
581 to->addr_hi = from->addr_hi; /* likewise */
582 wmb();
583 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
584 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
586 if (++q->pidx == q->size) {
587 q->pidx = 0;
588 q->gen ^= 1;
591 q->credits++;
592 q->pend_cred++;
593 ring_fl_db(adap, q);
597 * alloc_ring - allocate resources for an SGE descriptor ring
598 * @pdev: the PCI device
599 * @nelem: the number of descriptors
600 * @elem_size: the size of each descriptor
601 * @sw_size: the size of the SW state associated with each ring element
602 * @phys: the physical address of the allocated ring
603 * @metadata: address of the array holding the SW state for the ring
605 * Allocates resources for an SGE descriptor ring, such as Tx queues,
606 * free buffer lists, or response queues. Each SGE ring requires
607 * space for its HW descriptors plus, optionally, space for the SW state
608 * associated with each HW entry (the metadata). The function returns
609 * three values: the virtual address for the HW ring (the return value
610 * of the function), the physical address of the HW ring, and the address
611 * of the SW ring.
613 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
614 size_t sw_size, dma_addr_t * phys, void *metadata)
616 size_t len = nelem * elem_size;
617 void *s = NULL;
618 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
620 if (!p)
621 return NULL;
622 if (sw_size && metadata) {
623 s = kcalloc(nelem, sw_size, GFP_KERNEL);
625 if (!s) {
626 dma_free_coherent(&pdev->dev, len, p, *phys);
627 return NULL;
629 *(void **)metadata = s;
631 memset(p, 0, len);
632 return p;
636 * t3_reset_qset - reset a sge qset
637 * @q: the queue set
639 * Reset the qset structure.
640 * the NAPI structure is preserved in the event of
641 * the qset's reincarnation, for example during EEH recovery.
643 static void t3_reset_qset(struct sge_qset *q)
645 if (q->adap &&
646 !(q->adap->flags & NAPI_INIT)) {
647 memset(q, 0, sizeof(*q));
648 return;
651 q->adap = NULL;
652 memset(&q->rspq, 0, sizeof(q->rspq));
653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 q->txq_stopped = 0;
656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 q->rx_reclaim_timer.function = NULL;
658 q->nomem = 0;
659 napi_free_frags(&q->napi);
664 * free_qset - free the resources of an SGE queue set
665 * @adapter: the adapter owning the queue set
666 * @q: the queue set
668 * Release the HW and SW resources associated with an SGE queue set, such
669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
670 * queue set must be quiesced prior to calling this.
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
674 int i;
675 struct pci_dev *pdev = adapter->pdev;
677 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 if (q->fl[i].desc) {
679 spin_lock_irq(&adapter->sge.reg_lock);
680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 spin_unlock_irq(&adapter->sge.reg_lock);
682 free_rx_bufs(pdev, &q->fl[i]);
683 kfree(q->fl[i].sdesc);
684 dma_free_coherent(&pdev->dev,
685 q->fl[i].size *
686 sizeof(struct rx_desc), q->fl[i].desc,
687 q->fl[i].phys_addr);
690 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 if (q->txq[i].desc) {
692 spin_lock_irq(&adapter->sge.reg_lock);
693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 spin_unlock_irq(&adapter->sge.reg_lock);
695 if (q->txq[i].sdesc) {
696 free_tx_desc(adapter, &q->txq[i],
697 q->txq[i].in_use);
698 kfree(q->txq[i].sdesc);
700 dma_free_coherent(&pdev->dev,
701 q->txq[i].size *
702 sizeof(struct tx_desc),
703 q->txq[i].desc, q->txq[i].phys_addr);
704 __skb_queue_purge(&q->txq[i].sendq);
707 if (q->rspq.desc) {
708 spin_lock_irq(&adapter->sge.reg_lock);
709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 spin_unlock_irq(&adapter->sge.reg_lock);
711 dma_free_coherent(&pdev->dev,
712 q->rspq.size * sizeof(struct rsp_desc),
713 q->rspq.desc, q->rspq.phys_addr);
716 t3_reset_qset(q);
720 * init_qset_cntxt - initialize an SGE queue set context info
721 * @qs: the queue set
722 * @id: the queue set id
724 * Initializes the TIDs and context ids for the queues of a queue set.
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
728 qs->rspq.cntxt_id = id;
729 qs->fl[0].cntxt_id = 2 * id;
730 qs->fl[1].cntxt_id = 2 * id + 1;
731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
739 * sgl_len - calculates the size of an SGL of the given capacity
740 * @n: the number of SGL entries
742 * Calculates the number of flits needed for a scatter/gather list that
743 * can hold the given number of entries.
745 static inline unsigned int sgl_len(unsigned int n)
747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 return (3 * n) / 2 + (n & 1);
752 * flits_to_desc - returns the num of Tx descriptors for the given flits
753 * @n: the number of flits
755 * Calculates the number of Tx descriptors needed for the supplied number
756 * of flits.
758 static inline unsigned int flits_to_desc(unsigned int n)
760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 return flit_desc_map[n];
765 * get_packet - return the next ingress packet buffer from a free list
766 * @adap: the adapter that received the packet
767 * @fl: the SGE free list holding the packet
768 * @len: the packet length including any SGE padding
769 * @drop_thres: # of remaining buffers before we start dropping packets
771 * Get the next packet from a free list and complete setup of the
772 * sk_buff. If the packet is small we make a copy and recycle the
773 * original buffer, otherwise we use the original buffer itself. If a
774 * positive drop threshold is supplied packets are dropped and their
775 * buffers recycled if (a) the number of remaining buffers is under the
776 * threshold and the packet is too big to copy, or (b) the packet should
777 * be copied but there is no memory for the copy.
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 unsigned int len, unsigned int drop_thres)
782 struct sk_buff *skb = NULL;
783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
785 prefetch(sd->skb->data);
786 fl->credits--;
788 if (len <= SGE_RX_COPY_THRES) {
789 skb = alloc_skb(len, GFP_ATOMIC);
790 if (likely(skb != NULL)) {
791 __skb_put(skb, len);
792 pci_dma_sync_single_for_cpu(adap->pdev,
793 pci_unmap_addr(sd, dma_addr), len,
794 PCI_DMA_FROMDEVICE);
795 memcpy(skb->data, sd->skb->data, len);
796 pci_dma_sync_single_for_device(adap->pdev,
797 pci_unmap_addr(sd, dma_addr), len,
798 PCI_DMA_FROMDEVICE);
799 } else if (!drop_thres)
800 goto use_orig_buf;
801 recycle:
802 recycle_rx_buf(adap, fl, fl->cidx);
803 return skb;
806 if (unlikely(fl->credits < drop_thres) &&
807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 GFP_ATOMIC | __GFP_COMP) == 0)
809 goto recycle;
811 use_orig_buf:
812 pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
813 fl->buf_size, PCI_DMA_FROMDEVICE);
814 skb = sd->skb;
815 skb_put(skb, len);
816 __refill_fl(adap, fl);
817 return skb;
821 * get_packet_pg - return the next ingress packet buffer from a free list
822 * @adap: the adapter that received the packet
823 * @fl: the SGE free list holding the packet
824 * @len: the packet length including any SGE padding
825 * @drop_thres: # of remaining buffers before we start dropping packets
827 * Get the next packet from a free list populated with page chunks.
828 * If the packet is small we make a copy and recycle the original buffer,
829 * otherwise we attach the original buffer as a page fragment to a fresh
830 * sk_buff. If a positive drop threshold is supplied packets are dropped
831 * and their buffers recycled if (a) the number of remaining buffers is
832 * under the threshold and the packet is too big to copy, or (b) there's
833 * no system memory.
835 * Note: this function is similar to @get_packet but deals with Rx buffers
836 * that are page chunks rather than sk_buffs.
838 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
839 struct sge_rspq *q, unsigned int len,
840 unsigned int drop_thres)
842 struct sk_buff *newskb, *skb;
843 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
845 dma_addr_t dma_addr = pci_unmap_addr(sd, dma_addr);
847 newskb = skb = q->pg_skb;
848 if (!skb && (len <= SGE_RX_COPY_THRES)) {
849 newskb = alloc_skb(len, GFP_ATOMIC);
850 if (likely(newskb != NULL)) {
851 __skb_put(newskb, len);
852 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
853 PCI_DMA_FROMDEVICE);
854 memcpy(newskb->data, sd->pg_chunk.va, len);
855 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856 len,
857 PCI_DMA_FROMDEVICE);
858 } else if (!drop_thres)
859 return NULL;
860 recycle:
861 fl->credits--;
862 recycle_rx_buf(adap, fl, fl->cidx);
863 q->rx_recycle_buf++;
864 return newskb;
867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 goto recycle;
870 prefetch(sd->pg_chunk.p_cnt);
872 if (!skb)
873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
875 if (unlikely(!newskb)) {
876 if (!drop_thres)
877 return NULL;
878 goto recycle;
881 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
882 PCI_DMA_FROMDEVICE);
883 (*sd->pg_chunk.p_cnt)--;
884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 pci_unmap_page(adap->pdev,
886 sd->pg_chunk.mapping,
887 fl->alloc_size,
888 PCI_DMA_FROMDEVICE);
889 if (!skb) {
890 __skb_put(newskb, SGE_RX_PULL_LEN);
891 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
892 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
893 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
894 len - SGE_RX_PULL_LEN);
895 newskb->len = len;
896 newskb->data_len = len - SGE_RX_PULL_LEN;
897 newskb->truesize += newskb->data_len;
898 } else {
899 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
900 sd->pg_chunk.page,
901 sd->pg_chunk.offset, len);
902 newskb->len += len;
903 newskb->data_len += len;
904 newskb->truesize += len;
907 fl->credits--;
909 * We do not refill FLs here, we let the caller do it to overlap a
910 * prefetch.
912 return newskb;
916 * get_imm_packet - return the next ingress packet buffer from a response
917 * @resp: the response descriptor containing the packet data
919 * Return a packet containing the immediate data of the given response.
921 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
923 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
925 if (skb) {
926 __skb_put(skb, IMMED_PKT_SIZE);
927 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
929 return skb;
933 * calc_tx_descs - calculate the number of Tx descriptors for a packet
934 * @skb: the packet
936 * Returns the number of Tx descriptors needed for the given Ethernet
937 * packet. Ethernet packets require addition of WR and CPL headers.
939 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
941 unsigned int flits;
943 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944 return 1;
946 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
947 if (skb_shinfo(skb)->gso_size)
948 flits++;
949 return flits_to_desc(flits);
953 * make_sgl - populate a scatter/gather list for a packet
954 * @skb: the packet
955 * @sgp: the SGL to populate
956 * @start: start address of skb main body data to include in the SGL
957 * @len: length of skb main body data to include in the SGL
958 * @pdev: the PCI device
960 * Generates a scatter/gather list for the buffers that make up a packet
961 * and returns the SGL size in 8-byte words. The caller must size the SGL
962 * appropriately.
964 static inline unsigned int make_sgl(const struct sk_buff *skb,
965 struct sg_ent *sgp, unsigned char *start,
966 unsigned int len, struct pci_dev *pdev)
968 dma_addr_t mapping;
969 unsigned int i, j = 0, nfrags;
971 if (len) {
972 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
973 sgp->len[0] = cpu_to_be32(len);
974 sgp->addr[0] = cpu_to_be64(mapping);
975 j = 1;
978 nfrags = skb_shinfo(skb)->nr_frags;
979 for (i = 0; i < nfrags; i++) {
980 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
982 mapping = pci_map_page(pdev, frag->page, frag->page_offset,
983 frag->size, PCI_DMA_TODEVICE);
984 sgp->len[j] = cpu_to_be32(frag->size);
985 sgp->addr[j] = cpu_to_be64(mapping);
986 j ^= 1;
987 if (j == 0)
988 ++sgp;
990 if (j)
991 sgp->len[j] = 0;
992 return ((nfrags + (len != 0)) * 3) / 2 + j;
996 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
997 * @adap: the adapter
998 * @q: the Tx queue
1000 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1001 * where the HW is going to sleep just after we checked, however,
1002 * then the interrupt handler will detect the outstanding TX packet
1003 * and ring the doorbell for us.
1005 * When GTS is disabled we unconditionally ring the doorbell.
1007 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1009 #if USE_GTS
1010 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013 t3_write_reg(adap, A_SG_KDOORBELL,
1014 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1016 #else
1017 wmb(); /* write descriptors before telling HW */
1018 t3_write_reg(adap, A_SG_KDOORBELL,
1019 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020 #endif
1023 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1025 #if SGE_NUM_GENBITS == 2
1026 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027 #endif
1031 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032 * @ndesc: number of Tx descriptors spanned by the SGL
1033 * @skb: the packet corresponding to the WR
1034 * @d: first Tx descriptor to be written
1035 * @pidx: index of above descriptors
1036 * @q: the SGE Tx queue
1037 * @sgl: the SGL
1038 * @flits: number of flits to the start of the SGL in the first descriptor
1039 * @sgl_flits: the SGL size in flits
1040 * @gen: the Tx descriptor generation
1041 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1042 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1044 * Write a work request header and an associated SGL. If the SGL is
1045 * small enough to fit into one Tx descriptor it has already been written
1046 * and we just need to write the WR header. Otherwise we distribute the
1047 * SGL across the number of descriptors it spans.
1049 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050 struct tx_desc *d, unsigned int pidx,
1051 const struct sge_txq *q,
1052 const struct sg_ent *sgl,
1053 unsigned int flits, unsigned int sgl_flits,
1054 unsigned int gen, __be32 wr_hi,
1055 __be32 wr_lo)
1057 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058 struct tx_sw_desc *sd = &q->sdesc[pidx];
1060 sd->skb = skb;
1061 if (need_skb_unmap()) {
1062 sd->fragidx = 0;
1063 sd->addr_idx = 0;
1064 sd->sflit = flits;
1067 if (likely(ndesc == 1)) {
1068 sd->eop = 1;
1069 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070 V_WR_SGLSFLT(flits)) | wr_hi;
1071 wmb();
1072 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073 V_WR_GEN(gen)) | wr_lo;
1074 wr_gen2(d, gen);
1075 } else {
1076 unsigned int ogen = gen;
1077 const u64 *fp = (const u64 *)sgl;
1078 struct work_request_hdr *wp = wrp;
1080 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081 V_WR_SGLSFLT(flits)) | wr_hi;
1083 while (sgl_flits) {
1084 unsigned int avail = WR_FLITS - flits;
1086 if (avail > sgl_flits)
1087 avail = sgl_flits;
1088 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089 sgl_flits -= avail;
1090 ndesc--;
1091 if (!sgl_flits)
1092 break;
1094 fp += avail;
1095 d++;
1096 sd->eop = 0;
1097 sd++;
1098 if (++pidx == q->size) {
1099 pidx = 0;
1100 gen ^= 1;
1101 d = q->desc;
1102 sd = q->sdesc;
1105 sd->skb = skb;
1106 wrp = (struct work_request_hdr *)d;
1107 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108 V_WR_SGLSFLT(1)) | wr_hi;
1109 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110 sgl_flits + 1)) |
1111 V_WR_GEN(gen)) | wr_lo;
1112 wr_gen2(d, gen);
1113 flits = 1;
1115 sd->eop = 1;
1116 wrp->wr_hi |= htonl(F_WR_EOP);
1117 wmb();
1118 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119 wr_gen2((struct tx_desc *)wp, ogen);
1120 WARN_ON(ndesc != 0);
1125 * write_tx_pkt_wr - write a TX_PKT work request
1126 * @adap: the adapter
1127 * @skb: the packet to send
1128 * @pi: the egress interface
1129 * @pidx: index of the first Tx descriptor to write
1130 * @gen: the generation value to use
1131 * @q: the Tx queue
1132 * @ndesc: number of descriptors the packet will occupy
1133 * @compl: the value of the COMPL bit to use
1135 * Generate a TX_PKT work request to send the supplied packet.
1137 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138 const struct port_info *pi,
1139 unsigned int pidx, unsigned int gen,
1140 struct sge_txq *q, unsigned int ndesc,
1141 unsigned int compl)
1143 unsigned int flits, sgl_flits, cntrl, tso_info;
1144 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145 struct tx_desc *d = &q->desc[pidx];
1146 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1148 cpl->len = htonl(skb->len);
1149 cntrl = V_TXPKT_INTF(pi->port_id);
1151 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1152 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1154 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155 if (tso_info) {
1156 int eth_type;
1157 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1159 d->flit[2] = 0;
1160 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161 hdr->cntrl = htonl(cntrl);
1162 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163 CPL_ETH_II : CPL_ETH_II_VLAN;
1164 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167 hdr->lso_info = htonl(tso_info);
1168 flits = 3;
1169 } else {
1170 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1172 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173 cpl->cntrl = htonl(cntrl);
1175 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176 q->sdesc[pidx].skb = NULL;
1177 if (!skb->data_len)
1178 skb_copy_from_linear_data(skb, &d->flit[2],
1179 skb->len);
1180 else
1181 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1183 flits = (skb->len + 7) / 8 + 2;
1184 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186 | F_WR_SOP | F_WR_EOP | compl);
1187 wmb();
1188 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189 V_WR_TID(q->token));
1190 wr_gen2(d, gen);
1191 kfree_skb(skb);
1192 return;
1195 flits = 2;
1198 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1201 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203 htonl(V_WR_TID(q->token)));
1206 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207 struct sge_qset *qs, struct sge_txq *q)
1209 netif_tx_stop_queue(txq);
1210 set_bit(TXQ_ETH, &qs->txq_stopped);
1211 q->stops++;
1215 * eth_xmit - add a packet to the Ethernet Tx queue
1216 * @skb: the packet
1217 * @dev: the egress net device
1219 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1221 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1223 int qidx;
1224 unsigned int ndesc, pidx, credits, gen, compl;
1225 const struct port_info *pi = netdev_priv(dev);
1226 struct adapter *adap = pi->adapter;
1227 struct netdev_queue *txq;
1228 struct sge_qset *qs;
1229 struct sge_txq *q;
1232 * The chip min packet length is 9 octets but play safe and reject
1233 * anything shorter than an Ethernet header.
1235 if (unlikely(skb->len < ETH_HLEN)) {
1236 dev_kfree_skb(skb);
1237 return NETDEV_TX_OK;
1240 qidx = skb_get_queue_mapping(skb);
1241 qs = &pi->qs[qidx];
1242 q = &qs->txq[TXQ_ETH];
1243 txq = netdev_get_tx_queue(dev, qidx);
1245 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1247 credits = q->size - q->in_use;
1248 ndesc = calc_tx_descs(skb);
1250 if (unlikely(credits < ndesc)) {
1251 t3_stop_tx_queue(txq, qs, q);
1252 dev_err(&adap->pdev->dev,
1253 "%s: Tx ring %u full while queue awake!\n",
1254 dev->name, q->cntxt_id & 7);
1255 return NETDEV_TX_BUSY;
1258 q->in_use += ndesc;
1259 if (unlikely(credits - ndesc < q->stop_thres)) {
1260 t3_stop_tx_queue(txq, qs, q);
1262 if (should_restart_tx(q) &&
1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264 q->restarts++;
1265 netif_tx_start_queue(txq);
1269 gen = q->gen;
1270 q->unacked += ndesc;
1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272 q->unacked &= 7;
1273 pidx = q->pidx;
1274 q->pidx += ndesc;
1275 if (q->pidx >= q->size) {
1276 q->pidx -= q->size;
1277 q->gen ^= 1;
1280 /* update port statistics */
1281 if (skb->ip_summed == CHECKSUM_COMPLETE)
1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 if (skb_shinfo(skb)->gso_size)
1284 qs->port_stats[SGE_PSTAT_TSO]++;
1285 if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1286 qs->port_stats[SGE_PSTAT_VLANINS]++;
1289 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290 * This is good for performance but means that we rely on new Tx
1291 * packets arriving to run the destructors of completed packets,
1292 * which open up space in their sockets' send queues. Sometimes
1293 * we do not get such new packets causing Tx to stall. A single
1294 * UDP transmitter is a good example of this situation. We have
1295 * a clean up timer that periodically reclaims completed packets
1296 * but it doesn't run often enough (nor do we want it to) to prevent
1297 * lengthy stalls. A solution to this problem is to run the
1298 * destructor early, after the packet is queued but before it's DMAd.
1299 * A cons is that we lie to socket memory accounting, but the amount
1300 * of extra memory is reasonable (limited by the number of Tx
1301 * descriptors), the packets do actually get freed quickly by new
1302 * packets almost always, and for protocols like TCP that wait for
1303 * acks to really free up the data the extra memory is even less.
1304 * On the positive side we run the destructors on the sending CPU
1305 * rather than on a potentially different completing CPU, usually a
1306 * good thing. We also run them without holding our Tx queue lock,
1307 * unlike what reclaim_completed_tx() would otherwise do.
1309 * Run the destructor before telling the DMA engine about the packet
1310 * to make sure it doesn't complete and get freed prematurely.
1312 if (likely(!skb_shared(skb)))
1313 skb_orphan(skb);
1315 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316 check_ring_tx_db(adap, q);
1317 return NETDEV_TX_OK;
1321 * write_imm - write a packet into a Tx descriptor as immediate data
1322 * @d: the Tx descriptor to write
1323 * @skb: the packet
1324 * @len: the length of packet data to write as immediate data
1325 * @gen: the generation bit value to write
1327 * Writes a packet as immediate data into a Tx descriptor. The packet
1328 * contains a work request at its beginning. We must write the packet
1329 * carefully so the SGE doesn't read it accidentally before it's written
1330 * in its entirety.
1332 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333 unsigned int len, unsigned int gen)
1335 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336 struct work_request_hdr *to = (struct work_request_hdr *)d;
1338 if (likely(!skb->data_len))
1339 memcpy(&to[1], &from[1], len - sizeof(*from));
1340 else
1341 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1343 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344 V_WR_BCNTLFLT(len & 7));
1345 wmb();
1346 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347 V_WR_LEN((len + 7) / 8));
1348 wr_gen2(d, gen);
1349 kfree_skb(skb);
1353 * check_desc_avail - check descriptor availability on a send queue
1354 * @adap: the adapter
1355 * @q: the send queue
1356 * @skb: the packet needing the descriptors
1357 * @ndesc: the number of Tx descriptors needed
1358 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1360 * Checks if the requested number of Tx descriptors is available on an
1361 * SGE send queue. If the queue is already suspended or not enough
1362 * descriptors are available the packet is queued for later transmission.
1363 * Must be called with the Tx queue locked.
1365 * Returns 0 if enough descriptors are available, 1 if there aren't
1366 * enough descriptors and the packet has been queued, and 2 if the caller
1367 * needs to retry because there weren't enough descriptors at the
1368 * beginning of the call but some freed up in the mean time.
1370 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371 struct sk_buff *skb, unsigned int ndesc,
1372 unsigned int qid)
1374 if (unlikely(!skb_queue_empty(&q->sendq))) {
1375 addq_exit:__skb_queue_tail(&q->sendq, skb);
1376 return 1;
1378 if (unlikely(q->size - q->in_use < ndesc)) {
1379 struct sge_qset *qs = txq_to_qset(q, qid);
1381 set_bit(qid, &qs->txq_stopped);
1382 smp_mb__after_clear_bit();
1384 if (should_restart_tx(q) &&
1385 test_and_clear_bit(qid, &qs->txq_stopped))
1386 return 2;
1388 q->stops++;
1389 goto addq_exit;
1391 return 0;
1395 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396 * @q: the SGE control Tx queue
1398 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1399 * that send only immediate data (presently just the control queues) and
1400 * thus do not have any sk_buffs to release.
1402 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1404 unsigned int reclaim = q->processed - q->cleaned;
1406 q->in_use -= reclaim;
1407 q->cleaned += reclaim;
1410 static inline int immediate(const struct sk_buff *skb)
1412 return skb->len <= WR_LEN;
1416 * ctrl_xmit - send a packet through an SGE control Tx queue
1417 * @adap: the adapter
1418 * @q: the control queue
1419 * @skb: the packet
1421 * Send a packet through an SGE control Tx queue. Packets sent through
1422 * a control queue must fit entirely as immediate data in a single Tx
1423 * descriptor and have no page fragments.
1425 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426 struct sk_buff *skb)
1428 int ret;
1429 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1431 if (unlikely(!immediate(skb))) {
1432 WARN_ON(1);
1433 dev_kfree_skb(skb);
1434 return NET_XMIT_SUCCESS;
1437 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438 wrp->wr_lo = htonl(V_WR_TID(q->token));
1440 spin_lock(&q->lock);
1441 again:reclaim_completed_tx_imm(q);
1443 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444 if (unlikely(ret)) {
1445 if (ret == 1) {
1446 spin_unlock(&q->lock);
1447 return NET_XMIT_CN;
1449 goto again;
1452 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1454 q->in_use++;
1455 if (++q->pidx >= q->size) {
1456 q->pidx = 0;
1457 q->gen ^= 1;
1459 spin_unlock(&q->lock);
1460 wmb();
1461 t3_write_reg(adap, A_SG_KDOORBELL,
1462 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463 return NET_XMIT_SUCCESS;
1467 * restart_ctrlq - restart a suspended control queue
1468 * @qs: the queue set cotaining the control queue
1470 * Resumes transmission on a suspended Tx control queue.
1472 static void restart_ctrlq(unsigned long data)
1474 struct sk_buff *skb;
1475 struct sge_qset *qs = (struct sge_qset *)data;
1476 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1478 spin_lock(&q->lock);
1479 again:reclaim_completed_tx_imm(q);
1481 while (q->in_use < q->size &&
1482 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1484 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1486 if (++q->pidx >= q->size) {
1487 q->pidx = 0;
1488 q->gen ^= 1;
1490 q->in_use++;
1493 if (!skb_queue_empty(&q->sendq)) {
1494 set_bit(TXQ_CTRL, &qs->txq_stopped);
1495 smp_mb__after_clear_bit();
1497 if (should_restart_tx(q) &&
1498 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499 goto again;
1500 q->stops++;
1503 spin_unlock(&q->lock);
1504 wmb();
1505 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1510 * Send a management message through control queue 0
1512 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1514 int ret;
1515 local_bh_disable();
1516 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517 local_bh_enable();
1519 return ret;
1523 * deferred_unmap_destructor - unmap a packet when it is freed
1524 * @skb: the packet
1526 * This is the packet destructor used for Tx packets that need to remain
1527 * mapped until they are freed rather than until their Tx descriptors are
1528 * freed.
1530 static void deferred_unmap_destructor(struct sk_buff *skb)
1532 int i;
1533 const dma_addr_t *p;
1534 const struct skb_shared_info *si;
1535 const struct deferred_unmap_info *dui;
1537 dui = (struct deferred_unmap_info *)skb->head;
1538 p = dui->addr;
1540 if (skb->tail - skb->transport_header)
1541 pci_unmap_single(dui->pdev, *p++,
1542 skb->tail - skb->transport_header,
1543 PCI_DMA_TODEVICE);
1545 si = skb_shinfo(skb);
1546 for (i = 0; i < si->nr_frags; i++)
1547 pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1548 PCI_DMA_TODEVICE);
1551 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1552 const struct sg_ent *sgl, int sgl_flits)
1554 dma_addr_t *p;
1555 struct deferred_unmap_info *dui;
1557 dui = (struct deferred_unmap_info *)skb->head;
1558 dui->pdev = pdev;
1559 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1560 *p++ = be64_to_cpu(sgl->addr[0]);
1561 *p++ = be64_to_cpu(sgl->addr[1]);
1563 if (sgl_flits)
1564 *p = be64_to_cpu(sgl->addr[0]);
1568 * write_ofld_wr - write an offload work request
1569 * @adap: the adapter
1570 * @skb: the packet to send
1571 * @q: the Tx queue
1572 * @pidx: index of the first Tx descriptor to write
1573 * @gen: the generation value to use
1574 * @ndesc: number of descriptors the packet will occupy
1576 * Write an offload work request to send the supplied packet. The packet
1577 * data already carry the work request with most fields populated.
1579 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1580 struct sge_txq *q, unsigned int pidx,
1581 unsigned int gen, unsigned int ndesc)
1583 unsigned int sgl_flits, flits;
1584 struct work_request_hdr *from;
1585 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1586 struct tx_desc *d = &q->desc[pidx];
1588 if (immediate(skb)) {
1589 q->sdesc[pidx].skb = NULL;
1590 write_imm(d, skb, skb->len, gen);
1591 return;
1594 /* Only TX_DATA builds SGLs */
1596 from = (struct work_request_hdr *)skb->data;
1597 memcpy(&d->flit[1], &from[1],
1598 skb_transport_offset(skb) - sizeof(*from));
1600 flits = skb_transport_offset(skb) / 8;
1601 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1602 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1603 skb->tail - skb->transport_header,
1604 adap->pdev);
1605 if (need_skb_unmap()) {
1606 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1607 skb->destructor = deferred_unmap_destructor;
1610 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1611 gen, from->wr_hi, from->wr_lo);
1615 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1616 * @skb: the packet
1618 * Returns the number of Tx descriptors needed for the given offload
1619 * packet. These packets are already fully constructed.
1621 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1623 unsigned int flits, cnt;
1625 if (skb->len <= WR_LEN)
1626 return 1; /* packet fits as immediate data */
1628 flits = skb_transport_offset(skb) / 8; /* headers */
1629 cnt = skb_shinfo(skb)->nr_frags;
1630 if (skb->tail != skb->transport_header)
1631 cnt++;
1632 return flits_to_desc(flits + sgl_len(cnt));
1636 * ofld_xmit - send a packet through an offload queue
1637 * @adap: the adapter
1638 * @q: the Tx offload queue
1639 * @skb: the packet
1641 * Send an offload packet through an SGE offload queue.
1643 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1644 struct sk_buff *skb)
1646 int ret;
1647 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1649 spin_lock(&q->lock);
1650 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1652 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1653 if (unlikely(ret)) {
1654 if (ret == 1) {
1655 skb->priority = ndesc; /* save for restart */
1656 spin_unlock(&q->lock);
1657 return NET_XMIT_CN;
1659 goto again;
1662 gen = q->gen;
1663 q->in_use += ndesc;
1664 pidx = q->pidx;
1665 q->pidx += ndesc;
1666 if (q->pidx >= q->size) {
1667 q->pidx -= q->size;
1668 q->gen ^= 1;
1670 spin_unlock(&q->lock);
1672 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1673 check_ring_tx_db(adap, q);
1674 return NET_XMIT_SUCCESS;
1678 * restart_offloadq - restart a suspended offload queue
1679 * @qs: the queue set cotaining the offload queue
1681 * Resumes transmission on a suspended Tx offload queue.
1683 static void restart_offloadq(unsigned long data)
1685 struct sk_buff *skb;
1686 struct sge_qset *qs = (struct sge_qset *)data;
1687 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1688 const struct port_info *pi = netdev_priv(qs->netdev);
1689 struct adapter *adap = pi->adapter;
1691 spin_lock(&q->lock);
1692 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1694 while ((skb = skb_peek(&q->sendq)) != NULL) {
1695 unsigned int gen, pidx;
1696 unsigned int ndesc = skb->priority;
1698 if (unlikely(q->size - q->in_use < ndesc)) {
1699 set_bit(TXQ_OFLD, &qs->txq_stopped);
1700 smp_mb__after_clear_bit();
1702 if (should_restart_tx(q) &&
1703 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1704 goto again;
1705 q->stops++;
1706 break;
1709 gen = q->gen;
1710 q->in_use += ndesc;
1711 pidx = q->pidx;
1712 q->pidx += ndesc;
1713 if (q->pidx >= q->size) {
1714 q->pidx -= q->size;
1715 q->gen ^= 1;
1717 __skb_unlink(skb, &q->sendq);
1718 spin_unlock(&q->lock);
1720 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1721 spin_lock(&q->lock);
1723 spin_unlock(&q->lock);
1725 #if USE_GTS
1726 set_bit(TXQ_RUNNING, &q->flags);
1727 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1728 #endif
1729 wmb();
1730 t3_write_reg(adap, A_SG_KDOORBELL,
1731 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1735 * queue_set - return the queue set a packet should use
1736 * @skb: the packet
1738 * Maps a packet to the SGE queue set it should use. The desired queue
1739 * set is carried in bits 1-3 in the packet's priority.
1741 static inline int queue_set(const struct sk_buff *skb)
1743 return skb->priority >> 1;
1747 * is_ctrl_pkt - return whether an offload packet is a control packet
1748 * @skb: the packet
1750 * Determines whether an offload packet should use an OFLD or a CTRL
1751 * Tx queue. This is indicated by bit 0 in the packet's priority.
1753 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1755 return skb->priority & 1;
1759 * t3_offload_tx - send an offload packet
1760 * @tdev: the offload device to send to
1761 * @skb: the packet
1763 * Sends an offload packet. We use the packet priority to select the
1764 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1765 * should be sent as regular or control, bits 1-3 select the queue set.
1767 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1769 struct adapter *adap = tdev2adap(tdev);
1770 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1772 if (unlikely(is_ctrl_pkt(skb)))
1773 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1775 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1779 * offload_enqueue - add an offload packet to an SGE offload receive queue
1780 * @q: the SGE response queue
1781 * @skb: the packet
1783 * Add a new offload packet to an SGE response queue's offload packet
1784 * queue. If the packet is the first on the queue it schedules the RX
1785 * softirq to process the queue.
1787 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1789 int was_empty = skb_queue_empty(&q->rx_queue);
1791 __skb_queue_tail(&q->rx_queue, skb);
1793 if (was_empty) {
1794 struct sge_qset *qs = rspq_to_qset(q);
1796 napi_schedule(&qs->napi);
1801 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1802 * @tdev: the offload device that will be receiving the packets
1803 * @q: the SGE response queue that assembled the bundle
1804 * @skbs: the partial bundle
1805 * @n: the number of packets in the bundle
1807 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1809 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1810 struct sge_rspq *q,
1811 struct sk_buff *skbs[], int n)
1813 if (n) {
1814 q->offload_bundles++;
1815 tdev->recv(tdev, skbs, n);
1820 * ofld_poll - NAPI handler for offload packets in interrupt mode
1821 * @dev: the network device doing the polling
1822 * @budget: polling budget
1824 * The NAPI handler for offload packets when a response queue is serviced
1825 * by the hard interrupt handler, i.e., when it's operating in non-polling
1826 * mode. Creates small packet batches and sends them through the offload
1827 * receive handler. Batches need to be of modest size as we do prefetches
1828 * on the packets in each.
1830 static int ofld_poll(struct napi_struct *napi, int budget)
1832 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1833 struct sge_rspq *q = &qs->rspq;
1834 struct adapter *adapter = qs->adap;
1835 int work_done = 0;
1837 while (work_done < budget) {
1838 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1839 struct sk_buff_head queue;
1840 int ngathered;
1842 spin_lock_irq(&q->lock);
1843 __skb_queue_head_init(&queue);
1844 skb_queue_splice_init(&q->rx_queue, &queue);
1845 if (skb_queue_empty(&queue)) {
1846 napi_complete(napi);
1847 spin_unlock_irq(&q->lock);
1848 return work_done;
1850 spin_unlock_irq(&q->lock);
1852 ngathered = 0;
1853 skb_queue_walk_safe(&queue, skb, tmp) {
1854 if (work_done >= budget)
1855 break;
1856 work_done++;
1858 __skb_unlink(skb, &queue);
1859 prefetch(skb->data);
1860 skbs[ngathered] = skb;
1861 if (++ngathered == RX_BUNDLE_SIZE) {
1862 q->offload_bundles++;
1863 adapter->tdev.recv(&adapter->tdev, skbs,
1864 ngathered);
1865 ngathered = 0;
1868 if (!skb_queue_empty(&queue)) {
1869 /* splice remaining packets back onto Rx queue */
1870 spin_lock_irq(&q->lock);
1871 skb_queue_splice(&queue, &q->rx_queue);
1872 spin_unlock_irq(&q->lock);
1874 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1877 return work_done;
1881 * rx_offload - process a received offload packet
1882 * @tdev: the offload device receiving the packet
1883 * @rq: the response queue that received the packet
1884 * @skb: the packet
1885 * @rx_gather: a gather list of packets if we are building a bundle
1886 * @gather_idx: index of the next available slot in the bundle
1888 * Process an ingress offload pakcet and add it to the offload ingress
1889 * queue. Returns the index of the next available slot in the bundle.
1891 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1892 struct sk_buff *skb, struct sk_buff *rx_gather[],
1893 unsigned int gather_idx)
1895 skb_reset_mac_header(skb);
1896 skb_reset_network_header(skb);
1897 skb_reset_transport_header(skb);
1899 if (rq->polling) {
1900 rx_gather[gather_idx++] = skb;
1901 if (gather_idx == RX_BUNDLE_SIZE) {
1902 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1903 gather_idx = 0;
1904 rq->offload_bundles++;
1906 } else
1907 offload_enqueue(rq, skb);
1909 return gather_idx;
1913 * restart_tx - check whether to restart suspended Tx queues
1914 * @qs: the queue set to resume
1916 * Restarts suspended Tx queues of an SGE queue set if they have enough
1917 * free resources to resume operation.
1919 static void restart_tx(struct sge_qset *qs)
1921 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1922 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1923 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1924 qs->txq[TXQ_ETH].restarts++;
1925 if (netif_running(qs->netdev))
1926 netif_tx_wake_queue(qs->tx_q);
1929 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1930 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1931 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1932 qs->txq[TXQ_OFLD].restarts++;
1933 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1935 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1936 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1937 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1938 qs->txq[TXQ_CTRL].restarts++;
1939 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1944 * cxgb3_arp_process - process an ARP request probing a private IP address
1945 * @adapter: the adapter
1946 * @skb: the skbuff containing the ARP request
1948 * Check if the ARP request is probing the private IP address
1949 * dedicated to iSCSI, generate an ARP reply if so.
1951 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1953 struct net_device *dev = skb->dev;
1954 struct arphdr *arp;
1955 unsigned char *arp_ptr;
1956 unsigned char *sha;
1957 __be32 sip, tip;
1959 if (!dev)
1960 return;
1962 skb_reset_network_header(skb);
1963 arp = arp_hdr(skb);
1965 if (arp->ar_op != htons(ARPOP_REQUEST))
1966 return;
1968 arp_ptr = (unsigned char *)(arp + 1);
1969 sha = arp_ptr;
1970 arp_ptr += dev->addr_len;
1971 memcpy(&sip, arp_ptr, sizeof(sip));
1972 arp_ptr += sizeof(sip);
1973 arp_ptr += dev->addr_len;
1974 memcpy(&tip, arp_ptr, sizeof(tip));
1976 if (tip != pi->iscsi_ipv4addr)
1977 return;
1979 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1980 pi->iscsic.mac_addr, sha);
1984 static inline int is_arp(struct sk_buff *skb)
1986 return skb->protocol == htons(ETH_P_ARP);
1989 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1990 struct sk_buff *skb)
1992 if (is_arp(skb)) {
1993 cxgb3_arp_process(pi, skb);
1994 return;
1997 if (pi->iscsic.recv)
1998 pi->iscsic.recv(pi, skb);
2003 * rx_eth - process an ingress ethernet packet
2004 * @adap: the adapter
2005 * @rq: the response queue that received the packet
2006 * @skb: the packet
2007 * @pad: amount of padding at the start of the buffer
2009 * Process an ingress ethernet pakcet and deliver it to the stack.
2010 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2011 * if it was immediate data in a response.
2013 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2014 struct sk_buff *skb, int pad, int lro)
2016 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2017 struct sge_qset *qs = rspq_to_qset(rq);
2018 struct port_info *pi;
2020 skb_pull(skb, sizeof(*p) + pad);
2021 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2022 pi = netdev_priv(skb->dev);
2023 if ((pi->rx_offload & T3_RX_CSUM) && p->csum_valid &&
2024 p->csum == htons(0xffff) && !p->fragment) {
2025 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2026 skb->ip_summed = CHECKSUM_UNNECESSARY;
2027 } else
2028 skb->ip_summed = CHECKSUM_NONE;
2029 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2031 if (unlikely(p->vlan_valid)) {
2032 struct vlan_group *grp = pi->vlan_grp;
2034 qs->port_stats[SGE_PSTAT_VLANEX]++;
2035 if (likely(grp))
2036 if (lro)
2037 vlan_gro_receive(&qs->napi, grp,
2038 ntohs(p->vlan), skb);
2039 else {
2040 if (unlikely(pi->iscsic.flags)) {
2041 unsigned short vtag = ntohs(p->vlan) &
2042 VLAN_VID_MASK;
2043 skb->dev = vlan_group_get_device(grp,
2044 vtag);
2045 cxgb3_process_iscsi_prov_pack(pi, skb);
2047 __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
2048 rq->polling);
2050 else
2051 dev_kfree_skb_any(skb);
2052 } else if (rq->polling) {
2053 if (lro)
2054 napi_gro_receive(&qs->napi, skb);
2055 else {
2056 if (unlikely(pi->iscsic.flags))
2057 cxgb3_process_iscsi_prov_pack(pi, skb);
2058 netif_receive_skb(skb);
2060 } else
2061 netif_rx(skb);
2064 static inline int is_eth_tcp(u32 rss)
2066 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2070 * lro_add_page - add a page chunk to an LRO session
2071 * @adap: the adapter
2072 * @qs: the associated queue set
2073 * @fl: the free list containing the page chunk to add
2074 * @len: packet length
2075 * @complete: Indicates the last fragment of a frame
2077 * Add a received packet contained in a page chunk to an existing LRO
2078 * session.
2080 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2081 struct sge_fl *fl, int len, int complete)
2083 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2084 struct port_info *pi = netdev_priv(qs->netdev);
2085 struct sk_buff *skb = NULL;
2086 struct cpl_rx_pkt *cpl;
2087 struct skb_frag_struct *rx_frag;
2088 int nr_frags;
2089 int offset = 0;
2091 if (!qs->nomem) {
2092 skb = napi_get_frags(&qs->napi);
2093 qs->nomem = !skb;
2096 fl->credits--;
2098 pci_dma_sync_single_for_cpu(adap->pdev,
2099 pci_unmap_addr(sd, dma_addr),
2100 fl->buf_size - SGE_PG_RSVD,
2101 PCI_DMA_FROMDEVICE);
2103 (*sd->pg_chunk.p_cnt)--;
2104 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2105 pci_unmap_page(adap->pdev,
2106 sd->pg_chunk.mapping,
2107 fl->alloc_size,
2108 PCI_DMA_FROMDEVICE);
2110 if (!skb) {
2111 put_page(sd->pg_chunk.page);
2112 if (complete)
2113 qs->nomem = 0;
2114 return;
2117 rx_frag = skb_shinfo(skb)->frags;
2118 nr_frags = skb_shinfo(skb)->nr_frags;
2120 if (!nr_frags) {
2121 offset = 2 + sizeof(struct cpl_rx_pkt);
2122 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2124 if ((pi->rx_offload & T3_RX_CSUM) &&
2125 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2126 skb->ip_summed = CHECKSUM_UNNECESSARY;
2127 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2128 } else
2129 skb->ip_summed = CHECKSUM_NONE;
2130 } else
2131 cpl = qs->lro_va;
2133 len -= offset;
2135 rx_frag += nr_frags;
2136 rx_frag->page = sd->pg_chunk.page;
2137 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2138 rx_frag->size = len;
2140 skb->len += len;
2141 skb->data_len += len;
2142 skb->truesize += len;
2143 skb_shinfo(skb)->nr_frags++;
2145 if (!complete)
2146 return;
2148 skb_record_rx_queue(skb, qs - &adap->sge.qs[0]);
2150 if (unlikely(cpl->vlan_valid)) {
2151 struct vlan_group *grp = pi->vlan_grp;
2153 if (likely(grp != NULL)) {
2154 vlan_gro_frags(&qs->napi, grp, ntohs(cpl->vlan));
2155 return;
2158 napi_gro_frags(&qs->napi);
2162 * handle_rsp_cntrl_info - handles control information in a response
2163 * @qs: the queue set corresponding to the response
2164 * @flags: the response control flags
2166 * Handles the control information of an SGE response, such as GTS
2167 * indications and completion credits for the queue set's Tx queues.
2168 * HW coalesces credits, we don't do any extra SW coalescing.
2170 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2172 unsigned int credits;
2174 #if USE_GTS
2175 if (flags & F_RSPD_TXQ0_GTS)
2176 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2177 #endif
2179 credits = G_RSPD_TXQ0_CR(flags);
2180 if (credits)
2181 qs->txq[TXQ_ETH].processed += credits;
2183 credits = G_RSPD_TXQ2_CR(flags);
2184 if (credits)
2185 qs->txq[TXQ_CTRL].processed += credits;
2187 # if USE_GTS
2188 if (flags & F_RSPD_TXQ1_GTS)
2189 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2190 # endif
2191 credits = G_RSPD_TXQ1_CR(flags);
2192 if (credits)
2193 qs->txq[TXQ_OFLD].processed += credits;
2197 * check_ring_db - check if we need to ring any doorbells
2198 * @adapter: the adapter
2199 * @qs: the queue set whose Tx queues are to be examined
2200 * @sleeping: indicates which Tx queue sent GTS
2202 * Checks if some of a queue set's Tx queues need to ring their doorbells
2203 * to resume transmission after idling while they still have unprocessed
2204 * descriptors.
2206 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2207 unsigned int sleeping)
2209 if (sleeping & F_RSPD_TXQ0_GTS) {
2210 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2212 if (txq->cleaned + txq->in_use != txq->processed &&
2213 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2214 set_bit(TXQ_RUNNING, &txq->flags);
2215 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2216 V_EGRCNTX(txq->cntxt_id));
2220 if (sleeping & F_RSPD_TXQ1_GTS) {
2221 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2223 if (txq->cleaned + txq->in_use != txq->processed &&
2224 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2225 set_bit(TXQ_RUNNING, &txq->flags);
2226 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2227 V_EGRCNTX(txq->cntxt_id));
2233 * is_new_response - check if a response is newly written
2234 * @r: the response descriptor
2235 * @q: the response queue
2237 * Returns true if a response descriptor contains a yet unprocessed
2238 * response.
2240 static inline int is_new_response(const struct rsp_desc *r,
2241 const struct sge_rspq *q)
2243 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2246 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2248 q->pg_skb = NULL;
2249 q->rx_recycle_buf = 0;
2252 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2253 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2254 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2255 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2256 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2258 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2259 #define NOMEM_INTR_DELAY 2500
2262 * process_responses - process responses from an SGE response queue
2263 * @adap: the adapter
2264 * @qs: the queue set to which the response queue belongs
2265 * @budget: how many responses can be processed in this round
2267 * Process responses from an SGE response queue up to the supplied budget.
2268 * Responses include received packets as well as credits and other events
2269 * for the queues that belong to the response queue's queue set.
2270 * A negative budget is effectively unlimited.
2272 * Additionally choose the interrupt holdoff time for the next interrupt
2273 * on this queue. If the system is under memory shortage use a fairly
2274 * long delay to help recovery.
2276 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2277 int budget)
2279 struct sge_rspq *q = &qs->rspq;
2280 struct rsp_desc *r = &q->desc[q->cidx];
2281 int budget_left = budget;
2282 unsigned int sleeping = 0;
2283 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2284 int ngathered = 0;
2286 q->next_holdoff = q->holdoff_tmr;
2288 while (likely(budget_left && is_new_response(r, q))) {
2289 int packet_complete, eth, ethpad = 2, lro = qs->lro_enabled;
2290 struct sk_buff *skb = NULL;
2291 u32 len, flags;
2292 __be32 rss_hi, rss_lo;
2294 rmb();
2295 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2296 rss_hi = *(const __be32 *)r;
2297 rss_lo = r->rss_hdr.rss_hash_val;
2298 flags = ntohl(r->flags);
2300 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2301 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2302 if (!skb)
2303 goto no_mem;
2305 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2306 skb->data[0] = CPL_ASYNC_NOTIF;
2307 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2308 q->async_notif++;
2309 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2310 skb = get_imm_packet(r);
2311 if (unlikely(!skb)) {
2312 no_mem:
2313 q->next_holdoff = NOMEM_INTR_DELAY;
2314 q->nomem++;
2315 /* consume one credit since we tried */
2316 budget_left--;
2317 break;
2319 q->imm_data++;
2320 ethpad = 0;
2321 } else if ((len = ntohl(r->len_cq)) != 0) {
2322 struct sge_fl *fl;
2324 lro &= eth && is_eth_tcp(rss_hi);
2326 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2327 if (fl->use_pages) {
2328 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2330 prefetch(addr);
2331 #if L1_CACHE_BYTES < 128
2332 prefetch(addr + L1_CACHE_BYTES);
2333 #endif
2334 __refill_fl(adap, fl);
2335 if (lro > 0) {
2336 lro_add_page(adap, qs, fl,
2337 G_RSPD_LEN(len),
2338 flags & F_RSPD_EOP);
2339 goto next_fl;
2342 skb = get_packet_pg(adap, fl, q,
2343 G_RSPD_LEN(len),
2344 eth ?
2345 SGE_RX_DROP_THRES : 0);
2346 q->pg_skb = skb;
2347 } else
2348 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2349 eth ? SGE_RX_DROP_THRES : 0);
2350 if (unlikely(!skb)) {
2351 if (!eth)
2352 goto no_mem;
2353 q->rx_drops++;
2354 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2355 __skb_pull(skb, 2);
2356 next_fl:
2357 if (++fl->cidx == fl->size)
2358 fl->cidx = 0;
2359 } else
2360 q->pure_rsps++;
2362 if (flags & RSPD_CTRL_MASK) {
2363 sleeping |= flags & RSPD_GTS_MASK;
2364 handle_rsp_cntrl_info(qs, flags);
2367 r++;
2368 if (unlikely(++q->cidx == q->size)) {
2369 q->cidx = 0;
2370 q->gen ^= 1;
2371 r = q->desc;
2373 prefetch(r);
2375 if (++q->credits >= (q->size / 4)) {
2376 refill_rspq(adap, q, q->credits);
2377 q->credits = 0;
2380 packet_complete = flags &
2381 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2382 F_RSPD_ASYNC_NOTIF);
2384 if (skb != NULL && packet_complete) {
2385 if (eth)
2386 rx_eth(adap, q, skb, ethpad, lro);
2387 else {
2388 q->offload_pkts++;
2389 /* Preserve the RSS info in csum & priority */
2390 skb->csum = rss_hi;
2391 skb->priority = rss_lo;
2392 ngathered = rx_offload(&adap->tdev, q, skb,
2393 offload_skbs,
2394 ngathered);
2397 if (flags & F_RSPD_EOP)
2398 clear_rspq_bufstate(q);
2400 --budget_left;
2403 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2405 if (sleeping)
2406 check_ring_db(adap, qs, sleeping);
2408 smp_mb(); /* commit Tx queue .processed updates */
2409 if (unlikely(qs->txq_stopped != 0))
2410 restart_tx(qs);
2412 budget -= budget_left;
2413 return budget;
2416 static inline int is_pure_response(const struct rsp_desc *r)
2418 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2420 return (n | r->len_cq) == 0;
2424 * napi_rx_handler - the NAPI handler for Rx processing
2425 * @napi: the napi instance
2426 * @budget: how many packets we can process in this round
2428 * Handler for new data events when using NAPI.
2430 static int napi_rx_handler(struct napi_struct *napi, int budget)
2432 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2433 struct adapter *adap = qs->adap;
2434 int work_done = process_responses(adap, qs, budget);
2436 if (likely(work_done < budget)) {
2437 napi_complete(napi);
2440 * Because we don't atomically flush the following
2441 * write it is possible that in very rare cases it can
2442 * reach the device in a way that races with a new
2443 * response being written plus an error interrupt
2444 * causing the NAPI interrupt handler below to return
2445 * unhandled status to the OS. To protect against
2446 * this would require flushing the write and doing
2447 * both the write and the flush with interrupts off.
2448 * Way too expensive and unjustifiable given the
2449 * rarity of the race.
2451 * The race cannot happen at all with MSI-X.
2453 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2454 V_NEWTIMER(qs->rspq.next_holdoff) |
2455 V_NEWINDEX(qs->rspq.cidx));
2457 return work_done;
2461 * Returns true if the device is already scheduled for polling.
2463 static inline int napi_is_scheduled(struct napi_struct *napi)
2465 return test_bit(NAPI_STATE_SCHED, &napi->state);
2469 * process_pure_responses - process pure responses from a response queue
2470 * @adap: the adapter
2471 * @qs: the queue set owning the response queue
2472 * @r: the first pure response to process
2474 * A simpler version of process_responses() that handles only pure (i.e.,
2475 * non data-carrying) responses. Such respones are too light-weight to
2476 * justify calling a softirq under NAPI, so we handle them specially in
2477 * the interrupt handler. The function is called with a pointer to a
2478 * response, which the caller must ensure is a valid pure response.
2480 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2482 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2483 struct rsp_desc *r)
2485 struct sge_rspq *q = &qs->rspq;
2486 unsigned int sleeping = 0;
2488 do {
2489 u32 flags = ntohl(r->flags);
2491 r++;
2492 if (unlikely(++q->cidx == q->size)) {
2493 q->cidx = 0;
2494 q->gen ^= 1;
2495 r = q->desc;
2497 prefetch(r);
2499 if (flags & RSPD_CTRL_MASK) {
2500 sleeping |= flags & RSPD_GTS_MASK;
2501 handle_rsp_cntrl_info(qs, flags);
2504 q->pure_rsps++;
2505 if (++q->credits >= (q->size / 4)) {
2506 refill_rspq(adap, q, q->credits);
2507 q->credits = 0;
2509 if (!is_new_response(r, q))
2510 break;
2511 rmb();
2512 } while (is_pure_response(r));
2514 if (sleeping)
2515 check_ring_db(adap, qs, sleeping);
2517 smp_mb(); /* commit Tx queue .processed updates */
2518 if (unlikely(qs->txq_stopped != 0))
2519 restart_tx(qs);
2521 return is_new_response(r, q);
2525 * handle_responses - decide what to do with new responses in NAPI mode
2526 * @adap: the adapter
2527 * @q: the response queue
2529 * This is used by the NAPI interrupt handlers to decide what to do with
2530 * new SGE responses. If there are no new responses it returns -1. If
2531 * there are new responses and they are pure (i.e., non-data carrying)
2532 * it handles them straight in hard interrupt context as they are very
2533 * cheap and don't deliver any packets. Finally, if there are any data
2534 * signaling responses it schedules the NAPI handler. Returns 1 if it
2535 * schedules NAPI, 0 if all new responses were pure.
2537 * The caller must ascertain NAPI is not already running.
2539 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2541 struct sge_qset *qs = rspq_to_qset(q);
2542 struct rsp_desc *r = &q->desc[q->cidx];
2544 if (!is_new_response(r, q))
2545 return -1;
2546 rmb();
2547 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2548 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2549 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2550 return 0;
2552 napi_schedule(&qs->napi);
2553 return 1;
2557 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2558 * (i.e., response queue serviced in hard interrupt).
2560 irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2562 struct sge_qset *qs = cookie;
2563 struct adapter *adap = qs->adap;
2564 struct sge_rspq *q = &qs->rspq;
2566 spin_lock(&q->lock);
2567 if (process_responses(adap, qs, -1) == 0)
2568 q->unhandled_irqs++;
2569 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2570 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2571 spin_unlock(&q->lock);
2572 return IRQ_HANDLED;
2576 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2577 * (i.e., response queue serviced by NAPI polling).
2579 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2581 struct sge_qset *qs = cookie;
2582 struct sge_rspq *q = &qs->rspq;
2584 spin_lock(&q->lock);
2586 if (handle_responses(qs->adap, q) < 0)
2587 q->unhandled_irqs++;
2588 spin_unlock(&q->lock);
2589 return IRQ_HANDLED;
2593 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2594 * SGE response queues as well as error and other async events as they all use
2595 * the same MSI vector. We use one SGE response queue per port in this mode
2596 * and protect all response queues with queue 0's lock.
2598 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2600 int new_packets = 0;
2601 struct adapter *adap = cookie;
2602 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2604 spin_lock(&q->lock);
2606 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2607 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2608 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2609 new_packets = 1;
2612 if (adap->params.nports == 2 &&
2613 process_responses(adap, &adap->sge.qs[1], -1)) {
2614 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2616 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2617 V_NEWTIMER(q1->next_holdoff) |
2618 V_NEWINDEX(q1->cidx));
2619 new_packets = 1;
2622 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2623 q->unhandled_irqs++;
2625 spin_unlock(&q->lock);
2626 return IRQ_HANDLED;
2629 static int rspq_check_napi(struct sge_qset *qs)
2631 struct sge_rspq *q = &qs->rspq;
2633 if (!napi_is_scheduled(&qs->napi) &&
2634 is_new_response(&q->desc[q->cidx], q)) {
2635 napi_schedule(&qs->napi);
2636 return 1;
2638 return 0;
2642 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2643 * by NAPI polling). Handles data events from SGE response queues as well as
2644 * error and other async events as they all use the same MSI vector. We use
2645 * one SGE response queue per port in this mode and protect all response
2646 * queues with queue 0's lock.
2648 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2650 int new_packets;
2651 struct adapter *adap = cookie;
2652 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2654 spin_lock(&q->lock);
2656 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2657 if (adap->params.nports == 2)
2658 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2659 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2660 q->unhandled_irqs++;
2662 spin_unlock(&q->lock);
2663 return IRQ_HANDLED;
2667 * A helper function that processes responses and issues GTS.
2669 static inline int process_responses_gts(struct adapter *adap,
2670 struct sge_rspq *rq)
2672 int work;
2674 work = process_responses(adap, rspq_to_qset(rq), -1);
2675 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2676 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2677 return work;
2681 * The legacy INTx interrupt handler. This needs to handle data events from
2682 * SGE response queues as well as error and other async events as they all use
2683 * the same interrupt pin. We use one SGE response queue per port in this mode
2684 * and protect all response queues with queue 0's lock.
2686 static irqreturn_t t3_intr(int irq, void *cookie)
2688 int work_done, w0, w1;
2689 struct adapter *adap = cookie;
2690 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2691 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2693 spin_lock(&q0->lock);
2695 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2696 w1 = adap->params.nports == 2 &&
2697 is_new_response(&q1->desc[q1->cidx], q1);
2699 if (likely(w0 | w1)) {
2700 t3_write_reg(adap, A_PL_CLI, 0);
2701 t3_read_reg(adap, A_PL_CLI); /* flush */
2703 if (likely(w0))
2704 process_responses_gts(adap, q0);
2706 if (w1)
2707 process_responses_gts(adap, q1);
2709 work_done = w0 | w1;
2710 } else
2711 work_done = t3_slow_intr_handler(adap);
2713 spin_unlock(&q0->lock);
2714 return IRQ_RETVAL(work_done != 0);
2718 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2719 * Handles data events from SGE response queues as well as error and other
2720 * async events as they all use the same interrupt pin. We use one SGE
2721 * response queue per port in this mode and protect all response queues with
2722 * queue 0's lock.
2724 static irqreturn_t t3b_intr(int irq, void *cookie)
2726 u32 map;
2727 struct adapter *adap = cookie;
2728 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2730 t3_write_reg(adap, A_PL_CLI, 0);
2731 map = t3_read_reg(adap, A_SG_DATA_INTR);
2733 if (unlikely(!map)) /* shared interrupt, most likely */
2734 return IRQ_NONE;
2736 spin_lock(&q0->lock);
2738 if (unlikely(map & F_ERRINTR))
2739 t3_slow_intr_handler(adap);
2741 if (likely(map & 1))
2742 process_responses_gts(adap, q0);
2744 if (map & 2)
2745 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2747 spin_unlock(&q0->lock);
2748 return IRQ_HANDLED;
2752 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2753 * Handles data events from SGE response queues as well as error and other
2754 * async events as they all use the same interrupt pin. We use one SGE
2755 * response queue per port in this mode and protect all response queues with
2756 * queue 0's lock.
2758 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2760 u32 map;
2761 struct adapter *adap = cookie;
2762 struct sge_qset *qs0 = &adap->sge.qs[0];
2763 struct sge_rspq *q0 = &qs0->rspq;
2765 t3_write_reg(adap, A_PL_CLI, 0);
2766 map = t3_read_reg(adap, A_SG_DATA_INTR);
2768 if (unlikely(!map)) /* shared interrupt, most likely */
2769 return IRQ_NONE;
2771 spin_lock(&q0->lock);
2773 if (unlikely(map & F_ERRINTR))
2774 t3_slow_intr_handler(adap);
2776 if (likely(map & 1))
2777 napi_schedule(&qs0->napi);
2779 if (map & 2)
2780 napi_schedule(&adap->sge.qs[1].napi);
2782 spin_unlock(&q0->lock);
2783 return IRQ_HANDLED;
2787 * t3_intr_handler - select the top-level interrupt handler
2788 * @adap: the adapter
2789 * @polling: whether using NAPI to service response queues
2791 * Selects the top-level interrupt handler based on the type of interrupts
2792 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2793 * response queues.
2795 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2797 if (adap->flags & USING_MSIX)
2798 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2799 if (adap->flags & USING_MSI)
2800 return polling ? t3_intr_msi_napi : t3_intr_msi;
2801 if (adap->params.rev > 0)
2802 return polling ? t3b_intr_napi : t3b_intr;
2803 return t3_intr;
2806 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2807 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2808 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2809 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2810 F_HIRCQPARITYERROR)
2811 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2812 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2813 F_RSPQDISABLED)
2816 * t3_sge_err_intr_handler - SGE async event interrupt handler
2817 * @adapter: the adapter
2819 * Interrupt handler for SGE asynchronous (non-data) events.
2821 void t3_sge_err_intr_handler(struct adapter *adapter)
2823 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2824 ~F_FLEMPTY;
2826 if (status & SGE_PARERR)
2827 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2828 status & SGE_PARERR);
2829 if (status & SGE_FRAMINGERR)
2830 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2831 status & SGE_FRAMINGERR);
2833 if (status & F_RSPQCREDITOVERFOW)
2834 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2836 if (status & F_RSPQDISABLED) {
2837 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2839 CH_ALERT(adapter,
2840 "packet delivered to disabled response queue "
2841 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2844 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2845 queue_work(cxgb3_wq, &adapter->db_drop_task);
2847 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2848 queue_work(cxgb3_wq, &adapter->db_full_task);
2850 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2851 queue_work(cxgb3_wq, &adapter->db_empty_task);
2853 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2854 if (status & SGE_FATALERR)
2855 t3_fatal_err(adapter);
2859 * sge_timer_tx - perform periodic maintenance of an SGE qset
2860 * @data: the SGE queue set to maintain
2862 * Runs periodically from a timer to perform maintenance of an SGE queue
2863 * set. It performs two tasks:
2865 * Cleans up any completed Tx descriptors that may still be pending.
2866 * Normal descriptor cleanup happens when new packets are added to a Tx
2867 * queue so this timer is relatively infrequent and does any cleanup only
2868 * if the Tx queue has not seen any new packets in a while. We make a
2869 * best effort attempt to reclaim descriptors, in that we don't wait
2870 * around if we cannot get a queue's lock (which most likely is because
2871 * someone else is queueing new packets and so will also handle the clean
2872 * up). Since control queues use immediate data exclusively we don't
2873 * bother cleaning them up here.
2876 static void sge_timer_tx(unsigned long data)
2878 struct sge_qset *qs = (struct sge_qset *)data;
2879 struct port_info *pi = netdev_priv(qs->netdev);
2880 struct adapter *adap = pi->adapter;
2881 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2882 unsigned long next_period;
2884 if (__netif_tx_trylock(qs->tx_q)) {
2885 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2886 TX_RECLAIM_TIMER_CHUNK);
2887 __netif_tx_unlock(qs->tx_q);
2890 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2891 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2892 TX_RECLAIM_TIMER_CHUNK);
2893 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2896 next_period = TX_RECLAIM_PERIOD >>
2897 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2898 TX_RECLAIM_TIMER_CHUNK);
2899 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2903 * sge_timer_rx - perform periodic maintenance of an SGE qset
2904 * @data: the SGE queue set to maintain
2906 * a) Replenishes Rx queues that have run out due to memory shortage.
2907 * Normally new Rx buffers are added when existing ones are consumed but
2908 * when out of memory a queue can become empty. We try to add only a few
2909 * buffers here, the queue will be replenished fully as these new buffers
2910 * are used up if memory shortage has subsided.
2912 * b) Return coalesced response queue credits in case a response queue is
2913 * starved.
2916 static void sge_timer_rx(unsigned long data)
2918 spinlock_t *lock;
2919 struct sge_qset *qs = (struct sge_qset *)data;
2920 struct port_info *pi = netdev_priv(qs->netdev);
2921 struct adapter *adap = pi->adapter;
2922 u32 status;
2924 lock = adap->params.rev > 0 ?
2925 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2927 if (!spin_trylock_irq(lock))
2928 goto out;
2930 if (napi_is_scheduled(&qs->napi))
2931 goto unlock;
2933 if (adap->params.rev < 4) {
2934 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2936 if (status & (1 << qs->rspq.cntxt_id)) {
2937 qs->rspq.starved++;
2938 if (qs->rspq.credits) {
2939 qs->rspq.credits--;
2940 refill_rspq(adap, &qs->rspq, 1);
2941 qs->rspq.restarted++;
2942 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2943 1 << qs->rspq.cntxt_id);
2948 if (qs->fl[0].credits < qs->fl[0].size)
2949 __refill_fl(adap, &qs->fl[0]);
2950 if (qs->fl[1].credits < qs->fl[1].size)
2951 __refill_fl(adap, &qs->fl[1]);
2953 unlock:
2954 spin_unlock_irq(lock);
2955 out:
2956 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2960 * t3_update_qset_coalesce - update coalescing settings for a queue set
2961 * @qs: the SGE queue set
2962 * @p: new queue set parameters
2964 * Update the coalescing settings for an SGE queue set. Nothing is done
2965 * if the queue set is not initialized yet.
2967 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2969 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2970 qs->rspq.polling = p->polling;
2971 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2975 * t3_sge_alloc_qset - initialize an SGE queue set
2976 * @adapter: the adapter
2977 * @id: the queue set id
2978 * @nports: how many Ethernet ports will be using this queue set
2979 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2980 * @p: configuration parameters for this queue set
2981 * @ntxq: number of Tx queues for the queue set
2982 * @netdev: net device associated with this queue set
2983 * @netdevq: net device TX queue associated with this queue set
2985 * Allocate resources and initialize an SGE queue set. A queue set
2986 * comprises a response queue, two Rx free-buffer queues, and up to 3
2987 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2988 * queue, offload queue, and control queue.
2990 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2991 int irq_vec_idx, const struct qset_params *p,
2992 int ntxq, struct net_device *dev,
2993 struct netdev_queue *netdevq)
2995 int i, avail, ret = -ENOMEM;
2996 struct sge_qset *q = &adapter->sge.qs[id];
2998 init_qset_cntxt(q, id);
2999 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
3000 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
3002 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
3003 sizeof(struct rx_desc),
3004 sizeof(struct rx_sw_desc),
3005 &q->fl[0].phys_addr, &q->fl[0].sdesc);
3006 if (!q->fl[0].desc)
3007 goto err;
3009 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
3010 sizeof(struct rx_desc),
3011 sizeof(struct rx_sw_desc),
3012 &q->fl[1].phys_addr, &q->fl[1].sdesc);
3013 if (!q->fl[1].desc)
3014 goto err;
3016 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
3017 sizeof(struct rsp_desc), 0,
3018 &q->rspq.phys_addr, NULL);
3019 if (!q->rspq.desc)
3020 goto err;
3022 for (i = 0; i < ntxq; ++i) {
3024 * The control queue always uses immediate data so does not
3025 * need to keep track of any sk_buffs.
3027 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3029 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3030 sizeof(struct tx_desc), sz,
3031 &q->txq[i].phys_addr,
3032 &q->txq[i].sdesc);
3033 if (!q->txq[i].desc)
3034 goto err;
3036 q->txq[i].gen = 1;
3037 q->txq[i].size = p->txq_size[i];
3038 spin_lock_init(&q->txq[i].lock);
3039 skb_queue_head_init(&q->txq[i].sendq);
3042 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3043 (unsigned long)q);
3044 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3045 (unsigned long)q);
3047 q->fl[0].gen = q->fl[1].gen = 1;
3048 q->fl[0].size = p->fl_size;
3049 q->fl[1].size = p->jumbo_size;
3051 q->rspq.gen = 1;
3052 q->rspq.size = p->rspq_size;
3053 spin_lock_init(&q->rspq.lock);
3054 skb_queue_head_init(&q->rspq.rx_queue);
3056 q->txq[TXQ_ETH].stop_thres = nports *
3057 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3059 #if FL0_PG_CHUNK_SIZE > 0
3060 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3061 #else
3062 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3063 #endif
3064 #if FL1_PG_CHUNK_SIZE > 0
3065 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3066 #else
3067 q->fl[1].buf_size = is_offload(adapter) ?
3068 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3069 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3070 #endif
3072 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3073 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3074 q->fl[0].order = FL0_PG_ORDER;
3075 q->fl[1].order = FL1_PG_ORDER;
3076 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3077 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3079 spin_lock_irq(&adapter->sge.reg_lock);
3081 /* FL threshold comparison uses < */
3082 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3083 q->rspq.phys_addr, q->rspq.size,
3084 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3085 if (ret)
3086 goto err_unlock;
3088 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3089 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3090 q->fl[i].phys_addr, q->fl[i].size,
3091 q->fl[i].buf_size - SGE_PG_RSVD,
3092 p->cong_thres, 1, 0);
3093 if (ret)
3094 goto err_unlock;
3097 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3098 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3099 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3100 1, 0);
3101 if (ret)
3102 goto err_unlock;
3104 if (ntxq > 1) {
3105 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3106 USE_GTS, SGE_CNTXT_OFLD, id,
3107 q->txq[TXQ_OFLD].phys_addr,
3108 q->txq[TXQ_OFLD].size, 0, 1, 0);
3109 if (ret)
3110 goto err_unlock;
3113 if (ntxq > 2) {
3114 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3115 SGE_CNTXT_CTRL, id,
3116 q->txq[TXQ_CTRL].phys_addr,
3117 q->txq[TXQ_CTRL].size,
3118 q->txq[TXQ_CTRL].token, 1, 0);
3119 if (ret)
3120 goto err_unlock;
3123 spin_unlock_irq(&adapter->sge.reg_lock);
3125 q->adap = adapter;
3126 q->netdev = dev;
3127 q->tx_q = netdevq;
3128 t3_update_qset_coalesce(q, p);
3130 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3131 GFP_KERNEL | __GFP_COMP);
3132 if (!avail) {
3133 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3134 goto err;
3136 if (avail < q->fl[0].size)
3137 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3138 avail);
3140 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3141 GFP_KERNEL | __GFP_COMP);
3142 if (avail < q->fl[1].size)
3143 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3144 avail);
3145 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3147 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3148 V_NEWTIMER(q->rspq.holdoff_tmr));
3150 return 0;
3152 err_unlock:
3153 spin_unlock_irq(&adapter->sge.reg_lock);
3154 err:
3155 t3_free_qset(adapter, q);
3156 return ret;
3160 * t3_start_sge_timers - start SGE timer call backs
3161 * @adap: the adapter
3163 * Starts each SGE queue set's timer call back
3165 void t3_start_sge_timers(struct adapter *adap)
3167 int i;
3169 for (i = 0; i < SGE_QSETS; ++i) {
3170 struct sge_qset *q = &adap->sge.qs[i];
3172 if (q->tx_reclaim_timer.function)
3173 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3175 if (q->rx_reclaim_timer.function)
3176 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3181 * t3_stop_sge_timers - stop SGE timer call backs
3182 * @adap: the adapter
3184 * Stops each SGE queue set's timer call back
3186 void t3_stop_sge_timers(struct adapter *adap)
3188 int i;
3190 for (i = 0; i < SGE_QSETS; ++i) {
3191 struct sge_qset *q = &adap->sge.qs[i];
3193 if (q->tx_reclaim_timer.function)
3194 del_timer_sync(&q->tx_reclaim_timer);
3195 if (q->rx_reclaim_timer.function)
3196 del_timer_sync(&q->rx_reclaim_timer);
3201 * t3_free_sge_resources - free SGE resources
3202 * @adap: the adapter
3204 * Frees resources used by the SGE queue sets.
3206 void t3_free_sge_resources(struct adapter *adap)
3208 int i;
3210 for (i = 0; i < SGE_QSETS; ++i)
3211 t3_free_qset(adap, &adap->sge.qs[i]);
3215 * t3_sge_start - enable SGE
3216 * @adap: the adapter
3218 * Enables the SGE for DMAs. This is the last step in starting packet
3219 * transfers.
3221 void t3_sge_start(struct adapter *adap)
3223 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3227 * t3_sge_stop - disable SGE operation
3228 * @adap: the adapter
3230 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3231 * from error interrupts) or from normal process context. In the latter
3232 * case it also disables any pending queue restart tasklets. Note that
3233 * if it is called in interrupt context it cannot disable the restart
3234 * tasklets as it cannot wait, however the tasklets will have no effect
3235 * since the doorbells are disabled and the driver will call this again
3236 * later from process context, at which time the tasklets will be stopped
3237 * if they are still running.
3239 void t3_sge_stop(struct adapter *adap)
3241 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3242 if (!in_interrupt()) {
3243 int i;
3245 for (i = 0; i < SGE_QSETS; ++i) {
3246 struct sge_qset *qs = &adap->sge.qs[i];
3248 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3249 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3255 * t3_sge_init - initialize SGE
3256 * @adap: the adapter
3257 * @p: the SGE parameters
3259 * Performs SGE initialization needed every time after a chip reset.
3260 * We do not initialize any of the queue sets here, instead the driver
3261 * top-level must request those individually. We also do not enable DMA
3262 * here, that should be done after the queues have been set up.
3264 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3266 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3268 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3269 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3270 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3271 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3272 #if SGE_NUM_GENBITS == 1
3273 ctrl |= F_EGRGENCTRL;
3274 #endif
3275 if (adap->params.rev > 0) {
3276 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3277 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3279 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3280 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3281 V_LORCQDRBTHRSH(512));
3282 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3283 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3284 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3285 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3286 adap->params.rev < T3_REV_C ? 1000 : 500);
3287 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3288 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3289 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3290 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3291 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3295 * t3_sge_prep - one-time SGE initialization
3296 * @adap: the associated adapter
3297 * @p: SGE parameters
3299 * Performs one-time initialization of SGE SW state. Includes determining
3300 * defaults for the assorted SGE parameters, which admins can change until
3301 * they are used to initialize the SGE.
3303 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3305 int i;
3307 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3310 for (i = 0; i < SGE_QSETS; ++i) {
3311 struct qset_params *q = p->qset + i;
3313 q->polling = adap->params.rev > 0;
3314 q->coalesce_usecs = 5;
3315 q->rspq_size = 1024;
3316 q->fl_size = 1024;
3317 q->jumbo_size = 512;
3318 q->txq_size[TXQ_ETH] = 1024;
3319 q->txq_size[TXQ_OFLD] = 1024;
3320 q->txq_size[TXQ_CTRL] = 256;
3321 q->cong_thres = 0;
3324 spin_lock_init(&adap->sge.reg_lock);
3328 * t3_get_desc - dump an SGE descriptor for debugging purposes
3329 * @qs: the queue set
3330 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3331 * @idx: the descriptor index in the queue
3332 * @data: where to dump the descriptor contents
3334 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3335 * size of the descriptor.
3337 int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
3338 unsigned char *data)
3340 if (qnum >= 6)
3341 return -EINVAL;
3343 if (qnum < 3) {
3344 if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
3345 return -EINVAL;
3346 memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
3347 return sizeof(struct tx_desc);
3350 if (qnum == 3) {
3351 if (!qs->rspq.desc || idx >= qs->rspq.size)
3352 return -EINVAL;
3353 memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
3354 return sizeof(struct rsp_desc);
3357 qnum -= 4;
3358 if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
3359 return -EINVAL;
3360 memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
3361 return sizeof(struct rx_desc);