[POWERPC] Enable tickless idle and high res timers for powerpc
[pohmelfs.git] / arch / powerpc / kernel / time.c
blobd20947cf1735965a418f33f6bebba525c21d2028
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #include <asm/firmware.h>
69 #ifdef CONFIG_PPC_ISERIES
70 #include <asm/iseries/it_lp_queue.h>
71 #include <asm/iseries/hv_call_xm.h>
72 #endif
74 /* powerpc clocksource/clockevent code */
76 #include <linux/clockchips.h>
77 #include <linux/clocksource.h>
79 static cycle_t rtc_read(void);
80 static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
85 .shift = 22,
86 .mult = 0, /* To be filled in */
87 .read = rtc_read,
90 static cycle_t timebase_read(void);
91 static struct clocksource clocksource_timebase = {
92 .name = "timebase",
93 .rating = 400,
94 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
95 .mask = CLOCKSOURCE_MASK(64),
96 .shift = 22,
97 .mult = 0, /* To be filled in */
98 .read = timebase_read,
101 #define DECREMENTER_MAX 0x7fffffff
103 static int decrementer_set_next_event(unsigned long evt,
104 struct clock_event_device *dev);
105 static void decrementer_set_mode(enum clock_event_mode mode,
106 struct clock_event_device *dev);
108 static struct clock_event_device decrementer_clockevent = {
109 .name = "decrementer",
110 .rating = 200,
111 .shift = 32,
112 .mult = 0, /* To be filled in */
113 .irq = 0,
114 .set_next_event = decrementer_set_next_event,
115 .set_mode = decrementer_set_mode,
116 .features = CLOCK_EVT_FEAT_ONESHOT,
119 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
120 void init_decrementer_clockevent(void);
122 #ifdef CONFIG_PPC_ISERIES
123 static unsigned long __initdata iSeries_recal_titan;
124 static signed long __initdata iSeries_recal_tb;
126 /* Forward declaration is only needed for iSereis compiles */
127 void __init clocksource_init(void);
128 #endif
130 #define XSEC_PER_SEC (1024*1024)
132 #ifdef CONFIG_PPC64
133 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
134 #else
135 /* compute ((xsec << 12) * max) >> 32 */
136 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
137 #endif
139 unsigned long tb_ticks_per_jiffy;
140 unsigned long tb_ticks_per_usec = 100; /* sane default */
141 EXPORT_SYMBOL(tb_ticks_per_usec);
142 unsigned long tb_ticks_per_sec;
143 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
144 u64 tb_to_xs;
145 unsigned tb_to_us;
147 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
148 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
149 u64 ticklen_to_xs; /* 0.64 fraction */
151 /* If last_tick_len corresponds to about 1/HZ seconds, then
152 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
153 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
155 DEFINE_SPINLOCK(rtc_lock);
156 EXPORT_SYMBOL_GPL(rtc_lock);
158 static u64 tb_to_ns_scale __read_mostly;
159 static unsigned tb_to_ns_shift __read_mostly;
160 static unsigned long boot_tb __read_mostly;
162 struct gettimeofday_struct do_gtod;
164 extern struct timezone sys_tz;
165 static long timezone_offset;
167 unsigned long ppc_proc_freq;
168 EXPORT_SYMBOL(ppc_proc_freq);
169 unsigned long ppc_tb_freq;
171 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
172 static DEFINE_PER_CPU(u64, last_jiffy);
174 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
176 * Factors for converting from cputime_t (timebase ticks) to
177 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
178 * These are all stored as 0.64 fixed-point binary fractions.
180 u64 __cputime_jiffies_factor;
181 EXPORT_SYMBOL(__cputime_jiffies_factor);
182 u64 __cputime_msec_factor;
183 EXPORT_SYMBOL(__cputime_msec_factor);
184 u64 __cputime_sec_factor;
185 EXPORT_SYMBOL(__cputime_sec_factor);
186 u64 __cputime_clockt_factor;
187 EXPORT_SYMBOL(__cputime_clockt_factor);
189 static void calc_cputime_factors(void)
191 struct div_result res;
193 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
194 __cputime_jiffies_factor = res.result_low;
195 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
196 __cputime_msec_factor = res.result_low;
197 div128_by_32(1, 0, tb_ticks_per_sec, &res);
198 __cputime_sec_factor = res.result_low;
199 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
200 __cputime_clockt_factor = res.result_low;
204 * Read the PURR on systems that have it, otherwise the timebase.
206 static u64 read_purr(void)
208 if (cpu_has_feature(CPU_FTR_PURR))
209 return mfspr(SPRN_PURR);
210 return mftb();
214 * Account time for a transition between system, hard irq
215 * or soft irq state.
217 void account_system_vtime(struct task_struct *tsk)
219 u64 now, delta;
220 unsigned long flags;
222 local_irq_save(flags);
223 now = read_purr();
224 delta = now - get_paca()->startpurr;
225 get_paca()->startpurr = now;
226 if (!in_interrupt()) {
227 delta += get_paca()->system_time;
228 get_paca()->system_time = 0;
230 account_system_time(tsk, 0, delta);
231 local_irq_restore(flags);
235 * Transfer the user and system times accumulated in the paca
236 * by the exception entry and exit code to the generic process
237 * user and system time records.
238 * Must be called with interrupts disabled.
240 void account_process_vtime(struct task_struct *tsk)
242 cputime_t utime;
244 utime = get_paca()->user_time;
245 get_paca()->user_time = 0;
246 account_user_time(tsk, utime);
249 static void account_process_time(struct pt_regs *regs)
251 int cpu = smp_processor_id();
253 account_process_vtime(current);
254 run_local_timers();
255 if (rcu_pending(cpu))
256 rcu_check_callbacks(cpu, user_mode(regs));
257 scheduler_tick();
258 run_posix_cpu_timers(current);
262 * Stuff for accounting stolen time.
264 struct cpu_purr_data {
265 int initialized; /* thread is running */
266 u64 tb; /* last TB value read */
267 u64 purr; /* last PURR value read */
271 * Each entry in the cpu_purr_data array is manipulated only by its
272 * "owner" cpu -- usually in the timer interrupt but also occasionally
273 * in process context for cpu online. As long as cpus do not touch
274 * each others' cpu_purr_data, disabling local interrupts is
275 * sufficient to serialize accesses.
277 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
279 static void snapshot_tb_and_purr(void *data)
281 unsigned long flags;
282 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
284 local_irq_save(flags);
285 p->tb = get_tb_or_rtc();
286 p->purr = mfspr(SPRN_PURR);
287 wmb();
288 p->initialized = 1;
289 local_irq_restore(flags);
293 * Called during boot when all cpus have come up.
295 void snapshot_timebases(void)
297 if (!cpu_has_feature(CPU_FTR_PURR))
298 return;
299 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
303 * Must be called with interrupts disabled.
305 void calculate_steal_time(void)
307 u64 tb, purr;
308 s64 stolen;
309 struct cpu_purr_data *pme;
311 if (!cpu_has_feature(CPU_FTR_PURR))
312 return;
313 pme = &per_cpu(cpu_purr_data, smp_processor_id());
314 if (!pme->initialized)
315 return; /* this can happen in early boot */
316 tb = mftb();
317 purr = mfspr(SPRN_PURR);
318 stolen = (tb - pme->tb) - (purr - pme->purr);
319 if (stolen > 0)
320 account_steal_time(current, stolen);
321 pme->tb = tb;
322 pme->purr = purr;
325 #ifdef CONFIG_PPC_SPLPAR
327 * Must be called before the cpu is added to the online map when
328 * a cpu is being brought up at runtime.
330 static void snapshot_purr(void)
332 struct cpu_purr_data *pme;
333 unsigned long flags;
335 if (!cpu_has_feature(CPU_FTR_PURR))
336 return;
337 local_irq_save(flags);
338 pme = &per_cpu(cpu_purr_data, smp_processor_id());
339 pme->tb = mftb();
340 pme->purr = mfspr(SPRN_PURR);
341 pme->initialized = 1;
342 local_irq_restore(flags);
345 #endif /* CONFIG_PPC_SPLPAR */
347 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
348 #define calc_cputime_factors()
349 #define account_process_time(regs) update_process_times(user_mode(regs))
350 #define calculate_steal_time() do { } while (0)
351 #endif
353 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
354 #define snapshot_purr() do { } while (0)
355 #endif
358 * Called when a cpu comes up after the system has finished booting,
359 * i.e. as a result of a hotplug cpu action.
361 void snapshot_timebase(void)
363 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
364 snapshot_purr();
367 void __delay(unsigned long loops)
369 unsigned long start;
370 int diff;
372 if (__USE_RTC()) {
373 start = get_rtcl();
374 do {
375 /* the RTCL register wraps at 1000000000 */
376 diff = get_rtcl() - start;
377 if (diff < 0)
378 diff += 1000000000;
379 } while (diff < loops);
380 } else {
381 start = get_tbl();
382 while (get_tbl() - start < loops)
383 HMT_low();
384 HMT_medium();
387 EXPORT_SYMBOL(__delay);
389 void udelay(unsigned long usecs)
391 __delay(tb_ticks_per_usec * usecs);
393 EXPORT_SYMBOL(udelay);
397 * There are two copies of tb_to_xs and stamp_xsec so that no
398 * lock is needed to access and use these values in
399 * do_gettimeofday. We alternate the copies and as long as a
400 * reasonable time elapses between changes, there will never
401 * be inconsistent values. ntpd has a minimum of one minute
402 * between updates.
404 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
405 u64 new_tb_to_xs)
407 unsigned temp_idx;
408 struct gettimeofday_vars *temp_varp;
410 temp_idx = (do_gtod.var_idx == 0);
411 temp_varp = &do_gtod.vars[temp_idx];
413 temp_varp->tb_to_xs = new_tb_to_xs;
414 temp_varp->tb_orig_stamp = new_tb_stamp;
415 temp_varp->stamp_xsec = new_stamp_xsec;
416 smp_mb();
417 do_gtod.varp = temp_varp;
418 do_gtod.var_idx = temp_idx;
421 * tb_update_count is used to allow the userspace gettimeofday code
422 * to assure itself that it sees a consistent view of the tb_to_xs and
423 * stamp_xsec variables. It reads the tb_update_count, then reads
424 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
425 * the two values of tb_update_count match and are even then the
426 * tb_to_xs and stamp_xsec values are consistent. If not, then it
427 * loops back and reads them again until this criteria is met.
428 * We expect the caller to have done the first increment of
429 * vdso_data->tb_update_count already.
431 vdso_data->tb_orig_stamp = new_tb_stamp;
432 vdso_data->stamp_xsec = new_stamp_xsec;
433 vdso_data->tb_to_xs = new_tb_to_xs;
434 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
435 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
436 smp_wmb();
437 ++(vdso_data->tb_update_count);
440 #ifdef CONFIG_SMP
441 unsigned long profile_pc(struct pt_regs *regs)
443 unsigned long pc = instruction_pointer(regs);
445 if (in_lock_functions(pc))
446 return regs->link;
448 return pc;
450 EXPORT_SYMBOL(profile_pc);
451 #endif
453 #ifdef CONFIG_PPC_ISERIES
456 * This function recalibrates the timebase based on the 49-bit time-of-day
457 * value in the Titan chip. The Titan is much more accurate than the value
458 * returned by the service processor for the timebase frequency.
461 static int __init iSeries_tb_recal(void)
463 struct div_result divres;
464 unsigned long titan, tb;
466 /* Make sure we only run on iSeries */
467 if (!firmware_has_feature(FW_FEATURE_ISERIES))
468 return -ENODEV;
470 tb = get_tb();
471 titan = HvCallXm_loadTod();
472 if ( iSeries_recal_titan ) {
473 unsigned long tb_ticks = tb - iSeries_recal_tb;
474 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
475 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
476 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
477 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
478 char sign = '+';
479 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
480 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
482 if ( tick_diff < 0 ) {
483 tick_diff = -tick_diff;
484 sign = '-';
486 if ( tick_diff ) {
487 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
488 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
489 new_tb_ticks_per_jiffy, sign, tick_diff );
490 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
491 tb_ticks_per_sec = new_tb_ticks_per_sec;
492 calc_cputime_factors();
493 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
494 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
495 tb_to_xs = divres.result_low;
496 do_gtod.varp->tb_to_xs = tb_to_xs;
497 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
498 vdso_data->tb_to_xs = tb_to_xs;
500 else {
501 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
502 " new tb_ticks_per_jiffy = %lu\n"
503 " old tb_ticks_per_jiffy = %lu\n",
504 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
508 iSeries_recal_titan = titan;
509 iSeries_recal_tb = tb;
511 /* Called here as now we know accurate values for the timebase */
512 clocksource_init();
513 return 0;
515 late_initcall(iSeries_tb_recal);
517 /* Called from platform early init */
518 void __init iSeries_time_init_early(void)
520 iSeries_recal_tb = get_tb();
521 iSeries_recal_titan = HvCallXm_loadTod();
523 #endif /* CONFIG_PPC_ISERIES */
526 * For iSeries shared processors, we have to let the hypervisor
527 * set the hardware decrementer. We set a virtual decrementer
528 * in the lppaca and call the hypervisor if the virtual
529 * decrementer is less than the current value in the hardware
530 * decrementer. (almost always the new decrementer value will
531 * be greater than the current hardware decementer so the hypervisor
532 * call will not be needed)
536 * timer_interrupt - gets called when the decrementer overflows,
537 * with interrupts disabled.
539 void timer_interrupt(struct pt_regs * regs)
541 struct pt_regs *old_regs;
542 int cpu = smp_processor_id();
543 struct clock_event_device *evt = &per_cpu(decrementers, cpu);
545 /* Ensure a positive value is written to the decrementer, or else
546 * some CPUs will continuue to take decrementer exceptions */
547 set_dec(DECREMENTER_MAX);
549 #ifdef CONFIG_PPC32
550 if (atomic_read(&ppc_n_lost_interrupts) != 0)
551 do_IRQ(regs);
552 #endif
554 old_regs = set_irq_regs(regs);
555 irq_enter();
557 calculate_steal_time();
559 #ifdef CONFIG_PPC_ISERIES
560 if (firmware_has_feature(FW_FEATURE_ISERIES))
561 get_lppaca()->int_dword.fields.decr_int = 0;
562 #endif
565 * We cannot disable the decrementer, so in the period
566 * between this cpu's being marked offline in cpu_online_map
567 * and calling stop-self, it is taking timer interrupts.
568 * Avoid calling into the scheduler rebalancing code if this
569 * is the case.
571 if (!cpu_is_offline(cpu))
572 account_process_time(regs);
574 if (evt->event_handler)
575 evt->event_handler(evt);
576 else
577 evt->set_next_event(DECREMENTER_MAX, evt);
579 #ifdef CONFIG_PPC_ISERIES
580 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
581 process_hvlpevents();
582 #endif
584 #ifdef CONFIG_PPC64
585 /* collect purr register values often, for accurate calculations */
586 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
587 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
588 cu->current_tb = mfspr(SPRN_PURR);
590 #endif
592 irq_exit();
593 set_irq_regs(old_regs);
596 void wakeup_decrementer(void)
598 unsigned long ticks;
601 * The timebase gets saved on sleep and restored on wakeup,
602 * so all we need to do is to reset the decrementer.
604 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
605 if (ticks < tb_ticks_per_jiffy)
606 ticks = tb_ticks_per_jiffy - ticks;
607 else
608 ticks = 1;
609 set_dec(ticks);
612 #ifdef CONFIG_SMP
613 void __init smp_space_timers(unsigned int max_cpus)
615 int i;
616 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
618 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
619 previous_tb -= tb_ticks_per_jiffy;
621 for_each_possible_cpu(i) {
622 if (i == boot_cpuid)
623 continue;
624 per_cpu(last_jiffy, i) = previous_tb;
627 #endif
630 * Scheduler clock - returns current time in nanosec units.
632 * Note: mulhdu(a, b) (multiply high double unsigned) returns
633 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
634 * are 64-bit unsigned numbers.
636 unsigned long long sched_clock(void)
638 if (__USE_RTC())
639 return get_rtc();
640 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
643 static int __init get_freq(char *name, int cells, unsigned long *val)
645 struct device_node *cpu;
646 const unsigned int *fp;
647 int found = 0;
649 /* The cpu node should have timebase and clock frequency properties */
650 cpu = of_find_node_by_type(NULL, "cpu");
652 if (cpu) {
653 fp = of_get_property(cpu, name, NULL);
654 if (fp) {
655 found = 1;
656 *val = of_read_ulong(fp, cells);
659 of_node_put(cpu);
662 return found;
665 void __init generic_calibrate_decr(void)
667 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
669 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
670 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
672 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
673 "(not found)\n");
676 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
678 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
679 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
681 printk(KERN_ERR "WARNING: Estimating processor frequency "
682 "(not found)\n");
685 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
686 /* Set the time base to zero */
687 mtspr(SPRN_TBWL, 0);
688 mtspr(SPRN_TBWU, 0);
690 /* Clear any pending timer interrupts */
691 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
693 /* Enable decrementer interrupt */
694 mtspr(SPRN_TCR, TCR_DIE);
695 #endif
698 int update_persistent_clock(struct timespec now)
700 struct rtc_time tm;
702 if (!ppc_md.set_rtc_time)
703 return 0;
705 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
706 tm.tm_year -= 1900;
707 tm.tm_mon -= 1;
709 return ppc_md.set_rtc_time(&tm);
712 unsigned long read_persistent_clock(void)
714 struct rtc_time tm;
715 static int first = 1;
717 /* XXX this is a litle fragile but will work okay in the short term */
718 if (first) {
719 first = 0;
720 if (ppc_md.time_init)
721 timezone_offset = ppc_md.time_init();
723 /* get_boot_time() isn't guaranteed to be safe to call late */
724 if (ppc_md.get_boot_time)
725 return ppc_md.get_boot_time() -timezone_offset;
727 if (!ppc_md.get_rtc_time)
728 return 0;
729 ppc_md.get_rtc_time(&tm);
730 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
731 tm.tm_hour, tm.tm_min, tm.tm_sec);
734 /* clocksource code */
735 static cycle_t rtc_read(void)
737 return (cycle_t)get_rtc();
740 static cycle_t timebase_read(void)
742 return (cycle_t)get_tb();
745 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
747 u64 t2x, stamp_xsec;
749 if (clock != &clocksource_timebase)
750 return;
752 /* Make userspace gettimeofday spin until we're done. */
753 ++vdso_data->tb_update_count;
754 smp_mb();
756 /* XXX this assumes clock->shift == 22 */
757 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
758 t2x = (u64) clock->mult * 4611686018ULL;
759 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
760 do_div(stamp_xsec, 1000000000);
761 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
762 update_gtod(clock->cycle_last, stamp_xsec, t2x);
765 void update_vsyscall_tz(void)
767 /* Make userspace gettimeofday spin until we're done. */
768 ++vdso_data->tb_update_count;
769 smp_mb();
770 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
771 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
772 smp_mb();
773 ++vdso_data->tb_update_count;
776 void __init clocksource_init(void)
778 struct clocksource *clock;
780 if (__USE_RTC())
781 clock = &clocksource_rtc;
782 else
783 clock = &clocksource_timebase;
785 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
787 if (clocksource_register(clock)) {
788 printk(KERN_ERR "clocksource: %s is already registered\n",
789 clock->name);
790 return;
793 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
794 clock->name, clock->mult, clock->shift);
797 static int decrementer_set_next_event(unsigned long evt,
798 struct clock_event_device *dev)
800 set_dec(evt);
801 return 0;
804 static void decrementer_set_mode(enum clock_event_mode mode,
805 struct clock_event_device *dev)
807 if (mode != CLOCK_EVT_MODE_ONESHOT)
808 decrementer_set_next_event(DECREMENTER_MAX, dev);
811 static void register_decrementer_clockevent(int cpu)
813 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
815 *dec = decrementer_clockevent;
816 dec->cpumask = cpumask_of_cpu(cpu);
818 printk(KERN_ERR "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
819 dec->name, dec->mult, dec->shift, cpu);
821 clockevents_register_device(dec);
824 void init_decrementer_clockevent(void)
826 int cpu = smp_processor_id();
828 decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
829 decrementer_clockevent.shift);
830 decrementer_clockevent.max_delta_ns =
831 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
832 decrementer_clockevent.min_delta_ns = 1000;
834 register_decrementer_clockevent(cpu);
837 void secondary_cpu_time_init(void)
839 /* FIME: Should make unrelatred change to move snapshot_timebase
840 * call here ! */
841 register_decrementer_clockevent(smp_processor_id());
844 /* This function is only called on the boot processor */
845 void __init time_init(void)
847 unsigned long flags;
848 struct div_result res;
849 u64 scale, x;
850 unsigned shift;
852 if (__USE_RTC()) {
853 /* 601 processor: dec counts down by 128 every 128ns */
854 ppc_tb_freq = 1000000000;
855 tb_last_jiffy = get_rtcl();
856 } else {
857 /* Normal PowerPC with timebase register */
858 ppc_md.calibrate_decr();
859 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
860 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
861 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
862 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
863 tb_last_jiffy = get_tb();
866 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
867 tb_ticks_per_sec = ppc_tb_freq;
868 tb_ticks_per_usec = ppc_tb_freq / 1000000;
869 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
870 calc_cputime_factors();
873 * Calculate the length of each tick in ns. It will not be
874 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
875 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
876 * rounded up.
878 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
879 do_div(x, ppc_tb_freq);
880 tick_nsec = x;
881 last_tick_len = x << TICKLEN_SCALE;
884 * Compute ticklen_to_xs, which is a factor which gets multiplied
885 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
886 * It is computed as:
887 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
888 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
889 * which turns out to be N = 51 - SHIFT_HZ.
890 * This gives the result as a 0.64 fixed-point fraction.
891 * That value is reduced by an offset amounting to 1 xsec per
892 * 2^31 timebase ticks to avoid problems with time going backwards
893 * by 1 xsec when we do timer_recalc_offset due to losing the
894 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
895 * since there are 2^20 xsec in a second.
897 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
898 tb_ticks_per_jiffy << SHIFT_HZ, &res);
899 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
900 ticklen_to_xs = res.result_low;
902 /* Compute tb_to_xs from tick_nsec */
903 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
906 * Compute scale factor for sched_clock.
907 * The calibrate_decr() function has set tb_ticks_per_sec,
908 * which is the timebase frequency.
909 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
910 * the 128-bit result as a 64.64 fixed-point number.
911 * We then shift that number right until it is less than 1.0,
912 * giving us the scale factor and shift count to use in
913 * sched_clock().
915 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
916 scale = res.result_low;
917 for (shift = 0; res.result_high != 0; ++shift) {
918 scale = (scale >> 1) | (res.result_high << 63);
919 res.result_high >>= 1;
921 tb_to_ns_scale = scale;
922 tb_to_ns_shift = shift;
923 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
924 boot_tb = get_tb_or_rtc();
926 write_seqlock_irqsave(&xtime_lock, flags);
928 /* If platform provided a timezone (pmac), we correct the time */
929 if (timezone_offset) {
930 sys_tz.tz_minuteswest = -timezone_offset / 60;
931 sys_tz.tz_dsttime = 0;
934 do_gtod.varp = &do_gtod.vars[0];
935 do_gtod.var_idx = 0;
936 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
937 __get_cpu_var(last_jiffy) = tb_last_jiffy;
938 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
939 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
940 do_gtod.varp->tb_to_xs = tb_to_xs;
941 do_gtod.tb_to_us = tb_to_us;
943 vdso_data->tb_orig_stamp = tb_last_jiffy;
944 vdso_data->tb_update_count = 0;
945 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
946 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
947 vdso_data->tb_to_xs = tb_to_xs;
949 time_freq = 0;
951 write_sequnlock_irqrestore(&xtime_lock, flags);
953 /* Register the clocksource, if we're not running on iSeries */
954 if (!firmware_has_feature(FW_FEATURE_ISERIES))
955 clocksource_init();
957 init_decrementer_clockevent();
961 #define FEBRUARY 2
962 #define STARTOFTIME 1970
963 #define SECDAY 86400L
964 #define SECYR (SECDAY * 365)
965 #define leapyear(year) ((year) % 4 == 0 && \
966 ((year) % 100 != 0 || (year) % 400 == 0))
967 #define days_in_year(a) (leapyear(a) ? 366 : 365)
968 #define days_in_month(a) (month_days[(a) - 1])
970 static int month_days[12] = {
971 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
975 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
977 void GregorianDay(struct rtc_time * tm)
979 int leapsToDate;
980 int lastYear;
981 int day;
982 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
984 lastYear = tm->tm_year - 1;
987 * Number of leap corrections to apply up to end of last year
989 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
992 * This year is a leap year if it is divisible by 4 except when it is
993 * divisible by 100 unless it is divisible by 400
995 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
997 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
999 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1000 tm->tm_mday;
1002 tm->tm_wday = day % 7;
1005 void to_tm(int tim, struct rtc_time * tm)
1007 register int i;
1008 register long hms, day;
1010 day = tim / SECDAY;
1011 hms = tim % SECDAY;
1013 /* Hours, minutes, seconds are easy */
1014 tm->tm_hour = hms / 3600;
1015 tm->tm_min = (hms % 3600) / 60;
1016 tm->tm_sec = (hms % 3600) % 60;
1018 /* Number of years in days */
1019 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1020 day -= days_in_year(i);
1021 tm->tm_year = i;
1023 /* Number of months in days left */
1024 if (leapyear(tm->tm_year))
1025 days_in_month(FEBRUARY) = 29;
1026 for (i = 1; day >= days_in_month(i); i++)
1027 day -= days_in_month(i);
1028 days_in_month(FEBRUARY) = 28;
1029 tm->tm_mon = i;
1031 /* Days are what is left over (+1) from all that. */
1032 tm->tm_mday = day + 1;
1035 * Determine the day of week
1037 GregorianDay(tm);
1040 /* Auxiliary function to compute scaling factors */
1041 /* Actually the choice of a timebase running at 1/4 the of the bus
1042 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1043 * It makes this computation very precise (27-28 bits typically) which
1044 * is optimistic considering the stability of most processor clock
1045 * oscillators and the precision with which the timebase frequency
1046 * is measured but does not harm.
1048 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1050 unsigned mlt=0, tmp, err;
1051 /* No concern for performance, it's done once: use a stupid
1052 * but safe and compact method to find the multiplier.
1055 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1056 if (mulhwu(inscale, mlt|tmp) < outscale)
1057 mlt |= tmp;
1060 /* We might still be off by 1 for the best approximation.
1061 * A side effect of this is that if outscale is too large
1062 * the returned value will be zero.
1063 * Many corner cases have been checked and seem to work,
1064 * some might have been forgotten in the test however.
1067 err = inscale * (mlt+1);
1068 if (err <= inscale/2)
1069 mlt++;
1070 return mlt;
1074 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1075 * result.
1077 void div128_by_32(u64 dividend_high, u64 dividend_low,
1078 unsigned divisor, struct div_result *dr)
1080 unsigned long a, b, c, d;
1081 unsigned long w, x, y, z;
1082 u64 ra, rb, rc;
1084 a = dividend_high >> 32;
1085 b = dividend_high & 0xffffffff;
1086 c = dividend_low >> 32;
1087 d = dividend_low & 0xffffffff;
1089 w = a / divisor;
1090 ra = ((u64)(a - (w * divisor)) << 32) + b;
1092 rb = ((u64) do_div(ra, divisor) << 32) + c;
1093 x = ra;
1095 rc = ((u64) do_div(rb, divisor) << 32) + d;
1096 y = rb;
1098 do_div(rc, divisor);
1099 z = rc;
1101 dr->result_high = ((u64)w << 32) + x;
1102 dr->result_low = ((u64)y << 32) + z;