[POWERPC] Make instruction dumping work in real mode
[pohmelfs.git] / arch / powerpc / kernel / process.c
blob588c0cb8115e5152c4c658df2bd720cf7972b6e2
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
51 extern unsigned long _get_SP(void);
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
63 void flush_fp_to_thread(struct task_struct *tsk)
65 if (tsk->thread.regs) {
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
88 preempt_enable();
92 void enable_kernel_fp(void)
94 WARN_ON(preemptible());
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
105 EXPORT_SYMBOL(enable_kernel_fp);
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115 return 1;
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
121 WARN_ON(preemptible());
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
132 EXPORT_SYMBOL(enable_kernel_altivec);
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
138 void flush_altivec_to_thread(struct task_struct *tsk)
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
148 preempt_enable();
152 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 flush_altivec_to_thread(current);
155 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
156 return 1;
158 #endif /* CONFIG_ALTIVEC */
160 #ifdef CONFIG_SPE
162 void enable_kernel_spe(void)
164 WARN_ON(preemptible());
166 #ifdef CONFIG_SMP
167 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
168 giveup_spe(current);
169 else
170 giveup_spe(NULL); /* just enable SPE for kernel - force */
171 #else
172 giveup_spe(last_task_used_spe);
173 #endif /* __SMP __ */
175 EXPORT_SYMBOL(enable_kernel_spe);
177 void flush_spe_to_thread(struct task_struct *tsk)
179 if (tsk->thread.regs) {
180 preempt_disable();
181 if (tsk->thread.regs->msr & MSR_SPE) {
182 #ifdef CONFIG_SMP
183 BUG_ON(tsk != current);
184 #endif
185 giveup_spe(tsk);
187 preempt_enable();
191 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 flush_spe_to_thread(current);
194 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
195 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
196 return 1;
198 #endif /* CONFIG_SPE */
200 #ifndef CONFIG_SMP
202 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
203 * and the current task has some state, discard it.
205 void discard_lazy_cpu_state(void)
207 preempt_disable();
208 if (last_task_used_math == current)
209 last_task_used_math = NULL;
210 #ifdef CONFIG_ALTIVEC
211 if (last_task_used_altivec == current)
212 last_task_used_altivec = NULL;
213 #endif /* CONFIG_ALTIVEC */
214 #ifdef CONFIG_SPE
215 if (last_task_used_spe == current)
216 last_task_used_spe = NULL;
217 #endif
218 preempt_enable();
220 #endif /* CONFIG_SMP */
222 int set_dabr(unsigned long dabr)
224 #ifdef CONFIG_PPC_MERGE /* XXX for now */
225 if (ppc_md.set_dabr)
226 return ppc_md.set_dabr(dabr);
227 #endif
229 /* XXX should we have a CPU_FTR_HAS_DABR ? */
230 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
231 mtspr(SPRN_DABR, dabr);
232 #endif
233 return 0;
236 #ifdef CONFIG_PPC64
237 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
238 #endif
240 static DEFINE_PER_CPU(unsigned long, current_dabr);
242 struct task_struct *__switch_to(struct task_struct *prev,
243 struct task_struct *new)
245 struct thread_struct *new_thread, *old_thread;
246 unsigned long flags;
247 struct task_struct *last;
249 #ifdef CONFIG_SMP
250 /* avoid complexity of lazy save/restore of fpu
251 * by just saving it every time we switch out if
252 * this task used the fpu during the last quantum.
254 * If it tries to use the fpu again, it'll trap and
255 * reload its fp regs. So we don't have to do a restore
256 * every switch, just a save.
257 * -- Cort
259 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
260 giveup_fpu(prev);
261 #ifdef CONFIG_ALTIVEC
263 * If the previous thread used altivec in the last quantum
264 * (thus changing altivec regs) then save them.
265 * We used to check the VRSAVE register but not all apps
266 * set it, so we don't rely on it now (and in fact we need
267 * to save & restore VSCR even if VRSAVE == 0). -- paulus
269 * On SMP we always save/restore altivec regs just to avoid the
270 * complexity of changing processors.
271 * -- Cort
273 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
274 giveup_altivec(prev);
275 #endif /* CONFIG_ALTIVEC */
276 #ifdef CONFIG_SPE
278 * If the previous thread used spe in the last quantum
279 * (thus changing spe regs) then save them.
281 * On SMP we always save/restore spe regs just to avoid the
282 * complexity of changing processors.
284 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
285 giveup_spe(prev);
286 #endif /* CONFIG_SPE */
288 #else /* CONFIG_SMP */
289 #ifdef CONFIG_ALTIVEC
290 /* Avoid the trap. On smp this this never happens since
291 * we don't set last_task_used_altivec -- Cort
293 if (new->thread.regs && last_task_used_altivec == new)
294 new->thread.regs->msr |= MSR_VEC;
295 #endif /* CONFIG_ALTIVEC */
296 #ifdef CONFIG_SPE
297 /* Avoid the trap. On smp this this never happens since
298 * we don't set last_task_used_spe
300 if (new->thread.regs && last_task_used_spe == new)
301 new->thread.regs->msr |= MSR_SPE;
302 #endif /* CONFIG_SPE */
304 #endif /* CONFIG_SMP */
306 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
307 set_dabr(new->thread.dabr);
308 __get_cpu_var(current_dabr) = new->thread.dabr;
311 new_thread = &new->thread;
312 old_thread = &current->thread;
314 #ifdef CONFIG_PPC64
316 * Collect processor utilization data per process
318 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
319 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
320 long unsigned start_tb, current_tb;
321 start_tb = old_thread->start_tb;
322 cu->current_tb = current_tb = mfspr(SPRN_PURR);
323 old_thread->accum_tb += (current_tb - start_tb);
324 new_thread->start_tb = current_tb;
326 #endif
328 local_irq_save(flags);
330 account_system_vtime(current);
331 account_process_vtime(current);
332 calculate_steal_time();
334 last = _switch(old_thread, new_thread);
336 local_irq_restore(flags);
338 return last;
341 static int instructions_to_print = 16;
343 static void show_instructions(struct pt_regs *regs)
345 int i;
346 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
347 sizeof(int));
349 printk("Instruction dump:");
351 for (i = 0; i < instructions_to_print; i++) {
352 int instr;
354 if (!(i % 8))
355 printk("\n");
357 #if !defined(CONFIG_BOOKE)
358 /* If executing with the IMMU off, adjust pc rather
359 * than print XXXXXXXX.
361 if (!(regs->msr & MSR_IR))
362 pc = (unsigned long)phys_to_virt(pc);
363 #endif
365 /* We use __get_user here *only* to avoid an OOPS on a
366 * bad address because the pc *should* only be a
367 * kernel address.
369 if (!__kernel_text_address(pc) ||
370 __get_user(instr, (unsigned int __user *)pc)) {
371 printk("XXXXXXXX ");
372 } else {
373 if (regs->nip == pc)
374 printk("<%08x> ", instr);
375 else
376 printk("%08x ", instr);
379 pc += sizeof(int);
382 printk("\n");
385 static struct regbit {
386 unsigned long bit;
387 const char *name;
388 } msr_bits[] = {
389 {MSR_EE, "EE"},
390 {MSR_PR, "PR"},
391 {MSR_FP, "FP"},
392 {MSR_ME, "ME"},
393 {MSR_IR, "IR"},
394 {MSR_DR, "DR"},
395 {0, NULL}
398 static void printbits(unsigned long val, struct regbit *bits)
400 const char *sep = "";
402 printk("<");
403 for (; bits->bit; ++bits)
404 if (val & bits->bit) {
405 printk("%s%s", sep, bits->name);
406 sep = ",";
408 printk(">");
411 #ifdef CONFIG_PPC64
412 #define REG "%016lx"
413 #define REGS_PER_LINE 4
414 #define LAST_VOLATILE 13
415 #else
416 #define REG "%08lx"
417 #define REGS_PER_LINE 8
418 #define LAST_VOLATILE 12
419 #endif
421 void show_regs(struct pt_regs * regs)
423 int i, trap;
425 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
426 regs->nip, regs->link, regs->ctr);
427 printk("REGS: %p TRAP: %04lx %s (%s)\n",
428 regs, regs->trap, print_tainted(), init_utsname()->release);
429 printk("MSR: "REG" ", regs->msr);
430 printbits(regs->msr, msr_bits);
431 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
432 trap = TRAP(regs);
433 if (trap == 0x300 || trap == 0x600)
434 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
435 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
436 #else
437 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
438 #endif
439 printk("TASK = %p[%d] '%s' THREAD: %p",
440 current, current->pid, current->comm, task_thread_info(current));
442 #ifdef CONFIG_SMP
443 printk(" CPU: %d", smp_processor_id());
444 #endif /* CONFIG_SMP */
446 for (i = 0; i < 32; i++) {
447 if ((i % REGS_PER_LINE) == 0)
448 printk("\n" KERN_INFO "GPR%02d: ", i);
449 printk(REG " ", regs->gpr[i]);
450 if (i == LAST_VOLATILE && !FULL_REGS(regs))
451 break;
453 printk("\n");
454 #ifdef CONFIG_KALLSYMS
456 * Lookup NIP late so we have the best change of getting the
457 * above info out without failing
459 printk("NIP ["REG"] ", regs->nip);
460 print_symbol("%s\n", regs->nip);
461 printk("LR ["REG"] ", regs->link);
462 print_symbol("%s\n", regs->link);
463 #endif
464 show_stack(current, (unsigned long *) regs->gpr[1]);
465 if (!user_mode(regs))
466 show_instructions(regs);
469 void exit_thread(void)
471 discard_lazy_cpu_state();
474 void flush_thread(void)
476 #ifdef CONFIG_PPC64
477 struct thread_info *t = current_thread_info();
479 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
480 clear_ti_thread_flag(t, TIF_ABI_PENDING);
481 if (test_ti_thread_flag(t, TIF_32BIT))
482 clear_ti_thread_flag(t, TIF_32BIT);
483 else
484 set_ti_thread_flag(t, TIF_32BIT);
486 #endif
488 discard_lazy_cpu_state();
490 if (current->thread.dabr) {
491 current->thread.dabr = 0;
492 set_dabr(0);
496 void
497 release_thread(struct task_struct *t)
502 * This gets called before we allocate a new thread and copy
503 * the current task into it.
505 void prepare_to_copy(struct task_struct *tsk)
507 flush_fp_to_thread(current);
508 flush_altivec_to_thread(current);
509 flush_spe_to_thread(current);
513 * Copy a thread..
515 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
516 unsigned long unused, struct task_struct *p,
517 struct pt_regs *regs)
519 struct pt_regs *childregs, *kregs;
520 extern void ret_from_fork(void);
521 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
523 CHECK_FULL_REGS(regs);
524 /* Copy registers */
525 sp -= sizeof(struct pt_regs);
526 childregs = (struct pt_regs *) sp;
527 *childregs = *regs;
528 if ((childregs->msr & MSR_PR) == 0) {
529 /* for kernel thread, set `current' and stackptr in new task */
530 childregs->gpr[1] = sp + sizeof(struct pt_regs);
531 #ifdef CONFIG_PPC32
532 childregs->gpr[2] = (unsigned long) p;
533 #else
534 clear_tsk_thread_flag(p, TIF_32BIT);
535 #endif
536 p->thread.regs = NULL; /* no user register state */
537 } else {
538 childregs->gpr[1] = usp;
539 p->thread.regs = childregs;
540 if (clone_flags & CLONE_SETTLS) {
541 #ifdef CONFIG_PPC64
542 if (!test_thread_flag(TIF_32BIT))
543 childregs->gpr[13] = childregs->gpr[6];
544 else
545 #endif
546 childregs->gpr[2] = childregs->gpr[6];
549 childregs->gpr[3] = 0; /* Result from fork() */
550 sp -= STACK_FRAME_OVERHEAD;
553 * The way this works is that at some point in the future
554 * some task will call _switch to switch to the new task.
555 * That will pop off the stack frame created below and start
556 * the new task running at ret_from_fork. The new task will
557 * do some house keeping and then return from the fork or clone
558 * system call, using the stack frame created above.
560 sp -= sizeof(struct pt_regs);
561 kregs = (struct pt_regs *) sp;
562 sp -= STACK_FRAME_OVERHEAD;
563 p->thread.ksp = sp;
565 #ifdef CONFIG_PPC64
566 if (cpu_has_feature(CPU_FTR_SLB)) {
567 unsigned long sp_vsid = get_kernel_vsid(sp);
568 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
570 sp_vsid <<= SLB_VSID_SHIFT;
571 sp_vsid |= SLB_VSID_KERNEL | llp;
572 p->thread.ksp_vsid = sp_vsid;
576 * The PPC64 ABI makes use of a TOC to contain function
577 * pointers. The function (ret_from_except) is actually a pointer
578 * to the TOC entry. The first entry is a pointer to the actual
579 * function.
581 kregs->nip = *((unsigned long *)ret_from_fork);
582 #else
583 kregs->nip = (unsigned long)ret_from_fork;
584 #endif
586 return 0;
590 * Set up a thread for executing a new program
592 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
594 #ifdef CONFIG_PPC64
595 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
596 #endif
598 set_fs(USER_DS);
601 * If we exec out of a kernel thread then thread.regs will not be
602 * set. Do it now.
604 if (!current->thread.regs) {
605 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
606 current->thread.regs = regs - 1;
609 memset(regs->gpr, 0, sizeof(regs->gpr));
610 regs->ctr = 0;
611 regs->link = 0;
612 regs->xer = 0;
613 regs->ccr = 0;
614 regs->gpr[1] = sp;
616 #ifdef CONFIG_PPC32
617 regs->mq = 0;
618 regs->nip = start;
619 regs->msr = MSR_USER;
620 #else
621 if (!test_thread_flag(TIF_32BIT)) {
622 unsigned long entry, toc;
624 /* start is a relocated pointer to the function descriptor for
625 * the elf _start routine. The first entry in the function
626 * descriptor is the entry address of _start and the second
627 * entry is the TOC value we need to use.
629 __get_user(entry, (unsigned long __user *)start);
630 __get_user(toc, (unsigned long __user *)start+1);
632 /* Check whether the e_entry function descriptor entries
633 * need to be relocated before we can use them.
635 if (load_addr != 0) {
636 entry += load_addr;
637 toc += load_addr;
639 regs->nip = entry;
640 regs->gpr[2] = toc;
641 regs->msr = MSR_USER64;
642 } else {
643 regs->nip = start;
644 regs->gpr[2] = 0;
645 regs->msr = MSR_USER32;
647 #endif
649 discard_lazy_cpu_state();
650 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
651 current->thread.fpscr.val = 0;
652 #ifdef CONFIG_ALTIVEC
653 memset(current->thread.vr, 0, sizeof(current->thread.vr));
654 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
655 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
656 current->thread.vrsave = 0;
657 current->thread.used_vr = 0;
658 #endif /* CONFIG_ALTIVEC */
659 #ifdef CONFIG_SPE
660 memset(current->thread.evr, 0, sizeof(current->thread.evr));
661 current->thread.acc = 0;
662 current->thread.spefscr = 0;
663 current->thread.used_spe = 0;
664 #endif /* CONFIG_SPE */
667 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
668 | PR_FP_EXC_RES | PR_FP_EXC_INV)
670 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
672 struct pt_regs *regs = tsk->thread.regs;
674 /* This is a bit hairy. If we are an SPE enabled processor
675 * (have embedded fp) we store the IEEE exception enable flags in
676 * fpexc_mode. fpexc_mode is also used for setting FP exception
677 * mode (asyn, precise, disabled) for 'Classic' FP. */
678 if (val & PR_FP_EXC_SW_ENABLE) {
679 #ifdef CONFIG_SPE
680 if (cpu_has_feature(CPU_FTR_SPE)) {
681 tsk->thread.fpexc_mode = val &
682 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
683 return 0;
684 } else {
685 return -EINVAL;
687 #else
688 return -EINVAL;
689 #endif
692 /* on a CONFIG_SPE this does not hurt us. The bits that
693 * __pack_fe01 use do not overlap with bits used for
694 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
695 * on CONFIG_SPE implementations are reserved so writing to
696 * them does not change anything */
697 if (val > PR_FP_EXC_PRECISE)
698 return -EINVAL;
699 tsk->thread.fpexc_mode = __pack_fe01(val);
700 if (regs != NULL && (regs->msr & MSR_FP) != 0)
701 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
702 | tsk->thread.fpexc_mode;
703 return 0;
706 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
708 unsigned int val;
710 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
711 #ifdef CONFIG_SPE
712 if (cpu_has_feature(CPU_FTR_SPE))
713 val = tsk->thread.fpexc_mode;
714 else
715 return -EINVAL;
716 #else
717 return -EINVAL;
718 #endif
719 else
720 val = __unpack_fe01(tsk->thread.fpexc_mode);
721 return put_user(val, (unsigned int __user *) adr);
724 int set_endian(struct task_struct *tsk, unsigned int val)
726 struct pt_regs *regs = tsk->thread.regs;
728 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
729 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
730 return -EINVAL;
732 if (regs == NULL)
733 return -EINVAL;
735 if (val == PR_ENDIAN_BIG)
736 regs->msr &= ~MSR_LE;
737 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
738 regs->msr |= MSR_LE;
739 else
740 return -EINVAL;
742 return 0;
745 int get_endian(struct task_struct *tsk, unsigned long adr)
747 struct pt_regs *regs = tsk->thread.regs;
748 unsigned int val;
750 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
751 !cpu_has_feature(CPU_FTR_REAL_LE))
752 return -EINVAL;
754 if (regs == NULL)
755 return -EINVAL;
757 if (regs->msr & MSR_LE) {
758 if (cpu_has_feature(CPU_FTR_REAL_LE))
759 val = PR_ENDIAN_LITTLE;
760 else
761 val = PR_ENDIAN_PPC_LITTLE;
762 } else
763 val = PR_ENDIAN_BIG;
765 return put_user(val, (unsigned int __user *)adr);
768 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
770 tsk->thread.align_ctl = val;
771 return 0;
774 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
776 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
779 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
781 int sys_clone(unsigned long clone_flags, unsigned long usp,
782 int __user *parent_tidp, void __user *child_threadptr,
783 int __user *child_tidp, int p6,
784 struct pt_regs *regs)
786 CHECK_FULL_REGS(regs);
787 if (usp == 0)
788 usp = regs->gpr[1]; /* stack pointer for child */
789 #ifdef CONFIG_PPC64
790 if (test_thread_flag(TIF_32BIT)) {
791 parent_tidp = TRUNC_PTR(parent_tidp);
792 child_tidp = TRUNC_PTR(child_tidp);
794 #endif
795 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
798 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
799 unsigned long p4, unsigned long p5, unsigned long p6,
800 struct pt_regs *regs)
802 CHECK_FULL_REGS(regs);
803 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
806 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
807 unsigned long p4, unsigned long p5, unsigned long p6,
808 struct pt_regs *regs)
810 CHECK_FULL_REGS(regs);
811 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
812 regs, 0, NULL, NULL);
815 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
816 unsigned long a3, unsigned long a4, unsigned long a5,
817 struct pt_regs *regs)
819 int error;
820 char *filename;
822 filename = getname((char __user *) a0);
823 error = PTR_ERR(filename);
824 if (IS_ERR(filename))
825 goto out;
826 flush_fp_to_thread(current);
827 flush_altivec_to_thread(current);
828 flush_spe_to_thread(current);
829 error = do_execve(filename, (char __user * __user *) a1,
830 (char __user * __user *) a2, regs);
831 if (error == 0) {
832 task_lock(current);
833 current->ptrace &= ~PT_DTRACE;
834 task_unlock(current);
836 putname(filename);
837 out:
838 return error;
841 #ifdef CONFIG_IRQSTACKS
842 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
843 unsigned long nbytes)
845 unsigned long stack_page;
846 unsigned long cpu = task_cpu(p);
849 * Avoid crashing if the stack has overflowed and corrupted
850 * task_cpu(p), which is in the thread_info struct.
852 if (cpu < NR_CPUS && cpu_possible(cpu)) {
853 stack_page = (unsigned long) hardirq_ctx[cpu];
854 if (sp >= stack_page + sizeof(struct thread_struct)
855 && sp <= stack_page + THREAD_SIZE - nbytes)
856 return 1;
858 stack_page = (unsigned long) softirq_ctx[cpu];
859 if (sp >= stack_page + sizeof(struct thread_struct)
860 && sp <= stack_page + THREAD_SIZE - nbytes)
861 return 1;
863 return 0;
866 #else
867 #define valid_irq_stack(sp, p, nb) 0
868 #endif /* CONFIG_IRQSTACKS */
870 int validate_sp(unsigned long sp, struct task_struct *p,
871 unsigned long nbytes)
873 unsigned long stack_page = (unsigned long)task_stack_page(p);
875 if (sp >= stack_page + sizeof(struct thread_struct)
876 && sp <= stack_page + THREAD_SIZE - nbytes)
877 return 1;
879 return valid_irq_stack(sp, p, nbytes);
882 #ifdef CONFIG_PPC64
883 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
884 #define FRAME_LR_SAVE 2
885 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
886 #define REGS_MARKER 0x7265677368657265ul
887 #define FRAME_MARKER 12
888 #else
889 #define MIN_STACK_FRAME 16
890 #define FRAME_LR_SAVE 1
891 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
892 #define REGS_MARKER 0x72656773ul
893 #define FRAME_MARKER 2
894 #endif
896 EXPORT_SYMBOL(validate_sp);
898 unsigned long get_wchan(struct task_struct *p)
900 unsigned long ip, sp;
901 int count = 0;
903 if (!p || p == current || p->state == TASK_RUNNING)
904 return 0;
906 sp = p->thread.ksp;
907 if (!validate_sp(sp, p, MIN_STACK_FRAME))
908 return 0;
910 do {
911 sp = *(unsigned long *)sp;
912 if (!validate_sp(sp, p, MIN_STACK_FRAME))
913 return 0;
914 if (count > 0) {
915 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
916 if (!in_sched_functions(ip))
917 return ip;
919 } while (count++ < 16);
920 return 0;
923 static int kstack_depth_to_print = 64;
925 void show_stack(struct task_struct *tsk, unsigned long *stack)
927 unsigned long sp, ip, lr, newsp;
928 int count = 0;
929 int firstframe = 1;
931 sp = (unsigned long) stack;
932 if (tsk == NULL)
933 tsk = current;
934 if (sp == 0) {
935 if (tsk == current)
936 asm("mr %0,1" : "=r" (sp));
937 else
938 sp = tsk->thread.ksp;
941 lr = 0;
942 printk("Call Trace:\n");
943 do {
944 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
945 return;
947 stack = (unsigned long *) sp;
948 newsp = stack[0];
949 ip = stack[FRAME_LR_SAVE];
950 if (!firstframe || ip != lr) {
951 printk("["REG"] ["REG"] ", sp, ip);
952 print_symbol("%s", ip);
953 if (firstframe)
954 printk(" (unreliable)");
955 printk("\n");
957 firstframe = 0;
960 * See if this is an exception frame.
961 * We look for the "regshere" marker in the current frame.
963 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
964 && stack[FRAME_MARKER] == REGS_MARKER) {
965 struct pt_regs *regs = (struct pt_regs *)
966 (sp + STACK_FRAME_OVERHEAD);
967 printk("--- Exception: %lx", regs->trap);
968 print_symbol(" at %s\n", regs->nip);
969 lr = regs->link;
970 print_symbol(" LR = %s\n", lr);
971 firstframe = 1;
974 sp = newsp;
975 } while (count++ < kstack_depth_to_print);
978 void dump_stack(void)
980 show_stack(current, NULL);
982 EXPORT_SYMBOL(dump_stack);
984 #ifdef CONFIG_PPC64
985 void ppc64_runlatch_on(void)
987 unsigned long ctrl;
989 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
990 HMT_medium();
992 ctrl = mfspr(SPRN_CTRLF);
993 ctrl |= CTRL_RUNLATCH;
994 mtspr(SPRN_CTRLT, ctrl);
996 set_thread_flag(TIF_RUNLATCH);
1000 void ppc64_runlatch_off(void)
1002 unsigned long ctrl;
1004 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1005 HMT_medium();
1007 clear_thread_flag(TIF_RUNLATCH);
1009 ctrl = mfspr(SPRN_CTRLF);
1010 ctrl &= ~CTRL_RUNLATCH;
1011 mtspr(SPRN_CTRLT, ctrl);
1014 #endif