
Org Mode Manual
Release 4.59

by Carsten Dominik

This manual is for Org-mode (version 4.59).
Copyright c© 2004, 2005, 2006 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 Introduction . 1
1.1 Summary . 1
1.2 Installation . 2
1.3 Activation . 2
1.4 Feedback . 2

2 Document Structure . 4
2.1 Outlines . 4
2.2 Headlines . 4
2.3 Visibility cycling . 4
2.4 Motion . 5
2.5 Structure editing . 5
2.6 Archiving . 6

2.6.1 The ARCHIVE tag . 7
2.6.2 Moving subtrees . 7

2.7 Sparse trees . 8
2.8 Plain lists . 8

3 Tables . 11
3.1 The built-in table editor . 11
3.2 Narrow columns . 13
3.3 Calculations in tables . 14

3.3.1 Formula syntax . 14
3.3.2 Emacs Lisp forms as formulas 15
3.3.3 Column formulas . 16
3.3.4 Advanced features . 16
3.3.5 Named-field formulas . 17
3.3.6 Editing and debugging formulas 18
3.3.7 Appetizer . 18

3.4 The Orgtbl minor mode . 18
3.5 The ‘table.el’ package . 19

4 Hyperlinks . 20
4.1 Link format . 20
4.2 Internal links . 20

4.2.1 Radio targets . 21
4.2.2 CamelCase words as links . 21

4.3 External links . 21
4.4 Handling links . 22
4.5 Link abbreviatons . 23
4.6 Search options in file links . 24
4.7 Custom Searches . 25
4.8 Remember . 25

ii

5 TODO items . 27
5.1 Basic TODO functionality . 27
5.2 Extended use of TODO keywords. 27

5.2.1 TODO keywords as workflow states 27
5.2.2 TODO keywords as types . 28
5.2.3 Setting up TODO keywords for individual files . . . 28

5.3 Priorities . 29
5.4 Breaking tasks down into subtasks . 29
5.5 Checkboxes . 29

6 Timestamps . 31
6.1 Time stamps, deadlines and scheduling. 31
6.2 Creating timestamps . 32

6.2.1 The date/time prompt . 33
6.3 Custom time format . 34
6.4 Progress Logging . 34

6.4.1 Closing items . 34
6.4.2 Clocking work time . 35

7 Tags . 37
7.1 Tag inheritance . 37
7.2 Setting tags . 37
7.3 Tag searches . 38

8 Agenda Views . 40
8.1 Agenda files . 40
8.2 The agenda dispatcher . 40
8.3 The built-in agenda views . 41

8.3.1 The weekly/daily agenda . 41
8.3.2 The global TODO list. 42
8.3.3 Matching headline tags . 43
8.3.4 Timeline for a single file . 43
8.3.5 Stuck projects . 43

8.4 Presentation and sorting . 44
8.4.1 Categories . 44
8.4.2 Time-of-Day Specifications . 44
8.4.3 Sorting of agenda items . 45

8.5 Commands in the agenda buffer . 45
8.6 Custom agenda views . 48

8.6.1 Storing searches . 48
8.6.2 Block agenda . 49
8.6.3 Setting Options for custom commands. 49
8.6.4 Creating agenda views in batch processing 50

iii

9 Embedded LaTeX . 52
9.1 Math symbols . 52
9.2 Subscripts and Superscripts . 52
9.3 LaTeX fragments . 52
9.4 Processing LaTeX fragments . 53
9.5 Using CDLaTeX to enter math . 53

10 Exporting . 55
10.1 ASCII export . 55
10.2 HTML export. 55
10.3 XOXO export . 56
10.4 iCalendar export . 57
10.5 Text interpretation by the exporter . 57

10.5.1 Comment lines . 57
10.5.2 Enhancing text for export . 58
10.5.3 Export options . 58

11 Publishing . 60
11.1 Configuration . 60

11.1.1 The variable org-publish-project-alist 60
11.1.2 Sources and destinations for files 60
11.1.3 Selecting files . 60
11.1.4 Publishing Action . 61
11.1.5 Options for the HTML exporter 61
11.1.6 Links between published files 62
11.1.7 Project page index . 62

11.2 Sample configuration . 63
11.2.1 Example: simple publishing configuration. 63
11.2.2 Example: complex publishing configuration 63

11.3 Triggering publication . 64

12 Miscellaneous . 65
12.1 Completion . 65
12.2 Customization . 65
12.3 Summary of in-buffer settings . 65
12.4 The very busy C-c C-c key . 67
12.5 A cleaner outline view . 67
12.6 Using org-mode on a tty . 68
12.7 Interaction with other packages . 69

12.7.1 Packages that Org-mode cooperates with 69
12.7.2 Packages that lead to conflicts with Org-mode . . 70

12.8 Bugs . 70

Appendix A Extensions, Hooks and Hacking . . 72
A.1 Third-party extensions for Org-mode . 72
A.2 Dynamic blocks . 72
A.3 Special Agenda Views . 73

iv

Appendix B History and Acknowledgments . . . 75

Index . 77

Key Index . 81

Chapter 1: Introduction 1

1 Introduction

1.1 Summary

Org-mode is a mode for keeping notes, maintaining ToDo lists, and doing project plan-
ning with a fast and effective plain-text system.

Org-mode develops organizational tasks around NOTES files that contain lists or in-
formation about projects as plain text. Org-mode is implemented on top of outline-mode,
which makes it possible to keep the content of large files well structured. Visibility cycling
and structure editing help to work with the tree. Tables are easily created with a built-in
table editor. Org-mode supports ToDo items, deadlines, time stamps, and scheduling. It
dynamically compiles entries into an agenda that utilizes and smoothly integrates much of
the Emacs calendar and diary. Plain text URL-like links connect to websites, emails, Usenet
messages, BBDB entries, and any files related to the projects. For printing and sharing of
notes, an Org-mode file can be exported as a structured ASCII file, as HTML, or (todo and
agenda items only) as an iCalendar file. It can also serve as a publishing tool for a set of
linked webpages.

An important design aspect that distinguishes Org-mode from for example Planner/Muse
is that it encougages to store every piece of information only once. In Planner, you have
project pages, day pages and possibly other files, duplicating some information such as
tasks. In Org-mode, you only have notes files. In your notes you mark entries as tasks,
label them with tags and timestamps. All necessary lists like a schedule for the day, the
agenda for a meeting, tasks lists selected by tags etc are created dynamically when you need
them.

Org-mode keeps simple things simple. When first fired up, it should feel like a straightfor-
ward, easy to use outliner. Complexity is not imposed, but a large amount of functionality
is available when you need it. Org-mode can be used on different levels and in different
ways, for example:

• as an outline extension with visibility cycling and structure editing
• as an ASCII system and table editor for taking structured notes
• as an ASCII table editor with spreadsheet-like capabilities
• as a TODO list editor
• as a full agenda and planner with deadlines and work scheduling
• as an environment to implement David Allen’s GTD system
• as a simple hypertext system, with HTML export
• as a publishing tool to create a set of interlinked webpages

Org-mode’s automatic, context sensitive table editor can be integrated into any major
mode by activating the minor Orgtbl-mode.

There is a website for Org-mode which provides links to the newest version of Org-mode,
as well as additional information, frequently asked questions (FAQ), links to tutorials etc.
This page is located at http://www.astro.uva.nl/~dominik/Tools/org/.

http://www.astro.uva.nl/~dominik/Tools/org/

Chapter 1: Introduction 2

1.2 Installation

Important: If Org-mode is part of the Emacs distribution or an XEmacs package, please
skip this section and go directly to Section 1.3 [Activation], page 2.

If you have downloaded Org-mode from the Web, you must take the following steps to
install it: Go into the Org-mode distribution directory and edit the top section of the file
‘Makefile’. You must set the name of the Emacs binary (likely either ‘emacs’ or ‘xemacs’),
and the paths to the directories where local Lisp and Info files are kept. If you don’t have
access to the system-wide directories, create your own two directories for these files, enter
them into the Makefile, and make sure Emacs finds the Lisp files by adding the following
line to ‘.emacs’:

(setq load-path (cons "~/path/to/lispdir" load-path))

XEmacs users now need to install the file ‘noutline.el’ from the ‘xemacs’ subdirectory
of the Org-mode distribution. Use the command:

make install-noutline

Now byte-compile and install the Lisp files with the shell commands:
make
make install

If you want to install the info documentation, use this command:
make install-info

Then add to ‘.emacs’:
;; This line only if org-mode is not part of the X/Emacs distribution.
(require ’org-install)

1.3 Activation

Add the following lines to your ‘.emacs’ file. The last two lines define global keys for
the commands org-store-link and org-agenda - please choose suitable keys yourself.

;; The following lines are always needed. Choose your own keys.
(add-to-list ’auto-mode-alist ’("\\.org$" . org-mode))
(define-key global-map "\C-cl" ’org-store-link)
(define-key global-map "\C-ca" ’org-agenda)

Furthermore, you must activate font-lock-mode in org-mode buffers, because significant
functionality depends on font-locking being active. You can do this with either one of the
following two lines (XEmacs user must use the second option):

(global-font-lock-mode 1) ; for all buffers
(add-hook ’org-mode-hook ’turn-on-font-lock) ; org-mode buffers only

With this setup, all files with extension ‘.org’ will be put into Org-mode. As an alter-
native, make the first line of a file look like this:

MY PROJECTS -*- mode: org; -*-

which will select Org-mode for this buffer no matter what the file’s name is. See also the
variable org-insert-mode-line-in-empty-file.

Chapter 1: Introduction 3

1.4 Feedback

If you find problems with Org-mode, or if you have questions, remarks, or ideas about
it, please contact the maintainer Carsten Dominik at dominik at science dot uva dot nl.

For bug reports, please provide as much information as possible, including the version
information of Emacs (C-h v emacs-version 〈RET〉) and Org-mode (C-h v org-version

〈RET〉), as well as the Org-mode related setup in ‘.emacs’. If an error occurs, a back-
trace can be very useful (see below on how to create one). Often a small example file helps,
along with clear information about:
1. What exactly did you do?
2. What did you expect to happen?
3. What happened instead?

Thank you for helping to improve this mode.

How to create a useful backtrace

If working with Org-mode produces an error with a message you don’t understand, you
may have hit a bug. The best way to report this is by providing, in addition to what was
mentioned above, a Backtrace. This is information from the built-in debugger about where
and how the error occurred. Here is how to produce a useful backtrace:
1. Start a fresh Emacs or XEmacs, and make sure that it will load the original Lisp code

in ‘org.el’ instead of the compiled version in ‘org.elc’. The backtrace contains much
more information if it is produced with uncompiled code. To do this, either rename
‘org.elc’ to something else before starting Emacs, or ask Emacs explicitly to load
‘org.el’ by using the command line

emacs -l /path/to/org.el

2. Go to the Options menu and select Enter Debugger on Error (XEmacs has this option
in the Troubleshooting sub-menu).

3. Do whatever you have to do to hit the error. Don’t forget to document the steps you
take.

4. When you hit the error, a ‘*Backtrace*’ buffer will appear on the screen. Save this
buffer to a file (for example using C-x C-w) and attach it to your bug report.

mailto:dominik at science dot uva dot nl

Chapter 2: Document Structure 4

2 Document Structure

Org-mode is based on outline mode and provides flexible commands to edit the structure
of the document.

2.1 Outlines

Org-mode is implemented on top of outline-mode. Outlines allow to organize a document
in a hierarchical structure, which (at least for me) is the best representation of notes and
thoughts. Overview over this structure is achieved by folding (hiding) large parts of the
document to show only the general document structure and the parts currently being worked
on. Org-mode greatly simplifies the use of outlines by compressing the entire show/hide
functionality into a single command org-cycle, which is bound to the 〈TAB〉 key.

2.2 Headlines

Headlines define the structure of an outline tree. The headlines in Org-mode start with
one or more stars, on the left margin. For example:

* Top level headline
** Second level
*** 3rd level

some text
*** 3rd level

more text
* Another top level headline

Some people find the many stars too noisy and would prefer an outline that has whitespace
followed by a single star as headline starters. Section 12.5 [Clean view], page 67 describes
a setup to realize this.

2.3 Visibility cycling

Outlines make it possible to hide parts of the text in the buffer. Org-mode uses just two
commands, bound to 〈TAB〉 and S-〈TAB〉 to change the visibility in the buffer.

〈TAB〉 Subtree cycling : Rotate current subtree between the states
,-> FOLDED -> CHILDREN -> SUBTREE --.
’-----------------------------------’

The cursor must be on a headline for this to work1. When the cursor is at the
beginning of the buffer and the first line is not a headline, then 〈TAB〉 actually
runs global cycling (see below)2. Also when called with a prefix argument (C-u
〈TAB〉), global cycling is invoked.

1 see, however, the option org-cycle-emulate-tab.
2 see the option org-cycle-global-at-bob.

Chapter 2: Document Structure 5

S-〈TAB〉
C-u 〈TAB〉 Global cycling : Rotate the entire buffer between the states

,-> OVERVIEW -> CONTENTS -> SHOW ALL --.
’--------------------------------------’

Note that inside tables, S-〈TAB〉 jumps to the previous field.

C-c C-a Show all.

C-c C-r Reveal context around point, showing the current entry, the following heading
and the hierarchy above. Useful for working near a location exposed by a sparse
tree command (see Section 2.7 [Sparse trees], page 8) or an agenda command
(see Section 8.5 [Agenda commands], page 45).

C-c C-x b Show the current subtree in an indirect buffer3. With numerical prefix ARG,
go up to this level and then take that tree. If ARG is negative, go up that many
levels. With C-u prefix, do not remove the previously used indirect buffer.

When Emacs first visits an Org-mode file, the global state is set to OVERVIEW, i.e.
only the top level headlines are visible. This can be configured through the variable org-
startup-folded, or on a per-file basis by adding one of the following lines anywhere in the
buffer:

#+STARTUP: overview
#+STARTUP: content
#+STARTUP: showall

2.4 Motion

The following commands jump to other headlines in the buffer.

C-c C-n Next heading.

C-c C-p Previous heading.

C-c C-f Next heading same level.

C-c C-b Previous heading same level.

C-c C-u Backward to higher level heading.

C-c C-j Jump to a different place without changing the current outline visibility. Shows
the document structure in a temporary buffer, where you can use visibility
cycling (〈TAB〉) to find your destination. After pressing 〈RET〉, the cursor moves
to the selected location in the original buffer, and the headings hierarchy above
it is made visible.

3 The indirect buffer (see section “Indirect Buffers” in GNU Emacs Manual) will contain the entire buffer,
but will be narrowed to the current tree. Editing the indirect buffer will also change the original buffer,
but without affecting visibility in that buffer.

Chapter 2: Document Structure 6

2.5 Structure editing

M-〈RET〉 Insert new heading with same level as current. If the cursor is in a plain list
item, a new item is created (see Section 2.8 [Plain lists], page 9). To force
creation of a new headline, use a prefix arg, or first press 〈RET〉 to get to the
beginning of the next line. When this command is used in the middle of a
line, the line is split and the rest of the line becomes the new headline. If the
command is used at the beginning of a headline, the new headline is created
before the current line. If at the beginning of any other line, the content of that
line is made the new heading. If the command is used at the end of a folded
subtree (i.e. behind the ellipses at the end of a headline), then a headline like
the current one will be inserted after the end of the subtree.

M-S-〈RET〉 Insert new TODO entry with same level as current heading.

M-〈left〉 Promote current heading by one level.

M-〈right〉 Demote current heading by one level.

M-S-〈left〉 Promote the current subtree by one level.

M-S-〈right〉 Demote the current subtree by one level.

M-S-〈up〉 Move subtree up (swap with previous subtree of same level).

M-S-〈down〉 Move subtree down (swap with next subtree of same level).

C-c C-x C-w

C-c C-x C-k

Kill subtree, i.e. remove it from buffer but save in kill ring.

C-c C-x M-w

Copy subtree to kill ring.

C-c C-x C-y

Yank subtree from kill ring. This does modify the level of the subtree to make
sure the tree fits in nicely at the yank position. The yank level can also be
specified with a prefix arg, or by yanking after a headline marker like ‘****’.

C-c ^ Sort same-level entries. When there is an active region, all entries in the region
will be sorted. Otherwise the children of the current headline are sorted. The
command prompts for the sorting method, which can be alphabetically, numer-
ically, by time (using the first time stamp in each entry), and each of these in
reverse order. With a C-u prefix, sorting will be case-sensitive. With two C-u

C-u prefixes, duplicate entries will also be removed.

When there is an active region (transient-mark-mode), promotion and demotion work
on all headlines in the region. To select a region of headlines, it is best to place both point
and mark at the beginning of a line, mark at the beginning of the first headline, and point
at the line just after the last headline to change. Note that when the cursor is inside a table
(see Chapter 3 [Tables], page 11), the Meta-Cursor keys have different functionality.

Chapter 2: Document Structure 7

2.6 Archiving

When a project represented by a (sub)tree is finished, you may want to move the tree
out of the way and to stop it from contributing to the agenda. Org-mode knows two ways
of archiving. You can mark a tree with the ARCHIVE tag, or you can move an entire
(sub)tree to a different location.

2.6.1 The ARCHIVE tag

A headline that is marked with the ARCHIVE tag (see Chapter 7 [Tags], page 37) stays
at its location in the outline tree, but behaves in the following way:
− It does not open when you attempt to do so with a visibility cycling command (see

Section 2.3 [Visibility cycling], page 4). You can force cycling archived subtrees with C-

〈TAB〉, or by setting the option org-cycle-open-archived-trees. Also normal outline
commands like show-all will open archived subtrees.

− During sparse tree construction (see Section 2.7 [Sparse trees], page 8), matches in
archived subtrees are not exposed, unless you configure the option org-sparse-tree-
open-archived-trees.

− During agenda view construction (see Chapter 8 [Agenda views], page 40), the con-
tent of archived trees is ignored unless you configure the option org-agenda-skip-
archived-trees.

− Archived trees are not exported (see Chapter 10 [Exporting], page 55), only the headline
is. Configure the details using the variable org-export-with-archived-trees.

The following commands help managing the ARCHIVE tag:

C-c C-x C-a

Toggle the ARCHIVE tag for the current headline. When the tag is set, the
headline changes to a shadowish face, and the subtree below it is hidden.

C-u C-c C-x C-a

Check if any direct children of the current headline should be archived. To do
this, each subtree is checked for open TODO entries. If none are found, the
command offers to set the ARCHIVE tag for the child. If the cursor is not on
a headline when this command is invoked, the level 1 trees will be checked.

C-TAB Cycle a tree even if it is tagged with ARCHIVE.

2.6.2 Moving subtrees

Once an entire project is finished, you may want to move it to a different location, either
in the current file, or even in a different file, the archive file.

C-c $ Archive the subtree starting at the cursor position to the location given by
org-archive-location.

C-u C-c $ Check if any direct children of the current headline could be moved to the
archive. To do this, each subtree is checked for open TODO entries. If none

Chapter 2: Document Structure 8

are found, the command offers to move it to the archive location. If the cursor
is not on a headline when this command is invoked, the level 1 trees will be
checked.

The default archive location is a file in the same directory as the current file, with
the name derived by appending ‘_archive’ to the current file name. For information and
examples on how to change this, see the documentation string of the variable org-archive-
location.

2.7 Sparse trees

An important feature of Org-mode is the ability to construct sparse trees for selected
information in an outline tree. A sparse tree means that the entire document is folded
as much as possible, but the selected information is made visible along with the headline
structure above it4. Just try it out and you will see immediately how it works.

Org-mode contains several commands creating such trees. The most basic one is org-
occur:

C-c / Occur. Prompts for a regexp and shows a sparse tree with all matches. If the
match is in a headline, the headline is made visible. If the match is in the body
of an entry, headline and body are made visible. In order to provide minimal
context, also the full hierarchy of headlines above the match is shown, as well as
the headline following the match. Each match is also highlighted; the highlights
disappear when the bufer is changes an editing command, or by pressing C-c

C-c. When called with a C-u prefix argument, previous highlights are kept, so
several calls to this command can be stacked.

For frequently used sparse trees of specific search strings, you can use the variable org-
agenda-custom-commands to define fast keyboard access to specific sparse trees. These
commands will then be accessible through the agenda dispatcher (see Section 8.2 [Agenda
dispatcher], page 41). For example:

(setq org-agenda-custom-commands
’(("f" occur-tree "FIXME")))

will define the key C-c a f as a shortcut for creating a sparse tree matching the string
‘FIXME’.

Other commands use sparse trees as well. For example C-c C-v creates a sparse TODO
tree (see Section 5.1 [TODO basics], page 27).

To print a sparse tree, you can use the Emacs command ps-print-buffer-with-faces
which does not print invisible parts of the document5. Or you can use the command C-c

C-e v to export only the visible part of the document and print the resulting file.

4 See also the variables org-show-hierarchy-above and org-show-following-heading.
5 This does not work under XEmacs, because XEmacs uses selective display for outlining, not text

properties.

Chapter 2: Document Structure 9

2.8 Plain lists

Within an entry of the outline tree, hand-formatted lists can provide additional structure.
They also provide a way to create lists of checkboxes (see Section 5.5 [Checkboxes], page 30).
Org-mode supports editing such lists, and the HTML exporter (see Chapter 10 [Exporting],
page 55) does parse and format them.

Org-mode knows ordered and unordered lists. Unordered list items start with ‘-’, ‘+’, or
‘*’6 as bullets. Ordered list items start with ‘1.’ or ‘1)’. Items belonging to the same list
must have the same indentation on the first line. In particular, if an ordered list reaches
number ‘10.’, then the 2–digit numbers must be written left-aligned with the other numbers
in the list. Indentation also determines the end of a list item. It ends before the next line
that is indented like the bullet/number, or less. For example:

** Lord of the Rings
My favorite scenes are (in this order)
1. The attack of the Rohirrim
2. Eowyns fight with the witch king

+ this was already my favorite scene in the book
+ I really like Miranda Otto.

3. Peter Jackson being shot by Legolas
- on DVD only
He makes a really funny face when it happens.

But in the end, not individual scenes matter but the film as a whole.

Org-mode supports these lists by tuning filling and wrapping commands to deal with
them correctly7.

The following commands act on items when the cursor is in the first line of an item (the
line with the bullet or number).

〈TAB〉 Items can be folded just like headline levels if you set the variable org-cycle-
include-plain-lists. The level of an item is then given by the indentation
of the bullet/number. Items are always subordinate to real headlines, however;
the hierarchies remain completely separated.

M-〈RET〉 Insert new item at current level. With prefix arg, force a new heading (see
Section 2.5 [Structure editing], page 6). If this command is used in the middle
of a line, the line is split and the rest of the line becomes the new item. If this
command is executed in the whitespace before a bullet or number, the new item
is created before the current item. If the command is executed in the white
space before the text that is part of an item but does not contain the bullet, a
bullet is added to the current line.

6 When using ‘*’ as a bullet, lines must be indented or they will be seen as top-level headlines. Also, when
you are hiding leading stars to get a clean outline view, plain list items starting with a star are visually
indistinguishable from true headlines. In short: even though ‘*’ is supported, it may be better not to
use it for plain list items

7 Org-mode only changes the filling settings for Emacs. For XEmacs, you should use Kyle E. Jones’
‘filladapt.el’. To turn this on, put into ‘.emacs’:

(require ’filladapt)

Chapter 2: Document Structure 10

M-S-〈RET〉 Insert a new item with a checkbox (see Section 5.5 [Checkboxes], page 30).

S-〈up〉
S-〈down〉 Jump to the previous/next item in the current list.

M-S-〈up〉
M-S-〈down〉 Move the item including subitems up/down (swap with previous/next item of

same indentation). If the list is ordered, renumbering is automatic.

M-S-〈left〉
M-S-〈right〉 Decrease/increase the indentation of the item, including subitems. Initially, the

item tree is selected based on current indentation. When these commands are
executed several times in direct succession, the initially selected region is used,
even if the new indentation would imply a different hierarchy. To use the new
hierarchy, break the command chain with a cursor motion or so.

C-c C-c If there is a checkbox (see Section 5.5 [Checkboxes], page 30) in the item line,
toggle the state of the checkbox. Otherwise, if this is an ordered list, renumber
the ordered list at the cursor.

Chapter 3: Tables 11

3 Tables

Org-mode has a very fast and intuitive table editor built-in. Spreadsheet-like calculations
are supported in connection with the Emacs ‘calc’ package.

3.1 The built-in table editor

Org-mode makes it easy to format tables in plain ASCII. Any line with ‘|’ as the first
non-white character is considered part of a table. ‘|’ is also the column separator. A table
might look like this:

| Name | Phone | Age |
|-------+-------+-----|
| Peter | 1234 | 17 |
| Anna | 4321 | 25 |

A table is re-aligned automatically each time you press 〈TAB〉 or 〈RET〉 or C-c C-c inside
the table. 〈TAB〉 also moves to the next field (〈RET〉 to the next row) and creates new table
rows at the end of the table or before horizontal lines. The indentation of the table is set
by the first line. Any line starting with ‘|-’ is considered as a horizontal separator line
and will be expanded on the next re-align to span the whole table width. So, to create the
above table, you would only type

|Name|Phone|Age|
|-

and then press 〈TAB〉 to align the table and start filling in fields.
When typing text into a field, Org-mode treats 〈DEL〉, 〈Backspace〉, and all character keys in

a special way, so that inserting and deleting avoids shifting other fields. Also, when typing
immediately after the cursor was moved into a new field with 〈TAB〉, S-〈TAB〉 or 〈RET〉, the
field is automatically made blank. If this behavior is too unpredictable for you, configure
the variables org-enable-table-editor and org-table-auto-blank-field.

Creation and conversion
C-c | Convert the active region to table. If every line contains at least one TAB

character, the function assumes that the material is tab separated. If not, lines
are split at whitespace into fields. You can use a prefix argument to indicate
the minimum number of consecutive spaces required to identify a field separator
(default: just one).
If there is no active region, this command creates an empty Org-mode table.
But it’s easier just to start typing, like |Name|Phone|Age 〈RET〉 |- 〈TAB〉.

Re-aligning and field motion
C-c C-c Re-align the table without moving the cursor.

〈TAB〉 Re-align the table, move to the next field. Creates a new row if necessary.

S-〈TAB〉 Re-align, move to previous field.

〈RET〉 Re-align the table and move down to next row. Creates a new row if necessary.
At the beginning or end of a line, 〈RET〉 still does NEWLINE, so it can be used
to split a table.

Chapter 3: Tables 12

Column and row editing
M-〈left〉
M-〈right〉 Move the current column left/right.

M-S-〈left〉 Kill the current column.

M-S-〈right〉 Insert a new column to the left of the cursor position.

M-〈up〉
M-〈down〉 Move the current row up/down.

M-S-〈up〉 Kill the current row or horizontal line.

M-S-〈down〉 Insert a new row above (with arg: below) the current row.

C-c - Insert a horizontal line below current row. With prefix arg, the line is created
above the current line.

C-c ^ Sort the table lines in the region. The position of point indicates the column
to be used for sorting, and the range of lines is the range between the nearest
horizontal separator lines, or the entire table. If point is before the first column,
you will be prompted for the sorting column. If there is an active region, the
mark specifies the first line and the sorting column, while point should be in
the last line to be included into the sorting. The command prompts for the
sorting type (alphabetically, numerically, or by time). When called with a
prefix argument, alphabetic sorting will be case-sensitive.

Regions

C-c C-x M-w

Copy a rectangular region from a table to a special clipboard. Point and mark
determine edge fields of the rectangle. The process ignores horizontal separator
lines.

C-c C-x C-w

Copy a rectangular region from a table to a special clipboard, and blank all
fields in the rectangle. So this is the “cut” operation.

C-c C-x C-y

Paste a rectangular region into a table. The upper right corner ends up in the
current field. All involved fields will be overwritten. If the rectangle does not
fit into the present table, the table is enlarged as needed. The process ignores
horizontal separator lines.

C-c C-q Wrap several fields in a column like a paragraph. If there is an active region, and
both point and mark are in the same column, the text in the column is wrapped
to minimum width for the given number of lines. A prefix ARG may be used
to change the number of desired lines. If there is no region, the current field
is split at the cursor position and the text fragment to the right of the cursor
is prepended to the field one line down. If there is no region, but you specify
a prefix ARG, the current field is made blank, and the content is appended to
the field above.

Chapter 3: Tables 13

Calculations
C-c = Install a new formula for the current column and replace current field with the

result of the formula.

C-u C-c = Install a new formula for the current field, which must be a named field. Eval-
uate the formula and replace the field content with the result.

C-c ’ Edit all formulas associated with the current table in a separate buffer.

C-c * Recalculate the current row by applying the stored formulas from left to right.
When called with a C-u prefix, recalculate the entire table, starting with the
first non-header line (i.e. below the first horizontal separator line). For details,
see Section 3.3 [Table calculations], page 14.

C-# Rotate the calculation mark in first column through the states ‘’, ‘#’, ‘*’, ‘!’, ‘$’.
For the meaning of these marks see Section 3.3.4 [Advanced features], page 16.
When there is an active region, change all marks in the region.

C-c ? Which table column is the cursor in? Displays number >0 in echo area.

C-c + Sum the numbers in the current column, or in the rectangle defined by the
active region. The result is shown in the echo area and can be inserted with
C-y.

S-〈RET〉 When current field is empty, copy from first non-empty field above. When
not empty, copy current field down to next row and move cursor along with
it. Depending on the variable org-table-copy-increment, integer field values
will be incremented during copy. This key is also used by CUA-mode (see
Section 12.7.1 [Cooperation], page 69).

Miscellaneous
C-c ‘ Edit the current field in a separate window. This is useful for fields that are

not fully visible (see Section 3.2 [Narrow columns], page 14). When called with
a C-u prefix, just make the full field visible, so that it can be edited in place.

C-c 〈TAB〉 This is an alias for C-u C-c ‘ to make the current field fully visible.

M-x org-table-import

Import a file as a table. The table should be TAB- or whitespace separated.
Useful, for example, to import an Excel table or data from a database, because
these programs generally can write TAB-separated text files. This command
works by inserting the file into the buffer and then converting the region to
a table. Any prefix argument is passed on to the converter, which uses it to
determine the separator.

M-x org-table-export

Export the table as a TAB-separated file. Useful for data exchange with, for
example, Excel or database programs.

If you don’t like the automatic table editor because it gets in your way on lines which
you would like to start with ‘|’, you can turn it off with

(setq org-enable-table-editor nil)

Then the only table command that still works is C-c C-c to do a manual re-align.

Chapter 3: Tables 14

3.2 Narrow columns

The width of columns is automatically determined by the table editor. Sometimes a
single field or a few fields need to carry more text, leading to inconveniently wide columns.
To limit1 the width of a column, one field anywhere in the column may contain just the
string ‘<N>’ where ‘N’ is an integer specifying the width of the column in characters. The
next re-align will then set the width of this column to no more than this value.

---+------------------------------		---+--------		
				<6>
1	one		1	one
2	two	----\	2	two
3	This is a long chunk of text	----/	3	This=>
4	four		4	four
---+------------------------------		---+--------		

Fields that are wider become clipped and end in the string ‘=>’. Note that the full text is
still in the buffer, it is only invisible. To see the full text, hold the mouse over the field -
a tooltip window will show the full content. To edit such a field, use the command C-c ‘

(that is C-c followed by the backquote). This will open a new window with the full field.
Edit it and finish with C-c C-c.

When visiting a file containing a table with narrowed columns, the necessary character
hiding has not yet happened, and the table needs to be aligned before it looks nice. Setting
the option org-startup-align-all-tables will realign all tables in a file upon visiting,
but also slow down startup. You can also set this option on a per-file basis with:

#+STARTUP: align
#+STARTUP: noalign

3.3 Calculations in tables

The table editor makes use of the Emacs ‘calc’ package to implement spreadsheet-like
capabilities. It can also evaluate Emacs Lisp forms to derive fields from other fields. Org-
mode has two levels of complexity for table calculations. On the basic level, tables do only
horizontal computations, so a field can be computed from other fields in the same row, and
Org-mode assumes that there is only one formula for each column. This is very efficient to
work with and enough for many tasks. On the complex level, columns and individual fields
can be named for easier referencing in formulas, individual named fields can have their own
formula associated with them, and recalculation can be automated.

3.3.1 Formula syntax

A formula can be any algebraic expression understood by the Emacs ‘calc’ package.
Note that ‘calc’ has the slightly non-standard convention that ‘/’ has lower precedence
than ‘*’, so that ‘a/b*c’ is interpreted as ‘a/(b*c)’. Before evaluation by calc-eval (see
section “Calling calc from Your Lisp Programs” in GNU Emacs Calc Manual), variable
substitution takes place:

1 This feature does not work on XEmacs.

Chapter 3: Tables 15

$ refers to the current field
$3 refers to the field in column 3 of the current row
$3..$7 a vector of the fields in columns 3-7 of current row
$P1..$P3 vector of column range, using column names
&2 second data field above the current, in same column
&5-2 vector from fifth to second field above current
&III-II vector of fields between 2nd and 3rd hline above
&III vector of fields between third hline above and current field
$name a named field, parameter or constant

The range vectors can be directly fed into the calc vector functions like ‘vmean’ and
‘vsum’.

‘$name’ is interpreted as the name of a column, parameter or constant. Constants are
defined globally through the variable org-table-formula-constants. If you have the
‘constants.el’ package, it will also be used to resolve constants, including natural con-
stants like ‘$h’ for Planck’s constant, and units like ‘$km’ for kilometers. Column names
and parameters can be specified in special table lines. These are described below, see
Section 3.3.4 [Advanced features], page 16.

A formula can contain an optional mode string after a semicolon. This string consists of
flags to influence calc’s modes2 during execution, e.g. ‘p20’ to switch the internal precision
to 20 digits, ‘n3’, ‘s3’, ‘e2’ or ‘f4’ to switch to normal, scientific, engineering, or fixed
display format, respectively, and ‘D’, ‘R’, ‘F’, and ‘S’ to turn on degrees, radians, fraction
and symbolic modes, respectively. In addition, you may provide a printf format specifier
to reformat the final result. A few examples:

$1+$2 Sum of first and second field
$1+$2;%.2f Same, format result to two decimals
exp($2)+exp($1) Math functions can be used
$;%.1f Reformat current cell to 1 decimal
($3-32)*5/9 Degrees F -> C conversion
$c/$1/$cm Hz -> cm conversion, using ‘constants.el’
tan($1);Dp3s1 Compute in degrees, precision 3, display SCI 1
sin($1);Dp3%.1e Same, but use printf specifier for display
vmean($2..$7) Compute column range mean, using vector function
vsum(&III) Sum numbers from 3rd hline above, up to here
taylor($3,x=7,2) taylor series of $3, at x=7, second degree

3.3.2 Emacs Lisp forms as formulas

It is also possible to write a formula in Emacs lisp; this can be useful for string ma-
nipulation and control structures. If a formula starts with a single quote followed by an
opening parenthesis, then it is evaluated as a lisp form. The evaluation should return either
a string or a number. Just as with ‘calc’ formulas, you can provide a format specifier after
a semicolon. A few examples:

2 By default, Org-mode uses the standard calc modes (precision 12, angular units degrees, fraction and
symbolic modes off). The display format, however, has been changed to (float 5) to keep tables
compact. The default settings can be configured using the variable org-calc-default-modes.

Chapter 3: Tables 16

swap the first two characters of the content of column 1
’(concat (substring "$1" 1 2) (substring "$1" 0 1) (substring "$1" 2))
Add columns 1 and 2, equivalent to the calc’s $1+$2
’(+ $1 $2)

3.3.3 Column formulas

To apply a formula to a field, type it directly into the field, preceded by an equal sign,
like ‘=$1+$2’. When you press 〈TAB〉 or 〈RET〉 or C-c C-c with the cursor still in the field,
the formula will be stored as the formula for the current column, evaluated and the current
field replaced with the result. If the field contains only ‘=’, the previously stored formula
for this column is used.

For each column, Org-mode will remember the most recently used formula. The infor-
mation is stored in a special line starting with ‘#+TBLFM’ directly below the table. When
adding/deleting/moving columns with the appropriate commands, the stored equations will
be modified accordingly. When a column used in a calculation is removed, references to
this column become invalid and will cause an error upon applying the equation.

Instead of typing an equation into the field, you may also use the command C-c =. It
prompts for a formula (with default taken from the ‘#+TBLFM:’ line) and applies it to the
current field. A numerical prefix (e.g. C-5 C-c =) will apply it to that many consecutive
fields in the current column.

To recompute all the fields in a line, use the command C-c *. It re-applies all stored
equations to the current row, from left to right. With a C-u prefix, this will be done to
every line in the table, so use this command it you want to make sure the entire table is
up-to-date. C-u C-c C-c is another way to update the entire table. Global updating does
not touch the line(s) above the first horizontal separator line, assuming that this is the table
header.

3.3.4 Advanced features

If you want the recalculation of fields to happen automatically, or if you want to be able
to assign a formula to an individual field (instead of an entire column) you need to reserve
the first column of the table for special marking characters. Here is an example of a table
that collects exam results of students and makes use of these features:

Chapter 3: Tables 17

|---+---------+--------+--------+--------+-------+------|
| | Student | Prob 1 | Prob 2 | Prob 3 | Total | Note |
|---+---------+--------+--------+--------+-------+------|
!		P1	P2	P3	Tot	
#	Maximum	10	15	25	50	10.0
^		m1	m2	m3	mt	
---+---------+--------+--------+--------+-------+------						
#	Peter	10	8	23	41	8.2
#	Sara	6	14	19	39	7.8
#	Sam	2	4	3	9	1.8
---+---------+--------+--------+--------+-------+------						
	Average				29.7	
^					at	
$	max=50					
---+---------+--------+--------+--------+-------+------						
#+TBLFM: $6=vsum($P1..$P3)::$7=10*$Tot/$max;%.1f::$at=vmean(&II);%.1f

Important: Please note that for these special tables, recalculating the table with C-u C-c

* will only affect rows that are marked ‘#’ or ‘*’, and named fields. The column formulas
are not applied in rows with empty first field.

The marking characters have the following meaning:

‘!’ The fields in this line define names for the columns, so that you may refer to a
column as ‘$Tot’ instead of ‘$6’.

‘^’ This row defines names for the fields above the row. With such a definition,
any formula in the table may use ‘$m1’ to refer to the value ‘10’. Also, named
fields can have their own formula associated with them.

‘_’ Similar to ‘^’, but defines names for the fields in the row below.

‘$’ Fields in this row can define parameters for formulas. For example, if a field in
a ‘$’ row contains ‘max=50’, then formulas in this table can refer to the value
50 using ‘$max’. Parameters work exactly like constants, only that they can be
defined on a per-table basis. Changing a parameter and then recalculating the
table can be useful.

‘#’ Fields in this row are automatically recalculated when pressing 〈TAB〉 or 〈RET〉
or S-〈TAB〉 in this row. Also, this row is selected for a global recalculation with
C-u C-c *. Unmarked lines will be left alone by this command.

‘*’ Selects this line for global recalculation with C-u C-c *, but not for automatic
recalculation. Use this when automatic recalculation slows down editing too
much.

‘’ Unmarked lines are exempt from recalculation with C-u C-c *. All lines that
should be recalculated should be marked with ‘#’ or ‘*’.

3.3.5 Named-field formulas

A named field can have its own formula associated with it. In the example above, this is
used for the ‘at’ field that contains the average result of the students. To enter a formula

Chapter 3: Tables 18

for a named field, just type it into the buffer, preceded by ‘:=’. Or use C-u C-c =. This
equation will be stored below the table like ‘$name=...’. Any recalculation in the table
(even if only requested for the current line) will also update all named field formulas.

3.3.6 Editing and debugging formulas

To edit a column or field formula, use the commands C-c = and C-u C-c =, respectively.
The currently active expression is then presented as default in the minibuffer, where it may
be edited.

Note that making a table field blank does not remove the formula associated with the
field - during the next recalculation the field will be filled again. To remove a formula from
a field, you have to give an empty reply when prompted for the formula, or to edit the
‘#+TBLFM’ line.

You may edit the ‘#+TBLFM’ directly and re-apply the changed equations with C-c C-c

in that line, or with the normal recalculation commands in the table.

In particular for large tables with many formulas, it is convenient to use the command
C-c ’ to edit the formulas of the current table in a separate buffer. That buffer will show
the formulas one per line, and you are free to edit, add and remove formulas. Press C-c ?

on a ‘$...’ expression to get information about its interpretation. Exiting the buffer with
C-c C-c only stores the modified formulas below the table. Exiting with C-u C-c C-c also
applies them to the entire table. C-c C-q exits without installing the changes.

When the evaluation of a formula leads to an error, the field content becomes the string
‘#ERROR’. If you would like see what is going on during variable substitution and calculation
in order to find a bug, turn on formula debugging in the menu and repeat the calculation,
for example by pressing C-c = 〈RET〉 in a field. Detailed information will be displayed.

3.3.7 Appetizer

Finally, just to whet your appetite on what can be done with the fantastic ‘calc’ package,
here is a table that computes the Taylor series for a couple of functions (homework: try
that with Excel :-)

|---+-------------+---+-----+--------------------------------------|
| | Func | n | x | Result |
|---+-------------+---+-----+--------------------------------------|
#	exp(x)	1	x	1 + x
#	exp(x)	2	x	1 + x + x^2 / 2
#	exp(x)	3	x	1 + x + x^2 / 2 + x^3 / 6
#	x^2+sqrt(x)	2	x=0	x*(0.5 / 0) + x^2 (2 - 0.25 / 0) / 2
#	x^2+sqrt(x)	2	x=1	2 + 2.5 x - 2.5 + 0.875 (x - 1)^2
*	tan(x)	3	x	0.0175 x + 1.77e-6 x^3
---+-------------+---+-----+--------------------------------------				
#+TBLFM: $5=taylor($2,$4,$3);n3

Chapter 3: Tables 19

3.4 The Orgtbl minor mode

If you like the intuitive way the Org-mode table editor works, you might also want to
use it in other modes like text-mode or mail-mode. The minor mode Orgtbl-mode makes
this possible. You can always toggle the mode with M-x orgtbl-mode. To turn it on by
default, for example in mail mode, use

(add-hook ’mail-mode-hook ’turn-on-orgtbl)

3.5 The ‘table.el’ package

Complex ASCII tables with automatic line wrapping, column- and row-spanning,
and alignment can be created using the Emacs table package by Takaaki Ota
(http://sourceforge.net/projects/table, and also part of Emacs 22). When 〈TAB〉 or
C-c C-c is pressed in such a table, Org-mode will call table-recognize-table and move
the cursor into the table. Inside a table, the keymap of Org-mode is inactive. In order to
execute Org-mode-related commands, leave the table.

C-c C-c Recognize ‘table.el’ table. Works when the cursor is in a table.el table.

C-c ~ Insert a table.el table. If there is already a table at point, this command
converts it between the table.el format and the Org-mode format. See the
documentation string of the command org-convert-table for the restrictions
under which this is possible.

http://sourceforge.net/projects/table

Chapter 4: Hyperlinks 20

4 Hyperlinks

Just like HTML, Org-mode provides links inside a file, and external links to other files,
Usenet articles, emails, and much more.

4.1 Link format

Org-mode will recognize plain URL-like links and activate them as clickable links. The
general link format, however, looks like this:

[[link][description]] or alternatively [[link]]

Once a link in the buffer is complete (all brackets present), Org-mode will change the
display so that ‘description’ is displayed instead of ‘[[link][description]]’ and ‘link’
is displayed instead of ‘[[link]]’. Links will be highlighted in the face org-link, which
by default is an underlined face. You can directly edit the visible part of a link. Note that
this can be either the ‘link’ part (if there is no description) or the ‘description’ part. To
edit also the invisible ‘link’ part, use C-c C-l with the cursor on the link.

If you place the cursor at the beginning or just behind the end of the displayed text and
press 〈BACKSPACE〉, you will remove the (invisible) bracket at that location. This makes the
link incomplete and the internals are again displayed as plain text. Inserting the missing
bracket hides the link internals again. To show the internal structure of all links, use the
menu entry Org->Hyperlinks->Literal links.

4.2 Internal links

If the link does not look like a URL, it is considered to be internal in the current file.
Links such as ‘[[My Target]]’ or ‘[[My Target][Find my target]]’ lead to a text search
in the current file. The link can be followed with C-c C-o when the cursor is on the link,
or with a mouse click (see Section 4.4 [Handling links], page 22). The preferred match for
such a link is a dedicated target: the same string in double angular brackets. Targets may
be located anywhere; often it is convenient to put them into a comment line. For example

<<My Target>>

In HTML export (see Section 10.2 [HTML export], page 55), such targets will become
named anchors for direct access through ‘http’ links1.

If no dedicated target exists, Org-mode will search for the words in the link. In the
above example the search would be for ‘my target’. Links starting with a star like ‘*My
Target’ restrict the search to headlines. When searching, Org-mode will first try an exact
match, but then move on to more and more lenient searches. For example, the link ‘[[*My
Targets]]’ will find any of the following:

** My targets
** TODO my targets are bright
** my 20 targets are

1 Note that text before the first headline will never be exported, so the first such target must be after the
first headline.

Chapter 4: Hyperlinks 21

To insert a link targeting a headline, in-buffer completion can be used. Just type a star
followed by a few optional letters into the buffer and press M-〈TAB〉. All headlines in the
current buffer will be offered as completions. See Section 4.4 [Handling links], page 22, for
more commands creating links.

Following a link pushes a mark onto Org-mode’s own mark ring. You can return to the
previous position with C-c &. Using this command several times in direct succession goes
back to positions recorded earlier.

4.2.1 Radio targets

You can configure Org-mode to link any occurrences of certain target names in normal
text. So without explicitly creating a link, the text connects to the target radioing its
position. Radio targets are enclosed by triple angular brackets. For example, a target ‘<<<My
Target>>>’ causes each occurrence of ‘my target’ in normal text to become activated as a
link. The Org-mode file is scanned automatically for radio targets only when the file is first
loaded into Emacs. To update the target list during editing, press C-c C-c with the cursor
on or at a target.

4.2.2 CamelCase words as links

Org-mode also supports CamelCase words as links. This feature is not turned on by
default because of the inconsistencies this system suffers from. It is also possible that this
feature will disappear entirely in a future version of Org-mode. To activate CamelCase
words as links, you need to customize the option org-activate-links. A CamelCase
word then leads to a text search such that ‘CamelCaseLink’ is equivalent to ‘[[camel case
link]]’.

4.3 External links

Org-mode supports links to files, websites, Usenet and email messages, and BBDB
database entries. External links are URL-like locators. They start with a short identi-
fying string followed by a colon. There can be no space after the colon. The following list
shows examples for each link type.

http://www.astro.uva.nl/~dominik on the web
file:/home/dominik/images/jupiter.jpg file, absolute path
file:papers/last.pdf file, relative path
news:comp.emacs Usenet link
mailto:adent@galaxy.net Mail link
vm:folder VM folder link
vm:folder#id VM message link
vm://myself@some.where.org/folder#id VM on remote machine
wl:folder WANDERLUST folder link
wl:folder#id WANDERLUST message link
mhe:folder MH-E folder link
mhe:folder#id MH-E message link

Chapter 4: Hyperlinks 22

rmail:folder RMAIL folder link
rmail:folder#id RMAIL message link
gnus:group GNUS group link
gnus:group#id GNUS article link
bbdb:Richard Stallman BBDB link
shell:ls *.org A shell command
elisp:(find-file-other-frame "Elisp.org") An elisp form to evaluate

A link should be enclosed in double brackets and may contain a descriptive text to be
displayed instead of the url (see Section 4.1 [Link format], page 20), for example:

[[http://www.gnu.org/software/emacs/][GNU Emacs]]

Org-mode also finds external links in the normal text and activates them as links. If
spaces must be part of the link (for example in ‘bbdb:Richard Stallman’), or you need to
remove ambiguities about the end of the link, enclose them in angular brackets.

4.4 Handling links

Org-mode provides methods to create a link in the correct syntax, to insert it into an
org-mode file, and to follow the link.

C-c l Store a link to the current location. This is a global command which can be
used in any buffer to create a link. The link will be stored for later insertion into
an Org-mode buffer (see below). For Org-mode files, if there is a ‘<<target>>’
at the cursor, the link points to the target. Otherwise it points to the current
headline. For VM, RMAIL, WANDERLUST, MH-E, GNUS and BBDB buffers,
the link will indicate the current article/entry. For W3 and W3M buffers, the
link goes to the current URL. For any other files, the link will point to the
file, with a search string (see Section 4.6 [Search options], page 24) pointing to
the contents of the current line. If there is an active region, the selected words
will form the basis of the search string. If the automatically created link is not
working correctly or accurately enough, you can write custom functions to select
the search string and to do the search for particular file types - see Section 4.7
[Custom searches], page 25. The key binding C-c l is only a suggestion - see
Section 1.2 [Installation], page 2.

C-c C-l Insert a link. This prompts for a link to be inserted into the buffer. You can
just type a link, using text for an internal link, or one of the link type prefixes
mentioned in the examples above. Through completion, all links stored during
the current session can be accessed2. The link will be inserted into the buffer,
along with a descriptive text. Note that you don’t have to use this command to
insert a link. Links in Org-mode are plain text, and you can type or paste them
straight into the buffer. By using this command, the links are automatically
enclosed in double brackets, and you will be asked for the optional descriptive
text. If the link is a ‘file:’ link and the linked file is located in the same

2 After insertion of a stored link, the link will be removed from the list of stored links. To keep it in the
list later use, use a triple C-u prefix to C-c C-l, or configure the option org-keep-stored-link-after-

insertion.

Chapter 4: Hyperlinks 23

directory as the current file or a subdirectory of it, the path of the file will be
inserted relative to the current directory.

C-u C-c C-l

When C-c C-l is called with a C-u prefix argument, a link to a file will be
inserted and you may use file name completion to select the name of the file.
The path to the file is inserted relative to the directory of the current org file, if
the linked file is in the current directory or in a subdirectory of it, or if the path
is written relative to the current directory using ‘../’. Otherwise an absolute
path is used, if possible with ‘~/’ for your home directory. You can force an
absolute path with two C-u prefixes.

C-c C-l with cursor on existing link
When the cursor is on an existing link, C-c C-l allows you to edit the link and
description parts of the link.

C-c C-o Open link at point. This will launch a web browser for URLs (using
browse-url-at-point), run vm/mh-e/wanderlust/rmail/gnus/bbdb for the
corresponding links, and execute the command in a shell link. When the cursor
is on an internal link, this commands runs the corresponding search. When
the cursor is on a TAG list in a headline, it creates the corresponding TAGS
view. If the cursor is on a time stamp, it compiles the agenda for that date.
Furthermore, it will visit text and remote files in ‘file:’ links with Emacs
and select a suitable application for local non-text files. Classification of files
is based on file extension only. See option org-file-apps. If you want to
override the default application and visit the file with Emacs, use a C-u prefix.

mouse-2

mouse-1 On links, mouse-2 will open the link just as C-c C-o would. Under Emacs 22,
also mouse-1 will follow a link.

mouse-3 Like mouse-2, but force file links to be opened with Emacs, and internal links
to be displayed in another window3.

C-c % Push the current position onto the mark ring, to be able to return easily. Com-
mands following an internal link do this automatically.

C-c & Jump back to a recorded position. A position is recorded by the commands
following internal links, and by C-c %. Using this command several times in
direct succession moves through a ring of previously recorded positions.

4.5 Link abbreviatons

Long URLs can be cumbersome to type, and often many similar links are needed in a
document. For this you can use link abbreviations. An abbreviated link looks like this

[[linkword::tag][description]]

where the tag is optional. Such abbreviations are resolved according to the information in
the variable org-link-abbrev-alist that relates the linkwords to replacement text. Here
is an example:

3 See the variable org-display-internal-link-with-indirect-buffer

Chapter 4: Hyperlinks 24

(setq org-link-abbrev-alist
’(("bugzilla" . "http://10.1.2.9/bugzilla/show_bug.cgi?id=")
("google" . "http://www.google.com/search?q=")
("ads" . "http://adsabs.harvard.edu/cgi-bin/

nph-abs_connect?author=%s&db_key=AST")))

If the replacement text contains the string ‘%s’, it will be replaced with the tag. Otherwise
the tag will be appended to the string in order to create the link. You may also specify a
function that will be called with the tag as the only argument to create the link.

With the above setting, you could link to a specific bug with [[bugzilla::129]], search
the web for OrgMode with [[google::OrgMode]] and find out what the Org-mode author
is doing besides Emacs hacking with [[ads::Dominik,C]].

If you need special abbreviations just for a single Org-mode buffer, you can define them
in the file with

#+LINK: bugzilla http://10.1.2.9/bugzilla/show_bug.cgi?id=
#+LINK: google http://www.google.com/search?q=%s

In-buffer completion see Section 12.1 [Completion], page 65 can be used after ‘[’ to complete
link abbreviations.

4.6 Search options in file links

File links can contain additional information to make Emacs jump to a particular location
in the file when following a link. This can be a line number or a search option after a double4

colon. For example, when the command C-c l creates a link (see Section 4.4 [Handling
links], page 22) to a file, it encodes the words in the current line as a search string that can
be used to find this line back later when following the link with C-c C-o.

Here is the syntax of the different ways to attach a search to a file link, together with
an explanation:

[[file:~/code/main.c::255]]
[[file:~/xx.org::My Target]]
[[file:~/xx.org::*My Target]]
[[file:~/xx.org::/regexp/]]

255 Jump to line 255.

My Target Search for a link target ‘<<My Target>>’, or do a text search for ‘my target’,
similar to the search in internal links, see Section 4.2 [Internal links], page 20.
In HTML export (see Section 10.2 [HTML export], page 55), such a file link will
become an HTML reference to the corresponding named anchor in the linked
file.

*My Target
In an Org-mode file, restrict search to headlines.

/regexp/ Do a regular expression search for regexp. This uses the Emacs command
occur to list all matches in a separate window. If the target file is in Org-
mode, org-occur is used to create a sparse tree with the matches.

4 For backward compatibility, line numbers can also follow a single colon.

Chapter 4: Hyperlinks 25

As a degenerate case, a file link with an empty file name can be used to search the
current file. For example, [[file:::find me]] does a search for ‘find me’ in the current
file, just as ‘[[find me]]’ would.

4.7 Custom Searches

The default mechanism for creating search strings and for doing the actual search related
to a file link may not work correctly in all cases. For example, BibTeX database files have
many entries like ‘year="1993"’ which would not result in good search strings, because the
only unique identification for a BibTeX entry is the citation key.

If you come across such a problem, you can write custom functions to set the right
search string for a particular file type, and to do the search for the string in the file.
Using add-hook, these functions need to be added to the hook variables org-create-
file-search-functions and org-execute-file-search-functions. See the docstring
for these variables for more information. Org-mode actually uses this mechanism for BibTEX
database files, and you can use the corresponding code as an implementation example.
Search for ‘BibTeX links’ in the source file.

4.8 Remember

Another way to create org entries with links to other files is through the Remember pack-
age by John Wiegley. Remember lets you store quick notes with little interruption of your
work flow. See http://www.emacswiki.org/cgi-bin/wiki/RememberMode for more infor-
mation. The notes produced by Remember can be stored in different ways, and Org-mode
files are a good target. Org-mode allows you to file away notes either to a default file, or
directly to the correct location in your Org-mode outline tree. The following customization
will tell Remember to use org files as target, and to create annotations compatible with
Org-mode links.

(setq org-directory "~/path/to/my/orgfiles/")
(setq org-default-notes-file "~/.notes")
(setq remember-annotation-functions ’(org-remember-annotation))
(setq remember-handler-functions ’(org-remember-handler))
(add-hook ’remember-mode-hook ’org-remember-apply-template)

In combination with Org-mode, you can use templates to generate different types of
remember notes. For example, if you would like to use one template to create general
TODO entries, and another one for journal entries, you could use:

(setq org-remember-templates
’((?t "* TODO %?\n %i\n %a" "~/org/TODO.org")
(?j "* %U %?\n\n %i\n %a" "~/org/JOURNAL.org")))

In these entries, the character specifies how to select the template, the first string speci-
fies the template, and the (optional) second string specifies a default file (overruling org-
default-notes-file) as a target for this note.

When you call M-x remember to remember something, org will prompt for a key to select
the template and then prepare the buffer like

http://www.emacswiki.org/cgi-bin/wiki/RememberMode

Chapter 4: Hyperlinks 26

* TODO
[[file:link to where you called remember]]

or
* [2006-03-21 Tue 15:37]

[[file:link to where you called remember]]

See the variable org-remember-templates for more details.
When you are finished composing a note with remember, you have to press C-c C-c to

file the note away. The handler first prompts for a target file - if you press 〈RET〉, the value
of org-default-notes-file is used. Then the command offers the headings tree of the
selected file. You can either immediately press 〈RET〉 to get the note appended to the file.
Or you can use vertical cursor motion (〈up〉 and 〈down〉) and visibility cycling (〈TAB〉) to find
a better place. Pressing 〈RET〉 or 〈left〉 or 〈right〉 leads to the following result.
Cursor position Key Note gets inserted
buffer-start 〈RET〉 as level 2 heading at end of file
on headline 〈RET〉 as sublevel of the heading at cursor

〈left〉 as same level, before current heading
〈right〉 as same level, after current heading

not on headline 〈RET〉 at cursor position, level taken from context. Or use prefix arg
to specify level manually.

So a fast way to store the note is to press C-c C-c 〈RET〉 〈RET〉 to append it to the default
file. Even shorter would be C-u C-c C-c, which does the same without even showing the
tree. But with little extra effort, you can push it directly to the correct location.

Before inserting the text into a tree, the function ensures that the text has a headline, i.e.
a first line that starts with a ‘*’. If not, a headline is constructed from the current date and
some additional data. If the variable org-adapt-indentation is non-nil, the entire text is
also indented so that it starts in the same column as the headline (after the asterisks).

Chapter 5: TODO items 27

5 TODO items

Org-mode does not maintain TODO lists as a separate document. TODO items are an
integral part of the notes file, because TODO items usually come up while taking notes!
With Org-mode, you simply mark any entry in a tree as being a TODO item. In this way,
the information is not duplicated, and the entire context from which the item emerged is
always present when you check.

Of course, this technique causes TODO items to be scattered throughout your file. Org-
mode provides methods to give you an overview over all things you have to do.

5.1 Basic TODO functionality

Any headline can become a TODO item by starting it with the word TODO, for example:
*** TODO Write letter to Sam Fortune

The most important commands to work with TODO entries are:

C-c C-t Rotate the TODO state of the current item between
,-> (unmarked) -> TODO -> DONE --.
’--------------------------------’

The same rotation can also be done “remotely” from the timeline and agenda
buffers with the t command key (see Section 8.5 [Agenda commands], page 45).

S-〈right〉
S-〈left〉 Select the following/preceding TODO state, similar to cycling. Mostly useful if

more than two TODO states are possible (see Section 5.2 [TODO extensions],
page 27).

C-c C-v View TODO items in a sparse tree (see Section 2.7 [Sparse trees], page 8). Folds
the entire buffer, but shows all TODO items and the headings hierarchy above
them. With prefix arg, show also the DONE entries. With numerical prefix N,
show the tree for the Nth keyword in the variable org-todo-keywords.

C-c a t Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 8 [Agenda views], page 40) into a single buffer. The buffer is in
agenda-mode, so there are commands to examine and manipulate the TODO
entries directly from that buffer (see Section 8.5 [Agenda commands], page 45).
See Section 8.3.2 [Global TODO list], page 42, for more information.

5.2 Extended use of TODO keywords

The default implementation of TODO entries is just two states: TODO and DONE.
You can, however, use the TODO feature for more complicated things by configuring the
variables org-todo-keywords and org-todo-interpretation. Using special setup, you
can even use TODO keywords in different ways in different org files.

Note that tags are another way to classify headlines in general and TODO items in
particular (see Chapter 7 [Tags], page 37).

Chapter 5: TODO items 28

5.2.1 TODO keywords as workflow states

You can use TODO keywords to indicate different states in the process of working on
an item, for example:

(setq org-todo-keywords ’("TODO" "FEEDBACK" "VERIFY" "DONE")
org-todo-interpretation ’sequence)

Changing these variables only becomes effective in a new Emacs session. With this
setup, the command C-c C-t will cycle an entry from TODO to FEEDBACK, then to
VERIFY, and finally to DONE. You may also use a prefix argument to quickly select a
specific state. For example C-3 C-c C-t will change the state immediately to VERIFY. If
you define many keywords, you can use in-buffer completion (see Section 12.1 [Completion],
page 65) to insert these words into the buffer.

5.2.2 TODO keywords as types

The second possibility is to use TODO keywords to indicate different types of action
items. For example, you might want to indicate that items are for “work” or “home”.
If you are into David Allen’s Getting Things DONE, you might want to use todo types
‘NEXTACTION’, ‘WAITING’, ‘MAYBE’. Or, when you work with several people on a single
project, you might want to assign action items directly to persons, by using their names as
TODO keywords. This would be set up like this:

(setq org-todo-keywords ’("Fred" "Sara" "Lucy" "Mike" "DONE")
org-todo-interpretation ’type)

In this case, different keywords do not indicate a sequence, but rather different types.
So it is normally not useful to change from one type to another. Therefore, in this case
the behavior of the command C-c C-t is changed slightly1. When used several times in
succession, it will still cycle through all names. But when you return to the item after some
time and execute C-c C-t again, it will switch from each name directly to DONE. Use prefix
arguments or completion to quickly select a specific name. You can also review the items of
a specific TODO type in a sparse tree by using a numeric prefix to C-c C-v. For example,
to see all things Lucy has to do, you would use C-3 C-c C-v. To collect Lucy’s items from
all agenda files into a single buffer, you would use the prefix arg as well when creating the
global todo list: C-3 C-c t.

5.2.3 Setting up TODO keywords for individual files

It can be very useful to use different aspects of the TODO mechanism in different files,
which is not possible with the global settings described above. For file-local settings, you
need to add special lines to the file which set the keywords and interpretation for that file
only. For example, to set one of the two examples discussed above, you need one of the
following lines, starting in column zero anywhere in the file:

#+SEQ_TODO: TODO FEEDBACK VERIFY DONE
#+TYP_TODO: Fred Sara Lucy Mike DONE

1 This is also true for the t command in the timeline and agenda buffers.

Chapter 5: TODO items 29

To make sure you are using the correct keyword, type ‘#+’ into the buffer and then use
M-〈TAB〉 completion.

Remember that the last keyword must always mean that the item is DONE (although
you may use a different word). Also note that in each file, only one of the two aspects
of TODO keywords can be used. After changing one of these lines, use C-c C-c with the
cursor still in the line to make the changes known to Org-mode2.

If you want to use very many keywords, for example when working with a large group
of people, you may split the names over several lines:

#+TYP_TODO: Fred Sara Lucy Mike
#+TYP_TODO: Luis George Jules Jessica
#+TYP_TODO: Kim Arnold Peter
#+TYP_TODO: DONE

5.3 Priorities

If you use Org-mode extensively to organize your work, you may end up with a number
of TODO entries so large that you’d like to prioritize them. This can be done by placing a
priority cookie into the headline, like this

*** TODO [#A] Write letter to Sam Fortune

With its standard setup, Org-mode supports priorities ‘A’, ‘B’, and ‘C’. ‘A’ is the highest
priority. An entry without a cookie is treated as priority ‘B’. Priorities make a difference
only in the agenda (see Section 8.3.1 [Weekly/Daily agenda], page 41).

C-c , Set the priority of the current headline. The command prompts for a priority
character ‘A’, ‘B’ or ‘C’. When you press 〈SPC〉 instead, the priority cookie is
removed from the headline. The priorities can also be changed “remotely” from
the timeline and agenda buffer with the , command (see Section 8.5 [Agenda
commands], page 45).

S-〈up〉
S-〈down〉 Increase/decrease priority of current headline. Note that these keys are also

used to modify time stamps (see Section 6.2 [Creating timestamps], page 32).
Furthermore, these keys are also used by CUA-mode (see Section 12.7.2 [Con-
flicts], page 70).

5.4 Breaking tasks down into subtasks

It is often advisable to break down large tasks into smaller, managable subtasks. You
can do this by creating an outline tree below a TODO item, with detailed subtasks on
the tree3. Another possibility is the use of checkboxes to identify (a hierarchy of) a large
number of subtasks (see Section 5.5 [Checkboxes], page 30).

2 Org-mode parses these lines only when Org-mode is activated after visiting a file. C-c C-c with the
cursor in a line starting with ‘#+’ is simply restarting Org-mode for the current buffer.

3 To keep subtasks out of the global TODO list, see the org-agenda-todo-list-sublevels.

Chapter 5: TODO items 30

5.5 Checkboxes

Every item in a plain list (see Section 2.8 [Plain lists], page 9) can be made a checkbox
by starting it with the string ‘[]’. This feature is similar to TODO items (see Chapter 5
[TODO items], page 27), but more lightweight. Checkboxes are not included into the global
TODO list, so they are often great to split a task into a number of simple steps. Or you
can use them in a shopping list. To toggle a checkbox, use C-c C-c, or try Piotr Zielinski’s
‘org-mouse.el’. Here is an example of a checkbox list.

* TODO Organize party [3/6]
- call people [1/3]
- [] Peter
- [X] Sarah
- [] Sam

- [X] order food
- [] think about what music to play
- [X] talk to the neighbors

The ‘[3/6]’ and ‘[1/3]’ in the first and second line are cookies indicating how many
checkboxes are present in this entry, and how many of them have been checked off. This
can give you an idea on how many checkboxes remain, even without opening a folded entry.
The cookies can be placed into a headline or into (the first line of) a plain list item. Each
cookie covers all checkboxes structurally below that headline/item. You have to insert the
cookie yourself by typing either ‘[/]’ or ‘[%]’. In the first case you get an ‘n out of m’
result, in the second case you get information about the percentage of checkboxes checked
(in the above example, this would be ‘[50%]’ and ‘[33%], respectively’).
The following commands work with checkboxes:

C-c C-c Toggle checkbox at point.

C-c C-x C-b

Toggle checkbox at point.
− If there is an active region, toggle the first checkbox in the region and set

all remaining boxes to the same status as the first. If you want to toggle
all boxes in the region independently, use a prefix argument.

− If the cursor is in a headline, toggle checkboxes in the region between this
headline and the next (so not the entire subtree).

− If there is no active region, just toggle the checkbox at point.

M-S-〈RET〉 Insert a new item with a checkbox. This works only if the cursor is already in
a plain list item (see Section 2.8 [Plain lists], page 9).

C-c # Update the checkbox statistics in the current outline entry. When called with
a C-u prefix, update the entire file. Checkbox statistic cookies are updated
automatically if you toggle checkboxes with C-c C-c and make new ones with
M-S-〈RET〉. If you delete boxes or add/change them by hand, use this command
to get things back into synch. Or simply toggle any checkbox twice with C-c

C-c.

Chapter 6: Timestamps 31

6 Timestamps

Items can be labeled with timestamps to make them useful for project planning.

6.1 Time stamps, deadlines and scheduling

A time stamp is a specification of a date (possibly with time) in a special format, either
‘<2003-09-16 Tue>’ or ‘<2003-09-16 Tue 09:39>’1. A time stamp can appear anywhere in
the headline or body of an org-tree entry. Its presence allows entries to be shown on specific
dates in the agenda (see Section 8.3.1 [Weekly/Daily agenda], page 41). We distinguish:

Plain time stamp
A simple time stamp just assigns a date/time to an item. This is just like
writing down an appointment in a paper agenda, or like writing down an event
in a diary, when you want to take note of when something happened. In the
timeline and agenda displays, the headline of an entry associated with a plain
time stamp will be shown exactly on that date.

* Meet Peter at the movies <2006-11-01 Wed 19:15>

Inactive time stamp
Just like a plain time stamp, but with square brackets instead of angular ones.
These time stamps are inactive in the sense that they do not trigger an entry
to show up in the agenda.

* Gillian comes late for the fifth time [2006-11-01 Wed]

Time stamp range
Two time stamps connected by ‘--’ denote a time range. The headline will be
shown on the first and last day of the range, and on any dates that are displayed
and fall in the range. Here is an example:

** Meeting in Amsterdam
<2004-08-23 Mon>--<2004-08-26 Thu>

Time stamp with SCHEDULED keyword
If a time stamp is preceded by the word ‘SCHEDULED:’, it means you are planning
to start working on that task on the given date. So this is not about recording
an event, but about planning your work. The headline will be listed under the
given date2. In addition, a reminder that the scheduled date has passed will be
present in the compilation for today, until the entry is marked DONE. I.e., the
task will automatically be forwarded until completed.

*** TODO Call Trillian for a date on New Years Eve.
SCHEDULED: <2004-12-25 Sat>

Time stamp with DEADLINE keyword
If a time stamp is preceded by the word ‘DEADLINE:’, the task (most likely
a TODO item) is supposed to be finished on that date, and it will be listed

1 This is the standard ISO date/time format. If you cannot get used to these, see Section 6.3 [Custom
time format], page 34

2 It will still be listed on that date after it has been marked DONE. If you don’t like this, set the variable
org-agenda-skip-scheduled-if-done.

Chapter 6: Timestamps 32

then. In addition, the compilation for today will carry a warning about the
approaching or missed deadline, starting org-deadline-warning-days before
the due date, and continuing until the entry is marked DONE. An example:

*** TODO write article about the Earth for the Guide
The editor in charge is [[bbdb:Ford Prefect]]
DEADLINE: <2004-02-29 Sun>

Time stamp with CLOSED keyword
When org-log-done is non-nil, Org-mode will automatically insert a special
time stamp each time a TODO entry is marked done (see Section 6.4 [Progress
logging], page 34). This time stamp is enclosed in square brackets instead of
angular brackets.

Time range with CLOCK keyword
When using the clock to time the work that is being done on specific items,
time ranges preceded by the CLOCK keyword are inserted automatically into
the file. The time stamps are enclosed in square brackets instead of angular
brackets. See Section 6.4.2 [Clocking work time], page 35.

6.2 Creating timestamps

For Org-mode to recognize time stamps, they need to be in the specific format. All
commands listed below produce time stamps in the correct format.

C-c . Prompt for a date and insert a corresponding time stamp. When the cursor is
at a previously used time stamp, it is updated to NOW. When this command
is used twice in succession, a time range is inserted.

C-u C-c . Like C-c ., but use the alternative format which contains date and time. The
default time can be rounded to multiples of 5 minutes, see the option org-
time-stamp-rounding-minutes.

C-c ! Like C-c ., but insert an inactive time stamp not triggering the agenda.

C-c < Insert a time stamp corresponding to the cursor date in the Calendar.

C-c > Access the Emacs calendar for the current date. If there is a timestamp in the
current line, goto the corresponding date instead.

C-c C-o Access the agenda for the date given by the time stamp or -range at point (see
Section 8.3.1 [Weekly/Daily agenda], page 41).

C-c C-d Insert ‘DEADLINE’ keyword along with a stamp. The insertion will happen in
the line directly following the headline.

C-c C-w Create a sparse tree with all deadlines that are either past-due, or which will
become due within org-deadline-warning-days. With C-u prefix, show all
deadlines in the file. With a numeric prefix, check that many days. For example,
C-1 C-c C-w shows all deadlines due tomorrow.

C-c C-s Insert ‘SCHEDULED’ keyword along with a stamp. The insertion will happen
in the line directly following the headline. Any CLOSED timestamp will be
removed.

Chapter 6: Timestamps 33

S-〈left〉
S-〈right〉 Change date at cursor by one day. These key bindings conflict with CUA-mode

(see Section 12.7.2 [Conflicts], page 70).

S-〈up〉
S-〈down〉 Change the item under the cursor in a timestamp. The cursor can be on a

year, month, day, hour or minute. Note that if the cursor is in a headline
and not at a time stamp, these same keys modify the priority of an item. (see
Section 5.3 [Priorities], page 29). The key bindings also conflict with CUA-mode
(see Section 12.7.2 [Conflicts], page 70).

C-c C-y Evaluate a time range by computing the difference between start and end.
With prefix arg, insert result after the time range (in a table: into the following
column).

6.2.1 The date/time prompt

When Org-mode prompts for a date/time, the prompt suggests to enter an ISO date.
But it will in fact accept any string containing some date and/or time information. You can,
for example, use C-y to paste a (possibly multi-line) string copied from an email message.
Org-mode will find whatever information is in there and will replace anything not specified
with the current date and time. For example:

3-2-5 --> 2003-02-05
feb 15 --> currentyear-02-15
sep 12 9 --> 2009-09-12
12:45 --> today 12:45
22 sept 0:34 --> currentyear-09-22 0:34
12 --> currentyear-currentmonth-12
Fri --> nearest Friday (today or later)
+4 --> 4 days from now (if +N is the only thing given)

The function understands English month and weekday abbreviations. If you want to use
unabbreviated names and/or other languages, configure the variables parse-time-months
and parse-time-weekdays.

Parallel to the minibuffer prompt, a calendar is popped up3. You can control the calendar
fully from the minibuffer:

< Scroll calendar backwards by one month.

> Scroll calendar forwards by one month.

mouse-1 Select date by clicking on it.

S-〈right〉 One day forward.

S-〈left〉 One day back.

S-〈down〉 One week forward.

S-〈up〉 One week back.

3 If you don’t need/want the calendar, configure the variable org-popup-calendar-for-date-prompt.

Chapter 6: Timestamps 34

M-S-〈right〉 One month forward.

M-S-〈left〉 One month back.

〈RET〉 Choose date in calendar (only if nothing was typed into minibuffer).

6.3 Custom time format

Org-mode uses the standard ISO notation for dates and times as it is defined in ISO
8601. If you cannot get used to this and require another representation of date and time to
keep you happy, you can get it by customizing the variables org-display-custom-times
and org-time-stamp-custom-formats.

C-c C-x C-t

Toggle the display of custom formats for dates and times.

Org-mode needs the default format for scanning, so the custom date/time format does not
replace the default format - instead it is put over the default format using text properties.
This has the following consequences:
• You cannot place the cursor onto a time stamp anymore, only before or after.
• The S-〈up〉/〈down〉 keys can no longer be used to adjust each component of a time stamp.

If the cursor is at the beginning of the stamp, S-〈up〉/〈down〉 will change the stamp by
one day, just like S-〈left〉/〈right〉. At the end of the stamp, the time will be changed by
one minute.

• When you delete a time stamp character-by-character, it will only disappear from
the buffer after all (invisible) characters belonging to the ISO timestamp have been
removed.

• If the custom time stamp format is longer than the default and you are using dates in
tables, table alignment will be messed up. If the custom format is shorter, things do
work as expected.

6.4 Progress Logging

Org-mode can automatically record a time stamp when you mark a TODO item as
DONE. You can also measure precisely the time you spent on specific items in a project by
starting and stopping a clock when you start and stop working on an aspect of a project.

6.4.1 Closing items

If you want to keep track of when a certain TODO item was finished, turn on logging
with

(setq org-log-done t)

Then each time you turn a TODO entry into DONE using either C-c C-t in the Org-mode
buffer or t in the agenda buffer, a line ‘CLOSED: [timestamp]’ will be inserted just after the
headline. If you turn the entry back into a TODO item again through further state cycling,
that line will be removed again. In the timeline (see Section 8.3.4 [Timeline], page 43) and

Chapter 6: Timestamps 35

in the agenda (see Section 8.3.1 [Weekly/Daily agenda], page 41), you can then use the l

key to display the TODO items closed on each day, giving you an overview of what has been
done on a day. See the variable org-log-done for the possibility to record an additional
note together with a timestamp.

6.4.2 Clocking work time

Org-mode allows you to clock the time you spent on specific tasks in a project. When
you start working on an item, you can start the clock. When you stop working on that task,
or when you mark the task done, the clock is stopped and the corresponding time interval
is recorded. It also computes the total time spent on each subtree of a project.

C-c C-x C-i

Start the clock on the current item (clock-in). This inserts the CLOCK keyword
together with a timestamp.

C-c C-x C-o

Stop the clock (clock-out). The inserts another timestamp at the same location
where the clock was last started. It also directly computes the resulting time
in inserts it after the time range as ‘=> HH:MM’. See the variable org-log-done
for the possibility to record an additional note together with the clock-out time
stamp.

C-c C-y Recompute the time interval after changing one of the time stamps. This is
only necessary if you edit the time stamps directly. If you change them with
S-〈cursor〉 keys, the update is automatic.

C-c C-t Changing the TODO state of an item to DONE automatically stops the clock
if it is running in this same item.

C-c C-x C-x

Cancel the current clock. This is useful if a clock was started by mistake, or if
you ended up working on something else.

C-c C-x C-d

Display time summaries for each subtree in the current buffer. This puts over-
lays at the end of each headline, showing the total time recorded under that
heading, including the time of any subheadings. You can use visibility cycling
to study the tree, but the overlays disappear when you change the buffer (see
variable org-remove-highlights-with-change) or press C-c C-c.

C-c C-x C-r

Insert a dynamic block (see Section A.2 [Dynamic blocks], page 72) containing
a clock report as an org-mode table into the current file.

#+BEGIN: clocktable :maxlevel 2 :emphasize nil

#+END: clocktable

If such a block already exists, its content is replaced by the new table. The
‘BEGIN’ line can specify options:

Chapter 6: Timestamps 36

:maxlevels Maximum level depth to which times are listed in the table.
:emphasize When t, emphasize level one and level two items
:block The time block to consider. This block is specified relative

to the current time and may be any of these keywords:
today, yesterday, thisweek, lastweek,
thismonth, lastmonth, thisyear, or lastyear.

:tstart A time string specifying when to start considering times
:tend A time string specifying when to stop considering times

So to get a clock summary for the current day, you could write
#+BEGIN: clocktable :maxlevel 2 :block today

#+END: clocktable

and to use a specific time range you could write4

#+BEGIN: clocktable :tstart "<2006-08-10 Thu 10:00>"
:tend "<2006-08-10 Thu 12:00>"

#+END: clocktable

C-u C-c C-x C-u

Update all dynamic blocks (see Section A.2 [Dynamic blocks], page 72). This
is useful if you have several clocktable blocks in a buffer.

The l key may be used in the timeline (see Section 8.3.4 [Timeline], page 43) and in the
agenda (see Section 8.3.1 [Weekly/Daily agenda], page 41) to show which tasks have been
worked on or closed during a day.

4 Note that all parameters must be specified in a single line - the line is broken here only to fit it onto the
manual.

Chapter 7: Tags 37

7 Tags

If you wish to implement a system of labels and contexts for cross-correlating information,
an excellent way is to assign tags to headlines. Org-mode has extensive support for using
tags.

Every headline can contain a list of tags, at the end of the headline. Tags are normal
words containing letters, numbers, ‘_’, and ‘@’. Tags must be preceded and followed by a
single colon; like ‘:WORK:’. Several tags can be specified like ‘:WORK:URGENT:’.

7.1 Tag inheritance

Tags make use of the hierarchical structure of outline trees. If a heading has a certain
tag, all subheadings will inherit the tag as well. For example, in the list

* Meeting with the French group :WORK:
** Summary by Frank :BOSS:NOTES:
*** TODO Prepare slides for him :ACTION:

the final heading will have the tags ‘:WORK:’, ‘:BOSS:’, ‘:NOTES:’, and ‘:ACTION:’. When
executing tag searches and Org-mode finds that a certain headline matches the search
criterion, it will not check any sublevel headline, assuming that these likely also match, and
that the list of matches can become very long. This may not be what you want, however, and
you can influence inheritance and searching using the variables org-use-tag-inheritance
and org-tags-match-list-sublevels.

7.2 Setting tags

Tags can simply be typed into the buffer at the end of a headline. After a colon, M-〈TAB〉
offers completion on tags. There is also a special command for inserting tags:

C-c C-c Enter new tags for the current headline. Org-mode will either offer completion
or a special single-key interface for setting tags, see below. After pressing 〈RET〉,
the tags will be inserted and aligned to org-tags-column. When called with
a C-u prefix, all tags in the current buffer will be aligned to that column, just
to make things look nice. TAGS are automatically realigned after promotion,
demotion, and TODO state changes (see Section 5.1 [TODO basics], page 27).

Org will support tag insertion based on a list of tags. By default this list is constructed
dynamically, containing all tags currently used in the buffer. You may also globally specify
a hard list of tags with the variable org-tag-alist. Finally you can set the default tags
for a given file with lines like

#+TAGS: @WORK @HOME @TENNISCLUB
#+TAGS: Laptop Car PC Sailboat

If you have globally defined your preferred set of tags using the variable org-tag-alist,
but would like to use a dynamic tag list in a specific file: Just add an empty TAGS option
line to that file:

Chapter 7: Tags 38

#+TAGS:

The default support method for entering tags is minibuffer completion. However, Org-
mode also implements a much better method: fast tag selection. This method allows to
select and deselect tags with a single key per tag. To function efficiently, you should assign
unique keys to most tags. This can be done globally with

(setq org-tag-alist ’(("@WORK" . ?w) ("@HOME" . ?h) ("Laptop" . ?l)))

or on a per-file basis with

#+TAGS: @WORK(w) @HOME(h) @TENNISCLUB(t) Laptop(l) PC(p)

You can also group together tags that are mutually exclusive. With curly braces1

#+TAGS: { @WORK(w) @HOME(h) @TENNISCLUB(t) } Laptop(l) PC(p)

you indicate that at most one of ‘@WORK’, ‘@HOME’, and ‘@TENNISCLUB’ should be selected.

Don’t forget to press C-c C-c with the cursor in one of these lines to activate any changes.

If at least one tag has a selection key, pressing C-c C-c will automatically present you
with a special interface, listing inherited tags, the tags of the current headline, and a list of
all legal tags with corresponding keys2. In this interface, you can use the following keys:

a-z... Pressing keys assigned to tags will add or remove them from the list of tags in
the current line. Selecting a tag in a group of mutually exclusive tags will turn
off any other tags from that group.

〈TAB〉 Enter a tag in the minibuffer, even if the tag is not in the predefined list. You
will be able to complete on all tags present in the buffer.

〈SPC〉 Clear all tags for this line.

〈RET〉 Accept the modified set.

C-g Abort without installing changes.

q If q is not assigned to a tag, it aborts like C-g.

! Turn off groups of mutually exclusive tags. Use this to (as an exception) assign
several tags from such a group.

C-c Toggle auto-exit after the next change (see below).

This method lets you assign tags to a headline with very few keys. With the above setup,
you could clear the current tags and set ‘@HOME’, ‘Laptop’ and ‘PC’ tags with just the
following keys: C-c C-c 〈SPC〉 h l p 〈RET〉. Switching from ‘@HOME’ to ‘@WORK’ would be done
with C-c C-c w 〈RET〉 or alternatively with C-c C-c C-c w. Adding the non-predefined tag
‘Sarah’ could be done with C-c C-c 〈TAB〉 S a r a h 〈RET〉 〈RET〉.

If you find that most of the time, you need only a single keypress to modify your list
of tags, set the variable org-fast-tag-selection-single-key. Then you no longer have
to press 〈RET〉 to exit fast tag selection - it will immediately exit after the first change. If
you then occasionally need more keys, press C-c to turn off auto-exit for the current tag
selection process.

1 In org-mode-alist use ’(:startgroup) and ’(:endgroup), respectively. Several groups are allowed.
2 Keys will automatically be assigned to tags which have no configured keys.

Chapter 7: Tags 39

7.3 Tag searches

Once a tags system has been set up, it can be used to collect related information into
special lists.

C-c \ Create a sparse tree with all headlines matching a tags search. With a C-u

prefix argument, ignore headlines that are not a TODO line.

C-c a m Create a global list of tag matches from all agenda files. See Section 8.3.3
[Matching headline tags], page 43.

C-c a M Create a global list of tag matches from all agenda files, but check only TODO
items and force checking subitems (see variable org-tags-match-list-
sublevels).

A tags search string can use Boolean operators ‘&’ for AND and ‘|’ for OR. ‘&’ binds
more strongly than ‘|’. Parenthesis are currently not implemented. A tag may also be
preceded by ‘-’, to select against it, and ‘+’ is syntactic sugar for positive selection. The
AND operator ‘&’ is optional when ‘+’ or ‘-’ is present. Examples:

‘+WORK-BOSS’
Select headlines tagged ‘:WORK:’, but discard those also tagged ‘:BOSS:’.

‘WORK|LAPTOP’
Selects lines tagged ‘:WORK:’ or ‘:LAPTOP:’.

‘WORK|LAPTOP&NIGHT’
Like before, but require the ‘:LAPTOP:’ lines to be tagged also ‘NIGHT’.

If you are using multi-state TODO keywords (see Section 5.2 [TODO extensions],
page 27), it can be useful to also match on the TODO keyword. This can be done by
adding a condition after a slash to a tags match. The syntax is similar to the tag matches,
but should be applied with consideration: For example, a positive selection on several
TODO keywords can not meaningfully be combined with boolean AND. However, negative
selection combined with AND can be meaningful. To make sure that only lines are checked
that actually have any TODO keyword, use C-c a M, or equivalently start the todo part
after the slash with ‘!’. Examples:

‘WORK/WAITING’
Select ‘:WORK:’-tagged TODO lines with the specific TODO keyword ‘WAITING’.

‘WORK/!-WAITING-NEXT’
Select ‘:WORK:’-tagged TODO lines that are neither ‘WAITING’ nor ‘NEXT’

‘WORK/+WAITING|+NEXT’
Select ‘:WORK:’-tagged TODO lines that are either ‘WAITING’ or ‘NEXT’.

Any element of the tag/todo match can be a regular expression - in this case it must be
enclosed in curly braces. For example, ‘WORK+{^BOSS.*}’ matches headlines that contain
the tag ‘WORK’ and any tag starting with ‘BOSS’.

You can also require a headline to be of a certain level, by writing instead of any TAG
an expression like ‘LEVEL=3’. For example, a search ‘+LEVEL=3+BOSS/-DONE’ lists all level
three headlines that have the tag BOSS and are not marked witht the todo keyword DONE.

Chapter 8: Agenda Views 40

8 Agenda Views

Due to the way Org-mode works, TODO items, time-stamped items, and tagged head-
lines can be scattered throughout a file or even a number of files. To get an overview over
open action items, or over events that are important for a particular date, this information
must be collected, sorted and displayed in an organized way.

Org-mode can select items based on various criteria, and display them in a separate
buffer. Six different view types are provided:

• an agenda that is like a calendar and shows information for specific dates,

• a TODO list that covers all unfinished action items,

• a tags view, showings headlines based on the tags associated them,

• a timeline view that shows all events in a single Org-mode file, in time-sorted view,

• a stuck projects view showing projects that currently don’t move along, and

• custom views that are special tag/keyword searches and combinations of different views.

The extracted information is displayed in a special agenda buffer. This buffer is read-only,
but provides commands to visit the corresponding locations in the original Org-mode files,
and even to edit these files remotely.

Two variables control how the agenda buffer is displayed and whether the window con-
figuration is restored when the agenda exits: org-agenda-window-setup and org-agenda-
restore-windows-after-quit.

8.1 Agenda files

The information to be shown is collected from all agenda files, the files listed in the
variable org-agenda-files1. Thus even if you only work with a single Org-mode file, this
file should be put into that list2. You can customize org-agenda-files, but the easiest
way to maintain it is through the following commands

C-c [Add current file to the list of agenda files. The file is added to the front of the
list. If it was already in the list, it is moved to the front. With prefix arg, file
is added/moved to the end.

C-c] Remove current file from the list of agenda files.

C-, Cycle through agenda file list, visiting one file after the other.

The Org menu contains the current list of files and can be used to visit any of them.

1 If the value of that variable is not a list, but a single file name, then the list of agenda files will be
maintained in that external file.

2 When using the dispatcher, pressing 1 before selecting a command will actually limit the command to
the current file, and ignore org-agenda-files until the next dispatcher command.

Chapter 8: Agenda Views 41

8.2 The agenda dispatcher

The views are created through a dispatcher that should be bound to a global key, for
example C-c a (see Section 1.2 [Installation], page 2). In the following we will assume
that C-c a is indeed how the dispatcher is accessed and list keyboard access to commands
accordingly. After pressing C-c a, an additional letter is required to execute a command.
The dispatcher offers the following default commands:

a Create the calendar-like agenda (see Section 8.3.1 [Weekly/Daily agenda],
page 41).

t / T Create a list of all TODO items (see Section 8.3.2 [Global TODO list], page 42).

m / M Create a list of headlines matching a TAGS expression (see Section 8.3.3 [Match-
ing headline tags], page 43).

L Create the timeline view for the current buffer (see Section 8.3.4 [Timeline],
page 43).

/ ! Create a list of stuck projects (see Section 8.3.5 [Stuck projects], page 43).

1 Restrict an agenda command to the current buffer. After pressing 1, you still
need to press the character selecting the command.

0 If there is an active region, restrict the following agenda command to the region.
Otherwise, restrict it to the current subtree. After pressing 0, you still need to
press the character selecting the command.

You can also define custom commands that will be accessible through the dispatcher, just
like the default commands. This includes the possibility to create extended agenda buffers
that contain several blocks together, for example the weekly agenda, the global TODO list
and a number of special tags matches. See Section 8.6 [Custom agenda views], page 48.

8.3 The built-in agenda views

In this section we describe the built-in views.

8.3.1 The weekly/daily agenda

The purpose of the weekly/daily agenda is to act like a page of a paper agenda, showing
all the tasks for the current week or day.

C-c a a Compile an agenda for the current week from a list of org files. The agenda
shows the entries for each day. With a C-u prefix (or when the variable org-
agenda-include-all-todo is t), all unfinished TODO items (including those
without a date) are also listed at the beginning of the buffer, before the first
date.

Remote editing from the agenda buffer means, for example, that you can change the
dates of deadlines and appointments from the agenda buffer. The commands available in
the Agenda buffer are listed in Section 8.5 [Agenda commands], page 45.

Chapter 8: Agenda Views 42

Calendar/Diary integration

Emacs contains the calendar and diary by Edward M. Reingold. The calendar displays
a three-month calendar with holidays from different countries and cultures. The diary
allows you to keep track of anniversaries, lunar phases, sunrise/set, recurrent appointments
(weekly, monthly) and more. In this way, it is quite complementary to Org-mode. It can
be very useful to combine output from Org-mode with the diary.

In order to include entries from the Emacs diary into Org-mode’s agenda, you only need
to customize the variable

(setq org-agenda-include-diary t)

After that, everything will happen automatically. All diary entries including holidays,
anniversaries etc will be included in the agenda buffer created by Org-mode. 〈SPC〉, 〈TAB〉,
and 〈RET〉 can be used from the agenda buffer to jump to the diary file in order to edit
existing diary entries. The i command to insert new entries for the current date works in
the agenda buffer, as well as the commands S, M, and C to display Sunrise/Sunset times,
show lunar phases and to convert to other calendars, respectively. c can be used to switch
back and forth between calendar and agenda.

8.3.2 The global TODO list

The global TODO list contains all unfinished TODO items, formatted and collected into
a single place.

C-c a t Show the global TODO list. This collects the TODO items from all agenda files
(see Chapter 8 [Agenda views], page 40) into a single buffer. The buffer is in
agenda-mode, so there are commands to examine and manipulate the TODO
entries directly from that buffer (see Section 8.5 [Agenda commands], page 45).

C-c a T Like the above, but allows selection of a specific TODO keyword. You can
also do this by specifying a prefix argument to C-c a t. With a C-u prefix you
are prompted for a keyword. With a numeric prefix, the Nth keyword in org-
todo-keywords is selected. The r key in the agenda buffer regenerates it, and
you can give a prefix argument to this command to change the selected TODO
keyword, for example 3 r. If you often need a search for a specific keyword,
define a custom command for it (see Section 8.2 [Agenda dispatcher], page 41).
Matching specific TODO keywords can also be done as part of a tags search
(see Section 7.3 [Tag searches], page 39).

Remote editing of TODO items means that you can change the state of a TODO en-
try with a single key press. The commands available in the TODO list are described in
Section 8.5 [Agenda commands], page 45.

Normally the global todo list simply shows all headlines with TODO keywords. This list
can become very long. There are two ways to keep it more compact:
− Some people view a TODO item that has been scheduled for execution (see Section 6.1

[Time stamps], page 31) as no longer open. Configure the variable org-agenda-todo-
ignore-scheduled to exclude scheduled items from the global TODO list.

Chapter 8: Agenda Views 43

− TODO items may have sublevels to break up the task into subtasks. In such cases it
may be enough to list only the highest level TODO headline and omit the sublevels
from the global list. Configure the variable org-agenda-todo-list-sublevels to get
this behavior.

8.3.3 Matching headline tags

If headlines in the agenda files are marked with tags (see Chapter 7 [Tags], page 37), you
can select headlines based on the tags that apply to them and collect them into an agenda
buffer.

C-c a m Produce a list of all headlines that match a given set of tags. The command
prompts for a selection criterion, which is a boolean logic expression with tags,
like ‘+WORK+URGENT-WITHBOSS’ or ‘WORK|HOME’ (see Chapter 7 [Tags], page 37).
If you often need a specific search, define a custom command for it (see Sec-
tion 8.2 [Agenda dispatcher], page 41).

C-c a M Like C-c a m, but only select headlines that are also TODO items and force
checking subitems (see variable org-tags-match-list-sublevels). Matching
specific todo keywords together with a tags match is also possible, see Sec-
tion 7.3 [Tag searches], page 39.

The commands available in the tags list are described in Section 8.5 [Agenda commands],
page 45.

8.3.4 Timeline for a single file

The timeline summarizes all time-stamped items from a single Org-mode file in a time-
sorted view. The main purpose of this command is to give an overview over events in a
project.

C-c a L Show a time-sorted view of the org file, with all time-stamped items. When
called with a C-u prefix, all unfinished TODO entries (scheduled or not) are
also listed under the current date.

The commands available in the timeline buffer are listed in Section 8.5 [Agenda commands],
page 45.

8.3.5 Stuck projects

If you are following a system like David Allen’s GTD to organize your work, one of the
“duties” you have is a regular review to make sure that all projects move along. A stuck
project is a project that has no defined next actions, so it will never show up in the TODO
lists Org-mode produces. During the review, you need to identify such projects and define
next actions for them.

C-c a # List projects that are stuck.

C-c a ! Customize the variable org-stuck-projects to define what a stuck project is
and how to find it.

Chapter 8: Agenda Views 44

You almost certainly will have to configure this view before it will work for you. The
built-in default assumes that all your projects are level-2 headlines, and that a project is
not stuck if it has at least one entry marked with a todo keyword TODO or NEXT or
NEXTACTION.

Lets assume that you, in your own way of using Org-mode, identify projects with a tag
PROJECT, and that you use a todo keyword MAYBE to indicate a project that should
not be considered yet. Lets further assume that the todo keyword DONE marks finished
projects, and that NEXT and TODO indicate next actions. Finally, the tag @SHOP indi-
cates shopping and is a next action even without the NEXT tag. In this case you would
start by identifying elegible projects with a tags/todo match ‘+PROJECT/-MAYBE-DONE’, and
then check for TODO, NEXT and @SHOP in the subtree to identify projects that are not
stuck. The correct customization for this is

(setq org-stuck-projects
("+PROJECT/-MAYBE-DONE" ("NEXT" "TODO") ("@SHOP")))

8.4 Presentation and sorting

Before displaying items in an agenda view, Org-mode visually prepares the items and
sorts them. Each item occupies a single line. The line starts with a prefix that contains
the category (see Section 8.4.1 [Categories], page 44) of the item and other important
information. You can customize the prefix using the option org-agenda-prefix-format.
The prefix is followed by a cleaned-up version of the outline headline associated with the
item.

8.4.1 Categories

The category is a broad label assigned to each agenda item. By default, the category
is simply derived from the file name, but you can also specify it with a special line in the
buffer, like this:

#+CATEGORY: Thesis

If there are several such lines in a file, each specifies the category for the text below
it (but the first category also applies to any text before the first CATEGORY line). The
display in the agenda buffer looks best if the category is not longer than 10 characters.

8.4.2 Time-of-Day Specifications

Org-mode checks each agenda item for a time-of-day specification. The time can
be part of the time stamp that triggered inclusion into the agenda, for example as in
‘<2005-05-10 Tue 19:00>’. Time ranges can be specified with two time stamps, like
‘<2005-05-10 Tue 20:30>--<2005-05-10 Tue 22:15>’.

In the headline of the entry itself, a time(range) may also appear as plain text (like
‘12:45’ or a ‘8:30-1pm’. If the agenda integrates the Emacs diary (see Section 8.3.1
[Weekly/Daily agenda], page 41), time specifications in diary entries are recognized as well.

Chapter 8: Agenda Views 45

For agenda display, Org-mode extracts the time and displays it in a standard 24 hour
format as part of the prefix. The example times in the previous paragraphs would end up
in the agenda like this:

8:30-13:00 Arthur Dent lies in front of the bulldozer
12:45...... Ford Prefect arrives and takes Arthur to the pub
19:00...... The Vogon reads his poem
20:30-22:15 Marwin escorts the Hitchhikers to the bridge

If the agenda is in single-day mode, or for the display of today, the timed entries are
embedded in a time grid, like

8:00...... ------------------
8:30-13:00 Arthur Dent lies in front of the bulldozer
10:00...... ------------------
12:00...... ------------------
12:45...... Ford Prefect arrives and takes Arthur to the pub
14:00...... ------------------
16:00...... ------------------
18:00...... ------------------
19:00...... The Vogon reads his poem
20:00...... ------------------
20:30-22:15 Marwin escorts the Hitchhikers to the bridge

The time grid can be turned on and off with the variable org-agenda-use-time-grid,
and can be configured with org-agenda-time-grid.

8.4.3 Sorting of agenda items

Before being inserted into a view, the items are sorted. How this is done depends on the
type of view.
• For the daily/weekly agenda, the items for each day are sorted. The default order is

to first collect all items containing an explicit time-of-day specification. These entries
will be shown at the beginning of the list, as a schedule for the day. After that, items
remain grouped in categories, in the sequence given by org-agenda-files. Within
each category, items are sorted by priority (see Section 5.3 [Priorities], page 29), which
is composed of the base priority (2000 for priority ‘A’, 1000 for ‘B’, and 0 for ‘C’), plus
additional increments for overdue scheduled or deadline items.

• For the TODO list, items remain in the order of categories, but within each category,
sorting takes place according to priority (see Section 5.3 [Priorities], page 29).

• For tags matches, items are not sorted at all, but just appear in the sequence in which
they are found in the agenda files.

Sorting can be customized using the variable org-agenda-sorting-strategy.

8.5 Commands in the agenda buffer

Entries in the agenda buffer are linked back to the org file or diary file where they
originate. You are not allowed to edit the agenda buffer itself, but commands are provided

Chapter 8: Agenda Views 46

to show and jump to the original entry location, and to edit the org-files “remotely” from
the agenda buffer. In this way, all information is stored only once, removing the risk that
your agenda and note files may diverge.

Some commands can be executed with mouse clicks on agenda lines. For the other
commands, the cursor needs to be in the desired line.

Motion

n Next line (same as 〈up〉).

p Previous line (same as 〈down〉).

View/GoTo org file
mouse-3

〈SPC〉 Display the original location of the item in another window.

L Display original location and recenter that window.

mouse-2

mouse-1

〈TAB〉 Go to the original location of the item in another window. Under Emacs 22,
mouse-1 will also works for this.

〈RET〉 Go to the original location of the item and delete other windows.

f Toggle Follow mode. In Follow mode, as you move the cursor through the
agenda buffer, the other window always shows the corresponding location in
the org file. The initial setting for this mode in new agenda buffers can be set
with the variable org-agenda-start-with-follow-mode.

b Display the entire subtree of the current item in an indirect buffer. With
numerical prefix ARG, go up to this level and then take that tree. If ARG is
negative, go up that many levels. With C-u prefix, do not remove the previously
used indirect buffer.

l Toggle Logbook mode. In Logbook mode, entries that where marked DONE
while logging was on (variable org-log-done) are shown in the agenda, as are
entries that have been clocked on that day.

Change display
o Delete other windows.

w Switch to weekly view (7 days displayed together).

d Switch to daily view (just one day displayed).

D Toggle the inclusion of diary entries. See Section 8.3.1 [Weekly/Daily agenda],
page 41.

g Toggle the time grid on and off. See also the variables org-agenda-use-time-
grid and org-agenda-time-grid.

r Recreate the agenda buffer, for example to reflect the changes after modification
of the time stamps of items with S-〈left〉 and S-〈right〉. When the buffer is the
global todo list, a prefix argument is interpreted to create a selective list for a
specific TODO keyword.

Chapter 8: Agenda Views 47

s Save all Org-mode buffers in the current Emacs session.

〈right〉 Display the following org-agenda-ndays days. For example, if the display
covers a week, switch to the following week. With prefix arg, go forward that
many times org-agenda-ndays days.

〈left〉 Display the previous dates.

. Goto today.

Remote editing
0-9 Digit argument.

C-_ Undo a change due to a remote editing command. The change is undone both
in the agenda buffer and in the remote buffer.

t Change the TODO state of the item, both in the agenda and in the original
org file.

C-k Delete the current agenda item along with the entire subtree belonging to it
in the original Org-mode file. If the text to be deleted remotely is longer than
one line, the kill needs to be confirmed by the user. See variable org-agenda-
confirm-kill.

$ Archive the subtree corresponding to the current headline.

T Show all tags associated with the current item. Because of inheritance, this
may be more than the tags listed in the line itself.

: Set tags for the current headline.

a Toggle the ARCHIVE tag for the current headline.

, Set the priority for the current item. Org-mode prompts for the priority char-
acter. If you reply with 〈SPC〉, the priority cookie is removed from the entry.

p Display weighted priority of current item.

+
S-〈up〉 Increase the priority of the current item. The priority is changed in the original

buffer, but the agenda is not resorted. Use the r key for this.

-

S-〈down〉 Decrease the priority of the current item.

C-c C-s Schedule this item

C-c C-d Set a deadline for this item.

S-〈right〉 Change the time stamp associated with the current line by one day into the
future. With prefix argument, change it by that many days. For example, 3
6 5 S-〈right〉 will change it by a year. The stamp is changed in the original org
file, but the change is not directly reflected in the agenda buffer. Use the r key
to update the buffer.

S-〈left〉 Change the time stamp associated with the current line by one day into the
past.

Chapter 8: Agenda Views 48

> Change the time stamp associated with the current line to today. The key >
has been chosen, because it is the same as S-. on my keyboard.

I Start the clock on the current item. If a clock is running already, it is stopped
first.

O Stop the previously started clock.

X Cancel the currently running clock.

Calendar commands
c Open the Emacs calendar and move to the date at the agenda cursor.

c When in the calendar, compute and show the Org-mode agenda for the date at
the cursor.

i Insert a new entry into the diary. Prompts for the type of entry (day, weekly,
monthly, yearly, anniversary, cyclic) and creates a new entry in the diary, just
as i d etc. would do in the calendar. The date is taken from the cursor position.

M Show the phases of the moon for the three months around current date.

S Show sunrise and sunset times. The geographical location must be set with
calendar variables, see documentation of the Emacs calendar.

C Convert the date at cursor into many other cultural and historic calendars.

H Show holidays for three month around the cursor date.

C-c C-x C-c

Export a single iCalendar file containing entries from all agenda files.

Quit and Exit
q Quit agenda, remove the agenda buffer.

x Exit agenda, remove the agenda buffer and all buffers loaded by Emacs for the
compilation of the agenda. Buffers created by the user to visit org files will not
be removed.

8.6 Custom agenda views

Custom agenda commands serve two purposes: to store and quickly access frequently
used TODO and tags searches, and to create special composite agenda buffers. Custom
agenda commands will be accessible through the dispatcher (see Section 8.2 [Agenda dis-
patcher], page 41), just like the default commands.

8.6.1 Storing searches

The first application of custom searches is the definition of keyboard shortcuts for fre-
quently used searches, either creating an agenda buffer, or a sparse tree (the latter covering
of course only the current buffer). Custom commands are configured in the variable org-
agenda-custom-commands. You can customize this variable, for example by pressing C-c a

C. You can also directly set it with Emacs Lisp in ‘.emacs’. The following example contains
all valid search types:

Chapter 8: Agenda Views 49

(setq org-agenda-custom-commands
’(("w" todo "WAITING")
("W" todo-tree "WAITING")
("u" tags "+BOSS-URGENT")
("v" tags-todo "+BOSS-URGENT")
("U" tags-tree "+BOSS-URGENT")
("f" occur-tree "\\<FIXME\\>")))

The initial single-character string in each entry defines the character you have to press after
the dispatcher command C-c a in order to access the command. The second parameter is
the search type, followed by the string or regular expression to be used for the matching.
The example above will therefore define:

C-c a w as a global search for TODO entries with ‘WAITING’ as the TODO keyword

C-c a W as the same search, but only in the current buffer and displaying the results as
a sparse tree

C-c a u as a global tags search for headlines marked ‘:BOSS:’ but not ‘:URGENT:’

C-c a v as the same search as C-c a u, but limiting the search to headlines that are also
TODO items

C-c a U as the same search as C-c a u, but only in the current buffer and displaying the
result as a sparse tree

C-c a f to create a sparse tree (again: current buffer only) with all entries containing
the word ‘FIXME’.

8.6.2 Block agenda

Another possibility is the construction of agenda views that comprise the results of sev-
eral commands, each of which creates a block in the agenda buffer. The available commands
include agenda for the daily or weekly agenda (as created with C-c a a), alltodo for the
global todo list (as constructed with C-c a t), and the matching commands discussed above:
todo, tags, and tags-todo. Here are two examples:

(setq org-agenda-custom-commands
’(("h" "Agenda and Home-related tasks"

((agenda)
(tags-todo "HOME")
(tags "GARDEN")))

("o" "Agenda and Office-related tasks"
((agenda)
(tags-todo "WORK")
(tags "OFFICE")))))

This will define C-c a h to create a multi-block view for stuff you need to attend to at home.
The resulting agenda buffer will contain your agenda for the current week, all TODO items
that carry the tag ‘HOME’, and also all lines tagged with ‘GARDEN’. Finally the command C-c

a o provides a similar view for office tasks.

Chapter 8: Agenda Views 50

8.6.3 Setting Options for custom commands

Org-mode contains a number of variables regulating agenda construction and display.
The global variables define the behavior for all agenda commands, including the custom
commands. However, if you want to change some settings just for a single custom view,
you can do so. Setting options requires inserting a list of variable names and values at the
right spot in org-agenda-custom-commands. For example:

(setq org-agenda-custom-commands
’(("w" todo "WAITING"

((org-agenda-sorting-strategy ’(priority-down))
(org-agenda-prefix-format " Mixed: ")))

("U" tags-tree "+BOSS-URGENT"
((org-show-following-heading nil)
(org-show-hierarchy-above nil)))))

Now the C-c a w command will sort the collected entries only by priority, and the prefix
format is modified to just say ‘ Mixed:’ instead of giving the category of the entry. The
sparse tags tree of C-c a U will now turn out ultra-compact, because neither the headline
hierarchy above the match, nor the headline following the match will be shown.

For command sets creating a block agenda, org-agenda-custom-commands has two sep-
arate spots for setting options. You can add options that should be valid for just a single
command in the set, and options that should be valid for all commands in the set. The
former are just added to the command entry, the latter must come after the list of com-
mand entries. Going back to the block agenda example (see Section 8.6.2 [Block agenda],
page 49), let’s change the sorting strategy for the C-c a h commands to priority-down,
but let’s sort the results for GARDEN tags query in the opposite order, priority-up. This
would look like this:

(setq org-agenda-custom-commands
’(("h" "Agenda and Home-related tasks"

((agenda)
(tags-todo "HOME")
(tags "GARDEN" ((org-agenda-sorting-strategy ’(priority-up)))))

((org-agenda-sorting-strategy ’(priority-down))))
("o" "Agenda and Office-related tasks"
((agenda)
(tags-todo "WORK")
(tags "OFFICE")))))

As you see, the values and parenthesis setting is a little complex. When in doubt, use
the customize interface to set this variable - it fully supports its structure. Just one caveat:
When setting options in this interface, the values are just lisp expressions. So if the value
is a string, you need to add the double quotes around the value yourself.

8.6.4 Creating agenda views in batch processing

If you want to print or otherwise reprocess agenda views, it can be useful to create an
agenda from the command line. This is the purpose of the function org-batch-agenda. It

Chapter 8: Agenda Views 51

takes as a parameter one of the strings that are the keys in org-agenda-custom-commands.
For example, to directly print the current TODO list, you could use

emacs -batch -l ~/.emacs -eval ’(org-batch-agenda "t")’ | lpr

You may also modify parameters on the fly like this:
emacs -batch -l ~/.emacs \

-eval ’(org-batch-agenda "a" \
org-agenda-ndays 300 \
org-agenda-include-diary nil \
org-agenda-files (quote ("~/org/project.org")))’ \

| lpr

which will produce a 300 day agenda, fully restricted to the Org file ‘~/org/projects.org’,
not even including the diary.

Chapter 9: Embedded LaTeX 52

9 Embedded LaTeX

Plain ASCII is normally sufficient for almost all note taking. One exception, however,
are scientific notes which need to be able to contain mathematical symbols and the occa-
sional formula. LaTEX1 is widely used to typeset scientific documents. Org-mode supports
embedding LaTEX code into its files, because many academics are used to read LaTEX
source code, and because it can be readily processed into images for HTML production.

It is not necessary to mark LaTEX macros and code in any special way. If you observe
a few conventions, Org-mode knows how to find it and what to do with it.

9.1 Math symbols

You can use LaTEX macros to insert special symbols like ‘\alpha’ to indicate the Greek
letter, or ‘\to’ to indicate an arrow. Completion for these macros is available, just type
‘\’ and maybe a few letters, and press M-〈TAB〉 to see possible completions. Unlike LaTEX
code, Org-mode allows these macros to be present without surrounding math delimiters,
for example:

Angles are written as Greek letters \alpha, \beta and \gamma.

During HTML export (see Section 10.2 [HTML export], page 55), these symbols are
translated into the proper syntax for HTML, for the above examples this is ‘α’ and
‘→’, respectively.

9.2 Subscripts and Superscripts

Just like in LaTEX, ‘^’ and ‘_’ are used to indicate super- and subscripts. Again, these can
be used without embedding them in math-mode delimiters. To increase the readability of
ASCII text, it is not necessary (but OK) to surround multi-character sub- and superscripts
with curly braces. For example

The mass if the sun is M_sun = 1.989 x 10^30 kg. The radius of
the sun is R_{sun} = 6.96 x 10^8 m.

To avoid interpretation as raised or lowered text, you can quote ‘^’ and ‘_’ with a
backslash: ‘_’ and ‘\^’.

During HTML export (see Section 10.2 [HTML export], page 55), subscript and super-
scripts are surrounded with <sub> and <sup> tags, respectively.

9.3 LaTeX fragments

With symbols, sub- and superscripts, HTML is pretty much at its end when it comes to
representing mathematical formulas2. More complex expressions need a dedicated formula

1 LaTEX is a macro system based on Donald E. Knuth’s TEX system. Many of the features described here
as “LaTEX” are really from TEX, but for simplicity I am blurring this distinction.

2 Yes, there is MathML, but that is not yet fully supported by many browsers, and there is no decent
converter for turning LaTeX of ASCII representations of formulas into MathML. So for the time being,
converting formulas into images seems the way to go.

Chapter 9: Embedded LaTeX 53

processor. To this end, Org-mode can contain arbitrary LaTEX fragments. It provides
commands to preview the typeset result of these fragments, and upon export to HTML, all
fragments will be converted to images and inlined into the HTML document. For this to
work you need to be on a system with a working LaTEX installation. You also need the
‘dvipng’ program, available at http://sourceforge.net/projects/dvipng/.

LaTEX fragments don’t need any special marking at all. The following snippets will be
identified as LaTeX source code:

• Environments of any kind. The only requirement is that the \begin statement appears
on a new line, preceded by only whitespace.

• Text within the usual LaTEX math delimiters. To avoid conflicts with currency spec-
ifications, single ‘$’ characters are only recognized as math delimiters if the enclosed
text contains at most two line breaks, is directly attached to the ‘$’ characters with no
whitespace in between, and if the closing ‘$’ is followed by whitespace or punctuation.
For the other delimiters, there is no such restriction, so when in doubt, use ‘\(...\)’
as inline math delimiters.

For example:

\begin{equation} % arbitrary environments,
x=\sqrt{b} % even tables, figures
\end{equation} % etc

If $a^2=b$ and \(b=2 \), then the solution must be
either $$ a=+\sqrt{2} $$ or \[a=-\sqrt{2} \].

If you need any of the delimiter ASCII sequences for other purposes, you can configure the
option org-format-latex-options to deselect the ones you do not wish to have interpreted
by the LaTEX converter.

9.4 Processing LaTeX fragments

LaTEX fragments can be processed to produce a preview images of the typeset expres-
sions:

C-c C-x C-l

Produce a preview image of the LaTEX fragment at point and overlay it over
the source code. If there is no fragment at point, process all fragments in the
current entry (between two headlines). When called with a prefix argument,
process the entire subtree. When called with two prefix arguments, or when
the cursor is before the first headline, process the entire buffer.

C-c C-c Remove the overlay preview images.

During HTML export (see Section 10.2 [HTML export], page 55), all LaTEX fragments
are converted into images and inlined into the document if the following setting is active:

(setq org-export-with-LaTeX-fragments t)

Chapter 9: Embedded LaTeX 54

9.5 Using CDLaTeX to enter math

CDLaTeX-mode is a minor mode that is normally used in combination with a major
LaTeX mode like AUCTeX in order to speed-up insertion of environments and math tem-
plates. Inside Org-mode, you can make use of some of the features of cdlatex-mode. You
need to install ‘cdlatex.el’ and ‘texmathp.el’ (the latter comes also with AUCTeX) from
http://www.astro.uva.nl/~dominik/Tools/cdlatex. Don’t turn cdlatex-mode itself un-
der Org-mode, but use the light version org-cdlatex-mode that comes as part of Org-mode.
Turn it on for the current buffer with M-x org-cdlatex-mode, or for all Org-mode files with

(add-hook ’org-mode-hook ’turn-on-org-cdlatex)

When this mode is enabled, the following features are present (for more details see the
documentation of cdlatex-mode):

• Environment templates can be inserted with C-c {.
• The 〈TAB〉 key will do template expansion if the cursor is inside a LaTeX fragment3. For

example, 〈TAB〉 will expand fr to \frac{}{} and position the cursor correctly inside the
first brace. Another 〈TAB〉 will get you into the second brace. Even outside fragments,
〈TAB〉 will expand environment abbreviations at the beginning of a line. For example,
if you write ‘equ’ at the beginning of a line and press 〈TAB〉, this abbreviation will be
expanded to an equation environment. To get a list of all abbreviations, type M-x

cdlatex-command-help.
• Pressing _ and ^ inside a LaTeX fragment will insert these characters together with a

pair of braces. If you use 〈TAB〉 to move out of the braces, and if the braces surround
only a single character or macro, they are removed again (depending on the variable
cdlatex-simplify-sub-super-scripts).

• Pressing the backquote ‘ followed by a character inserts math macros, also outside
LaTeX fragments. If you wait more than 1.5 seconds after the backquote, a help
window will pop up.

• Pressing the normal quote ’ followed by another character modifies the symbol before
point with an accent or a font. If you wait more than 1.5 seconds after the back-
quote, a help window will pop up. Character modification will work only inside LaTEX
fragments, outside the quote is normal.

3 Org-mode has a method to test if the cursor is inside such a fragment, see the documentation of the
function org-inside-LaTeX-fragment-p.

Chapter 10: Exporting 55

10 Exporting

Org-mode documents can be exported into a variety of other formats. For printing and
sharing of notes, ASCII export produces a readable and simple version of an Org-mode file.
HTML export allows you to publish a notes file on the web, while the XOXO format provides
a solid base for exchange with a broad range of other applications. To incorporate entries
with associated times like deadlines or appointments into a desktop calendar program like
iCal, Org-mode can also produce extracts in the iCalendar format. Currently Org-mode
only supports export, not import of these different formats.

When exporting, Org-mode uses special conventions to enrich the output produced. See
Section 10.5 [Text interpretation], page 57, for more details.

C-c C-e Dispatcher for export and publishing commands. Displays a help-window listing
the additional key(s) needed to launch an export or publishing command.

10.1 ASCII export

ASCII export produces a simple and very readable version of an Org-mode file.

C-c C-e a Export as ASCII file. If there is an active region, only the region will be
exported. For an org file ‘myfile.org’, the ASCII file will be ‘myfile.txt’.
The file will be overwritten without warning.

C-c C-e v a

Export only the visible part of the document.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a prefix argument. For example,

C-1 C-c C-e a

creates only top level headlines and does the rest as items. When headlines are converted
to items, the indentation of the text following the headline is changed to fit nicely under the
item. This is done with the assumption that the first bodyline indicates the base indentation
of the body text. Any indentation larger than this is adjusted to preserve the layout relative
to the first line. Should there be lines with less indentation than the first, these are left
alone.

10.2 HTML export

Org-mode contains an HTML (XHTML 1.0 strict) exporter with extensive HTML for-
matting, in ways similar to John Grubers markdown language, but with additional support
for tables.

C-c C-e h Export as HTML file ‘myfile.html’.

C-c C-e b Export as HTML file and open it with a browser.

Chapter 10: Exporting 56

C-c C-e v h

C-c C-e v b

Export only the visible part of the document.

In the exported version, the first 3 outline levels will become headlines, defining a general
document structure. Additional levels will be exported as itemized lists. If you want that
transition to occur at a different level, specify it with a prefix argument. For example,

C-2 C-c C-e b

creates two levels of headings and does the rest as items.

If you want to include HTML tags which should be interpreted as such, mark them with
‘@’ as in ‘@bold text@’. Plain ‘<’ and ‘>’ are always transformed to ‘<’ and
‘>’ in HTML export.

Internal links (see Section 4.2 [Internal links], page 20) will continue to work in HTML
files only if they match a dedicated ‘<<target>>’. Automatic links created by radio targets
(see Section 4.2.1 [Radio targets], page 21) will also work in the HTML file. Links to
external files will still work if the HTML file is in the same directory as the Org-mode file.
Links to other ‘.org’ files will be translated into HTML links under the assumption that
an HTML version also exists of the linked file. For information related to linking files while
publishing them to a publishing directory see Section 11.1.6 [Publishing links], page 62.

You can also give style information for the exported file. The HTML exporter assigns
the following CSS classes to appropriate parts of the document - your style specifications
may change these:

.todo TODO keywords

.done the DONE keyword

.timestamp time stamp

.timestamp-kwd keyword associated with a time stamp, like SCHEDULED

.tag tag in a headline

.target target for links

The default style specification can be configured through the option org-export-html-
style. If you want to use a file-local style, you may use file variables, best wrapped into a
COMMENT section at the end of the outline tree. For example:

* COMMENT HTML style specifications

Local Variables:
org-export-html-style: " <style type=\"text/css\">
p {font-weight: normal; color: gray; }
h1 {color: black; }
</style>"
End:

Remember to execute M-x normal-mode after changing this to make the new style visible
to Emacs. This command restarts org-mode for the current buffer and forces Emacs to re-
evaluate the local variables section in the buffer.

Chapter 10: Exporting 57

10.3 XOXO export

Org-mode contains an exporter that produces XOXO-style output. Currently, this ex-
porter only handles the general outline structure and does not interpret any additional
Org-mode features.

C-c C-e x Export as XOXO file ‘myfile.html’.

C-c C-e v x

Export only the visible part of the document.

10.4 iCalendar export

Some people like to use Org-mode for keeping track of projects, but still prefer a standard
calendar application for anniversaries and appointments. In this case it can be useful to
have deadlines and other time-stamped items in Org-mode files show up in the calendar
application. Org-mode can export calendar information in the standard iCalendar format.

C-c C-e i Create iCalendar entries for the current file and store them in the same direc-
tory, using a file extension ‘.ics’.

C-c C-e I Like C-c C-e i, but do this for all files in org-agenda-files. For each of these
files, a separate iCalendar file will be written.

C-c C-e c Create a single large iCalendar file from all files in org-agenda-files and write
it to the file given by org-combined-agenda-icalendar-file.

How this calendar is best read and updated, depends on the application you are using.
For example, when using iCal under Apple MacOS X, you could create a new calendar
‘OrgMode’ (the default name for the calendar created by C-c C-e c, see the variables org-
icalendar-combined-name and org-combined-agenda-icalendar-file). Then set Org-
mode to overwrite the corresponding file ‘~/Library/Calendars/OrgMode.ics’. You may
even use AppleScript to make iCal re-read the calendar files each time a new version of
‘OrgMode.ics’ is produced. Here is the setup needed for this:

(setq org-combined-agenda-icalendar-file
"~/Library/Calendars/OrgMode.ics")

(add-hook ’org-after-save-iCalendar-file-hook
(lambda ()
(shell-command
"osascript -e ’tell application \"iCal\" to reload calendars’")))

10.5 Text interpretation by the exporter

The exporter backends interpret additional structure in the Org-mode file in order to
produce better output.

Chapter 10: Exporting 58

10.5.1 Comment lines

Lines starting with ‘#’ in column zero are treated as comments and will never be exported.
Also entire subtrees starting with the word ‘COMMENT’ will never be exported. Finally, any
text before the first headline will not be exported either.

C-c ; Toggle the COMMENT keyword at the beginning of an entry.

10.5.2 Enhancing text for export

Some of the export backends of Org-mode allow for sophisticated text formatting, this
is true in particular for the HTML backend. Org-mode has a number of typing conventions
that allow to produce a richly formatted output.

• Plain lists ‘-’, ‘*’ or ‘+’ as bullet, or with ‘1.’ or ‘2)’ as enumerator will be recognized
and transformed if the backend supports lists. See See Section 2.8 [Plain lists], page 9.

• You can make words *bold*, /italic/, underlined , =code=, and ‘+strikethrough+’.
• Many TEX macros and entire LaTEX fragments are converted into HTML entities or

images (see Chapter 9 [Embedded LaTeX], page 52).
• Tables are transformed into native tables under the exporter, if the export backend

supports this. Data fields before the first horizontal separator line will be formatted as
table header fields.

• If a headline starts with the word ‘QUOTE’, the text below the headline will be typeset
as fixed-width, to allow quoting of computer codes etc. Lines starting with ‘:’ are also
typeset in fixed-width font.

C-c : Toggle fixed-width for entry (QUOTE) or region, see below.

• A double backslash at the end of a line enforces a line break at this position.

If these conversions conflict with your habits of typing ASCII text, they can all be turned
off with corresponding variables (see the customization group org-export-general, and
the following section which explains how to set export options with special lines in a buffer.

10.5.3 Export options

The exporter recognizes special lines in the buffer which provide additional information.
These lines may be put anywhere in the file. The whole set of lines can be inserted into the
buffer with C-c C-e t. For individual lines, a good way to make sure the keyword is correct
is to type ‘#+’ and then use M-〈TAB〉 completion (see Section 12.1 [Completion], page 65).

C-c C-e t Insert template with export options, see example below.
#+TITLE: the title to be shown (default is the buffer name)
#+AUTHOR: the author (default taken from user-full-name)
#+EMAIL: his/her email address (default from user-mail-address)
#+LANGUAGE: language for HTML, e.g. ‘en’ (org-export-default-language)
#+TEXT: Some descriptive text to be inserted at the beginning.
#+TEXT: Several lines may be given.

Chapter 10: Exporting 59

#+OPTIONS: H:2 num:t toc:t \n:nil @:t ::t |:t ^:t *:nil TeX:t LaTeX:t

The OPTIONS line is a compact form to specify export settings. Here you can:
H: set the number of headline levels for export
num: turn on/off section-numbers
toc: turn on/off table of contents
\n: turn on/off linebreak-preservation
@: turn on/off quoted HTML tags
:: turn on/off fixed-width sections
|: turn on/off tables
^: turn on/off TEX-like syntax for sub- and superscripts.
*: turn on/off emphasized text (bold, italic, underlined)
TeX: turn on/off simple TEX macros in plain text
LaTeX: turn on/off LaTEX fragments

Chapter 11: Publishing 60

11 Publishing

Org-mode includes1 a publishing management system that allows you to configure au-
tomatic HTML conversion of projects composed of interlinked org files. This system is
called org-publish. You can also configure org-publish to automatically upload your ex-
ported HTML pages and related attachments, such as images and source code files, to a
web server. Org-publish turns org-mode into a web-site authoring tool.

Org-publish has been contributed to Org-mode by David O’Toole.

11.1 Configuration

Publishing needs significant configuration to specify files, destination and many other
properties of a project.

11.1.1 The variable org-publish-project-alist

Org-publish is configured almost entirely through setting the value of one variable, called
org-publish-project-alist. Each element of the list configures one project, and may be
in one of the two following forms:

("project-name" :property value :property value ...)

or

("project-name" :components ("project-name" "project-name" ...))

In both cases, projects are configured by specifying property values. A project defines
the set of files that will be published, as well as the publishing configuration to use when
publishing those files. When a project takes the second form listed above, the individual
members of the “components” property are taken to be components of the project, which
group together files requiring different publishing options. When you publish such a “meta-
project” all the components will also publish.

11.1.2 Sources and destinations for files

Most properties are optional, but some should always be set. In particular, org-publish
needs to know where to look for source files, and where to put published files.

:base-directory Directory containing publishing source files
:publishing-directory Directory (possibly remote) where output files will be

published.
:preparation-function Function called before starting publishing process, for exam-

ple to run make for updating files to be published.

1 ‘org-publish.el’ is not yet part of Emacs, so if you are using ‘org.el’ as it comes with Emacs, you
need to download this file separately. Also make sure org.el is at least version 4.27.

Chapter 11: Publishing 61

11.1.3 Selecting files

By default, all files with extension ‘.org’ in the base directory are considered part of the
project. This can be modified by setting the properties
:base-extension Extension (without the dot!) of source files. This actually is a

regular expression.

:exclude Regular expression to match file names that should not be pub-
lished, even though they have been selected on the basis of their
extension.

:include List of files to be included regardless of :base-extension and
:exclude.

11.1.4 Publishing Action

Publishing means that a file is copied to the destination directory and possibly trans-
formed in the process. The default transformation is to export Org-mode files as HTML
files, and this is done by the function org-publish-org-to-html which calls the HTML
exporter (see Section 10.2 [HTML export], page 55). Other files like images only need to
be copied to the publishing destination. For non-Org-mode files, you need to specify the
publishing function.
:publishing-function Function executing the publication of a file. This may also be

a list of functions, which will all be called in turn.
The function must accept two arguments: a property list containing at least a

:publishing-directory property, and the name of the file to be published. It should take
the specified file, make the necessary transformation (if any) and place the result into the
destination folder. You can write your own publishing function, but org-publish provides
one for attachments (files that only need to be copied): org-publish-attachment.

11.1.5 Options for the HTML exporter

The property list can be used to set many export options for the HTML exporter. In
most cases, these properties correspond to user variables in Org-mode. The table below
lists these properties along with the variable they belong to. See the documentation string
for the respective variable for details.
:language org-export-default-language
:headline-levels org-export-headline-levels
:section-numbers org-export-with-section-numbers
:table-of-contents org-export-with-toc
:archived-trees org-export-with-archived-trees
:emphasize org-export-with-emphasize
:sub-superscript org-export-with-sub-superscripts
:TeX-macros org-export-with-TeX-macros
:LaTeX-fragments org-export-with-LaTeX-fragments
:fixed-width org-export-with-fixed-width
:timestamps . org-export-with-timestamps

Chapter 11: Publishing 62

:tags . org-export-with-tags
:tables org-export-with-tables
:table-auto-headline org-export-highlight-first-table-line
:style org-export-html-style
:convert-org-links org-export-html-link-org-files-as-html
:inline-images org-export-html-inline-images
:expand-quoted-html org-export-html-expand
:timestamp org-export-html-with-timestamp
:publishing-directory org-export-publishing-directory
:preamble org-export-html-preamble
:postamble org-export-html-postamble
:auto-preamble org-export-html-auto-preamble
:auto-postamble org-export-html-auto-postamble
:author user-full-name
:email user-mail-address

When a property is given a value in org-publish-project-alist, its setting overrides the
value of the corresponding user variable (if any) during publishing. options set within a file
(see Section 10.5.3 [Export options], page 58), however, override everything.

11.1.6 Links between published files

To create a link from one Org-mode file to another, you would use something like
‘[[file:foo.org][The foo]]’ or simply ‘file:foo.org.’ (see Chapter 4 [Hyperlinks],
page 20). Upon publishing this link becomes a link to ‘foo.html’. In this way, you can
interlink the pages of your "org web" project and the links will work as expected when you
publish them to HTML.

You may also link to related files, such as images. Provided you are careful with relative
pathnames, and provided you have also configured org-publish to upload the related files,
these links will work too. Section 11.2.2 [Complex example], page 63 for an example of this
usage.

Sometime an Org-mode file to be published may contain links that are only valid in your
production environment, but not in the publishing location. In this case, use the property

:link-validation-function Function to validate links

to define a function for checking link validity. This function must accept two arguments,
the file name and a directory relative to which the file name is interpreted in the pro-
duction environment. If this function returns nil, then the HTML generator will only
insert a description into the HTML file, but no link. One option for this function is
org-publish-validate-link which checks if the given file is part of any project in org-
publish-project-alist.

11.1.7 Project page index

The following properties may be used to control publishing of an index of files or summary
page for a given project.

Chapter 11: Publishing 63

:auto-index When non-nil, publish an index during org-publish-current-project
or org-publish-all.

:index-filename Filename for output of index. Defaults to ‘index.org’ (which
becomes ‘index.html’).

:index-title Title of index page. Defaults to name of file.

:index-function Plugin function to use for generation of index. Defaults to org-
publish-org-index, which generates a plain list of links to all
files in the project.

11.2 Sample configuration

Below we provide two example configurations. The first one is a simple project publishing
only a set of Org-mode files. The second example is more complex, with a multi-component
project.

11.2.1 Example: simple publishing configuration

This example publishes a set of Org-mode files to the ‘public_html’ directory on the
local machine.

(setq org-publish-project-alist
’(("org"

:base-directory "~/org/"
:publishing-directory "~/public_html"
:section-numbers nil
:table-of-contents nil
:style "<link rel=stylesheet

href=\"../other/mystyle.css\"
type=\"text/css\">")))

11.2.2 Example: complex publishing configuration

This more complicated example publishes an entire website, including org files converted
to HTML, image files, emacs lisp source code, and stylesheets. The publishing-directory is
remote and private files are excluded.

To ensure that links are preserved, care should be taken to replicate your directory
structure on the web server, and to use relative file paths. For example, if your org files are
kept in ‘~/org’ and your publishable images in ‘~/images’, you’d link to an image with

file:../images/myimage.png

On the web server, the relative path to the image should be the same. You can accomplish
this by setting up an "images" folder in the right place on the webserver, and publishing
images to it.

(setq org-publish-project-alist
’(("orgfiles"

Chapter 11: Publishing 64

:base-directory "~/org/"
:base-extension "org"
:publishing-directory "/ssh:user@host:~/html/notebook/"
:publishing-function org-publish-org-to-html
:exclude "PrivatePage.org" ;; regexp
:headline-levels 3
:section-numbers nil
:table-of-contents nil
:style "<link rel=stylesheet

href=\"../other/mystyle.css\" type=\"text/css\">"
:auto-preamble t
:auto-postamble nil)

("images"
:base-directory "~/images/"
:base-extension "jpg\\|gif\\|png"
:publishing-directory "/ssh:user@host:~/html/images/"
:publishing-function org-publish-attachment)

("other"
:base-directory "~/other/"
:base-extension "css\\|el"
:publishing-directory "/ssh:user@host:~/html/other/"
:publishing-function org-publish-attachment)

("website" :components ("orgfiles" "images" "other"))))

11.3 Triggering publication

Once org-publish is properly configured, you can publish with the following functions:

C-c C-e c Prompt for a specific project and publish all files that belong to it.

C-c C-e p Publish the project containing the current file.

C-c C-e f Publish only the current file.

C-c C-e a Publish all projects.

Org uses timestamps to track when a file has changed. The above functions normally
only publish changed files. You can override this and force publishing of all files by giving
a prefix argument.

Chapter 12: Miscellaneous 65

12 Miscellaneous

12.1 Completion

Org-mode supports in-buffer completion. This type of completion does not make use of
the minibuffer. You simply type a few letters into the buffer and use the key to complete
text right there.

M-〈TAB〉 Complete word at point
• At the beginning of a headline, complete TODO keywords.
• After ‘\’, complete TEX symbols supported by the exporter.
• After ‘*’, complete headlines in the current buffer so that they can be used

in search links like ‘[[*find this headline]]’.
• After ‘:’, complete tags. The list of tags is taken from the variable org-

tag-alist (possibly set through the ‘#+TAGS’ in-buffer option, see Sec-
tion 7.2 [Setting tags], page 37), or it is created dynamically from all tags
used in the current buffer.

• After ‘[’, complete link abbreviations (see Section 4.5 [Link abbreviations],
page 23).

• After ‘#+’, complete the special keywords like ‘TYP_TODO’ or ‘OPTIONS’
which set file-specific options for Org-mode. When the option keyword
is already complete, pressing M-〈TAB〉 again will insert example settings for
this keyword.

• In the line after ‘#+STARTUP: ’, complete startup keywords, i.e. valid keys
for this line.

• Elsewhere, complete dictionary words using ispell.

12.2 Customization

There are more than 170 variables that can be used to customize Org-mode. For the
sake of compactness of the manual, I am not describing the variables here. A structured
overview of customization variables is available with M-x org-customize. Or select Browse
Org Group from the Org->Customization menu. Many settings can also be activated on a
per-file basis, by putting special lines into the buffer (see Section 12.3 [In-buffer settings],
page 65).

12.3 Summary of in-buffer settings

Org-mode uses special lines in the buffer to define settings on a per-file basis. These
lines start with a ‘#+’ followed by a keyword, a colon, and then individual words defining
a setting. Several setting words can be in the same line, but you can also have multiple
lines for the keyword. While these settings are described throughout the manual, here is
a summary. After changing any of those lines in the buffer, press C-c C-c with the cursor

Chapter 12: Miscellaneous 66

still in the line to activate the changes immediately. Otherwise they become effective only
when the file is visited again in a new Emacs session.

#+STARTUP:
This line sets options to be used at startup of org-mode, when an Org-mode
file is being visited. The first set of options deals with the initial visibility
of the outline tree. The corresponding variable for global default settings is
org-startup-folded, with a default value t, which means overview.

overview top-level headlines only
content all headlines
showall no folding at all, show everything

Then there are options for aligning tables upon visiting a file. This is useful
in files containing narrowed table columns. The corresponding variable is org-
startup-align-all-tables, with a default value nil.

align align all tables
noalign don’t align tables on startup

Logging when a TODO item is marked DONE (variable org-log-done) can be
configured using these options.

logging record a timestamp when an item is marked DONE
nologging don’t record when items are marked DONE

Here are the options for hiding leading stars in outline headings. The corre-
sponding variables are org-hide-leading-stars and org-odd-levels-only,
both with a default setting nil (meaning showstars and oddeven).

hidestars make all but one of the stars starting a headline invisible.
showstars show all stars starting a headline
odd allow only odd outline levels (1,3,...)
oddeven allow all outline levels

To turn on custom format overlays over time stamps (variables org-put-time-
stamp-overlays and org-time-stamp-overlay-formats), use

customtime overlay custom time format

#+SEQ_TODO: #+TYP_TODO:
These lines set the TODO keywords and their interpretation in the
current file. The corresponding variables are org-todo-keywords and
org-todo-interpretation.

#+TAGS: TAG1(c1) TAG2(c2)

These lines (several such lines are allowed) specify the legal tags in this file,
and (potentially) the corresponding fast tag selection keys. The corresponding
variable is org-tag-alist.

#+LINK: linkword replace

These lines (several are allowed) specify link abbreviations. See Section 4.5
[Link abbreviations], page 23. The corresponding variable is org-link-abbrev-
alist.

#+CATEGORY:
This line sets the category for the agenda file. The category applies for all
subsequent lines until the next ‘#+CATEGORY’ line, or the end of the file.

Chapter 12: Miscellaneous 67

#+TBLFM: This line contains the formulas for the table directly above the line.

#+TITLE:, #+AUTHOR:, #+EMAIL:, #+LANGUAGE:, #+TEXT:, #+OPTIONS:
These lines provide settings for exporting files. For more details see Sec-
tion 10.5.3 [Export options], page 58.

12.4 The very busy C-c C-c key

The key C-c C-c has many purposes in org-mode, which are all mentioned scattered
throughout this manual. One specific function of this key is to add tags to a headline (see
Chapter 7 [Tags], page 37). In many other circumstances it means something like Hey
Org-mode, look here and update according to what you see here. Here is a summary of what
this means in different contexts.
− If there are highlights in the buffer from the creation of a sparse tree, or from clock

display, remove these highlights.
− If the cursor is in one of the special #+KEYWORD lines, this triggers scanning the buffer

for these lines and updating the information.
− If the cursor is inside a table, realign the table. This command works even if the

automatic table editor has been turned off.
− If the cursor is on a #+TBLFM line, re-apply the formulas to the entire table.
− If the cursor is inside a table created by the ‘table.el’ package, activate that table.
− If the current buffer is a remember buffer, close the note and file it. With a prefix

argument, file it, without further interaction, to the default location.
− If the cursor is on a <<<target>>>, update radio targets and corresponding links in

this buffer.
− If the cursor is in a plain list item with a checkbox, toggle the status of the checkbox.
− If the cursor is on a numbered item in a plain list, renumber the ordered list.

12.5 A cleaner outline view

Some people find it noisy and distracting that the Org-mode headlines are starting with
a potentially large number of stars. For example the tree from Section 2.2 [Headlines],
page 4:

* Top level headline
** Second level
*** 3rd level

some text
*** 3rd level

more text
* Another top level headline

Unfortunately this is deeply ingrained into the code of Org-mode and cannot be easily
changed. You can, however, modify the display in such a way that all leading stars become
invisible and the outline more easy to read. To do this, customize the variable org-hide-
leading-stars like this:

Chapter 12: Miscellaneous 68

(setq org-hide-leading-stars t)

or change this on a per-file basis with one of the lines (anywhere in the buffer)
#+STARTUP: showstars
#+STARTUP: hidestars

Press C-c C-c with the cursor in a ‘STARTUP’ line to activate the modifications.
With stars hidden, the tree becomes:

* Top level headline
* Second level
* 3rd level
some text

* 3rd level
more text

* Another top level headline

Note that the leading stars are not truly replaced by whitespace, they are only fontified
with the face org-hide that uses the background color as font color. If you are not using
either white or black background, you may have to customize this face to get the wanted
effect. Another possibility is to set this font such that the extra stars are almost invisible,
for example using the color grey90 on a white background.

Things become cleaner still if you skip all the even levels and use only odd levels 1, 3,
5..., effectively adding two stars to go from one outline level to the next:

* Top level headline
* Second level
* 3rd level

some text
* 3rd level

more text
* Another top level headline

In order to make the structure editing and export commands handle this convention cor-
rectly, use

(setq org-odd-levels-only t)

or set this on a per-file basis with one of the following lines (don’t forget to press C-c C-c

with the cursor in the startup line to activate changes immediately).
#+STARTUP: odd
#+STARTUP: oddeven

You can convert an Org-mode file from single-star-per-level to the double-star-per-level
convention with M-x org-convert-to-odd-levels RET in that file. The reverse operation
is M-x org-convert-to-oddeven-levels.

12.6 Using org-mode on a tty

Org-mode uses a number of keys that are not accessible on a tty. This applies to most
special keys like cursor keys, 〈TAB〉 and 〈RET〉, when these are combined with modifier keys
like 〈Meta〉 and/or 〈Shift〉. Org-mode uses these bindings because it needs to provide keys

Chapter 12: Miscellaneous 69

for a large number of commands, and because these keys appeared particularly easy to
remember. In order to still be able to access the core functionality of Org-mode on a tty,
alternative bindings are provided. Here is a complete list of these bindings, which are
obviously more cumbersome to use. Note that sometimes a work-around can be better. For
example changing a time stamp is really only fun with S-〈cursor〉 keys. On a tty you would
rather use C-c . to re-insert the timestamp.

Default Alternative 1 Alternative 2
S-〈TAB〉 C-u 〈TAB〉
M-〈left〉 C-c C-x l 〈Esc〉 〈left〉
M-S-〈left〉 C-c C-x L

M-〈right〉 C-c C-x r 〈Esc〉 〈right〉
M-S-〈right〉 C-c C-x R

M-〈up〉 C-c C-x u 〈Esc〉 〈up〉
M-S-〈up〉 C-c C-x U

M-〈down〉 C-c C-x d 〈Esc〉 〈down〉
M-S-〈down〉 C-c C-x D

S-〈RET〉 C-c C-x c

M-〈RET〉 C-c C-x m 〈Esc〉 〈RET〉
M-S-〈RET〉 C-c C-x M

S-〈left〉 C-c C-x 〈left〉
S-〈right〉 C-c C-x 〈right〉
S-〈up〉 C-c C-x 〈up〉
S-〈down〉 C-c C-x 〈down〉

12.7 Interaction with other packages

Org-mode lives in the world of GNU Emacs and interacts in various ways with other
code out there.

12.7.1 Packages that Org-mode cooperates with

‘calc.el’ by Dave Gillespie
Org-mode uses the calc package for implementing spreadsheet functionality in
its tables (see Section 3.3 [Table calculations], page 14). Org-modes checks
for the availability of calc by looking for the function calc-eval which should
be autoloaded in your setup if calc has been installed properly. As of Emacs
22, calc is part of the Emacs distribution. Another possibility for interaction
between the two packages is using calc for embedded calculations. See section
“Embedded Mode” in GNU Emacs Calc Manual.

‘constants.el’ by Carsten Dominik
In a table formula (see Section 3.3 [Table calculations], page 14), it is possible
to use names for natural constants or units. Instead of defining your own con-
stants in the variable org-table-formula-constants, install the ‘constants’
package which defines a large number of constants and units, and lets you use
unit prefixes like ‘M’ for ‘Mega’ etc. You will need version 2.0 of this package,

Chapter 12: Miscellaneous 70

available at http://www.astro.uva.nl/~dominik/Tools. Org-mode checks
for the function constants-get, which has to be autoloaded in your setup. See
the installation instructions in the file ‘constants.el’.

‘cdlatex.el’ by Carsten Dominik
Org-mode can make use of the cdlatex package to efficiently enter LaTEX frag-
ments into Org-mode files. See Section 9.5 [CDLaTeX mode], page 54.

‘remember.el’ by John Wiegley
Org mode cooperates with remember, see Section 4.8 [Remember], page 25.
‘Remember.el’ is not part of Emacs, find it on the web.

‘table.el’ by Takaaki Ota
Org mode cooperates with table.el, see Section 3.5 [table.el], page 19.
‘table.el’ is part of Emacs 22.

12.7.2 Packages that lead to conflicts with Org-mode

‘allout.el’ by Ken Manheimer
Startup of Org-mode may fail with the error message (wrong-type-argument
keymapp nil) when there is an outdated version ‘allout.el’ on the load path,
for example the version distributed with Emacs 21.x. Upgrade to Emacs 22
and this problem will disappear. If for some reason you cannot do this, make
sure that org.el is loaded before ‘allout.el’, for example by putting (require
’org) early enough into your ‘.emacs’ file.

‘CUA.el’ by Kim. F. Storm
Keybindings in Org-mode conflict with the S-<cursor> keys used by CUA-
mode (as well as pc-select-mode and s-region-mode) to select and extend the
region. If you want to use one of these packages along with Org-mode, configure
the variable org-CUA-compatible. When set, Org-mode will move the following
keybindings in org-mode files, and in the agenda buffer (but not during date
selection).

S-UP -> M-p S-DOWN -> M-n
S-LEFT -> M-- S-RIGHT -> M-+
S-RET -> C-S-RET

Yes, these are unfortunately more difficult to remember. If you want to have
other replacement keys, look at the variable org-disputed-keys.

‘windmove.el’ by Hovav Shacham
Also this package uses the S-<cursor> keys, so everything written in the para-
graph above about CUA mode also applies here.

12.8 Bugs

Here is a list of things that should work differently, but which I have found too hard to
fix.

Chapter 12: Miscellaneous 71

• If a table field starts with a link, and if the corresponding table column is narrowed
(see Section 3.2 [Narrow columns], page 14) to a width too small to display the link,
the field would look entirely empty even though it is not. To prevent this, Org-mode
throws an error. The work-around is to make the column wide enough to fit the link,
or to add some text (at least 2 characters) before the link in the same field.

• Narrowing table columns does not work on XEmacs, because the format function does
not transport text properties.

• Text in an entry protected with the ‘QUOTE’ keyword should not autowrap.
• When the application called by C-c C-o to open a file link fails (for example because

the application does not exist or refuses to open the file), it does so silently. No error
message is displayed.

• Recalculating a table line applies the formulas from left to right. If a formula uses
calculated fields further down the row, multiple recalculation may be needed to get all
fields consistent.

• A single letter cannot be made bold, for example ‘*a*’.
• The exporters work well, but could be made more efficient.

Appendix A: Extensions, Hooks and Hacking 72

Appendix A Extensions, Hooks and Hacking

This appendix lists extensions for Org-mode written by other authors. It also covers
some aspects where users can extend the functionality of Org-mode.

A.1 Third-party extensions for Org-mode

The following extensions for Org-mode have been written by other people:

‘org-publish.el’ by David O’Toole
This package provides facilities for publishing related sets of Org-mode files
together with linked files like images as a webpages. It is highly configurable
and can be used for other publishing purposes as well. As of Org-mode version
4.30, ‘org-publish.el’ is part of the Org-mode distribution. It is not yet part
of Emacs, however, a delay caused by the preparations for the 22.1 release.
In the mean time, ‘org-publish.el’ can be downloaded from David’s site:
http://dto.freeshell.org/e/org-publish.el.

‘org-mouse.el’ by Piotr Zielinski
This package implements extended mouse functionality for Org-mode. It
allows you to cycle visibility and to edit the document structure with the
mouse. Best of all, it provides a context-sensitive menu on 〈mouse-3〉 that
changes depending on the context of a mouse-click. As of Org-mode version
4.53, ‘org-mouse.el’ is part of the Org-mode distribution. It is not yet part
of Emacs, however, a delay caused by the preparations for the 22.1 release.
In the mean time, ‘org-mouse.el’ can be downloaded from Piotr’s site:
http://www.cl.cam.ac.uk/~pz215/files/org-mouse.el.

‘org-blog.el’ by David O’Toole
A blogging plug-in for ‘org-publish.el’.
http://dto.freeshell.org/notebook/OrgMode.html.

‘blorg.el’ by Bastien Guerry
Publish Org-mode files as blogs. http://www.cognition.ens.fr/~guerry/blorg.html.

A.2 Dynamic blocks

Org-mode documents can contain dynamic blocks. These are specially marked regions
that are updated by some user-written function. A good example for such a block is the
clock table inserted by the command C-c C-x C-r (see Section 6.4.2 [Clocking work time],
page 35).

Dynamic block are enclosed by a BEGIN-END structure that assigns a name to the
block and can also specify parameters for the function producing the content of the block.

#+BEGIN: myblock :parameter1 value1 :parameter2 value2 ...

#+END:

Dynamic blocks are updated with the following commands

Appendix A: Extensions, Hooks and Hacking 73

C-c C-x C-u

Update dynamic block at point.

C-u C-c C-x C-u

Update all dynamic blocks in the current file.

Updating a dynamic block means to remove all the text between BEGIN and END,
parse the BEGIN line for parameters and then call the specific writer function for this
block to insert the new content. For a block with name myblock, the writer function is
org-dblock-write:myblock with as only parameter a property list with the parameters
given in the begin line. Here is a trivial example of a block that keeps track of when the
block update function was last run:

#+BEGIN: block-update-time :format "on %m/%d/%Y at %H:%M"

#+END:

The corresponding block writer function could look like this:
(defun org-dblock-write:block-update-time (params)

(let ((fmt (or (plist-get params :format) "%d. %m. %Y")))
(insert "Last block update at: "

(format-time-string fmt (current-time)))))

If you want to make sure that all dynamic blocks are always up-to-date, you could add
the function org-update-all-dblocks to a hook, for example before-save-hook. org-
update-all-dblocks is written in a way that is does nothing in buffers that are not in
Org-mode.

A.3 Special Agenda Views

Org-mode provides a special hook that can be used to narrow down the selection made
by any of the agenda views. You may specify a function that is used at each match to verify
if the match should indeed be part of the agenda view, and if not, how much should be
skipped.

Let’s say you want to produce a list of projects that contain a WAITING tag anywhere
in the project tree. Let’s further assume that you have marked all tree headings that define
a project with the todo keyword PROJECT. In this case you would run a todo search for
the keyword PROJECT, but skip the match unless there is a WAITING tag anywhere in
the subtree belonging to the project line..

To achieve this, you must write a function that searches the subtree for the tag. If
the tag is found, the function must return nil to indicate that this match should not be
skipped. If there is no such tag, return the location of the end of the subtree, to indicate
that search should continue from there.

(defun my-skip-unless-waiting ()
"Skip trees that are not waiting"
(let ((subtree-end (save-excursion (org-end-of-subtree t))))
(if (re-search-forward ":WAITING:" subtree-end t)

nil ; tag found, do not skip
subtree-end))) ; tag not found, continue after end of subtree

Appendix A: Extensions, Hooks and Hacking 74

Furthermore you must write a command that uses let to temporarily puts this function
into the variable org-agenda-skip-function, sets the header string for the agenda buffer,
and calls the todo-list generator while asking for the specific TODO keyword PROJECT.
The function must also accept one argument MATCH, but it can choose to ignore it1 (as
we do in the example below). Here is the example:

(defun my-org-waiting-projects (&optional match)
"Produce a list of projects that contain a WAITING tag.

MATCH is being ignored."
(interactive)
(let ((org-agenda-skip-function ’my-skip-unless-waiting)

(org-agenda-overriding-header "Projects waiting for something: "))
;; make the list
(org-todo-list "PROJECT")))

1 MATCH must be present in case you want to define a custom command for producing this special list.
Custom commands always supply the MATCH argument, but it can be empty if you do not specify it
while defining the command(see Section 8.6 [Custom agenda views], page 48).

Appendix B: History and Acknowledgments 75

Appendix B History and Acknowledgments

Org-mode was borne in 2003, out of frustration over the user interface of the Emacs
outline-mode. All I wanted was to make working with an outline tree possible without
having to remember more than 10 commands just for hiding and unhiding parts of the
outline tree, and to allow to restructure a tree easily. Visibility cycling and structure
editing were originally implemented in the package ‘outline-magic.el’, but quickly moved
to the more general ‘org.el’. TODO entries, basic time stamps, and table support were
added next, and highlight the two main goals that Org-mode still has today: To create a
new, outline-based, plain text mode with innovative and intuitive editing features, and to
incorporate project planning functionality directly into a notes file.

Since the first release, hundreds of emails to me or on emacs-orgmode@gnu.org have
provided a constant stream of bug reports, feedback, new ideas, and sometimes even patches
and add-on code. Many thanks to everyone who has helped to improve this package. I am
trying to keep here a list of the people who had significant influence in shaping one or more
aspects of Org-mode. The list may not be complete, if I have forgotten someone, please
accept my apologies and let me know.
• Thomas Baumann contributed the code for links to the MH-E email system.
• Alex Bochannek provided a patch for rounding time stamps.
• Charles Cave’s suggestion sparked the implementation of templates for Remember.
• Pavel Chalmoviansky influenced the agenda treatment of items with specified time.
• Gregory Chernov patched support for lisp forms into table calculations and improved

XEmacs compatibility, in particular by porting ‘nouline.el’ to XEmacs.
• Sacha Chua suggested to copy some linking code from Planner.
• Eddward DeVilla proposed and tested checkbox statistics.
• Kees Dullemond inspired the use of narrowed tabled columns.
• Christian Egli converted the documentation into TeXInfo format, patched CSS format-

ting into the HTML exporter, and inspired the agenda.
• Nic Ferrier contributed mailcap and XOXO support.
• Niels Giessen had the idea to automatically archive DONE trees.
• Bastien Guerry provided extensive feedback.
• Kai Grossjohann pointed out key-binding conflicts with other packages.
• Leon Liu asked for embedded LaTeX and tested it.
• Stefan Monnier provided a patch to keep the Emacs-Lisp compiler happy.
• Todd Neal provided patches for links to Info files and elisp forms.
• Tim O’Callaghan suggested in-file links, search options for general file links, and TAGS.
• Oliver Oppitz suggested multi-state TODO items.
• Scott Otterson sparked the introduction of descriptive text for links, among other

things.
• Pete Phillips helped during the development of the TAGS feature, and provided fre-

quent feedback.
• T.V. Raman reported bugs and suggested improvements.

Appendix B: History and Acknowledgments 76

• Matthias Rempe (Oelde) provided ideas, Windows support, and quality control.
• Kevin Rogers contributed code to access VM files on remote hosts.
• Frank Ruell solved the mystery of the keymapp nil bug, a conflict with ‘allout.el’.
• Jason Riedy sent a patch to fix a bug with export of TODO keywords.
• Philip Rooke created the Org-mode reference card and provided lots of feedback.
• Christian Schlauer proposed angular brackets around links, among other things.
• Linking to VM/BBDB/GNUS was inspired by Tom Shannon’s ‘organizer-mode.el’.
• Daniel Sinder came up with the idea of internal archiving by locking subtrees.
• Dale Smith proposed link abbreviations.
• David O’Toole wrote ‘org-publish.el’ and drafted the manual chapter about pub-

lishing.
• Jürgen Vollmer contributed code generating the table of contents in HTML output.
• Chris Wallace provided a patch implementing the ‘QUOTE’ keyword.
• David Wainberg suggested archiving, and improvements to the linking system.
• John Wiegley wrote ‘emacs-wiki.el’ and ‘planner.el’. The development of Org-

mode was fully independent, and both systems are really different beasts in their basic
ideas and implementation details. I later looked at John’s code, however, and learned
from his implementation of (i) links where the link itself is hidden and only a description
is shown, and (ii) popping up a calendar to select a date.

• Carsten Wimmer suggested some changes and helped fix a bug in linking to GNUS.
• Roland Winkler requested additional keybindings to make Org-mode work on a tty.
• Piotr Zielinski wrote ‘org-mouse.el’, proposed agenda blocks and contributed various

ideas and code snippets.

Index 77

Index

A
abbreviation, links . 23
acknowledgments . 75
action, for publishing . 61
activation . 2
active region . 6, 13, 55
agenda . 41
agenda dispatcher . 41
agenda files . 40
agenda files, removing buffers 48
agenda views . 40
agenda views, custom . 48
agenda, batch production . 50
agenda, with block views . 49
‘allout.el’ . 70
angular brackets, around links 22
applescript, for calendar update 57
archive locations . 8
archiving . 7
ASCII export . 55
author . 3
autoload . 2

B
backtrace of an error . 3
BBDB links . 21
block agenda . 49
‘blorg.el’ . 72
bold text . 58
Boolean logic, for tag searches 39
bug reports . 3
bugs . 70

C
C-c C-c, overview . 67
‘calc’ package . 14
‘calc.el’ . 69
calculations, in tables . 13, 14
calendar commands, from agenda 48
calendar integration . 42
calendar, for selecting date 33
CamelCase link completion 65
CamelCase links . 20
CamelCase links, completion of 21
category . 44
CDLaTeX . 54
‘cdlatex.el’ . 70
checkbox statistics . 30
checkboxes . 30
children, subtree visibility state 4
clean outline view . 67
CLOCK keyword . 32

CLOSED keyword . 32
column formula . 16
commands, in agenda buffer 45
comment lines . 58
completion, of CamelCase links 21, 65
completion, of dictionary words 65
completion, of file names . 23
completion, of links . 22
completion, of option keywords 58, 65
Completion, of option keywords 28
completion, of tags . 37, 65
completion, of TEX symbols 65
completion, of TODO keywords 28, 65
constants, in calculations . 15
‘constants.el’ . 69
contents, global visibility state 4
copying, of subtrees . 6
creating timestamps . 32
‘CUA.el’. 70
custom agenda views . 48
custom date/time format . 34
custom search strings . 25
customization . 65
cutting, of subtrees . 6
cycling, of TODO states . 27
cycling, visibility . 4

D
daily agenda . 41
date format, custom . 34
date stamps . 31
date, reading in minibuffer 33
DEADLINE keyword . 31
deadlines . 31
demotion, of subtrees . 6
diary entries, creating from agenda 48
diary integration . 42
dictionary word completion 65
directories, for publishing . 60
dispatching agenda commands 41
display changing, in agenda 46
document structure . 4
DONE, final TODO keyword 29

E
editing tables . 11
editing, of table formulas . 18
elisp links . 21
emphasized text . 59
enhancing text . 58
evaluate time range . 33
exporting . 55

Index 78

exporting, not . 58

extended TODO keywords . 27

external archiving . 7

external links . 21

external links, in HTML export 56

F
FAQ . 1

feedback . 3

file links . 21

file links, searching . 24

file name completion . 23

files for agenda . 40

files, adding to agenda list . 40

files, selecting for publishing 61

fixed width . 58

fixed-width sections . 59

folded, subtree visibility state 4

folding, sparse trees . 8

following links . 23

format specifier . 15

format, of links . 20

formula editing . 18

formula syntax . 14

formula, for named table field 17

formula, for table column . 16

formula, in tables . 13

G
global cycling . 4

global keybindings . 2

global TODO list . 42

global visibility states . 4

GNUS links . 21

H
hand-formatted lists . 58

headline levels . 59

headline levels, for exporting 55, 56

headline navigation . 5

headline tagging . 37

headline, promotion and demotion 6

headlines . 4

hide text . 4

hiding leading stars . 67

history . 75

HTML export . 55

hyperlinks . 20

I
iCalendar export . 57
in-buffer settings . 65
inactive timestamp . 31
index, of published pages . 62
Info links. 21
inheritance, of tags . 37
inserting links . 22
installation . 2
internal archiving . 7
internal links . 20
internal links, in HTML export 56
introduction . 1
italic text . 58

J
jumping, to headlines . 5

K
keybindings, global . 2
keyword options . 28

L
LaTeX fragments . 52
LaTeX fragments, export . 58
LaTeX fragments, preview . 53
LaTEX fragments . 59
LaTEX interpretation . 52
level, require for tags match 39
linebreak preservation . 59
linebreak, forced . 58
link abbreviations . 23
link completion . 22
link format . 20
links, external . 21
links, handling . 22
links, in HTML export . 56
links, internal . 20
links, publishing . 62
links, radio targets . 21
links, returning to . 23
Lisp forms, as table formulas 15
lists, hand-formatted . 58
lists, ordered . 9
lists, plain . 9
logging, of progress . 34

M
maintainer . 3
mark ring . 23
marking characters, tables . 17
matching, of tags . 43
matching, tags . 37

Index 79

math symbols . 52
MH-E links. 21
minor mode for tables . 19
mode, for ‘calc’ . 15
motion commands in agenda 46
motion, between headlines . 5

N
name, of column or field . 15
named field formula . 17
names as TODO keywords. 28
narrow columns in tables . 14

O
occur, command . 8
option keyword completion 65
options, for custom agenda views 50
options, for customization . 65
options, for export . 58
options, for publishing . 61
ordered lists . 9
org-agenda, command . 41
‘org-blog.el’ . 72
org-mode, turning on . 2
‘org-mouse.el’ . 72
org-publish-project-alist . 60
‘org-publish.el’ . 72
orgtbl-mode . 19
outline tree . 4
outline-mode . 4
outlines . 4
overview, global visibility state 4

P
packages, interaction with other 69
pasting, of subtrees . 6
per file keywords . 28
plain lists . 9
plain text external links . 22
presentation, of agenda items 44
printing sparse trees . 8
priorities . 29
priorities, of agenda items . 45
progress logging . 34
projects, for publishing . 60
promotion, of subtrees . 6
publishing . 60

Q
quoted HTML tags . 59

R

radio targets . 21

ranges, time . 31

recomputing table fields . 16

region, active . 6, 13, 55

regular expressions, with tags search 39

‘remember.el’ . 25, 70

remote editing, from agenda 47

remote editing, undo . 47

richer text. 58

RMAIL links . 21

S

SCHEDULED keyword. 31

scheduling . 31

search option in file links . 24

search strings, custom . 25

searching for tags . 39

section-numbers . 59

setting tags . 37

SHELL links . 21

show all, command . 5

show all, global visibility state 4

show hidden text . 4

sorting, of agenda items . 45

sparse tree, for deadlines . 32

sparse tree, for TODO . 27

sparse tree, tag based . 37

sparse trees. 8

special keywords . 65

spreadsheet capabilities . 14

statistics, for checkboxes . 30

storing links . 22

structure editing . 6

structure of document . 4

sublevels, inclusion into tags match 37

sublevels, inclusion into todo list 42

subscript . 52

subtree cycling . 4

subtree visibility states . 4

subtree, cut and paste . 6

subtree, subtree visibility state 4

subtrees, cut and paste . 6

summary . 1

superscript . 52

syntax, of formulas. 14

Index 80

T
table editor, builtin . 11
table editor, ‘table.el’ . 19
table of contents . 59
‘table.el’ . 19, 70
tables . 11, 59
tables, export . 58
tag completion . 65
tag searches . 39
tags . 37
tags view. 43
tags, setting . 37
targets, for links . 20
targets, radio . 21
tasks, breaking down . 29
templates, for remember . 25
TeX macros . 52
TeX macros, export . 58
TEX interpretation . 52
TEX macros . 59
TEX symbol completion . 65
TEX-like syntax for sub- and superscripts 59
thanks . 75
time format, custom . 34
time grid . 45
time stamps . 31
time, reading in minibuffer 33
time-of-day specification . 44
time-sorted view . 43
timeline, single file . 43
timerange . 31
timestamp . 31
timestamp, inactive . 31
timestamps, creating . 32
TODO items . 27
TODO keyword matching . 42
TODO keyword matching, with tags search 39

TODO keywords completion 65
TODO list, global . 42
TODO types . 28
TODO workflow . 28
transient-mark-mode 6, 13, 55
trees, sparse . 8
trees, visibility . 4
tty keybindings . 68
types as TODO keywords . 28

U
underlined text . 58
undoing remote-editing events 47
URL links . 21
USENET links . 21

V
variables, for customization 65
vectors, in table calculations 15
visibility cycling . 4
visible text, printing . 8
VM links . 21

W
WANDERLUST links . 21
weekly agenda . 41
‘windmove.el’ . 70
workflow states as TODO keywords 28

X
XEmacs . 2
XOXO export . 57

Key Index 81

Key Index

$
$. 47

’
’ . 54

+
+ . 47

,
, . 47

-
- . 47

.

. 47

:
: . 47

<
< . 33

>
> . 33, 47

^
^ . 54

_ . 54

‘
‘ . 54

A
a . 47

B
b . 46

C
c . 48
C . 48
C-# . 13
C-, . 40
C-_ . 47
C-a a L . 43
C-c ! . 32
C-c # . 30
C-c $. 7
C-c % . 23
C-c & . 23
C-c ’ . 13, 18
C-c * . 13
C-c + . 13
C-c , . 29
C-c - . 12
C-c . 32
C-c / . 8
C-c : . 58
C-c ; . 58
C-c < . 32
C-c = . 13
C-c > . 32
C-c ? . 13, 18
C-c [. 40
C-c] . 40
C-c ^ . 6, 12
C-c ‘ . 13
C-c { . 54
C-c \ . 39
C-c | . 11
C-c ~ . 19
C-c a ! . 43
C-c a # . 43
C-c a a . 41
C-c a C . 48
C-c a m . 39, 43
C-c a M . 39, 43
C-c a t . 27, 42
C-c a T . 42
C-c C-a . 5
C-c C-b . 5
C-c C-c 10, 11, 18, 19, 30, 37, 53, 67
C-c C-d . 32, 47
C-c C-e . 55
C-c C-e a . 55
C-c C-e b . 55
C-c C-e c . 57
C-c C-e h . 55
C-c C-e i . 57
C-c C-e I . 57
C-c C-e t . 58
C-c C-e v . 8, 57

Key Index 82

C-c C-e v a . 55
C-c C-e v b . 55
C-c C-e v h . 55
C-c C-e x . 57
C-c C-f . 5
C-c C-j . 5
C-c C-l . 22
C-c C-n . 5
C-c C-o . 23, 32
C-c C-p . 5
C-c C-q . 12, 18
C-c C-r . 5
C-c C-s . 32, 47
C-c C-t . 27, 35
C-c C-u . 5
C-c C-v . 27
C-c C-w . 32
C-c C-x b . 5
C-c C-x C-a . 7
C-c C-x C-b . 30
C-c C-x C-c . 48
C-c C-x C-d . 35
C-c C-x C-i . 35
C-c C-x C-k . 6
C-c C-x C-l . 53
C-c C-x C-o . 35
C-c C-x C-r . 35
C-c C-x C-t . 34
C-c C-x C-u . 73
C-c C-x C-w . 6, 12
C-c C-x C-x . 35
C-c C-x C-y . 6, 12
C-c C-x M-w . 6, 12
C-c C-y . 33, 35
C-c l . 22
C-c 〈TAB〉 . 13
C-k . 47
C-TAB . 7
C-u C-c $. 7
C-u C-c . 32
C-u C-c = . 13
C-u C-c C-l . 23
C-u C-c C-x C-a . 7
C-u C-c C-x C-u . 36, 73

D
d . 46
D . 46

F
f . 46

G
g . 46

H
H . 48

I
i . 48
I . 48

L
l . 46
L . 46
〈left〉 . 47

M
M . 48
M-〈down〉 . 12
M-〈left〉 . 6, 12
M-〈RET〉 . 6, 9
M-〈right〉 . 6, 12
M-S-〈down〉 . 6, 10, 12
M-S-〈left〉 . 6, 10, 12, 34
M-S-〈RET〉 . 6, 9, 30
M-S-〈right〉 . 6, 10, 12, 33
M-S-〈up〉 . 6, 10, 12
M-〈TAB〉 . 28, 37, 65
M-〈up〉 . 12
mouse-1 . 23, 33, 46
mouse-2 . 23, 46
mouse-3 . 23, 46

N
n . 46

O
o . 46
O . 48

P
p . 46
P . 47

Q
q . 48

R
r . 42, 46
〈RET〉 . 11, 34, 38, 46
〈right〉 . 47

Key Index 83

S
s . 46
S . 48
S-〈down〉 . 10, 29, 33, 47
S-〈left〉 . 27, 32, 33, 47
S-〈RET〉 . 13
S-〈right〉 . 27, 32, 33, 47
S-〈TAB〉 . 4, 11
S-〈up〉 . 10, 29, 33, 47
〈SPC〉 . 38, 46

T

t . 47
T . 47
〈TAB〉 . 4, 9, 11, 38, 46, 54

W
w . 46

X
x . 48
X . 48

	Introduction
	Summary
	Installation
	Activation
	Feedback

	Document Structure
	Outlines
	Headlines
	Visibility cycling
	Motion
	Structure editing
	Archiving
	The ARCHIVE tag
	Moving subtrees

	Sparse trees
	Plain lists

	Tables
	The built-in table editor
	Narrow columns
	Calculations in tables
	Formula syntax
	Emacs Lisp forms as formulas
	Column formulas
	Advanced features
	Named-field formulas
	Editing and debugging formulas
	Appetizer

	The Orgtbl minor mode
	The table.el package

	Hyperlinks
	Link format
	Internal links
	Radio targets
	CamelCase words as links

	External links
	Handling links
	Link abbreviatons
	Search options in file links
	Custom Searches
	Remember

	TODO items
	Basic TODO functionality
	Extended use of TODO keywords
	TODO keywords as workflow states
	TODO keywords as types
	Setting up TODO keywords for individual files

	Priorities
	Breaking tasks down into subtasks
	Checkboxes

	Timestamps
	Time stamps, deadlines and scheduling
	Creating timestamps
	The date/time prompt

	Custom time format
	Progress Logging
	Closing items
	Clocking work time

	Tags
	Tag inheritance
	Setting tags
	Tag searches

	Agenda Views
	Agenda files
	The agenda dispatcher
	The built-in agenda views
	The weekly/daily agenda
	The global TODO list
	Matching headline tags
	Timeline for a single file
	Stuck projects

	Presentation and sorting
	Categories
	Time-of-Day Specifications
	Sorting of agenda items

	Commands in the agenda buffer
	Custom agenda views
	Storing searches
	Block agenda
	Setting Options for custom commands
	Creating agenda views in batch processing

	Embedded LaTeX
	Math symbols
	Subscripts and Superscripts
	LaTeX fragments
	Processing LaTeX fragments
	Using CDLaTeX to enter math

	Exporting
	ASCII export
	HTML export
	XOXO export
	iCalendar export
	Text interpretation by the exporter
	Comment lines
	Enhancing text for export
	Export options

	Publishing
	Configuration
	The variable org-publish-project-alist
	Sources and destinations for files
	Selecting files
	Publishing Action
	Options for the HTML exporter
	Links between published files
	Project page index

	Sample configuration
	Example: simple publishing configuration
	Example: complex publishing configuration

	Triggering publication

	Miscellaneous
	Completion
	Customization
	Summary of in-buffer settings
	The very busy C-c C-c key
	A cleaner outline view
	Using org-mode on a tty
	Interaction with other packages
	Packages that Org-mode cooperates with
	Packages that lead to conflicts with Org-mode

	Bugs

	Extensions, Hooks and Hacking
	Third-party extensions for Org-mode
	Dynamic blocks
	Special Agenda Views

	History and Acknowledgments
	Index
	Key Index

