6811333 Remove prom_printf() message in emlxs driver
[opensolaris.git] / usr / src / uts / common / vm / seg_kp.c
blobd65b3062bc060adab4abc4b50f6e2c8d24e2450e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
27 /* All Rights Reserved */
30 * Portions of this source code were derived from Berkeley 4.3 BSD
31 * under license from the Regents of the University of California.
34 #pragma ident "%Z%%M% %I% %E% SMI"
37 * segkp is a segment driver that administers the allocation and deallocation
38 * of pageable variable size chunks of kernel virtual address space. Each
39 * allocated resource is page-aligned.
41 * The user may specify whether the resource should be initialized to 0,
42 * include a redzone, or locked in memory.
45 #include <sys/types.h>
46 #include <sys/t_lock.h>
47 #include <sys/thread.h>
48 #include <sys/param.h>
49 #include <sys/errno.h>
50 #include <sys/sysmacros.h>
51 #include <sys/systm.h>
52 #include <sys/buf.h>
53 #include <sys/mman.h>
54 #include <sys/vnode.h>
55 #include <sys/cmn_err.h>
56 #include <sys/swap.h>
57 #include <sys/tuneable.h>
58 #include <sys/kmem.h>
59 #include <sys/vmem.h>
60 #include <sys/cred.h>
61 #include <sys/dumphdr.h>
62 #include <sys/debug.h>
63 #include <sys/vtrace.h>
64 #include <sys/stack.h>
65 #include <sys/atomic.h>
66 #include <sys/archsystm.h>
67 #include <sys/lgrp.h>
69 #include <vm/as.h>
70 #include <vm/seg.h>
71 #include <vm/seg_kp.h>
72 #include <vm/seg_kmem.h>
73 #include <vm/anon.h>
74 #include <vm/page.h>
75 #include <vm/hat.h>
76 #include <sys/bitmap.h>
79 * Private seg op routines
81 static void segkp_badop(void);
82 static void segkp_dump(struct seg *seg);
83 static int segkp_checkprot(struct seg *seg, caddr_t addr, size_t len,
84 uint_t prot);
85 static int segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
86 static int segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
87 struct page ***page, enum lock_type type,
88 enum seg_rw rw);
89 static void segkp_insert(struct seg *seg, struct segkp_data *kpd);
90 static void segkp_delete(struct seg *seg, struct segkp_data *kpd);
91 static caddr_t segkp_get_internal(struct seg *seg, size_t len, uint_t flags,
92 struct segkp_data **tkpd, struct anon_map *amp);
93 static void segkp_release_internal(struct seg *seg,
94 struct segkp_data *kpd, size_t len);
95 static int segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr,
96 size_t len, struct segkp_data *kpd, uint_t flags);
97 static int segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr,
98 size_t len, struct segkp_data *kpd, uint_t flags);
99 static struct segkp_data *segkp_find(struct seg *seg, caddr_t vaddr);
100 static int segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
101 static lgrp_mem_policy_info_t *segkp_getpolicy(struct seg *seg,
102 caddr_t addr);
103 static int segkp_capable(struct seg *seg, segcapability_t capability);
106 * Lock used to protect the hash table(s) and caches.
108 static kmutex_t segkp_lock;
111 * The segkp caches
113 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE];
115 #define SEGKP_BADOP(t) (t(*)())segkp_badop
118 * When there are fewer than red_minavail bytes left on the stack,
119 * segkp_map_red() will map in the redzone (if called). 5000 seems
120 * to work reasonably well...
122 long red_minavail = 5000;
125 * will be set to 1 for 32 bit x86 systems only, in startup.c
127 int segkp_fromheap = 0;
128 ulong_t *segkp_bitmap;
131 * If segkp_map_red() is called with the redzone already mapped and
132 * with less than RED_DEEP_THRESHOLD bytes available on the stack,
133 * then the stack situation has become quite serious; if much more stack
134 * is consumed, we have the potential of scrogging the next thread/LWP
135 * structure. To help debug the "can't happen" panics which may
136 * result from this condition, we record lbolt and the calling thread
137 * in red_deep_lbolt and red_deep_thread respectively.
139 #define RED_DEEP_THRESHOLD 2000
141 clock_t red_deep_lbolt;
142 kthread_t *red_deep_thread;
144 uint32_t red_nmapped;
145 uint32_t red_closest = UINT_MAX;
146 uint32_t red_ndoubles;
148 pgcnt_t anon_segkp_pages_locked; /* See vm/anon.h */
149 pgcnt_t anon_segkp_pages_resv; /* anon reserved by seg_kp */
151 static struct seg_ops segkp_ops = {
152 SEGKP_BADOP(int), /* dup */
153 SEGKP_BADOP(int), /* unmap */
154 SEGKP_BADOP(void), /* free */
155 segkp_fault,
156 SEGKP_BADOP(faultcode_t), /* faulta */
157 SEGKP_BADOP(int), /* setprot */
158 segkp_checkprot,
159 segkp_kluster,
160 SEGKP_BADOP(size_t), /* swapout */
161 SEGKP_BADOP(int), /* sync */
162 SEGKP_BADOP(size_t), /* incore */
163 SEGKP_BADOP(int), /* lockop */
164 SEGKP_BADOP(int), /* getprot */
165 SEGKP_BADOP(u_offset_t), /* getoffset */
166 SEGKP_BADOP(int), /* gettype */
167 SEGKP_BADOP(int), /* getvp */
168 SEGKP_BADOP(int), /* advise */
169 segkp_dump, /* dump */
170 segkp_pagelock, /* pagelock */
171 SEGKP_BADOP(int), /* setpgsz */
172 segkp_getmemid, /* getmemid */
173 segkp_getpolicy, /* getpolicy */
174 segkp_capable, /* capable */
178 static void
179 segkp_badop(void)
181 panic("segkp_badop");
182 /*NOTREACHED*/
185 static void segkpinit_mem_config(struct seg *);
187 static uint32_t segkp_indel;
190 * Allocate the segment specific private data struct and fill it in
191 * with the per kp segment mutex, anon ptr. array and hash table.
194 segkp_create(struct seg *seg)
196 struct segkp_segdata *kpsd;
197 size_t np;
199 ASSERT(seg != NULL && seg->s_as == &kas);
200 ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock));
202 if (seg->s_size & PAGEOFFSET) {
203 panic("Bad segkp size");
204 /*NOTREACHED*/
207 kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP);
210 * Allocate the virtual memory for segkp and initialize it
212 if (segkp_fromheap) {
213 np = btop(kvseg.s_size);
214 segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP);
215 kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE,
216 vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP);
217 } else {
218 segkp_bitmap = NULL;
219 np = btop(seg->s_size);
220 kpsd->kpsd_arena = vmem_create("segkp", seg->s_base,
221 seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE,
222 VM_SLEEP);
225 kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE);
227 kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *),
228 KM_SLEEP);
229 seg->s_data = (void *)kpsd;
230 seg->s_ops = &segkp_ops;
231 segkpinit_mem_config(seg);
232 return (0);
237 * Find a free 'freelist' and initialize it with the appropriate attributes
239 void *
240 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags)
242 int i;
244 if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED))
245 return ((void *)-1);
247 mutex_enter(&segkp_lock);
248 for (i = 0; i < SEGKP_MAX_CACHE; i++) {
249 if (segkp_cache[i].kpf_inuse)
250 continue;
251 segkp_cache[i].kpf_inuse = 1;
252 segkp_cache[i].kpf_max = maxsize;
253 segkp_cache[i].kpf_flags = flags;
254 segkp_cache[i].kpf_seg = seg;
255 segkp_cache[i].kpf_len = len;
256 mutex_exit(&segkp_lock);
257 return ((void *)(uintptr_t)i);
259 mutex_exit(&segkp_lock);
260 return ((void *)-1);
264 * Free all the cache resources.
266 void
267 segkp_cache_free(void)
269 struct segkp_data *kpd;
270 struct seg *seg;
271 int i;
273 mutex_enter(&segkp_lock);
274 for (i = 0; i < SEGKP_MAX_CACHE; i++) {
275 if (!segkp_cache[i].kpf_inuse)
276 continue;
278 * Disconnect the freelist and process each element
280 kpd = segkp_cache[i].kpf_list;
281 seg = segkp_cache[i].kpf_seg;
282 segkp_cache[i].kpf_list = NULL;
283 segkp_cache[i].kpf_count = 0;
284 mutex_exit(&segkp_lock);
286 while (kpd != NULL) {
287 struct segkp_data *next;
289 next = kpd->kp_next;
290 segkp_release_internal(seg, kpd, kpd->kp_len);
291 kpd = next;
293 mutex_enter(&segkp_lock);
295 mutex_exit(&segkp_lock);
299 * There are 2 entries into segkp_get_internal. The first includes a cookie
300 * used to access a pool of cached segkp resources. The second does not
301 * use the cache.
303 caddr_t
304 segkp_get(struct seg *seg, size_t len, uint_t flags)
306 struct segkp_data *kpd = NULL;
308 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
309 kpd->kp_cookie = -1;
310 return (stom(kpd->kp_base, flags));
312 return (NULL);
316 * Return a 'cached' segkp address
318 caddr_t
319 segkp_cache_get(void *cookie)
321 struct segkp_cache *freelist = NULL;
322 struct segkp_data *kpd = NULL;
323 int index = (int)(uintptr_t)cookie;
324 struct seg *seg;
325 size_t len;
326 uint_t flags;
328 if (index < 0 || index >= SEGKP_MAX_CACHE)
329 return (NULL);
330 freelist = &segkp_cache[index];
332 mutex_enter(&segkp_lock);
333 seg = freelist->kpf_seg;
334 flags = freelist->kpf_flags;
335 if (freelist->kpf_list != NULL) {
336 kpd = freelist->kpf_list;
337 freelist->kpf_list = kpd->kp_next;
338 freelist->kpf_count--;
339 mutex_exit(&segkp_lock);
340 kpd->kp_next = NULL;
341 segkp_insert(seg, kpd);
342 return (stom(kpd->kp_base, flags));
344 len = freelist->kpf_len;
345 mutex_exit(&segkp_lock);
346 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
347 kpd->kp_cookie = index;
348 return (stom(kpd->kp_base, flags));
350 return (NULL);
353 caddr_t
354 segkp_get_withanonmap(
355 struct seg *seg,
356 size_t len,
357 uint_t flags,
358 struct anon_map *amp)
360 struct segkp_data *kpd = NULL;
362 ASSERT(amp != NULL);
363 flags |= KPD_HASAMP;
364 if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) {
365 kpd->kp_cookie = -1;
366 return (stom(kpd->kp_base, flags));
368 return (NULL);
372 * This does the real work of segkp allocation.
373 * Return to client base addr. len must be page-aligned. A null value is
374 * returned if there are no more vm resources (e.g. pages, swap). The len
375 * and base recorded in the private data structure include the redzone
376 * and the redzone length (if applicable). If the user requests a redzone
377 * either the first or last page is left unmapped depending whether stacks
378 * grow to low or high memory.
380 * The client may also specify a no-wait flag. If that is set then the
381 * request will choose a non-blocking path when requesting resources.
382 * The default is make the client wait.
384 static caddr_t
385 segkp_get_internal(
386 struct seg *seg,
387 size_t len,
388 uint_t flags,
389 struct segkp_data **tkpd,
390 struct anon_map *amp)
392 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
393 struct segkp_data *kpd;
394 caddr_t vbase = NULL; /* always first virtual, may not be mapped */
395 pgcnt_t np = 0; /* number of pages in the resource */
396 pgcnt_t segkpindex;
397 long i;
398 caddr_t va;
399 pgcnt_t pages = 0;
400 ulong_t anon_idx = 0;
401 int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
402 caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base;
404 if (len & PAGEOFFSET) {
405 panic("segkp_get: len is not page-aligned");
406 /*NOTREACHED*/
409 ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL));
411 /* Only allow KPD_NO_ANON if we are going to lock it down */
412 if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON)
413 return (NULL);
415 if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL)
416 return (NULL);
418 * Fix up the len to reflect the REDZONE if applicable
420 if (flags & KPD_HASREDZONE)
421 len += PAGESIZE;
422 np = btop(len);
424 vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT);
425 if (vbase == NULL) {
426 kmem_free(kpd, sizeof (struct segkp_data));
427 return (NULL);
430 /* If locking, reserve physical memory */
431 if (flags & KPD_LOCKED) {
432 pages = btop(SEGKP_MAPLEN(len, flags));
433 if (page_resv(pages, kmflag) == 0) {
434 vmem_free(SEGKP_VMEM(seg), vbase, len);
435 kmem_free(kpd, sizeof (struct segkp_data));
436 return (NULL);
438 if ((flags & KPD_NO_ANON) == 0)
439 atomic_add_long(&anon_segkp_pages_locked, pages);
443 * Reserve sufficient swap space for this vm resource. We'll
444 * actually allocate it in the loop below, but reserving it
445 * here allows us to back out more gracefully than if we
446 * had an allocation failure in the body of the loop.
448 * Note that we don't need swap space for the red zone page.
450 if (amp != NULL) {
452 * The swap reservation has been done, if required, and the
453 * anon_hdr is separate.
455 anon_idx = 0;
456 kpd->kp_anon_idx = anon_idx;
457 kpd->kp_anon = amp->ahp;
459 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
460 kpd, vbase, len, flags, 1);
462 } else if ((flags & KPD_NO_ANON) == 0) {
463 if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) {
464 if (flags & KPD_LOCKED) {
465 atomic_add_long(&anon_segkp_pages_locked,
466 -pages);
467 page_unresv(pages);
469 vmem_free(SEGKP_VMEM(seg), vbase, len);
470 kmem_free(kpd, sizeof (struct segkp_data));
471 return (NULL);
473 atomic_add_long(&anon_segkp_pages_resv,
474 btop(SEGKP_MAPLEN(len, flags)));
475 anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT;
476 kpd->kp_anon_idx = anon_idx;
477 kpd->kp_anon = kpsd->kpsd_anon;
479 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
480 kpd, vbase, len, flags, 1);
481 } else {
482 kpd->kp_anon = NULL;
483 kpd->kp_anon_idx = 0;
487 * Allocate page and anon resources for the virtual address range
488 * except the redzone
490 if (segkp_fromheap)
491 segkpindex = btop((uintptr_t)(vbase - kvseg.s_base));
492 for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) {
493 page_t *pl[2];
494 struct vnode *vp;
495 anoff_t off;
496 int err;
497 page_t *pp = NULL;
500 * Mark this page to be a segkp page in the bitmap.
502 if (segkp_fromheap) {
503 BT_ATOMIC_SET(segkp_bitmap, segkpindex);
504 segkpindex++;
508 * If this page is the red zone page, we don't need swap
509 * space for it. Note that we skip over the code that
510 * establishes MMU mappings, so that the page remains
511 * invalid.
513 if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i)
514 continue;
516 if (kpd->kp_anon != NULL) {
517 struct anon *ap;
519 ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i)
520 == NULL);
522 * Determine the "vp" and "off" of the anon slot.
524 ap = anon_alloc(NULL, 0);
525 if (amp != NULL)
526 ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
527 (void) anon_set_ptr(kpd->kp_anon, anon_idx + i,
528 ap, ANON_SLEEP);
529 if (amp != NULL)
530 ANON_LOCK_EXIT(&amp->a_rwlock);
531 swap_xlate(ap, &vp, &off);
534 * Create a page with the specified identity. The
535 * page is returned with the "shared" lock held.
537 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
538 NULL, pl, PAGESIZE, seg, va, S_CREATE,
539 kcred, NULL);
540 if (err) {
542 * XXX - This should not fail.
544 panic("segkp_get: no pages");
545 /*NOTREACHED*/
547 pp = pl[0];
548 } else {
549 ASSERT(page_exists(&kvp,
550 (u_offset_t)(uintptr_t)va) == NULL);
552 if ((pp = page_create_va(&kvp,
553 (u_offset_t)(uintptr_t)va, PAGESIZE,
554 (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL |
555 PG_NORELOC, seg, va)) == NULL) {
557 * Legitimize resource; then destroy it.
558 * Easier than trying to unwind here.
560 kpd->kp_flags = flags;
561 kpd->kp_base = vbase;
562 kpd->kp_len = len;
563 segkp_release_internal(seg, kpd, va - vbase);
564 return (NULL);
566 page_io_unlock(pp);
569 if (flags & KPD_ZERO)
570 pagezero(pp, 0, PAGESIZE);
573 * Load and lock an MMU translation for the page.
575 hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE),
576 ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD));
579 * Now, release lock on the page.
581 if (flags & KPD_LOCKED)
582 page_downgrade(pp);
583 else
584 page_unlock(pp);
587 kpd->kp_flags = flags;
588 kpd->kp_base = vbase;
589 kpd->kp_len = len;
590 segkp_insert(seg, kpd);
591 *tkpd = kpd;
592 return (stom(kpd->kp_base, flags));
596 * Release the resource to cache if the pool(designate by the cookie)
597 * has less than the maximum allowable. If inserted in cache,
598 * segkp_delete insures element is taken off of active list.
600 void
601 segkp_release(struct seg *seg, caddr_t vaddr)
603 struct segkp_cache *freelist;
604 struct segkp_data *kpd = NULL;
606 if ((kpd = segkp_find(seg, vaddr)) == NULL) {
607 panic("segkp_release: null kpd");
608 /*NOTREACHED*/
611 if (kpd->kp_cookie != -1) {
612 freelist = &segkp_cache[kpd->kp_cookie];
613 mutex_enter(&segkp_lock);
614 if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) {
615 segkp_delete(seg, kpd);
616 kpd->kp_next = freelist->kpf_list;
617 freelist->kpf_list = kpd;
618 freelist->kpf_count++;
619 mutex_exit(&segkp_lock);
620 return;
621 } else {
622 mutex_exit(&segkp_lock);
623 kpd->kp_cookie = -1;
626 segkp_release_internal(seg, kpd, kpd->kp_len);
630 * Free the entire resource. segkp_unlock gets called with the start of the
631 * mapped portion of the resource. The length is the size of the mapped
632 * portion
634 static void
635 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len)
637 caddr_t va;
638 long i;
639 long redzone;
640 size_t np;
641 page_t *pp;
642 struct vnode *vp;
643 anoff_t off;
644 struct anon *ap;
645 pgcnt_t segkpindex;
647 ASSERT(kpd != NULL);
648 ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1);
649 np = btop(len);
651 /* Remove from active hash list */
652 if (kpd->kp_cookie == -1) {
653 mutex_enter(&segkp_lock);
654 segkp_delete(seg, kpd);
655 mutex_exit(&segkp_lock);
659 * Precompute redzone page index.
661 redzone = -1;
662 if (kpd->kp_flags & KPD_HASREDZONE)
663 redzone = KPD_REDZONE(kpd);
666 va = kpd->kp_base;
668 hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT),
669 ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
671 * Free up those anon resources that are quiescent.
673 if (segkp_fromheap)
674 segkpindex = btop((uintptr_t)(va - kvseg.s_base));
675 for (i = 0; i < np; i++, va += PAGESIZE) {
678 * Clear the bit for this page from the bitmap.
680 if (segkp_fromheap) {
681 BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex);
682 segkpindex++;
685 if (i == redzone)
686 continue;
687 if (kpd->kp_anon) {
689 * Free up anon resources and destroy the
690 * associated pages.
692 * Release the lock if there is one. Have to get the
693 * page to do this, unfortunately.
695 if (kpd->kp_flags & KPD_LOCKED) {
696 ap = anon_get_ptr(kpd->kp_anon,
697 kpd->kp_anon_idx + i);
698 swap_xlate(ap, &vp, &off);
699 /* Find the shared-locked page. */
700 pp = page_find(vp, (u_offset_t)off);
701 if (pp == NULL) {
702 panic("segkp_release: "
703 "kp_anon: no page to unlock ");
704 /*NOTREACHED*/
706 page_unlock(pp);
708 if ((kpd->kp_flags & KPD_HASAMP) == 0) {
709 anon_free(kpd->kp_anon, kpd->kp_anon_idx + i,
710 PAGESIZE);
711 anon_unresv_zone(PAGESIZE, NULL);
712 atomic_add_long(&anon_segkp_pages_resv,
713 -1);
715 TRACE_5(TR_FAC_VM,
716 TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
717 kpd, va, PAGESIZE, 0, 0);
718 } else {
719 if (kpd->kp_flags & KPD_LOCKED) {
720 pp = page_find(&kvp, (u_offset_t)(uintptr_t)va);
721 if (pp == NULL) {
722 panic("segkp_release: "
723 "no page to unlock");
724 /*NOTREACHED*/
727 * We should just upgrade the lock here
728 * but there is no upgrade that waits.
730 page_unlock(pp);
732 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va,
733 SE_EXCL);
734 if (pp != NULL)
735 page_destroy(pp, 0);
739 /* If locked, release physical memory reservation */
740 if (kpd->kp_flags & KPD_LOCKED) {
741 pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
742 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
743 atomic_add_long(&anon_segkp_pages_locked, -pages);
744 page_unresv(pages);
747 vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len);
748 kmem_free(kpd, sizeof (struct segkp_data));
752 * segkp_map_red() will check the current frame pointer against the
753 * stack base. If the amount of stack remaining is questionable
754 * (less than red_minavail), then segkp_map_red() will map in the redzone
755 * and return 1. Otherwise, it will return 0. segkp_map_red() can
756 * _only_ be called when:
758 * - it is safe to sleep on page_create_va().
759 * - the caller is non-swappable.
761 * It is up to the caller to remember whether segkp_map_red() successfully
762 * mapped the redzone, and, if so, to call segkp_unmap_red() at a later
763 * time. Note that the caller must _remain_ non-swappable until after
764 * calling segkp_unmap_red().
766 * Currently, this routine is only called from pagefault() (which necessarily
767 * satisfies the above conditions).
769 #if defined(STACK_GROWTH_DOWN)
771 segkp_map_red(void)
773 uintptr_t fp = STACK_BIAS + (uintptr_t)getfp();
774 #ifndef _LP64
775 caddr_t stkbase;
776 #endif
778 ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
781 * Optimize for the common case where we simply return.
783 if ((curthread->t_red_pp == NULL) &&
784 (fp - (uintptr_t)curthread->t_stkbase >= red_minavail))
785 return (0);
787 #if defined(_LP64)
789 * XXX We probably need something better than this.
791 panic("kernel stack overflow");
792 /*NOTREACHED*/
793 #else /* _LP64 */
794 if (curthread->t_red_pp == NULL) {
795 page_t *red_pp;
796 struct seg kseg;
798 caddr_t red_va = (caddr_t)
799 (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) -
800 PAGESIZE);
802 ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) ==
803 NULL);
806 * Allocate the physical for the red page.
809 * No PG_NORELOC here to avoid waits. Unlikely to get
810 * a relocate happening in the short time the page exists
811 * and it will be OK anyway.
814 kseg.s_as = &kas;
815 red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va,
816 PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va);
817 ASSERT(red_pp != NULL);
820 * So we now have a page to jam into the redzone...
822 page_io_unlock(red_pp);
824 hat_memload(kas.a_hat, red_va, red_pp,
825 (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK);
826 page_downgrade(red_pp);
829 * The page is left SE_SHARED locked so we can hold on to
830 * the page_t pointer.
832 curthread->t_red_pp = red_pp;
834 atomic_add_32(&red_nmapped, 1);
835 while (fp - (uintptr_t)curthread->t_stkbase < red_closest) {
836 (void) cas32(&red_closest, red_closest,
837 (uint32_t)(fp - (uintptr_t)curthread->t_stkbase));
839 return (1);
842 stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase &
843 (uintptr_t)PAGEMASK) - PAGESIZE);
845 atomic_add_32(&red_ndoubles, 1);
847 if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) {
849 * Oh boy. We're already deep within the mapped-in
850 * redzone page, and the caller is trying to prepare
851 * for a deep stack run. We're running without a
852 * redzone right now: if the caller plows off the
853 * end of the stack, it'll plow another thread or
854 * LWP structure. That situation could result in
855 * a very hard-to-debug panic, so, in the spirit of
856 * recording the name of one's killer in one's own
857 * blood, we're going to record lbolt and the calling
858 * thread.
860 red_deep_lbolt = lbolt;
861 red_deep_thread = curthread;
865 * If this is a DEBUG kernel, and we've run too deep for comfort, toss.
867 ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD);
868 return (0);
869 #endif /* _LP64 */
872 void
873 segkp_unmap_red(void)
875 page_t *pp;
876 caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase &
877 (uintptr_t)PAGEMASK) - PAGESIZE);
879 ASSERT(curthread->t_red_pp != NULL);
880 ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
883 * Because we locked the mapping down, we can't simply rely
884 * on page_destroy() to clean everything up; we need to call
885 * hat_unload() to explicitly unlock the mapping resources.
887 hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK);
889 pp = curthread->t_red_pp;
891 ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va));
894 * Need to upgrade the SE_SHARED lock to SE_EXCL.
896 if (!page_tryupgrade(pp)) {
898 * As there is now wait for upgrade, release the
899 * SE_SHARED lock and wait for SE_EXCL.
901 page_unlock(pp);
902 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL);
903 /* pp may be NULL here, hence the test below */
907 * Destroy the page, with dontfree set to zero (i.e. free it).
909 if (pp != NULL)
910 page_destroy(pp, 0);
911 curthread->t_red_pp = NULL;
913 #else
914 #error Red stacks only supported with downwards stack growth.
915 #endif
918 * Handle a fault on an address corresponding to one of the
919 * resources in the segkp segment.
921 faultcode_t
922 segkp_fault(
923 struct hat *hat,
924 struct seg *seg,
925 caddr_t vaddr,
926 size_t len,
927 enum fault_type type,
928 enum seg_rw rw)
930 struct segkp_data *kpd = NULL;
931 int err;
933 ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock));
936 * Sanity checks.
938 if (type == F_PROT) {
939 panic("segkp_fault: unexpected F_PROT fault");
940 /*NOTREACHED*/
943 if ((kpd = segkp_find(seg, vaddr)) == NULL)
944 return (FC_NOMAP);
946 mutex_enter(&kpd->kp_lock);
948 if (type == F_SOFTLOCK) {
949 ASSERT(!(kpd->kp_flags & KPD_LOCKED));
951 * The F_SOFTLOCK case has more stringent
952 * range requirements: the given range must exactly coincide
953 * with the resource's mapped portion. Note reference to
954 * redzone is handled since vaddr would not equal base
956 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
957 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
958 mutex_exit(&kpd->kp_lock);
959 return (FC_MAKE_ERR(EFAULT));
962 if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) {
963 mutex_exit(&kpd->kp_lock);
964 return (FC_MAKE_ERR(err));
966 kpd->kp_flags |= KPD_LOCKED;
967 mutex_exit(&kpd->kp_lock);
968 return (0);
971 if (type == F_INVAL) {
972 ASSERT(!(kpd->kp_flags & KPD_NO_ANON));
975 * Check if we touched the redzone. Somewhat optimistic
976 * here if we are touching the redzone of our own stack
977 * since we wouldn't have a stack to get this far...
979 if ((kpd->kp_flags & KPD_HASREDZONE) &&
980 btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd))
981 panic("segkp_fault: accessing redzone");
984 * This fault may occur while the page is being F_SOFTLOCK'ed.
985 * Return since a 2nd segkp_load is unnecessary and also would
986 * result in the page being locked twice and eventually
987 * hang the thread_reaper thread.
989 if (kpd->kp_flags & KPD_LOCKED) {
990 mutex_exit(&kpd->kp_lock);
991 return (0);
994 err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags);
995 mutex_exit(&kpd->kp_lock);
996 return (err ? FC_MAKE_ERR(err) : 0);
999 if (type == F_SOFTUNLOCK) {
1000 uint_t flags;
1003 * Make sure the addr is LOCKED and it has anon backing
1004 * before unlocking
1006 if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON) {
1007 panic("segkp_fault: bad unlock");
1008 /*NOTREACHED*/
1011 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
1012 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
1013 panic("segkp_fault: bad range");
1014 /*NOTREACHED*/
1017 if (rw == S_WRITE)
1018 flags = kpd->kp_flags | KPD_WRITEDIRTY;
1019 else
1020 flags = kpd->kp_flags;
1021 err = segkp_unlock(hat, seg, vaddr, len, kpd, flags);
1022 kpd->kp_flags &= ~KPD_LOCKED;
1023 mutex_exit(&kpd->kp_lock);
1024 return (err ? FC_MAKE_ERR(err) : 0);
1026 mutex_exit(&kpd->kp_lock);
1027 panic("segkp_fault: bogus fault type: %d\n", type);
1028 /*NOTREACHED*/
1032 * Check that the given protections suffice over the range specified by
1033 * vaddr and len. For this segment type, the only issue is whether or
1034 * not the range lies completely within the mapped part of an allocated
1035 * resource.
1037 /* ARGSUSED */
1038 static int
1039 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot)
1041 struct segkp_data *kpd = NULL;
1042 caddr_t mbase;
1043 size_t mlen;
1045 if ((kpd = segkp_find(seg, vaddr)) == NULL)
1046 return (EACCES);
1048 mutex_enter(&kpd->kp_lock);
1049 mbase = stom(kpd->kp_base, kpd->kp_flags);
1050 mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags);
1051 if (len > mlen || vaddr < mbase ||
1052 ((vaddr + len) > (mbase + mlen))) {
1053 mutex_exit(&kpd->kp_lock);
1054 return (EACCES);
1056 mutex_exit(&kpd->kp_lock);
1057 return (0);
1062 * Check to see if it makes sense to do kluster/read ahead to
1063 * addr + delta relative to the mapping at addr. We assume here
1064 * that delta is a signed PAGESIZE'd multiple (which can be negative).
1066 * For seg_u we always "approve" of this action from our standpoint.
1068 /*ARGSUSED*/
1069 static int
1070 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
1072 return (0);
1076 * Load and possibly lock intra-slot resources in the range given by
1077 * vaddr and len.
1079 static int
1080 segkp_load(
1081 struct hat *hat,
1082 struct seg *seg,
1083 caddr_t vaddr,
1084 size_t len,
1085 struct segkp_data *kpd,
1086 uint_t flags)
1088 caddr_t va;
1089 caddr_t vlim;
1090 ulong_t i;
1091 uint_t lock;
1093 ASSERT(MUTEX_HELD(&kpd->kp_lock));
1095 len = P2ROUNDUP(len, PAGESIZE);
1097 /* If locking, reserve physical memory */
1098 if (flags & KPD_LOCKED) {
1099 pgcnt_t pages = btop(len);
1100 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1101 atomic_add_long(&anon_segkp_pages_locked, pages);
1102 (void) page_resv(pages, KM_SLEEP);
1106 * Loop through the pages in the given range.
1108 va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
1109 vaddr = va;
1110 vlim = va + len;
1111 lock = flags & KPD_LOCKED;
1112 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1113 for (; va < vlim; va += PAGESIZE, i++) {
1114 page_t *pl[2]; /* second element NULL terminator */
1115 struct vnode *vp;
1116 anoff_t off;
1117 int err;
1118 struct anon *ap;
1121 * Summon the page. If it's not resident, arrange
1122 * for synchronous i/o to pull it in.
1124 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1125 swap_xlate(ap, &vp, &off);
1128 * The returned page list will have exactly one entry,
1129 * which is returned to us already kept.
1131 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL,
1132 pl, PAGESIZE, seg, va, S_READ, kcred, NULL);
1134 if (err) {
1136 * Back out of what we've done so far.
1138 (void) segkp_unlock(hat, seg, vaddr,
1139 (va - vaddr), kpd, flags);
1140 return (err);
1144 * Load an MMU translation for the page.
1146 hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE),
1147 lock ? HAT_LOAD_LOCK : HAT_LOAD);
1149 if (!lock) {
1151 * Now, release "shared" lock on the page.
1153 page_unlock(pl[0]);
1156 return (0);
1160 * At the very least unload the mmu-translations and unlock the range if locked
1161 * Can be called with the following flag value KPD_WRITEDIRTY which specifies
1162 * any dirty pages should be written to disk.
1164 static int
1165 segkp_unlock(
1166 struct hat *hat,
1167 struct seg *seg,
1168 caddr_t vaddr,
1169 size_t len,
1170 struct segkp_data *kpd,
1171 uint_t flags)
1173 caddr_t va;
1174 caddr_t vlim;
1175 ulong_t i;
1176 struct page *pp;
1177 struct vnode *vp;
1178 anoff_t off;
1179 struct anon *ap;
1181 #ifdef lint
1182 seg = seg;
1183 #endif /* lint */
1185 ASSERT(MUTEX_HELD(&kpd->kp_lock));
1188 * Loop through the pages in the given range. It is assumed
1189 * segkp_unlock is called with page aligned base
1191 va = vaddr;
1192 vlim = va + len;
1193 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1194 hat_unload(hat, va, len,
1195 ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
1196 for (; va < vlim; va += PAGESIZE, i++) {
1198 * Find the page associated with this part of the
1199 * slot, tracking it down through its associated swap
1200 * space.
1202 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1203 swap_xlate(ap, &vp, &off);
1205 if (flags & KPD_LOCKED) {
1206 if ((pp = page_find(vp, off)) == NULL) {
1207 if (flags & KPD_LOCKED) {
1208 panic("segkp_softunlock: missing page");
1209 /*NOTREACHED*/
1212 } else {
1214 * Nothing to do if the slot is not locked and the
1215 * page doesn't exist.
1217 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL)
1218 continue;
1222 * If the page doesn't have any translations, is
1223 * dirty and not being shared, then push it out
1224 * asynchronously and avoid waiting for the
1225 * pageout daemon to do it for us.
1227 * XXX - Do we really need to get the "exclusive"
1228 * lock via an upgrade?
1230 if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) &&
1231 hat_ismod(pp) && page_tryupgrade(pp)) {
1233 * Hold the vnode before releasing the page lock to
1234 * prevent it from being freed and re-used by some
1235 * other thread.
1237 VN_HOLD(vp);
1238 page_unlock(pp);
1241 * Want most powerful credentials we can get so
1242 * use kcred.
1244 (void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
1245 B_ASYNC | B_FREE, kcred, NULL);
1246 VN_RELE(vp);
1247 } else {
1248 page_unlock(pp);
1252 /* If unlocking, release physical memory */
1253 if (flags & KPD_LOCKED) {
1254 pgcnt_t pages = btopr(len);
1255 if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1256 atomic_add_long(&anon_segkp_pages_locked, -pages);
1257 page_unresv(pages);
1259 return (0);
1263 * Insert the kpd in the hash table.
1265 static void
1266 segkp_insert(struct seg *seg, struct segkp_data *kpd)
1268 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1269 int index;
1272 * Insert the kpd based on the address that will be returned
1273 * via segkp_release.
1275 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1276 mutex_enter(&segkp_lock);
1277 kpd->kp_next = kpsd->kpsd_hash[index];
1278 kpsd->kpsd_hash[index] = kpd;
1279 mutex_exit(&segkp_lock);
1283 * Remove kpd from the hash table.
1285 static void
1286 segkp_delete(struct seg *seg, struct segkp_data *kpd)
1288 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1289 struct segkp_data **kpp;
1290 int index;
1292 ASSERT(MUTEX_HELD(&segkp_lock));
1294 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1295 for (kpp = &kpsd->kpsd_hash[index];
1296 *kpp != NULL; kpp = &((*kpp)->kp_next)) {
1297 if (*kpp == kpd) {
1298 *kpp = kpd->kp_next;
1299 return;
1302 panic("segkp_delete: unable to find element to delete");
1303 /*NOTREACHED*/
1307 * Find the kpd associated with a vaddr.
1309 * Most of the callers of segkp_find will pass the vaddr that
1310 * hashes to the desired index, but there are cases where
1311 * this is not true in which case we have to (potentially) scan
1312 * the whole table looking for it. This should be very rare
1313 * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the
1314 * middle of the segkp_data region).
1316 static struct segkp_data *
1317 segkp_find(struct seg *seg, caddr_t vaddr)
1319 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1320 struct segkp_data *kpd;
1321 int i;
1322 int stop;
1324 i = stop = SEGKP_HASH(vaddr);
1325 mutex_enter(&segkp_lock);
1326 do {
1327 for (kpd = kpsd->kpsd_hash[i]; kpd != NULL;
1328 kpd = kpd->kp_next) {
1329 if (vaddr >= kpd->kp_base &&
1330 vaddr < kpd->kp_base + kpd->kp_len) {
1331 mutex_exit(&segkp_lock);
1332 return (kpd);
1335 if (--i < 0)
1336 i = SEGKP_HASHSZ - 1; /* Wrap */
1337 } while (i != stop);
1338 mutex_exit(&segkp_lock);
1339 return (NULL); /* Not found */
1343 * returns size of swappable area.
1345 size_t
1346 swapsize(caddr_t v)
1348 struct segkp_data *kpd;
1350 if ((kpd = segkp_find(segkp, v)) != NULL)
1351 return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
1352 else
1353 return (NULL);
1357 * Dump out all the active segkp pages
1359 static void
1360 segkp_dump(struct seg *seg)
1362 int i;
1363 struct segkp_data *kpd;
1364 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1366 for (i = 0; i < SEGKP_HASHSZ; i++) {
1367 for (kpd = kpsd->kpsd_hash[i];
1368 kpd != NULL; kpd = kpd->kp_next) {
1369 pfn_t pfn;
1370 caddr_t addr;
1371 caddr_t eaddr;
1373 addr = kpd->kp_base;
1374 eaddr = addr + kpd->kp_len;
1375 while (addr < eaddr) {
1376 ASSERT(seg->s_as == &kas);
1377 pfn = hat_getpfnum(seg->s_as->a_hat, addr);
1378 if (pfn != PFN_INVALID)
1379 dump_addpage(seg->s_as, addr, pfn);
1380 addr += PAGESIZE;
1381 dump_timeleft = dump_timeout;
1387 /*ARGSUSED*/
1388 static int
1389 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
1390 struct page ***ppp, enum lock_type type, enum seg_rw rw)
1392 return (ENOTSUP);
1395 /*ARGSUSED*/
1396 static int
1397 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
1399 return (ENODEV);
1402 /*ARGSUSED*/
1403 static lgrp_mem_policy_info_t *
1404 segkp_getpolicy(struct seg *seg, caddr_t addr)
1406 return (NULL);
1409 /*ARGSUSED*/
1410 static int
1411 segkp_capable(struct seg *seg, segcapability_t capability)
1413 return (0);
1416 #include <sys/mem_config.h>
1418 /*ARGSUSED*/
1419 static void
1420 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages)
1424 * During memory delete, turn off caches so that pages are not held.
1425 * A better solution may be to unlock the pages while they are
1426 * in the cache so that they may be collected naturally.
1429 /*ARGSUSED*/
1430 static int
1431 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages)
1433 atomic_add_32(&segkp_indel, 1);
1434 segkp_cache_free();
1435 return (0);
1438 /*ARGSUSED*/
1439 static void
1440 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
1442 atomic_add_32(&segkp_indel, -1);
1445 static kphysm_setup_vector_t segkp_mem_config_vec = {
1446 KPHYSM_SETUP_VECTOR_VERSION,
1447 segkp_mem_config_post_add,
1448 segkp_mem_config_pre_del,
1449 segkp_mem_config_post_del,
1452 static void
1453 segkpinit_mem_config(struct seg *seg)
1455 int ret;
1457 ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg);
1458 ASSERT(ret == 0);