Store a reference to the effect slot in a source's send, not a copy
[openal-soft/openal-hmr.git] / Alc / ALu.c
blob0c02b778a0570886179154a49aac44023dcaef61
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "bs2b.h"
35 #if defined(HAVE_STDINT_H)
36 #include <stdint.h>
37 typedef int64_t ALint64;
38 #elif defined(HAVE___INT64)
39 typedef __int64 ALint64;
40 #elif (SIZEOF_LONG == 8)
41 typedef long ALint64;
42 #elif (SIZEOF_LONG_LONG == 8)
43 typedef long long ALint64;
44 #endif
46 #ifdef HAVE_SQRTF
47 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
48 #else
49 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
50 #endif
52 #ifdef HAVE_ACOSF
53 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
54 #else
55 #define aluAcos(x) ((ALfloat)acos((double)(x)))
56 #endif
58 // fixes for mingw32.
59 #if defined(max) && !defined(__max)
60 #define __max max
61 #endif
62 #if defined(min) && !defined(__min)
63 #define __min min
64 #endif
66 #define BUFFERSIZE 48000
67 #define FRACTIONBITS 14
68 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
69 #define MAX_PITCH 4
71 enum {
72 FRONT_LEFT = 0,
73 FRONT_RIGHT,
74 SIDE_LEFT,
75 SIDE_RIGHT,
76 BACK_LEFT,
77 BACK_RIGHT,
78 CENTER,
79 LFE,
81 OUTPUTCHANNELS
84 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
85 * converted to AL_FORMAT_QUAD* when loaded */
86 __inline ALuint aluBytesFromFormat(ALenum format)
88 switch(format)
90 case AL_FORMAT_MONO8:
91 case AL_FORMAT_STEREO8:
92 case AL_FORMAT_QUAD8_LOKI:
93 case AL_FORMAT_QUAD8:
94 case AL_FORMAT_51CHN8:
95 case AL_FORMAT_61CHN8:
96 case AL_FORMAT_71CHN8:
97 return 1;
99 case AL_FORMAT_MONO16:
100 case AL_FORMAT_STEREO16:
101 case AL_FORMAT_QUAD16_LOKI:
102 case AL_FORMAT_QUAD16:
103 case AL_FORMAT_51CHN16:
104 case AL_FORMAT_61CHN16:
105 case AL_FORMAT_71CHN16:
106 return 2;
108 case AL_FORMAT_MONO_FLOAT32:
109 case AL_FORMAT_STEREO_FLOAT32:
110 case AL_FORMAT_QUAD32:
111 case AL_FORMAT_51CHN32:
112 case AL_FORMAT_61CHN32:
113 case AL_FORMAT_71CHN32:
114 return 4;
116 default:
117 return 0;
121 __inline ALuint aluChannelsFromFormat(ALenum format)
123 switch(format)
125 case AL_FORMAT_MONO8:
126 case AL_FORMAT_MONO16:
127 case AL_FORMAT_MONO_FLOAT32:
128 return 1;
130 case AL_FORMAT_STEREO8:
131 case AL_FORMAT_STEREO16:
132 case AL_FORMAT_STEREO_FLOAT32:
133 return 2;
135 case AL_FORMAT_QUAD8_LOKI:
136 case AL_FORMAT_QUAD16_LOKI:
137 case AL_FORMAT_QUAD8:
138 case AL_FORMAT_QUAD16:
139 case AL_FORMAT_QUAD32:
140 return 4;
142 case AL_FORMAT_51CHN8:
143 case AL_FORMAT_51CHN16:
144 case AL_FORMAT_51CHN32:
145 return 6;
147 case AL_FORMAT_61CHN8:
148 case AL_FORMAT_61CHN16:
149 case AL_FORMAT_61CHN32:
150 return 7;
152 case AL_FORMAT_71CHN8:
153 case AL_FORMAT_71CHN16:
154 case AL_FORMAT_71CHN32:
155 return 8;
157 default:
158 return 0;
162 static __inline ALint aluF2L(ALfloat Value)
164 #if 0
165 if(sizeof(ALint) == 4 && sizeof(double) == 8)
167 double temp;
168 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
169 return *((ALint*)&temp);
171 #endif
172 return (ALint)Value;
175 static __inline ALshort aluF2S(ALfloat Value)
177 ALint i;
179 i = aluF2L(Value);
180 i = __min( 32767, i);
181 i = __max(-32768, i);
182 return ((ALshort)i);
185 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
187 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
188 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
189 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
192 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
194 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
195 inVector1[2]*inVector2[2];
198 static __inline ALvoid aluNormalize(ALfloat *inVector)
200 ALfloat length, inverse_length;
202 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
203 if(length != 0)
205 inverse_length = 1.0f/length;
206 inVector[0] *= inverse_length;
207 inVector[1] *= inverse_length;
208 inVector[2] *= inverse_length;
212 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
214 ALfloat result[3];
216 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
217 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
218 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
219 memcpy(vector, result, sizeof(result));
222 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
224 if(DryGainHF < 1.0f)
226 if(DryGainHF > 0.0f)
228 sample *= DryGainHF;
229 sample += source->LastDrySample * (1.0f-DryGainHF);
231 else
232 sample = 0.0f;
235 source->LastDrySample = sample;
236 return sample;
239 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
241 if(WetGainHF < 1.0f)
243 if(WetGainHF > 0.0f)
245 sample *= WetGainHF;
246 sample += source->LastWetSample * (1.0f-WetGainHF);
248 else
249 sample = 0.0f;
252 source->LastWetSample = sample;
253 return sample;
256 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
257 ALenum isMono, ALenum OutputFormat,
258 ALfloat *drysend, ALfloat *wetsend,
259 ALfloat *pitch, ALfloat *drygainhf,
260 ALfloat *wetgainhf)
262 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
263 ALfloat Direction[3],Position[3],SourceToListener[3];
264 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
265 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
266 ALfloat U[3],V[3],N[3];
267 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
268 ALfloat Matrix[3][3];
269 ALfloat flAttenuation;
270 ALfloat RoomAttenuation;
271 ALfloat MetersPerUnit;
272 ALfloat RoomRolloff;
273 ALfloat DryGainHF = 1.0f;
274 ALfloat WetGainHF = 1.0f;
276 //Get context properties
277 DopplerFactor = ALContext->DopplerFactor;
278 DopplerVelocity = ALContext->DopplerVelocity;
279 flSpeedOfSound = ALContext->flSpeedOfSound;
281 //Get listener properties
282 ListenerGain = ALContext->Listener.Gain;
283 MetersPerUnit = ALContext->Listener.MetersPerUnit;
285 //Get source properties
286 SourceVolume = ALSource->flGain;
287 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
288 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
289 MinVolume = ALSource->flMinGain;
290 MaxVolume = ALSource->flMaxGain;
291 MinDist = ALSource->flRefDistance;
292 MaxDist = ALSource->flMaxDistance;
293 Rolloff = ALSource->flRollOffFactor;
294 InnerAngle = ALSource->flInnerAngle;
295 OuterAngle = ALSource->flOuterAngle;
296 OuterGainHF = ALSource->OuterGainHF;
297 RoomRolloff = ALSource->RoomRolloffFactor;
299 //Only apply 3D calculations for mono buffers
300 if(isMono != AL_FALSE)
302 //1. Translate Listener to origin (convert to head relative)
303 if(ALSource->bHeadRelative==AL_FALSE)
305 Position[0] -= ALContext->Listener.Position[0];
306 Position[1] -= ALContext->Listener.Position[1];
307 Position[2] -= ALContext->Listener.Position[2];
310 //2. Calculate distance attenuation
311 Distance = aluSqrt(aluDotproduct(Position, Position));
313 flAttenuation = 1.0f;
314 RoomAttenuation = 1.0f;
315 switch (ALContext->DistanceModel)
317 case AL_INVERSE_DISTANCE_CLAMPED:
318 Distance=__max(Distance,MinDist);
319 Distance=__min(Distance,MaxDist);
320 if (MaxDist < MinDist)
321 break;
322 //fall-through
323 case AL_INVERSE_DISTANCE:
324 if (MinDist > 0.0f)
326 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
327 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
328 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
329 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
331 break;
333 case AL_LINEAR_DISTANCE_CLAMPED:
334 Distance=__max(Distance,MinDist);
335 Distance=__min(Distance,MaxDist);
336 if (MaxDist < MinDist)
337 break;
338 //fall-through
339 case AL_LINEAR_DISTANCE:
340 Distance=__min(Distance,MaxDist);
341 if (MaxDist != MinDist)
343 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
344 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
346 break;
348 case AL_EXPONENT_DISTANCE_CLAMPED:
349 Distance=__max(Distance,MinDist);
350 Distance=__min(Distance,MaxDist);
351 if (MaxDist < MinDist)
352 break;
353 //fall-through
354 case AL_EXPONENT_DISTANCE:
355 if ((Distance > 0.0f) && (MinDist > 0.0f))
357 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
358 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
360 break;
362 case AL_NONE:
363 default:
364 flAttenuation = 1.0f;
365 RoomAttenuation = 1.0f;
366 break;
369 // Source Gain + Attenuation
370 DryMix = SourceVolume * flAttenuation;
371 if(ALSource->Send[0].Slot)
372 WetMix = SourceVolume * ((ALSource->WetGainAuto &&
373 ALSource->Send[0].Slot->AuxSendAuto) ?
374 RoomAttenuation : 1.0f);
376 // Clamp to Min/Max Gain
377 DryMix = __min(DryMix,MaxVolume);
378 DryMix = __max(DryMix,MinVolume);
379 WetMix = __min(WetMix,MaxVolume);
380 WetMix = __max(WetMix,MinVolume);
381 //3. Apply directional soundcones
382 SourceToListener[0] = -Position[0];
383 SourceToListener[1] = -Position[1];
384 SourceToListener[2] = -Position[2];
385 aluNormalize(Direction);
386 aluNormalize(SourceToListener);
387 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
388 3.141592654f;
389 if(Angle >= InnerAngle && Angle <= OuterAngle)
391 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
392 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
393 if(ALSource->WetGainAuto)
394 WetMix *= ConeVolume;
395 if(ALSource->DryGainHFAuto)
396 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
397 if(ALSource->WetGainHFAuto)
398 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
400 else if(Angle > OuterAngle)
402 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
403 if(ALSource->WetGainAuto)
404 WetMix *= ConeVolume;
405 if(ALSource->DryGainHFAuto)
406 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
407 if(ALSource->WetGainHFAuto)
408 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
410 else
411 ConeVolume = 1.0f;
413 //4. Calculate Velocity
414 if(DopplerFactor != 0.0f)
416 ALfloat flVSS, flVLS;
418 flVLS = aluDotproduct(ALContext->Listener.Velocity,
419 SourceToListener);
420 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
422 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
424 if (flVSS >= flMaxVelocity)
425 flVSS = (flMaxVelocity - 1.0f);
426 else if (flVSS <= -flMaxVelocity)
427 flVSS = -flMaxVelocity + 1.0f;
429 if (flVLS >= flMaxVelocity)
430 flVLS = (flMaxVelocity - 1.0f);
431 else if (flVLS <= -flMaxVelocity)
432 flVLS = -flMaxVelocity + 1.0f;
434 pitch[0] = ALSource->flPitch *
435 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
436 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
438 else
439 pitch[0] = ALSource->flPitch;
441 //5. Align coordinate system axes
442 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
443 aluNormalize(U); // Normalized Right-vector
444 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
445 aluNormalize(V); // Normalized Up-vector
446 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
447 aluNormalize(N); // Normalized At-vector
448 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
449 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
450 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
451 aluMatrixVector(Position, Matrix);
453 //6. Apply filter gains and filters
454 switch(ALSource->DirectFilter.filter)
456 case AL_FILTER_LOWPASS:
457 DryMix *= ALSource->DirectFilter.Gain;
458 DryGainHF *= ALSource->DirectFilter.GainHF;
459 break;
462 switch(ALSource->Send[0].WetFilter.filter)
464 case AL_FILTER_LOWPASS:
465 WetMix *= ALSource->Send[0].WetFilter.Gain;
466 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
467 break;
470 if(ALSource->AirAbsorptionFactor > 0.0f)
471 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
472 Distance * MetersPerUnit);
474 if(ALSource->Send[0].Slot)
475 WetMix *= ALSource->Send[0].Slot->Gain;
477 //7. Convert normalized position into pannings, then into channel volumes
478 aluNormalize(Position);
479 switch(aluChannelsFromFormat(OutputFormat))
481 case 1:
482 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
483 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
484 if(ALSource->Send[0].Slot)
486 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
487 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
489 else
491 wetsend[FRONT_LEFT] = 0.0f;
492 wetsend[FRONT_RIGHT] = 0.0f;
493 WetGainHF = 1.0f;
495 break;
496 case 2:
497 PanningLR = 0.5f + 0.5f*Position[0];
498 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
499 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
500 if(ALSource->Send[0].Slot)
502 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
503 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
505 else
507 wetsend[FRONT_LEFT] = 0.0f;
508 wetsend[FRONT_RIGHT] = 0.0f;
509 WetGainHF = 1.0f;
511 break;
512 case 4:
513 /* TODO: Add center/lfe channel in spatial calculations? */
514 case 6:
515 // Apply a scalar so each individual speaker has more weight
516 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
517 PanningLR = __min(1.0f, PanningLR);
518 PanningLR = __max(0.0f, PanningLR);
519 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
520 PanningFB = __min(1.0f, PanningFB);
521 PanningFB = __max(0.0f, PanningFB);
522 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
523 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
524 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
525 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
526 if(ALSource->Send[0].Slot)
528 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
529 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
530 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
531 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
533 else
535 wetsend[FRONT_LEFT] = 0.0f;
536 wetsend[FRONT_RIGHT] = 0.0f;
537 wetsend[BACK_LEFT] = 0.0f;
538 wetsend[BACK_RIGHT] = 0.0f;
539 WetGainHF = 1.0f;
541 break;
542 case 7:
543 case 8:
544 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
545 PanningFB = __min(1.0f, PanningFB);
546 PanningFB = __max(0.0f, PanningFB);
547 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
548 PanningLR = __min(1.0f, PanningLR);
549 PanningLR = __max(0.0f, PanningLR);
550 if(Position[2] > 0.0f)
552 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
553 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
554 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
555 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
556 drysend[FRONT_LEFT] = 0.0f;
557 drysend[FRONT_RIGHT] = 0.0f;
558 if(ALSource->Send[0].Slot)
560 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
561 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
562 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
563 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
564 wetsend[FRONT_LEFT] = 0.0f;
565 wetsend[FRONT_RIGHT] = 0.0f;
567 else
569 wetsend[FRONT_LEFT] = 0.0f;
570 wetsend[FRONT_RIGHT] = 0.0f;
571 wetsend[SIDE_LEFT] = 0.0f;
572 wetsend[SIDE_RIGHT] = 0.0f;
573 wetsend[BACK_LEFT] = 0.0f;
574 wetsend[BACK_RIGHT] = 0.0f;
575 WetGainHF = 1.0f;
578 else
580 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
581 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
582 drysend[SIDE_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
583 drysend[SIDE_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB));
584 drysend[BACK_LEFT] = 0.0f;
585 drysend[BACK_RIGHT] = 0.0f;
586 if(ALSource->Send[0].Slot)
588 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
589 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
590 wetsend[SIDE_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
591 wetsend[SIDE_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB));
592 wetsend[BACK_LEFT] = 0.0f;
593 wetsend[BACK_RIGHT] = 0.0f;
595 else
597 wetsend[FRONT_LEFT] = 0.0f;
598 wetsend[FRONT_RIGHT] = 0.0f;
599 wetsend[SIDE_LEFT] = 0.0f;
600 wetsend[SIDE_RIGHT] = 0.0f;
601 wetsend[BACK_LEFT] = 0.0f;
602 wetsend[BACK_RIGHT] = 0.0f;
603 WetGainHF = 1.0f;
606 default:
607 break;
610 *drygainhf = DryGainHF;
611 *wetgainhf = WetGainHF;
613 else
615 *drygainhf = DryGainHF;
616 *wetgainhf = WetGainHF;
618 //1. Multi-channel buffers always play "normal"
619 drysend[FRONT_LEFT] = SourceVolume * 1.0f * ListenerGain;
620 drysend[FRONT_RIGHT] = SourceVolume * 1.0f * ListenerGain;
621 drysend[SIDE_LEFT] = SourceVolume * 1.0f * ListenerGain;
622 drysend[SIDE_RIGHT] = SourceVolume * 1.0f * ListenerGain;
623 drysend[BACK_LEFT] = SourceVolume * 1.0f * ListenerGain;
624 drysend[BACK_RIGHT] = SourceVolume * 1.0f * ListenerGain;
625 drysend[CENTER] = SourceVolume * 1.0f * ListenerGain;
626 drysend[LFE] = SourceVolume * 1.0f * ListenerGain;
627 if(ALSource->Send[0].Slot)
629 wetsend[FRONT_LEFT] = SourceVolume * 0.0f * ListenerGain;
630 wetsend[FRONT_RIGHT] = SourceVolume * 0.0f * ListenerGain;
631 wetsend[SIDE_LEFT] = SourceVolume * 0.0f * ListenerGain;
632 wetsend[SIDE_RIGHT] = SourceVolume * 0.0f * ListenerGain;
633 wetsend[BACK_LEFT] = SourceVolume * 0.0f * ListenerGain;
634 wetsend[BACK_RIGHT] = SourceVolume * 0.0f * ListenerGain;
635 wetsend[CENTER] = SourceVolume * 0.0f * ListenerGain;
636 wetsend[LFE] = SourceVolume * 0.0f * ListenerGain;
638 else
640 wetsend[FRONT_LEFT] = 0.0f;
641 wetsend[FRONT_RIGHT] = 0.0f;
642 wetsend[SIDE_LEFT] = 0.0f;
643 wetsend[SIDE_RIGHT] = 0.0f;
644 wetsend[BACK_LEFT] = 0.0f;
645 wetsend[BACK_RIGHT] = 0.0f;
646 wetsend[CENTER] = 0.0f;
647 wetsend[LFE] = 0.0f;
648 *wetgainhf = 1.0f;
651 pitch[0] = ALSource->flPitch;
655 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
657 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
658 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
659 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
660 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
661 ALfloat DryGainHF = 0.0f;
662 ALfloat WetGainHF = 0.0f;
663 ALuint BlockAlign,BufferSize;
664 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
665 ALuint Channels,Frequency,ulExtraSamples;
666 ALfloat Pitch;
667 ALint Looping,increment,State;
668 ALuint Buffer,fraction;
669 ALuint SamplesToDo;
670 ALsource *ALSource;
671 ALbuffer *ALBuffer;
672 ALfloat value;
673 ALshort *Data;
674 ALuint i,j,k;
675 ALbufferlistitem *BufferListItem;
676 ALuint loop;
677 ALint64 DataSize64,DataPos64;
679 SuspendContext(ALContext);
681 if(buffer)
683 //Figure output format variables
684 BlockAlign = aluChannelsFromFormat(format);
685 BlockAlign *= aluBytesFromFormat(format);
687 size /= BlockAlign;
688 while(size > 0)
690 //Setup variables
691 ALSource = (ALContext ? ALContext->Source : NULL);
692 SamplesToDo = min(size, BUFFERSIZE);
694 //Clear mixing buffer
695 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
696 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
698 //Actual mixing loop
699 while(ALSource)
701 j = 0;
702 State = ALSource->state;
703 while(State == AL_PLAYING && j < SamplesToDo)
705 DataSize = 0;
706 DataPosInt = 0;
707 DataPosFrac = 0;
709 //Get buffer info
710 if((Buffer = ALSource->ulBufferID))
712 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
714 Data = ALBuffer->data;
715 Channels = aluChannelsFromFormat(ALBuffer->format);
716 DataSize = ALBuffer->size;
717 Frequency = ALBuffer->frequency;
719 CalcSourceParams(ALContext, ALSource,
720 (Channels==1) ? AL_TRUE : AL_FALSE,
721 format, DrySend, WetSend, &Pitch,
722 &DryGainHF, &WetGainHF);
725 Pitch = (Pitch*Frequency) / ALContext->Frequency;
726 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
728 //Get source info
729 DataPosInt = ALSource->position;
730 DataPosFrac = ALSource->position_fraction;
732 //Compute 18.14 fixed point step
733 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
734 if(increment > (MAX_PITCH<<FRACTIONBITS))
735 increment = (MAX_PITCH<<FRACTIONBITS);
737 //Figure out how many samples we can mix.
738 //Pitch must be <= 4 (the number below !)
739 DataSize64 = DataSize+MAX_PITCH;
740 DataSize64 <<= FRACTIONBITS;
741 DataPos64 = DataPosInt;
742 DataPos64 <<= FRACTIONBITS;
743 DataPos64 += DataPosFrac;
744 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
745 BufferListItem = ALSource->queue;
746 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
748 if(BufferListItem)
749 BufferListItem = BufferListItem->next;
751 if (BufferListItem)
753 if (BufferListItem->next)
755 if(BufferListItem->next->buffer &&
756 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
758 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
759 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
762 else if (ALSource->bLooping)
764 if (ALSource->queue->buffer)
766 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
768 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
769 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
774 BufferSize = min(BufferSize, (SamplesToDo-j));
776 //Actual sample mixing loop
777 Data += DataPosInt*Channels;
778 while(BufferSize--)
780 k = DataPosFrac>>FRACTIONBITS;
781 fraction = DataPosFrac&FRACTIONMASK;
782 if(Channels==1)
784 //First order interpolator
785 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
787 //Direct path final mix buffer and panning
788 value = aluComputeDrySample(ALSource, DryGainHF, sample);
789 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
790 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
791 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
792 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
793 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
794 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
795 //Room path final mix buffer and panning
796 value = aluComputeWetSample(ALSource, WetGainHF, sample);
797 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
798 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
799 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
800 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
801 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
802 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
804 else
806 //First order interpolator (front left)
807 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
808 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
809 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
810 //First order interpolator (front right)
811 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
812 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
813 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
814 if(Channels >= 4)
816 int i = 2;
817 if(Channels >= 6)
819 if(Channels != 7)
821 //First order interpolator (center)
822 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
823 DryBuffer[j][CENTER] += value*DrySend[CENTER];
824 WetBuffer[j][CENTER] += value*WetSend[CENTER];
825 i++;
827 //First order interpolator (lfe)
828 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
829 DryBuffer[j][LFE] += value*DrySend[LFE];
830 WetBuffer[j][LFE] += value*WetSend[LFE];
831 i++;
833 //First order interpolator (back left)
834 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
835 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
836 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
837 i++;
838 //First order interpolator (back right)
839 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
840 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
841 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
842 i++;
843 if(Channels >= 7)
845 //First order interpolator (side left)
846 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
847 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
848 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
849 i++;
850 //First order interpolator (side right)
851 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
852 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
853 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
854 i++;
858 DataPosFrac += increment;
859 j++;
861 DataPosInt += (DataPosFrac>>FRACTIONBITS);
862 DataPosFrac = (DataPosFrac&FRACTIONMASK);
864 //Update source info
865 ALSource->position = DataPosInt;
866 ALSource->position_fraction = DataPosFrac;
869 //Handle looping sources
870 if(!Buffer || DataPosInt >= DataSize)
872 //queueing
873 if(ALSource->queue)
875 Looping = ALSource->bLooping;
876 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
878 BufferListItem = ALSource->queue;
879 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
881 if(BufferListItem)
883 if(!Looping)
884 BufferListItem->bufferstate = PROCESSED;
885 BufferListItem = BufferListItem->next;
888 if(!Looping)
889 ALSource->BuffersProcessed++;
890 if(BufferListItem)
891 ALSource->ulBufferID = BufferListItem->buffer;
892 ALSource->position = DataPosInt-DataSize;
893 ALSource->position_fraction = DataPosFrac;
894 ALSource->BuffersPlayed++;
896 else
898 if(!Looping)
900 /* alSourceStop */
901 ALSource->state = AL_STOPPED;
902 ALSource->inuse = AL_FALSE;
903 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
904 BufferListItem = ALSource->queue;
905 while(BufferListItem != NULL)
907 BufferListItem->bufferstate = PROCESSED;
908 BufferListItem = BufferListItem->next;
911 else
913 /* alSourceRewind */
914 /* alSourcePlay */
915 ALSource->state = AL_PLAYING;
916 ALSource->inuse = AL_TRUE;
917 ALSource->play = AL_TRUE;
918 ALSource->BuffersPlayed = 0;
919 ALSource->BufferPosition = 0;
920 ALSource->lBytesPlayed = 0;
921 ALSource->BuffersProcessed = 0;
922 BufferListItem = ALSource->queue;
923 while(BufferListItem != NULL)
925 BufferListItem->bufferstate = PENDING;
926 BufferListItem = BufferListItem->next;
928 ALSource->ulBufferID = ALSource->queue->buffer;
930 ALSource->position = DataPosInt-DataSize;
931 ALSource->position_fraction = DataPosFrac;
937 //Get source state
938 State = ALSource->state;
941 ALSource = ALSource->next;
944 //Post processing loop
945 switch(format)
947 case AL_FORMAT_MONO8:
948 for(i = 0;i < SamplesToDo;i++)
950 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
951 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
952 buffer = ((ALubyte*)buffer) + 1;
954 break;
955 case AL_FORMAT_STEREO8:
956 if(ALContext->bs2b)
958 for(i = 0;i < SamplesToDo;i++)
960 float samples[2];
961 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
962 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
963 bs2b_cross_feed(ALContext->bs2b, samples);
964 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
965 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
966 buffer = ((ALubyte*)buffer) + 2;
969 else
971 for(i = 0;i < SamplesToDo;i++)
973 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
974 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
975 buffer = ((ALubyte*)buffer) + 2;
978 break;
979 case AL_FORMAT_QUAD8:
980 for(i = 0;i < SamplesToDo;i++)
982 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
983 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
984 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
985 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
986 buffer = ((ALubyte*)buffer) + 4;
988 break;
989 case AL_FORMAT_51CHN8:
990 for(i = 0;i < SamplesToDo;i++)
992 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
993 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
994 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
995 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
996 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
997 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
998 buffer = ((ALubyte*)buffer) + 6;
1000 break;
1001 case AL_FORMAT_61CHN8:
1002 for(i = 0;i < SamplesToDo;i++)
1004 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1005 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1006 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1007 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1008 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1009 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1010 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1011 buffer = ((ALubyte*)buffer) + 7;
1013 break;
1014 case AL_FORMAT_71CHN8:
1015 for(i = 0;i < SamplesToDo;i++)
1017 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1018 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1019 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1020 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1021 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1022 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1023 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1024 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1025 buffer = ((ALubyte*)buffer) + 8;
1027 break;
1029 case AL_FORMAT_MONO16:
1030 for(i = 0;i < SamplesToDo;i++)
1032 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1033 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1034 buffer = ((ALshort*)buffer) + 1;
1036 break;
1037 case AL_FORMAT_STEREO16:
1038 if(ALContext->bs2b)
1040 for(i = 0;i < SamplesToDo;i++)
1042 float samples[2];
1043 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1044 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1045 bs2b_cross_feed(ALContext->bs2b, samples);
1046 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1047 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1048 buffer = ((ALshort*)buffer) + 2;
1051 else
1053 for(i = 0;i < SamplesToDo;i++)
1055 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1056 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1057 buffer = ((ALshort*)buffer) + 2;
1060 break;
1061 case AL_FORMAT_QUAD16:
1062 for(i = 0;i < SamplesToDo;i++)
1064 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1065 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1066 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1067 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1068 buffer = ((ALshort*)buffer) + 4;
1070 break;
1071 case AL_FORMAT_51CHN16:
1072 for(i = 0;i < SamplesToDo;i++)
1074 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1075 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1076 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1077 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1078 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1079 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1080 buffer = ((ALshort*)buffer) + 6;
1082 break;
1083 case AL_FORMAT_61CHN16:
1084 for(i = 0;i < SamplesToDo;i++)
1086 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1087 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1088 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1089 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1090 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1091 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1092 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1093 buffer = ((ALshort*)buffer) + 7;
1095 break;
1096 case AL_FORMAT_71CHN16:
1097 for(i = 0;i < SamplesToDo;i++)
1099 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1100 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1101 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1102 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1103 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1104 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1105 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1106 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1107 buffer = ((ALshort*)buffer) + 8;
1109 break;
1111 default:
1112 break;
1115 size -= SamplesToDo;
1119 ProcessContext(ALContext);