From e1c653b5712c8e1e0c0c20ce05ad5b0c27209d37 Mon Sep 17 00:00:00 2001 From: Chris Robinson Date: Thu, 18 Feb 2016 22:55:03 -0800 Subject: [PATCH] Reorganize and reformat makehrtf code --- utils/makehrtf.c | 5624 ++++++++++++++++++++++++++++-------------------------- 1 file changed, 2952 insertions(+), 2672 deletions(-) rewrite utils/makehrtf.c (66%) diff --git a/utils/makehrtf.c b/utils/makehrtf.c dissimilarity index 66% index 2c55871e..4141065c 100644 --- a/utils/makehrtf.c +++ b/utils/makehrtf.c @@ -1,2672 +1,2952 @@ -/* - * HRTF utility for producing and demonstrating the process of creating an - * OpenAL Soft compatible HRIR data set. - * - * Copyright (C) 2011-2014 Christopher Fitzgerald - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html - * - * -------------------------------------------------------------------------- - * - * A big thanks goes out to all those whose work done in the field of - * binaural sound synthesis using measured HRTFs makes this utility and the - * OpenAL Soft implementation possible. - * - * The algorithm for diffuse-field equalization was adapted from the work - * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of - * MIT Media Laboratory. It operates as follows: - * - * 1. Take the FFT of each HRIR and only keep the magnitude responses. - * 2. Calculate the diffuse-field power-average of all HRIRs weighted by - * their contribution to the total surface area covered by their - * measurement. - * 3. Take the diffuse-field average and limit its magnitude range. - * 4. Equalize the responses by using the inverse of the diffuse-field - * average. - * 5. Reconstruct the minimum-phase responses. - * 5. Zero the DC component. - * 6. IFFT the result and truncate to the desired-length minimum-phase FIR. - * - * The spherical head algorithm for calculating propagation delay was adapted - * from the paper: - * - * Modeling Interaural Time Difference Assuming a Spherical Head - * Joel David Miller - * Music 150, Musical Acoustics, Stanford University - * December 2, 2001 - * - * The formulae for calculating the Kaiser window metrics are from the - * the textbook: - * - * Discrete-Time Signal Processing - * Alan V. Oppenheim and Ronald W. Schafer - * Prentice-Hall Signal Processing Series - * 1999 - */ - -#include "config.h" - -#include -#include -#include -#include -#include -#include -#ifdef HAVE_STRINGS_H -#include -#endif - -// Rely (if naively) on OpenAL's header for the types used for serialization. -#include "AL/al.h" -#include "AL/alext.h" - -#ifndef M_PI -#define M_PI (3.14159265358979323846) -#endif - -#ifndef HUGE_VAL -#define HUGE_VAL (1.0 / 0.0) -#endif - -// The epsilon used to maintain signal stability. -#define EPSILON (1e-15) - -// Constants for accessing the token reader's ring buffer. -#define TR_RING_BITS (16) -#define TR_RING_SIZE (1 << TR_RING_BITS) -#define TR_RING_MASK (TR_RING_SIZE - 1) - -// The token reader's load interval in bytes. -#define TR_LOAD_SIZE (TR_RING_SIZE >> 2) - -// The maximum identifier length used when processing the data set -// definition. -#define MAX_IDENT_LEN (16) - -// The maximum path length used when processing filenames. -#define MAX_PATH_LEN (256) - -// The limits for the sample 'rate' metric in the data set definition and for -// resampling. -#define MIN_RATE (32000) -#define MAX_RATE (96000) - -// The limits for the HRIR 'points' metric in the data set definition. -#define MIN_POINTS (16) -#define MAX_POINTS (8192) - -// The limits to the number of 'azimuths' listed in the data set definition. -#define MIN_EV_COUNT (5) -#define MAX_EV_COUNT (128) - -// The limits for each of the 'azimuths' listed in the data set definition. -#define MIN_AZ_COUNT (1) -#define MAX_AZ_COUNT (128) - -// The limits for the listener's head 'radius' in the data set definition. -#define MIN_RADIUS (0.05) -#define MAX_RADIUS (0.15) - -// The limits for the 'distance' from source to listener in the definition -// file. -#define MIN_DISTANCE (0.5) -#define MAX_DISTANCE (2.5) - -// The maximum number of channels that can be addressed for a WAVE file -// source listed in the data set definition. -#define MAX_WAVE_CHANNELS (65535) - -// The limits to the byte size for a binary source listed in the definition -// file. -#define MIN_BIN_SIZE (2) -#define MAX_BIN_SIZE (4) - -// The minimum number of significant bits for binary sources listed in the -// data set definition. The maximum is calculated from the byte size. -#define MIN_BIN_BITS (16) - -// The limits to the number of significant bits for an ASCII source listed in -// the data set definition. -#define MIN_ASCII_BITS (16) -#define MAX_ASCII_BITS (32) - -// The limits to the FFT window size override on the command line. -#define MIN_FFTSIZE (512) -#define MAX_FFTSIZE (16384) - -// The limits to the equalization range limit on the command line. -#define MIN_LIMIT (2.0) -#define MAX_LIMIT (120.0) - -// The limits to the truncation window size on the command line. -#define MIN_TRUNCSIZE (8) -#define MAX_TRUNCSIZE (128) - -// The limits to the custom head radius on the command line. -#define MIN_CUSTOM_RADIUS (0.05) -#define MAX_CUSTOM_RADIUS (0.15) - -// The truncation window size must be a multiple of the below value to allow -// for vectorized convolution. -#define MOD_TRUNCSIZE (8) - -// The defaults for the command line options. -#define DEFAULT_EQUALIZE (1) -#define DEFAULT_SURFACE (1) -#define DEFAULT_LIMIT (24.0) -#define DEFAULT_TRUNCSIZE (32) -#define DEFAULT_HEAD_MODEL (HM_DATASET) -#define DEFAULT_CUSTOM_RADIUS (0.0) - -// The four-character-codes for RIFF/RIFX WAVE file chunks. -#define FOURCC_RIFF (0x46464952) // 'RIFF' -#define FOURCC_RIFX (0x58464952) // 'RIFX' -#define FOURCC_WAVE (0x45564157) // 'WAVE' -#define FOURCC_FMT (0x20746D66) // 'fmt ' -#define FOURCC_DATA (0x61746164) // 'data' -#define FOURCC_LIST (0x5453494C) // 'LIST' -#define FOURCC_WAVL (0x6C766177) // 'wavl' -#define FOURCC_SLNT (0x746E6C73) // 'slnt' - -// The supported wave formats. -#define WAVE_FORMAT_PCM (0x0001) -#define WAVE_FORMAT_IEEE_FLOAT (0x0003) -#define WAVE_FORMAT_EXTENSIBLE (0xFFFE) - -// The maximum propagation delay value supported by OpenAL Soft. -#define MAX_HRTD (63.0) - -// The OpenAL Soft HRTF format marker. It stands for minimum-phase head -// response protocol 01. -#define MHR_FORMAT ("MinPHR01") - -// Byte order for the serialization routines. -typedef enum ByteOrderT { - BO_NONE, - BO_LITTLE, - BO_BIG -} ByteOrderT; - -// Source format for the references listed in the data set definition. -typedef enum SourceFormatT { - SF_NONE, - SF_WAVE, // RIFF/RIFX WAVE file. - SF_BIN_LE, // Little-endian binary file. - SF_BIN_BE, // Big-endian binary file. - SF_ASCII // ASCII text file. -} SourceFormatT; - -// Element types for the references listed in the data set definition. -typedef enum ElementTypeT { - ET_NONE, - ET_INT, // Integer elements. - ET_FP // Floating-point elements. -} ElementTypeT; - -// Head model used for calculating the impulse delays. -typedef enum HeadModelT { - HM_NONE0, - HM_DATASET, // Measure the onset from the dataset. - HM_SPHERE // Calculate the onset using a spherical head model. -} HeadModelT; - -// Desired output format from the command line. -typedef enum OutputFormatT { - OF_NONE, - OF_MHR // OpenAL Soft MHR data set file. -} OutputFormatT; - -// Unsigned integer type. -typedef unsigned int uint; - -// Serialization types. The trailing digit indicates the number of bits. -typedef ALubyte uint8; -typedef ALint int32; -typedef ALuint uint32; -typedef ALuint64SOFT uint64; - -// Token reader state for parsing the data set definition. -typedef struct TokenReaderT { - FILE *mFile; - const char *mName; - uint mLine; - uint mColumn; - char mRing[TR_RING_SIZE]; - size_t mIn; - size_t mOut; -} TokenReaderT; - -// Source reference state used when loading sources. -typedef struct SourceRefT { - SourceFormatT mFormat; - ElementTypeT mType; - uint mSize; - int mBits; - uint mChannel; - uint mSkip; - uint mOffset; - char mPath[MAX_PATH_LEN+1]; -} SourceRefT; - -// The HRIR metrics and data set used when loading, processing, and storing -// the resulting HRTF. -typedef struct HrirDataT { - uint mIrRate; - uint mIrCount; - uint mIrSize; - uint mIrPoints; - uint mFftSize; - uint mEvCount; - uint mEvStart; - uint mAzCount[MAX_EV_COUNT]; - uint mEvOffset[MAX_EV_COUNT]; - double mRadius; - double mDistance; - double *mHrirs; - double *mHrtds; - double mMaxHrtd; -} HrirDataT; - -// The resampler metrics and FIR filter. -typedef struct ResamplerT { - uint mP, mQ, mM, mL; - double *mF; -} ResamplerT; - -/* Token reader routines for parsing text files. Whitespace is not - * significant. It can process tokens as identifiers, numbers (integer and - * floating-point), strings, and operators. Strings must be encapsulated by - * double-quotes and cannot span multiple lines. - */ - -// Setup the reader on the given file. The filename can be NULL if no error -// output is desired. -static void TrSetup (FILE * fp, const char * filename, TokenReaderT * tr) { - const char * name = NULL; - char ch; - - tr -> mFile = fp; - name = filename; - // If a filename was given, store a pointer to the base name. - if (filename != NULL) { - while ((ch = (* filename)) != '\0') { - if ((ch == '/') || (ch == '\\')) - name = filename + 1; - filename ++; - } - } - tr -> mName = name; - tr -> mLine = 1; - tr -> mColumn = 1; - tr -> mIn = 0; - tr -> mOut = 0; -} - -// Prime the reader's ring buffer, and return a result indicating that there -// is text to process. -static int TrLoad (TokenReaderT * tr) { - size_t toLoad, in, count; - - toLoad = TR_RING_SIZE - (tr -> mIn - tr -> mOut); - if ((toLoad >= TR_LOAD_SIZE) && (! feof (tr -> mFile))) { - // Load TR_LOAD_SIZE (or less if at the end of the file) per read. - toLoad = TR_LOAD_SIZE; - in = tr -> mIn & TR_RING_MASK; - count = TR_RING_SIZE - in; - if (count < toLoad) { - tr -> mIn += fread (& tr -> mRing [in], 1, count, tr -> mFile); - tr -> mIn += fread (& tr -> mRing [0], 1, toLoad - count, tr -> mFile); - } else { - tr -> mIn += fread (& tr -> mRing [in], 1, toLoad, tr -> mFile); - } - if (tr -> mOut >= TR_RING_SIZE) { - tr -> mOut -= TR_RING_SIZE; - tr -> mIn -= TR_RING_SIZE; - } - } - if (tr -> mIn > tr -> mOut) - return (1); - return (0); -} - -// Error display routine. Only displays when the base name is not NULL. -static void TrErrorVA (const TokenReaderT * tr, uint line, uint column, const char * format, va_list argPtr) { - if (tr -> mName != NULL) { - fprintf (stderr, "Error (%s:%u:%u): ", tr -> mName, line, column); - vfprintf (stderr, format, argPtr); - } -} - -// Used to display an error at a saved line/column. -static void TrErrorAt (const TokenReaderT * tr, uint line, uint column, const char * format, ...) { - va_list argPtr; - - va_start (argPtr, format); - TrErrorVA (tr, line, column, format, argPtr); - va_end (argPtr); -} - -// Used to display an error at the current line/column. -static void TrError (const TokenReaderT * tr, const char * format, ...) { - va_list argPtr; - - va_start (argPtr, format); - TrErrorVA (tr, tr -> mLine, tr -> mColumn, format, argPtr); - va_end (argPtr); -} - -// Skips to the next line. -static void TrSkipLine (TokenReaderT * tr) { - char ch; - - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - tr -> mOut ++; - if (ch == '\n') { - tr -> mLine ++; - tr -> mColumn = 1; - break; - } - tr -> mColumn ++; - } -} - -// Skips to the next token. -static int TrSkipWhitespace (TokenReaderT * tr) { - char ch; - - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (isspace (ch)) { - tr -> mOut ++; - if (ch == '\n') { - tr -> mLine ++; - tr -> mColumn = 1; - } else { - tr -> mColumn ++; - } - } else if (ch == '#') { - TrSkipLine (tr); - } else { - return (1); - } - } - return (0); -} - -// Get the line and/or column of the next token (or the end of input). -static void TrIndication (TokenReaderT * tr, uint * line, uint * column) { - TrSkipWhitespace (tr); - if (line != NULL) - (* line) = tr -> mLine; - if (column != NULL) - (* column) = tr -> mColumn; -} - -// Checks to see if a token is the given operator. It does not display any -// errors and will not proceed to the next token. -static int TrIsOperator (TokenReaderT * tr, const char * op) { - size_t out, len; - char ch; - - if (! TrSkipWhitespace (tr)) - return (0); - out = tr -> mOut; - len = 0; - while ((op [len] != '\0') && (out < tr -> mIn)) { - ch = tr -> mRing [out & TR_RING_MASK]; - if (ch != op [len]) - break; - len ++; - out ++; - } - if (op [len] == '\0') - return (1); - return (0); -} - -/* The TrRead*() routines obtain the value of a matching token type. They - * display type, form, and boundary errors and will proceed to the next - * token. - */ - -// Reads and validates an identifier token. -static int TrReadIdent (TokenReaderT * tr, const uint maxLen, char * ident) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '_') || isalpha (ch)) { - len = 0; - do { - if (len < maxLen) - ident [len] = ch; - len ++; - tr -> mOut ++; - if (! TrLoad (tr)) - break; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - } while ((ch == '_') || isdigit (ch) || isalpha (ch)); - tr -> mColumn += len; - if (len > maxLen) { - TrErrorAt (tr, tr -> mLine, col, "Identifier is too long.\n"); - return (0); - } - ident [len] = '\0'; - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected an identifier.\n"); - return (0); -} - -// Reads and validates (including bounds) an integer token. -static int TrReadInt (TokenReaderT * tr, const int loBound, const int hiBound, int * value) { - uint col, digis, len; - char ch, temp [64 + 1]; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '+') || (ch == '-')) { - temp [len] = ch; - len ++; - tr -> mOut ++; - } - digis = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - tr -> mColumn += len; - if ((digis > 0) && (ch != '.') && (! isalpha (ch))) { - if (len > 64) { - TrErrorAt (tr, tr -> mLine, col, "Integer is too long."); - return (0); - } - temp [len] = '\0'; - (* value) = strtol (temp, NULL, 10); - if (((* value) < loBound) || ((* value) > hiBound)) { - TrErrorAt (tr, tr -> mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound); - return (0); - } - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected an integer.\n"); - return (0); -} - -// Reads and validates (including bounds) a float token. -static int TrReadFloat (TokenReaderT * tr, const double loBound, const double hiBound, double * value) { - uint col, digis, len; - char ch, temp [64 + 1]; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if ((ch == '+') || (ch == '-')) { - temp [len] = ch; - len ++; - tr -> mOut ++; - } - digis = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - if (ch == '.') { - if (len < 64) - temp [len] = ch; - len ++; - tr -> mOut ++; - } - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - if (digis > 0) { - if ((ch == 'E') || (ch == 'e')) { - if (len < 64) - temp [len] = ch; - len ++; - digis = 0; - tr -> mOut ++; - if ((ch == '+') || (ch == '-')) { - if (len < 64) - temp [len] = ch; - len ++; - tr -> mOut ++; - } - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (! isdigit (ch)) - break; - if (len < 64) - temp [len] = ch; - len ++; - digis ++; - tr -> mOut ++; - } - } - tr -> mColumn += len; - if ((digis > 0) && (ch != '.') && (! isalpha (ch))) { - if (len > 64) { - TrErrorAt (tr, tr -> mLine, col, "Float is too long."); - return (0); - } - temp [len] = '\0'; - (* value) = strtod (temp, NULL); - if (((* value) < loBound) || ((* value) > hiBound)) { - TrErrorAt (tr, tr -> mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound); - return (0); - } - return (1); - } - } else { - tr -> mColumn += len; - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected a float.\n"); - return (0); -} - -// Reads and validates a string token. -static int TrReadString (TokenReaderT * tr, const uint maxLen, char * text) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (ch == '\"') { - tr -> mOut ++; - len = 0; - while (TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - tr -> mOut ++; - if (ch == '\"') - break; - if (ch == '\n') { - TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of line.\n"); - return (0); - } - if (len < maxLen) - text [len] = ch; - len ++; - } - if (ch != '\"') { - tr -> mColumn += 1 + len; - TrErrorAt (tr, tr -> mLine, col, "Unterminated string at end of input.\n"); - return (0); - } - tr -> mColumn += 2 + len; - if (len > maxLen) { - TrErrorAt (tr, tr -> mLine, col, "String is too long.\n"); - return (0); - } - text [len] = '\0'; - return (1); - } - } - TrErrorAt (tr, tr -> mLine, col, "Expected a string.\n"); - return (0); -} - -// Reads and validates the given operator. -static int TrReadOperator (TokenReaderT * tr, const char * op) { - uint col, len; - char ch; - - col = tr -> mColumn; - if (TrSkipWhitespace (tr)) { - col = tr -> mColumn; - len = 0; - while ((op [len] != '\0') && TrLoad (tr)) { - ch = tr -> mRing [tr -> mOut & TR_RING_MASK]; - if (ch != op [len]) - break; - len ++; - tr -> mOut ++; - } - tr -> mColumn += len; - if (op [len] == '\0') - return (1); - } - TrErrorAt (tr, tr -> mLine, col, "Expected '%s' operator.\n", op); - return (0); -} - -/* Performs a string substitution. Any case-insensitive occurrences of the - * pattern string are replaced with the replacement string. The result is - * truncated if necessary. - */ -static int StrSubst (const char * in, const char * pat, const char * rep, const size_t maxLen, char * out) { - size_t inLen, patLen, repLen; - size_t si, di; - int truncated; - - inLen = strlen (in); - patLen = strlen (pat); - repLen = strlen (rep); - si = 0; - di = 0; - truncated = 0; - while ((si < inLen) && (di < maxLen)) { - if (patLen <= (inLen - si)) { - if (strncasecmp (& in [si], pat, patLen) == 0) { - if (repLen > (maxLen - di)) { - repLen = maxLen - di; - truncated = 1; - } - strncpy (& out [di], rep, repLen); - si += patLen; - di += repLen; - } - } - out [di] = in [si]; - si ++; - di ++; - } - if (si < inLen) - truncated = 1; - out [di] = '\0'; - return (! truncated); -} - -// Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013). -#if defined(_MSC_VER) && _MSC_VER < 1800 -static double round (double val) { - if (val < 0.0) - return (ceil (val - 0.5)); - return (floor (val + 0.5)); -} - -static double fmin (double a, double b) { - return ((a < b) ? a : b); -} - -static double fmax (double a, double b) { - return ((a > b) ? a : b); -} -#endif - -// Simple clamp routine. -static double Clamp (const double val, const double lower, const double upper) { - return (fmin (fmax (val, lower), upper)); -} - -// Performs linear interpolation. -static double Lerp (const double a, const double b, const double f) { - return (a + (f * (b - a))); -} - -// Performs a high-passed triangular probability density function dither from -// a double to an integer. It assumes the input sample is already scaled. -static int HpTpdfDither (const double in, int * hpHist) { - const double PRNG_SCALE = 1.0 / (RAND_MAX + 1.0); - int prn; - double out; - - prn = rand (); - out = round (in + (PRNG_SCALE * (prn - (* hpHist)))); - (* hpHist) = prn; - return ((int) out); -} - -// Allocates an array of doubles. -static double *CreateArray(size_t n) -{ - double *a; - - if(n == 0) n = 1; - a = calloc(n, sizeof(double)); - if(a == NULL) - { - fprintf(stderr, "Error: Out of memory.\n"); - exit(-1); - } - return a; -} - -// Frees an array of doubles. -static void DestroyArray(double *a) -{ free(a); } - -// Complex number routines. All outputs must be non-NULL. - -// Magnitude/absolute value. -static double ComplexAbs (const double r, const double i) { - return (sqrt ((r * r) + (i * i))); -} - -// Multiply. -static void ComplexMul (const double aR, const double aI, const double bR, const double bI, double * outR, double * outI) { - (* outR) = (aR * bR) - (aI * bI); - (* outI) = (aI * bR) + (aR * bI); -} - -// Base-e exponent. -static void ComplexExp (const double inR, const double inI, double * outR, double * outI) { - double e; - - e = exp (inR); - (* outR) = e * cos (inI); - (* outI) = e * sin (inI); -} - -/* Fast Fourier transform routines. The number of points must be a power of - * two. In-place operation is possible only if both the real and imaginary - * parts are in-place together. - */ - -// Performs bit-reversal ordering. -static void FftArrange (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - uint rk, k, m; - double tempR, tempI; - - if ((inR == outR) && (inI == outI)) { - // Handle in-place arrangement. - rk = 0; - for (k = 0; k < n; k ++) { - if (rk > k) { - tempR = inR [rk]; - tempI = inI [rk]; - outR [rk] = inR [k]; - outI [rk] = inI [k]; - outR [k] = tempR; - outI [k] = tempI; - } - m = n; - while (rk & (m >>= 1)) - rk &= ~m; - rk |= m; - } - } else { - // Handle copy arrangement. - rk = 0; - for (k = 0; k < n; k ++) { - outR [rk] = inR [k]; - outI [rk] = inI [k]; - m = n; - while (rk & (m >>= 1)) - rk &= ~m; - rk |= m; - } - } -} - -// Performs the summation. -static void FftSummation (const uint n, const double s, double * re, double * im) { - double pi; - uint m, m2; - double vR, vI, wR, wI; - uint i, k, mk; - double tR, tI; - - pi = s * M_PI; - for (m = 1, m2 = 2; m < n; m <<= 1, m2 <<= 1) { - // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m)) - vR = sin (0.5 * pi / m); - vR = -2.0 * vR * vR; - vI = -sin (pi / m); - // w = Complex (1.0, 0.0) - wR = 1.0; - wI = 0.0; - for (i = 0; i < m; i ++) { - for (k = i; k < n; k += m2) { - mk = k + m; - // t = ComplexMul (w, out [km2]) - tR = (wR * re [mk]) - (wI * im [mk]); - tI = (wR * im [mk]) + (wI * re [mk]); - // out [mk] = ComplexSub (out [k], t) - re [mk] = re [k] - tR; - im [mk] = im [k] - tI; - // out [k] = ComplexAdd (out [k], t) - re [k] += tR; - im [k] += tI; - } - // t = ComplexMul (v, w) - tR = (vR * wR) - (vI * wI); - tI = (vR * wI) + (vI * wR); - // w = ComplexAdd (w, t) - wR += tR; - wI += tI; - } - } -} - -// Performs a forward FFT. -static void FftForward (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - FftArrange (n, inR, inI, outR, outI); - FftSummation (n, 1.0, outR, outI); -} - -// Performs an inverse FFT. -static void FftInverse (const uint n, const double * inR, const double * inI, double * outR, double * outI) { - double f; - uint i; - - FftArrange (n, inR, inI, outR, outI); - FftSummation (n, -1.0, outR, outI); - f = 1.0 / n; - for (i = 0; i < n; i ++) { - outR [i] *= f; - outI [i] *= f; - } -} - -/* Calculate the complex helical sequence (or discrete-time analytical - * signal) of the given input using the Hilbert transform. Given the - * negative natural logarithm of a signal's magnitude response, the imaginary - * components can be used as the angles for minimum-phase reconstruction. - */ -static void Hilbert (const uint n, const double * in, double * outR, double * outI) { - uint i; - - if (in == outR) { - // Handle in-place operation. - for (i = 0; i < n; i ++) - outI [i] = 0.0; - } else { - // Handle copy operation. - for (i = 0; i < n; i ++) { - outR [i] = in [i]; - outI [i] = 0.0; - } - } - FftForward (n, outR, outI, outR, outI); - /* Currently the Fourier routines operate only on point counts that are - * powers of two. If that changes and n is odd, the following conditional - * should be: i < (n + 1) / 2. - */ - for (i = 1; i < (n / 2); i ++) { - outR [i] *= 2.0; - outI [i] *= 2.0; - } - // If n is odd, the following increment should be skipped. - i ++; - for (; i < n; i ++) { - outR [i] = 0.0; - outI [i] = 0.0; - } - FftInverse (n, outR, outI, outR, outI); -} - -/* Calculate the magnitude response of the given input. This is used in - * place of phase decomposition, since the phase residuals are discarded for - * minimum phase reconstruction. The mirrored half of the response is also - * discarded. - */ -static void MagnitudeResponse (const uint n, const double * inR, const double * inI, double * out) { - const uint m = 1 + (n / 2); - uint i; - - for (i = 0; i < m; i ++) - out [i] = fmax (ComplexAbs (inR [i], inI [i]), EPSILON); -} - -/* Apply a range limit (in dB) to the given magnitude response. This is used - * to adjust the effects of the diffuse-field average on the equalization - * process. - */ -static void LimitMagnitudeResponse (const uint n, const double limit, const double * in, double * out) { - const uint m = 1 + (n / 2); - double halfLim; - uint i, lower, upper; - double ave; - - halfLim = limit / 2.0; - // Convert the response to dB. - for (i = 0; i < m; i ++) - out [i] = 20.0 * log10 (in [i]); - // Use six octaves to calculate the average magnitude of the signal. - lower = ((uint) ceil (n / pow (2.0, 8.0))) - 1; - upper = ((uint) floor (n / pow (2.0, 2.0))) - 1; - ave = 0.0; - for (i = lower; i <= upper; i ++) - ave += out [i]; - ave /= upper - lower + 1; - // Keep the response within range of the average magnitude. - for (i = 0; i < m; i ++) - out [i] = Clamp (out [i], ave - halfLim, ave + halfLim); - // Convert the response back to linear magnitude. - for (i = 0; i < m; i ++) - out [i] = pow (10.0, out [i] / 20.0); -} - -/* Reconstructs the minimum-phase component for the given magnitude response - * of a signal. This is equivalent to phase recomposition, sans the missing - * residuals (which were discarded). The mirrored half of the response is - * reconstructed. - */ -static void MinimumPhase (const uint n, const double * in, double * outR, double * outI) { - const uint m = 1 + (n / 2); - double * mags = NULL; - uint i; - double aR, aI; - - mags = CreateArray (n); - for (i = 0; i < m; i ++) { - mags [i] = fmax (in [i], EPSILON); - outR [i] = -log (mags [i]); - } - for (; i < n; i ++) { - mags [i] = mags [n - i]; - outR [i] = outR [n - i]; - } - Hilbert (n, outR, outR, outI); - // Remove any DC offset the filter has. - outR [0] = 0.0; - outI [0] = 0.0; - for (i = 1; i < n; i ++) { - ComplexExp (0.0, outI [i], & aR, & aI); - ComplexMul (mags [i], 0.0, aR, aI, & outR [i], & outI [i]); - } - DestroyArray (mags); -} - -/* This is the normalized cardinal sine (sinc) function. - * - * sinc(x) = { 1, x = 0 - * { sin(pi x) / (pi x), otherwise. - */ -static double Sinc (const double x) { - if (fabs (x) < EPSILON) - return (1.0); - return (sin (M_PI * x) / (M_PI * x)); -} - -/* The zero-order modified Bessel function of the first kind, used for the - * Kaiser window. - * - * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k) - * = sum_{k=0}^inf ((x / 2)^k / k!)^2 - */ -static double BesselI_0 (const double x) { - double term, sum, x2, y, last_sum; - int k; - - // Start at k=1 since k=0 is trivial. - term = 1.0; - sum = 1.0; - x2 = x / 2.0; - k = 1; - // Let the integration converge until the term of the sum is no longer - // significant. - do { - y = x2 / k; - k ++; - last_sum = sum; - term *= y * y; - sum += term; - } while (sum != last_sum); - return (sum); -} - -/* Calculate a Kaiser window from the given beta value and a normalized k - * [-1, 1]. - * - * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1 - * { 0, elsewhere. - * - * Where k can be calculated as: - * - * k = i / l, where -l <= i <= l. - * - * or: - * - * k = 2 i / M - 1, where 0 <= i <= M. - */ -static double Kaiser (const double b, const double k) { - double k2; - - k2 = Clamp (k, -1.0, 1.0); - if ((k < -1.0) || (k > 1.0)) - return (0.0); - k2 *= k2; - return (BesselI_0 (b * sqrt (1.0 - k2)) / BesselI_0 (b)); -} - -// Calculates the greatest common divisor of a and b. -static uint Gcd (const uint a, const uint b) { - uint x, y, z; - - x = a; - y = b; - while (y > 0) { - z = y; - y = x % y; - x = z; - } - return (x); -} - -/* Calculates the size (order) of the Kaiser window. Rejection is in dB and - * the transition width is normalized frequency (0.5 is nyquist). - * - * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21 - * { ceil(5.79 / 2 pi f_t), r <= 21. - * - */ -static uint CalcKaiserOrder (const double rejection, const double transition) { - double w_t; - - w_t = 2.0 * M_PI * transition; - if (rejection > 21.0) - return ((uint) ceil ((rejection - 7.95) / (2.285 * w_t))); - return ((uint) ceil (5.79 / w_t)); -} - -// Calculates the beta value of the Kaiser window. Rejection is in dB. -static double CalcKaiserBeta (const double rejection) { - if (rejection > 50.0) - return (0.1102 * (rejection - 8.7)); - else if (rejection >= 21.0) - return ((0.5842 * pow (rejection - 21.0, 0.4)) + - (0.07886 * (rejection - 21.0))); - else - return (0.0); -} - -/* Calculates a point on the Kaiser-windowed sinc filter for the given half- - * width, beta, gain, and cutoff. The point is specified in non-normalized - * samples, from 0 to M, where M = (2 l + 1). - * - * w(k) 2 p f_t sinc(2 f_t x) - * - * x -- centered sample index (i - l) - * k -- normalized and centered window index (x / l) - * w(k) -- window function (Kaiser) - * p -- gain compensation factor when sampling - * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist) - */ -static double SincFilter (const int l, const double b, const double gain, const double cutoff, const int i) { - return (Kaiser (b, ((double) (i - l)) / l) * 2.0 * gain * cutoff * Sinc (2.0 * cutoff * (i - l))); -} - -/* This is a polyphase sinc-filtered resampler. - * - * Upsample Downsample - * - * p/q = 3/2 p/q = 3/5 - * - * M-+-+-+-> M-+-+-+-> - * -------------------+ ---------------------+ - * p s * f f f f|f| | p s * f f f f f | - * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| | - * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 | - * s * f|f|f f f | s * f f|f|f f | - * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 | - * --------+=+--------+ 0 * |0|0 0 0 0 | - * d . d .|d|. d . d ----------+=+--------+ - * d . . . .|d|. . . . - * q-> - * q-+-+-+-> - * - * P_f(i,j) = q i mod p + pj - * P_s(i,j) = floor(q i / p) - j - * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} { - * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M - * { 0, P_f(i,j) >= M. } - */ - -// Calculate the resampling metrics and build the Kaiser-windowed sinc filter -// that's used to cut frequencies above the destination nyquist. -static void ResamplerSetup (ResamplerT * rs, const uint srcRate, const uint dstRate) { - uint gcd, l; - double cutoff, width, beta; - int i; - - gcd = Gcd (srcRate, dstRate); - rs -> mP = dstRate / gcd; - rs -> mQ = srcRate / gcd; - /* The cutoff is adjusted by half the transition width, so the transition - * ends before the nyquist (0.5). Both are scaled by the downsampling - * factor. - */ - if (rs -> mP > rs -> mQ) { - cutoff = 0.45 / rs -> mP; - width = 0.1 / rs -> mP; - } else { - cutoff = 0.45 / rs -> mQ; - width = 0.1 / rs -> mQ; - } - // A rejection of -180 dB is used for the stop band. - l = CalcKaiserOrder (180.0, width) / 2; - beta = CalcKaiserBeta (180.0); - rs -> mM = (2 * l) + 1; - rs -> mL = l; - rs -> mF = CreateArray (rs -> mM); - for (i = 0; i < ((int) rs -> mM); i ++) - rs -> mF [i] = SincFilter ((int) l, beta, rs -> mP, cutoff, i); -} - -// Clean up after the resampler. -static void ResamplerClear (ResamplerT * rs) { - DestroyArray (rs -> mF); - rs -> mF = NULL; -} - -// Perform the upsample-filter-downsample resampling operation using a -// polyphase filter implementation. -static void ResamplerRun (ResamplerT * rs, const uint inN, const double * in, const uint outN, double * out) { - const uint p = rs -> mP, q = rs -> mQ, m = rs -> mM, l = rs -> mL; - const double * f = rs -> mF; - double * work = NULL; - uint i; - double r; - uint j_f, j_s; - - if (outN == 0) - return; - - // Handle in-place operation. - if (in == out) - work = CreateArray (outN); - else - work = out; - // Resample the input. - for (i = 0; i < outN; i ++) { - r = 0.0; - // Input starts at l to compensate for the filter delay. This will - // drop any build-up from the first half of the filter. - j_f = (l + (q * i)) % p; - j_s = (l + (q * i)) / p; - while (j_f < m) { - // Only take input when 0 <= j_s < inN. This single unsigned - // comparison catches both cases. - if (j_s < inN) - r += f [j_f] * in [j_s]; - j_f += p; - j_s --; - } - work [i] = r; - } - // Clean up after in-place operation. - if (in == out) { - for (i = 0; i < outN; i ++) - out [i] = work [i]; - DestroyArray (work); - } -} - -// Read a binary value of the specified byte order and byte size from a file, -// storing it as a 32-bit unsigned integer. -static int ReadBin4 (FILE * fp, const char * filename, const ByteOrderT order, const uint bytes, uint32 * out) { - uint8 in [4]; - uint32 accum; - uint i; - - if (fread (in, 1, bytes, fp) != bytes) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - accum = 0; - switch (order) { - case BO_LITTLE : - for (i = 0; i < bytes; i ++) - accum = (accum << 8) | in [bytes - i - 1]; - break; - case BO_BIG : - for (i = 0; i < bytes; i ++) - accum = (accum << 8) | in [i]; - break; - default : - break; - } - (* out) = accum; - return (1); -} - -// Read a binary value of the specified byte order from a file, storing it as -// a 64-bit unsigned integer. -static int ReadBin8 (FILE * fp, const char * filename, const ByteOrderT order, uint64 * out) { - uint8 in [8]; - uint64 accum; - uint i; - - if (fread (in, 1, 8, fp) != 8) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - accum = 0ULL; - switch (order) { - case BO_LITTLE : - for (i = 0; i < 8; i ++) - accum = (accum << 8) | in [8 - i - 1]; - break; - case BO_BIG : - for (i = 0; i < 8; i ++) - accum = (accum << 8) | in [i]; - break; - default : - break; - } - (* out) = accum; - return (1); -} - -// Write an ASCII string to a file. -static int WriteAscii (const char * out, FILE * fp, const char * filename) { - size_t len; - - len = strlen (out); - if (fwrite (out, 1, len, fp) != len) { - fclose (fp); - fprintf (stderr, "Error: Bad write to file '%s'.\n", filename); - return (0); - } - return (1); -} - -// Write a binary value of the given byte order and byte size to a file, -// loading it from a 32-bit unsigned integer. -static int WriteBin4 (const ByteOrderT order, const uint bytes, const uint32 in, FILE * fp, const char * filename) { - uint8 out [4]; - uint i; - - switch (order) { - case BO_LITTLE : - for (i = 0; i < bytes; i ++) - out [i] = (in >> (i * 8)) & 0x000000FF; - break; - case BO_BIG : - for (i = 0; i < bytes; i ++) - out [bytes - i - 1] = (in >> (i * 8)) & 0x000000FF; - break; - default : - break; - } - if (fwrite (out, 1, bytes, fp) != bytes) { - fprintf (stderr, "Error: Bad write to file '%s'.\n", filename); - return (0); - } - return (1); -} - -/* Read a binary value of the specified type, byte order, and byte size from - * a file, converting it to a double. For integer types, the significant - * bits are used to normalize the result. The sign of bits determines - * whether they are padded toward the MSB (negative) or LSB (positive). - * Floating-point types are not normalized. - */ -static int ReadBinAsDouble (FILE * fp, const char * filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double * out) { - union { - uint32 ui; - int32 i; - float f; - } v4; - union { - uint64 ui; - double f; - } v8; - - (* out) = 0.0; - if (bytes > 4) { - if (! ReadBin8 (fp, filename, order, & v8 . ui)) - return (0); - if (type == ET_FP) - (* out) = v8 . f; - } else { - if (! ReadBin4 (fp, filename, order, bytes, & v4 . ui)) - return (0); - if (type == ET_FP) { - (* out) = (double) v4 . f; - } else { - if (bits > 0) - v4 . ui >>= (8 * bytes) - ((uint) bits); - else - v4 . ui &= (0xFFFFFFFF >> (32 + bits)); - if (v4 . ui & ((uint) (1 << (abs (bits) - 1)))) - v4 . ui |= (0xFFFFFFFF << abs (bits)); - (* out) = v4 . i / ((double) (1 << (abs (bits) - 1))); - } - } - return (1); -} - -/* Read an ascii value of the specified type from a file, converting it to a - * double. For integer types, the significant bits are used to normalize the - * result. The sign of the bits should always be positive. This also skips - * up to one separator character before the element itself. - */ -static int ReadAsciiAsDouble (TokenReaderT * tr, const char * filename, const ElementTypeT type, const uint bits, double * out) { - int v; - - if (TrIsOperator (tr, ",")) - TrReadOperator (tr, ","); - else if (TrIsOperator (tr, ":")) - TrReadOperator (tr, ":"); - else if (TrIsOperator (tr, ";")) - TrReadOperator (tr, ";"); - else if (TrIsOperator (tr, "|")) - TrReadOperator (tr, "|"); - if (type == ET_FP) { - if (! TrReadFloat (tr, -HUGE_VAL, HUGE_VAL, out)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - } else { - if (! TrReadInt (tr, -(1 << (bits - 1)), (1 << (bits - 1)) - 1, & v)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", filename); - return (0); - } - (* out) = v / ((double) ((1 << (bits - 1)) - 1)); - } - return (1); -} - -// Read the RIFF/RIFX WAVE format chunk from a file, validating it against -// the source parameters and data set metrics. -static int ReadWaveFormat (FILE * fp, const ByteOrderT order, const uint hrirRate, SourceRefT * src) { - uint32 fourCC, chunkSize; - uint32 format, channels, rate, dummy, block, size, bits; - - chunkSize = 0; - do { - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - } while (fourCC != FOURCC_FMT); - if ((! ReadBin4 (fp, src -> mPath, order, 2, & format)) || - (! ReadBin4 (fp, src -> mPath, order, 2, & channels)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & rate)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & dummy)) || - (! ReadBin4 (fp, src -> mPath, order, 2, & block))) - return (0); - block /= channels; - if (chunkSize > 14) { - if (! ReadBin4 (fp, src -> mPath, order, 2, & size)) - return (0); - size /= 8; - if (block > size) - size = block; - } else { - size = block; - } - if (format == WAVE_FORMAT_EXTENSIBLE) { - fseek (fp, 2, SEEK_CUR); - if (! ReadBin4 (fp, src -> mPath, order, 2, & bits)) - return (0); - if (bits == 0) - bits = 8 * size; - fseek (fp, 4, SEEK_CUR); - if (! ReadBin4 (fp, src -> mPath, order, 2, & format)) - return (0); - fseek (fp, (long) (chunkSize - 26), SEEK_CUR); - } else { - bits = 8 * size; - if (chunkSize > 14) - fseek (fp, (long) (chunkSize - 16), SEEK_CUR); - else - fseek (fp, (long) (chunkSize - 14), SEEK_CUR); - } - if ((format != WAVE_FORMAT_PCM) && (format != WAVE_FORMAT_IEEE_FLOAT)) { - fprintf (stderr, "Error: Unsupported WAVE format in file '%s'.\n", src -> mPath); - return (0); - } - if (src -> mChannel >= channels) { - fprintf (stderr, "Error: Missing source channel in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (rate != hrirRate) { - fprintf (stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (format == WAVE_FORMAT_PCM) { - if ((size < 2) || (size > 4)) { - fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath); - return (0); - } - if ((bits < 16) || (bits > (8 * size))) { - fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src -> mPath); - return (0); - } - src -> mType = ET_INT; - } else { - if ((size != 4) && (size != 8)) { - fprintf (stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src -> mPath); - return (0); - } - src -> mType = ET_FP; - } - src -> mSize = size; - src -> mBits = (int) bits; - src -> mSkip = channels; - return (1); -} - -// Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles. -static int ReadWaveData (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - int pre, post, skip; - uint i; - - pre = (int) (src -> mSize * src -> mChannel); - post = (int) (src -> mSize * (src -> mSkip - src -> mChannel - 1)); - skip = 0; - for (i = 0; i < n; i ++) { - skip += pre; - if (skip > 0) - fseek (fp, skip, SEEK_CUR); - if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i])) - return (0); - skip = post; - } - if (skip > 0) - fseek (fp, skip, SEEK_CUR); - return (1); -} - -// Read the RIFF/RIFX WAVE list or data chunk, converting all elements to -// doubles. -static int ReadWaveList (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - uint32 fourCC, chunkSize, listSize, count; - uint block, skip, offset, i; - double lastSample; - - for (;;) { - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - if (fourCC == FOURCC_DATA) { - block = src -> mSize * src -> mSkip; - count = chunkSize / block; - if (count < (src -> mOffset + n)) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath); - return (0); - } - fseek (fp, (long) (src -> mOffset * block), SEEK_CUR); - if (! ReadWaveData (fp, src, order, n, & hrir [0])) - return (0); - return (1); - } else if (fourCC == FOURCC_LIST) { - if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) - return (0); - chunkSize -= 4; - if (fourCC == FOURCC_WAVL) - break; - } - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - } - listSize = chunkSize; - block = src -> mSize * src -> mSkip; - skip = src -> mOffset; - offset = 0; - lastSample = 0.0; - while ((offset < n) && (listSize > 8)) { - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, order, 4, & chunkSize))) - return (0); - listSize -= 8 + chunkSize; - if (fourCC == FOURCC_DATA) { - count = chunkSize / block; - if (count > skip) { - fseek (fp, (long) (skip * block), SEEK_CUR); - chunkSize -= skip * block; - count -= skip; - skip = 0; - if (count > (n - offset)) - count = n - offset; - if (! ReadWaveData (fp, src, order, count, & hrir [offset])) - return (0); - chunkSize -= count * block; - offset += count; - lastSample = hrir [offset - 1]; - } else { - skip -= count; - count = 0; - } - } else if (fourCC == FOURCC_SLNT) { - if (! ReadBin4 (fp, src -> mPath, order, 4, & count)) - return (0); - chunkSize -= 4; - if (count > skip) { - count -= skip; - skip = 0; - if (count > (n - offset)) - count = n - offset; - for (i = 0; i < count; i ++) - hrir [offset + i] = lastSample; - offset += count; - } else { - skip -= count; - count = 0; - } - } - if (chunkSize > 0) - fseek (fp, (long) chunkSize, SEEK_CUR); - } - if (offset < n) { - fprintf (stderr, "Error: Bad read from file '%s'.\n", src -> mPath); - return (0); - } - return (1); -} - -// Load a source HRIR from a RIFF/RIFX WAVE file. -static int LoadWaveSource (FILE * fp, SourceRefT * src, const uint hrirRate, const uint n, double * hrir) { - uint32 fourCC, dummy; - ByteOrderT order; - - if ((! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) || - (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & dummy))) - return (0); - if (fourCC == FOURCC_RIFF) { - order = BO_LITTLE; - } else if (fourCC == FOURCC_RIFX) { - order = BO_BIG; - } else { - fprintf (stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src -> mPath); - return (0); - } - if (! ReadBin4 (fp, src -> mPath, BO_LITTLE, 4, & fourCC)) - return (0); - if (fourCC != FOURCC_WAVE) { - fprintf (stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src -> mPath); - return (0); - } - if (! ReadWaveFormat (fp, order, hrirRate, src)) - return (0); - if (! ReadWaveList (fp, src, order, n, hrir)) - return (0); - return (1); -} - -// Load a source HRIR from a binary file. -static int LoadBinarySource (FILE * fp, const SourceRefT * src, const ByteOrderT order, const uint n, double * hrir) { - uint i; - - fseek (fp, (long) src -> mOffset, SEEK_SET); - for (i = 0; i < n; i ++) { - if (! ReadBinAsDouble (fp, src -> mPath, order, src -> mType, src -> mSize, src -> mBits, & hrir [i])) - return (0); - if (src -> mSkip > 0) - fseek (fp, (long) src -> mSkip, SEEK_CUR); - } - return (1); -} - -// Load a source HRIR from an ASCII text file containing a list of elements -// separated by whitespace or common list operators (',', ';', ':', '|'). -static int LoadAsciiSource (FILE * fp, const SourceRefT * src, const uint n, double * hrir) { - TokenReaderT tr; - uint i, j; - double dummy; - - TrSetup (fp, NULL, & tr); - for (i = 0; i < src -> mOffset; i ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy)) - return (0); - } - for (i = 0; i < n; i ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & hrir [i])) - return (0); - for (j = 0; j < src -> mSkip; j ++) { - if (! ReadAsciiAsDouble (& tr, src -> mPath, src -> mType, (uint) src -> mBits, & dummy)) - return (0); - } - } - return (1); -} - -// Load a source HRIR from a supported file type. -static int LoadSource (SourceRefT * src, const uint hrirRate, const uint n, double * hrir) { - FILE * fp = NULL; - int result; - - if (src -> mFormat == SF_ASCII) - fp = fopen (src -> mPath, "r"); - else - fp = fopen (src -> mPath, "rb"); - if (fp == NULL) { - fprintf (stderr, "Error: Could not open source file '%s'.\n", src -> mPath); - return (0); - } - if (src -> mFormat == SF_WAVE) - result = LoadWaveSource (fp, src, hrirRate, n, hrir); - else if (src -> mFormat == SF_BIN_LE) - result = LoadBinarySource (fp, src, BO_LITTLE, n, hrir); - else if (src -> mFormat == SF_BIN_BE) - result = LoadBinarySource (fp, src, BO_BIG, n, hrir); - else - result = LoadAsciiSource (fp, src, n, hrir); - fclose (fp); - return (result); -} - -// Calculate the onset time of an HRIR and average it with any existing -// timing for its elevation and azimuth. -static void AverageHrirOnset (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) { - double mag; - uint n, i, j; - - mag = 0.0; - n = hData -> mIrPoints; - for (i = 0; i < n; i ++) - mag = fmax (fabs (hrir [i]), mag); - mag *= 0.15; - for (i = 0; i < n; i ++) { - if (fabs (hrir [i]) >= mag) - break; - } - j = hData -> mEvOffset [ei] + ai; - hData -> mHrtds [j] = Lerp (hData -> mHrtds [j], ((double) i) / hData -> mIrRate, f); -} - -// Calculate the magnitude response of an HRIR and average it with any -// existing responses for its elevation and azimuth. -static void AverageHrirMagnitude (const double * hrir, const double f, const uint ei, const uint ai, const HrirDataT * hData) { - double * re = NULL, * im = NULL; - uint n, m, i, j; - - n = hData -> mFftSize; - re = CreateArray (n); - im = CreateArray (n); - for (i = 0; i < hData -> mIrPoints; i ++) { - re [i] = hrir [i]; - im [i] = 0.0; - } - for (; i < n; i ++) { - re [i] = 0.0; - im [i] = 0.0; - } - FftForward (n, re, im, re, im); - MagnitudeResponse (n, re, im, re); - m = 1 + (n / 2); - j = (hData -> mEvOffset [ei] + ai) * hData -> mIrSize; - for (i = 0; i < m; i ++) - hData -> mHrirs [j + i] = Lerp (hData -> mHrirs [j + i], re [i], f); - DestroyArray (im); - DestroyArray (re); -} - -/* Calculate the contribution of each HRIR to the diffuse-field average based - * on the area of its surface patch. All patches are centered at the HRIR - * coordinates on the unit sphere and are measured by solid angle. - */ -static void CalculateDfWeights (const HrirDataT * hData, double * weights) { - uint ei; - double evs, sum, ev, up_ev, down_ev, solidAngle; - - evs = 90.0 / (hData -> mEvCount - 1); - sum = 0.0; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) { - // For each elevation, calculate the upper and lower limits of the - // patch band. - ev = -90.0 + (ei * 2.0 * evs); - if (ei < (hData -> mEvCount - 1)) - up_ev = (ev + evs) * M_PI / 180.0; - else - up_ev = M_PI / 2.0; - if (ei > 0) - down_ev = (ev - evs) * M_PI / 180.0; - else - down_ev = -M_PI / 2.0; - // Calculate the area of the patch band. - solidAngle = 2.0 * M_PI * (sin (up_ev) - sin (down_ev)); - // Each weight is the area of one patch. - weights [ei] = solidAngle / hData -> mAzCount [ei]; - // Sum the total surface area covered by the HRIRs. - sum += solidAngle; - } - // Normalize the weights given the total surface coverage. - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - weights [ei] /= sum; -} - -/* Calculate the diffuse-field average from the given magnitude responses of - * the HRIR set. Weighting can be applied to compensate for the varying - * surface area covered by each HRIR. The final average can then be limited - * by the specified magnitude range (in positive dB; 0.0 to skip). - */ -static void CalculateDiffuseFieldAverage (const HrirDataT * hData, const int weighted, const double limit, double * dfa) { - double * weights = NULL; - uint ei, ai, count, step, start, end, m, j, i; - double weight; - - weights = CreateArray (hData -> mEvCount); - if (weighted) { - // Use coverage weighting to calculate the average. - CalculateDfWeights (hData, weights); - } else { - // If coverage weighting is not used, the weights still need to be - // averaged by the number of HRIRs. - count = 0; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - count += hData -> mAzCount [ei]; - for (ei = hData -> mEvStart; ei < hData -> mEvCount; ei ++) - weights [ei] = 1.0 / count; - } - ei = hData -> mEvStart; - ai = 0; - step = hData -> mIrSize; - start = hData -> mEvOffset [ei] * step; - end = hData -> mIrCount * step; - m = 1 + (hData -> mFftSize / 2); - for (i = 0; i < m; i ++) - dfa [i] = 0.0; - for (j = start; j < end; j += step) { - // Get the weight for this HRIR's contribution. - weight = weights [ei]; - // Add this HRIR's weighted power average to the total. - for (i = 0; i < m; i ++) - dfa [i] += weight * hData -> mHrirs [j + i] * hData -> mHrirs [j + i]; - // Determine the next weight to use. - ai ++; - if (ai >= hData -> mAzCount [ei]) { - ei ++; - ai = 0; - } - } - // Finish the average calculation and keep it from being too small. - for (i = 0; i < m; i ++) - dfa [i] = fmax (sqrt (dfa [i]), EPSILON); - // Apply a limit to the magnitude range of the diffuse-field average if - // desired. - if (limit > 0.0) - LimitMagnitudeResponse (hData -> mFftSize, limit, dfa, dfa); - DestroyArray (weights); -} - -// Perform diffuse-field equalization on the magnitude responses of the HRIR -// set using the given average response. -static void DiffuseFieldEqualize (const double * dfa, const HrirDataT * hData) { - uint step, start, end, m, j, i; - - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - m = 1 + (hData -> mFftSize / 2); - for (j = start; j < end; j += step) { - for (i = 0; i < m; i ++) - hData -> mHrirs [j + i] /= dfa [i]; - } -} - -// Perform minimum-phase reconstruction using the magnitude responses of the -// HRIR set. -static void ReconstructHrirs (const HrirDataT * hData) { - double * re = NULL, * im = NULL; - uint step, start, end, n, j, i; - - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - n = hData -> mFftSize; - re = CreateArray (n); - im = CreateArray (n); - for (j = start; j < end; j += step) { - MinimumPhase (n, & hData -> mHrirs [j], re, im); - FftInverse (n, re, im, re, im); - for (i = 0; i < hData -> mIrPoints; i ++) - hData -> mHrirs [j + i] = re [i]; - } - DestroyArray (im); - DestroyArray (re); -} - -// Resamples the HRIRs for use at the given sampling rate. -static void ResampleHrirs (const uint rate, HrirDataT * hData) { - ResamplerT rs; - uint n, step, start, end, j; - - ResamplerSetup (& rs, hData -> mIrRate, rate); - n = hData -> mIrPoints; - step = hData -> mIrSize; - start = hData -> mEvOffset [hData -> mEvStart] * step; - end = hData -> mIrCount * step; - for (j = start; j < end; j += step) - ResamplerRun (& rs, n, & hData -> mHrirs [j], n, & hData -> mHrirs [j]); - ResamplerClear (& rs); - hData -> mIrRate = rate; -} - -/* Given an elevation index and an azimuth, calculate the indices of the two - * HRIRs that bound the coordinate along with a factor for calculating the - * continous HRIR using interpolation. - */ -static void CalcAzIndices (const HrirDataT * hData, const uint ei, const double az, uint * j0, uint * j1, double * jf) { - double af; - uint ai; - - af = ((2.0 * M_PI) + az) * hData -> mAzCount [ei] / (2.0 * M_PI); - ai = ((uint) af) % hData -> mAzCount [ei]; - af -= floor (af); - (* j0) = hData -> mEvOffset [ei] + ai; - (* j1) = hData -> mEvOffset [ei] + ((ai + 1) % hData -> mAzCount [ei]); - (* jf) = af; -} - -// Synthesize any missing onset timings at the bottom elevations. This just -// blends between slightly exaggerated known onsets. Not an accurate model. -static void SynthesizeOnsets (HrirDataT * hData) { - uint oi, e, a, j0, j1; - double t, of, jf; - - oi = hData -> mEvStart; - t = 0.0; - for (a = 0; a < hData -> mAzCount [oi]; a ++) - t += hData -> mHrtds [hData -> mEvOffset [oi] + a]; - hData -> mHrtds [0] = 1.32e-4 + (t / hData -> mAzCount [oi]); - for (e = 1; e < hData -> mEvStart; e ++) { - of = ((double) e) / hData -> mEvStart; - for (a = 0; a < hData -> mAzCount [e]; a ++) { - CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf); - hData -> mHrtds [hData -> mEvOffset [e] + a] = Lerp (hData -> mHrtds [0], Lerp (hData -> mHrtds [j0], hData -> mHrtds [j1], jf), of); - } - } -} - -/* Attempt to synthesize any missing HRIRs at the bottom elevations. Right - * now this just blends the lowest elevation HRIRs together and applies some - * attenuation and high frequency damping. It is a simple, if inaccurate - * model. - */ -static void SynthesizeHrirs (HrirDataT * hData) { - uint oi, a, e, step, n, i, j; - double of, b; - uint j0, j1; - double jf; - double lp [4], s0, s1; - - if (hData -> mEvStart <= 0) - return; - step = hData -> mIrSize; - oi = hData -> mEvStart; - n = hData -> mIrPoints; - for (i = 0; i < n; i ++) - hData -> mHrirs [i] = 0.0; - for (a = 0; a < hData -> mAzCount [oi]; a ++) { - j = (hData -> mEvOffset [oi] + a) * step; - for (i = 0; i < n; i ++) - hData -> mHrirs [i] += hData -> mHrirs [j + i] / hData -> mAzCount [oi]; - } - for (e = 1; e < hData -> mEvStart; e ++) { - of = ((double) e) / hData -> mEvStart; - b = (1.0 - of) * (3.5e-6 * hData -> mIrRate); - for (a = 0; a < hData -> mAzCount [e]; a ++) { - j = (hData -> mEvOffset [e] + a) * step; - CalcAzIndices (hData, oi, a * 2.0 * M_PI / hData -> mAzCount [e], & j0, & j1, & jf); - j0 *= step; - j1 *= step; - lp [0] = 0.0; - lp [1] = 0.0; - lp [2] = 0.0; - lp [3] = 0.0; - for (i = 0; i < n; i ++) { - s0 = hData -> mHrirs [i]; - s1 = Lerp (hData -> mHrirs [j0 + i], hData -> mHrirs [j1 + i], jf); - s0 = Lerp (s0, s1, of); - lp [0] = Lerp (s0, lp [0], b); - lp [1] = Lerp (lp [0], lp [1], b); - lp [2] = Lerp (lp [1], lp [2], b); - lp [3] = Lerp (lp [2], lp [3], b); - hData -> mHrirs [j + i] = lp [3]; - } - } - } - b = 3.5e-6 * hData -> mIrRate; - lp [0] = 0.0; - lp [1] = 0.0; - lp [2] = 0.0; - lp [3] = 0.0; - for (i = 0; i < n; i ++) { - s0 = hData -> mHrirs [i]; - lp [0] = Lerp (s0, lp [0], b); - lp [1] = Lerp (lp [0], lp [1], b); - lp [2] = Lerp (lp [1], lp [2], b); - lp [3] = Lerp (lp [2], lp [3], b); - hData -> mHrirs [i] = lp [3]; - } - hData -> mEvStart = 0; -} - -// The following routines assume a full set of HRIRs for all elevations. - -// Normalize the HRIR set and slightly attenuate the result. -static void NormalizeHrirs (const HrirDataT * hData) { - uint step, end, n, j, i; - double maxLevel; - - step = hData -> mIrSize; - end = hData -> mIrCount * step; - n = hData -> mIrPoints; - maxLevel = 0.0; - for (j = 0; j < end; j += step) { - for (i = 0; i < n; i ++) - maxLevel = fmax (fabs (hData -> mHrirs [j + i]), maxLevel); - } - maxLevel = 1.01 * maxLevel; - for (j = 0; j < end; j += step) { - for (i = 0; i < n; i ++) - hData -> mHrirs [j + i] /= maxLevel; - } -} - -// Calculate the left-ear time delay using a spherical head model. -static double CalcLTD (const double ev, const double az, const double rad, const double dist) { - double azp, dlp, l, al; - - azp = asin (cos (ev) * sin (az)); - dlp = sqrt ((dist * dist) + (rad * rad) + (2.0 * dist * rad * sin (azp))); - l = sqrt ((dist * dist) - (rad * rad)); - al = (0.5 * M_PI) + azp; - if (dlp > l) - dlp = l + (rad * (al - acos (rad / dist))); - return (dlp / 343.3); -} - -// Calculate the effective head-related time delays for each minimum-phase -// HRIR. -static void CalculateHrtds (const HeadModelT model, const double radius, HrirDataT * hData) { - double minHrtd, maxHrtd; - uint e, a, j; - double t; - - minHrtd = 1000.0; - maxHrtd = -1000.0; - for (e = 0; e < hData -> mEvCount; e ++) { - for (a = 0; a < hData -> mAzCount [e]; a ++) { - j = hData -> mEvOffset [e] + a; - if (model == HM_DATASET) { - t = hData -> mHrtds [j] * radius / hData -> mRadius; - } else { - t = CalcLTD ((-90.0 + (e * 180.0 / (hData -> mEvCount - 1))) * M_PI / 180.0, - (a * 360.0 / hData -> mAzCount [e]) * M_PI / 180.0, - radius, hData -> mDistance); - } - hData -> mHrtds [j] = t; - maxHrtd = fmax (t, maxHrtd); - minHrtd = fmin (t, minHrtd); - } - } - maxHrtd -= minHrtd; - for (j = 0; j < hData -> mIrCount; j ++) - hData -> mHrtds [j] -= minHrtd; - hData -> mMaxHrtd = maxHrtd; -} - -// Store the OpenAL Soft HRTF data set. -static int StoreMhr (const HrirDataT * hData, const char * filename) { - FILE * fp = NULL; - uint e, step, end, n, j, i; - int hpHist, v; - - if ((fp = fopen (filename, "wb")) == NULL) { - fprintf (stderr, "Error: Could not open MHR file '%s'.\n", filename); - return (0); - } - if (! WriteAscii (MHR_FORMAT, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 4, (uint32) hData -> mIrRate, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mIrPoints, fp, filename)) - return (0); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mEvCount, fp, filename)) - return (0); - for (e = 0; e < hData -> mEvCount; e ++) { - if (! WriteBin4 (BO_LITTLE, 1, (uint32) hData -> mAzCount [e], fp, filename)) - return (0); - } - step = hData -> mIrSize; - end = hData -> mIrCount * step; - n = hData -> mIrPoints; - srand (0x31DF840C); - for (j = 0; j < end; j += step) { - hpHist = 0; - for (i = 0; i < n; i ++) { - v = HpTpdfDither (32767.0 * hData -> mHrirs [j + i], & hpHist); - if (! WriteBin4 (BO_LITTLE, 2, (uint32) v, fp, filename)) - return (0); - } - } - for (j = 0; j < hData -> mIrCount; j ++) { - v = (int) fmin (round (hData -> mIrRate * hData -> mHrtds [j]), MAX_HRTD); - if (! WriteBin4 (BO_LITTLE, 1, (uint32) v, fp, filename)) - return (0); - } - fclose (fp); - return (1); -} - -// Process the data set definition to read and validate the data set metrics. -static int ProcessMetrics (TokenReaderT * tr, const uint fftSize, const uint truncSize, HrirDataT * hData) { - char ident [MAX_IDENT_LEN + 1]; - uint line, col; - int intVal; - uint points; - double fpVal; - int hasRate = 0, hasPoints = 0, hasAzimuths = 0; - int hasRadius = 0, hasDistance = 0; - - while (! (hasRate && hasPoints && hasAzimuths && hasRadius && hasDistance)) { - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - if (strcasecmp (ident, "rate") == 0) { - if (hasRate) { - TrErrorAt (tr, line, col, "Redefinition of 'rate'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadInt (tr, MIN_RATE, MAX_RATE, & intVal)) - return (0); - hData -> mIrRate = (uint) intVal; - hasRate = 1; - } else if (strcasecmp (ident, "points") == 0) { - if (hasPoints) { - TrErrorAt (tr, line, col, "Redefinition of 'points'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, MIN_POINTS, MAX_POINTS, & intVal)) - return (0); - points = (uint) intVal; - if ((fftSize > 0) && (points > fftSize)) { - TrErrorAt (tr, line, col, "Value exceeds the overridden FFT size.\n"); - return (0); - } - if (points < truncSize) { - TrErrorAt (tr, line, col, "Value is below the truncation size.\n"); - return (0); - } - hData -> mIrPoints = points; - hData -> mFftSize = fftSize; - if (fftSize <= 0) { - points = 1; - while (points < (4 * hData -> mIrPoints)) - points <<= 1; - hData -> mFftSize = points; - hData -> mIrSize = 1 + (points / 2); - } else { - hData -> mFftSize = fftSize; - hData -> mIrSize = 1 + (fftSize / 2); - if (points > hData -> mIrSize) - hData -> mIrSize = points; - } - hasPoints = 1; - } else if (strcasecmp (ident, "azimuths") == 0) { - if (hasAzimuths) { - TrErrorAt (tr, line, col, "Redefinition of 'azimuths'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - hData -> mIrCount = 0; - hData -> mEvCount = 0; - hData -> mEvOffset [0] = 0; - for (;;) { - if (! TrReadInt (tr, MIN_AZ_COUNT, MAX_AZ_COUNT, & intVal)) - return (0); - hData -> mAzCount [hData -> mEvCount] = (uint) intVal; - hData -> mIrCount += (uint) intVal; - hData -> mEvCount ++; - if (! TrIsOperator (tr, ",")) - break; - if (hData -> mEvCount >= MAX_EV_COUNT) { - TrError (tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT); - return (0); - } - hData -> mEvOffset [hData -> mEvCount] = hData -> mEvOffset [hData -> mEvCount - 1] + ((uint) intVal); - TrReadOperator (tr, ","); - } - if (hData -> mEvCount < MIN_EV_COUNT) { - TrErrorAt (tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT); - return (0); - } - hasAzimuths = 1; - } else if (strcasecmp (ident, "radius") == 0) { - if (hasRadius) { - TrErrorAt (tr, line, col, "Redefinition of 'radius'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadFloat (tr, MIN_RADIUS, MAX_RADIUS, & fpVal)) - return (0); - hData -> mRadius = fpVal; - hasRadius = 1; - } else if (strcasecmp (ident, "distance") == 0) { - if (hasDistance) { - TrErrorAt (tr, line, col, "Redefinition of 'distance'.\n"); - return (0); - } - if (! TrReadOperator (tr, "=")) - return (0); - if (! TrReadFloat (tr, MIN_DISTANCE, MAX_DISTANCE, & fpVal)) - return (0); - hData -> mDistance = fpVal; - hasDistance = 1; - } else { - TrErrorAt (tr, line, col, "Expected a metric name.\n"); - return (0); - } - TrSkipWhitespace (tr); - } - return (1); -} - -// Parse an index pair from the data set definition. -static int ReadIndexPair (TokenReaderT * tr, const HrirDataT * hData, uint * ei, uint * ai) { - int intVal; - - if (! TrReadInt (tr, 0, (int) hData -> mEvCount, & intVal)) - return (0); - (* ei) = (uint) intVal; - if (! TrReadOperator (tr, ",")) - return (0); - if (! TrReadInt (tr, 0, (int) hData -> mAzCount [(* ei)], & intVal)) - return (0); - (* ai) = (uint) intVal; - return (1); -} - -// Match the source format from a given identifier. -static SourceFormatT MatchSourceFormat (const char * ident) { - if (strcasecmp (ident, "wave") == 0) - return (SF_WAVE); - else if (strcasecmp (ident, "bin_le") == 0) - return (SF_BIN_LE); - else if (strcasecmp (ident, "bin_be") == 0) - return (SF_BIN_BE); - else if (strcasecmp (ident, "ascii") == 0) - return (SF_ASCII); - return (SF_NONE); -} - -// Match the source element type from a given identifier. -static ElementTypeT MatchElementType (const char * ident) { - if (strcasecmp (ident, "int") == 0) - return (ET_INT); - else if (strcasecmp (ident, "fp") == 0) - return (ET_FP); - return (ET_NONE); -} - -// Parse and validate a source reference from the data set definition. -static int ReadSourceRef (TokenReaderT * tr, SourceRefT * src) { - uint line, col; - char ident [MAX_IDENT_LEN + 1]; - int intVal; - - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - src -> mFormat = MatchSourceFormat (ident); - if (src -> mFormat == SF_NONE) { - TrErrorAt (tr, line, col, "Expected a source format.\n"); - return (0); - } - if (! TrReadOperator (tr, "(")) - return (0); - if (src -> mFormat == SF_WAVE) { - if (! TrReadInt (tr, 0, MAX_WAVE_CHANNELS, & intVal)) - return (0); - src -> mType = ET_NONE; - src -> mSize = 0; - src -> mBits = 0; - src -> mChannel = (uint) intVal; - src -> mSkip = 0; - } else { - TrIndication (tr, & line, & col); - if (! TrReadIdent (tr, MAX_IDENT_LEN, ident)) - return (0); - src -> mType = MatchElementType (ident); - if (src -> mType == ET_NONE) { - TrErrorAt (tr, line, col, "Expected a source element type.\n"); - return (0); - } - if ((src -> mFormat == SF_BIN_LE) || (src -> mFormat == SF_BIN_BE)) { - if (! TrReadOperator (tr, ",")) - return (0); - if (src -> mType == ET_INT) { - if (! TrReadInt (tr, MIN_BIN_SIZE, MAX_BIN_SIZE, & intVal)) - return (0); - src -> mSize = (uint) intVal; - if (TrIsOperator (tr, ",")) { - TrReadOperator (tr, ","); - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal)) - return (0); - if ((abs (intVal) < MIN_BIN_BITS) || (((uint) abs (intVal)) > (8 * src -> mSize))) { - TrErrorAt (tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8 * src -> mSize); - return (0); - } - src -> mBits = intVal; - } else { - src -> mBits = (int) (8 * src -> mSize); - } - } else { - TrIndication (tr, & line, & col); - if (! TrReadInt (tr, -2147483647 - 1, 2147483647, & intVal)) - return (0); - if ((intVal != 4) && (intVal != 8)) { - TrErrorAt (tr, line, col, "Expected a value of 4 or 8.\n"); - return (0); - } - src -> mSize = (uint) intVal; - src -> mBits = 0; - } - } else if ((src -> mFormat == SF_ASCII) && (src -> mType == ET_INT)) { - if (! TrReadOperator (tr, ",")) - return (0); - if (! TrReadInt (tr, MIN_ASCII_BITS, MAX_ASCII_BITS, & intVal)) - return (0); - src -> mSize = 0; - src -> mBits = intVal; - } else { - src -> mSize = 0; - src -> mBits = 0; - } - if (TrIsOperator (tr, ";")) { - TrReadOperator (tr, ";"); - if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal)) - return (0); - src -> mSkip = (uint) intVal; - } else { - src -> mSkip = 0; - } - } - if (! TrReadOperator (tr, ")")) - return (0); - if (TrIsOperator (tr, "@")) { - TrReadOperator (tr, "@"); - if (! TrReadInt (tr, 0, 0x7FFFFFFF, & intVal)) - return (0); - src -> mOffset = (uint) intVal; - } else { - src -> mOffset = 0; - } - if (! TrReadOperator (tr, ":")) - return (0); - if (! TrReadString (tr, MAX_PATH_LEN, src -> mPath)) - return (0); - return (1); -} - -// Process the list of sources in the data set definition. -static int ProcessSources (const HeadModelT model, TokenReaderT * tr, HrirDataT * hData) { - uint * setCount = NULL, * setFlag = NULL; - double * hrir = NULL; - uint line, col, ei, ai; - SourceRefT src; - double factor; - - setCount = (uint *) calloc (hData -> mEvCount, sizeof (uint)); - setFlag = (uint *) calloc (hData -> mIrCount, sizeof (uint)); - hrir = CreateArray (hData -> mIrPoints); - while (TrIsOperator (tr, "[")) { - TrIndication (tr, & line, & col); - TrReadOperator (tr, "["); - if (ReadIndexPair (tr, hData, & ei, & ai)) { - if (TrReadOperator (tr, "]")) { - if (! setFlag [hData -> mEvOffset [ei] + ai]) { - if (TrReadOperator (tr, "=")) { - factor = 1.0; - for (;;) { - if (ReadSourceRef (tr, & src)) { - if (LoadSource (& src, hData -> mIrRate, hData -> mIrPoints, hrir)) { - if (model == HM_DATASET) - AverageHrirOnset (hrir, 1.0 / factor, ei, ai, hData); - AverageHrirMagnitude (hrir, 1.0 / factor, ei, ai, hData); - factor += 1.0; - if (! TrIsOperator (tr, "+")) - break; - TrReadOperator (tr, "+"); - continue; - } - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); - } - setFlag [hData -> mEvOffset [ei] + ai] = 1; - setCount [ei] ++; - continue; - } - } else { - TrErrorAt (tr, line, col, "Redefinition of source.\n"); - } - } - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); - } - ei = 0; - while ((ei < hData -> mEvCount) && (setCount [ei] < 1)) - ei ++; - if (ei < hData -> mEvCount) { - hData -> mEvStart = ei; - while ((ei < hData -> mEvCount) && (setCount [ei] == hData -> mAzCount [ei])) - ei ++; - if (ei >= hData -> mEvCount) { - if (! TrLoad (tr)) { - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (1); - } else { - TrError (tr, "Errant data at end of source list.\n"); - } - } else { - TrError (tr, "Missing sources for elevation index %d.\n", ei); - } - } else { - TrError (tr, "Missing source references.\n"); - } - DestroyArray (hrir); - free (setFlag); - free (setCount); - return (0); -} - -/* Parse the data set definition and process the source data, storing the - * resulting data set as desired. If the input name is NULL it will read - * from standard input. - */ -static int ProcessDefinition (const char * inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const OutputFormatT outFormat, const char * outName) { - FILE * fp = NULL; - TokenReaderT tr; - HrirDataT hData; - double * dfa = NULL; - char rateStr [8 + 1], expName [MAX_PATH_LEN]; - - hData . mIrRate = 0; - hData . mIrPoints = 0; - hData . mFftSize = 0; - hData . mIrSize = 0; - hData . mIrCount = 0; - hData . mEvCount = 0; - hData . mRadius = 0; - hData . mDistance = 0; - fprintf (stdout, "Reading HRIR definition...\n"); - if (inName != NULL) { - fp = fopen (inName, "r"); - if (fp == NULL) { - fprintf (stderr, "Error: Could not open definition file '%s'\n", inName); - return (0); - } - TrSetup (fp, inName, & tr); - } else { - fp = stdin; - TrSetup (fp, "", & tr); - } - if (! ProcessMetrics (& tr, fftSize, truncSize, & hData)) { - if (inName != NULL) - fclose (fp); - return (0); - } - hData . mHrirs = CreateArray (hData . mIrCount * hData . mIrSize); - hData . mHrtds = CreateArray (hData . mIrCount); - if (! ProcessSources (model, & tr, & hData)) { - DestroyArray (hData . mHrtds); - DestroyArray (hData . mHrirs); - if (inName != NULL) - fclose (fp); - return (0); - } - if (inName != NULL) - fclose (fp); - if (equalize) { - dfa = CreateArray (1 + (hData . mFftSize / 2)); - fprintf (stdout, "Calculating diffuse-field average...\n"); - CalculateDiffuseFieldAverage (& hData, surface, limit, dfa); - fprintf (stdout, "Performing diffuse-field equalization...\n"); - DiffuseFieldEqualize (dfa, & hData); - DestroyArray (dfa); - } - fprintf (stdout, "Performing minimum phase reconstruction...\n"); - ReconstructHrirs (& hData); - if ((outRate != 0) && (outRate != hData . mIrRate)) { - fprintf (stdout, "Resampling HRIRs...\n"); - ResampleHrirs (outRate, & hData); - } - fprintf (stdout, "Truncating minimum-phase HRIRs...\n"); - hData . mIrPoints = truncSize; - fprintf (stdout, "Synthesizing missing elevations...\n"); - if (model == HM_DATASET) - SynthesizeOnsets (& hData); - SynthesizeHrirs (& hData); - fprintf (stdout, "Normalizing final HRIRs...\n"); - NormalizeHrirs (& hData); - fprintf (stdout, "Calculating impulse delays...\n"); - CalculateHrtds (model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData . mRadius, & hData); - snprintf (rateStr, 8, "%u", hData . mIrRate); - StrSubst (outName, "%r", rateStr, MAX_PATH_LEN, expName); - switch (outFormat) { - case OF_MHR : - fprintf (stdout, "Creating MHR data set file...\n"); - if (! StoreMhr (& hData, expName)) - return (0); - break; - default : - break; - } - DestroyArray (hData . mHrtds); - DestroyArray (hData . mHrirs); - return (1); -} - -static void PrintHelp(const char *argv0, FILE *ofile) -{ - fprintf(ofile, "Usage: %s [