gcc/
[official-gcc/alias-decl.git] / gcc / tree-complex.c
blob7dbc63ab12d9569ad68860d5b418e0f13be5cd0f
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "real.h"
28 #include "flags.h"
29 #include "tree-flow.h"
30 #include "gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "tree-ssa-propagate.h"
34 #include "diagnostic.h"
37 /* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
41 enum
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
49 /* The type complex_lattice_t holds combinations of the above
50 constants. */
51 typedef int complex_lattice_t;
53 #define PAIR(a, b) ((a) << 2 | (b))
55 DEF_VEC_I(complex_lattice_t);
56 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
58 static VEC(complex_lattice_t, heap) *complex_lattice_values;
60 /* For each complex variable, a pair of variables for the components exists in
61 the hashtable. */
62 static htab_t complex_variable_components;
64 /* For each complex SSA_NAME, a pair of ssa names for the components. */
65 static VEC(tree, heap) *complex_ssa_name_components;
67 /* Lookup UID in the complex_variable_components hashtable and return the
68 associated tree. */
69 static tree
70 cvc_lookup (unsigned int uid)
72 struct int_tree_map *h, in;
73 in.uid = uid;
74 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
75 return h ? h->to : NULL;
78 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
80 static void
81 cvc_insert (unsigned int uid, tree to)
83 struct int_tree_map *h;
84 void **loc;
86 h = XNEW (struct int_tree_map);
87 h->uid = uid;
88 h->to = to;
89 loc = htab_find_slot_with_hash (complex_variable_components, h,
90 uid, INSERT);
91 *(struct int_tree_map **) loc = h;
94 /* Return true if T is not a zero constant. In the case of real values,
95 we're only interested in +0.0. */
97 static int
98 some_nonzerop (tree t)
100 int zerop = false;
102 if (TREE_CODE (t) == REAL_CST)
103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
109 return !zerop;
113 /* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
119 int r, i;
120 complex_lattice_t ret;
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
132 return ret;
136 /* Compute a lattice value from gimple_val T. */
138 static complex_lattice_t
139 find_lattice_value (tree t)
141 tree real, imag;
143 switch (TREE_CODE (t))
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
154 default:
155 gcc_unreachable ();
158 return find_lattice_value_parts (real, imag);
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
164 static bool
165 is_complex_reg (tree lhs)
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
170 /* Mark the incoming parameters to the function as VARYING. */
172 static void
173 init_parameter_lattice_values (void)
175 tree parm, ssa_name;
177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
178 if (is_complex_reg (parm)
179 && var_ann (parm) != NULL
180 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
181 VEC_replace (complex_lattice_t, complex_lattice_values,
182 SSA_NAME_VERSION (ssa_name), VARYING);
185 /* Initialize simulation state for each statement. Return false if we
186 found no statements we want to simulate, and thus there's nothing
187 for the entire pass to do. */
189 static bool
190 init_dont_simulate_again (void)
192 basic_block bb;
193 gimple_stmt_iterator gsi;
194 gimple phi;
195 bool saw_a_complex_op = false;
197 FOR_EACH_BB (bb)
199 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
201 phi = gsi_stmt (gsi);
202 prop_set_simulate_again (phi,
203 is_complex_reg (gimple_phi_result (phi)));
206 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
208 gimple stmt;
209 tree op0, op1;
210 bool sim_again_p;
212 stmt = gsi_stmt (gsi);
213 op0 = op1 = NULL_TREE;
215 /* Most control-altering statements must be initially
216 simulated, else we won't cover the entire cfg. */
217 sim_again_p = stmt_ends_bb_p (stmt);
219 switch (gimple_code (stmt))
221 case GIMPLE_CALL:
222 if (gimple_call_lhs (stmt))
223 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
224 break;
226 case GIMPLE_ASSIGN:
227 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
228 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
229 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
230 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
231 else
232 op0 = gimple_assign_rhs1 (stmt);
233 if (gimple_num_ops (stmt) > 2)
234 op1 = gimple_assign_rhs2 (stmt);
235 break;
237 case GIMPLE_COND:
238 op0 = gimple_cond_lhs (stmt);
239 op1 = gimple_cond_rhs (stmt);
240 break;
242 default:
243 break;
246 if (op0 || op1)
247 switch (gimple_expr_code (stmt))
249 case EQ_EXPR:
250 case NE_EXPR:
251 case PLUS_EXPR:
252 case MINUS_EXPR:
253 case MULT_EXPR:
254 case TRUNC_DIV_EXPR:
255 case CEIL_DIV_EXPR:
256 case FLOOR_DIV_EXPR:
257 case ROUND_DIV_EXPR:
258 case RDIV_EXPR:
259 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
260 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
261 saw_a_complex_op = true;
262 break;
264 case NEGATE_EXPR:
265 case CONJ_EXPR:
266 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
267 saw_a_complex_op = true;
268 break;
270 case REALPART_EXPR:
271 case IMAGPART_EXPR:
272 /* The total store transformation performed during
273 gimplification creates such uninitialized loads
274 and we need to lower the statement to be able
275 to fix things up. */
276 if (TREE_CODE (op0) == SSA_NAME
277 && ssa_undefined_value_p (op0))
278 saw_a_complex_op = true;
279 break;
281 default:
282 break;
285 prop_set_simulate_again (stmt, sim_again_p);
289 return saw_a_complex_op;
293 /* Evaluate statement STMT against the complex lattice defined above. */
295 static enum ssa_prop_result
296 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
297 tree *result_p)
299 complex_lattice_t new_l, old_l, op1_l, op2_l;
300 unsigned int ver;
301 tree lhs;
303 lhs = gimple_get_lhs (stmt);
304 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
305 if (!lhs)
306 return SSA_PROP_VARYING;
308 /* These conditions should be satisfied due to the initial filter
309 set up in init_dont_simulate_again. */
310 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
311 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
313 *result_p = lhs;
314 ver = SSA_NAME_VERSION (lhs);
315 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
317 switch (gimple_expr_code (stmt))
319 case SSA_NAME:
320 case COMPLEX_CST:
321 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
322 break;
324 case COMPLEX_EXPR:
325 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
326 gimple_assign_rhs2 (stmt));
327 break;
329 case PLUS_EXPR:
330 case MINUS_EXPR:
331 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
332 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
334 /* We've set up the lattice values such that IOR neatly
335 models addition. */
336 new_l = op1_l | op2_l;
337 break;
339 case MULT_EXPR:
340 case RDIV_EXPR:
341 case TRUNC_DIV_EXPR:
342 case CEIL_DIV_EXPR:
343 case FLOOR_DIV_EXPR:
344 case ROUND_DIV_EXPR:
345 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
346 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
348 /* Obviously, if either varies, so does the result. */
349 if (op1_l == VARYING || op2_l == VARYING)
350 new_l = VARYING;
351 /* Don't prematurely promote variables if we've not yet seen
352 their inputs. */
353 else if (op1_l == UNINITIALIZED)
354 new_l = op2_l;
355 else if (op2_l == UNINITIALIZED)
356 new_l = op1_l;
357 else
359 /* At this point both numbers have only one component. If the
360 numbers are of opposite kind, the result is imaginary,
361 otherwise the result is real. The add/subtract translates
362 the real/imag from/to 0/1; the ^ performs the comparison. */
363 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
365 /* Don't allow the lattice value to flip-flop indefinitely. */
366 new_l |= old_l;
368 break;
370 case NEGATE_EXPR:
371 case CONJ_EXPR:
372 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
373 break;
375 default:
376 new_l = VARYING;
377 break;
380 /* If nothing changed this round, let the propagator know. */
381 if (new_l == old_l)
382 return SSA_PROP_NOT_INTERESTING;
384 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
385 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
388 /* Evaluate a PHI node against the complex lattice defined above. */
390 static enum ssa_prop_result
391 complex_visit_phi (gimple phi)
393 complex_lattice_t new_l, old_l;
394 unsigned int ver;
395 tree lhs;
396 int i;
398 lhs = gimple_phi_result (phi);
400 /* This condition should be satisfied due to the initial filter
401 set up in init_dont_simulate_again. */
402 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
404 /* We've set up the lattice values such that IOR neatly models PHI meet. */
405 new_l = UNINITIALIZED;
406 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
407 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
409 ver = SSA_NAME_VERSION (lhs);
410 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
412 if (new_l == old_l)
413 return SSA_PROP_NOT_INTERESTING;
415 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
416 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
419 /* Create one backing variable for a complex component of ORIG. */
421 static tree
422 create_one_component_var (tree type, tree orig, const char *prefix,
423 const char *suffix, enum tree_code code)
425 tree r = create_tmp_var (type, prefix);
426 add_referenced_var (r);
428 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
429 DECL_ARTIFICIAL (r) = 1;
431 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
433 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
434 tree inner_type;
436 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
438 inner_type = TREE_TYPE (TREE_TYPE (orig));
439 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
440 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
441 DECL_IGNORED_P (r) = 0;
442 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
444 else
446 DECL_IGNORED_P (r) = 1;
447 TREE_NO_WARNING (r) = 1;
450 return r;
453 /* Retrieve a value for a complex component of VAR. */
455 static tree
456 get_component_var (tree var, bool imag_p)
458 size_t decl_index = DECL_UID (var) * 2 + imag_p;
459 tree ret = cvc_lookup (decl_index);
461 if (ret == NULL)
463 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
464 imag_p ? "CI" : "CR",
465 imag_p ? "$imag" : "$real",
466 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
467 cvc_insert (decl_index, ret);
470 return ret;
473 /* Retrieve a value for a complex component of SSA_NAME. */
475 static tree
476 get_component_ssa_name (tree ssa_name, bool imag_p)
478 complex_lattice_t lattice = find_lattice_value (ssa_name);
479 size_t ssa_name_index;
480 tree ret;
482 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
484 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
485 if (SCALAR_FLOAT_TYPE_P (inner_type))
486 return build_real (inner_type, dconst0);
487 else
488 return build_int_cst (inner_type, 0);
491 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
492 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
493 if (ret == NULL)
495 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
496 ret = make_ssa_name (ret, NULL);
498 /* Copy some properties from the original. In particular, whether it
499 is used in an abnormal phi, and whether it's uninitialized. */
500 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
501 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
502 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
503 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
505 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
506 set_default_def (SSA_NAME_VAR (ret), ret);
509 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
512 return ret;
515 /* Set a value for a complex component of SSA_NAME, return a
516 gimple_seq of stuff that needs doing. */
518 static gimple_seq
519 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
521 complex_lattice_t lattice = find_lattice_value (ssa_name);
522 size_t ssa_name_index;
523 tree comp;
524 gimple last;
525 gimple_seq list;
527 /* We know the value must be zero, else there's a bug in our lattice
528 analysis. But the value may well be a variable known to contain
529 zero. We should be safe ignoring it. */
530 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
531 return NULL;
533 /* If we've already assigned an SSA_NAME to this component, then this
534 means that our walk of the basic blocks found a use before the set.
535 This is fine. Now we should create an initialization for the value
536 we created earlier. */
537 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
538 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
539 if (comp)
542 /* If we've nothing assigned, and the value we're given is already stable,
543 then install that as the value for this SSA_NAME. This preemptively
544 copy-propagates the value, which avoids unnecessary memory allocation. */
545 else if (is_gimple_min_invariant (value)
546 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
548 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
549 return NULL;
551 else if (TREE_CODE (value) == SSA_NAME
552 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
554 /* Replace an anonymous base value with the variable from cvc_lookup.
555 This should result in better debug info. */
556 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
557 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
559 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
560 replace_ssa_name_symbol (value, comp);
563 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
564 return NULL;
567 /* Finally, we need to stabilize the result by installing the value into
568 a new ssa name. */
569 else
570 comp = get_component_ssa_name (ssa_name, imag_p);
572 /* Do all the work to assign VALUE to COMP. */
573 list = NULL;
574 value = force_gimple_operand (value, &list, false, NULL);
575 last = gimple_build_assign (comp, value);
576 gimple_seq_add_stmt (&list, last);
577 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
579 return list;
582 /* Extract the real or imaginary part of a complex variable or constant.
583 Make sure that it's a proper gimple_val and gimplify it if not.
584 Emit any new code before gsi. */
586 static tree
587 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
588 bool gimple_p)
590 switch (TREE_CODE (t))
592 case COMPLEX_CST:
593 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
595 case COMPLEX_EXPR:
596 gcc_unreachable ();
598 case VAR_DECL:
599 case RESULT_DECL:
600 case PARM_DECL:
601 case INDIRECT_REF:
602 case COMPONENT_REF:
603 case ARRAY_REF:
605 tree inner_type = TREE_TYPE (TREE_TYPE (t));
607 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
608 inner_type, unshare_expr (t));
610 if (gimple_p)
611 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
612 GSI_SAME_STMT);
614 return t;
617 case SSA_NAME:
618 return get_component_ssa_name (t, imagpart_p);
620 default:
621 gcc_unreachable ();
625 /* Update the complex components of the ssa name on the lhs of STMT. */
627 static void
628 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
629 tree i)
631 tree lhs;
632 gimple_seq list;
634 lhs = gimple_get_lhs (stmt);
636 list = set_component_ssa_name (lhs, false, r);
637 if (list)
638 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
640 list = set_component_ssa_name (lhs, true, i);
641 if (list)
642 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
645 static void
646 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
648 gimple_seq list;
650 list = set_component_ssa_name (lhs, false, r);
651 if (list)
652 gsi_insert_seq_on_edge (e, list);
654 list = set_component_ssa_name (lhs, true, i);
655 if (list)
656 gsi_insert_seq_on_edge (e, list);
660 /* Update an assignment to a complex variable in place. */
662 static void
663 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
665 gimple_stmt_iterator orig_si = *gsi;
667 if (gimple_in_ssa_p (cfun))
668 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
670 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
671 update_stmt (gsi_stmt (orig_si));
675 /* Generate code at the entry point of the function to initialize the
676 component variables for a complex parameter. */
678 static void
679 update_parameter_components (void)
681 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
682 tree parm;
684 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
686 tree type = TREE_TYPE (parm);
687 tree ssa_name, r, i;
689 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
690 continue;
692 type = TREE_TYPE (type);
693 ssa_name = gimple_default_def (cfun, parm);
694 if (!ssa_name)
695 continue;
697 r = build1 (REALPART_EXPR, type, ssa_name);
698 i = build1 (IMAGPART_EXPR, type, ssa_name);
699 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
703 /* Generate code to set the component variables of a complex variable
704 to match the PHI statements in block BB. */
706 static void
707 update_phi_components (basic_block bb)
709 gimple_stmt_iterator gsi;
711 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
713 gimple phi = gsi_stmt (gsi);
715 if (is_complex_reg (gimple_phi_result (phi)))
717 tree lr, li;
718 gimple pr = NULL, pi = NULL;
719 unsigned int i, n;
721 lr = get_component_ssa_name (gimple_phi_result (phi), false);
722 if (TREE_CODE (lr) == SSA_NAME)
724 pr = create_phi_node (lr, bb);
725 SSA_NAME_DEF_STMT (lr) = pr;
728 li = get_component_ssa_name (gimple_phi_result (phi), true);
729 if (TREE_CODE (li) == SSA_NAME)
731 pi = create_phi_node (li, bb);
732 SSA_NAME_DEF_STMT (li) = pi;
735 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
737 tree comp, arg = gimple_phi_arg_def (phi, i);
738 if (pr)
740 comp = extract_component (NULL, arg, false, false);
741 SET_PHI_ARG_DEF (pr, i, comp);
743 if (pi)
745 comp = extract_component (NULL, arg, true, false);
746 SET_PHI_ARG_DEF (pi, i, comp);
753 /* Expand a complex move to scalars. */
755 static void
756 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
758 tree inner_type = TREE_TYPE (type);
759 tree r, i, lhs, rhs;
760 gimple stmt = gsi_stmt (*gsi);
762 if (is_gimple_assign (stmt))
764 lhs = gimple_assign_lhs (stmt);
765 if (gimple_num_ops (stmt) == 2)
766 rhs = gimple_assign_rhs1 (stmt);
767 else
768 rhs = NULL_TREE;
770 else if (is_gimple_call (stmt))
772 lhs = gimple_call_lhs (stmt);
773 rhs = NULL_TREE;
775 else
776 gcc_unreachable ();
778 if (TREE_CODE (lhs) == SSA_NAME)
780 if (is_ctrl_altering_stmt (stmt))
782 edge_iterator ei;
783 edge e;
785 /* The value is not assigned on the exception edges, so we need not
786 concern ourselves there. We do need to update on the fallthru
787 edge. Find it. */
788 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
789 if (e->flags & EDGE_FALLTHRU)
790 goto found_fallthru;
791 gcc_unreachable ();
792 found_fallthru:
794 r = build1 (REALPART_EXPR, inner_type, lhs);
795 i = build1 (IMAGPART_EXPR, inner_type, lhs);
796 update_complex_components_on_edge (e, lhs, r, i);
798 else if (is_gimple_call (stmt)
799 || gimple_has_side_effects (stmt)
800 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
802 r = build1 (REALPART_EXPR, inner_type, lhs);
803 i = build1 (IMAGPART_EXPR, inner_type, lhs);
804 update_complex_components (gsi, stmt, r, i);
806 else
808 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
810 r = extract_component (gsi, rhs, 0, true);
811 i = extract_component (gsi, rhs, 1, true);
813 else
815 r = gimple_assign_rhs1 (stmt);
816 i = gimple_assign_rhs2 (stmt);
818 update_complex_assignment (gsi, r, i);
821 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
823 tree x;
824 gimple t;
826 r = extract_component (gsi, rhs, 0, false);
827 i = extract_component (gsi, rhs, 1, false);
829 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
830 t = gimple_build_assign (x, r);
831 gsi_insert_before (gsi, t, GSI_SAME_STMT);
833 if (stmt == gsi_stmt (*gsi))
835 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
836 gimple_assign_set_lhs (stmt, x);
837 gimple_assign_set_rhs1 (stmt, i);
839 else
841 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
842 t = gimple_build_assign (x, i);
843 gsi_insert_before (gsi, t, GSI_SAME_STMT);
845 stmt = gsi_stmt (*gsi);
846 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
847 gimple_return_set_retval (stmt, lhs);
850 update_stmt (stmt);
854 /* Expand complex addition to scalars:
855 a + b = (ar + br) + i(ai + bi)
856 a - b = (ar - br) + i(ai + bi)
859 static void
860 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
861 tree ar, tree ai, tree br, tree bi,
862 enum tree_code code,
863 complex_lattice_t al, complex_lattice_t bl)
865 tree rr, ri;
867 switch (PAIR (al, bl))
869 case PAIR (ONLY_REAL, ONLY_REAL):
870 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
871 ri = ai;
872 break;
874 case PAIR (ONLY_REAL, ONLY_IMAG):
875 rr = ar;
876 if (code == MINUS_EXPR)
877 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
878 else
879 ri = bi;
880 break;
882 case PAIR (ONLY_IMAG, ONLY_REAL):
883 if (code == MINUS_EXPR)
884 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
885 else
886 rr = br;
887 ri = ai;
888 break;
890 case PAIR (ONLY_IMAG, ONLY_IMAG):
891 rr = ar;
892 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
893 break;
895 case PAIR (VARYING, ONLY_REAL):
896 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
897 ri = ai;
898 break;
900 case PAIR (VARYING, ONLY_IMAG):
901 rr = ar;
902 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
903 break;
905 case PAIR (ONLY_REAL, VARYING):
906 if (code == MINUS_EXPR)
907 goto general;
908 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
909 ri = bi;
910 break;
912 case PAIR (ONLY_IMAG, VARYING):
913 if (code == MINUS_EXPR)
914 goto general;
915 rr = br;
916 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
917 break;
919 case PAIR (VARYING, VARYING):
920 general:
921 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
923 break;
925 default:
926 gcc_unreachable ();
929 update_complex_assignment (gsi, rr, ri);
932 /* Expand a complex multiplication or division to a libcall to the c99
933 compliant routines. */
935 static void
936 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
937 tree br, tree bi, enum tree_code code)
939 enum machine_mode mode;
940 enum built_in_function bcode;
941 tree fn, type, lhs;
942 gimple old_stmt, stmt;
944 old_stmt = gsi_stmt (*gsi);
945 lhs = gimple_assign_lhs (old_stmt);
946 type = TREE_TYPE (lhs);
948 mode = TYPE_MODE (type);
949 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
951 if (code == MULT_EXPR)
952 bcode = ((enum built_in_function)
953 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
954 else if (code == RDIV_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else
958 gcc_unreachable ();
959 fn = built_in_decls[bcode];
961 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
962 gimple_call_set_lhs (stmt, lhs);
963 update_stmt (stmt);
964 gsi_replace (gsi, stmt, false);
966 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
967 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
969 if (gimple_in_ssa_p (cfun))
971 type = TREE_TYPE (type);
972 update_complex_components (gsi, stmt,
973 build1 (REALPART_EXPR, type, lhs),
974 build1 (IMAGPART_EXPR, type, lhs));
975 SSA_NAME_DEF_STMT (lhs) = stmt;
979 /* Expand complex multiplication to scalars:
980 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
983 static void
984 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
985 tree ar, tree ai, tree br, tree bi,
986 complex_lattice_t al, complex_lattice_t bl)
988 tree rr, ri;
990 if (al < bl)
992 complex_lattice_t tl;
993 rr = ar, ar = br, br = rr;
994 ri = ai, ai = bi, bi = ri;
995 tl = al, al = bl, bl = tl;
998 switch (PAIR (al, bl))
1000 case PAIR (ONLY_REAL, ONLY_REAL):
1001 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1002 ri = ai;
1003 break;
1005 case PAIR (ONLY_IMAG, ONLY_REAL):
1006 rr = ar;
1007 if (TREE_CODE (ai) == REAL_CST
1008 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1009 ri = br;
1010 else
1011 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1012 break;
1014 case PAIR (ONLY_IMAG, ONLY_IMAG):
1015 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1016 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1017 ri = ar;
1018 break;
1020 case PAIR (VARYING, ONLY_REAL):
1021 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1022 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1023 break;
1025 case PAIR (VARYING, ONLY_IMAG):
1026 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1027 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1028 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1029 break;
1031 case PAIR (VARYING, VARYING):
1032 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1034 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1035 return;
1037 else
1039 tree t1, t2, t3, t4;
1041 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1042 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1043 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1045 /* Avoid expanding redundant multiplication for the common
1046 case of squaring a complex number. */
1047 if (ar == br && ai == bi)
1048 t4 = t3;
1049 else
1050 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1052 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1053 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1055 break;
1057 default:
1058 gcc_unreachable ();
1061 update_complex_assignment (gsi, rr, ri);
1064 /* Expand complex division to scalars, straightforward algorithm.
1065 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1066 t = br*br + bi*bi
1069 static void
1070 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1071 tree ar, tree ai, tree br, tree bi,
1072 enum tree_code code)
1074 tree rr, ri, div, t1, t2, t3;
1076 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1077 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1078 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1080 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1081 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1082 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1083 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1087 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1088 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1090 update_complex_assignment (gsi, rr, ri);
1093 /* Expand complex division to scalars, modified algorithm to minimize
1094 overflow with wide input ranges. */
1096 static void
1097 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1098 tree ar, tree ai, tree br, tree bi,
1099 enum tree_code code)
1101 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1102 basic_block bb_cond, bb_true, bb_false, bb_join;
1103 gimple stmt;
1105 /* Examine |br| < |bi|, and branch. */
1106 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1107 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1108 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1109 STRIP_NOPS (compare);
1111 bb_cond = bb_true = bb_false = bb_join = NULL;
1112 rr = ri = tr = ti = NULL;
1113 if (!TREE_CONSTANT (compare))
1115 edge e;
1116 gimple stmt;
1117 tree cond, tmp;
1119 tmp = create_tmp_var (boolean_type_node, NULL);
1120 stmt = gimple_build_assign (tmp, compare);
1121 if (gimple_in_ssa_p (cfun))
1123 tmp = make_ssa_name (tmp, stmt);
1124 gimple_assign_set_lhs (stmt, tmp);
1127 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1129 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1130 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1131 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1133 /* Split the original block, and create the TRUE and FALSE blocks. */
1134 e = split_block (gsi_bb (*gsi), stmt);
1135 bb_cond = e->src;
1136 bb_join = e->dest;
1137 bb_true = create_empty_bb (bb_cond);
1138 bb_false = create_empty_bb (bb_true);
1140 /* Wire the blocks together. */
1141 e->flags = EDGE_TRUE_VALUE;
1142 redirect_edge_succ (e, bb_true);
1143 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1144 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1145 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1147 /* Update dominance info. Note that bb_join's data was
1148 updated by split_block. */
1149 if (dom_info_available_p (CDI_DOMINATORS))
1151 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1152 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1155 rr = make_rename_temp (inner_type, NULL);
1156 ri = make_rename_temp (inner_type, NULL);
1159 /* In the TRUE branch, we compute
1160 ratio = br/bi;
1161 div = (br * ratio) + bi;
1162 tr = (ar * ratio) + ai;
1163 ti = (ai * ratio) - ar;
1164 tr = tr / div;
1165 ti = ti / div; */
1166 if (bb_true || integer_nonzerop (compare))
1168 if (bb_true)
1170 *gsi = gsi_last_bb (bb_true);
1171 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1174 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1176 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1177 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1179 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1180 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1182 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1183 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1185 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1186 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1188 if (bb_true)
1190 stmt = gimple_build_assign (rr, tr);
1191 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1192 stmt = gimple_build_assign (ri, ti);
1193 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1194 gsi_remove (gsi, true);
1198 /* In the FALSE branch, we compute
1199 ratio = d/c;
1200 divisor = (d * ratio) + c;
1201 tr = (b * ratio) + a;
1202 ti = b - (a * ratio);
1203 tr = tr / div;
1204 ti = ti / div; */
1205 if (bb_false || integer_zerop (compare))
1207 if (bb_false)
1209 *gsi = gsi_last_bb (bb_false);
1210 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1213 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1215 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1216 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1218 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1219 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1221 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1222 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1224 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1225 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1227 if (bb_false)
1229 stmt = gimple_build_assign (rr, tr);
1230 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1231 stmt = gimple_build_assign (ri, ti);
1232 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1233 gsi_remove (gsi, true);
1237 if (bb_join)
1238 *gsi = gsi_start_bb (bb_join);
1239 else
1240 rr = tr, ri = ti;
1242 update_complex_assignment (gsi, rr, ri);
1245 /* Expand complex division to scalars. */
1247 static void
1248 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1249 tree ar, tree ai, tree br, tree bi,
1250 enum tree_code code,
1251 complex_lattice_t al, complex_lattice_t bl)
1253 tree rr, ri;
1255 switch (PAIR (al, bl))
1257 case PAIR (ONLY_REAL, ONLY_REAL):
1258 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1259 ri = ai;
1260 break;
1262 case PAIR (ONLY_REAL, ONLY_IMAG):
1263 rr = ai;
1264 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1265 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1266 break;
1268 case PAIR (ONLY_IMAG, ONLY_REAL):
1269 rr = ar;
1270 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1271 break;
1273 case PAIR (ONLY_IMAG, ONLY_IMAG):
1274 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1275 ri = ar;
1276 break;
1278 case PAIR (VARYING, ONLY_REAL):
1279 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1280 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1281 break;
1283 case PAIR (VARYING, ONLY_IMAG):
1284 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1285 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1286 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1288 case PAIR (ONLY_REAL, VARYING):
1289 case PAIR (ONLY_IMAG, VARYING):
1290 case PAIR (VARYING, VARYING):
1291 switch (flag_complex_method)
1293 case 0:
1294 /* straightforward implementation of complex divide acceptable. */
1295 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1296 break;
1298 case 2:
1299 if (SCALAR_FLOAT_TYPE_P (inner_type))
1301 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1302 break;
1304 /* FALLTHRU */
1306 case 1:
1307 /* wide ranges of inputs must work for complex divide. */
1308 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1309 break;
1311 default:
1312 gcc_unreachable ();
1314 return;
1316 default:
1317 gcc_unreachable ();
1320 update_complex_assignment (gsi, rr, ri);
1323 /* Expand complex negation to scalars:
1324 -a = (-ar) + i(-ai)
1327 static void
1328 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1329 tree ar, tree ai)
1331 tree rr, ri;
1333 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1334 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1336 update_complex_assignment (gsi, rr, ri);
1339 /* Expand complex conjugate to scalars:
1340 ~a = (ar) + i(-ai)
1343 static void
1344 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1345 tree ar, tree ai)
1347 tree ri;
1349 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1351 update_complex_assignment (gsi, ar, ri);
1354 /* Expand complex comparison (EQ or NE only). */
1356 static void
1357 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1358 tree br, tree bi, enum tree_code code)
1360 tree cr, ci, cc, type;
1361 gimple stmt;
1363 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1364 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1365 cc = gimplify_build2 (gsi,
1366 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1367 boolean_type_node, cr, ci);
1369 stmt = gsi_stmt (*gsi);
1371 switch (gimple_code (stmt))
1373 case GIMPLE_RETURN:
1374 type = TREE_TYPE (gimple_return_retval (stmt));
1375 gimple_return_set_retval (stmt, fold_convert (type, cc));
1376 break;
1378 case GIMPLE_ASSIGN:
1379 type = TREE_TYPE (gimple_assign_lhs (stmt));
1380 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1381 stmt = gsi_stmt (*gsi);
1382 break;
1384 case GIMPLE_COND:
1385 gimple_cond_set_code (stmt, EQ_EXPR);
1386 gimple_cond_set_lhs (stmt, cc);
1387 gimple_cond_set_rhs (stmt, boolean_true_node);
1388 break;
1390 default:
1391 gcc_unreachable ();
1394 update_stmt (stmt);
1398 /* Process one statement. If we identify a complex operation, expand it. */
1400 static void
1401 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1403 gimple stmt = gsi_stmt (*gsi);
1404 tree type, inner_type, lhs;
1405 tree ac, ar, ai, bc, br, bi;
1406 complex_lattice_t al, bl;
1407 enum tree_code code;
1409 lhs = gimple_get_lhs (stmt);
1410 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1411 return;
1413 type = TREE_TYPE (gimple_op (stmt, 0));
1414 code = gimple_expr_code (stmt);
1416 /* Initial filter for operations we handle. */
1417 switch (code)
1419 case PLUS_EXPR:
1420 case MINUS_EXPR:
1421 case MULT_EXPR:
1422 case TRUNC_DIV_EXPR:
1423 case CEIL_DIV_EXPR:
1424 case FLOOR_DIV_EXPR:
1425 case ROUND_DIV_EXPR:
1426 case RDIV_EXPR:
1427 case NEGATE_EXPR:
1428 case CONJ_EXPR:
1429 if (TREE_CODE (type) != COMPLEX_TYPE)
1430 return;
1431 inner_type = TREE_TYPE (type);
1432 break;
1434 case EQ_EXPR:
1435 case NE_EXPR:
1436 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1437 subocde, so we need to access the operands using gimple_op. */
1438 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1439 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1440 return;
1441 break;
1443 default:
1445 tree rhs;
1447 /* GIMPLE_COND may also fallthru here, but we do not need to
1448 do anything with it. */
1449 if (gimple_code (stmt) == GIMPLE_COND)
1450 return;
1452 if (TREE_CODE (type) == COMPLEX_TYPE)
1453 expand_complex_move (gsi, type);
1454 else if (is_gimple_assign (stmt)
1455 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1456 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1457 && TREE_CODE (lhs) == SSA_NAME)
1459 rhs = gimple_assign_rhs1 (stmt);
1460 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1461 gimple_assign_rhs_code (stmt)
1462 == IMAGPART_EXPR,
1463 false);
1464 gimple_assign_set_rhs_from_tree (gsi, rhs);
1465 stmt = gsi_stmt (*gsi);
1466 update_stmt (stmt);
1469 return;
1472 /* Extract the components of the two complex values. Make sure and
1473 handle the common case of the same value used twice specially. */
1474 if (is_gimple_assign (stmt))
1476 ac = gimple_assign_rhs1 (stmt);
1477 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1479 /* GIMPLE_CALL can not get here. */
1480 else
1482 ac = gimple_cond_lhs (stmt);
1483 bc = gimple_cond_rhs (stmt);
1486 ar = extract_component (gsi, ac, false, true);
1487 ai = extract_component (gsi, ac, true, true);
1489 if (ac == bc)
1490 br = ar, bi = ai;
1491 else if (bc)
1493 br = extract_component (gsi, bc, 0, true);
1494 bi = extract_component (gsi, bc, 1, true);
1496 else
1497 br = bi = NULL_TREE;
1499 if (gimple_in_ssa_p (cfun))
1501 al = find_lattice_value (ac);
1502 if (al == UNINITIALIZED)
1503 al = VARYING;
1505 if (TREE_CODE_CLASS (code) == tcc_unary)
1506 bl = UNINITIALIZED;
1507 else if (ac == bc)
1508 bl = al;
1509 else
1511 bl = find_lattice_value (bc);
1512 if (bl == UNINITIALIZED)
1513 bl = VARYING;
1516 else
1517 al = bl = VARYING;
1519 switch (code)
1521 case PLUS_EXPR:
1522 case MINUS_EXPR:
1523 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1524 break;
1526 case MULT_EXPR:
1527 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1528 break;
1530 case TRUNC_DIV_EXPR:
1531 case CEIL_DIV_EXPR:
1532 case FLOOR_DIV_EXPR:
1533 case ROUND_DIV_EXPR:
1534 case RDIV_EXPR:
1535 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1536 break;
1538 case NEGATE_EXPR:
1539 expand_complex_negation (gsi, inner_type, ar, ai);
1540 break;
1542 case CONJ_EXPR:
1543 expand_complex_conjugate (gsi, inner_type, ar, ai);
1544 break;
1546 case EQ_EXPR:
1547 case NE_EXPR:
1548 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1549 break;
1551 default:
1552 gcc_unreachable ();
1557 /* Entry point for complex operation lowering during optimization. */
1559 static unsigned int
1560 tree_lower_complex (void)
1562 int old_last_basic_block;
1563 gimple_stmt_iterator gsi;
1564 basic_block bb;
1566 if (!init_dont_simulate_again ())
1567 return 0;
1569 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1570 VEC_safe_grow_cleared (complex_lattice_t, heap,
1571 complex_lattice_values, num_ssa_names);
1573 init_parameter_lattice_values ();
1574 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1576 complex_variable_components = htab_create (10, int_tree_map_hash,
1577 int_tree_map_eq, free);
1579 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1580 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1581 2 * num_ssa_names);
1583 update_parameter_components ();
1585 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1586 old_last_basic_block = last_basic_block;
1587 FOR_EACH_BB (bb)
1589 if (bb->index >= old_last_basic_block)
1590 continue;
1592 update_phi_components (bb);
1593 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1594 expand_complex_operations_1 (&gsi);
1597 gsi_commit_edge_inserts ();
1599 htab_delete (complex_variable_components);
1600 VEC_free (tree, heap, complex_ssa_name_components);
1601 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1602 return 0;
1605 struct gimple_opt_pass pass_lower_complex =
1608 GIMPLE_PASS,
1609 "cplxlower", /* name */
1610 0, /* gate */
1611 tree_lower_complex, /* execute */
1612 NULL, /* sub */
1613 NULL, /* next */
1614 0, /* static_pass_number */
1615 TV_NONE, /* tv_id */
1616 PROP_ssa, /* properties_required */
1617 0, /* properties_provided */
1618 0, /* properties_destroyed */
1619 0, /* todo_flags_start */
1620 TODO_dump_func
1621 | TODO_ggc_collect
1622 | TODO_update_ssa
1623 | TODO_verify_stmts /* todo_flags_finish */
1628 /* Entry point for complex operation lowering without optimization. */
1630 static unsigned int
1631 tree_lower_complex_O0 (void)
1633 int old_last_basic_block = last_basic_block;
1634 gimple_stmt_iterator gsi;
1635 basic_block bb;
1637 FOR_EACH_BB (bb)
1639 if (bb->index >= old_last_basic_block)
1640 continue;
1642 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1643 expand_complex_operations_1 (&gsi);
1645 return 0;
1648 static bool
1649 gate_no_optimization (void)
1651 /* With errors, normal optimization passes are not run. If we don't
1652 lower complex operations at all, rtl expansion will abort. */
1653 return optimize == 0 || sorrycount || errorcount;
1656 struct gimple_opt_pass pass_lower_complex_O0 =
1659 GIMPLE_PASS,
1660 "cplxlower0", /* name */
1661 gate_no_optimization, /* gate */
1662 tree_lower_complex_O0, /* execute */
1663 NULL, /* sub */
1664 NULL, /* next */
1665 0, /* static_pass_number */
1666 TV_NONE, /* tv_id */
1667 PROP_cfg, /* properties_required */
1668 0, /* properties_provided */
1669 0, /* properties_destroyed */
1670 0, /* todo_flags_start */
1671 TODO_dump_func | TODO_ggc_collect
1672 | TODO_verify_stmts, /* todo_flags_finish */