freebsd.h (TARGET_ASM_FILE_END): Define.
[official-gcc.git] / gcc / tree-cfg.c
blob4c5982dcd8dd4271a362dbb8033bd34fdbbbb9f4
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t *edge_to_cases;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs;
78 /* CFG statistics. */
79 struct cfg_stats_d
81 long num_merged_labels;
84 static struct cfg_stats_d cfg_stats;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
92 location_t locus;
93 int discriminator;
95 static htab_t discriminator_per_locus;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
164 void
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun);
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
177 static void
178 build_gimple_cfg (gimple_seq seq)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
185 init_empty_tree_cfg ();
187 found_computed_goto = 0;
188 make_blocks (seq);
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
235 static unsigned int
236 execute_build_cfg (void)
238 gimple_seq body = gimple_body (current_function_decl);
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
247 return 0;
250 struct gimple_opt_pass pass_build_cfg =
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
270 /* Return true if T is a computed goto. */
272 static bool
273 computed_goto_p (gimple t)
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
285 static void
286 factor_computed_gotos (void)
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
298 FOR_EACH_BB (bb)
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
303 if (gsi_end_p (gsi))
304 continue;
306 last = gsi_stmt (gsi);
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
316 gimple assignment;
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
358 static void
359 make_blocks (gimple_seq seq)
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
367 while (!gsi_end_p (i))
369 gimple prev_stmt;
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 start_new_block = true;
419 gsi_next (&i);
420 first_stmt_of_seq = false;
425 /* Create and return a new empty basic block after bb AFTER. */
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
430 basic_block bb;
432 gcc_assert (!e);
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
457 n_basic_blocks++;
458 last_basic_block++;
460 return bb;
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
470 void
471 fold_cond_expr_cond (void)
473 basic_block bb;
475 FOR_EACH_BB (bb)
477 gimple stmt = last_stmt (bb);
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
493 else
494 zerop = onep = false;
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
507 /* Join all the blocks in the flowgraph. */
509 static void
510 make_edges (void)
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
522 gimple last = last_stmt (bb);
523 bool fallthru;
525 if (last)
527 enum gimple_code code = gimple_code (last);
528 switch (code)
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb = single_succ (cur_region->entry);
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
663 break;
665 default:
666 gcc_unreachable ();
668 break;
670 case GIMPLE_TRANSACTION:
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
677 break;
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
684 else
685 fallthru = true;
687 if (fallthru)
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
695 if (root_omp_region)
696 free_omp_regions ();
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
705 static unsigned int
706 locus_map_hash (const void *item)
708 return ((const struct locus_discrim_map *) item)->locus;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
714 static int
715 locus_map_eq (const void *va, const void *vb)
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
727 static int
728 next_discriminator_for_locus (location_t locus)
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
755 expanded_location from, to;
757 if (locus1 == locus2)
758 return true;
760 from = expand_location (locus1);
761 to = expand_location (locus2);
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
778 gimple first_in_to_bb, last_in_to_bb;
780 if (locus == 0 || bb->discriminator != 0)
781 return;
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
792 static void
793 make_cond_expr_edges (basic_block bb)
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
805 entry_locus = gimple_location (entry);
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
846 tree t, next;
848 for (t = (tree) *value; t; t = next)
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
854 *value = NULL;
855 return true;
858 /* Start recording information mapping edges to case labels. */
860 void
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 /* Return nonzero if we are recording information for case labels. */
870 static bool
871 recording_case_labels_p (void)
873 return (edge_to_cases != NULL);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
896 BITMAP_FREE (touched_switch_bbs);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
904 static tree
905 get_cases_for_edge (edge e, gimple t)
907 void **slot;
908 size_t i, n;
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
938 return (tree) *pointer_map_contains (edge_to_cases, e);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
943 static void
944 make_gimple_switch_edges (basic_block bb)
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
950 entry_locus = gimple_location (entry);
952 n = gimple_switch_num_labels (entry);
954 for (i = 0; i < n; ++i)
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
964 /* Return the basic block holding label DEST. */
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
969 int uid = LABEL_DECL_UID (dest);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1007 target = gimple_label_label (label_stmt);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1020 /* Create edges for a goto statement at block BB. */
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1055 for (i = 0; i < n; ++i)
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1079 /* The label. */
1080 tree label;
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1086 /* Given LABEL return the first label in the same basic block. */
1088 static tree
1089 main_block_label (tree label)
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1105 /* Clean up redundant labels within the exception tree. */
1107 static void
1108 cleanup_dead_labels_eh (void)
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1115 if (cfun->eh == NULL)
1116 return;
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1136 case ERT_TRY:
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1146 break;
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1162 void
1163 cleanup_dead_labels (void)
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1172 gimple_stmt_iterator i;
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1182 label = gimple_label_label (stmt);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1188 label_for_bb[bb->index].label = label;
1189 continue;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1198 label_for_bb[bb->index].label = label;
1199 break;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1211 if (!stmt)
1212 continue;
1214 switch (gimple_code (stmt))
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1232 break;
1234 case GIMPLE_SWITCH:
1236 size_t i, n = gimple_switch_num_labels (stmt);
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1247 break;
1250 case GIMPLE_ASM:
1252 int i, n = gimple_asm_nlabels (stmt);
1254 for (i = 0; i < n; ++i)
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1260 break;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1273 break;
1275 case GIMPLE_TRANSACTION:
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1285 break;
1287 default:
1288 break;
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1303 if (!label_for_this_bb)
1304 continue;
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1318 label = gimple_label_label (stmt);
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1330 free (label_for_bb);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1356 else
1357 has_default = false;
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1410 else
1411 break;
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1433 void
1434 group_case_labels (void)
1436 basic_block bb;
1438 FOR_EACH_BB (bb)
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1446 /* Checks whether we can merge block B into block A. */
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1455 if (!single_succ_p (a))
1456 return false;
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1461 if (single_succ (a) != b)
1462 return false;
1464 if (!single_pred_p (b))
1465 return false;
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1525 return true;
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1533 const ssa_use_operand_t *ptr;
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1539 return true;
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1549 ssa_use_operand_t *ptr, *single_use = 0;
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1554 if (single_use)
1556 single_use = NULL;
1557 break;
1559 single_use = ptr;
1562 if (use_p)
1563 *use_p = single_use;
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1568 return !!single_use;
1571 /* Replaces all uses of NAME by VAL. */
1573 void
1574 replace_uses_by (tree name, tree val)
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1585 replace_exp (use, val);
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1627 if (fold_stmt (&gsi))
1629 stmt = gsi_stmt (gsi);
1630 maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);
1633 update_stmt (stmt);
1637 gcc_checking_assert (has_zero_uses (name));
1639 /* Also update the trees stored in loop structures. */
1640 if (current_loops)
1642 struct loop *loop;
1643 loop_iterator li;
1645 FOR_EACH_LOOP (li, loop, 0)
1647 substitute_in_loop_info (loop, name, val);
1652 /* Merge block B into block A. */
1654 static void
1655 gimple_merge_blocks (basic_block a, basic_block b)
1657 gimple_stmt_iterator last, gsi, psi;
1658 gimple_seq phis = phi_nodes (b);
1660 if (dump_file)
1661 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi = gsi_last_bb (a);
1666 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1668 gimple phi = gsi_stmt (psi);
1669 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1670 gimple copy;
1671 bool may_replace_uses = !is_gimple_reg (def)
1672 || may_propagate_copy (def, use);
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1676 if (current_loops
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1678 && is_gimple_reg (def)
1679 && TREE_CODE (use) == SSA_NAME
1680 && a->loop_father != b->loop_father)
1681 may_replace_uses = false;
1683 if (!may_replace_uses)
1685 gcc_assert (is_gimple_reg (def));
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy = gimple_build_assign (def, use);
1692 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1693 remove_phi_node (&psi, false);
1695 else
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1699 the stmt. */
1700 if (!is_gimple_reg (def))
1702 imm_use_iterator iter;
1703 use_operand_p use_p;
1704 gimple stmt;
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1708 SET_USE (use_p, use);
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1713 else
1714 replace_uses_by (def, use);
1716 remove_phi_node (&psi, true);
1720 /* Ensure that B follows A. */
1721 move_block_after (b, a);
1723 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1724 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1729 gimple stmt = gsi_stmt (gsi);
1730 if (gimple_code (stmt) == GIMPLE_LABEL)
1732 tree label = gimple_label_label (stmt);
1733 int lp_nr;
1735 gsi_remove (&gsi, false);
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label))
1745 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1746 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1751 gimple dbg = gimple_build_debug_bind (label,
1752 integer_zero_node,
1753 stmt);
1754 gimple_debug_bind_reset_value (dbg);
1755 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1758 lp_nr = EH_LANDING_PAD_NR (label);
1759 if (lp_nr)
1761 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1762 lp->post_landing_pad = NULL;
1765 else
1767 gimple_set_bb (stmt, a);
1768 gsi_next (&gsi);
1772 /* Merge the sequences. */
1773 last = gsi_last_bb (a);
1774 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1775 set_bb_seq (b, NULL);
1777 if (cfgcleanup_altered_bbs)
1778 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1787 basic_block
1788 single_noncomplex_succ (basic_block bb)
1790 edge e0, e1;
1791 if (EDGE_COUNT (bb->succs) != 2)
1792 return bb;
1794 e0 = EDGE_SUCC (bb, 0);
1795 e1 = EDGE_SUCC (bb, 1);
1796 if (e0->flags & EDGE_COMPLEX)
1797 return e1->dest;
1798 if (e1->flags & EDGE_COMPLEX)
1799 return e0->dest;
1801 return bb;
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1806 void
1807 notice_special_calls (gimple call)
1809 int flags = gimple_call_flags (call);
1811 if (flags & ECF_MAY_BE_ALLOCA)
1812 cfun->calls_alloca = true;
1813 if (flags & ECF_RETURNS_TWICE)
1814 cfun->calls_setjmp = true;
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1821 void
1822 clear_special_calls (void)
1824 cfun->calls_alloca = false;
1825 cfun->calls_setjmp = false;
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1830 static void
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb);
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb->succs) > 0)
1839 remove_edge (EDGE_SUCC (bb, 0));
1843 /* Remove statements of basic block BB. */
1845 static void
1846 remove_bb (basic_block bb)
1848 gimple_stmt_iterator i;
1850 if (dump_file)
1852 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1853 if (dump_flags & TDF_DETAILS)
1855 dump_bb (bb, dump_file, 0);
1856 fprintf (dump_file, "\n");
1860 if (current_loops)
1862 struct loop *loop = bb->loop_father;
1864 /* If a loop gets removed, clean up the information associated
1865 with it. */
1866 if (loop->latch == bb
1867 || loop->header == bb)
1868 free_numbers_of_iterations_estimates_loop (loop);
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb) != NULL)
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1877 details. */
1878 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1880 gimple stmt = gsi_stmt (i);
1881 if (gimple_code (stmt) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt))
1883 || DECL_NONLOCAL (gimple_label_label (stmt))))
1885 basic_block new_bb;
1886 gimple_stmt_iterator new_gsi;
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1890 non-locality. */
1891 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1893 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1897 new_bb = bb->prev_bb;
1898 new_gsi = gsi_start_bb (new_bb);
1899 gsi_remove (&i, false);
1900 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1902 else
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun))
1909 release_defs (stmt);
1911 gsi_remove (&i, true);
1914 if (gsi_end_p (i))
1915 i = gsi_last_bb (bb);
1916 else
1917 gsi_prev (&i);
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1922 bb->il.gimple = NULL;
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1930 edge
1931 find_taken_edge (basic_block bb, tree val)
1933 gimple stmt;
1935 stmt = last_stmt (bb);
1937 gcc_assert (stmt);
1938 gcc_assert (is_ctrl_stmt (stmt));
1940 if (val == NULL)
1941 return NULL;
1943 if (!is_gimple_min_invariant (val))
1944 return NULL;
1946 if (gimple_code (stmt) == GIMPLE_COND)
1947 return find_taken_edge_cond_expr (bb, val);
1949 if (gimple_code (stmt) == GIMPLE_SWITCH)
1950 return find_taken_edge_switch_expr (bb, val);
1952 if (computed_goto_p (stmt))
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1961 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1962 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1963 return NULL;
1966 gcc_unreachable ();
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1973 static edge
1974 find_taken_edge_computed_goto (basic_block bb, tree val)
1976 basic_block dest;
1977 edge e = NULL;
1979 dest = label_to_block (val);
1980 if (dest)
1982 e = find_edge (bb, dest);
1983 gcc_assert (e != NULL);
1986 return e;
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1993 static edge
1994 find_taken_edge_cond_expr (basic_block bb, tree val)
1996 edge true_edge, false_edge;
1998 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2000 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2001 return (integer_zerop (val) ? false_edge : true_edge);
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2008 static edge
2009 find_taken_edge_switch_expr (basic_block bb, tree val)
2011 basic_block dest_bb;
2012 edge e;
2013 gimple switch_stmt;
2014 tree taken_case;
2016 switch_stmt = last_stmt (bb);
2017 taken_case = find_case_label_for_value (switch_stmt, val);
2018 dest_bb = label_to_block (CASE_LABEL (taken_case));
2020 e = find_edge (bb, dest_bb);
2021 gcc_assert (e);
2022 return e;
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2030 static tree
2031 find_case_label_for_value (gimple switch_stmt, tree val)
2033 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2034 tree default_case = gimple_switch_default_label (switch_stmt);
2036 for (low = 0, high = n; high - low > 1; )
2038 size_t i = (high + low) / 2;
2039 tree t = gimple_switch_label (switch_stmt, i);
2040 int cmp;
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2045 if (cmp > 0)
2046 high = i;
2047 else
2048 low = i;
2050 if (CASE_HIGH (t) == NULL)
2052 /* A singe-valued case label. */
2053 if (cmp == 0)
2054 return t;
2056 else
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2060 return t;
2064 return default_case;
2068 /* Dump a basic block on stderr. */
2070 void
2071 gimple_debug_bb (basic_block bb)
2073 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2077 /* Dump basic block with index N on stderr. */
2079 basic_block
2080 gimple_debug_bb_n (int n)
2082 gimple_debug_bb (BASIC_BLOCK (n));
2083 return BASIC_BLOCK (n);
2087 /* Dump the CFG on stderr.
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2092 void
2093 gimple_debug_cfg (int flags)
2095 gimple_dump_cfg (stderr, flags);
2099 /* Dump the program showing basic block boundaries on the given FILE.
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2102 tree.h). */
2104 void
2105 gimple_dump_cfg (FILE *file, int flags)
2107 if (flags & TDF_DETAILS)
2109 dump_function_header (file, current_function_decl, flags);
2110 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks, n_edges, last_basic_block);
2113 brief_dump_cfg (file);
2114 fprintf (file, "\n");
2117 if (flags & TDF_STATS)
2118 dump_cfg_stats (file);
2120 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2124 /* Dump CFG statistics on FILE. */
2126 void
2127 dump_cfg_stats (FILE *file)
2129 static long max_num_merged_labels = 0;
2130 unsigned long size, total = 0;
2131 long num_edges;
2132 basic_block bb;
2133 const char * const fmt_str = "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2143 fprintf (file, "---------------------------------------------------------\n");
2144 fprintf (file, fmt_str, "", " Number of ", "Memory");
2145 fprintf (file, fmt_str, "", " instances ", "used ");
2146 fprintf (file, "---------------------------------------------------------\n");
2148 size = n_basic_blocks * sizeof (struct basic_block_def);
2149 total += size;
2150 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2151 SCALE (size), LABEL (size));
2153 num_edges = 0;
2154 FOR_EACH_BB (bb)
2155 num_edges += EDGE_COUNT (bb->succs);
2156 size = num_edges * sizeof (struct edge_def);
2157 total += size;
2158 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2160 fprintf (file, "---------------------------------------------------------\n");
2161 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2162 LABEL (total));
2163 fprintf (file, "---------------------------------------------------------\n");
2164 fprintf (file, "\n");
2166 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2167 max_num_merged_labels = cfg_stats.num_merged_labels;
2169 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats.num_merged_labels, max_num_merged_labels);
2172 fprintf (file, "\n");
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2179 DEBUG_FUNCTION void
2180 debug_cfg_stats (void)
2182 dump_cfg_stats (stderr);
2186 /* Dump the flowgraph to a .vcg FILE. */
2188 static void
2189 gimple_cfg2vcg (FILE *file)
2191 edge e;
2192 edge_iterator ei;
2193 basic_block bb;
2194 const char *funcname
2195 = lang_hooks.decl_printable_name (current_function_decl, 2);
2197 /* Write the file header. */
2198 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2199 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2205 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2206 e->dest->index);
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " linestyle: dotted priority: 10");
2210 else
2211 fprintf (file, " linestyle: solid priority: 100");
2213 fprintf (file, " }\n");
2215 fputc ('\n', file);
2217 FOR_EACH_BB (bb)
2219 enum gimple_code head_code, end_code;
2220 const char *head_name, *end_name;
2221 int head_line = 0;
2222 int end_line = 0;
2223 gimple first = first_stmt (bb);
2224 gimple last = last_stmt (bb);
2226 if (first)
2228 head_code = gimple_code (first);
2229 head_name = gimple_code_name[head_code];
2230 head_line = get_lineno (first);
2232 else
2233 head_name = "no-statement";
2235 if (last)
2237 end_code = gimple_code (last);
2238 end_name = gimple_code_name[end_code];
2239 end_line = get_lineno (last);
2241 else
2242 end_name = "no-statement";
2244 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb->index, bb->index, head_name, head_line, end_name,
2246 end_line);
2248 FOR_EACH_EDGE (e, ei, bb->succs)
2250 if (e->dest == EXIT_BLOCK_PTR)
2251 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2252 else
2253 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2255 if (e->flags & EDGE_FAKE)
2256 fprintf (file, " priority: 10 linestyle: dotted");
2257 else
2258 fprintf (file, " priority: 100 linestyle: solid");
2260 fprintf (file, " }\n");
2263 if (bb->next_bb != EXIT_BLOCK_PTR)
2264 fputc ('\n', file);
2267 fputs ("}\n\n", file);
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2276 /* Return true if T represents a stmt that always transfers control. */
2278 bool
2279 is_ctrl_stmt (gimple t)
2281 switch (gimple_code (t))
2283 case GIMPLE_COND:
2284 case GIMPLE_SWITCH:
2285 case GIMPLE_GOTO:
2286 case GIMPLE_RETURN:
2287 case GIMPLE_RESX:
2288 return true;
2289 default:
2290 return false;
2295 /* Return true if T is a statement that may alter the flow of control
2296 (e.g., a call to a non-returning function). */
2298 bool
2299 is_ctrl_altering_stmt (gimple t)
2301 gcc_assert (t);
2303 switch (gimple_code (t))
2305 case GIMPLE_CALL:
2307 int flags = gimple_call_flags (t);
2309 /* A non-pure/const call alters flow control if the current
2310 function has nonlocal labels. */
2311 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2312 && cfun->has_nonlocal_label)
2313 return true;
2315 /* A call also alters control flow if it does not return. */
2316 if (flags & ECF_NORETURN)
2317 return true;
2319 /* TM ending statements have backedges out of the transaction.
2320 Return true so we split the basic block containing them.
2321 Note that the TM_BUILTIN test is merely an optimization. */
2322 if ((flags & ECF_TM_BUILTIN)
2323 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2324 return true;
2326 /* BUILT_IN_RETURN call is same as return statement. */
2327 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2328 return true;
2330 break;
2332 case GIMPLE_EH_DISPATCH:
2333 /* EH_DISPATCH branches to the individual catch handlers at
2334 this level of a try or allowed-exceptions region. It can
2335 fallthru to the next statement as well. */
2336 return true;
2338 case GIMPLE_ASM:
2339 if (gimple_asm_nlabels (t) > 0)
2340 return true;
2341 break;
2343 CASE_GIMPLE_OMP:
2344 /* OpenMP directives alter control flow. */
2345 return true;
2347 case GIMPLE_TRANSACTION:
2348 /* A transaction start alters control flow. */
2349 return true;
2351 default:
2352 break;
2355 /* If a statement can throw, it alters control flow. */
2356 return stmt_can_throw_internal (t);
2360 /* Return true if T is a simple local goto. */
2362 bool
2363 simple_goto_p (gimple t)
2365 return (gimple_code (t) == GIMPLE_GOTO
2366 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2370 /* Return true if T can make an abnormal transfer of control flow.
2371 Transfers of control flow associated with EH are excluded. */
2373 bool
2374 stmt_can_make_abnormal_goto (gimple t)
2376 if (computed_goto_p (t))
2377 return true;
2378 if (is_gimple_call (t))
2379 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2380 && !(gimple_call_flags (t) & ECF_LEAF));
2381 return false;
2385 /* Return true if STMT should start a new basic block. PREV_STMT is
2386 the statement preceding STMT. It is used when STMT is a label or a
2387 case label. Labels should only start a new basic block if their
2388 previous statement wasn't a label. Otherwise, sequence of labels
2389 would generate unnecessary basic blocks that only contain a single
2390 label. */
2392 static inline bool
2393 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2395 if (stmt == NULL)
2396 return false;
2398 /* Labels start a new basic block only if the preceding statement
2399 wasn't a label of the same type. This prevents the creation of
2400 consecutive blocks that have nothing but a single label. */
2401 if (gimple_code (stmt) == GIMPLE_LABEL)
2403 /* Nonlocal and computed GOTO targets always start a new block. */
2404 if (DECL_NONLOCAL (gimple_label_label (stmt))
2405 || FORCED_LABEL (gimple_label_label (stmt)))
2406 return true;
2408 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2410 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2411 return true;
2413 cfg_stats.num_merged_labels++;
2414 return false;
2416 else
2417 return true;
2420 return false;
2424 /* Return true if T should end a basic block. */
2426 bool
2427 stmt_ends_bb_p (gimple t)
2429 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2432 /* Remove block annotations and other data structures. */
2434 void
2435 delete_tree_cfg_annotations (void)
2437 label_to_block_map = NULL;
2441 /* Return the first statement in basic block BB. */
2443 gimple
2444 first_stmt (basic_block bb)
2446 gimple_stmt_iterator i = gsi_start_bb (bb);
2447 gimple stmt = NULL;
2449 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2451 gsi_next (&i);
2452 stmt = NULL;
2454 return stmt;
2457 /* Return the first non-label statement in basic block BB. */
2459 static gimple
2460 first_non_label_stmt (basic_block bb)
2462 gimple_stmt_iterator i = gsi_start_bb (bb);
2463 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2464 gsi_next (&i);
2465 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2468 /* Return the last statement in basic block BB. */
2470 gimple
2471 last_stmt (basic_block bb)
2473 gimple_stmt_iterator i = gsi_last_bb (bb);
2474 gimple stmt = NULL;
2476 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2478 gsi_prev (&i);
2479 stmt = NULL;
2481 return stmt;
2484 /* Return the last statement of an otherwise empty block. Return NULL
2485 if the block is totally empty, or if it contains more than one
2486 statement. */
2488 gimple
2489 last_and_only_stmt (basic_block bb)
2491 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2492 gimple last, prev;
2494 if (gsi_end_p (i))
2495 return NULL;
2497 last = gsi_stmt (i);
2498 gsi_prev_nondebug (&i);
2499 if (gsi_end_p (i))
2500 return last;
2502 /* Empty statements should no longer appear in the instruction stream.
2503 Everything that might have appeared before should be deleted by
2504 remove_useless_stmts, and the optimizers should just gsi_remove
2505 instead of smashing with build_empty_stmt.
2507 Thus the only thing that should appear here in a block containing
2508 one executable statement is a label. */
2509 prev = gsi_stmt (i);
2510 if (gimple_code (prev) == GIMPLE_LABEL)
2511 return last;
2512 else
2513 return NULL;
2516 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2518 static void
2519 reinstall_phi_args (edge new_edge, edge old_edge)
2521 edge_var_map_vector v;
2522 edge_var_map *vm;
2523 int i;
2524 gimple_stmt_iterator phis;
2526 v = redirect_edge_var_map_vector (old_edge);
2527 if (!v)
2528 return;
2530 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2531 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2532 i++, gsi_next (&phis))
2534 gimple phi = gsi_stmt (phis);
2535 tree result = redirect_edge_var_map_result (vm);
2536 tree arg = redirect_edge_var_map_def (vm);
2538 gcc_assert (result == gimple_phi_result (phi));
2540 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2543 redirect_edge_var_map_clear (old_edge);
2546 /* Returns the basic block after which the new basic block created
2547 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2548 near its "logical" location. This is of most help to humans looking
2549 at debugging dumps. */
2551 static basic_block
2552 split_edge_bb_loc (edge edge_in)
2554 basic_block dest = edge_in->dest;
2555 basic_block dest_prev = dest->prev_bb;
2557 if (dest_prev)
2559 edge e = find_edge (dest_prev, dest);
2560 if (e && !(e->flags & EDGE_COMPLEX))
2561 return edge_in->src;
2563 return dest_prev;
2566 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2567 Abort on abnormal edges. */
2569 static basic_block
2570 gimple_split_edge (edge edge_in)
2572 basic_block new_bb, after_bb, dest;
2573 edge new_edge, e;
2575 /* Abnormal edges cannot be split. */
2576 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2578 dest = edge_in->dest;
2580 after_bb = split_edge_bb_loc (edge_in);
2582 new_bb = create_empty_bb (after_bb);
2583 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2584 new_bb->count = edge_in->count;
2585 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2586 new_edge->probability = REG_BR_PROB_BASE;
2587 new_edge->count = edge_in->count;
2589 e = redirect_edge_and_branch (edge_in, new_bb);
2590 gcc_assert (e == edge_in);
2591 reinstall_phi_args (new_edge, e);
2593 return new_bb;
2597 /* Verify properties of the address expression T with base object BASE. */
2599 static tree
2600 verify_address (tree t, tree base)
2602 bool old_constant;
2603 bool old_side_effects;
2604 bool new_constant;
2605 bool new_side_effects;
2607 old_constant = TREE_CONSTANT (t);
2608 old_side_effects = TREE_SIDE_EFFECTS (t);
2610 recompute_tree_invariant_for_addr_expr (t);
2611 new_side_effects = TREE_SIDE_EFFECTS (t);
2612 new_constant = TREE_CONSTANT (t);
2614 if (old_constant != new_constant)
2616 error ("constant not recomputed when ADDR_EXPR changed");
2617 return t;
2619 if (old_side_effects != new_side_effects)
2621 error ("side effects not recomputed when ADDR_EXPR changed");
2622 return t;
2625 if (!(TREE_CODE (base) == VAR_DECL
2626 || TREE_CODE (base) == PARM_DECL
2627 || TREE_CODE (base) == RESULT_DECL))
2628 return NULL_TREE;
2630 if (DECL_GIMPLE_REG_P (base))
2632 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2633 return base;
2636 return NULL_TREE;
2639 /* Callback for walk_tree, check that all elements with address taken are
2640 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2641 inside a PHI node. */
2643 static tree
2644 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2646 tree t = *tp, x;
2648 if (TYPE_P (t))
2649 *walk_subtrees = 0;
2651 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2652 #define CHECK_OP(N, MSG) \
2653 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2654 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2656 switch (TREE_CODE (t))
2658 case SSA_NAME:
2659 if (SSA_NAME_IN_FREE_LIST (t))
2661 error ("SSA name in freelist but still referenced");
2662 return *tp;
2664 break;
2666 case INDIRECT_REF:
2667 error ("INDIRECT_REF in gimple IL");
2668 return t;
2670 case MEM_REF:
2671 x = TREE_OPERAND (t, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (x))
2673 || !is_gimple_mem_ref_addr (x))
2675 error ("invalid first operand of MEM_REF");
2676 return x;
2678 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2679 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2681 error ("invalid offset operand of MEM_REF");
2682 return TREE_OPERAND (t, 1);
2684 if (TREE_CODE (x) == ADDR_EXPR
2685 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2686 return x;
2687 *walk_subtrees = 0;
2688 break;
2690 case ASSERT_EXPR:
2691 x = fold (ASSERT_EXPR_COND (t));
2692 if (x == boolean_false_node)
2694 error ("ASSERT_EXPR with an always-false condition");
2695 return *tp;
2697 break;
2699 case MODIFY_EXPR:
2700 error ("MODIFY_EXPR not expected while having tuples");
2701 return *tp;
2703 case ADDR_EXPR:
2705 tree tem;
2707 gcc_assert (is_gimple_address (t));
2709 /* Skip any references (they will be checked when we recurse down the
2710 tree) and ensure that any variable used as a prefix is marked
2711 addressable. */
2712 for (x = TREE_OPERAND (t, 0);
2713 handled_component_p (x);
2714 x = TREE_OPERAND (x, 0))
2717 if ((tem = verify_address (t, x)))
2718 return tem;
2720 if (!(TREE_CODE (x) == VAR_DECL
2721 || TREE_CODE (x) == PARM_DECL
2722 || TREE_CODE (x) == RESULT_DECL))
2723 return NULL;
2725 if (!TREE_ADDRESSABLE (x))
2727 error ("address taken, but ADDRESSABLE bit not set");
2728 return x;
2731 break;
2734 case COND_EXPR:
2735 x = COND_EXPR_COND (t);
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2738 error ("non-integral used in condition");
2739 return x;
2741 if (!is_gimple_condexpr (x))
2743 error ("invalid conditional operand");
2744 return x;
2746 break;
2748 case NON_LVALUE_EXPR:
2749 case TRUTH_NOT_EXPR:
2750 gcc_unreachable ();
2752 CASE_CONVERT:
2753 case FIX_TRUNC_EXPR:
2754 case FLOAT_EXPR:
2755 case NEGATE_EXPR:
2756 case ABS_EXPR:
2757 case BIT_NOT_EXPR:
2758 CHECK_OP (0, "invalid operand to unary operator");
2759 break;
2761 case REALPART_EXPR:
2762 case IMAGPART_EXPR:
2763 case COMPONENT_REF:
2764 case ARRAY_REF:
2765 case ARRAY_RANGE_REF:
2766 case BIT_FIELD_REF:
2767 case VIEW_CONVERT_EXPR:
2768 /* We have a nest of references. Verify that each of the operands
2769 that determine where to reference is either a constant or a variable,
2770 verify that the base is valid, and then show we've already checked
2771 the subtrees. */
2772 while (handled_component_p (t))
2774 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2775 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2776 else if (TREE_CODE (t) == ARRAY_REF
2777 || TREE_CODE (t) == ARRAY_RANGE_REF)
2779 CHECK_OP (1, "invalid array index");
2780 if (TREE_OPERAND (t, 2))
2781 CHECK_OP (2, "invalid array lower bound");
2782 if (TREE_OPERAND (t, 3))
2783 CHECK_OP (3, "invalid array stride");
2785 else if (TREE_CODE (t) == BIT_FIELD_REF)
2787 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2788 || !host_integerp (TREE_OPERAND (t, 2), 1))
2790 error ("invalid position or size operand to BIT_FIELD_REF");
2791 return t;
2793 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2794 && (TYPE_PRECISION (TREE_TYPE (t))
2795 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2797 error ("integral result type precision does not match "
2798 "field size of BIT_FIELD_REF");
2799 return t;
2801 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2802 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2803 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2805 error ("mode precision of non-integral result does not "
2806 "match field size of BIT_FIELD_REF");
2807 return t;
2811 t = TREE_OPERAND (t, 0);
2814 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2816 error ("invalid reference prefix");
2817 return t;
2819 *walk_subtrees = 0;
2820 break;
2821 case PLUS_EXPR:
2822 case MINUS_EXPR:
2823 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2824 POINTER_PLUS_EXPR. */
2825 if (POINTER_TYPE_P (TREE_TYPE (t)))
2827 error ("invalid operand to plus/minus, type is a pointer");
2828 return t;
2830 CHECK_OP (0, "invalid operand to binary operator");
2831 CHECK_OP (1, "invalid operand to binary operator");
2832 break;
2834 case POINTER_PLUS_EXPR:
2835 /* Check to make sure the first operand is a pointer or reference type. */
2836 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2838 error ("invalid operand to pointer plus, first operand is not a pointer");
2839 return t;
2841 /* Check to make sure the second operand is a ptrofftype. */
2842 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2844 error ("invalid operand to pointer plus, second operand is not an "
2845 "integer type of appropriate width");
2846 return t;
2848 /* FALLTHROUGH */
2849 case LT_EXPR:
2850 case LE_EXPR:
2851 case GT_EXPR:
2852 case GE_EXPR:
2853 case EQ_EXPR:
2854 case NE_EXPR:
2855 case UNORDERED_EXPR:
2856 case ORDERED_EXPR:
2857 case UNLT_EXPR:
2858 case UNLE_EXPR:
2859 case UNGT_EXPR:
2860 case UNGE_EXPR:
2861 case UNEQ_EXPR:
2862 case LTGT_EXPR:
2863 case MULT_EXPR:
2864 case TRUNC_DIV_EXPR:
2865 case CEIL_DIV_EXPR:
2866 case FLOOR_DIV_EXPR:
2867 case ROUND_DIV_EXPR:
2868 case TRUNC_MOD_EXPR:
2869 case CEIL_MOD_EXPR:
2870 case FLOOR_MOD_EXPR:
2871 case ROUND_MOD_EXPR:
2872 case RDIV_EXPR:
2873 case EXACT_DIV_EXPR:
2874 case MIN_EXPR:
2875 case MAX_EXPR:
2876 case LSHIFT_EXPR:
2877 case RSHIFT_EXPR:
2878 case LROTATE_EXPR:
2879 case RROTATE_EXPR:
2880 case BIT_IOR_EXPR:
2881 case BIT_XOR_EXPR:
2882 case BIT_AND_EXPR:
2883 CHECK_OP (0, "invalid operand to binary operator");
2884 CHECK_OP (1, "invalid operand to binary operator");
2885 break;
2887 case CONSTRUCTOR:
2888 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2889 *walk_subtrees = 0;
2890 break;
2892 case CASE_LABEL_EXPR:
2893 if (CASE_CHAIN (t))
2895 error ("invalid CASE_CHAIN");
2896 return t;
2898 break;
2900 default:
2901 break;
2903 return NULL;
2905 #undef CHECK_OP
2909 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2910 Returns true if there is an error, otherwise false. */
2912 static bool
2913 verify_types_in_gimple_min_lval (tree expr)
2915 tree op;
2917 if (is_gimple_id (expr))
2918 return false;
2920 if (TREE_CODE (expr) != TARGET_MEM_REF
2921 && TREE_CODE (expr) != MEM_REF)
2923 error ("invalid expression for min lvalue");
2924 return true;
2927 /* TARGET_MEM_REFs are strange beasts. */
2928 if (TREE_CODE (expr) == TARGET_MEM_REF)
2929 return false;
2931 op = TREE_OPERAND (expr, 0);
2932 if (!is_gimple_val (op))
2934 error ("invalid operand in indirect reference");
2935 debug_generic_stmt (op);
2936 return true;
2938 /* Memory references now generally can involve a value conversion. */
2940 return false;
2943 /* Verify if EXPR is a valid GIMPLE reference expression. If
2944 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2945 if there is an error, otherwise false. */
2947 static bool
2948 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2950 while (handled_component_p (expr))
2952 tree op = TREE_OPERAND (expr, 0);
2954 if (TREE_CODE (expr) == ARRAY_REF
2955 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2957 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2958 || (TREE_OPERAND (expr, 2)
2959 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2960 || (TREE_OPERAND (expr, 3)
2961 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2963 error ("invalid operands to array reference");
2964 debug_generic_stmt (expr);
2965 return true;
2969 /* Verify if the reference array element types are compatible. */
2970 if (TREE_CODE (expr) == ARRAY_REF
2971 && !useless_type_conversion_p (TREE_TYPE (expr),
2972 TREE_TYPE (TREE_TYPE (op))))
2974 error ("type mismatch in array reference");
2975 debug_generic_stmt (TREE_TYPE (expr));
2976 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2977 return true;
2979 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2980 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2981 TREE_TYPE (TREE_TYPE (op))))
2983 error ("type mismatch in array range reference");
2984 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2986 return true;
2989 if ((TREE_CODE (expr) == REALPART_EXPR
2990 || TREE_CODE (expr) == IMAGPART_EXPR)
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_TYPE (op))))
2994 error ("type mismatch in real/imagpart reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2997 return true;
3000 if (TREE_CODE (expr) == COMPONENT_REF
3001 && !useless_type_conversion_p (TREE_TYPE (expr),
3002 TREE_TYPE (TREE_OPERAND (expr, 1))))
3004 error ("type mismatch in component reference");
3005 debug_generic_stmt (TREE_TYPE (expr));
3006 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3007 return true;
3010 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3012 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3013 that their operand is not an SSA name or an invariant when
3014 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3015 bug). Otherwise there is nothing to verify, gross mismatches at
3016 most invoke undefined behavior. */
3017 if (require_lvalue
3018 && (TREE_CODE (op) == SSA_NAME
3019 || is_gimple_min_invariant (op)))
3021 error ("conversion of an SSA_NAME on the left hand side");
3022 debug_generic_stmt (expr);
3023 return true;
3025 else if (TREE_CODE (op) == SSA_NAME
3026 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3028 error ("conversion of register to a different size");
3029 debug_generic_stmt (expr);
3030 return true;
3032 else if (!handled_component_p (op))
3033 return false;
3036 expr = op;
3039 if (TREE_CODE (expr) == MEM_REF)
3041 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3043 error ("invalid address operand in MEM_REF");
3044 debug_generic_stmt (expr);
3045 return true;
3047 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3048 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3050 error ("invalid offset operand in MEM_REF");
3051 debug_generic_stmt (expr);
3052 return true;
3055 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3057 if (!TMR_BASE (expr)
3058 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3060 error ("invalid address operand in TARGET_MEM_REF");
3061 return true;
3063 if (!TMR_OFFSET (expr)
3064 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3065 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3067 error ("invalid offset operand in TARGET_MEM_REF");
3068 debug_generic_stmt (expr);
3069 return true;
3073 return ((require_lvalue || !is_gimple_min_invariant (expr))
3074 && verify_types_in_gimple_min_lval (expr));
3077 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3078 list of pointer-to types that is trivially convertible to DEST. */
3080 static bool
3081 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3083 tree src;
3085 if (!TYPE_POINTER_TO (src_obj))
3086 return true;
3088 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3089 if (useless_type_conversion_p (dest, src))
3090 return true;
3092 return false;
3095 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3096 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3098 static bool
3099 valid_fixed_convert_types_p (tree type1, tree type2)
3101 return (FIXED_POINT_TYPE_P (type1)
3102 && (INTEGRAL_TYPE_P (type2)
3103 || SCALAR_FLOAT_TYPE_P (type2)
3104 || FIXED_POINT_TYPE_P (type2)));
3107 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3108 is a problem, otherwise false. */
3110 static bool
3111 verify_gimple_call (gimple stmt)
3113 tree fn = gimple_call_fn (stmt);
3114 tree fntype, fndecl;
3115 unsigned i;
3117 if (gimple_call_internal_p (stmt))
3119 if (fn)
3121 error ("gimple call has two targets");
3122 debug_generic_stmt (fn);
3123 return true;
3126 else
3128 if (!fn)
3130 error ("gimple call has no target");
3131 return true;
3135 if (fn && !is_gimple_call_addr (fn))
3137 error ("invalid function in gimple call");
3138 debug_generic_stmt (fn);
3139 return true;
3142 if (fn
3143 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3144 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3145 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3147 error ("non-function in gimple call");
3148 return true;
3151 fndecl = gimple_call_fndecl (stmt);
3152 if (fndecl
3153 && TREE_CODE (fndecl) == FUNCTION_DECL
3154 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3155 && !DECL_PURE_P (fndecl)
3156 && !TREE_READONLY (fndecl))
3158 error ("invalid pure const state for function");
3159 return true;
3162 if (gimple_call_lhs (stmt)
3163 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3164 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3166 error ("invalid LHS in gimple call");
3167 return true;
3170 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3172 error ("LHS in noreturn call");
3173 return true;
3176 fntype = gimple_call_fntype (stmt);
3177 if (fntype
3178 && gimple_call_lhs (stmt)
3179 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3180 TREE_TYPE (fntype))
3181 /* ??? At least C++ misses conversions at assignments from
3182 void * call results.
3183 ??? Java is completely off. Especially with functions
3184 returning java.lang.Object.
3185 For now simply allow arbitrary pointer type conversions. */
3186 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3187 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3189 error ("invalid conversion in gimple call");
3190 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3191 debug_generic_stmt (TREE_TYPE (fntype));
3192 return true;
3195 if (gimple_call_chain (stmt)
3196 && !is_gimple_val (gimple_call_chain (stmt)))
3198 error ("invalid static chain in gimple call");
3199 debug_generic_stmt (gimple_call_chain (stmt));
3200 return true;
3203 /* If there is a static chain argument, this should not be an indirect
3204 call, and the decl should have DECL_STATIC_CHAIN set. */
3205 if (gimple_call_chain (stmt))
3207 if (!gimple_call_fndecl (stmt))
3209 error ("static chain in indirect gimple call");
3210 return true;
3212 fn = TREE_OPERAND (fn, 0);
3214 if (!DECL_STATIC_CHAIN (fn))
3216 error ("static chain with function that doesn%'t use one");
3217 return true;
3221 /* ??? The C frontend passes unpromoted arguments in case it
3222 didn't see a function declaration before the call. So for now
3223 leave the call arguments mostly unverified. Once we gimplify
3224 unit-at-a-time we have a chance to fix this. */
3226 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3228 tree arg = gimple_call_arg (stmt, i);
3229 if ((is_gimple_reg_type (TREE_TYPE (arg))
3230 && !is_gimple_val (arg))
3231 || (!is_gimple_reg_type (TREE_TYPE (arg))
3232 && !is_gimple_lvalue (arg)))
3234 error ("invalid argument to gimple call");
3235 debug_generic_expr (arg);
3236 return true;
3240 return false;
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3246 static bool
3247 verify_gimple_comparison (tree type, tree op0, tree op1)
3249 tree op0_type = TREE_TYPE (op0);
3250 tree op1_type = TREE_TYPE (op1);
3252 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3254 error ("invalid operands in gimple comparison");
3255 return true;
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3273 return true;
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type)
3278 && (TREE_CODE (type) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type) == 1))
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3286 if (TREE_CODE (op0_type) != VECTOR_TYPE
3287 || TREE_CODE (op1_type) != VECTOR_TYPE)
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3292 return true;
3295 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type);
3301 return true;
3304 else
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type);
3308 return true;
3311 return false;
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3317 static bool
3318 verify_gimple_assign_unary (gimple stmt)
3320 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3321 tree lhs = gimple_assign_lhs (stmt);
3322 tree lhs_type = TREE_TYPE (lhs);
3323 tree rhs1 = gimple_assign_rhs1 (stmt);
3324 tree rhs1_type = TREE_TYPE (rhs1);
3326 if (!is_gimple_reg (lhs))
3328 error ("non-register as LHS of unary operation");
3329 return true;
3332 if (!is_gimple_val (rhs1))
3334 error ("invalid operand in unary operation");
3335 return true;
3338 /* First handle conversions. */
3339 switch (rhs_code)
3341 CASE_CONVERT:
3343 /* Allow conversions between integral types and pointers only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions from and
3347 to ptrofftype. */
3348 if ((POINTER_TYPE_P (lhs_type)
3349 && INTEGRAL_TYPE_P (rhs1_type)
3350 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3351 || ptrofftype_p (rhs1_type)))
3352 || (POINTER_TYPE_P (rhs1_type)
3353 && INTEGRAL_TYPE_P (lhs_type)
3354 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3355 || ptrofftype_p (sizetype))))
3356 return false;
3358 /* Allow conversion from integer to offset type and vice versa. */
3359 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3360 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3361 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3362 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3363 return false;
3365 /* Otherwise assert we are converting between types of the
3366 same kind. */
3367 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3369 error ("invalid types in nop conversion");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3375 return false;
3378 case ADDR_SPACE_CONVERT_EXPR:
3380 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3381 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3382 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3384 error ("invalid types in address space conversion");
3385 debug_generic_expr (lhs_type);
3386 debug_generic_expr (rhs1_type);
3387 return true;
3390 return false;
3393 case FIXED_CONVERT_EXPR:
3395 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3396 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3398 error ("invalid types in fixed-point conversion");
3399 debug_generic_expr (lhs_type);
3400 debug_generic_expr (rhs1_type);
3401 return true;
3404 return false;
3407 case FLOAT_EXPR:
3409 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3410 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3411 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3413 error ("invalid types in conversion to floating point");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3419 return false;
3422 case FIX_TRUNC_EXPR:
3424 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3425 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3426 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3428 error ("invalid types in conversion to integer");
3429 debug_generic_expr (lhs_type);
3430 debug_generic_expr (rhs1_type);
3431 return true;
3434 return false;
3437 case VEC_UNPACK_HI_EXPR:
3438 case VEC_UNPACK_LO_EXPR:
3439 case REDUC_MAX_EXPR:
3440 case REDUC_MIN_EXPR:
3441 case REDUC_PLUS_EXPR:
3442 case VEC_UNPACK_FLOAT_HI_EXPR:
3443 case VEC_UNPACK_FLOAT_LO_EXPR:
3444 /* FIXME. */
3445 return false;
3447 case NEGATE_EXPR:
3448 case ABS_EXPR:
3449 case BIT_NOT_EXPR:
3450 case PAREN_EXPR:
3451 case NON_LVALUE_EXPR:
3452 case CONJ_EXPR:
3453 break;
3455 default:
3456 gcc_unreachable ();
3459 /* For the remaining codes assert there is no conversion involved. */
3460 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3462 error ("non-trivial conversion in unary operation");
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3465 return true;
3468 return false;
3471 /* Verify a gimple assignment statement STMT with a binary rhs.
3472 Returns true if anything is wrong. */
3474 static bool
3475 verify_gimple_assign_binary (gimple stmt)
3477 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3478 tree lhs = gimple_assign_lhs (stmt);
3479 tree lhs_type = TREE_TYPE (lhs);
3480 tree rhs1 = gimple_assign_rhs1 (stmt);
3481 tree rhs1_type = TREE_TYPE (rhs1);
3482 tree rhs2 = gimple_assign_rhs2 (stmt);
3483 tree rhs2_type = TREE_TYPE (rhs2);
3485 if (!is_gimple_reg (lhs))
3487 error ("non-register as LHS of binary operation");
3488 return true;
3491 if (!is_gimple_val (rhs1)
3492 || !is_gimple_val (rhs2))
3494 error ("invalid operands in binary operation");
3495 return true;
3498 /* First handle operations that involve different types. */
3499 switch (rhs_code)
3501 case COMPLEX_EXPR:
3503 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3504 || !(INTEGRAL_TYPE_P (rhs1_type)
3505 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3506 || !(INTEGRAL_TYPE_P (rhs2_type)
3507 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3509 error ("type mismatch in complex expression");
3510 debug_generic_expr (lhs_type);
3511 debug_generic_expr (rhs1_type);
3512 debug_generic_expr (rhs2_type);
3513 return true;
3516 return false;
3519 case LSHIFT_EXPR:
3520 case RSHIFT_EXPR:
3521 case LROTATE_EXPR:
3522 case RROTATE_EXPR:
3524 /* Shifts and rotates are ok on integral types, fixed point
3525 types and integer vector types. */
3526 if ((!INTEGRAL_TYPE_P (rhs1_type)
3527 && !FIXED_POINT_TYPE_P (rhs1_type)
3528 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3530 || (!INTEGRAL_TYPE_P (rhs2_type)
3531 /* Vector shifts of vectors are also ok. */
3532 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3534 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3536 || !useless_type_conversion_p (lhs_type, rhs1_type))
3538 error ("type mismatch in shift expression");
3539 debug_generic_expr (lhs_type);
3540 debug_generic_expr (rhs1_type);
3541 debug_generic_expr (rhs2_type);
3542 return true;
3545 return false;
3548 case VEC_LSHIFT_EXPR:
3549 case VEC_RSHIFT_EXPR:
3551 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3552 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3553 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3554 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3555 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3556 || (!INTEGRAL_TYPE_P (rhs2_type)
3557 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3558 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3559 || !useless_type_conversion_p (lhs_type, rhs1_type))
3561 error ("type mismatch in vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3567 /* For shifting a vector of non-integral components we
3568 only allow shifting by a constant multiple of the element size. */
3569 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3570 && (TREE_CODE (rhs2) != INTEGER_CST
3571 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3572 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3574 error ("non-element sized vector shift of floating point vector");
3575 return true;
3578 return false;
3581 case WIDEN_LSHIFT_EXPR:
3583 if (!INTEGRAL_TYPE_P (lhs_type)
3584 || !INTEGRAL_TYPE_P (rhs1_type)
3585 || TREE_CODE (rhs2) != INTEGER_CST
3586 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3588 error ("type mismatch in widening vector shift expression");
3589 debug_generic_expr (lhs_type);
3590 debug_generic_expr (rhs1_type);
3591 debug_generic_expr (rhs2_type);
3592 return true;
3595 return false;
3598 case VEC_WIDEN_LSHIFT_HI_EXPR:
3599 case VEC_WIDEN_LSHIFT_LO_EXPR:
3601 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3602 || TREE_CODE (lhs_type) != VECTOR_TYPE
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3604 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3605 || TREE_CODE (rhs2) != INTEGER_CST
3606 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3607 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3609 error ("type mismatch in widening vector shift expression");
3610 debug_generic_expr (lhs_type);
3611 debug_generic_expr (rhs1_type);
3612 debug_generic_expr (rhs2_type);
3613 return true;
3616 return false;
3619 case PLUS_EXPR:
3620 case MINUS_EXPR:
3622 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3623 ??? This just makes the checker happy and may not be what is
3624 intended. */
3625 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3626 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3628 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3629 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3631 error ("invalid non-vector operands to vector valued plus");
3632 return true;
3634 lhs_type = TREE_TYPE (lhs_type);
3635 rhs1_type = TREE_TYPE (rhs1_type);
3636 rhs2_type = TREE_TYPE (rhs2_type);
3637 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3638 the pointer to 2nd place. */
3639 if (POINTER_TYPE_P (rhs2_type))
3641 tree tem = rhs1_type;
3642 rhs1_type = rhs2_type;
3643 rhs2_type = tem;
3645 goto do_pointer_plus_expr_check;
3647 if (POINTER_TYPE_P (lhs_type)
3648 || POINTER_TYPE_P (rhs1_type)
3649 || POINTER_TYPE_P (rhs2_type))
3651 error ("invalid (pointer) operands to plus/minus");
3652 return true;
3655 /* Continue with generic binary expression handling. */
3656 break;
3659 case POINTER_PLUS_EXPR:
3661 do_pointer_plus_expr_check:
3662 if (!POINTER_TYPE_P (rhs1_type)
3663 || !useless_type_conversion_p (lhs_type, rhs1_type)
3664 || !ptrofftype_p (rhs2_type))
3666 error ("type mismatch in pointer plus expression");
3667 debug_generic_stmt (lhs_type);
3668 debug_generic_stmt (rhs1_type);
3669 debug_generic_stmt (rhs2_type);
3670 return true;
3673 return false;
3676 case TRUTH_ANDIF_EXPR:
3677 case TRUTH_ORIF_EXPR:
3678 case TRUTH_AND_EXPR:
3679 case TRUTH_OR_EXPR:
3680 case TRUTH_XOR_EXPR:
3682 gcc_unreachable ();
3684 case LT_EXPR:
3685 case LE_EXPR:
3686 case GT_EXPR:
3687 case GE_EXPR:
3688 case EQ_EXPR:
3689 case NE_EXPR:
3690 case UNORDERED_EXPR:
3691 case ORDERED_EXPR:
3692 case UNLT_EXPR:
3693 case UNLE_EXPR:
3694 case UNGT_EXPR:
3695 case UNGE_EXPR:
3696 case UNEQ_EXPR:
3697 case LTGT_EXPR:
3698 /* Comparisons are also binary, but the result type is not
3699 connected to the operand types. */
3700 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3702 case WIDEN_MULT_EXPR:
3703 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3704 return true;
3705 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3706 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3708 case WIDEN_SUM_EXPR:
3709 case VEC_WIDEN_MULT_HI_EXPR:
3710 case VEC_WIDEN_MULT_LO_EXPR:
3711 case VEC_PACK_TRUNC_EXPR:
3712 case VEC_PACK_SAT_EXPR:
3713 case VEC_PACK_FIX_TRUNC_EXPR:
3714 case VEC_EXTRACT_EVEN_EXPR:
3715 case VEC_EXTRACT_ODD_EXPR:
3716 case VEC_INTERLEAVE_HIGH_EXPR:
3717 case VEC_INTERLEAVE_LOW_EXPR:
3718 /* FIXME. */
3719 return false;
3721 case MULT_EXPR:
3722 case TRUNC_DIV_EXPR:
3723 case CEIL_DIV_EXPR:
3724 case FLOOR_DIV_EXPR:
3725 case ROUND_DIV_EXPR:
3726 case TRUNC_MOD_EXPR:
3727 case CEIL_MOD_EXPR:
3728 case FLOOR_MOD_EXPR:
3729 case ROUND_MOD_EXPR:
3730 case RDIV_EXPR:
3731 case EXACT_DIV_EXPR:
3732 case MIN_EXPR:
3733 case MAX_EXPR:
3734 case BIT_IOR_EXPR:
3735 case BIT_XOR_EXPR:
3736 case BIT_AND_EXPR:
3737 /* Continue with generic binary expression handling. */
3738 break;
3740 default:
3741 gcc_unreachable ();
3744 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3745 || !useless_type_conversion_p (lhs_type, rhs2_type))
3747 error ("type mismatch in binary expression");
3748 debug_generic_stmt (lhs_type);
3749 debug_generic_stmt (rhs1_type);
3750 debug_generic_stmt (rhs2_type);
3751 return true;
3754 return false;
3757 /* Verify a gimple assignment statement STMT with a ternary rhs.
3758 Returns true if anything is wrong. */
3760 static bool
3761 verify_gimple_assign_ternary (gimple stmt)
3763 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3764 tree lhs = gimple_assign_lhs (stmt);
3765 tree lhs_type = TREE_TYPE (lhs);
3766 tree rhs1 = gimple_assign_rhs1 (stmt);
3767 tree rhs1_type = TREE_TYPE (rhs1);
3768 tree rhs2 = gimple_assign_rhs2 (stmt);
3769 tree rhs2_type = TREE_TYPE (rhs2);
3770 tree rhs3 = gimple_assign_rhs3 (stmt);
3771 tree rhs3_type = TREE_TYPE (rhs3);
3773 if (!is_gimple_reg (lhs))
3775 error ("non-register as LHS of ternary operation");
3776 return true;
3779 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3780 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3781 || !is_gimple_val (rhs2)
3782 || !is_gimple_val (rhs3))
3784 error ("invalid operands in ternary operation");
3785 return true;
3788 /* First handle operations that involve different types. */
3789 switch (rhs_code)
3791 case WIDEN_MULT_PLUS_EXPR:
3792 case WIDEN_MULT_MINUS_EXPR:
3793 if ((!INTEGRAL_TYPE_P (rhs1_type)
3794 && !FIXED_POINT_TYPE_P (rhs1_type))
3795 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3796 || !useless_type_conversion_p (lhs_type, rhs3_type)
3797 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3798 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3800 error ("type mismatch in widening multiply-accumulate expression");
3801 debug_generic_expr (lhs_type);
3802 debug_generic_expr (rhs1_type);
3803 debug_generic_expr (rhs2_type);
3804 debug_generic_expr (rhs3_type);
3805 return true;
3807 break;
3809 case FMA_EXPR:
3810 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3811 || !useless_type_conversion_p (lhs_type, rhs2_type)
3812 || !useless_type_conversion_p (lhs_type, rhs3_type))
3814 error ("type mismatch in fused multiply-add expression");
3815 debug_generic_expr (lhs_type);
3816 debug_generic_expr (rhs1_type);
3817 debug_generic_expr (rhs2_type);
3818 debug_generic_expr (rhs3_type);
3819 return true;
3821 break;
3823 case COND_EXPR:
3824 case VEC_COND_EXPR:
3825 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3826 || !useless_type_conversion_p (lhs_type, rhs3_type))
3828 error ("type mismatch in conditional expression");
3829 debug_generic_expr (lhs_type);
3830 debug_generic_expr (rhs2_type);
3831 debug_generic_expr (rhs3_type);
3832 return true;
3834 break;
3836 case VEC_PERM_EXPR:
3837 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3838 || !useless_type_conversion_p (lhs_type, rhs2_type))
3840 error ("type mismatch in vector permute expression");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs1_type);
3843 debug_generic_expr (rhs2_type);
3844 debug_generic_expr (rhs3_type);
3845 return true;
3848 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3849 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3850 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3852 error ("vector types expected in vector permute expression");
3853 debug_generic_expr (lhs_type);
3854 debug_generic_expr (rhs1_type);
3855 debug_generic_expr (rhs2_type);
3856 debug_generic_expr (rhs3_type);
3857 return true;
3860 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3861 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3862 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3863 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3864 != TYPE_VECTOR_SUBPARTS (lhs_type))
3866 error ("vectors with different element number found "
3867 "in vector permute expression");
3868 debug_generic_expr (lhs_type);
3869 debug_generic_expr (rhs1_type);
3870 debug_generic_expr (rhs2_type);
3871 debug_generic_expr (rhs3_type);
3872 return true;
3875 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3876 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3877 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3879 error ("invalid mask type in vector permute expression");
3880 debug_generic_expr (lhs_type);
3881 debug_generic_expr (rhs1_type);
3882 debug_generic_expr (rhs2_type);
3883 debug_generic_expr (rhs3_type);
3884 return true;
3887 return false;
3889 case DOT_PROD_EXPR:
3890 case REALIGN_LOAD_EXPR:
3891 /* FIXME. */
3892 return false;
3894 default:
3895 gcc_unreachable ();
3897 return false;
3900 /* Verify a gimple assignment statement STMT with a single rhs.
3901 Returns true if anything is wrong. */
3903 static bool
3904 verify_gimple_assign_single (gimple stmt)
3906 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3907 tree lhs = gimple_assign_lhs (stmt);
3908 tree lhs_type = TREE_TYPE (lhs);
3909 tree rhs1 = gimple_assign_rhs1 (stmt);
3910 tree rhs1_type = TREE_TYPE (rhs1);
3911 bool res = false;
3913 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3915 error ("non-trivial conversion at assignment");
3916 debug_generic_expr (lhs_type);
3917 debug_generic_expr (rhs1_type);
3918 return true;
3921 if (handled_component_p (lhs))
3922 res |= verify_types_in_gimple_reference (lhs, true);
3924 /* Special codes we cannot handle via their class. */
3925 switch (rhs_code)
3927 case ADDR_EXPR:
3929 tree op = TREE_OPERAND (rhs1, 0);
3930 if (!is_gimple_addressable (op))
3932 error ("invalid operand in unary expression");
3933 return true;
3936 /* Technically there is no longer a need for matching types, but
3937 gimple hygiene asks for this check. In LTO we can end up
3938 combining incompatible units and thus end up with addresses
3939 of globals that change their type to a common one. */
3940 if (!in_lto_p
3941 && !types_compatible_p (TREE_TYPE (op),
3942 TREE_TYPE (TREE_TYPE (rhs1)))
3943 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3944 TREE_TYPE (op)))
3946 error ("type mismatch in address expression");
3947 debug_generic_stmt (TREE_TYPE (rhs1));
3948 debug_generic_stmt (TREE_TYPE (op));
3949 return true;
3952 return verify_types_in_gimple_reference (op, true);
3955 /* tcc_reference */
3956 case INDIRECT_REF:
3957 error ("INDIRECT_REF in gimple IL");
3958 return true;
3960 case COMPONENT_REF:
3961 case BIT_FIELD_REF:
3962 case ARRAY_REF:
3963 case ARRAY_RANGE_REF:
3964 case VIEW_CONVERT_EXPR:
3965 case REALPART_EXPR:
3966 case IMAGPART_EXPR:
3967 case TARGET_MEM_REF:
3968 case MEM_REF:
3969 if (!is_gimple_reg (lhs)
3970 && is_gimple_reg_type (TREE_TYPE (lhs)))
3972 error ("invalid rhs for gimple memory store");
3973 debug_generic_stmt (lhs);
3974 debug_generic_stmt (rhs1);
3975 return true;
3977 return res || verify_types_in_gimple_reference (rhs1, false);
3979 /* tcc_constant */
3980 case SSA_NAME:
3981 case INTEGER_CST:
3982 case REAL_CST:
3983 case FIXED_CST:
3984 case COMPLEX_CST:
3985 case VECTOR_CST:
3986 case STRING_CST:
3987 return res;
3989 /* tcc_declaration */
3990 case CONST_DECL:
3991 return res;
3992 case VAR_DECL:
3993 case PARM_DECL:
3994 if (!is_gimple_reg (lhs)
3995 && !is_gimple_reg (rhs1)
3996 && is_gimple_reg_type (TREE_TYPE (lhs)))
3998 error ("invalid rhs for gimple memory store");
3999 debug_generic_stmt (lhs);
4000 debug_generic_stmt (rhs1);
4001 return true;
4003 return res;
4005 case CONSTRUCTOR:
4006 case OBJ_TYPE_REF:
4007 case ASSERT_EXPR:
4008 case WITH_SIZE_EXPR:
4009 /* FIXME. */
4010 return res;
4012 default:;
4015 return res;
4018 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4019 is a problem, otherwise false. */
4021 static bool
4022 verify_gimple_assign (gimple stmt)
4024 switch (gimple_assign_rhs_class (stmt))
4026 case GIMPLE_SINGLE_RHS:
4027 return verify_gimple_assign_single (stmt);
4029 case GIMPLE_UNARY_RHS:
4030 return verify_gimple_assign_unary (stmt);
4032 case GIMPLE_BINARY_RHS:
4033 return verify_gimple_assign_binary (stmt);
4035 case GIMPLE_TERNARY_RHS:
4036 return verify_gimple_assign_ternary (stmt);
4038 default:
4039 gcc_unreachable ();
4043 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4044 is a problem, otherwise false. */
4046 static bool
4047 verify_gimple_return (gimple stmt)
4049 tree op = gimple_return_retval (stmt);
4050 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4052 /* We cannot test for present return values as we do not fix up missing
4053 return values from the original source. */
4054 if (op == NULL)
4055 return false;
4057 if (!is_gimple_val (op)
4058 && TREE_CODE (op) != RESULT_DECL)
4060 error ("invalid operand in return statement");
4061 debug_generic_stmt (op);
4062 return true;
4065 if ((TREE_CODE (op) == RESULT_DECL
4066 && DECL_BY_REFERENCE (op))
4067 || (TREE_CODE (op) == SSA_NAME
4068 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4069 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4070 op = TREE_TYPE (op);
4072 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4074 error ("invalid conversion in return statement");
4075 debug_generic_stmt (restype);
4076 debug_generic_stmt (TREE_TYPE (op));
4077 return true;
4080 return false;
4084 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4085 is a problem, otherwise false. */
4087 static bool
4088 verify_gimple_goto (gimple stmt)
4090 tree dest = gimple_goto_dest (stmt);
4092 /* ??? We have two canonical forms of direct goto destinations, a
4093 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4094 if (TREE_CODE (dest) != LABEL_DECL
4095 && (!is_gimple_val (dest)
4096 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4098 error ("goto destination is neither a label nor a pointer");
4099 return true;
4102 return false;
4105 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4106 is a problem, otherwise false. */
4108 static bool
4109 verify_gimple_switch (gimple stmt)
4111 if (!is_gimple_val (gimple_switch_index (stmt)))
4113 error ("invalid operand to switch statement");
4114 debug_generic_stmt (gimple_switch_index (stmt));
4115 return true;
4118 return false;
4121 /* Verify a gimple debug statement STMT.
4122 Returns true if anything is wrong. */
4124 static bool
4125 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4127 /* There isn't much that could be wrong in a gimple debug stmt. A
4128 gimple debug bind stmt, for example, maps a tree, that's usually
4129 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4130 component or member of an aggregate type, to another tree, that
4131 can be an arbitrary expression. These stmts expand into debug
4132 insns, and are converted to debug notes by var-tracking.c. */
4133 return false;
4136 /* Verify a gimple label statement STMT.
4137 Returns true if anything is wrong. */
4139 static bool
4140 verify_gimple_label (gimple stmt)
4142 tree decl = gimple_label_label (stmt);
4143 int uid;
4144 bool err = false;
4146 if (TREE_CODE (decl) != LABEL_DECL)
4147 return true;
4149 uid = LABEL_DECL_UID (decl);
4150 if (cfun->cfg
4151 && (uid == -1
4152 || VEC_index (basic_block,
4153 label_to_block_map, uid) != gimple_bb (stmt)))
4155 error ("incorrect entry in label_to_block_map");
4156 err |= true;
4159 uid = EH_LANDING_PAD_NR (decl);
4160 if (uid)
4162 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4163 if (decl != lp->post_landing_pad)
4165 error ("incorrect setting of landing pad number");
4166 err |= true;
4170 return err;
4173 /* Verify the GIMPLE statement STMT. Returns true if there is an
4174 error, otherwise false. */
4176 static bool
4177 verify_gimple_stmt (gimple stmt)
4179 switch (gimple_code (stmt))
4181 case GIMPLE_ASSIGN:
4182 return verify_gimple_assign (stmt);
4184 case GIMPLE_LABEL:
4185 return verify_gimple_label (stmt);
4187 case GIMPLE_CALL:
4188 return verify_gimple_call (stmt);
4190 case GIMPLE_COND:
4191 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4193 error ("invalid comparison code in gimple cond");
4194 return true;
4196 if (!(!gimple_cond_true_label (stmt)
4197 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4198 || !(!gimple_cond_false_label (stmt)
4199 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4201 error ("invalid labels in gimple cond");
4202 return true;
4205 return verify_gimple_comparison (boolean_type_node,
4206 gimple_cond_lhs (stmt),
4207 gimple_cond_rhs (stmt));
4209 case GIMPLE_GOTO:
4210 return verify_gimple_goto (stmt);
4212 case GIMPLE_SWITCH:
4213 return verify_gimple_switch (stmt);
4215 case GIMPLE_RETURN:
4216 return verify_gimple_return (stmt);
4218 case GIMPLE_ASM:
4219 return false;
4221 case GIMPLE_TRANSACTION:
4222 return verify_gimple_transaction (stmt);
4224 /* Tuples that do not have tree operands. */
4225 case GIMPLE_NOP:
4226 case GIMPLE_PREDICT:
4227 case GIMPLE_RESX:
4228 case GIMPLE_EH_DISPATCH:
4229 case GIMPLE_EH_MUST_NOT_THROW:
4230 return false;
4232 CASE_GIMPLE_OMP:
4233 /* OpenMP directives are validated by the FE and never operated
4234 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4235 non-gimple expressions when the main index variable has had
4236 its address taken. This does not affect the loop itself
4237 because the header of an GIMPLE_OMP_FOR is merely used to determine
4238 how to setup the parallel iteration. */
4239 return false;
4241 case GIMPLE_DEBUG:
4242 return verify_gimple_debug (stmt);
4244 default:
4245 gcc_unreachable ();
4249 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4250 and false otherwise. */
4252 static bool
4253 verify_gimple_phi (gimple phi)
4255 bool err = false;
4256 unsigned i;
4257 tree phi_result = gimple_phi_result (phi);
4258 bool virtual_p;
4260 if (!phi_result)
4262 error ("invalid PHI result");
4263 return true;
4266 virtual_p = !is_gimple_reg (phi_result);
4267 if (TREE_CODE (phi_result) != SSA_NAME
4268 || (virtual_p
4269 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4271 error ("invalid PHI result");
4272 err = true;
4275 for (i = 0; i < gimple_phi_num_args (phi); i++)
4277 tree t = gimple_phi_arg_def (phi, i);
4279 if (!t)
4281 error ("missing PHI def");
4282 err |= true;
4283 continue;
4285 /* Addressable variables do have SSA_NAMEs but they
4286 are not considered gimple values. */
4287 else if ((TREE_CODE (t) == SSA_NAME
4288 && virtual_p != !is_gimple_reg (t))
4289 || (virtual_p
4290 && (TREE_CODE (t) != SSA_NAME
4291 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4292 || (!virtual_p
4293 && !is_gimple_val (t)))
4295 error ("invalid PHI argument");
4296 debug_generic_expr (t);
4297 err |= true;
4299 #ifdef ENABLE_TYPES_CHECKING
4300 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4302 error ("incompatible types in PHI argument %u", i);
4303 debug_generic_stmt (TREE_TYPE (phi_result));
4304 debug_generic_stmt (TREE_TYPE (t));
4305 err |= true;
4307 #endif
4310 return err;
4313 /* Verify the GIMPLE statements inside the sequence STMTS. */
4315 static bool
4316 verify_gimple_in_seq_2 (gimple_seq stmts)
4318 gimple_stmt_iterator ittr;
4319 bool err = false;
4321 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4323 gimple stmt = gsi_stmt (ittr);
4325 switch (gimple_code (stmt))
4327 case GIMPLE_BIND:
4328 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4329 break;
4331 case GIMPLE_TRY:
4332 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4333 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4334 break;
4336 case GIMPLE_EH_FILTER:
4337 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4338 break;
4340 case GIMPLE_EH_ELSE:
4341 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4342 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4343 break;
4345 case GIMPLE_CATCH:
4346 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4347 break;
4349 case GIMPLE_TRANSACTION:
4350 err |= verify_gimple_transaction (stmt);
4351 break;
4353 default:
4355 bool err2 = verify_gimple_stmt (stmt);
4356 if (err2)
4357 debug_gimple_stmt (stmt);
4358 err |= err2;
4363 return err;
4366 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4367 is a problem, otherwise false. */
4369 static bool
4370 verify_gimple_transaction (gimple stmt)
4372 tree lab = gimple_transaction_label (stmt);
4373 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4374 return true;
4375 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4379 /* Verify the GIMPLE statements inside the statement list STMTS. */
4381 DEBUG_FUNCTION void
4382 verify_gimple_in_seq (gimple_seq stmts)
4384 timevar_push (TV_TREE_STMT_VERIFY);
4385 if (verify_gimple_in_seq_2 (stmts))
4386 internal_error ("verify_gimple failed");
4387 timevar_pop (TV_TREE_STMT_VERIFY);
4390 /* Return true when the T can be shared. */
4392 bool
4393 tree_node_can_be_shared (tree t)
4395 if (IS_TYPE_OR_DECL_P (t)
4396 || is_gimple_min_invariant (t)
4397 || TREE_CODE (t) == SSA_NAME
4398 || t == error_mark_node
4399 || TREE_CODE (t) == IDENTIFIER_NODE)
4400 return true;
4402 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4403 return true;
4405 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4406 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4407 || TREE_CODE (t) == COMPONENT_REF
4408 || TREE_CODE (t) == REALPART_EXPR
4409 || TREE_CODE (t) == IMAGPART_EXPR)
4410 t = TREE_OPERAND (t, 0);
4412 if (DECL_P (t))
4413 return true;
4415 return false;
4418 /* Called via walk_gimple_stmt. Verify tree sharing. */
4420 static tree
4421 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4423 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4424 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4426 if (tree_node_can_be_shared (*tp))
4428 *walk_subtrees = false;
4429 return NULL;
4432 if (pointer_set_insert (visited, *tp))
4433 return *tp;
4435 return NULL;
4438 static bool eh_error_found;
4439 static int
4440 verify_eh_throw_stmt_node (void **slot, void *data)
4442 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4443 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4445 if (!pointer_set_contains (visited, node->stmt))
4447 error ("dead STMT in EH table");
4448 debug_gimple_stmt (node->stmt);
4449 eh_error_found = true;
4451 return 1;
4454 /* Verify the GIMPLE statements in the CFG of FN. */
4456 DEBUG_FUNCTION void
4457 verify_gimple_in_cfg (struct function *fn)
4459 basic_block bb;
4460 bool err = false;
4461 struct pointer_set_t *visited, *visited_stmts;
4463 timevar_push (TV_TREE_STMT_VERIFY);
4464 visited = pointer_set_create ();
4465 visited_stmts = pointer_set_create ();
4467 FOR_EACH_BB_FN (bb, fn)
4469 gimple_stmt_iterator gsi;
4471 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4473 gimple phi = gsi_stmt (gsi);
4474 bool err2 = false;
4475 unsigned i;
4477 pointer_set_insert (visited_stmts, phi);
4479 if (gimple_bb (phi) != bb)
4481 error ("gimple_bb (phi) is set to a wrong basic block");
4482 err2 = true;
4485 err2 |= verify_gimple_phi (phi);
4487 for (i = 0; i < gimple_phi_num_args (phi); i++)
4489 tree arg = gimple_phi_arg_def (phi, i);
4490 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4491 if (addr)
4493 error ("incorrect sharing of tree nodes");
4494 debug_generic_expr (addr);
4495 err2 |= true;
4499 if (err2)
4500 debug_gimple_stmt (phi);
4501 err |= err2;
4504 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4506 gimple stmt = gsi_stmt (gsi);
4507 bool err2 = false;
4508 struct walk_stmt_info wi;
4509 tree addr;
4510 int lp_nr;
4512 pointer_set_insert (visited_stmts, stmt);
4514 if (gimple_bb (stmt) != bb)
4516 error ("gimple_bb (stmt) is set to a wrong basic block");
4517 err2 = true;
4520 err2 |= verify_gimple_stmt (stmt);
4522 memset (&wi, 0, sizeof (wi));
4523 wi.info = (void *) visited;
4524 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4525 if (addr)
4527 error ("incorrect sharing of tree nodes");
4528 debug_generic_expr (addr);
4529 err2 |= true;
4532 /* ??? Instead of not checking these stmts at all the walker
4533 should know its context via wi. */
4534 if (!is_gimple_debug (stmt)
4535 && !is_gimple_omp (stmt))
4537 memset (&wi, 0, sizeof (wi));
4538 addr = walk_gimple_op (stmt, verify_expr, &wi);
4539 if (addr)
4541 debug_generic_expr (addr);
4542 inform (gimple_location (stmt), "in statement");
4543 err2 |= true;
4547 /* If the statement is marked as part of an EH region, then it is
4548 expected that the statement could throw. Verify that when we
4549 have optimizations that simplify statements such that we prove
4550 that they cannot throw, that we update other data structures
4551 to match. */
4552 lp_nr = lookup_stmt_eh_lp (stmt);
4553 if (lp_nr != 0)
4555 if (!stmt_could_throw_p (stmt))
4557 error ("statement marked for throw, but doesn%'t");
4558 err2 |= true;
4560 else if (lp_nr > 0
4561 && !gsi_one_before_end_p (gsi)
4562 && stmt_can_throw_internal (stmt))
4564 error ("statement marked for throw in middle of block");
4565 err2 |= true;
4569 if (err2)
4570 debug_gimple_stmt (stmt);
4571 err |= err2;
4575 eh_error_found = false;
4576 if (get_eh_throw_stmt_table (cfun))
4577 htab_traverse (get_eh_throw_stmt_table (cfun),
4578 verify_eh_throw_stmt_node,
4579 visited_stmts);
4581 if (err || eh_error_found)
4582 internal_error ("verify_gimple failed");
4584 pointer_set_destroy (visited);
4585 pointer_set_destroy (visited_stmts);
4586 verify_histograms ();
4587 timevar_pop (TV_TREE_STMT_VERIFY);
4591 /* Verifies that the flow information is OK. */
4593 static int
4594 gimple_verify_flow_info (void)
4596 int err = 0;
4597 basic_block bb;
4598 gimple_stmt_iterator gsi;
4599 gimple stmt;
4600 edge e;
4601 edge_iterator ei;
4603 if (ENTRY_BLOCK_PTR->il.gimple)
4605 error ("ENTRY_BLOCK has IL associated with it");
4606 err = 1;
4609 if (EXIT_BLOCK_PTR->il.gimple)
4611 error ("EXIT_BLOCK has IL associated with it");
4612 err = 1;
4615 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4616 if (e->flags & EDGE_FALLTHRU)
4618 error ("fallthru to exit from bb %d", e->src->index);
4619 err = 1;
4622 FOR_EACH_BB (bb)
4624 bool found_ctrl_stmt = false;
4626 stmt = NULL;
4628 /* Skip labels on the start of basic block. */
4629 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4631 tree label;
4632 gimple prev_stmt = stmt;
4634 stmt = gsi_stmt (gsi);
4636 if (gimple_code (stmt) != GIMPLE_LABEL)
4637 break;
4639 label = gimple_label_label (stmt);
4640 if (prev_stmt && DECL_NONLOCAL (label))
4642 error ("nonlocal label ");
4643 print_generic_expr (stderr, label, 0);
4644 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4645 bb->index);
4646 err = 1;
4649 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4651 error ("EH landing pad label ");
4652 print_generic_expr (stderr, label, 0);
4653 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4654 bb->index);
4655 err = 1;
4658 if (label_to_block (label) != bb)
4660 error ("label ");
4661 print_generic_expr (stderr, label, 0);
4662 fprintf (stderr, " to block does not match in bb %d",
4663 bb->index);
4664 err = 1;
4667 if (decl_function_context (label) != current_function_decl)
4669 error ("label ");
4670 print_generic_expr (stderr, label, 0);
4671 fprintf (stderr, " has incorrect context in bb %d",
4672 bb->index);
4673 err = 1;
4677 /* Verify that body of basic block BB is free of control flow. */
4678 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4680 gimple stmt = gsi_stmt (gsi);
4682 if (found_ctrl_stmt)
4684 error ("control flow in the middle of basic block %d",
4685 bb->index);
4686 err = 1;
4689 if (stmt_ends_bb_p (stmt))
4690 found_ctrl_stmt = true;
4692 if (gimple_code (stmt) == GIMPLE_LABEL)
4694 error ("label ");
4695 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4696 fprintf (stderr, " in the middle of basic block %d", bb->index);
4697 err = 1;
4701 gsi = gsi_last_bb (bb);
4702 if (gsi_end_p (gsi))
4703 continue;
4705 stmt = gsi_stmt (gsi);
4707 if (gimple_code (stmt) == GIMPLE_LABEL)
4708 continue;
4710 err |= verify_eh_edges (stmt);
4712 if (is_ctrl_stmt (stmt))
4714 FOR_EACH_EDGE (e, ei, bb->succs)
4715 if (e->flags & EDGE_FALLTHRU)
4717 error ("fallthru edge after a control statement in bb %d",
4718 bb->index);
4719 err = 1;
4723 if (gimple_code (stmt) != GIMPLE_COND)
4725 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4726 after anything else but if statement. */
4727 FOR_EACH_EDGE (e, ei, bb->succs)
4728 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4730 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4731 bb->index);
4732 err = 1;
4736 switch (gimple_code (stmt))
4738 case GIMPLE_COND:
4740 edge true_edge;
4741 edge false_edge;
4743 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4745 if (!true_edge
4746 || !false_edge
4747 || !(true_edge->flags & EDGE_TRUE_VALUE)
4748 || !(false_edge->flags & EDGE_FALSE_VALUE)
4749 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4750 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4751 || EDGE_COUNT (bb->succs) >= 3)
4753 error ("wrong outgoing edge flags at end of bb %d",
4754 bb->index);
4755 err = 1;
4758 break;
4760 case GIMPLE_GOTO:
4761 if (simple_goto_p (stmt))
4763 error ("explicit goto at end of bb %d", bb->index);
4764 err = 1;
4766 else
4768 /* FIXME. We should double check that the labels in the
4769 destination blocks have their address taken. */
4770 FOR_EACH_EDGE (e, ei, bb->succs)
4771 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4772 | EDGE_FALSE_VALUE))
4773 || !(e->flags & EDGE_ABNORMAL))
4775 error ("wrong outgoing edge flags at end of bb %d",
4776 bb->index);
4777 err = 1;
4780 break;
4782 case GIMPLE_CALL:
4783 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4784 break;
4785 /* ... fallthru ... */
4786 case GIMPLE_RETURN:
4787 if (!single_succ_p (bb)
4788 || (single_succ_edge (bb)->flags
4789 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4790 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4792 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4793 err = 1;
4795 if (single_succ (bb) != EXIT_BLOCK_PTR)
4797 error ("return edge does not point to exit in bb %d",
4798 bb->index);
4799 err = 1;
4801 break;
4803 case GIMPLE_SWITCH:
4805 tree prev;
4806 edge e;
4807 size_t i, n;
4809 n = gimple_switch_num_labels (stmt);
4811 /* Mark all the destination basic blocks. */
4812 for (i = 0; i < n; ++i)
4814 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4815 basic_block label_bb = label_to_block (lab);
4816 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4817 label_bb->aux = (void *)1;
4820 /* Verify that the case labels are sorted. */
4821 prev = gimple_switch_label (stmt, 0);
4822 for (i = 1; i < n; ++i)
4824 tree c = gimple_switch_label (stmt, i);
4825 if (!CASE_LOW (c))
4827 error ("found default case not at the start of "
4828 "case vector");
4829 err = 1;
4830 continue;
4832 if (CASE_LOW (prev)
4833 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4835 error ("case labels not sorted: ");
4836 print_generic_expr (stderr, prev, 0);
4837 fprintf (stderr," is greater than ");
4838 print_generic_expr (stderr, c, 0);
4839 fprintf (stderr," but comes before it.\n");
4840 err = 1;
4842 prev = c;
4844 /* VRP will remove the default case if it can prove it will
4845 never be executed. So do not verify there always exists
4846 a default case here. */
4848 FOR_EACH_EDGE (e, ei, bb->succs)
4850 if (!e->dest->aux)
4852 error ("extra outgoing edge %d->%d",
4853 bb->index, e->dest->index);
4854 err = 1;
4857 e->dest->aux = (void *)2;
4858 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4859 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4861 error ("wrong outgoing edge flags at end of bb %d",
4862 bb->index);
4863 err = 1;
4867 /* Check that we have all of them. */
4868 for (i = 0; i < n; ++i)
4870 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4871 basic_block label_bb = label_to_block (lab);
4873 if (label_bb->aux != (void *)2)
4875 error ("missing edge %i->%i", bb->index, label_bb->index);
4876 err = 1;
4880 FOR_EACH_EDGE (e, ei, bb->succs)
4881 e->dest->aux = (void *)0;
4883 break;
4885 case GIMPLE_EH_DISPATCH:
4886 err |= verify_eh_dispatch_edge (stmt);
4887 break;
4889 default:
4890 break;
4894 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4895 verify_dominators (CDI_DOMINATORS);
4897 return err;
4901 /* Updates phi nodes after creating a forwarder block joined
4902 by edge FALLTHRU. */
4904 static void
4905 gimple_make_forwarder_block (edge fallthru)
4907 edge e;
4908 edge_iterator ei;
4909 basic_block dummy, bb;
4910 tree var;
4911 gimple_stmt_iterator gsi;
4913 dummy = fallthru->src;
4914 bb = fallthru->dest;
4916 if (single_pred_p (bb))
4917 return;
4919 /* If we redirected a branch we must create new PHI nodes at the
4920 start of BB. */
4921 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4923 gimple phi, new_phi;
4925 phi = gsi_stmt (gsi);
4926 var = gimple_phi_result (phi);
4927 new_phi = create_phi_node (var, bb);
4928 SSA_NAME_DEF_STMT (var) = new_phi;
4929 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4930 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4931 UNKNOWN_LOCATION);
4934 /* Add the arguments we have stored on edges. */
4935 FOR_EACH_EDGE (e, ei, bb->preds)
4937 if (e == fallthru)
4938 continue;
4940 flush_pending_stmts (e);
4945 /* Return a non-special label in the head of basic block BLOCK.
4946 Create one if it doesn't exist. */
4948 tree
4949 gimple_block_label (basic_block bb)
4951 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4952 bool first = true;
4953 tree label;
4954 gimple stmt;
4956 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4958 stmt = gsi_stmt (i);
4959 if (gimple_code (stmt) != GIMPLE_LABEL)
4960 break;
4961 label = gimple_label_label (stmt);
4962 if (!DECL_NONLOCAL (label))
4964 if (!first)
4965 gsi_move_before (&i, &s);
4966 return label;
4970 label = create_artificial_label (UNKNOWN_LOCATION);
4971 stmt = gimple_build_label (label);
4972 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4973 return label;
4977 /* Attempt to perform edge redirection by replacing a possibly complex
4978 jump instruction by a goto or by removing the jump completely.
4979 This can apply only if all edges now point to the same block. The
4980 parameters and return values are equivalent to
4981 redirect_edge_and_branch. */
4983 static edge
4984 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4986 basic_block src = e->src;
4987 gimple_stmt_iterator i;
4988 gimple stmt;
4990 /* We can replace or remove a complex jump only when we have exactly
4991 two edges. */
4992 if (EDGE_COUNT (src->succs) != 2
4993 /* Verify that all targets will be TARGET. Specifically, the
4994 edge that is not E must also go to TARGET. */
4995 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4996 return NULL;
4998 i = gsi_last_bb (src);
4999 if (gsi_end_p (i))
5000 return NULL;
5002 stmt = gsi_stmt (i);
5004 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5006 gsi_remove (&i, true);
5007 e = ssa_redirect_edge (e, target);
5008 e->flags = EDGE_FALLTHRU;
5009 return e;
5012 return NULL;
5016 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5017 edge representing the redirected branch. */
5019 static edge
5020 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5022 basic_block bb = e->src;
5023 gimple_stmt_iterator gsi;
5024 edge ret;
5025 gimple stmt;
5027 if (e->flags & EDGE_ABNORMAL)
5028 return NULL;
5030 if (e->dest == dest)
5031 return NULL;
5033 if (e->flags & EDGE_EH)
5034 return redirect_eh_edge (e, dest);
5036 if (e->src != ENTRY_BLOCK_PTR)
5038 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5039 if (ret)
5040 return ret;
5043 gsi = gsi_last_bb (bb);
5044 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5046 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5048 case GIMPLE_COND:
5049 /* For COND_EXPR, we only need to redirect the edge. */
5050 break;
5052 case GIMPLE_GOTO:
5053 /* No non-abnormal edges should lead from a non-simple goto, and
5054 simple ones should be represented implicitly. */
5055 gcc_unreachable ();
5057 case GIMPLE_SWITCH:
5059 tree label = gimple_block_label (dest);
5060 tree cases = get_cases_for_edge (e, stmt);
5062 /* If we have a list of cases associated with E, then use it
5063 as it's a lot faster than walking the entire case vector. */
5064 if (cases)
5066 edge e2 = find_edge (e->src, dest);
5067 tree last, first;
5069 first = cases;
5070 while (cases)
5072 last = cases;
5073 CASE_LABEL (cases) = label;
5074 cases = CASE_CHAIN (cases);
5077 /* If there was already an edge in the CFG, then we need
5078 to move all the cases associated with E to E2. */
5079 if (e2)
5081 tree cases2 = get_cases_for_edge (e2, stmt);
5083 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5084 CASE_CHAIN (cases2) = first;
5086 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5088 else
5090 size_t i, n = gimple_switch_num_labels (stmt);
5092 for (i = 0; i < n; i++)
5094 tree elt = gimple_switch_label (stmt, i);
5095 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5096 CASE_LABEL (elt) = label;
5100 break;
5102 case GIMPLE_ASM:
5104 int i, n = gimple_asm_nlabels (stmt);
5105 tree label = NULL;
5107 for (i = 0; i < n; ++i)
5109 tree cons = gimple_asm_label_op (stmt, i);
5110 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5112 if (!label)
5113 label = gimple_block_label (dest);
5114 TREE_VALUE (cons) = label;
5118 /* If we didn't find any label matching the former edge in the
5119 asm labels, we must be redirecting the fallthrough
5120 edge. */
5121 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5123 break;
5125 case GIMPLE_RETURN:
5126 gsi_remove (&gsi, true);
5127 e->flags |= EDGE_FALLTHRU;
5128 break;
5130 case GIMPLE_OMP_RETURN:
5131 case GIMPLE_OMP_CONTINUE:
5132 case GIMPLE_OMP_SECTIONS_SWITCH:
5133 case GIMPLE_OMP_FOR:
5134 /* The edges from OMP constructs can be simply redirected. */
5135 break;
5137 case GIMPLE_EH_DISPATCH:
5138 if (!(e->flags & EDGE_FALLTHRU))
5139 redirect_eh_dispatch_edge (stmt, e, dest);
5140 break;
5142 case GIMPLE_TRANSACTION:
5143 /* The ABORT edge has a stored label associated with it, otherwise
5144 the edges are simply redirectable. */
5145 if (e->flags == 0)
5146 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5147 break;
5149 default:
5150 /* Otherwise it must be a fallthru edge, and we don't need to
5151 do anything besides redirecting it. */
5152 gcc_assert (e->flags & EDGE_FALLTHRU);
5153 break;
5156 /* Update/insert PHI nodes as necessary. */
5158 /* Now update the edges in the CFG. */
5159 e = ssa_redirect_edge (e, dest);
5161 return e;
5164 /* Returns true if it is possible to remove edge E by redirecting
5165 it to the destination of the other edge from E->src. */
5167 static bool
5168 gimple_can_remove_branch_p (const_edge e)
5170 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5171 return false;
5173 return true;
5176 /* Simple wrapper, as we can always redirect fallthru edges. */
5178 static basic_block
5179 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5181 e = gimple_redirect_edge_and_branch (e, dest);
5182 gcc_assert (e);
5184 return NULL;
5188 /* Splits basic block BB after statement STMT (but at least after the
5189 labels). If STMT is NULL, BB is split just after the labels. */
5191 static basic_block
5192 gimple_split_block (basic_block bb, void *stmt)
5194 gimple_stmt_iterator gsi;
5195 gimple_stmt_iterator gsi_tgt;
5196 gimple act;
5197 gimple_seq list;
5198 basic_block new_bb;
5199 edge e;
5200 edge_iterator ei;
5202 new_bb = create_empty_bb (bb);
5204 /* Redirect the outgoing edges. */
5205 new_bb->succs = bb->succs;
5206 bb->succs = NULL;
5207 FOR_EACH_EDGE (e, ei, new_bb->succs)
5208 e->src = new_bb;
5210 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5211 stmt = NULL;
5213 /* Move everything from GSI to the new basic block. */
5214 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5216 act = gsi_stmt (gsi);
5217 if (gimple_code (act) == GIMPLE_LABEL)
5218 continue;
5220 if (!stmt)
5221 break;
5223 if (stmt == act)
5225 gsi_next (&gsi);
5226 break;
5230 if (gsi_end_p (gsi))
5231 return new_bb;
5233 /* Split the statement list - avoid re-creating new containers as this
5234 brings ugly quadratic memory consumption in the inliner.
5235 (We are still quadratic since we need to update stmt BB pointers,
5236 sadly.) */
5237 list = gsi_split_seq_before (&gsi);
5238 set_bb_seq (new_bb, list);
5239 for (gsi_tgt = gsi_start (list);
5240 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5241 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5243 return new_bb;
5247 /* Moves basic block BB after block AFTER. */
5249 static bool
5250 gimple_move_block_after (basic_block bb, basic_block after)
5252 if (bb->prev_bb == after)
5253 return true;
5255 unlink_block (bb);
5256 link_block (bb, after);
5258 return true;
5262 /* Return true if basic_block can be duplicated. */
5264 static bool
5265 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5267 return true;
5270 /* Create a duplicate of the basic block BB. NOTE: This does not
5271 preserve SSA form. */
5273 static basic_block
5274 gimple_duplicate_bb (basic_block bb)
5276 basic_block new_bb;
5277 gimple_stmt_iterator gsi, gsi_tgt;
5278 gimple_seq phis = phi_nodes (bb);
5279 gimple phi, stmt, copy;
5281 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5283 /* Copy the PHI nodes. We ignore PHI node arguments here because
5284 the incoming edges have not been setup yet. */
5285 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5287 phi = gsi_stmt (gsi);
5288 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5289 create_new_def_for (gimple_phi_result (copy), copy,
5290 gimple_phi_result_ptr (copy));
5293 gsi_tgt = gsi_start_bb (new_bb);
5294 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5296 def_operand_p def_p;
5297 ssa_op_iter op_iter;
5298 tree lhs;
5300 stmt = gsi_stmt (gsi);
5301 if (gimple_code (stmt) == GIMPLE_LABEL)
5302 continue;
5304 /* Don't duplicate label debug stmts. */
5305 if (gimple_debug_bind_p (stmt)
5306 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5307 == LABEL_DECL)
5308 continue;
5310 /* Create a new copy of STMT and duplicate STMT's virtual
5311 operands. */
5312 copy = gimple_copy (stmt);
5313 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5315 maybe_duplicate_eh_stmt (copy, stmt);
5316 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5318 /* When copying around a stmt writing into a local non-user
5319 aggregate, make sure it won't share stack slot with other
5320 vars. */
5321 lhs = gimple_get_lhs (stmt);
5322 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5324 tree base = get_base_address (lhs);
5325 if (base
5326 && (TREE_CODE (base) == VAR_DECL
5327 || TREE_CODE (base) == RESULT_DECL)
5328 && DECL_IGNORED_P (base)
5329 && !TREE_STATIC (base)
5330 && !DECL_EXTERNAL (base)
5331 && (TREE_CODE (base) != VAR_DECL
5332 || !DECL_HAS_VALUE_EXPR_P (base)))
5333 DECL_NONSHAREABLE (base) = 1;
5336 /* Create new names for all the definitions created by COPY and
5337 add replacement mappings for each new name. */
5338 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5339 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5342 return new_bb;
5345 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5347 static void
5348 add_phi_args_after_copy_edge (edge e_copy)
5350 basic_block bb, bb_copy = e_copy->src, dest;
5351 edge e;
5352 edge_iterator ei;
5353 gimple phi, phi_copy;
5354 tree def;
5355 gimple_stmt_iterator psi, psi_copy;
5357 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5358 return;
5360 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5362 if (e_copy->dest->flags & BB_DUPLICATED)
5363 dest = get_bb_original (e_copy->dest);
5364 else
5365 dest = e_copy->dest;
5367 e = find_edge (bb, dest);
5368 if (!e)
5370 /* During loop unrolling the target of the latch edge is copied.
5371 In this case we are not looking for edge to dest, but to
5372 duplicated block whose original was dest. */
5373 FOR_EACH_EDGE (e, ei, bb->succs)
5375 if ((e->dest->flags & BB_DUPLICATED)
5376 && get_bb_original (e->dest) == dest)
5377 break;
5380 gcc_assert (e != NULL);
5383 for (psi = gsi_start_phis (e->dest),
5384 psi_copy = gsi_start_phis (e_copy->dest);
5385 !gsi_end_p (psi);
5386 gsi_next (&psi), gsi_next (&psi_copy))
5388 phi = gsi_stmt (psi);
5389 phi_copy = gsi_stmt (psi_copy);
5390 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5391 add_phi_arg (phi_copy, def, e_copy,
5392 gimple_phi_arg_location_from_edge (phi, e));
5397 /* Basic block BB_COPY was created by code duplication. Add phi node
5398 arguments for edges going out of BB_COPY. The blocks that were
5399 duplicated have BB_DUPLICATED set. */
5401 void
5402 add_phi_args_after_copy_bb (basic_block bb_copy)
5404 edge e_copy;
5405 edge_iterator ei;
5407 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5409 add_phi_args_after_copy_edge (e_copy);
5413 /* Blocks in REGION_COPY array of length N_REGION were created by
5414 duplication of basic blocks. Add phi node arguments for edges
5415 going from these blocks. If E_COPY is not NULL, also add
5416 phi node arguments for its destination.*/
5418 void
5419 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5420 edge e_copy)
5422 unsigned i;
5424 for (i = 0; i < n_region; i++)
5425 region_copy[i]->flags |= BB_DUPLICATED;
5427 for (i = 0; i < n_region; i++)
5428 add_phi_args_after_copy_bb (region_copy[i]);
5429 if (e_copy)
5430 add_phi_args_after_copy_edge (e_copy);
5432 for (i = 0; i < n_region; i++)
5433 region_copy[i]->flags &= ~BB_DUPLICATED;
5436 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5437 important exit edge EXIT. By important we mean that no SSA name defined
5438 inside region is live over the other exit edges of the region. All entry
5439 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5440 to the duplicate of the region. SSA form, dominance and loop information
5441 is updated. The new basic blocks are stored to REGION_COPY in the same
5442 order as they had in REGION, provided that REGION_COPY is not NULL.
5443 The function returns false if it is unable to copy the region,
5444 true otherwise. */
5446 bool
5447 gimple_duplicate_sese_region (edge entry, edge exit,
5448 basic_block *region, unsigned n_region,
5449 basic_block *region_copy)
5451 unsigned i;
5452 bool free_region_copy = false, copying_header = false;
5453 struct loop *loop = entry->dest->loop_father;
5454 edge exit_copy;
5455 VEC (basic_block, heap) *doms;
5456 edge redirected;
5457 int total_freq = 0, entry_freq = 0;
5458 gcov_type total_count = 0, entry_count = 0;
5460 if (!can_copy_bbs_p (region, n_region))
5461 return false;
5463 /* Some sanity checking. Note that we do not check for all possible
5464 missuses of the functions. I.e. if you ask to copy something weird,
5465 it will work, but the state of structures probably will not be
5466 correct. */
5467 for (i = 0; i < n_region; i++)
5469 /* We do not handle subloops, i.e. all the blocks must belong to the
5470 same loop. */
5471 if (region[i]->loop_father != loop)
5472 return false;
5474 if (region[i] != entry->dest
5475 && region[i] == loop->header)
5476 return false;
5479 set_loop_copy (loop, loop);
5481 /* In case the function is used for loop header copying (which is the primary
5482 use), ensure that EXIT and its copy will be new latch and entry edges. */
5483 if (loop->header == entry->dest)
5485 copying_header = true;
5486 set_loop_copy (loop, loop_outer (loop));
5488 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5489 return false;
5491 for (i = 0; i < n_region; i++)
5492 if (region[i] != exit->src
5493 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5494 return false;
5497 if (!region_copy)
5499 region_copy = XNEWVEC (basic_block, n_region);
5500 free_region_copy = true;
5503 gcc_assert (!need_ssa_update_p (cfun));
5505 /* Record blocks outside the region that are dominated by something
5506 inside. */
5507 doms = NULL;
5508 initialize_original_copy_tables ();
5510 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5512 if (entry->dest->count)
5514 total_count = entry->dest->count;
5515 entry_count = entry->count;
5516 /* Fix up corner cases, to avoid division by zero or creation of negative
5517 frequencies. */
5518 if (entry_count > total_count)
5519 entry_count = total_count;
5521 else
5523 total_freq = entry->dest->frequency;
5524 entry_freq = EDGE_FREQUENCY (entry);
5525 /* Fix up corner cases, to avoid division by zero or creation of negative
5526 frequencies. */
5527 if (total_freq == 0)
5528 total_freq = 1;
5529 else if (entry_freq > total_freq)
5530 entry_freq = total_freq;
5533 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5534 split_edge_bb_loc (entry));
5535 if (total_count)
5537 scale_bbs_frequencies_gcov_type (region, n_region,
5538 total_count - entry_count,
5539 total_count);
5540 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5541 total_count);
5543 else
5545 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5546 total_freq);
5547 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5550 if (copying_header)
5552 loop->header = exit->dest;
5553 loop->latch = exit->src;
5556 /* Redirect the entry and add the phi node arguments. */
5557 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5558 gcc_assert (redirected != NULL);
5559 flush_pending_stmts (entry);
5561 /* Concerning updating of dominators: We must recount dominators
5562 for entry block and its copy. Anything that is outside of the
5563 region, but was dominated by something inside needs recounting as
5564 well. */
5565 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5566 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5567 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5568 VEC_free (basic_block, heap, doms);
5570 /* Add the other PHI node arguments. */
5571 add_phi_args_after_copy (region_copy, n_region, NULL);
5573 /* Update the SSA web. */
5574 update_ssa (TODO_update_ssa);
5576 if (free_region_copy)
5577 free (region_copy);
5579 free_original_copy_tables ();
5580 return true;
5583 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5584 are stored to REGION_COPY in the same order in that they appear
5585 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5586 the region, EXIT an exit from it. The condition guarding EXIT
5587 is moved to ENTRY. Returns true if duplication succeeds, false
5588 otherwise.
5590 For example,
5592 some_code;
5593 if (cond)
5595 else
5598 is transformed to
5600 if (cond)
5602 some_code;
5605 else
5607 some_code;
5612 bool
5613 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5614 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5615 basic_block *region_copy ATTRIBUTE_UNUSED)
5617 unsigned i;
5618 bool free_region_copy = false;
5619 struct loop *loop = exit->dest->loop_father;
5620 struct loop *orig_loop = entry->dest->loop_father;
5621 basic_block switch_bb, entry_bb, nentry_bb;
5622 VEC (basic_block, heap) *doms;
5623 int total_freq = 0, exit_freq = 0;
5624 gcov_type total_count = 0, exit_count = 0;
5625 edge exits[2], nexits[2], e;
5626 gimple_stmt_iterator gsi;
5627 gimple cond_stmt;
5628 edge sorig, snew;
5629 basic_block exit_bb;
5630 gimple_stmt_iterator psi;
5631 gimple phi;
5632 tree def;
5634 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5635 exits[0] = exit;
5636 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5638 if (!can_copy_bbs_p (region, n_region))
5639 return false;
5641 initialize_original_copy_tables ();
5642 set_loop_copy (orig_loop, loop);
5643 duplicate_subloops (orig_loop, loop);
5645 if (!region_copy)
5647 region_copy = XNEWVEC (basic_block, n_region);
5648 free_region_copy = true;
5651 gcc_assert (!need_ssa_update_p (cfun));
5653 /* Record blocks outside the region that are dominated by something
5654 inside. */
5655 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5657 if (exit->src->count)
5659 total_count = exit->src->count;
5660 exit_count = exit->count;
5661 /* Fix up corner cases, to avoid division by zero or creation of negative
5662 frequencies. */
5663 if (exit_count > total_count)
5664 exit_count = total_count;
5666 else
5668 total_freq = exit->src->frequency;
5669 exit_freq = EDGE_FREQUENCY (exit);
5670 /* Fix up corner cases, to avoid division by zero or creation of negative
5671 frequencies. */
5672 if (total_freq == 0)
5673 total_freq = 1;
5674 if (exit_freq > total_freq)
5675 exit_freq = total_freq;
5678 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5679 split_edge_bb_loc (exit));
5680 if (total_count)
5682 scale_bbs_frequencies_gcov_type (region, n_region,
5683 total_count - exit_count,
5684 total_count);
5685 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5686 total_count);
5688 else
5690 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5691 total_freq);
5692 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5695 /* Create the switch block, and put the exit condition to it. */
5696 entry_bb = entry->dest;
5697 nentry_bb = get_bb_copy (entry_bb);
5698 if (!last_stmt (entry->src)
5699 || !stmt_ends_bb_p (last_stmt (entry->src)))
5700 switch_bb = entry->src;
5701 else
5702 switch_bb = split_edge (entry);
5703 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5705 gsi = gsi_last_bb (switch_bb);
5706 cond_stmt = last_stmt (exit->src);
5707 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5708 cond_stmt = gimple_copy (cond_stmt);
5710 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5712 sorig = single_succ_edge (switch_bb);
5713 sorig->flags = exits[1]->flags;
5714 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5716 /* Register the new edge from SWITCH_BB in loop exit lists. */
5717 rescan_loop_exit (snew, true, false);
5719 /* Add the PHI node arguments. */
5720 add_phi_args_after_copy (region_copy, n_region, snew);
5722 /* Get rid of now superfluous conditions and associated edges (and phi node
5723 arguments). */
5724 exit_bb = exit->dest;
5726 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5727 PENDING_STMT (e) = NULL;
5729 /* The latch of ORIG_LOOP was copied, and so was the backedge
5730 to the original header. We redirect this backedge to EXIT_BB. */
5731 for (i = 0; i < n_region; i++)
5732 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5734 gcc_assert (single_succ_edge (region_copy[i]));
5735 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5736 PENDING_STMT (e) = NULL;
5737 for (psi = gsi_start_phis (exit_bb);
5738 !gsi_end_p (psi);
5739 gsi_next (&psi))
5741 phi = gsi_stmt (psi);
5742 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5743 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5746 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5747 PENDING_STMT (e) = NULL;
5749 /* Anything that is outside of the region, but was dominated by something
5750 inside needs to update dominance info. */
5751 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5752 VEC_free (basic_block, heap, doms);
5753 /* Update the SSA web. */
5754 update_ssa (TODO_update_ssa);
5756 if (free_region_copy)
5757 free (region_copy);
5759 free_original_copy_tables ();
5760 return true;
5763 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5764 adding blocks when the dominator traversal reaches EXIT. This
5765 function silently assumes that ENTRY strictly dominates EXIT. */
5767 void
5768 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5769 VEC(basic_block,heap) **bbs_p)
5771 basic_block son;
5773 for (son = first_dom_son (CDI_DOMINATORS, entry);
5774 son;
5775 son = next_dom_son (CDI_DOMINATORS, son))
5777 VEC_safe_push (basic_block, heap, *bbs_p, son);
5778 if (son != exit)
5779 gather_blocks_in_sese_region (son, exit, bbs_p);
5783 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5784 The duplicates are recorded in VARS_MAP. */
5786 static void
5787 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5788 tree to_context)
5790 tree t = *tp, new_t;
5791 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5792 void **loc;
5794 if (DECL_CONTEXT (t) == to_context)
5795 return;
5797 loc = pointer_map_contains (vars_map, t);
5799 if (!loc)
5801 loc = pointer_map_insert (vars_map, t);
5803 if (SSA_VAR_P (t))
5805 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5806 add_local_decl (f, new_t);
5808 else
5810 gcc_assert (TREE_CODE (t) == CONST_DECL);
5811 new_t = copy_node (t);
5813 DECL_CONTEXT (new_t) = to_context;
5815 *loc = new_t;
5817 else
5818 new_t = (tree) *loc;
5820 *tp = new_t;
5824 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5825 VARS_MAP maps old ssa names and var_decls to the new ones. */
5827 static tree
5828 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5829 tree to_context)
5831 void **loc;
5832 tree new_name, decl = SSA_NAME_VAR (name);
5834 gcc_assert (is_gimple_reg (name));
5836 loc = pointer_map_contains (vars_map, name);
5838 if (!loc)
5840 replace_by_duplicate_decl (&decl, vars_map, to_context);
5842 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5843 if (gimple_in_ssa_p (cfun))
5844 add_referenced_var (decl);
5846 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5847 if (SSA_NAME_IS_DEFAULT_DEF (name))
5848 set_default_def (decl, new_name);
5849 pop_cfun ();
5851 loc = pointer_map_insert (vars_map, name);
5852 *loc = new_name;
5854 else
5855 new_name = (tree) *loc;
5857 return new_name;
5860 struct move_stmt_d
5862 tree orig_block;
5863 tree new_block;
5864 tree from_context;
5865 tree to_context;
5866 struct pointer_map_t *vars_map;
5867 htab_t new_label_map;
5868 struct pointer_map_t *eh_map;
5869 bool remap_decls_p;
5872 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5873 contained in *TP if it has been ORIG_BLOCK previously and change the
5874 DECL_CONTEXT of every local variable referenced in *TP. */
5876 static tree
5877 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5879 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5880 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5881 tree t = *tp;
5883 if (EXPR_P (t))
5884 /* We should never have TREE_BLOCK set on non-statements. */
5885 gcc_assert (!TREE_BLOCK (t));
5887 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5889 if (TREE_CODE (t) == SSA_NAME)
5890 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5891 else if (TREE_CODE (t) == LABEL_DECL)
5893 if (p->new_label_map)
5895 struct tree_map in, *out;
5896 in.base.from = t;
5897 out = (struct tree_map *)
5898 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5899 if (out)
5900 *tp = t = out->to;
5903 DECL_CONTEXT (t) = p->to_context;
5905 else if (p->remap_decls_p)
5907 /* Replace T with its duplicate. T should no longer appear in the
5908 parent function, so this looks wasteful; however, it may appear
5909 in referenced_vars, and more importantly, as virtual operands of
5910 statements, and in alias lists of other variables. It would be
5911 quite difficult to expunge it from all those places. ??? It might
5912 suffice to do this for addressable variables. */
5913 if ((TREE_CODE (t) == VAR_DECL
5914 && !is_global_var (t))
5915 || TREE_CODE (t) == CONST_DECL)
5916 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5918 if (SSA_VAR_P (t)
5919 && gimple_in_ssa_p (cfun))
5921 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5922 add_referenced_var (*tp);
5923 pop_cfun ();
5926 *walk_subtrees = 0;
5928 else if (TYPE_P (t))
5929 *walk_subtrees = 0;
5931 return NULL_TREE;
5934 /* Helper for move_stmt_r. Given an EH region number for the source
5935 function, map that to the duplicate EH regio number in the dest. */
5937 static int
5938 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5940 eh_region old_r, new_r;
5941 void **slot;
5943 old_r = get_eh_region_from_number (old_nr);
5944 slot = pointer_map_contains (p->eh_map, old_r);
5945 new_r = (eh_region) *slot;
5947 return new_r->index;
5950 /* Similar, but operate on INTEGER_CSTs. */
5952 static tree
5953 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5955 int old_nr, new_nr;
5957 old_nr = tree_low_cst (old_t_nr, 0);
5958 new_nr = move_stmt_eh_region_nr (old_nr, p);
5960 return build_int_cst (integer_type_node, new_nr);
5963 /* Like move_stmt_op, but for gimple statements.
5965 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5966 contained in the current statement in *GSI_P and change the
5967 DECL_CONTEXT of every local variable referenced in the current
5968 statement. */
5970 static tree
5971 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5972 struct walk_stmt_info *wi)
5974 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5975 gimple stmt = gsi_stmt (*gsi_p);
5976 tree block = gimple_block (stmt);
5978 if (p->orig_block == NULL_TREE
5979 || block == p->orig_block
5980 || block == NULL_TREE)
5981 gimple_set_block (stmt, p->new_block);
5982 #ifdef ENABLE_CHECKING
5983 else if (block != p->new_block)
5985 while (block && block != p->orig_block)
5986 block = BLOCK_SUPERCONTEXT (block);
5987 gcc_assert (block);
5989 #endif
5991 switch (gimple_code (stmt))
5993 case GIMPLE_CALL:
5994 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5996 tree r, fndecl = gimple_call_fndecl (stmt);
5997 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5998 switch (DECL_FUNCTION_CODE (fndecl))
6000 case BUILT_IN_EH_COPY_VALUES:
6001 r = gimple_call_arg (stmt, 1);
6002 r = move_stmt_eh_region_tree_nr (r, p);
6003 gimple_call_set_arg (stmt, 1, r);
6004 /* FALLTHRU */
6006 case BUILT_IN_EH_POINTER:
6007 case BUILT_IN_EH_FILTER:
6008 r = gimple_call_arg (stmt, 0);
6009 r = move_stmt_eh_region_tree_nr (r, p);
6010 gimple_call_set_arg (stmt, 0, r);
6011 break;
6013 default:
6014 break;
6017 break;
6019 case GIMPLE_RESX:
6021 int r = gimple_resx_region (stmt);
6022 r = move_stmt_eh_region_nr (r, p);
6023 gimple_resx_set_region (stmt, r);
6025 break;
6027 case GIMPLE_EH_DISPATCH:
6029 int r = gimple_eh_dispatch_region (stmt);
6030 r = move_stmt_eh_region_nr (r, p);
6031 gimple_eh_dispatch_set_region (stmt, r);
6033 break;
6035 case GIMPLE_OMP_RETURN:
6036 case GIMPLE_OMP_CONTINUE:
6037 break;
6038 default:
6039 if (is_gimple_omp (stmt))
6041 /* Do not remap variables inside OMP directives. Variables
6042 referenced in clauses and directive header belong to the
6043 parent function and should not be moved into the child
6044 function. */
6045 bool save_remap_decls_p = p->remap_decls_p;
6046 p->remap_decls_p = false;
6047 *handled_ops_p = true;
6049 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6050 move_stmt_op, wi);
6052 p->remap_decls_p = save_remap_decls_p;
6054 break;
6057 return NULL_TREE;
6060 /* Move basic block BB from function CFUN to function DEST_FN. The
6061 block is moved out of the original linked list and placed after
6062 block AFTER in the new list. Also, the block is removed from the
6063 original array of blocks and placed in DEST_FN's array of blocks.
6064 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6065 updated to reflect the moved edges.
6067 The local variables are remapped to new instances, VARS_MAP is used
6068 to record the mapping. */
6070 static void
6071 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6072 basic_block after, bool update_edge_count_p,
6073 struct move_stmt_d *d)
6075 struct control_flow_graph *cfg;
6076 edge_iterator ei;
6077 edge e;
6078 gimple_stmt_iterator si;
6079 unsigned old_len, new_len;
6081 /* Remove BB from dominance structures. */
6082 delete_from_dominance_info (CDI_DOMINATORS, bb);
6083 if (current_loops)
6084 remove_bb_from_loops (bb);
6086 /* Link BB to the new linked list. */
6087 move_block_after (bb, after);
6089 /* Update the edge count in the corresponding flowgraphs. */
6090 if (update_edge_count_p)
6091 FOR_EACH_EDGE (e, ei, bb->succs)
6093 cfun->cfg->x_n_edges--;
6094 dest_cfun->cfg->x_n_edges++;
6097 /* Remove BB from the original basic block array. */
6098 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6099 cfun->cfg->x_n_basic_blocks--;
6101 /* Grow DEST_CFUN's basic block array if needed. */
6102 cfg = dest_cfun->cfg;
6103 cfg->x_n_basic_blocks++;
6104 if (bb->index >= cfg->x_last_basic_block)
6105 cfg->x_last_basic_block = bb->index + 1;
6107 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6108 if ((unsigned) cfg->x_last_basic_block >= old_len)
6110 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6111 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6112 new_len);
6115 VEC_replace (basic_block, cfg->x_basic_block_info,
6116 bb->index, bb);
6118 /* Remap the variables in phi nodes. */
6119 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6121 gimple phi = gsi_stmt (si);
6122 use_operand_p use;
6123 tree op = PHI_RESULT (phi);
6124 ssa_op_iter oi;
6126 if (!is_gimple_reg (op))
6128 /* Remove the phi nodes for virtual operands (alias analysis will be
6129 run for the new function, anyway). */
6130 remove_phi_node (&si, true);
6131 continue;
6134 SET_PHI_RESULT (phi,
6135 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6136 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6138 op = USE_FROM_PTR (use);
6139 if (TREE_CODE (op) == SSA_NAME)
6140 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6143 gsi_next (&si);
6146 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6148 gimple stmt = gsi_stmt (si);
6149 struct walk_stmt_info wi;
6151 memset (&wi, 0, sizeof (wi));
6152 wi.info = d;
6153 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6155 if (gimple_code (stmt) == GIMPLE_LABEL)
6157 tree label = gimple_label_label (stmt);
6158 int uid = LABEL_DECL_UID (label);
6160 gcc_assert (uid > -1);
6162 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6163 if (old_len <= (unsigned) uid)
6165 new_len = 3 * uid / 2 + 1;
6166 VEC_safe_grow_cleared (basic_block, gc,
6167 cfg->x_label_to_block_map, new_len);
6170 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6171 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6173 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6175 if (uid >= dest_cfun->cfg->last_label_uid)
6176 dest_cfun->cfg->last_label_uid = uid + 1;
6179 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6180 remove_stmt_from_eh_lp_fn (cfun, stmt);
6182 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6183 gimple_remove_stmt_histograms (cfun, stmt);
6185 /* We cannot leave any operands allocated from the operand caches of
6186 the current function. */
6187 free_stmt_operands (stmt);
6188 push_cfun (dest_cfun);
6189 update_stmt (stmt);
6190 pop_cfun ();
6193 FOR_EACH_EDGE (e, ei, bb->succs)
6194 if (e->goto_locus)
6196 tree block = e->goto_block;
6197 if (d->orig_block == NULL_TREE
6198 || block == d->orig_block)
6199 e->goto_block = d->new_block;
6200 #ifdef ENABLE_CHECKING
6201 else if (block != d->new_block)
6203 while (block && block != d->orig_block)
6204 block = BLOCK_SUPERCONTEXT (block);
6205 gcc_assert (block);
6207 #endif
6211 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6212 the outermost EH region. Use REGION as the incoming base EH region. */
6214 static eh_region
6215 find_outermost_region_in_block (struct function *src_cfun,
6216 basic_block bb, eh_region region)
6218 gimple_stmt_iterator si;
6220 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6222 gimple stmt = gsi_stmt (si);
6223 eh_region stmt_region;
6224 int lp_nr;
6226 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6227 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6228 if (stmt_region)
6230 if (region == NULL)
6231 region = stmt_region;
6232 else if (stmt_region != region)
6234 region = eh_region_outermost (src_cfun, stmt_region, region);
6235 gcc_assert (region != NULL);
6240 return region;
6243 static tree
6244 new_label_mapper (tree decl, void *data)
6246 htab_t hash = (htab_t) data;
6247 struct tree_map *m;
6248 void **slot;
6250 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6252 m = XNEW (struct tree_map);
6253 m->hash = DECL_UID (decl);
6254 m->base.from = decl;
6255 m->to = create_artificial_label (UNKNOWN_LOCATION);
6256 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6257 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6258 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6260 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6261 gcc_assert (*slot == NULL);
6263 *slot = m;
6265 return m->to;
6268 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6269 subblocks. */
6271 static void
6272 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6273 tree to_context)
6275 tree *tp, t;
6277 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6279 t = *tp;
6280 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6281 continue;
6282 replace_by_duplicate_decl (&t, vars_map, to_context);
6283 if (t != *tp)
6285 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6287 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6288 DECL_HAS_VALUE_EXPR_P (t) = 1;
6290 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6291 *tp = t;
6295 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6296 replace_block_vars_by_duplicates (block, vars_map, to_context);
6299 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6300 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6301 single basic block in the original CFG and the new basic block is
6302 returned. DEST_CFUN must not have a CFG yet.
6304 Note that the region need not be a pure SESE region. Blocks inside
6305 the region may contain calls to abort/exit. The only restriction
6306 is that ENTRY_BB should be the only entry point and it must
6307 dominate EXIT_BB.
6309 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6310 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6311 to the new function.
6313 All local variables referenced in the region are assumed to be in
6314 the corresponding BLOCK_VARS and unexpanded variable lists
6315 associated with DEST_CFUN. */
6317 basic_block
6318 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6319 basic_block exit_bb, tree orig_block)
6321 VEC(basic_block,heap) *bbs, *dom_bbs;
6322 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6323 basic_block after, bb, *entry_pred, *exit_succ, abb;
6324 struct function *saved_cfun = cfun;
6325 int *entry_flag, *exit_flag;
6326 unsigned *entry_prob, *exit_prob;
6327 unsigned i, num_entry_edges, num_exit_edges;
6328 edge e;
6329 edge_iterator ei;
6330 htab_t new_label_map;
6331 struct pointer_map_t *vars_map, *eh_map;
6332 struct loop *loop = entry_bb->loop_father;
6333 struct move_stmt_d d;
6335 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6336 region. */
6337 gcc_assert (entry_bb != exit_bb
6338 && (!exit_bb
6339 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6341 /* Collect all the blocks in the region. Manually add ENTRY_BB
6342 because it won't be added by dfs_enumerate_from. */
6343 bbs = NULL;
6344 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6345 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6347 /* The blocks that used to be dominated by something in BBS will now be
6348 dominated by the new block. */
6349 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6350 VEC_address (basic_block, bbs),
6351 VEC_length (basic_block, bbs));
6353 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6354 the predecessor edges to ENTRY_BB and the successor edges to
6355 EXIT_BB so that we can re-attach them to the new basic block that
6356 will replace the region. */
6357 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6358 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6359 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6360 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6361 i = 0;
6362 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6364 entry_prob[i] = e->probability;
6365 entry_flag[i] = e->flags;
6366 entry_pred[i++] = e->src;
6367 remove_edge (e);
6370 if (exit_bb)
6372 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6373 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6374 sizeof (basic_block));
6375 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6376 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6377 i = 0;
6378 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6380 exit_prob[i] = e->probability;
6381 exit_flag[i] = e->flags;
6382 exit_succ[i++] = e->dest;
6383 remove_edge (e);
6386 else
6388 num_exit_edges = 0;
6389 exit_succ = NULL;
6390 exit_flag = NULL;
6391 exit_prob = NULL;
6394 /* Switch context to the child function to initialize DEST_FN's CFG. */
6395 gcc_assert (dest_cfun->cfg == NULL);
6396 push_cfun (dest_cfun);
6398 init_empty_tree_cfg ();
6400 /* Initialize EH information for the new function. */
6401 eh_map = NULL;
6402 new_label_map = NULL;
6403 if (saved_cfun->eh)
6405 eh_region region = NULL;
6407 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6408 region = find_outermost_region_in_block (saved_cfun, bb, region);
6410 init_eh_for_function ();
6411 if (region != NULL)
6413 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6414 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6415 new_label_mapper, new_label_map);
6419 pop_cfun ();
6421 /* Move blocks from BBS into DEST_CFUN. */
6422 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6423 after = dest_cfun->cfg->x_entry_block_ptr;
6424 vars_map = pointer_map_create ();
6426 memset (&d, 0, sizeof (d));
6427 d.orig_block = orig_block;
6428 d.new_block = DECL_INITIAL (dest_cfun->decl);
6429 d.from_context = cfun->decl;
6430 d.to_context = dest_cfun->decl;
6431 d.vars_map = vars_map;
6432 d.new_label_map = new_label_map;
6433 d.eh_map = eh_map;
6434 d.remap_decls_p = true;
6436 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6438 /* No need to update edge counts on the last block. It has
6439 already been updated earlier when we detached the region from
6440 the original CFG. */
6441 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6442 after = bb;
6445 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6446 if (orig_block)
6448 tree block;
6449 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6450 == NULL_TREE);
6451 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6452 = BLOCK_SUBBLOCKS (orig_block);
6453 for (block = BLOCK_SUBBLOCKS (orig_block);
6454 block; block = BLOCK_CHAIN (block))
6455 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6456 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6459 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6460 vars_map, dest_cfun->decl);
6462 if (new_label_map)
6463 htab_delete (new_label_map);
6464 if (eh_map)
6465 pointer_map_destroy (eh_map);
6466 pointer_map_destroy (vars_map);
6468 /* Rewire the entry and exit blocks. The successor to the entry
6469 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6470 the child function. Similarly, the predecessor of DEST_FN's
6471 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6472 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6473 various CFG manipulation function get to the right CFG.
6475 FIXME, this is silly. The CFG ought to become a parameter to
6476 these helpers. */
6477 push_cfun (dest_cfun);
6478 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6479 if (exit_bb)
6480 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6481 pop_cfun ();
6483 /* Back in the original function, the SESE region has disappeared,
6484 create a new basic block in its place. */
6485 bb = create_empty_bb (entry_pred[0]);
6486 if (current_loops)
6487 add_bb_to_loop (bb, loop);
6488 for (i = 0; i < num_entry_edges; i++)
6490 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6491 e->probability = entry_prob[i];
6494 for (i = 0; i < num_exit_edges; i++)
6496 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6497 e->probability = exit_prob[i];
6500 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6501 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6502 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6503 VEC_free (basic_block, heap, dom_bbs);
6505 if (exit_bb)
6507 free (exit_prob);
6508 free (exit_flag);
6509 free (exit_succ);
6511 free (entry_prob);
6512 free (entry_flag);
6513 free (entry_pred);
6514 VEC_free (basic_block, heap, bbs);
6516 return bb;
6520 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6523 void
6524 dump_function_to_file (tree fn, FILE *file, int flags)
6526 tree arg, var;
6527 struct function *dsf;
6528 bool ignore_topmost_bind = false, any_var = false;
6529 basic_block bb;
6530 tree chain;
6531 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6533 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6534 tmclone ? "[tm-clone] " : "");
6536 arg = DECL_ARGUMENTS (fn);
6537 while (arg)
6539 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6540 fprintf (file, " ");
6541 print_generic_expr (file, arg, dump_flags);
6542 if (flags & TDF_VERBOSE)
6543 print_node (file, "", arg, 4);
6544 if (DECL_CHAIN (arg))
6545 fprintf (file, ", ");
6546 arg = DECL_CHAIN (arg);
6548 fprintf (file, ")\n");
6550 if (flags & TDF_VERBOSE)
6551 print_node (file, "", fn, 2);
6553 dsf = DECL_STRUCT_FUNCTION (fn);
6554 if (dsf && (flags & TDF_EH))
6555 dump_eh_tree (file, dsf);
6557 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6559 dump_node (fn, TDF_SLIM | flags, file);
6560 return;
6563 /* Switch CFUN to point to FN. */
6564 push_cfun (DECL_STRUCT_FUNCTION (fn));
6566 /* When GIMPLE is lowered, the variables are no longer available in
6567 BIND_EXPRs, so display them separately. */
6568 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6570 unsigned ix;
6571 ignore_topmost_bind = true;
6573 fprintf (file, "{\n");
6574 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6576 print_generic_decl (file, var, flags);
6577 if (flags & TDF_VERBOSE)
6578 print_node (file, "", var, 4);
6579 fprintf (file, "\n");
6581 any_var = true;
6585 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6587 /* If the CFG has been built, emit a CFG-based dump. */
6588 check_bb_profile (ENTRY_BLOCK_PTR, file);
6589 if (!ignore_topmost_bind)
6590 fprintf (file, "{\n");
6592 if (any_var && n_basic_blocks)
6593 fprintf (file, "\n");
6595 FOR_EACH_BB (bb)
6596 gimple_dump_bb (bb, file, 2, flags);
6598 fprintf (file, "}\n");
6599 check_bb_profile (EXIT_BLOCK_PTR, file);
6601 else if (DECL_SAVED_TREE (fn) == NULL)
6603 /* The function is now in GIMPLE form but the CFG has not been
6604 built yet. Emit the single sequence of GIMPLE statements
6605 that make up its body. */
6606 gimple_seq body = gimple_body (fn);
6608 if (gimple_seq_first_stmt (body)
6609 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6610 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6611 print_gimple_seq (file, body, 0, flags);
6612 else
6614 if (!ignore_topmost_bind)
6615 fprintf (file, "{\n");
6617 if (any_var)
6618 fprintf (file, "\n");
6620 print_gimple_seq (file, body, 2, flags);
6621 fprintf (file, "}\n");
6624 else
6626 int indent;
6628 /* Make a tree based dump. */
6629 chain = DECL_SAVED_TREE (fn);
6631 if (chain && TREE_CODE (chain) == BIND_EXPR)
6633 if (ignore_topmost_bind)
6635 chain = BIND_EXPR_BODY (chain);
6636 indent = 2;
6638 else
6639 indent = 0;
6641 else
6643 if (!ignore_topmost_bind)
6644 fprintf (file, "{\n");
6645 indent = 2;
6648 if (any_var)
6649 fprintf (file, "\n");
6651 print_generic_stmt_indented (file, chain, flags, indent);
6652 if (ignore_topmost_bind)
6653 fprintf (file, "}\n");
6656 if (flags & TDF_ENUMERATE_LOCALS)
6657 dump_enumerated_decls (file, flags);
6658 fprintf (file, "\n\n");
6660 /* Restore CFUN. */
6661 pop_cfun ();
6665 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6667 DEBUG_FUNCTION void
6668 debug_function (tree fn, int flags)
6670 dump_function_to_file (fn, stderr, flags);
6674 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6676 static void
6677 print_pred_bbs (FILE *file, basic_block bb)
6679 edge e;
6680 edge_iterator ei;
6682 FOR_EACH_EDGE (e, ei, bb->preds)
6683 fprintf (file, "bb_%d ", e->src->index);
6687 /* Print on FILE the indexes for the successors of basic_block BB. */
6689 static void
6690 print_succ_bbs (FILE *file, basic_block bb)
6692 edge e;
6693 edge_iterator ei;
6695 FOR_EACH_EDGE (e, ei, bb->succs)
6696 fprintf (file, "bb_%d ", e->dest->index);
6699 /* Print to FILE the basic block BB following the VERBOSITY level. */
6701 void
6702 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6704 char *s_indent = (char *) alloca ((size_t) indent + 1);
6705 memset ((void *) s_indent, ' ', (size_t) indent);
6706 s_indent[indent] = '\0';
6708 /* Print basic_block's header. */
6709 if (verbosity >= 2)
6711 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6712 print_pred_bbs (file, bb);
6713 fprintf (file, "}, succs = {");
6714 print_succ_bbs (file, bb);
6715 fprintf (file, "})\n");
6718 /* Print basic_block's body. */
6719 if (verbosity >= 3)
6721 fprintf (file, "%s {\n", s_indent);
6722 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6723 fprintf (file, "%s }\n", s_indent);
6727 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6729 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6730 VERBOSITY level this outputs the contents of the loop, or just its
6731 structure. */
6733 static void
6734 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6736 char *s_indent;
6737 basic_block bb;
6739 if (loop == NULL)
6740 return;
6742 s_indent = (char *) alloca ((size_t) indent + 1);
6743 memset ((void *) s_indent, ' ', (size_t) indent);
6744 s_indent[indent] = '\0';
6746 /* Print loop's header. */
6747 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6748 loop->num, loop->header->index, loop->latch->index);
6749 fprintf (file, ", niter = ");
6750 print_generic_expr (file, loop->nb_iterations, 0);
6752 if (loop->any_upper_bound)
6754 fprintf (file, ", upper_bound = ");
6755 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6758 if (loop->any_estimate)
6760 fprintf (file, ", estimate = ");
6761 dump_double_int (file, loop->nb_iterations_estimate, true);
6763 fprintf (file, ")\n");
6765 /* Print loop's body. */
6766 if (verbosity >= 1)
6768 fprintf (file, "%s{\n", s_indent);
6769 FOR_EACH_BB (bb)
6770 if (bb->loop_father == loop)
6771 print_loops_bb (file, bb, indent, verbosity);
6773 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6774 fprintf (file, "%s}\n", s_indent);
6778 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6779 spaces. Following VERBOSITY level this outputs the contents of the
6780 loop, or just its structure. */
6782 static void
6783 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6785 if (loop == NULL)
6786 return;
6788 print_loop (file, loop, indent, verbosity);
6789 print_loop_and_siblings (file, loop->next, indent, verbosity);
6792 /* Follow a CFG edge from the entry point of the program, and on entry
6793 of a loop, pretty print the loop structure on FILE. */
6795 void
6796 print_loops (FILE *file, int verbosity)
6798 basic_block bb;
6800 bb = ENTRY_BLOCK_PTR;
6801 if (bb && bb->loop_father)
6802 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6806 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6808 DEBUG_FUNCTION void
6809 debug_loops (int verbosity)
6811 print_loops (stderr, verbosity);
6814 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6816 DEBUG_FUNCTION void
6817 debug_loop (struct loop *loop, int verbosity)
6819 print_loop (stderr, loop, 0, verbosity);
6822 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6823 level. */
6825 DEBUG_FUNCTION void
6826 debug_loop_num (unsigned num, int verbosity)
6828 debug_loop (get_loop (num), verbosity);
6831 /* Return true if BB ends with a call, possibly followed by some
6832 instructions that must stay with the call. Return false,
6833 otherwise. */
6835 static bool
6836 gimple_block_ends_with_call_p (basic_block bb)
6838 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6839 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6843 /* Return true if BB ends with a conditional branch. Return false,
6844 otherwise. */
6846 static bool
6847 gimple_block_ends_with_condjump_p (const_basic_block bb)
6849 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6850 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6854 /* Return true if we need to add fake edge to exit at statement T.
6855 Helper function for gimple_flow_call_edges_add. */
6857 static bool
6858 need_fake_edge_p (gimple t)
6860 tree fndecl = NULL_TREE;
6861 int call_flags = 0;
6863 /* NORETURN and LONGJMP calls already have an edge to exit.
6864 CONST and PURE calls do not need one.
6865 We don't currently check for CONST and PURE here, although
6866 it would be a good idea, because those attributes are
6867 figured out from the RTL in mark_constant_function, and
6868 the counter incrementation code from -fprofile-arcs
6869 leads to different results from -fbranch-probabilities. */
6870 if (is_gimple_call (t))
6872 fndecl = gimple_call_fndecl (t);
6873 call_flags = gimple_call_flags (t);
6876 if (is_gimple_call (t)
6877 && fndecl
6878 && DECL_BUILT_IN (fndecl)
6879 && (call_flags & ECF_NOTHROW)
6880 && !(call_flags & ECF_RETURNS_TWICE)
6881 /* fork() doesn't really return twice, but the effect of
6882 wrapping it in __gcov_fork() which calls __gcov_flush()
6883 and clears the counters before forking has the same
6884 effect as returning twice. Force a fake edge. */
6885 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6886 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6887 return false;
6889 if (is_gimple_call (t)
6890 && !(call_flags & ECF_NORETURN))
6891 return true;
6893 if (gimple_code (t) == GIMPLE_ASM
6894 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6895 return true;
6897 return false;
6901 /* Add fake edges to the function exit for any non constant and non
6902 noreturn calls, volatile inline assembly in the bitmap of blocks
6903 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6904 the number of blocks that were split.
6906 The goal is to expose cases in which entering a basic block does
6907 not imply that all subsequent instructions must be executed. */
6909 static int
6910 gimple_flow_call_edges_add (sbitmap blocks)
6912 int i;
6913 int blocks_split = 0;
6914 int last_bb = last_basic_block;
6915 bool check_last_block = false;
6917 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6918 return 0;
6920 if (! blocks)
6921 check_last_block = true;
6922 else
6923 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6925 /* In the last basic block, before epilogue generation, there will be
6926 a fallthru edge to EXIT. Special care is required if the last insn
6927 of the last basic block is a call because make_edge folds duplicate
6928 edges, which would result in the fallthru edge also being marked
6929 fake, which would result in the fallthru edge being removed by
6930 remove_fake_edges, which would result in an invalid CFG.
6932 Moreover, we can't elide the outgoing fake edge, since the block
6933 profiler needs to take this into account in order to solve the minimal
6934 spanning tree in the case that the call doesn't return.
6936 Handle this by adding a dummy instruction in a new last basic block. */
6937 if (check_last_block)
6939 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6940 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6941 gimple t = NULL;
6943 if (!gsi_end_p (gsi))
6944 t = gsi_stmt (gsi);
6946 if (t && need_fake_edge_p (t))
6948 edge e;
6950 e = find_edge (bb, EXIT_BLOCK_PTR);
6951 if (e)
6953 gsi_insert_on_edge (e, gimple_build_nop ());
6954 gsi_commit_edge_inserts ();
6959 /* Now add fake edges to the function exit for any non constant
6960 calls since there is no way that we can determine if they will
6961 return or not... */
6962 for (i = 0; i < last_bb; i++)
6964 basic_block bb = BASIC_BLOCK (i);
6965 gimple_stmt_iterator gsi;
6966 gimple stmt, last_stmt;
6968 if (!bb)
6969 continue;
6971 if (blocks && !TEST_BIT (blocks, i))
6972 continue;
6974 gsi = gsi_last_nondebug_bb (bb);
6975 if (!gsi_end_p (gsi))
6977 last_stmt = gsi_stmt (gsi);
6980 stmt = gsi_stmt (gsi);
6981 if (need_fake_edge_p (stmt))
6983 edge e;
6985 /* The handling above of the final block before the
6986 epilogue should be enough to verify that there is
6987 no edge to the exit block in CFG already.
6988 Calling make_edge in such case would cause us to
6989 mark that edge as fake and remove it later. */
6990 #ifdef ENABLE_CHECKING
6991 if (stmt == last_stmt)
6993 e = find_edge (bb, EXIT_BLOCK_PTR);
6994 gcc_assert (e == NULL);
6996 #endif
6998 /* Note that the following may create a new basic block
6999 and renumber the existing basic blocks. */
7000 if (stmt != last_stmt)
7002 e = split_block (bb, stmt);
7003 if (e)
7004 blocks_split++;
7006 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7008 gsi_prev (&gsi);
7010 while (!gsi_end_p (gsi));
7014 if (blocks_split)
7015 verify_flow_info ();
7017 return blocks_split;
7020 /* Removes edge E and all the blocks dominated by it, and updates dominance
7021 information. The IL in E->src needs to be updated separately.
7022 If dominance info is not available, only the edge E is removed.*/
7024 void
7025 remove_edge_and_dominated_blocks (edge e)
7027 VEC (basic_block, heap) *bbs_to_remove = NULL;
7028 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7029 bitmap df, df_idom;
7030 edge f;
7031 edge_iterator ei;
7032 bool none_removed = false;
7033 unsigned i;
7034 basic_block bb, dbb;
7035 bitmap_iterator bi;
7037 if (!dom_info_available_p (CDI_DOMINATORS))
7039 remove_edge (e);
7040 return;
7043 /* No updating is needed for edges to exit. */
7044 if (e->dest == EXIT_BLOCK_PTR)
7046 if (cfgcleanup_altered_bbs)
7047 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7048 remove_edge (e);
7049 return;
7052 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7053 that is not dominated by E->dest, then this set is empty. Otherwise,
7054 all the basic blocks dominated by E->dest are removed.
7056 Also, to DF_IDOM we store the immediate dominators of the blocks in
7057 the dominance frontier of E (i.e., of the successors of the
7058 removed blocks, if there are any, and of E->dest otherwise). */
7059 FOR_EACH_EDGE (f, ei, e->dest->preds)
7061 if (f == e)
7062 continue;
7064 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7066 none_removed = true;
7067 break;
7071 df = BITMAP_ALLOC (NULL);
7072 df_idom = BITMAP_ALLOC (NULL);
7074 if (none_removed)
7075 bitmap_set_bit (df_idom,
7076 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7077 else
7079 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7080 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7082 FOR_EACH_EDGE (f, ei, bb->succs)
7084 if (f->dest != EXIT_BLOCK_PTR)
7085 bitmap_set_bit (df, f->dest->index);
7088 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7089 bitmap_clear_bit (df, bb->index);
7091 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7093 bb = BASIC_BLOCK (i);
7094 bitmap_set_bit (df_idom,
7095 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7099 if (cfgcleanup_altered_bbs)
7101 /* Record the set of the altered basic blocks. */
7102 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7103 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7106 /* Remove E and the cancelled blocks. */
7107 if (none_removed)
7108 remove_edge (e);
7109 else
7111 /* Walk backwards so as to get a chance to substitute all
7112 released DEFs into debug stmts. See
7113 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7114 details. */
7115 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7116 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7119 /* Update the dominance information. The immediate dominator may change only
7120 for blocks whose immediate dominator belongs to DF_IDOM:
7122 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7123 removal. Let Z the arbitrary block such that idom(Z) = Y and
7124 Z dominates X after the removal. Before removal, there exists a path P
7125 from Y to X that avoids Z. Let F be the last edge on P that is
7126 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7127 dominates W, and because of P, Z does not dominate W), and W belongs to
7128 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7129 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7131 bb = BASIC_BLOCK (i);
7132 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7133 dbb;
7134 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7135 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7138 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7140 BITMAP_FREE (df);
7141 BITMAP_FREE (df_idom);
7142 VEC_free (basic_block, heap, bbs_to_remove);
7143 VEC_free (basic_block, heap, bbs_to_fix_dom);
7146 /* Purge dead EH edges from basic block BB. */
7148 bool
7149 gimple_purge_dead_eh_edges (basic_block bb)
7151 bool changed = false;
7152 edge e;
7153 edge_iterator ei;
7154 gimple stmt = last_stmt (bb);
7156 if (stmt && stmt_can_throw_internal (stmt))
7157 return false;
7159 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7161 if (e->flags & EDGE_EH)
7163 remove_edge_and_dominated_blocks (e);
7164 changed = true;
7166 else
7167 ei_next (&ei);
7170 return changed;
7173 /* Purge dead EH edges from basic block listed in BLOCKS. */
7175 bool
7176 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7178 bool changed = false;
7179 unsigned i;
7180 bitmap_iterator bi;
7182 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7184 basic_block bb = BASIC_BLOCK (i);
7186 /* Earlier gimple_purge_dead_eh_edges could have removed
7187 this basic block already. */
7188 gcc_assert (bb || changed);
7189 if (bb != NULL)
7190 changed |= gimple_purge_dead_eh_edges (bb);
7193 return changed;
7196 /* Purge dead abnormal call edges from basic block BB. */
7198 bool
7199 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7201 bool changed = false;
7202 edge e;
7203 edge_iterator ei;
7204 gimple stmt = last_stmt (bb);
7206 if (!cfun->has_nonlocal_label)
7207 return false;
7209 if (stmt && stmt_can_make_abnormal_goto (stmt))
7210 return false;
7212 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7214 if (e->flags & EDGE_ABNORMAL)
7216 remove_edge_and_dominated_blocks (e);
7217 changed = true;
7219 else
7220 ei_next (&ei);
7223 return changed;
7226 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7228 bool
7229 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7231 bool changed = false;
7232 unsigned i;
7233 bitmap_iterator bi;
7235 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7237 basic_block bb = BASIC_BLOCK (i);
7239 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7240 this basic block already. */
7241 gcc_assert (bb || changed);
7242 if (bb != NULL)
7243 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7246 return changed;
7249 /* This function is called whenever a new edge is created or
7250 redirected. */
7252 static void
7253 gimple_execute_on_growing_pred (edge e)
7255 basic_block bb = e->dest;
7257 if (!gimple_seq_empty_p (phi_nodes (bb)))
7258 reserve_phi_args_for_new_edge (bb);
7261 /* This function is called immediately before edge E is removed from
7262 the edge vector E->dest->preds. */
7264 static void
7265 gimple_execute_on_shrinking_pred (edge e)
7267 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7268 remove_phi_args (e);
7271 /*---------------------------------------------------------------------------
7272 Helper functions for Loop versioning
7273 ---------------------------------------------------------------------------*/
7275 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7276 of 'first'. Both of them are dominated by 'new_head' basic block. When
7277 'new_head' was created by 'second's incoming edge it received phi arguments
7278 on the edge by split_edge(). Later, additional edge 'e' was created to
7279 connect 'new_head' and 'first'. Now this routine adds phi args on this
7280 additional edge 'e' that new_head to second edge received as part of edge
7281 splitting. */
7283 static void
7284 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7285 basic_block new_head, edge e)
7287 gimple phi1, phi2;
7288 gimple_stmt_iterator psi1, psi2;
7289 tree def;
7290 edge e2 = find_edge (new_head, second);
7292 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7293 edge, we should always have an edge from NEW_HEAD to SECOND. */
7294 gcc_assert (e2 != NULL);
7296 /* Browse all 'second' basic block phi nodes and add phi args to
7297 edge 'e' for 'first' head. PHI args are always in correct order. */
7299 for (psi2 = gsi_start_phis (second),
7300 psi1 = gsi_start_phis (first);
7301 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7302 gsi_next (&psi2), gsi_next (&psi1))
7304 phi1 = gsi_stmt (psi1);
7305 phi2 = gsi_stmt (psi2);
7306 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7307 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7312 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7313 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7314 the destination of the ELSE part. */
7316 static void
7317 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7318 basic_block second_head ATTRIBUTE_UNUSED,
7319 basic_block cond_bb, void *cond_e)
7321 gimple_stmt_iterator gsi;
7322 gimple new_cond_expr;
7323 tree cond_expr = (tree) cond_e;
7324 edge e0;
7326 /* Build new conditional expr */
7327 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7328 NULL_TREE, NULL_TREE);
7330 /* Add new cond in cond_bb. */
7331 gsi = gsi_last_bb (cond_bb);
7332 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7334 /* Adjust edges appropriately to connect new head with first head
7335 as well as second head. */
7336 e0 = single_succ_edge (cond_bb);
7337 e0->flags &= ~EDGE_FALLTHRU;
7338 e0->flags |= EDGE_FALSE_VALUE;
7341 struct cfg_hooks gimple_cfg_hooks = {
7342 "gimple",
7343 gimple_verify_flow_info,
7344 gimple_dump_bb, /* dump_bb */
7345 create_bb, /* create_basic_block */
7346 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7347 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7348 gimple_can_remove_branch_p, /* can_remove_branch_p */
7349 remove_bb, /* delete_basic_block */
7350 gimple_split_block, /* split_block */
7351 gimple_move_block_after, /* move_block_after */
7352 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7353 gimple_merge_blocks, /* merge_blocks */
7354 gimple_predict_edge, /* predict_edge */
7355 gimple_predicted_by_p, /* predicted_by_p */
7356 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7357 gimple_duplicate_bb, /* duplicate_block */
7358 gimple_split_edge, /* split_edge */
7359 gimple_make_forwarder_block, /* make_forward_block */
7360 NULL, /* tidy_fallthru_edge */
7361 NULL, /* force_nonfallthru */
7362 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7363 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7364 gimple_flow_call_edges_add, /* flow_call_edges_add */
7365 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7366 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7367 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7368 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7369 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7370 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7371 flush_pending_stmts /* flush_pending_stmts */
7375 /* Split all critical edges. */
7377 static unsigned int
7378 split_critical_edges (void)
7380 basic_block bb;
7381 edge e;
7382 edge_iterator ei;
7384 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7385 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7386 mappings around the calls to split_edge. */
7387 start_recording_case_labels ();
7388 FOR_ALL_BB (bb)
7390 FOR_EACH_EDGE (e, ei, bb->succs)
7392 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7393 split_edge (e);
7394 /* PRE inserts statements to edges and expects that
7395 since split_critical_edges was done beforehand, committing edge
7396 insertions will not split more edges. In addition to critical
7397 edges we must split edges that have multiple successors and
7398 end by control flow statements, such as RESX.
7399 Go ahead and split them too. This matches the logic in
7400 gimple_find_edge_insert_loc. */
7401 else if ((!single_pred_p (e->dest)
7402 || !gimple_seq_empty_p (phi_nodes (e->dest))
7403 || e->dest == EXIT_BLOCK_PTR)
7404 && e->src != ENTRY_BLOCK_PTR
7405 && !(e->flags & EDGE_ABNORMAL))
7407 gimple_stmt_iterator gsi;
7409 gsi = gsi_last_bb (e->src);
7410 if (!gsi_end_p (gsi)
7411 && stmt_ends_bb_p (gsi_stmt (gsi))
7412 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7413 && !gimple_call_builtin_p (gsi_stmt (gsi),
7414 BUILT_IN_RETURN)))
7415 split_edge (e);
7419 end_recording_case_labels ();
7420 return 0;
7423 struct gimple_opt_pass pass_split_crit_edges =
7426 GIMPLE_PASS,
7427 "crited", /* name */
7428 NULL, /* gate */
7429 split_critical_edges, /* execute */
7430 NULL, /* sub */
7431 NULL, /* next */
7432 0, /* static_pass_number */
7433 TV_TREE_SPLIT_EDGES, /* tv_id */
7434 PROP_cfg, /* properties required */
7435 PROP_no_crit_edges, /* properties_provided */
7436 0, /* properties_destroyed */
7437 0, /* todo_flags_start */
7438 TODO_verify_flow /* todo_flags_finish */
7443 /* Build a ternary operation and gimplify it. Emit code before GSI.
7444 Return the gimple_val holding the result. */
7446 tree
7447 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7448 tree type, tree a, tree b, tree c)
7450 tree ret;
7451 location_t loc = gimple_location (gsi_stmt (*gsi));
7453 ret = fold_build3_loc (loc, code, type, a, b, c);
7454 STRIP_NOPS (ret);
7456 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7457 GSI_SAME_STMT);
7460 /* Build a binary operation and gimplify it. Emit code before GSI.
7461 Return the gimple_val holding the result. */
7463 tree
7464 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7465 tree type, tree a, tree b)
7467 tree ret;
7469 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7470 STRIP_NOPS (ret);
7472 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7473 GSI_SAME_STMT);
7476 /* Build a unary operation and gimplify it. Emit code before GSI.
7477 Return the gimple_val holding the result. */
7479 tree
7480 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7481 tree a)
7483 tree ret;
7485 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7486 STRIP_NOPS (ret);
7488 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7489 GSI_SAME_STMT);
7494 /* Emit return warnings. */
7496 static unsigned int
7497 execute_warn_function_return (void)
7499 source_location location;
7500 gimple last;
7501 edge e;
7502 edge_iterator ei;
7504 /* If we have a path to EXIT, then we do return. */
7505 if (TREE_THIS_VOLATILE (cfun->decl)
7506 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7508 location = UNKNOWN_LOCATION;
7509 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7511 last = last_stmt (e->src);
7512 if ((gimple_code (last) == GIMPLE_RETURN
7513 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7514 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7515 break;
7517 if (location == UNKNOWN_LOCATION)
7518 location = cfun->function_end_locus;
7519 warning_at (location, 0, "%<noreturn%> function does return");
7522 /* If we see "return;" in some basic block, then we do reach the end
7523 without returning a value. */
7524 else if (warn_return_type
7525 && !TREE_NO_WARNING (cfun->decl)
7526 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7527 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7529 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7531 gimple last = last_stmt (e->src);
7532 if (gimple_code (last) == GIMPLE_RETURN
7533 && gimple_return_retval (last) == NULL
7534 && !gimple_no_warning_p (last))
7536 location = gimple_location (last);
7537 if (location == UNKNOWN_LOCATION)
7538 location = cfun->function_end_locus;
7539 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7540 TREE_NO_WARNING (cfun->decl) = 1;
7541 break;
7545 return 0;
7549 /* Given a basic block B which ends with a conditional and has
7550 precisely two successors, determine which of the edges is taken if
7551 the conditional is true and which is taken if the conditional is
7552 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7554 void
7555 extract_true_false_edges_from_block (basic_block b,
7556 edge *true_edge,
7557 edge *false_edge)
7559 edge e = EDGE_SUCC (b, 0);
7561 if (e->flags & EDGE_TRUE_VALUE)
7563 *true_edge = e;
7564 *false_edge = EDGE_SUCC (b, 1);
7566 else
7568 *false_edge = e;
7569 *true_edge = EDGE_SUCC (b, 1);
7573 struct gimple_opt_pass pass_warn_function_return =
7576 GIMPLE_PASS,
7577 "*warn_function_return", /* name */
7578 NULL, /* gate */
7579 execute_warn_function_return, /* execute */
7580 NULL, /* sub */
7581 NULL, /* next */
7582 0, /* static_pass_number */
7583 TV_NONE, /* tv_id */
7584 PROP_cfg, /* properties_required */
7585 0, /* properties_provided */
7586 0, /* properties_destroyed */
7587 0, /* todo_flags_start */
7588 0 /* todo_flags_finish */
7592 /* Emit noreturn warnings. */
7594 static unsigned int
7595 execute_warn_function_noreturn (void)
7597 if (!TREE_THIS_VOLATILE (current_function_decl)
7598 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7599 warn_function_noreturn (current_function_decl);
7600 return 0;
7603 static bool
7604 gate_warn_function_noreturn (void)
7606 return warn_suggest_attribute_noreturn;
7609 struct gimple_opt_pass pass_warn_function_noreturn =
7612 GIMPLE_PASS,
7613 "*warn_function_noreturn", /* name */
7614 gate_warn_function_noreturn, /* gate */
7615 execute_warn_function_noreturn, /* execute */
7616 NULL, /* sub */
7617 NULL, /* next */
7618 0, /* static_pass_number */
7619 TV_NONE, /* tv_id */
7620 PROP_cfg, /* properties_required */
7621 0, /* properties_provided */
7622 0, /* properties_destroyed */
7623 0, /* todo_flags_start */
7624 0 /* todo_flags_finish */
7629 /* Walk a gimplified function and warn for functions whose return value is
7630 ignored and attribute((warn_unused_result)) is set. This is done before
7631 inlining, so we don't have to worry about that. */
7633 static void
7634 do_warn_unused_result (gimple_seq seq)
7636 tree fdecl, ftype;
7637 gimple_stmt_iterator i;
7639 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7641 gimple g = gsi_stmt (i);
7643 switch (gimple_code (g))
7645 case GIMPLE_BIND:
7646 do_warn_unused_result (gimple_bind_body (g));
7647 break;
7648 case GIMPLE_TRY:
7649 do_warn_unused_result (gimple_try_eval (g));
7650 do_warn_unused_result (gimple_try_cleanup (g));
7651 break;
7652 case GIMPLE_CATCH:
7653 do_warn_unused_result (gimple_catch_handler (g));
7654 break;
7655 case GIMPLE_EH_FILTER:
7656 do_warn_unused_result (gimple_eh_filter_failure (g));
7657 break;
7659 case GIMPLE_CALL:
7660 if (gimple_call_lhs (g))
7661 break;
7662 if (gimple_call_internal_p (g))
7663 break;
7665 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7666 LHS. All calls whose value is ignored should be
7667 represented like this. Look for the attribute. */
7668 fdecl = gimple_call_fndecl (g);
7669 ftype = gimple_call_fntype (g);
7671 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7673 location_t loc = gimple_location (g);
7675 if (fdecl)
7676 warning_at (loc, OPT_Wunused_result,
7677 "ignoring return value of %qD, "
7678 "declared with attribute warn_unused_result",
7679 fdecl);
7680 else
7681 warning_at (loc, OPT_Wunused_result,
7682 "ignoring return value of function "
7683 "declared with attribute warn_unused_result");
7685 break;
7687 default:
7688 /* Not a container, not a call, or a call whose value is used. */
7689 break;
7694 static unsigned int
7695 run_warn_unused_result (void)
7697 do_warn_unused_result (gimple_body (current_function_decl));
7698 return 0;
7701 static bool
7702 gate_warn_unused_result (void)
7704 return flag_warn_unused_result;
7707 struct gimple_opt_pass pass_warn_unused_result =
7710 GIMPLE_PASS,
7711 "*warn_unused_result", /* name */
7712 gate_warn_unused_result, /* gate */
7713 run_warn_unused_result, /* execute */
7714 NULL, /* sub */
7715 NULL, /* next */
7716 0, /* static_pass_number */
7717 TV_NONE, /* tv_id */
7718 PROP_gimple_any, /* properties_required */
7719 0, /* properties_provided */
7720 0, /* properties_destroyed */
7721 0, /* todo_flags_start */
7722 0, /* todo_flags_finish */