2016-05-02 Tristan Gingold <gingold@adacore.com>
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob74d3902f529042b9ca0d68700b26ff5b5a46cbf4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Aggr; use Exp_Aggr;
32 with Exp_Atag; use Exp_Atag;
33 with Exp_Ch4; use Exp_Ch4;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Ch11; use Exp_Ch11;
38 with Exp_Dbug; use Exp_Dbug;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Smem; use Exp_Smem;
42 with Exp_Strm; use Exp_Strm;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Freeze; use Freeze;
46 with Ghost; use Ghost;
47 with Inline; use Inline;
48 with Namet; use Namet;
49 with Nlists; use Nlists;
50 with Nmake; use Nmake;
51 with Opt; use Opt;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Attr; use Sem_Attr;
58 with Sem_Cat; use Sem_Cat;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Disp; use Sem_Disp;
64 with Sem_Eval; use Sem_Eval;
65 with Sem_Mech; use Sem_Mech;
66 with Sem_Res; use Sem_Res;
67 with Sem_SCIL; use Sem_SCIL;
68 with Sem_Type; use Sem_Type;
69 with Sem_Util; use Sem_Util;
70 with Sinfo; use Sinfo;
71 with Stand; use Stand;
72 with Snames; use Snames;
73 with Targparm; use Targparm;
74 with Tbuild; use Tbuild;
75 with Ttypes; use Ttypes;
76 with Validsw; use Validsw;
78 package body Exp_Ch3 is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Adjust_Discriminants (Rtype : Entity_Id);
85 -- This is used when freezing a record type. It attempts to construct
86 -- more restrictive subtypes for discriminants so that the max size of
87 -- the record can be calculated more accurately. See the body of this
88 -- procedure for details.
90 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
91 -- Build initialization procedure for given array type. Nod is a node
92 -- used for attachment of any actions required in its construction.
93 -- It also supplies the source location used for the procedure.
95 function Build_Array_Invariant_Proc
96 (A_Type : Entity_Id;
97 Nod : Node_Id) return Node_Id;
98 -- If the component of type of array type has invariants, build procedure
99 -- that checks invariant on all components of the array. Ada 2012 specifies
100 -- that an invariant on some type T must be applied to in-out parameters
101 -- and return values that include a part of type T. If the array type has
102 -- an otherwise specified invariant, the component check procedure is
103 -- called from within the user-specified invariant. Otherwise this becomes
104 -- the invariant procedure for the array type.
106 function Build_Record_Invariant_Proc
107 (R_Type : Entity_Id;
108 Nod : Node_Id) return Node_Id;
109 -- Ditto for record types.
111 function Build_Discriminant_Formals
112 (Rec_Id : Entity_Id;
113 Use_Dl : Boolean) return List_Id;
114 -- This function uses the discriminants of a type to build a list of
115 -- formal parameters, used in Build_Init_Procedure among other places.
116 -- If the flag Use_Dl is set, the list is built using the already
117 -- defined discriminals of the type, as is the case for concurrent
118 -- types with discriminants. Otherwise new identifiers are created,
119 -- with the source names of the discriminants.
121 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
122 -- This function builds a static aggregate that can serve as the initial
123 -- value for an array type whose bounds are static, and whose component
124 -- type is a composite type that has a static equivalent aggregate.
125 -- The equivalent array aggregate is used both for object initialization
126 -- and for component initialization, when used in the following function.
128 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
129 -- This function builds a static aggregate that can serve as the initial
130 -- value for a record type whose components are scalar and initialized
131 -- with compile-time values, or arrays with similar initialization or
132 -- defaults. When possible, initialization of an object of the type can
133 -- be achieved by using a copy of the aggregate as an initial value, thus
134 -- removing the implicit call that would otherwise constitute elaboration
135 -- code.
137 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
138 -- Build record initialization procedure. N is the type declaration
139 -- node, and Rec_Ent is the corresponding entity for the record type.
141 procedure Build_Slice_Assignment (Typ : Entity_Id);
142 -- Build assignment procedure for one-dimensional arrays of controlled
143 -- types. Other array and slice assignments are expanded in-line, but
144 -- the code expansion for controlled components (when control actions
145 -- are active) can lead to very large blocks that GCC3 handles poorly.
147 procedure Build_Untagged_Equality (Typ : Entity_Id);
148 -- AI05-0123: Equality on untagged records composes. This procedure
149 -- builds the equality routine for an untagged record that has components
150 -- of a record type that has user-defined primitive equality operations.
151 -- The resulting operation is a TSS subprogram.
153 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
154 -- Create An Equality function for the untagged variant record Typ and
155 -- attach it to the TSS list
157 procedure Check_Stream_Attributes (Typ : Entity_Id);
158 -- Check that if a limited extension has a parent with user-defined stream
159 -- attributes, and does not itself have user-defined stream-attributes,
160 -- then any limited component of the extension also has the corresponding
161 -- user-defined stream attributes.
163 procedure Clean_Task_Names
164 (Typ : Entity_Id;
165 Proc_Id : Entity_Id);
166 -- If an initialization procedure includes calls to generate names
167 -- for task subcomponents, indicate that secondary stack cleanup is
168 -- needed after an initialization. Typ is the component type, and Proc_Id
169 -- the initialization procedure for the enclosing composite type.
171 procedure Expand_Freeze_Array_Type (N : Node_Id);
172 -- Freeze an array type. Deals with building the initialization procedure,
173 -- creating the packed array type for a packed array and also with the
174 -- creation of the controlling procedures for the controlled case. The
175 -- argument N is the N_Freeze_Entity node for the type.
177 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
178 -- Freeze a class-wide type. Build routine Finalize_Address for the purpose
179 -- of finalizing controlled derivations from the class-wide's root type.
181 procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
182 -- Freeze enumeration type with non-standard representation. Builds the
183 -- array and function needed to convert between enumeration pos and
184 -- enumeration representation values. N is the N_Freeze_Entity node
185 -- for the type.
187 procedure Expand_Freeze_Record_Type (N : Node_Id);
188 -- Freeze record type. Builds all necessary discriminant checking
189 -- and other ancillary functions, and builds dispatch tables where
190 -- needed. The argument N is the N_Freeze_Entity node. This processing
191 -- applies only to E_Record_Type entities, not to class wide types,
192 -- record subtypes, or private types.
194 procedure Expand_Tagged_Root (T : Entity_Id);
195 -- Add a field _Tag at the beginning of the record. This field carries
196 -- the value of the access to the Dispatch table. This procedure is only
197 -- called on root type, the _Tag field being inherited by the descendants.
199 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
200 -- Treat user-defined stream operations as renaming_as_body if the
201 -- subprogram they rename is not frozen when the type is frozen.
203 procedure Insert_Component_Invariant_Checks
204 (N : Node_Id;
205 Typ : Entity_Id;
206 Proc : Node_Id);
207 -- If a composite type has invariants and also has components with defined
208 -- invariants. the component invariant procedure is inserted into the user-
209 -- defined invariant procedure and added to the checks to be performed.
211 procedure Initialization_Warning (E : Entity_Id);
212 -- If static elaboration of the package is requested, indicate
213 -- when a type does meet the conditions for static initialization. If
214 -- E is a type, it has components that have no static initialization.
215 -- if E is an entity, its initial expression is not compile-time known.
217 function Init_Formals (Typ : Entity_Id) return List_Id;
218 -- This function builds the list of formals for an initialization routine.
219 -- The first formal is always _Init with the given type. For task value
220 -- record types and types containing tasks, three additional formals are
221 -- added:
223 -- _Master : Master_Id
224 -- _Chain : in out Activation_Chain
225 -- _Task_Name : String
227 -- The caller must append additional entries for discriminants if required.
229 function Inline_Init_Proc (Typ : Entity_Id) return Boolean;
230 -- Returns true if the initialization procedure of Typ should be inlined
232 function In_Runtime (E : Entity_Id) return Boolean;
233 -- Check if E is defined in the RTL (in a child of Ada or System). Used
234 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
236 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean;
237 -- Returns true if Prim is a user defined equality function
239 function Make_Eq_Body
240 (Typ : Entity_Id;
241 Eq_Name : Name_Id) return Node_Id;
242 -- Build the body of a primitive equality operation for a tagged record
243 -- type, or in Ada 2012 for any record type that has components with a
244 -- user-defined equality. Factored out of Predefined_Primitive_Bodies.
246 function Make_Eq_Case
247 (E : Entity_Id;
248 CL : Node_Id;
249 Discrs : Elist_Id := New_Elmt_List) return List_Id;
250 -- Building block for variant record equality. Defined to share the code
251 -- between the tagged and untagged case. Given a Component_List node CL,
252 -- it generates an 'if' followed by a 'case' statement that compares all
253 -- components of local temporaries named X and Y (that are declared as
254 -- formals at some upper level). E provides the Sloc to be used for the
255 -- generated code.
257 -- IF E is an unchecked_union, Discrs is the list of formals created for
258 -- the inferred discriminants of one operand. These formals are used in
259 -- the generated case statements for each variant of the unchecked union.
261 function Make_Eq_If
262 (E : Entity_Id;
263 L : List_Id) return Node_Id;
264 -- Building block for variant record equality. Defined to share the code
265 -- between the tagged and untagged case. Given the list of components
266 -- (or discriminants) L, it generates a return statement that compares all
267 -- components of local temporaries named X and Y (that are declared as
268 -- formals at some upper level). E provides the Sloc to be used for the
269 -- generated code.
271 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
272 -- Search for a renaming of the inequality dispatching primitive of
273 -- this tagged type. If found then build and return the corresponding
274 -- rename-as-body inequality subprogram; otherwise return Empty.
276 procedure Make_Predefined_Primitive_Specs
277 (Tag_Typ : Entity_Id;
278 Predef_List : out List_Id;
279 Renamed_Eq : out Entity_Id);
280 -- Create a list with the specs of the predefined primitive operations.
281 -- For tagged types that are interfaces all these primitives are defined
282 -- abstract.
284 -- The following entries are present for all tagged types, and provide
285 -- the results of the corresponding attribute applied to the object.
286 -- Dispatching is required in general, since the result of the attribute
287 -- will vary with the actual object subtype.
289 -- _size provides result of 'Size attribute
290 -- typSR provides result of 'Read attribute
291 -- typSW provides result of 'Write attribute
292 -- typSI provides result of 'Input attribute
293 -- typSO provides result of 'Output attribute
295 -- The following entries are additionally present for non-limited tagged
296 -- types, and implement additional dispatching operations for predefined
297 -- operations:
299 -- _equality implements "=" operator
300 -- _assign implements assignment operation
301 -- typDF implements deep finalization
302 -- typDA implements deep adjust
304 -- The latter two are empty procedures unless the type contains some
305 -- controlled components that require finalization actions (the deep
306 -- in the name refers to the fact that the action applies to components).
308 -- The list is returned in Predef_List. The Parameter Renamed_Eq either
309 -- returns the value Empty, or else the defining unit name for the
310 -- predefined equality function in the case where the type has a primitive
311 -- operation that is a renaming of predefined equality (but only if there
312 -- is also an overriding user-defined equality function). The returned
313 -- Renamed_Eq will be passed to the corresponding parameter of
314 -- Predefined_Primitive_Bodies.
316 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
317 -- Returns True if there are representation clauses for type T that are not
318 -- inherited. If the result is false, the init_proc and the discriminant
319 -- checking functions of the parent can be reused by a derived type.
321 procedure Make_Controlling_Function_Wrappers
322 (Tag_Typ : Entity_Id;
323 Decl_List : out List_Id;
324 Body_List : out List_Id);
325 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
326 -- associated with inherited functions with controlling results which
327 -- are not overridden. The body of each wrapper function consists solely
328 -- of a return statement whose expression is an extension aggregate
329 -- invoking the inherited subprogram's parent subprogram and extended
330 -- with a null association list.
332 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
333 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
334 -- null procedures inherited from an interface type that have not been
335 -- overridden. Only one null procedure will be created for a given set of
336 -- inherited null procedures with homographic profiles.
338 function Predef_Spec_Or_Body
339 (Loc : Source_Ptr;
340 Tag_Typ : Entity_Id;
341 Name : Name_Id;
342 Profile : List_Id;
343 Ret_Type : Entity_Id := Empty;
344 For_Body : Boolean := False) return Node_Id;
345 -- This function generates the appropriate expansion for a predefined
346 -- primitive operation specified by its name, parameter profile and
347 -- return type (Empty means this is a procedure). If For_Body is false,
348 -- then the returned node is a subprogram declaration. If For_Body is
349 -- true, then the returned node is a empty subprogram body containing
350 -- no declarations and no statements.
352 function Predef_Stream_Attr_Spec
353 (Loc : Source_Ptr;
354 Tag_Typ : Entity_Id;
355 Name : TSS_Name_Type;
356 For_Body : Boolean := False) return Node_Id;
357 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
358 -- input and output attribute whose specs are constructed in Exp_Strm.
360 function Predef_Deep_Spec
361 (Loc : Source_Ptr;
362 Tag_Typ : Entity_Id;
363 Name : TSS_Name_Type;
364 For_Body : Boolean := False) return Node_Id;
365 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
366 -- and _deep_finalize
368 function Predefined_Primitive_Bodies
369 (Tag_Typ : Entity_Id;
370 Renamed_Eq : Entity_Id) return List_Id;
371 -- Create the bodies of the predefined primitives that are described in
372 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
373 -- the defining unit name of the type's predefined equality as returned
374 -- by Make_Predefined_Primitive_Specs.
376 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
377 -- Freeze entities of all predefined primitive operations. This is needed
378 -- because the bodies of these operations do not normally do any freezing.
380 function Stream_Operation_OK
381 (Typ : Entity_Id;
382 Operation : TSS_Name_Type) return Boolean;
383 -- Check whether the named stream operation must be emitted for a given
384 -- type. The rules for inheritance of stream attributes by type extensions
385 -- are enforced by this function. Furthermore, various restrictions prevent
386 -- the generation of these operations, as a useful optimization or for
387 -- certification purposes and to save unnecessary generated code.
389 --------------------------
390 -- Adjust_Discriminants --
391 --------------------------
393 -- This procedure attempts to define subtypes for discriminants that are
394 -- more restrictive than those declared. Such a replacement is possible if
395 -- we can demonstrate that values outside the restricted range would cause
396 -- constraint errors in any case. The advantage of restricting the
397 -- discriminant types in this way is that the maximum size of the variant
398 -- record can be calculated more conservatively.
400 -- An example of a situation in which we can perform this type of
401 -- restriction is the following:
403 -- subtype B is range 1 .. 10;
404 -- type Q is array (B range <>) of Integer;
406 -- type V (N : Natural) is record
407 -- C : Q (1 .. N);
408 -- end record;
410 -- In this situation, we can restrict the upper bound of N to 10, since
411 -- any larger value would cause a constraint error in any case.
413 -- There are many situations in which such restriction is possible, but
414 -- for now, we just look for cases like the above, where the component
415 -- in question is a one dimensional array whose upper bound is one of
416 -- the record discriminants. Also the component must not be part of
417 -- any variant part, since then the component does not always exist.
419 procedure Adjust_Discriminants (Rtype : Entity_Id) is
420 Loc : constant Source_Ptr := Sloc (Rtype);
421 Comp : Entity_Id;
422 Ctyp : Entity_Id;
423 Ityp : Entity_Id;
424 Lo : Node_Id;
425 Hi : Node_Id;
426 P : Node_Id;
427 Loval : Uint;
428 Discr : Entity_Id;
429 Dtyp : Entity_Id;
430 Dhi : Node_Id;
431 Dhiv : Uint;
432 Ahi : Node_Id;
433 Ahiv : Uint;
434 Tnn : Entity_Id;
436 begin
437 Comp := First_Component (Rtype);
438 while Present (Comp) loop
440 -- If our parent is a variant, quit, we do not look at components
441 -- that are in variant parts, because they may not always exist.
443 P := Parent (Comp); -- component declaration
444 P := Parent (P); -- component list
446 exit when Nkind (Parent (P)) = N_Variant;
448 -- We are looking for a one dimensional array type
450 Ctyp := Etype (Comp);
452 if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
453 goto Continue;
454 end if;
456 -- The lower bound must be constant, and the upper bound is a
457 -- discriminant (which is a discriminant of the current record).
459 Ityp := Etype (First_Index (Ctyp));
460 Lo := Type_Low_Bound (Ityp);
461 Hi := Type_High_Bound (Ityp);
463 if not Compile_Time_Known_Value (Lo)
464 or else Nkind (Hi) /= N_Identifier
465 or else No (Entity (Hi))
466 or else Ekind (Entity (Hi)) /= E_Discriminant
467 then
468 goto Continue;
469 end if;
471 -- We have an array with appropriate bounds
473 Loval := Expr_Value (Lo);
474 Discr := Entity (Hi);
475 Dtyp := Etype (Discr);
477 -- See if the discriminant has a known upper bound
479 Dhi := Type_High_Bound (Dtyp);
481 if not Compile_Time_Known_Value (Dhi) then
482 goto Continue;
483 end if;
485 Dhiv := Expr_Value (Dhi);
487 -- See if base type of component array has known upper bound
489 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
491 if not Compile_Time_Known_Value (Ahi) then
492 goto Continue;
493 end if;
495 Ahiv := Expr_Value (Ahi);
497 -- The condition for doing the restriction is that the high bound
498 -- of the discriminant is greater than the low bound of the array,
499 -- and is also greater than the high bound of the base type index.
501 if Dhiv > Loval and then Dhiv > Ahiv then
503 -- We can reset the upper bound of the discriminant type to
504 -- whichever is larger, the low bound of the component, or
505 -- the high bound of the base type array index.
507 -- We build a subtype that is declared as
509 -- subtype Tnn is discr_type range discr_type'First .. max;
511 -- And insert this declaration into the tree. The type of the
512 -- discriminant is then reset to this more restricted subtype.
514 Tnn := Make_Temporary (Loc, 'T');
516 Insert_Action (Declaration_Node (Rtype),
517 Make_Subtype_Declaration (Loc,
518 Defining_Identifier => Tnn,
519 Subtype_Indication =>
520 Make_Subtype_Indication (Loc,
521 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
522 Constraint =>
523 Make_Range_Constraint (Loc,
524 Range_Expression =>
525 Make_Range (Loc,
526 Low_Bound =>
527 Make_Attribute_Reference (Loc,
528 Attribute_Name => Name_First,
529 Prefix => New_Occurrence_Of (Dtyp, Loc)),
530 High_Bound =>
531 Make_Integer_Literal (Loc,
532 Intval => UI_Max (Loval, Ahiv)))))));
534 Set_Etype (Discr, Tnn);
535 end if;
537 <<Continue>>
538 Next_Component (Comp);
539 end loop;
540 end Adjust_Discriminants;
542 ---------------------------
543 -- Build_Array_Init_Proc --
544 ---------------------------
546 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
547 Comp_Type : constant Entity_Id := Component_Type (A_Type);
548 Body_Stmts : List_Id;
549 Has_Default_Init : Boolean;
550 Index_List : List_Id;
551 Loc : Source_Ptr;
552 Proc_Id : Entity_Id;
554 function Init_Component return List_Id;
555 -- Create one statement to initialize one array component, designated
556 -- by a full set of indexes.
558 function Init_One_Dimension (N : Int) return List_Id;
559 -- Create loop to initialize one dimension of the array. The single
560 -- statement in the loop body initializes the inner dimensions if any,
561 -- or else the single component. Note that this procedure is called
562 -- recursively, with N being the dimension to be initialized. A call
563 -- with N greater than the number of dimensions simply generates the
564 -- component initialization, terminating the recursion.
566 --------------------
567 -- Init_Component --
568 --------------------
570 function Init_Component return List_Id is
571 Comp : Node_Id;
573 begin
574 Comp :=
575 Make_Indexed_Component (Loc,
576 Prefix => Make_Identifier (Loc, Name_uInit),
577 Expressions => Index_List);
579 if Has_Default_Aspect (A_Type) then
580 Set_Assignment_OK (Comp);
581 return New_List (
582 Make_Assignment_Statement (Loc,
583 Name => Comp,
584 Expression =>
585 Convert_To (Comp_Type,
586 Default_Aspect_Component_Value (First_Subtype (A_Type)))));
588 elsif Needs_Simple_Initialization (Comp_Type) then
589 Set_Assignment_OK (Comp);
590 return New_List (
591 Make_Assignment_Statement (Loc,
592 Name => Comp,
593 Expression =>
594 Get_Simple_Init_Val
595 (Comp_Type, Nod, Component_Size (A_Type))));
597 else
598 Clean_Task_Names (Comp_Type, Proc_Id);
599 return
600 Build_Initialization_Call
601 (Loc, Comp, Comp_Type,
602 In_Init_Proc => True,
603 Enclos_Type => A_Type);
604 end if;
605 end Init_Component;
607 ------------------------
608 -- Init_One_Dimension --
609 ------------------------
611 function Init_One_Dimension (N : Int) return List_Id is
612 Index : Entity_Id;
614 begin
615 -- If the component does not need initializing, then there is nothing
616 -- to do here, so we return a null body. This occurs when generating
617 -- the dummy Init_Proc needed for Initialize_Scalars processing.
619 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
620 and then not Needs_Simple_Initialization (Comp_Type)
621 and then not Has_Task (Comp_Type)
622 and then not Has_Default_Aspect (A_Type)
623 then
624 return New_List (Make_Null_Statement (Loc));
626 -- If all dimensions dealt with, we simply initialize the component
628 elsif N > Number_Dimensions (A_Type) then
629 return Init_Component;
631 -- Here we generate the required loop
633 else
634 Index :=
635 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
637 Append (New_Occurrence_Of (Index, Loc), Index_List);
639 return New_List (
640 Make_Implicit_Loop_Statement (Nod,
641 Identifier => Empty,
642 Iteration_Scheme =>
643 Make_Iteration_Scheme (Loc,
644 Loop_Parameter_Specification =>
645 Make_Loop_Parameter_Specification (Loc,
646 Defining_Identifier => Index,
647 Discrete_Subtype_Definition =>
648 Make_Attribute_Reference (Loc,
649 Prefix =>
650 Make_Identifier (Loc, Name_uInit),
651 Attribute_Name => Name_Range,
652 Expressions => New_List (
653 Make_Integer_Literal (Loc, N))))),
654 Statements => Init_One_Dimension (N + 1)));
655 end if;
656 end Init_One_Dimension;
658 -- Start of processing for Build_Array_Init_Proc
660 begin
661 -- The init proc is created when analyzing the freeze node for the type,
662 -- but it properly belongs with the array type declaration. However, if
663 -- the freeze node is for a subtype of a type declared in another unit
664 -- it seems preferable to use the freeze node as the source location of
665 -- the init proc. In any case this is preferable for gcov usage, and
666 -- the Sloc is not otherwise used by the compiler.
668 if In_Open_Scopes (Scope (A_Type)) then
669 Loc := Sloc (A_Type);
670 else
671 Loc := Sloc (Nod);
672 end if;
674 -- Nothing to generate in the following cases:
676 -- 1. Initialization is suppressed for the type
677 -- 2. An initialization already exists for the base type
679 if Initialization_Suppressed (A_Type)
680 or else Present (Base_Init_Proc (A_Type))
681 then
682 return;
683 end if;
685 Index_List := New_List;
687 -- We need an initialization procedure if any of the following is true:
689 -- 1. The component type has an initialization procedure
690 -- 2. The component type needs simple initialization
691 -- 3. Tasks are present
692 -- 4. The type is marked as a public entity
693 -- 5. The array type has a Default_Component_Value aspect
695 -- The reason for the public entity test is to deal properly with the
696 -- Initialize_Scalars pragma. This pragma can be set in the client and
697 -- not in the declaring package, this means the client will make a call
698 -- to the initialization procedure (because one of conditions 1-3 must
699 -- apply in this case), and we must generate a procedure (even if it is
700 -- null) to satisfy the call in this case.
702 -- Exception: do not build an array init_proc for a type whose root
703 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
704 -- is no place to put the code, and in any case we handle initialization
705 -- of such types (in the Initialize_Scalars case, that's the only time
706 -- the issue arises) in a special manner anyway which does not need an
707 -- init_proc.
709 Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
710 or else Needs_Simple_Initialization (Comp_Type)
711 or else Has_Task (Comp_Type)
712 or else Has_Default_Aspect (A_Type);
714 if Has_Default_Init
715 or else (not Restriction_Active (No_Initialize_Scalars)
716 and then Is_Public (A_Type)
717 and then not Is_Standard_String_Type (A_Type))
718 then
719 Proc_Id :=
720 Make_Defining_Identifier (Loc,
721 Chars => Make_Init_Proc_Name (A_Type));
723 -- If No_Default_Initialization restriction is active, then we don't
724 -- want to build an init_proc, but we need to mark that an init_proc
725 -- would be needed if this restriction was not active (so that we can
726 -- detect attempts to call it), so set a dummy init_proc in place.
727 -- This is only done though when actual default initialization is
728 -- needed (and not done when only Is_Public is True), since otherwise
729 -- objects such as arrays of scalars could be wrongly flagged as
730 -- violating the restriction.
732 if Restriction_Active (No_Default_Initialization) then
733 if Has_Default_Init then
734 Set_Init_Proc (A_Type, Proc_Id);
735 end if;
737 return;
738 end if;
740 Body_Stmts := Init_One_Dimension (1);
742 Discard_Node (
743 Make_Subprogram_Body (Loc,
744 Specification =>
745 Make_Procedure_Specification (Loc,
746 Defining_Unit_Name => Proc_Id,
747 Parameter_Specifications => Init_Formals (A_Type)),
748 Declarations => New_List,
749 Handled_Statement_Sequence =>
750 Make_Handled_Sequence_Of_Statements (Loc,
751 Statements => Body_Stmts)));
753 Set_Ekind (Proc_Id, E_Procedure);
754 Set_Is_Public (Proc_Id, Is_Public (A_Type));
755 Set_Is_Internal (Proc_Id);
756 Set_Has_Completion (Proc_Id);
758 if not Debug_Generated_Code then
759 Set_Debug_Info_Off (Proc_Id);
760 end if;
762 -- Set Inlined on Init_Proc if it is set on the Init_Proc of the
763 -- component type itself (see also Build_Record_Init_Proc).
765 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Comp_Type));
767 -- Associate Init_Proc with type, and determine if the procedure
768 -- is null (happens because of the Initialize_Scalars pragma case,
769 -- where we have to generate a null procedure in case it is called
770 -- by a client with Initialize_Scalars set). Such procedures have
771 -- to be generated, but do not have to be called, so we mark them
772 -- as null to suppress the call.
774 Set_Init_Proc (A_Type, Proc_Id);
776 if List_Length (Body_Stmts) = 1
778 -- We must skip SCIL nodes because they may have been added to this
779 -- list by Insert_Actions.
781 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
782 then
783 Set_Is_Null_Init_Proc (Proc_Id);
785 else
786 -- Try to build a static aggregate to statically initialize
787 -- objects of the type. This can only be done for constrained
788 -- one-dimensional arrays with static bounds.
790 Set_Static_Initialization
791 (Proc_Id,
792 Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
793 end if;
794 end if;
795 end Build_Array_Init_Proc;
797 --------------------------------
798 -- Build_Array_Invariant_Proc --
799 --------------------------------
801 function Build_Array_Invariant_Proc
802 (A_Type : Entity_Id;
803 Nod : Node_Id) return Node_Id
805 Loc : constant Source_Ptr := Sloc (Nod);
807 Object_Name : constant Name_Id := New_Internal_Name ('I');
808 -- Name for argument of invariant procedure
810 Object_Entity : constant Node_Id :=
811 Make_Defining_Identifier (Loc, Object_Name);
812 -- The procedure declaration entity for the argument
814 Body_Stmts : List_Id;
815 Index_List : List_Id;
816 Proc_Id : Entity_Id;
817 Proc_Body : Node_Id;
819 function Build_Component_Invariant_Call return Node_Id;
820 -- Create one statement to verify invariant on one array component,
821 -- designated by a full set of indexes.
823 function Check_One_Dimension (N : Int) return List_Id;
824 -- Create loop to check on one dimension of the array. The single
825 -- statement in the loop body checks the inner dimensions if any, or
826 -- else a single component. This procedure is called recursively, with
827 -- N being the dimension to be initialized. A call with N greater than
828 -- the number of dimensions generates the component initialization
829 -- and terminates the recursion.
831 ------------------------------------
832 -- Build_Component_Invariant_Call --
833 ------------------------------------
835 function Build_Component_Invariant_Call return Node_Id is
836 Comp : Node_Id;
837 begin
838 Comp :=
839 Make_Indexed_Component (Loc,
840 Prefix => New_Occurrence_Of (Object_Entity, Loc),
841 Expressions => Index_List);
842 return
843 Make_Procedure_Call_Statement (Loc,
844 Name =>
845 New_Occurrence_Of
846 (Invariant_Procedure (Component_Type (A_Type)), Loc),
847 Parameter_Associations => New_List (Comp));
848 end Build_Component_Invariant_Call;
850 -------------------------
851 -- Check_One_Dimension --
852 -------------------------
854 function Check_One_Dimension (N : Int) return List_Id is
855 Index : Entity_Id;
857 begin
858 -- If all dimensions dealt with, we simply check invariant of the
859 -- component.
861 if N > Number_Dimensions (A_Type) then
862 return New_List (Build_Component_Invariant_Call);
864 -- Else generate one loop and recurse
866 else
867 Index :=
868 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
870 Append (New_Occurrence_Of (Index, Loc), Index_List);
872 return New_List (
873 Make_Implicit_Loop_Statement (Nod,
874 Identifier => Empty,
875 Iteration_Scheme =>
876 Make_Iteration_Scheme (Loc,
877 Loop_Parameter_Specification =>
878 Make_Loop_Parameter_Specification (Loc,
879 Defining_Identifier => Index,
880 Discrete_Subtype_Definition =>
881 Make_Attribute_Reference (Loc,
882 Prefix =>
883 New_Occurrence_Of (Object_Entity, Loc),
884 Attribute_Name => Name_Range,
885 Expressions => New_List (
886 Make_Integer_Literal (Loc, N))))),
887 Statements => Check_One_Dimension (N + 1)));
888 end if;
889 end Check_One_Dimension;
891 -- Start of processing for Build_Array_Invariant_Proc
893 begin
894 Index_List := New_List;
896 Proc_Id :=
897 Make_Defining_Identifier (Loc,
898 Chars => New_External_Name (Chars (A_Type), "CInvariant"));
900 Body_Stmts := Check_One_Dimension (1);
902 Proc_Body :=
903 Make_Subprogram_Body (Loc,
904 Specification =>
905 Make_Procedure_Specification (Loc,
906 Defining_Unit_Name => Proc_Id,
907 Parameter_Specifications => New_List (
908 Make_Parameter_Specification (Loc,
909 Defining_Identifier => Object_Entity,
910 Parameter_Type => New_Occurrence_Of (A_Type, Loc)))),
912 Declarations => Empty_List,
913 Handled_Statement_Sequence =>
914 Make_Handled_Sequence_Of_Statements (Loc,
915 Statements => Body_Stmts));
917 Set_Ekind (Proc_Id, E_Procedure);
918 Set_Is_Public (Proc_Id, Is_Public (A_Type));
919 Set_Is_Internal (Proc_Id);
920 Set_Has_Completion (Proc_Id);
922 if not Debug_Generated_Code then
923 Set_Debug_Info_Off (Proc_Id);
924 end if;
926 return Proc_Body;
927 end Build_Array_Invariant_Proc;
929 --------------------------------
930 -- Build_Discr_Checking_Funcs --
931 --------------------------------
933 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
934 Rec_Id : Entity_Id;
935 Loc : Source_Ptr;
936 Enclosing_Func_Id : Entity_Id;
937 Sequence : Nat := 1;
938 Type_Def : Node_Id;
939 V : Node_Id;
941 function Build_Case_Statement
942 (Case_Id : Entity_Id;
943 Variant : Node_Id) return Node_Id;
944 -- Build a case statement containing only two alternatives. The first
945 -- alternative corresponds exactly to the discrete choices given on the
946 -- variant with contains the components that we are generating the
947 -- checks for. If the discriminant is one of these return False. The
948 -- second alternative is an OTHERS choice that will return True
949 -- indicating the discriminant did not match.
951 function Build_Dcheck_Function
952 (Case_Id : Entity_Id;
953 Variant : Node_Id) return Entity_Id;
954 -- Build the discriminant checking function for a given variant
956 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
957 -- Builds the discriminant checking function for each variant of the
958 -- given variant part of the record type.
960 --------------------------
961 -- Build_Case_Statement --
962 --------------------------
964 function Build_Case_Statement
965 (Case_Id : Entity_Id;
966 Variant : Node_Id) return Node_Id
968 Alt_List : constant List_Id := New_List;
969 Actuals_List : List_Id;
970 Case_Node : Node_Id;
971 Case_Alt_Node : Node_Id;
972 Choice : Node_Id;
973 Choice_List : List_Id;
974 D : Entity_Id;
975 Return_Node : Node_Id;
977 begin
978 Case_Node := New_Node (N_Case_Statement, Loc);
980 -- Replace the discriminant which controls the variant with the name
981 -- of the formal of the checking function.
983 Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));
985 Choice := First (Discrete_Choices (Variant));
987 if Nkind (Choice) = N_Others_Choice then
988 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
989 else
990 Choice_List := New_Copy_List (Discrete_Choices (Variant));
991 end if;
993 if not Is_Empty_List (Choice_List) then
994 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
995 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
997 -- In case this is a nested variant, we need to return the result
998 -- of the discriminant checking function for the immediately
999 -- enclosing variant.
1001 if Present (Enclosing_Func_Id) then
1002 Actuals_List := New_List;
1004 D := First_Discriminant (Rec_Id);
1005 while Present (D) loop
1006 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
1007 Next_Discriminant (D);
1008 end loop;
1010 Return_Node :=
1011 Make_Simple_Return_Statement (Loc,
1012 Expression =>
1013 Make_Function_Call (Loc,
1014 Name =>
1015 New_Occurrence_Of (Enclosing_Func_Id, Loc),
1016 Parameter_Associations =>
1017 Actuals_List));
1019 else
1020 Return_Node :=
1021 Make_Simple_Return_Statement (Loc,
1022 Expression =>
1023 New_Occurrence_Of (Standard_False, Loc));
1024 end if;
1026 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1027 Append (Case_Alt_Node, Alt_List);
1028 end if;
1030 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
1031 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
1032 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
1034 Return_Node :=
1035 Make_Simple_Return_Statement (Loc,
1036 Expression =>
1037 New_Occurrence_Of (Standard_True, Loc));
1039 Set_Statements (Case_Alt_Node, New_List (Return_Node));
1040 Append (Case_Alt_Node, Alt_List);
1042 Set_Alternatives (Case_Node, Alt_List);
1043 return Case_Node;
1044 end Build_Case_Statement;
1046 ---------------------------
1047 -- Build_Dcheck_Function --
1048 ---------------------------
1050 function Build_Dcheck_Function
1051 (Case_Id : Entity_Id;
1052 Variant : Node_Id) return Entity_Id
1054 Body_Node : Node_Id;
1055 Func_Id : Entity_Id;
1056 Parameter_List : List_Id;
1057 Spec_Node : Node_Id;
1059 begin
1060 Body_Node := New_Node (N_Subprogram_Body, Loc);
1061 Sequence := Sequence + 1;
1063 Func_Id :=
1064 Make_Defining_Identifier (Loc,
1065 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
1066 Set_Is_Discriminant_Check_Function (Func_Id);
1068 Spec_Node := New_Node (N_Function_Specification, Loc);
1069 Set_Defining_Unit_Name (Spec_Node, Func_Id);
1071 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
1073 Set_Parameter_Specifications (Spec_Node, Parameter_List);
1074 Set_Result_Definition (Spec_Node,
1075 New_Occurrence_Of (Standard_Boolean, Loc));
1076 Set_Specification (Body_Node, Spec_Node);
1077 Set_Declarations (Body_Node, New_List);
1079 Set_Handled_Statement_Sequence (Body_Node,
1080 Make_Handled_Sequence_Of_Statements (Loc,
1081 Statements => New_List (
1082 Build_Case_Statement (Case_Id, Variant))));
1084 Set_Ekind (Func_Id, E_Function);
1085 Set_Mechanism (Func_Id, Default_Mechanism);
1086 Set_Is_Inlined (Func_Id, True);
1087 Set_Is_Pure (Func_Id, True);
1088 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
1089 Set_Is_Internal (Func_Id, True);
1091 if not Debug_Generated_Code then
1092 Set_Debug_Info_Off (Func_Id);
1093 end if;
1095 Analyze (Body_Node);
1097 Append_Freeze_Action (Rec_Id, Body_Node);
1098 Set_Dcheck_Function (Variant, Func_Id);
1099 return Func_Id;
1100 end Build_Dcheck_Function;
1102 ----------------------------
1103 -- Build_Dcheck_Functions --
1104 ----------------------------
1106 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
1107 Component_List_Node : Node_Id;
1108 Decl : Entity_Id;
1109 Discr_Name : Entity_Id;
1110 Func_Id : Entity_Id;
1111 Variant : Node_Id;
1112 Saved_Enclosing_Func_Id : Entity_Id;
1114 begin
1115 -- Build the discriminant-checking function for each variant, and
1116 -- label all components of that variant with the function's name.
1117 -- We only Generate a discriminant-checking function when the
1118 -- variant is not empty, to prevent the creation of dead code.
1119 -- The exception to that is when Frontend_Layout_On_Target is set,
1120 -- because the variant record size function generated in package
1121 -- Layout needs to generate calls to all discriminant-checking
1122 -- functions, including those for empty variants.
1124 Discr_Name := Entity (Name (Variant_Part_Node));
1125 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
1127 while Present (Variant) loop
1128 Component_List_Node := Component_List (Variant);
1130 if not Null_Present (Component_List_Node)
1131 or else Frontend_Layout_On_Target
1132 then
1133 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
1135 Decl :=
1136 First_Non_Pragma (Component_Items (Component_List_Node));
1137 while Present (Decl) loop
1138 Set_Discriminant_Checking_Func
1139 (Defining_Identifier (Decl), Func_Id);
1140 Next_Non_Pragma (Decl);
1141 end loop;
1143 if Present (Variant_Part (Component_List_Node)) then
1144 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
1145 Enclosing_Func_Id := Func_Id;
1146 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
1147 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
1148 end if;
1149 end if;
1151 Next_Non_Pragma (Variant);
1152 end loop;
1153 end Build_Dcheck_Functions;
1155 -- Start of processing for Build_Discr_Checking_Funcs
1157 begin
1158 -- Only build if not done already
1160 if not Discr_Check_Funcs_Built (N) then
1161 Type_Def := Type_Definition (N);
1163 if Nkind (Type_Def) = N_Record_Definition then
1164 if No (Component_List (Type_Def)) then -- null record.
1165 return;
1166 else
1167 V := Variant_Part (Component_List (Type_Def));
1168 end if;
1170 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
1171 if No (Component_List (Record_Extension_Part (Type_Def))) then
1172 return;
1173 else
1174 V := Variant_Part
1175 (Component_List (Record_Extension_Part (Type_Def)));
1176 end if;
1177 end if;
1179 Rec_Id := Defining_Identifier (N);
1181 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
1182 Loc := Sloc (N);
1183 Enclosing_Func_Id := Empty;
1184 Build_Dcheck_Functions (V);
1185 end if;
1187 Set_Discr_Check_Funcs_Built (N);
1188 end if;
1189 end Build_Discr_Checking_Funcs;
1191 --------------------------------
1192 -- Build_Discriminant_Formals --
1193 --------------------------------
1195 function Build_Discriminant_Formals
1196 (Rec_Id : Entity_Id;
1197 Use_Dl : Boolean) return List_Id
1199 Loc : Source_Ptr := Sloc (Rec_Id);
1200 Parameter_List : constant List_Id := New_List;
1201 D : Entity_Id;
1202 Formal : Entity_Id;
1203 Formal_Type : Entity_Id;
1204 Param_Spec_Node : Node_Id;
1206 begin
1207 if Has_Discriminants (Rec_Id) then
1208 D := First_Discriminant (Rec_Id);
1209 while Present (D) loop
1210 Loc := Sloc (D);
1212 if Use_Dl then
1213 Formal := Discriminal (D);
1214 Formal_Type := Etype (Formal);
1215 else
1216 Formal := Make_Defining_Identifier (Loc, Chars (D));
1217 Formal_Type := Etype (D);
1218 end if;
1220 Param_Spec_Node :=
1221 Make_Parameter_Specification (Loc,
1222 Defining_Identifier => Formal,
1223 Parameter_Type =>
1224 New_Occurrence_Of (Formal_Type, Loc));
1225 Append (Param_Spec_Node, Parameter_List);
1226 Next_Discriminant (D);
1227 end loop;
1228 end if;
1230 return Parameter_List;
1231 end Build_Discriminant_Formals;
1233 --------------------------------------
1234 -- Build_Equivalent_Array_Aggregate --
1235 --------------------------------------
1237 function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
1238 Loc : constant Source_Ptr := Sloc (T);
1239 Comp_Type : constant Entity_Id := Component_Type (T);
1240 Index_Type : constant Entity_Id := Etype (First_Index (T));
1241 Proc : constant Entity_Id := Base_Init_Proc (T);
1242 Lo, Hi : Node_Id;
1243 Aggr : Node_Id;
1244 Expr : Node_Id;
1246 begin
1247 if not Is_Constrained (T)
1248 or else Number_Dimensions (T) > 1
1249 or else No (Proc)
1250 then
1251 Initialization_Warning (T);
1252 return Empty;
1253 end if;
1255 Lo := Type_Low_Bound (Index_Type);
1256 Hi := Type_High_Bound (Index_Type);
1258 if not Compile_Time_Known_Value (Lo)
1259 or else not Compile_Time_Known_Value (Hi)
1260 then
1261 Initialization_Warning (T);
1262 return Empty;
1263 end if;
1265 if Is_Record_Type (Comp_Type)
1266 and then Present (Base_Init_Proc (Comp_Type))
1267 then
1268 Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
1270 if No (Expr) then
1271 Initialization_Warning (T);
1272 return Empty;
1273 end if;
1275 else
1276 Initialization_Warning (T);
1277 return Empty;
1278 end if;
1280 Aggr := Make_Aggregate (Loc, No_List, New_List);
1281 Set_Etype (Aggr, T);
1282 Set_Aggregate_Bounds (Aggr,
1283 Make_Range (Loc,
1284 Low_Bound => New_Copy (Lo),
1285 High_Bound => New_Copy (Hi)));
1286 Set_Parent (Aggr, Parent (Proc));
1288 Append_To (Component_Associations (Aggr),
1289 Make_Component_Association (Loc,
1290 Choices =>
1291 New_List (
1292 Make_Range (Loc,
1293 Low_Bound => New_Copy (Lo),
1294 High_Bound => New_Copy (Hi))),
1295 Expression => Expr));
1297 if Static_Array_Aggregate (Aggr) then
1298 return Aggr;
1299 else
1300 Initialization_Warning (T);
1301 return Empty;
1302 end if;
1303 end Build_Equivalent_Array_Aggregate;
1305 ---------------------------------------
1306 -- Build_Equivalent_Record_Aggregate --
1307 ---------------------------------------
1309 function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
1310 Agg : Node_Id;
1311 Comp : Entity_Id;
1312 Comp_Type : Entity_Id;
1314 -- Start of processing for Build_Equivalent_Record_Aggregate
1316 begin
1317 if not Is_Record_Type (T)
1318 or else Has_Discriminants (T)
1319 or else Is_Limited_Type (T)
1320 or else Has_Non_Standard_Rep (T)
1321 then
1322 Initialization_Warning (T);
1323 return Empty;
1324 end if;
1326 Comp := First_Component (T);
1328 -- A null record needs no warning
1330 if No (Comp) then
1331 return Empty;
1332 end if;
1334 while Present (Comp) loop
1336 -- Array components are acceptable if initialized by a positional
1337 -- aggregate with static components.
1339 if Is_Array_Type (Etype (Comp)) then
1340 Comp_Type := Component_Type (Etype (Comp));
1342 if Nkind (Parent (Comp)) /= N_Component_Declaration
1343 or else No (Expression (Parent (Comp)))
1344 or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
1345 then
1346 Initialization_Warning (T);
1347 return Empty;
1349 elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
1350 and then
1351 (not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1352 or else
1353 not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
1354 then
1355 Initialization_Warning (T);
1356 return Empty;
1358 elsif
1359 not Static_Array_Aggregate (Expression (Parent (Comp)))
1360 then
1361 Initialization_Warning (T);
1362 return Empty;
1363 end if;
1365 elsif Is_Scalar_Type (Etype (Comp)) then
1366 Comp_Type := Etype (Comp);
1368 if Nkind (Parent (Comp)) /= N_Component_Declaration
1369 or else No (Expression (Parent (Comp)))
1370 or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
1371 or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
1372 or else not
1373 Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
1374 then
1375 Initialization_Warning (T);
1376 return Empty;
1377 end if;
1379 -- For now, other types are excluded
1381 else
1382 Initialization_Warning (T);
1383 return Empty;
1384 end if;
1386 Next_Component (Comp);
1387 end loop;
1389 -- All components have static initialization. Build positional aggregate
1390 -- from the given expressions or defaults.
1392 Agg := Make_Aggregate (Sloc (T), New_List, New_List);
1393 Set_Parent (Agg, Parent (T));
1395 Comp := First_Component (T);
1396 while Present (Comp) loop
1397 Append
1398 (New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
1399 Next_Component (Comp);
1400 end loop;
1402 Analyze_And_Resolve (Agg, T);
1403 return Agg;
1404 end Build_Equivalent_Record_Aggregate;
1406 -------------------------------
1407 -- Build_Initialization_Call --
1408 -------------------------------
1410 -- References to a discriminant inside the record type declaration can
1411 -- appear either in the subtype_indication to constrain a record or an
1412 -- array, or as part of a larger expression given for the initial value
1413 -- of a component. In both of these cases N appears in the record
1414 -- initialization procedure and needs to be replaced by the formal
1415 -- parameter of the initialization procedure which corresponds to that
1416 -- discriminant.
1418 -- In the example below, references to discriminants D1 and D2 in proc_1
1419 -- are replaced by references to formals with the same name
1420 -- (discriminals)
1422 -- A similar replacement is done for calls to any record initialization
1423 -- procedure for any components that are themselves of a record type.
1425 -- type R (D1, D2 : Integer) is record
1426 -- X : Integer := F * D1;
1427 -- Y : Integer := F * D2;
1428 -- end record;
1430 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1431 -- begin
1432 -- Out_2.D1 := D1;
1433 -- Out_2.D2 := D2;
1434 -- Out_2.X := F * D1;
1435 -- Out_2.Y := F * D2;
1436 -- end;
1438 function Build_Initialization_Call
1439 (Loc : Source_Ptr;
1440 Id_Ref : Node_Id;
1441 Typ : Entity_Id;
1442 In_Init_Proc : Boolean := False;
1443 Enclos_Type : Entity_Id := Empty;
1444 Discr_Map : Elist_Id := New_Elmt_List;
1445 With_Default_Init : Boolean := False;
1446 Constructor_Ref : Node_Id := Empty) return List_Id
1448 Res : constant List_Id := New_List;
1449 Arg : Node_Id;
1450 Args : List_Id;
1451 Decls : List_Id;
1452 Decl : Node_Id;
1453 Discr : Entity_Id;
1454 First_Arg : Node_Id;
1455 Full_Init_Type : Entity_Id;
1456 Full_Type : Entity_Id;
1457 Init_Type : Entity_Id;
1458 Proc : Entity_Id;
1460 begin
1461 pragma Assert (Constructor_Ref = Empty
1462 or else Is_CPP_Constructor_Call (Constructor_Ref));
1464 if No (Constructor_Ref) then
1465 Proc := Base_Init_Proc (Typ);
1466 else
1467 Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
1468 end if;
1470 pragma Assert (Present (Proc));
1471 Init_Type := Etype (First_Formal (Proc));
1472 Full_Init_Type := Underlying_Type (Init_Type);
1474 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1475 -- is active (in which case we make the call anyway, since in the
1476 -- actual compiled client it may be non null).
1478 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1479 return Empty_List;
1480 end if;
1482 -- Use the [underlying] full view when dealing with a private type. This
1483 -- may require several steps depending on derivations.
1485 Full_Type := Typ;
1486 loop
1487 if Is_Private_Type (Full_Type) then
1488 if Present (Full_View (Full_Type)) then
1489 Full_Type := Full_View (Full_Type);
1491 elsif Present (Underlying_Full_View (Full_Type)) then
1492 Full_Type := Underlying_Full_View (Full_Type);
1494 -- When a private type acts as a generic actual and lacks a full
1495 -- view, use the base type.
1497 elsif Is_Generic_Actual_Type (Full_Type) then
1498 Full_Type := Base_Type (Full_Type);
1500 -- The loop has recovered the [underlying] full view, stop the
1501 -- traversal.
1503 else
1504 exit;
1505 end if;
1507 -- The type is not private, nothing to do
1509 else
1510 exit;
1511 end if;
1512 end loop;
1514 -- If Typ is derived, the procedure is the initialization procedure for
1515 -- the root type. Wrap the argument in an conversion to make it type
1516 -- honest. Actually it isn't quite type honest, because there can be
1517 -- conflicts of views in the private type case. That is why we set
1518 -- Conversion_OK in the conversion node.
1520 if (Is_Record_Type (Typ)
1521 or else Is_Array_Type (Typ)
1522 or else Is_Private_Type (Typ))
1523 and then Init_Type /= Base_Type (Typ)
1524 then
1525 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1526 Set_Etype (First_Arg, Init_Type);
1528 else
1529 First_Arg := Id_Ref;
1530 end if;
1532 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1534 -- In the tasks case, add _Master as the value of the _Master parameter
1535 -- and _Chain as the value of the _Chain parameter. At the outer level,
1536 -- these will be variables holding the corresponding values obtained
1537 -- from GNARL. At inner levels, they will be the parameters passed down
1538 -- through the outer routines.
1540 if Has_Task (Full_Type) then
1541 if Restriction_Active (No_Task_Hierarchy) then
1542 Append_To (Args,
1543 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1544 else
1545 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1546 end if;
1548 -- Add _Chain (not done for sequential elaboration policy, see
1549 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1551 if Partition_Elaboration_Policy /= 'S' then
1552 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1553 end if;
1555 -- Ada 2005 (AI-287): In case of default initialized components
1556 -- with tasks, we generate a null string actual parameter.
1557 -- This is just a workaround that must be improved later???
1559 if With_Default_Init then
1560 Append_To (Args,
1561 Make_String_Literal (Loc,
1562 Strval => ""));
1564 else
1565 Decls :=
1566 Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
1567 Decl := Last (Decls);
1569 Append_To (Args,
1570 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1571 Append_List (Decls, Res);
1572 end if;
1574 else
1575 Decls := No_List;
1576 Decl := Empty;
1577 end if;
1579 -- Add discriminant values if discriminants are present
1581 if Has_Discriminants (Full_Init_Type) then
1582 Discr := First_Discriminant (Full_Init_Type);
1583 while Present (Discr) loop
1585 -- If this is a discriminated concurrent type, the init_proc
1586 -- for the corresponding record is being called. Use that type
1587 -- directly to find the discriminant value, to handle properly
1588 -- intervening renamed discriminants.
1590 declare
1591 T : Entity_Id := Full_Type;
1593 begin
1594 if Is_Protected_Type (T) then
1595 T := Corresponding_Record_Type (T);
1596 end if;
1598 Arg :=
1599 Get_Discriminant_Value (
1600 Discr,
1602 Discriminant_Constraint (Full_Type));
1603 end;
1605 -- If the target has access discriminants, and is constrained by
1606 -- an access to the enclosing construct, i.e. a current instance,
1607 -- replace the reference to the type by a reference to the object.
1609 if Nkind (Arg) = N_Attribute_Reference
1610 and then Is_Access_Type (Etype (Arg))
1611 and then Is_Entity_Name (Prefix (Arg))
1612 and then Is_Type (Entity (Prefix (Arg)))
1613 then
1614 Arg :=
1615 Make_Attribute_Reference (Loc,
1616 Prefix => New_Copy (Prefix (Id_Ref)),
1617 Attribute_Name => Name_Unrestricted_Access);
1619 elsif In_Init_Proc then
1621 -- Replace any possible references to the discriminant in the
1622 -- call to the record initialization procedure with references
1623 -- to the appropriate formal parameter.
1625 if Nkind (Arg) = N_Identifier
1626 and then Ekind (Entity (Arg)) = E_Discriminant
1627 then
1628 Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);
1630 -- Otherwise make a copy of the default expression. Note that
1631 -- we use the current Sloc for this, because we do not want the
1632 -- call to appear to be at the declaration point. Within the
1633 -- expression, replace discriminants with their discriminals.
1635 else
1636 Arg :=
1637 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1638 end if;
1640 else
1641 if Is_Constrained (Full_Type) then
1642 Arg := Duplicate_Subexpr_No_Checks (Arg);
1643 else
1644 -- The constraints come from the discriminant default exps,
1645 -- they must be reevaluated, so we use New_Copy_Tree but we
1646 -- ensure the proper Sloc (for any embedded calls).
1648 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1649 end if;
1650 end if;
1652 -- Ada 2005 (AI-287): In case of default initialized components,
1653 -- if the component is constrained with a discriminant of the
1654 -- enclosing type, we need to generate the corresponding selected
1655 -- component node to access the discriminant value. In other cases
1656 -- this is not required, either because we are inside the init
1657 -- proc and we use the corresponding formal, or else because the
1658 -- component is constrained by an expression.
1660 if With_Default_Init
1661 and then Nkind (Id_Ref) = N_Selected_Component
1662 and then Nkind (Arg) = N_Identifier
1663 and then Ekind (Entity (Arg)) = E_Discriminant
1664 then
1665 Append_To (Args,
1666 Make_Selected_Component (Loc,
1667 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1668 Selector_Name => Arg));
1669 else
1670 Append_To (Args, Arg);
1671 end if;
1673 Next_Discriminant (Discr);
1674 end loop;
1675 end if;
1677 -- If this is a call to initialize the parent component of a derived
1678 -- tagged type, indicate that the tag should not be set in the parent.
1680 if Is_Tagged_Type (Full_Init_Type)
1681 and then not Is_CPP_Class (Full_Init_Type)
1682 and then Nkind (Id_Ref) = N_Selected_Component
1683 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1684 then
1685 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1687 elsif Present (Constructor_Ref) then
1688 Append_List_To (Args,
1689 New_Copy_List (Parameter_Associations (Constructor_Ref)));
1690 end if;
1692 Append_To (Res,
1693 Make_Procedure_Call_Statement (Loc,
1694 Name => New_Occurrence_Of (Proc, Loc),
1695 Parameter_Associations => Args));
1697 if Needs_Finalization (Typ)
1698 and then Nkind (Id_Ref) = N_Selected_Component
1699 then
1700 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1701 Append_To (Res,
1702 Make_Init_Call
1703 (Obj_Ref => New_Copy_Tree (First_Arg),
1704 Typ => Typ));
1705 end if;
1706 end if;
1708 return Res;
1710 exception
1711 when RE_Not_Available =>
1712 return Empty_List;
1713 end Build_Initialization_Call;
1715 ----------------------------
1716 -- Build_Record_Init_Proc --
1717 ----------------------------
1719 procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
1720 Decls : constant List_Id := New_List;
1721 Discr_Map : constant Elist_Id := New_Elmt_List;
1722 Loc : constant Source_Ptr := Sloc (Rec_Ent);
1723 Counter : Nat := 0;
1724 Proc_Id : Entity_Id;
1725 Rec_Type : Entity_Id;
1726 Set_Tag : Entity_Id := Empty;
1728 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1729 -- Build an assignment statement which assigns the default expression
1730 -- to its corresponding record component if defined. The left hand side
1731 -- of the assignment is marked Assignment_OK so that initialization of
1732 -- limited private records works correctly. This routine may also build
1733 -- an adjustment call if the component is controlled.
1735 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1736 -- If the record has discriminants, add assignment statements to
1737 -- Statement_List to initialize the discriminant values from the
1738 -- arguments of the initialization procedure.
1740 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1741 -- Build a list representing a sequence of statements which initialize
1742 -- components of the given component list. This may involve building
1743 -- case statements for the variant parts. Append any locally declared
1744 -- objects on list Decls.
1746 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1747 -- Given an untagged type-derivation that declares discriminants, e.g.
1749 -- type R (R1, R2 : Integer) is record ... end record;
1750 -- type D (D1 : Integer) is new R (1, D1);
1752 -- we make the _init_proc of D be
1754 -- procedure _init_proc (X : D; D1 : Integer) is
1755 -- begin
1756 -- _init_proc (R (X), 1, D1);
1757 -- end _init_proc;
1759 -- This function builds the call statement in this _init_proc.
1761 procedure Build_CPP_Init_Procedure;
1762 -- Build the tree corresponding to the procedure specification and body
1763 -- of the IC procedure that initializes the C++ part of the dispatch
1764 -- table of an Ada tagged type that is a derivation of a CPP type.
1765 -- Install it as the CPP_Init TSS.
1767 procedure Build_Init_Procedure;
1768 -- Build the tree corresponding to the procedure specification and body
1769 -- of the initialization procedure and install it as the _init TSS.
1771 procedure Build_Offset_To_Top_Functions;
1772 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1773 -- and body of Offset_To_Top, a function used in conjuction with types
1774 -- having secondary dispatch tables.
1776 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1777 -- Add range checks to components of discriminated records. S is a
1778 -- subtype indication of a record component. Check_List is a list
1779 -- to which the check actions are appended.
1781 function Component_Needs_Simple_Initialization
1782 (T : Entity_Id) return Boolean;
1783 -- Determine if a component needs simple initialization, given its type
1784 -- T. This routine is the same as Needs_Simple_Initialization except for
1785 -- components of type Tag and Interface_Tag. These two access types do
1786 -- not require initialization since they are explicitly initialized by
1787 -- other means.
1789 function Parent_Subtype_Renaming_Discrims return Boolean;
1790 -- Returns True for base types N that rename discriminants, else False
1792 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1793 -- Determine whether a record initialization procedure needs to be
1794 -- generated for the given record type.
1796 ----------------------
1797 -- Build_Assignment --
1798 ----------------------
1800 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1801 N_Loc : constant Source_Ptr := Sloc (N);
1802 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1803 Exp : Node_Id := N;
1804 Kind : Node_Kind := Nkind (N);
1805 Lhs : Node_Id;
1806 Res : List_Id;
1808 begin
1809 Lhs :=
1810 Make_Selected_Component (N_Loc,
1811 Prefix => Make_Identifier (Loc, Name_uInit),
1812 Selector_Name => New_Occurrence_Of (Id, N_Loc));
1813 Set_Assignment_OK (Lhs);
1815 -- Case of an access attribute applied to the current instance.
1816 -- Replace the reference to the type by a reference to the actual
1817 -- object. (Note that this handles the case of the top level of
1818 -- the expression being given by such an attribute, but does not
1819 -- cover uses nested within an initial value expression. Nested
1820 -- uses are unlikely to occur in practice, but are theoretically
1821 -- possible.) It is not clear how to handle them without fully
1822 -- traversing the expression. ???
1824 if Kind = N_Attribute_Reference
1825 and then Nam_In (Attribute_Name (N), Name_Unchecked_Access,
1826 Name_Unrestricted_Access)
1827 and then Is_Entity_Name (Prefix (N))
1828 and then Is_Type (Entity (Prefix (N)))
1829 and then Entity (Prefix (N)) = Rec_Type
1830 then
1831 Exp :=
1832 Make_Attribute_Reference (N_Loc,
1833 Prefix =>
1834 Make_Identifier (N_Loc, Name_uInit),
1835 Attribute_Name => Name_Unrestricted_Access);
1836 end if;
1838 -- Take a copy of Exp to ensure that later copies of this component
1839 -- declaration in derived types see the original tree, not a node
1840 -- rewritten during expansion of the init_proc. If the copy contains
1841 -- itypes, the scope of the new itypes is the init_proc being built.
1843 Exp := New_Copy_Tree (Exp, New_Scope => Proc_Id);
1845 Res := New_List (
1846 Make_Assignment_Statement (Loc,
1847 Name => Lhs,
1848 Expression => Exp));
1850 Set_No_Ctrl_Actions (First (Res));
1852 -- Adjust the tag if tagged (because of possible view conversions).
1853 -- Suppress the tag adjustment when not Tagged_Type_Expansion because
1854 -- tags are represented implicitly in objects.
1856 if Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
1857 Append_To (Res,
1858 Make_Assignment_Statement (N_Loc,
1859 Name =>
1860 Make_Selected_Component (N_Loc,
1861 Prefix =>
1862 New_Copy_Tree (Lhs, New_Scope => Proc_Id),
1863 Selector_Name =>
1864 New_Occurrence_Of (First_Tag_Component (Typ), N_Loc)),
1866 Expression =>
1867 Unchecked_Convert_To (RTE (RE_Tag),
1868 New_Occurrence_Of
1869 (Node
1870 (First_Elmt
1871 (Access_Disp_Table (Underlying_Type (Typ)))),
1872 N_Loc))));
1873 end if;
1875 -- Adjust the component if controlled except if it is an aggregate
1876 -- that will be expanded inline.
1878 if Kind = N_Qualified_Expression then
1879 Kind := Nkind (Expression (N));
1880 end if;
1882 if Needs_Finalization (Typ)
1883 and then not (Nkind_In (Kind, N_Aggregate, N_Extension_Aggregate))
1884 and then not Is_Limited_View (Typ)
1885 then
1886 Append_To (Res,
1887 Make_Adjust_Call
1888 (Obj_Ref => New_Copy_Tree (Lhs),
1889 Typ => Etype (Id)));
1890 end if;
1892 return Res;
1894 exception
1895 when RE_Not_Available =>
1896 return Empty_List;
1897 end Build_Assignment;
1899 ------------------------------------
1900 -- Build_Discriminant_Assignments --
1901 ------------------------------------
1903 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1904 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1905 D : Entity_Id;
1906 D_Loc : Source_Ptr;
1908 begin
1909 if Has_Discriminants (Rec_Type)
1910 and then not Is_Unchecked_Union (Rec_Type)
1911 then
1912 D := First_Discriminant (Rec_Type);
1913 while Present (D) loop
1915 -- Don't generate the assignment for discriminants in derived
1916 -- tagged types if the discriminant is a renaming of some
1917 -- ancestor discriminant. This initialization will be done
1918 -- when initializing the _parent field of the derived record.
1920 if Is_Tagged
1921 and then Present (Corresponding_Discriminant (D))
1922 then
1923 null;
1925 else
1926 D_Loc := Sloc (D);
1927 Append_List_To (Statement_List,
1928 Build_Assignment (D,
1929 New_Occurrence_Of (Discriminal (D), D_Loc)));
1930 end if;
1932 Next_Discriminant (D);
1933 end loop;
1934 end if;
1935 end Build_Discriminant_Assignments;
1937 --------------------------
1938 -- Build_Init_Call_Thru --
1939 --------------------------
1941 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1942 Parent_Proc : constant Entity_Id :=
1943 Base_Init_Proc (Etype (Rec_Type));
1945 Parent_Type : constant Entity_Id :=
1946 Etype (First_Formal (Parent_Proc));
1948 Uparent_Type : constant Entity_Id :=
1949 Underlying_Type (Parent_Type);
1951 First_Discr_Param : Node_Id;
1953 Arg : Node_Id;
1954 Args : List_Id;
1955 First_Arg : Node_Id;
1956 Parent_Discr : Entity_Id;
1957 Res : List_Id;
1959 begin
1960 -- First argument (_Init) is the object to be initialized.
1961 -- ??? not sure where to get a reasonable Loc for First_Arg
1963 First_Arg :=
1964 OK_Convert_To (Parent_Type,
1965 New_Occurrence_Of
1966 (Defining_Identifier (First (Parameters)), Loc));
1968 Set_Etype (First_Arg, Parent_Type);
1970 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1972 -- In the tasks case,
1973 -- add _Master as the value of the _Master parameter
1974 -- add _Chain as the value of the _Chain parameter.
1975 -- add _Task_Name as the value of the _Task_Name parameter.
1976 -- At the outer level, these will be variables holding the
1977 -- corresponding values obtained from GNARL or the expander.
1979 -- At inner levels, they will be the parameters passed down through
1980 -- the outer routines.
1982 First_Discr_Param := Next (First (Parameters));
1984 if Has_Task (Rec_Type) then
1985 if Restriction_Active (No_Task_Hierarchy) then
1986 Append_To (Args,
1987 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
1988 else
1989 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1990 end if;
1992 -- Add _Chain (not done for sequential elaboration policy, see
1993 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
1995 if Partition_Elaboration_Policy /= 'S' then
1996 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1997 end if;
1999 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
2000 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
2001 end if;
2003 -- Append discriminant values
2005 if Has_Discriminants (Uparent_Type) then
2006 pragma Assert (not Is_Tagged_Type (Uparent_Type));
2008 Parent_Discr := First_Discriminant (Uparent_Type);
2009 while Present (Parent_Discr) loop
2011 -- Get the initial value for this discriminant
2012 -- ??? needs to be cleaned up to use parent_Discr_Constr
2013 -- directly.
2015 declare
2016 Discr : Entity_Id :=
2017 First_Stored_Discriminant (Uparent_Type);
2019 Discr_Value : Elmt_Id :=
2020 First_Elmt (Stored_Constraint (Rec_Type));
2022 begin
2023 while Original_Record_Component (Parent_Discr) /= Discr loop
2024 Next_Stored_Discriminant (Discr);
2025 Next_Elmt (Discr_Value);
2026 end loop;
2028 Arg := Node (Discr_Value);
2029 end;
2031 -- Append it to the list
2033 if Nkind (Arg) = N_Identifier
2034 and then Ekind (Entity (Arg)) = E_Discriminant
2035 then
2036 Append_To (Args,
2037 New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));
2039 -- Case of access discriminants. We replace the reference
2040 -- to the type by a reference to the actual object.
2042 -- Is above comment right??? Use of New_Copy below seems mighty
2043 -- suspicious ???
2045 else
2046 Append_To (Args, New_Copy (Arg));
2047 end if;
2049 Next_Discriminant (Parent_Discr);
2050 end loop;
2051 end if;
2053 Res :=
2054 New_List (
2055 Make_Procedure_Call_Statement (Loc,
2056 Name =>
2057 New_Occurrence_Of (Parent_Proc, Loc),
2058 Parameter_Associations => Args));
2060 return Res;
2061 end Build_Init_Call_Thru;
2063 -----------------------------------
2064 -- Build_Offset_To_Top_Functions --
2065 -----------------------------------
2067 procedure Build_Offset_To_Top_Functions is
2069 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
2070 -- Generate:
2071 -- function Fxx (O : Address) return Storage_Offset is
2072 -- type Acc is access all <Typ>;
2073 -- begin
2074 -- return Acc!(O).Iface_Comp'Position;
2075 -- end Fxx;
2077 ----------------------------------
2078 -- Build_Offset_To_Top_Function --
2079 ----------------------------------
2081 procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
2082 Body_Node : Node_Id;
2083 Func_Id : Entity_Id;
2084 Spec_Node : Node_Id;
2085 Acc_Type : Entity_Id;
2087 begin
2088 Func_Id := Make_Temporary (Loc, 'F');
2089 Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
2091 -- Generate
2092 -- function Fxx (O : in Rec_Typ) return Storage_Offset;
2094 Spec_Node := New_Node (N_Function_Specification, Loc);
2095 Set_Defining_Unit_Name (Spec_Node, Func_Id);
2096 Set_Parameter_Specifications (Spec_Node, New_List (
2097 Make_Parameter_Specification (Loc,
2098 Defining_Identifier =>
2099 Make_Defining_Identifier (Loc, Name_uO),
2100 In_Present => True,
2101 Parameter_Type =>
2102 New_Occurrence_Of (RTE (RE_Address), Loc))));
2103 Set_Result_Definition (Spec_Node,
2104 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
2106 -- Generate
2107 -- function Fxx (O : in Rec_Typ) return Storage_Offset is
2108 -- begin
2109 -- return O.Iface_Comp'Position;
2110 -- end Fxx;
2112 Body_Node := New_Node (N_Subprogram_Body, Loc);
2113 Set_Specification (Body_Node, Spec_Node);
2115 Acc_Type := Make_Temporary (Loc, 'T');
2116 Set_Declarations (Body_Node, New_List (
2117 Make_Full_Type_Declaration (Loc,
2118 Defining_Identifier => Acc_Type,
2119 Type_Definition =>
2120 Make_Access_To_Object_Definition (Loc,
2121 All_Present => True,
2122 Null_Exclusion_Present => False,
2123 Constant_Present => False,
2124 Subtype_Indication =>
2125 New_Occurrence_Of (Rec_Type, Loc)))));
2127 Set_Handled_Statement_Sequence (Body_Node,
2128 Make_Handled_Sequence_Of_Statements (Loc,
2129 Statements => New_List (
2130 Make_Simple_Return_Statement (Loc,
2131 Expression =>
2132 Make_Attribute_Reference (Loc,
2133 Prefix =>
2134 Make_Selected_Component (Loc,
2135 Prefix =>
2136 Unchecked_Convert_To (Acc_Type,
2137 Make_Identifier (Loc, Name_uO)),
2138 Selector_Name =>
2139 New_Occurrence_Of (Iface_Comp, Loc)),
2140 Attribute_Name => Name_Position)))));
2142 Set_Ekind (Func_Id, E_Function);
2143 Set_Mechanism (Func_Id, Default_Mechanism);
2144 Set_Is_Internal (Func_Id, True);
2146 if not Debug_Generated_Code then
2147 Set_Debug_Info_Off (Func_Id);
2148 end if;
2150 Analyze (Body_Node);
2152 Append_Freeze_Action (Rec_Type, Body_Node);
2153 end Build_Offset_To_Top_Function;
2155 -- Local variables
2157 Iface_Comp : Node_Id;
2158 Iface_Comp_Elmt : Elmt_Id;
2159 Ifaces_Comp_List : Elist_Id;
2161 -- Start of processing for Build_Offset_To_Top_Functions
2163 begin
2164 -- Offset_To_Top_Functions are built only for derivations of types
2165 -- with discriminants that cover interface types.
2166 -- Nothing is needed either in case of virtual targets, since
2167 -- interfaces are handled directly by the target.
2169 if not Is_Tagged_Type (Rec_Type)
2170 or else Etype (Rec_Type) = Rec_Type
2171 or else not Has_Discriminants (Etype (Rec_Type))
2172 or else not Tagged_Type_Expansion
2173 then
2174 return;
2175 end if;
2177 Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
2179 -- For each interface type with secondary dispatch table we generate
2180 -- the Offset_To_Top_Functions (required to displace the pointer in
2181 -- interface conversions)
2183 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
2184 while Present (Iface_Comp_Elmt) loop
2185 Iface_Comp := Node (Iface_Comp_Elmt);
2186 pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
2188 -- If the interface is a parent of Rec_Type it shares the primary
2189 -- dispatch table and hence there is no need to build the function
2191 if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
2192 Use_Full_View => True)
2193 then
2194 Build_Offset_To_Top_Function (Iface_Comp);
2195 end if;
2197 Next_Elmt (Iface_Comp_Elmt);
2198 end loop;
2199 end Build_Offset_To_Top_Functions;
2201 ------------------------------
2202 -- Build_CPP_Init_Procedure --
2203 ------------------------------
2205 procedure Build_CPP_Init_Procedure is
2206 Body_Node : Node_Id;
2207 Body_Stmts : List_Id;
2208 Flag_Id : Entity_Id;
2209 Handled_Stmt_Node : Node_Id;
2210 Init_Tags_List : List_Id;
2211 Proc_Id : Entity_Id;
2212 Proc_Spec_Node : Node_Id;
2214 begin
2215 -- Check cases requiring no IC routine
2217 if not Is_CPP_Class (Root_Type (Rec_Type))
2218 or else Is_CPP_Class (Rec_Type)
2219 or else CPP_Num_Prims (Rec_Type) = 0
2220 or else not Tagged_Type_Expansion
2221 or else No_Run_Time_Mode
2222 then
2223 return;
2224 end if;
2226 -- Generate:
2228 -- Flag : Boolean := False;
2230 -- procedure Typ_IC is
2231 -- begin
2232 -- if not Flag then
2233 -- Copy C++ dispatch table slots from parent
2234 -- Update C++ slots of overridden primitives
2235 -- end if;
2236 -- end;
2238 Flag_Id := Make_Temporary (Loc, 'F');
2240 Append_Freeze_Action (Rec_Type,
2241 Make_Object_Declaration (Loc,
2242 Defining_Identifier => Flag_Id,
2243 Object_Definition =>
2244 New_Occurrence_Of (Standard_Boolean, Loc),
2245 Expression =>
2246 New_Occurrence_Of (Standard_True, Loc)));
2248 Body_Stmts := New_List;
2249 Body_Node := New_Node (N_Subprogram_Body, Loc);
2251 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2253 Proc_Id :=
2254 Make_Defining_Identifier (Loc,
2255 Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));
2257 Set_Ekind (Proc_Id, E_Procedure);
2258 Set_Is_Internal (Proc_Id);
2260 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2262 Set_Parameter_Specifications (Proc_Spec_Node, New_List);
2263 Set_Specification (Body_Node, Proc_Spec_Node);
2264 Set_Declarations (Body_Node, New_List);
2266 Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);
2268 Append_To (Init_Tags_List,
2269 Make_Assignment_Statement (Loc,
2270 Name =>
2271 New_Occurrence_Of (Flag_Id, Loc),
2272 Expression =>
2273 New_Occurrence_Of (Standard_False, Loc)));
2275 Append_To (Body_Stmts,
2276 Make_If_Statement (Loc,
2277 Condition => New_Occurrence_Of (Flag_Id, Loc),
2278 Then_Statements => Init_Tags_List));
2280 Handled_Stmt_Node :=
2281 New_Node (N_Handled_Sequence_Of_Statements, Loc);
2282 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2283 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2284 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2286 if not Debug_Generated_Code then
2287 Set_Debug_Info_Off (Proc_Id);
2288 end if;
2290 -- Associate CPP_Init_Proc with type
2292 Set_Init_Proc (Rec_Type, Proc_Id);
2293 end Build_CPP_Init_Procedure;
2295 --------------------------
2296 -- Build_Init_Procedure --
2297 --------------------------
2299 procedure Build_Init_Procedure is
2300 Body_Stmts : List_Id;
2301 Body_Node : Node_Id;
2302 Handled_Stmt_Node : Node_Id;
2303 Init_Tags_List : List_Id;
2304 Parameters : List_Id;
2305 Proc_Spec_Node : Node_Id;
2306 Record_Extension_Node : Node_Id;
2308 begin
2309 Body_Stmts := New_List;
2310 Body_Node := New_Node (N_Subprogram_Body, Loc);
2311 Set_Ekind (Proc_Id, E_Procedure);
2313 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
2314 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
2316 Parameters := Init_Formals (Rec_Type);
2317 Append_List_To (Parameters,
2318 Build_Discriminant_Formals (Rec_Type, True));
2320 -- For tagged types, we add a flag to indicate whether the routine
2321 -- is called to initialize a parent component in the init_proc of
2322 -- a type extension. If the flag is false, we do not set the tag
2323 -- because it has been set already in the extension.
2325 if Is_Tagged_Type (Rec_Type) then
2326 Set_Tag := Make_Temporary (Loc, 'P');
2328 Append_To (Parameters,
2329 Make_Parameter_Specification (Loc,
2330 Defining_Identifier => Set_Tag,
2331 Parameter_Type =>
2332 New_Occurrence_Of (Standard_Boolean, Loc),
2333 Expression =>
2334 New_Occurrence_Of (Standard_True, Loc)));
2335 end if;
2337 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
2338 Set_Specification (Body_Node, Proc_Spec_Node);
2339 Set_Declarations (Body_Node, Decls);
2341 -- N is a Derived_Type_Definition that renames the parameters of the
2342 -- ancestor type. We initialize it by expanding our discriminants and
2343 -- call the ancestor _init_proc with a type-converted object.
2345 if Parent_Subtype_Renaming_Discrims then
2346 Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));
2348 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
2349 Build_Discriminant_Assignments (Body_Stmts);
2351 if not Null_Present (Type_Definition (N)) then
2352 Append_List_To (Body_Stmts,
2353 Build_Init_Statements (Component_List (Type_Definition (N))));
2354 end if;
2356 -- N is a Derived_Type_Definition with a possible non-empty
2357 -- extension. The initialization of a type extension consists in the
2358 -- initialization of the components in the extension.
2360 else
2361 Build_Discriminant_Assignments (Body_Stmts);
2363 Record_Extension_Node :=
2364 Record_Extension_Part (Type_Definition (N));
2366 if not Null_Present (Record_Extension_Node) then
2367 declare
2368 Stmts : constant List_Id :=
2369 Build_Init_Statements (
2370 Component_List (Record_Extension_Node));
2372 begin
2373 -- The parent field must be initialized first because the
2374 -- offset of the new discriminants may depend on it. This is
2375 -- not needed if the parent is an interface type because in
2376 -- such case the initialization of the _parent field was not
2377 -- generated.
2379 if not Is_Interface (Etype (Rec_Ent)) then
2380 declare
2381 Parent_IP : constant Name_Id :=
2382 Make_Init_Proc_Name (Etype (Rec_Ent));
2383 Stmt : Node_Id;
2384 IP_Call : Node_Id;
2385 IP_Stmts : List_Id;
2387 begin
2388 -- Look for a call to the parent IP at the beginning
2389 -- of Stmts associated with the record extension
2391 Stmt := First (Stmts);
2392 IP_Call := Empty;
2393 while Present (Stmt) loop
2394 if Nkind (Stmt) = N_Procedure_Call_Statement
2395 and then Chars (Name (Stmt)) = Parent_IP
2396 then
2397 IP_Call := Stmt;
2398 exit;
2399 end if;
2401 Next (Stmt);
2402 end loop;
2404 -- If found then move it to the beginning of the
2405 -- statements of this IP routine
2407 if Present (IP_Call) then
2408 IP_Stmts := New_List;
2409 loop
2410 Stmt := Remove_Head (Stmts);
2411 Append_To (IP_Stmts, Stmt);
2412 exit when Stmt = IP_Call;
2413 end loop;
2415 Prepend_List_To (Body_Stmts, IP_Stmts);
2416 end if;
2417 end;
2418 end if;
2420 Append_List_To (Body_Stmts, Stmts);
2421 end;
2422 end if;
2423 end if;
2425 -- Add here the assignment to instantiate the Tag
2427 -- The assignment corresponds to the code:
2429 -- _Init._Tag := Typ'Tag;
2431 -- Suppress the tag assignment when not Tagged_Type_Expansion because
2432 -- tags are represented implicitly in objects. It is also suppressed
2433 -- in case of CPP_Class types because in this case the tag is
2434 -- initialized in the C++ side.
2436 if Is_Tagged_Type (Rec_Type)
2437 and then Tagged_Type_Expansion
2438 and then not No_Run_Time_Mode
2439 then
2440 -- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
2441 -- the actual object and invoke the IP of the parent (in this
2442 -- order). The tag must be initialized before the call to the IP
2443 -- of the parent and the assignments to other components because
2444 -- the initial value of the components may depend on the tag (eg.
2445 -- through a dispatching operation on an access to the current
2446 -- type). The tag assignment is not done when initializing the
2447 -- parent component of a type extension, because in that case the
2448 -- tag is set in the extension.
2450 if not Is_CPP_Class (Root_Type (Rec_Type)) then
2452 -- Initialize the primary tag component
2454 Init_Tags_List := New_List (
2455 Make_Assignment_Statement (Loc,
2456 Name =>
2457 Make_Selected_Component (Loc,
2458 Prefix => Make_Identifier (Loc, Name_uInit),
2459 Selector_Name =>
2460 New_Occurrence_Of
2461 (First_Tag_Component (Rec_Type), Loc)),
2462 Expression =>
2463 New_Occurrence_Of
2464 (Node
2465 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2467 -- Ada 2005 (AI-251): Initialize the secondary tags components
2468 -- located at fixed positions (tags whose position depends on
2469 -- variable size components are initialized later ---see below)
2471 if Ada_Version >= Ada_2005
2472 and then not Is_Interface (Rec_Type)
2473 and then Has_Interfaces (Rec_Type)
2474 then
2475 Init_Secondary_Tags
2476 (Typ => Rec_Type,
2477 Target => Make_Identifier (Loc, Name_uInit),
2478 Stmts_List => Init_Tags_List,
2479 Fixed_Comps => True,
2480 Variable_Comps => False);
2481 end if;
2483 Prepend_To (Body_Stmts,
2484 Make_If_Statement (Loc,
2485 Condition => New_Occurrence_Of (Set_Tag, Loc),
2486 Then_Statements => Init_Tags_List));
2488 -- Case 2: CPP type. The imported C++ constructor takes care of
2489 -- tags initialization. No action needed here because the IP
2490 -- is built by Set_CPP_Constructors; in this case the IP is a
2491 -- wrapper that invokes the C++ constructor and copies the C++
2492 -- tags locally. Done to inherit the C++ slots in Ada derivations
2493 -- (see case 3).
2495 elsif Is_CPP_Class (Rec_Type) then
2496 pragma Assert (False);
2497 null;
2499 -- Case 3: Combined hierarchy containing C++ types and Ada tagged
2500 -- type derivations. Derivations of imported C++ classes add a
2501 -- complication, because we cannot inhibit tag setting in the
2502 -- constructor for the parent. Hence we initialize the tag after
2503 -- the call to the parent IP (that is, in reverse order compared
2504 -- with pure Ada hierarchies ---see comment on case 1).
2506 else
2507 -- Initialize the primary tag
2509 Init_Tags_List := New_List (
2510 Make_Assignment_Statement (Loc,
2511 Name =>
2512 Make_Selected_Component (Loc,
2513 Prefix => Make_Identifier (Loc, Name_uInit),
2514 Selector_Name =>
2515 New_Occurrence_Of
2516 (First_Tag_Component (Rec_Type), Loc)),
2517 Expression =>
2518 New_Occurrence_Of
2519 (Node
2520 (First_Elmt (Access_Disp_Table (Rec_Type))), Loc)));
2522 -- Ada 2005 (AI-251): Initialize the secondary tags components
2523 -- located at fixed positions (tags whose position depends on
2524 -- variable size components are initialized later ---see below)
2526 if Ada_Version >= Ada_2005
2527 and then not Is_Interface (Rec_Type)
2528 and then Has_Interfaces (Rec_Type)
2529 then
2530 Init_Secondary_Tags
2531 (Typ => Rec_Type,
2532 Target => Make_Identifier (Loc, Name_uInit),
2533 Stmts_List => Init_Tags_List,
2534 Fixed_Comps => True,
2535 Variable_Comps => False);
2536 end if;
2538 -- Initialize the tag component after invocation of parent IP.
2540 -- Generate:
2541 -- parent_IP(_init.parent); // Invokes the C++ constructor
2542 -- [ typIC; ] // Inherit C++ slots from parent
2543 -- init_tags
2545 declare
2546 Ins_Nod : Node_Id;
2548 begin
2549 -- Search for the call to the IP of the parent. We assume
2550 -- that the first init_proc call is for the parent.
2552 Ins_Nod := First (Body_Stmts);
2553 while Present (Next (Ins_Nod))
2554 and then (Nkind (Ins_Nod) /= N_Procedure_Call_Statement
2555 or else not Is_Init_Proc (Name (Ins_Nod)))
2556 loop
2557 Next (Ins_Nod);
2558 end loop;
2560 -- The IC routine copies the inherited slots of the C+ part
2561 -- of the dispatch table from the parent and updates the
2562 -- overridden C++ slots.
2564 if CPP_Num_Prims (Rec_Type) > 0 then
2565 declare
2566 Init_DT : Entity_Id;
2567 New_Nod : Node_Id;
2569 begin
2570 Init_DT := CPP_Init_Proc (Rec_Type);
2571 pragma Assert (Present (Init_DT));
2573 New_Nod :=
2574 Make_Procedure_Call_Statement (Loc,
2575 New_Occurrence_Of (Init_DT, Loc));
2576 Insert_After (Ins_Nod, New_Nod);
2578 -- Update location of init tag statements
2580 Ins_Nod := New_Nod;
2581 end;
2582 end if;
2584 Insert_List_After (Ins_Nod, Init_Tags_List);
2585 end;
2586 end if;
2588 -- Ada 2005 (AI-251): Initialize the secondary tag components
2589 -- located at variable positions. We delay the generation of this
2590 -- code until here because the value of the attribute 'Position
2591 -- applied to variable size components of the parent type that
2592 -- depend on discriminants is only safely read at runtime after
2593 -- the parent components have been initialized.
2595 if Ada_Version >= Ada_2005
2596 and then not Is_Interface (Rec_Type)
2597 and then Has_Interfaces (Rec_Type)
2598 and then Has_Discriminants (Etype (Rec_Type))
2599 and then Is_Variable_Size_Record (Etype (Rec_Type))
2600 then
2601 Init_Tags_List := New_List;
2603 Init_Secondary_Tags
2604 (Typ => Rec_Type,
2605 Target => Make_Identifier (Loc, Name_uInit),
2606 Stmts_List => Init_Tags_List,
2607 Fixed_Comps => False,
2608 Variable_Comps => True);
2610 if Is_Non_Empty_List (Init_Tags_List) then
2611 Append_List_To (Body_Stmts, Init_Tags_List);
2612 end if;
2613 end if;
2614 end if;
2616 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2617 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2619 -- Generate:
2620 -- Deep_Finalize (_init, C1, ..., CN);
2621 -- raise;
2623 if Counter > 0
2624 and then Needs_Finalization (Rec_Type)
2625 and then not Is_Abstract_Type (Rec_Type)
2626 and then not Restriction_Active (No_Exception_Propagation)
2627 then
2628 declare
2629 DF_Call : Node_Id;
2630 DF_Id : Entity_Id;
2632 begin
2633 -- Create a local version of Deep_Finalize which has indication
2634 -- of partial initialization state.
2636 DF_Id := Make_Temporary (Loc, 'F');
2638 Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));
2640 DF_Call :=
2641 Make_Procedure_Call_Statement (Loc,
2642 Name => New_Occurrence_Of (DF_Id, Loc),
2643 Parameter_Associations => New_List (
2644 Make_Identifier (Loc, Name_uInit),
2645 New_Occurrence_Of (Standard_False, Loc)));
2647 -- Do not emit warnings related to the elaboration order when a
2648 -- controlled object is declared before the body of Finalize is
2649 -- seen.
2651 Set_No_Elaboration_Check (DF_Call);
2653 Set_Exception_Handlers (Handled_Stmt_Node, New_List (
2654 Make_Exception_Handler (Loc,
2655 Exception_Choices => New_List (
2656 Make_Others_Choice (Loc)),
2657 Statements => New_List (
2658 DF_Call,
2659 Make_Raise_Statement (Loc)))));
2660 end;
2661 else
2662 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2663 end if;
2665 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2667 if not Debug_Generated_Code then
2668 Set_Debug_Info_Off (Proc_Id);
2669 end if;
2671 -- Associate Init_Proc with type, and determine if the procedure
2672 -- is null (happens because of the Initialize_Scalars pragma case,
2673 -- where we have to generate a null procedure in case it is called
2674 -- by a client with Initialize_Scalars set). Such procedures have
2675 -- to be generated, but do not have to be called, so we mark them
2676 -- as null to suppress the call.
2678 Set_Init_Proc (Rec_Type, Proc_Id);
2680 if List_Length (Body_Stmts) = 1
2682 -- We must skip SCIL nodes because they may have been added to this
2683 -- list by Insert_Actions.
2685 and then Nkind (First_Non_SCIL_Node (Body_Stmts)) = N_Null_Statement
2686 then
2687 Set_Is_Null_Init_Proc (Proc_Id);
2688 end if;
2689 end Build_Init_Procedure;
2691 ---------------------------
2692 -- Build_Init_Statements --
2693 ---------------------------
2695 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2696 Checks : constant List_Id := New_List;
2697 Actions : List_Id := No_List;
2698 Counter_Id : Entity_Id := Empty;
2699 Comp_Loc : Source_Ptr;
2700 Decl : Node_Id;
2701 Has_POC : Boolean;
2702 Id : Entity_Id;
2703 Parent_Stmts : List_Id;
2704 Stmts : List_Id;
2705 Typ : Entity_Id;
2707 procedure Increment_Counter (Loc : Source_Ptr);
2708 -- Generate an "increment by one" statement for the current counter
2709 -- and append it to the list Stmts.
2711 procedure Make_Counter (Loc : Source_Ptr);
2712 -- Create a new counter for the current component list. The routine
2713 -- creates a new defining Id, adds an object declaration and sets
2714 -- the Id generator for the next variant.
2716 -----------------------
2717 -- Increment_Counter --
2718 -----------------------
2720 procedure Increment_Counter (Loc : Source_Ptr) is
2721 begin
2722 -- Generate:
2723 -- Counter := Counter + 1;
2725 Append_To (Stmts,
2726 Make_Assignment_Statement (Loc,
2727 Name => New_Occurrence_Of (Counter_Id, Loc),
2728 Expression =>
2729 Make_Op_Add (Loc,
2730 Left_Opnd => New_Occurrence_Of (Counter_Id, Loc),
2731 Right_Opnd => Make_Integer_Literal (Loc, 1))));
2732 end Increment_Counter;
2734 ------------------
2735 -- Make_Counter --
2736 ------------------
2738 procedure Make_Counter (Loc : Source_Ptr) is
2739 begin
2740 -- Increment the Id generator
2742 Counter := Counter + 1;
2744 -- Create the entity and declaration
2746 Counter_Id :=
2747 Make_Defining_Identifier (Loc,
2748 Chars => New_External_Name ('C', Counter));
2750 -- Generate:
2751 -- Cnn : Integer := 0;
2753 Append_To (Decls,
2754 Make_Object_Declaration (Loc,
2755 Defining_Identifier => Counter_Id,
2756 Object_Definition =>
2757 New_Occurrence_Of (Standard_Integer, Loc),
2758 Expression =>
2759 Make_Integer_Literal (Loc, 0)));
2760 end Make_Counter;
2762 -- Start of processing for Build_Init_Statements
2764 begin
2765 if Null_Present (Comp_List) then
2766 return New_List (Make_Null_Statement (Loc));
2767 end if;
2769 Parent_Stmts := New_List;
2770 Stmts := New_List;
2772 -- Loop through visible declarations of task types and protected
2773 -- types moving any expanded code from the spec to the body of the
2774 -- init procedure.
2776 if Is_Task_Record_Type (Rec_Type)
2777 or else Is_Protected_Record_Type (Rec_Type)
2778 then
2779 declare
2780 Decl : constant Node_Id :=
2781 Parent (Corresponding_Concurrent_Type (Rec_Type));
2782 Def : Node_Id;
2783 N1 : Node_Id;
2784 N2 : Node_Id;
2786 begin
2787 if Is_Task_Record_Type (Rec_Type) then
2788 Def := Task_Definition (Decl);
2789 else
2790 Def := Protected_Definition (Decl);
2791 end if;
2793 if Present (Def) then
2794 N1 := First (Visible_Declarations (Def));
2795 while Present (N1) loop
2796 N2 := N1;
2797 N1 := Next (N1);
2799 if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
2800 or else Nkind (N2) in N_Raise_xxx_Error
2801 or else Nkind (N2) = N_Procedure_Call_Statement
2802 then
2803 Append_To (Stmts,
2804 New_Copy_Tree (N2, New_Scope => Proc_Id));
2805 Rewrite (N2, Make_Null_Statement (Sloc (N2)));
2806 Analyze (N2);
2807 end if;
2808 end loop;
2809 end if;
2810 end;
2811 end if;
2813 -- Loop through components, skipping pragmas, in 2 steps. The first
2814 -- step deals with regular components. The second step deals with
2815 -- components that have per object constraints and no explicit
2816 -- initialization.
2818 Has_POC := False;
2820 -- First pass : regular components
2822 Decl := First_Non_Pragma (Component_Items (Comp_List));
2823 while Present (Decl) loop
2824 Comp_Loc := Sloc (Decl);
2825 Build_Record_Checks
2826 (Subtype_Indication (Component_Definition (Decl)), Checks);
2828 Id := Defining_Identifier (Decl);
2829 Typ := Etype (Id);
2831 -- Leave any processing of per-object constrained component for
2832 -- the second pass.
2834 if Has_Access_Constraint (Id) and then No (Expression (Decl)) then
2835 Has_POC := True;
2837 -- Regular component cases
2839 else
2840 -- In the context of the init proc, references to discriminants
2841 -- resolve to denote the discriminals: this is where we can
2842 -- freeze discriminant dependent component subtypes.
2844 if not Is_Frozen (Typ) then
2845 Append_List_To (Stmts, Freeze_Entity (Typ, N));
2846 end if;
2848 -- Explicit initialization
2850 if Present (Expression (Decl)) then
2851 if Is_CPP_Constructor_Call (Expression (Decl)) then
2852 Actions :=
2853 Build_Initialization_Call
2854 (Comp_Loc,
2855 Id_Ref =>
2856 Make_Selected_Component (Comp_Loc,
2857 Prefix =>
2858 Make_Identifier (Comp_Loc, Name_uInit),
2859 Selector_Name =>
2860 New_Occurrence_Of (Id, Comp_Loc)),
2861 Typ => Typ,
2862 In_Init_Proc => True,
2863 Enclos_Type => Rec_Type,
2864 Discr_Map => Discr_Map,
2865 Constructor_Ref => Expression (Decl));
2866 else
2867 Actions := Build_Assignment (Id, Expression (Decl));
2868 end if;
2870 -- CPU, Dispatching_Domain, Priority and Size components are
2871 -- filled with the corresponding rep item expression of the
2872 -- concurrent type (if any).
2874 elsif Ekind (Scope (Id)) = E_Record_Type
2875 and then Present (Corresponding_Concurrent_Type (Scope (Id)))
2876 and then Nam_In (Chars (Id), Name_uCPU,
2877 Name_uDispatching_Domain,
2878 Name_uPriority)
2879 then
2880 declare
2881 Exp : Node_Id;
2882 Nam : Name_Id;
2883 Ritem : Node_Id;
2885 begin
2886 if Chars (Id) = Name_uCPU then
2887 Nam := Name_CPU;
2889 elsif Chars (Id) = Name_uDispatching_Domain then
2890 Nam := Name_Dispatching_Domain;
2892 elsif Chars (Id) = Name_uPriority then
2893 Nam := Name_Priority;
2894 end if;
2896 -- Get the Rep Item (aspect specification, attribute
2897 -- definition clause or pragma) of the corresponding
2898 -- concurrent type.
2900 Ritem :=
2901 Get_Rep_Item
2902 (Corresponding_Concurrent_Type (Scope (Id)),
2903 Nam,
2904 Check_Parents => False);
2906 if Present (Ritem) then
2908 -- Pragma case
2910 if Nkind (Ritem) = N_Pragma then
2911 Exp := First (Pragma_Argument_Associations (Ritem));
2913 if Nkind (Exp) = N_Pragma_Argument_Association then
2914 Exp := Expression (Exp);
2915 end if;
2917 -- Conversion for Priority expression
2919 if Nam = Name_Priority then
2920 if Pragma_Name (Ritem) = Name_Priority
2921 and then not GNAT_Mode
2922 then
2923 Exp := Convert_To (RTE (RE_Priority), Exp);
2924 else
2925 Exp :=
2926 Convert_To (RTE (RE_Any_Priority), Exp);
2927 end if;
2928 end if;
2930 -- Aspect/Attribute definition clause case
2932 else
2933 Exp := Expression (Ritem);
2935 -- Conversion for Priority expression
2937 if Nam = Name_Priority then
2938 if Chars (Ritem) = Name_Priority
2939 and then not GNAT_Mode
2940 then
2941 Exp := Convert_To (RTE (RE_Priority), Exp);
2942 else
2943 Exp :=
2944 Convert_To (RTE (RE_Any_Priority), Exp);
2945 end if;
2946 end if;
2947 end if;
2949 -- Conversion for Dispatching_Domain value
2951 if Nam = Name_Dispatching_Domain then
2952 Exp :=
2953 Unchecked_Convert_To
2954 (RTE (RE_Dispatching_Domain_Access), Exp);
2955 end if;
2957 Actions := Build_Assignment (Id, Exp);
2959 -- Nothing needed if no Rep Item
2961 else
2962 Actions := No_List;
2963 end if;
2964 end;
2966 -- Composite component with its own Init_Proc
2968 elsif not Is_Interface (Typ)
2969 and then Has_Non_Null_Base_Init_Proc (Typ)
2970 then
2971 Actions :=
2972 Build_Initialization_Call
2973 (Comp_Loc,
2974 Make_Selected_Component (Comp_Loc,
2975 Prefix =>
2976 Make_Identifier (Comp_Loc, Name_uInit),
2977 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
2978 Typ,
2979 In_Init_Proc => True,
2980 Enclos_Type => Rec_Type,
2981 Discr_Map => Discr_Map);
2983 Clean_Task_Names (Typ, Proc_Id);
2985 -- Simple initialization
2987 elsif Component_Needs_Simple_Initialization (Typ) then
2988 Actions :=
2989 Build_Assignment
2990 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id)));
2992 -- Nothing needed for this case
2994 else
2995 Actions := No_List;
2996 end if;
2998 if Present (Checks) then
2999 if Chars (Id) = Name_uParent then
3000 Append_List_To (Parent_Stmts, Checks);
3001 else
3002 Append_List_To (Stmts, Checks);
3003 end if;
3004 end if;
3006 if Present (Actions) then
3007 if Chars (Id) = Name_uParent then
3008 Append_List_To (Parent_Stmts, Actions);
3010 else
3011 Append_List_To (Stmts, Actions);
3013 -- Preserve initialization state in the current counter
3015 if Needs_Finalization (Typ) then
3016 if No (Counter_Id) then
3017 Make_Counter (Comp_Loc);
3018 end if;
3020 Increment_Counter (Comp_Loc);
3021 end if;
3022 end if;
3023 end if;
3024 end if;
3026 Next_Non_Pragma (Decl);
3027 end loop;
3029 -- The parent field must be initialized first because variable
3030 -- size components of the parent affect the location of all the
3031 -- new components.
3033 Prepend_List_To (Stmts, Parent_Stmts);
3035 -- Set up tasks and protected object support. This needs to be done
3036 -- before any component with a per-object access discriminant
3037 -- constraint, or any variant part (which may contain such
3038 -- components) is initialized, because the initialization of these
3039 -- components may reference the enclosing concurrent object.
3041 -- For a task record type, add the task create call and calls to bind
3042 -- any interrupt (signal) entries.
3044 if Is_Task_Record_Type (Rec_Type) then
3046 -- In the case of the restricted run time the ATCB has already
3047 -- been preallocated.
3049 if Restricted_Profile then
3050 Append_To (Stmts,
3051 Make_Assignment_Statement (Loc,
3052 Name =>
3053 Make_Selected_Component (Loc,
3054 Prefix => Make_Identifier (Loc, Name_uInit),
3055 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
3056 Expression =>
3057 Make_Attribute_Reference (Loc,
3058 Prefix =>
3059 Make_Selected_Component (Loc,
3060 Prefix => Make_Identifier (Loc, Name_uInit),
3061 Selector_Name => Make_Identifier (Loc, Name_uATCB)),
3062 Attribute_Name => Name_Unchecked_Access)));
3063 end if;
3065 Append_To (Stmts, Make_Task_Create_Call (Rec_Type));
3067 declare
3068 Task_Type : constant Entity_Id :=
3069 Corresponding_Concurrent_Type (Rec_Type);
3070 Task_Decl : constant Node_Id := Parent (Task_Type);
3071 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
3072 Decl_Loc : Source_Ptr;
3073 Ent : Entity_Id;
3074 Vis_Decl : Node_Id;
3076 begin
3077 if Present (Task_Def) then
3078 Vis_Decl := First (Visible_Declarations (Task_Def));
3079 while Present (Vis_Decl) loop
3080 Decl_Loc := Sloc (Vis_Decl);
3082 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
3083 if Get_Attribute_Id (Chars (Vis_Decl)) =
3084 Attribute_Address
3085 then
3086 Ent := Entity (Name (Vis_Decl));
3088 if Ekind (Ent) = E_Entry then
3089 Append_To (Stmts,
3090 Make_Procedure_Call_Statement (Decl_Loc,
3091 Name =>
3092 New_Occurrence_Of (RTE (
3093 RE_Bind_Interrupt_To_Entry), Decl_Loc),
3094 Parameter_Associations => New_List (
3095 Make_Selected_Component (Decl_Loc,
3096 Prefix =>
3097 Make_Identifier (Decl_Loc, Name_uInit),
3098 Selector_Name =>
3099 Make_Identifier
3100 (Decl_Loc, Name_uTask_Id)),
3101 Entry_Index_Expression
3102 (Decl_Loc, Ent, Empty, Task_Type),
3103 Expression (Vis_Decl))));
3104 end if;
3105 end if;
3106 end if;
3108 Next (Vis_Decl);
3109 end loop;
3110 end if;
3111 end;
3112 end if;
3114 -- For a protected type, add statements generated by
3115 -- Make_Initialize_Protection.
3117 if Is_Protected_Record_Type (Rec_Type) then
3118 Append_List_To (Stmts,
3119 Make_Initialize_Protection (Rec_Type));
3120 end if;
3122 -- Second pass: components with per-object constraints
3124 if Has_POC then
3125 Decl := First_Non_Pragma (Component_Items (Comp_List));
3126 while Present (Decl) loop
3127 Comp_Loc := Sloc (Decl);
3128 Id := Defining_Identifier (Decl);
3129 Typ := Etype (Id);
3131 if Has_Access_Constraint (Id)
3132 and then No (Expression (Decl))
3133 then
3134 if Has_Non_Null_Base_Init_Proc (Typ) then
3135 Append_List_To (Stmts,
3136 Build_Initialization_Call (Comp_Loc,
3137 Make_Selected_Component (Comp_Loc,
3138 Prefix =>
3139 Make_Identifier (Comp_Loc, Name_uInit),
3140 Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
3141 Typ,
3142 In_Init_Proc => True,
3143 Enclos_Type => Rec_Type,
3144 Discr_Map => Discr_Map));
3146 Clean_Task_Names (Typ, Proc_Id);
3148 -- Preserve initialization state in the current counter
3150 if Needs_Finalization (Typ) then
3151 if No (Counter_Id) then
3152 Make_Counter (Comp_Loc);
3153 end if;
3155 Increment_Counter (Comp_Loc);
3156 end if;
3158 elsif Component_Needs_Simple_Initialization (Typ) then
3159 Append_List_To (Stmts,
3160 Build_Assignment
3161 (Id, Get_Simple_Init_Val (Typ, N, Esize (Id))));
3162 end if;
3163 end if;
3165 Next_Non_Pragma (Decl);
3166 end loop;
3167 end if;
3169 -- Process the variant part
3171 if Present (Variant_Part (Comp_List)) then
3172 declare
3173 Variant_Alts : constant List_Id := New_List;
3174 Var_Loc : Source_Ptr;
3175 Variant : Node_Id;
3177 begin
3178 Variant :=
3179 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3180 while Present (Variant) loop
3181 Var_Loc := Sloc (Variant);
3182 Append_To (Variant_Alts,
3183 Make_Case_Statement_Alternative (Var_Loc,
3184 Discrete_Choices =>
3185 New_Copy_List (Discrete_Choices (Variant)),
3186 Statements =>
3187 Build_Init_Statements (Component_List (Variant))));
3188 Next_Non_Pragma (Variant);
3189 end loop;
3191 -- The expression of the case statement which is a reference
3192 -- to one of the discriminants is replaced by the appropriate
3193 -- formal parameter of the initialization procedure.
3195 Append_To (Stmts,
3196 Make_Case_Statement (Var_Loc,
3197 Expression =>
3198 New_Occurrence_Of (Discriminal (
3199 Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
3200 Alternatives => Variant_Alts));
3201 end;
3202 end if;
3204 -- If no initializations when generated for component declarations
3205 -- corresponding to this Stmts, append a null statement to Stmts to
3206 -- to make it a valid Ada tree.
3208 if Is_Empty_List (Stmts) then
3209 Append (Make_Null_Statement (Loc), Stmts);
3210 end if;
3212 return Stmts;
3214 exception
3215 when RE_Not_Available =>
3216 return Empty_List;
3217 end Build_Init_Statements;
3219 -------------------------
3220 -- Build_Record_Checks --
3221 -------------------------
3223 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
3224 Subtype_Mark_Id : Entity_Id;
3226 procedure Constrain_Array
3227 (SI : Node_Id;
3228 Check_List : List_Id);
3229 -- Apply a list of index constraints to an unconstrained array type.
3230 -- The first parameter is the entity for the resulting subtype.
3231 -- Check_List is a list to which the check actions are appended.
3233 ---------------------
3234 -- Constrain_Array --
3235 ---------------------
3237 procedure Constrain_Array
3238 (SI : Node_Id;
3239 Check_List : List_Id)
3241 C : constant Node_Id := Constraint (SI);
3242 Number_Of_Constraints : Nat := 0;
3243 Index : Node_Id;
3244 S, T : Entity_Id;
3246 procedure Constrain_Index
3247 (Index : Node_Id;
3248 S : Node_Id;
3249 Check_List : List_Id);
3250 -- Process an index constraint in a constrained array declaration.
3251 -- The constraint can be either a subtype name or a range with or
3252 -- without an explicit subtype mark. Index is the corresponding
3253 -- index of the unconstrained array. S is the range expression.
3254 -- Check_List is a list to which the check actions are appended.
3256 ---------------------
3257 -- Constrain_Index --
3258 ---------------------
3260 procedure Constrain_Index
3261 (Index : Node_Id;
3262 S : Node_Id;
3263 Check_List : List_Id)
3265 T : constant Entity_Id := Etype (Index);
3267 begin
3268 if Nkind (S) = N_Range then
3269 Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
3270 end if;
3271 end Constrain_Index;
3273 -- Start of processing for Constrain_Array
3275 begin
3276 T := Entity (Subtype_Mark (SI));
3278 if Is_Access_Type (T) then
3279 T := Designated_Type (T);
3280 end if;
3282 S := First (Constraints (C));
3283 while Present (S) loop
3284 Number_Of_Constraints := Number_Of_Constraints + 1;
3285 Next (S);
3286 end loop;
3288 -- In either case, the index constraint must provide a discrete
3289 -- range for each index of the array type and the type of each
3290 -- discrete range must be the same as that of the corresponding
3291 -- index. (RM 3.6.1)
3293 S := First (Constraints (C));
3294 Index := First_Index (T);
3295 Analyze (Index);
3297 -- Apply constraints to each index type
3299 for J in 1 .. Number_Of_Constraints loop
3300 Constrain_Index (Index, S, Check_List);
3301 Next (Index);
3302 Next (S);
3303 end loop;
3304 end Constrain_Array;
3306 -- Start of processing for Build_Record_Checks
3308 begin
3309 if Nkind (S) = N_Subtype_Indication then
3310 Find_Type (Subtype_Mark (S));
3311 Subtype_Mark_Id := Entity (Subtype_Mark (S));
3313 -- Remaining processing depends on type
3315 case Ekind (Subtype_Mark_Id) is
3317 when Array_Kind =>
3318 Constrain_Array (S, Check_List);
3320 when others =>
3321 null;
3322 end case;
3323 end if;
3324 end Build_Record_Checks;
3326 -------------------------------------------
3327 -- Component_Needs_Simple_Initialization --
3328 -------------------------------------------
3330 function Component_Needs_Simple_Initialization
3331 (T : Entity_Id) return Boolean
3333 begin
3334 return
3335 Needs_Simple_Initialization (T)
3336 and then not Is_RTE (T, RE_Tag)
3338 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
3340 and then not Is_RTE (T, RE_Interface_Tag);
3341 end Component_Needs_Simple_Initialization;
3343 --------------------------------------
3344 -- Parent_Subtype_Renaming_Discrims --
3345 --------------------------------------
3347 function Parent_Subtype_Renaming_Discrims return Boolean is
3348 De : Entity_Id;
3349 Dp : Entity_Id;
3351 begin
3352 if Base_Type (Rec_Ent) /= Rec_Ent then
3353 return False;
3354 end if;
3356 if Etype (Rec_Ent) = Rec_Ent
3357 or else not Has_Discriminants (Rec_Ent)
3358 or else Is_Constrained (Rec_Ent)
3359 or else Is_Tagged_Type (Rec_Ent)
3360 then
3361 return False;
3362 end if;
3364 -- If there are no explicit stored discriminants we have inherited
3365 -- the root type discriminants so far, so no renamings occurred.
3367 if First_Discriminant (Rec_Ent) =
3368 First_Stored_Discriminant (Rec_Ent)
3369 then
3370 return False;
3371 end if;
3373 -- Check if we have done some trivial renaming of the parent
3374 -- discriminants, i.e. something like
3376 -- type DT (X1, X2: int) is new PT (X1, X2);
3378 De := First_Discriminant (Rec_Ent);
3379 Dp := First_Discriminant (Etype (Rec_Ent));
3380 while Present (De) loop
3381 pragma Assert (Present (Dp));
3383 if Corresponding_Discriminant (De) /= Dp then
3384 return True;
3385 end if;
3387 Next_Discriminant (De);
3388 Next_Discriminant (Dp);
3389 end loop;
3391 return Present (Dp);
3392 end Parent_Subtype_Renaming_Discrims;
3394 ------------------------
3395 -- Requires_Init_Proc --
3396 ------------------------
3398 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
3399 Comp_Decl : Node_Id;
3400 Id : Entity_Id;
3401 Typ : Entity_Id;
3403 begin
3404 -- Definitely do not need one if specifically suppressed
3406 if Initialization_Suppressed (Rec_Id) then
3407 return False;
3408 end if;
3410 -- If it is a type derived from a type with unknown discriminants,
3411 -- we cannot build an initialization procedure for it.
3413 if Has_Unknown_Discriminants (Rec_Id)
3414 or else Has_Unknown_Discriminants (Etype (Rec_Id))
3415 then
3416 return False;
3417 end if;
3419 -- Otherwise we need to generate an initialization procedure if
3420 -- Is_CPP_Class is False and at least one of the following applies:
3422 -- 1. Discriminants are present, since they need to be initialized
3423 -- with the appropriate discriminant constraint expressions.
3424 -- However, the discriminant of an unchecked union does not
3425 -- count, since the discriminant is not present.
3427 -- 2. The type is a tagged type, since the implicit Tag component
3428 -- needs to be initialized with a pointer to the dispatch table.
3430 -- 3. The type contains tasks
3432 -- 4. One or more components has an initial value
3434 -- 5. One or more components is for a type which itself requires
3435 -- an initialization procedure.
3437 -- 6. One or more components is a type that requires simple
3438 -- initialization (see Needs_Simple_Initialization), except
3439 -- that types Tag and Interface_Tag are excluded, since fields
3440 -- of these types are initialized by other means.
3442 -- 7. The type is the record type built for a task type (since at
3443 -- the very least, Create_Task must be called)
3445 -- 8. The type is the record type built for a protected type (since
3446 -- at least Initialize_Protection must be called)
3448 -- 9. The type is marked as a public entity. The reason we add this
3449 -- case (even if none of the above apply) is to properly handle
3450 -- Initialize_Scalars. If a package is compiled without an IS
3451 -- pragma, and the client is compiled with an IS pragma, then
3452 -- the client will think an initialization procedure is present
3453 -- and call it, when in fact no such procedure is required, but
3454 -- since the call is generated, there had better be a routine
3455 -- at the other end of the call, even if it does nothing).
3457 -- Note: the reason we exclude the CPP_Class case is because in this
3458 -- case the initialization is performed by the C++ constructors, and
3459 -- the IP is built by Set_CPP_Constructors.
3461 if Is_CPP_Class (Rec_Id) then
3462 return False;
3464 elsif Is_Interface (Rec_Id) then
3465 return False;
3467 elsif (Has_Discriminants (Rec_Id)
3468 and then not Is_Unchecked_Union (Rec_Id))
3469 or else Is_Tagged_Type (Rec_Id)
3470 or else Is_Concurrent_Record_Type (Rec_Id)
3471 or else Has_Task (Rec_Id)
3472 then
3473 return True;
3474 end if;
3476 Id := First_Component (Rec_Id);
3477 while Present (Id) loop
3478 Comp_Decl := Parent (Id);
3479 Typ := Etype (Id);
3481 if Present (Expression (Comp_Decl))
3482 or else Has_Non_Null_Base_Init_Proc (Typ)
3483 or else Component_Needs_Simple_Initialization (Typ)
3484 then
3485 return True;
3486 end if;
3488 Next_Component (Id);
3489 end loop;
3491 -- As explained above, a record initialization procedure is needed
3492 -- for public types in case Initialize_Scalars applies to a client.
3493 -- However, such a procedure is not needed in the case where either
3494 -- of restrictions No_Initialize_Scalars or No_Default_Initialization
3495 -- applies. No_Initialize_Scalars excludes the possibility of using
3496 -- Initialize_Scalars in any partition, and No_Default_Initialization
3497 -- implies that no initialization should ever be done for objects of
3498 -- the type, so is incompatible with Initialize_Scalars.
3500 if not Restriction_Active (No_Initialize_Scalars)
3501 and then not Restriction_Active (No_Default_Initialization)
3502 and then Is_Public (Rec_Id)
3503 then
3504 return True;
3505 end if;
3507 return False;
3508 end Requires_Init_Proc;
3510 -- Start of processing for Build_Record_Init_Proc
3512 begin
3513 Rec_Type := Defining_Identifier (N);
3515 -- This may be full declaration of a private type, in which case
3516 -- the visible entity is a record, and the private entity has been
3517 -- exchanged with it in the private part of the current package.
3518 -- The initialization procedure is built for the record type, which
3519 -- is retrievable from the private entity.
3521 if Is_Incomplete_Or_Private_Type (Rec_Type) then
3522 Rec_Type := Underlying_Type (Rec_Type);
3523 end if;
3525 -- If we have a variant record with restriction No_Implicit_Conditionals
3526 -- in effect, then we skip building the procedure. This is safe because
3527 -- if we can see the restriction, so can any caller, calls to initialize
3528 -- such records are not allowed for variant records if this restriction
3529 -- is active.
3531 if Has_Variant_Part (Rec_Type)
3532 and then Restriction_Active (No_Implicit_Conditionals)
3533 then
3534 return;
3535 end if;
3537 -- If there are discriminants, build the discriminant map to replace
3538 -- discriminants by their discriminals in complex bound expressions.
3539 -- These only arise for the corresponding records of synchronized types.
3541 if Is_Concurrent_Record_Type (Rec_Type)
3542 and then Has_Discriminants (Rec_Type)
3543 then
3544 declare
3545 Disc : Entity_Id;
3546 begin
3547 Disc := First_Discriminant (Rec_Type);
3548 while Present (Disc) loop
3549 Append_Elmt (Disc, Discr_Map);
3550 Append_Elmt (Discriminal (Disc), Discr_Map);
3551 Next_Discriminant (Disc);
3552 end loop;
3553 end;
3554 end if;
3556 -- Derived types that have no type extension can use the initialization
3557 -- procedure of their parent and do not need a procedure of their own.
3558 -- This is only correct if there are no representation clauses for the
3559 -- type or its parent, and if the parent has in fact been frozen so
3560 -- that its initialization procedure exists.
3562 if Is_Derived_Type (Rec_Type)
3563 and then not Is_Tagged_Type (Rec_Type)
3564 and then not Is_Unchecked_Union (Rec_Type)
3565 and then not Has_New_Non_Standard_Rep (Rec_Type)
3566 and then not Parent_Subtype_Renaming_Discrims
3567 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
3568 then
3569 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
3571 -- Otherwise if we need an initialization procedure, then build one,
3572 -- mark it as public and inlinable and as having a completion.
3574 elsif Requires_Init_Proc (Rec_Type)
3575 or else Is_Unchecked_Union (Rec_Type)
3576 then
3577 Proc_Id :=
3578 Make_Defining_Identifier (Loc,
3579 Chars => Make_Init_Proc_Name (Rec_Type));
3581 -- If No_Default_Initialization restriction is active, then we don't
3582 -- want to build an init_proc, but we need to mark that an init_proc
3583 -- would be needed if this restriction was not active (so that we can
3584 -- detect attempts to call it), so set a dummy init_proc in place.
3586 if Restriction_Active (No_Default_Initialization) then
3587 Set_Init_Proc (Rec_Type, Proc_Id);
3588 return;
3589 end if;
3591 Build_Offset_To_Top_Functions;
3592 Build_CPP_Init_Procedure;
3593 Build_Init_Procedure;
3595 Set_Is_Public (Proc_Id, Is_Public (Rec_Ent));
3596 Set_Is_Internal (Proc_Id);
3597 Set_Has_Completion (Proc_Id);
3599 if not Debug_Generated_Code then
3600 Set_Debug_Info_Off (Proc_Id);
3601 end if;
3603 Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Rec_Type));
3605 -- Do not build an aggregate if Modify_Tree_For_C, this isn't
3606 -- needed and may generate early references to non frozen types
3607 -- since we expand aggregate much more systematically.
3609 if Modify_Tree_For_C then
3610 return;
3611 end if;
3613 declare
3614 Agg : constant Node_Id :=
3615 Build_Equivalent_Record_Aggregate (Rec_Type);
3617 procedure Collect_Itypes (Comp : Node_Id);
3618 -- Generate references to itypes in the aggregate, because
3619 -- the first use of the aggregate may be in a nested scope.
3621 --------------------
3622 -- Collect_Itypes --
3623 --------------------
3625 procedure Collect_Itypes (Comp : Node_Id) is
3626 Ref : Node_Id;
3627 Sub_Aggr : Node_Id;
3628 Typ : constant Entity_Id := Etype (Comp);
3630 begin
3631 if Is_Array_Type (Typ) and then Is_Itype (Typ) then
3632 Ref := Make_Itype_Reference (Loc);
3633 Set_Itype (Ref, Typ);
3634 Append_Freeze_Action (Rec_Type, Ref);
3636 Ref := Make_Itype_Reference (Loc);
3637 Set_Itype (Ref, Etype (First_Index (Typ)));
3638 Append_Freeze_Action (Rec_Type, Ref);
3640 -- Recurse on nested arrays
3642 Sub_Aggr := First (Expressions (Comp));
3643 while Present (Sub_Aggr) loop
3644 Collect_Itypes (Sub_Aggr);
3645 Next (Sub_Aggr);
3646 end loop;
3647 end if;
3648 end Collect_Itypes;
3650 begin
3651 -- If there is a static initialization aggregate for the type,
3652 -- generate itype references for the types of its (sub)components,
3653 -- to prevent out-of-scope errors in the resulting tree.
3654 -- The aggregate may have been rewritten as a Raise node, in which
3655 -- case there are no relevant itypes.
3657 if Present (Agg) and then Nkind (Agg) = N_Aggregate then
3658 Set_Static_Initialization (Proc_Id, Agg);
3660 declare
3661 Comp : Node_Id;
3662 begin
3663 Comp := First (Component_Associations (Agg));
3664 while Present (Comp) loop
3665 Collect_Itypes (Expression (Comp));
3666 Next (Comp);
3667 end loop;
3668 end;
3669 end if;
3670 end;
3671 end if;
3672 end Build_Record_Init_Proc;
3674 --------------------------------
3675 -- Build_Record_Invariant_Proc --
3676 --------------------------------
3678 function Build_Record_Invariant_Proc
3679 (R_Type : Entity_Id;
3680 Nod : Node_Id) return Node_Id
3682 Loc : constant Source_Ptr := Sloc (Nod);
3684 Object_Name : constant Name_Id := New_Internal_Name ('I');
3685 -- Name for argument of invariant procedure
3687 Object_Entity : constant Node_Id :=
3688 Make_Defining_Identifier (Loc, Object_Name);
3689 -- The procedure declaration entity for the argument
3691 Invariant_Found : Boolean;
3692 -- Set if any component needs an invariant check.
3694 Proc_Id : Entity_Id;
3695 Proc_Body : Node_Id;
3696 Stmts : List_Id;
3697 Type_Def : Node_Id;
3699 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id;
3700 -- Recursive procedure that generates a list of checks for components
3701 -- that need it, and recurses through variant parts when present.
3703 function Build_Component_Invariant_Call (Comp : Entity_Id)
3704 return Node_Id;
3705 -- Build call to invariant procedure for a record component.
3707 ------------------------------------
3708 -- Build_Component_Invariant_Call --
3709 ------------------------------------
3711 function Build_Component_Invariant_Call (Comp : Entity_Id)
3712 return Node_Id
3714 Sel_Comp : Node_Id;
3715 Typ : Entity_Id;
3716 Call : Node_Id;
3718 begin
3719 Invariant_Found := True;
3720 Typ := Etype (Comp);
3722 Sel_Comp :=
3723 Make_Selected_Component (Loc,
3724 Prefix => New_Occurrence_Of (Object_Entity, Loc),
3725 Selector_Name => New_Occurrence_Of (Comp, Loc));
3727 if Is_Access_Type (Typ) then
3729 -- If the access component designates a type with an invariant,
3730 -- the check applies to the designated object. The access type
3731 -- itself may have an invariant, in which case it applies to the
3732 -- access value directly.
3734 -- Note: we are assuming that invariants will not occur on both
3735 -- the access type and the type that it designates. This is not
3736 -- really justified but it is hard to imagine that this case will
3737 -- ever cause trouble ???
3739 if not (Has_Invariants (Typ)) then
3740 Sel_Comp := Make_Explicit_Dereference (Loc, Sel_Comp);
3741 Typ := Designated_Type (Typ);
3742 end if;
3743 end if;
3745 -- The aspect is type-specific, so retrieve it from the base type
3747 Call :=
3748 Make_Procedure_Call_Statement (Loc,
3749 Name =>
3750 New_Occurrence_Of (Invariant_Procedure (Base_Type (Typ)), Loc),
3751 Parameter_Associations => New_List (Sel_Comp));
3753 if Is_Access_Type (Etype (Comp)) then
3754 Call :=
3755 Make_If_Statement (Loc,
3756 Condition =>
3757 Make_Op_Ne (Loc,
3758 Left_Opnd => Make_Null (Loc),
3759 Right_Opnd =>
3760 Make_Selected_Component (Loc,
3761 Prefix => New_Occurrence_Of (Object_Entity, Loc),
3762 Selector_Name => New_Occurrence_Of (Comp, Loc))),
3763 Then_Statements => New_List (Call));
3764 end if;
3766 return Call;
3767 end Build_Component_Invariant_Call;
3769 ----------------------------
3770 -- Build_Invariant_Checks --
3771 ----------------------------
3773 function Build_Invariant_Checks (Comp_List : Node_Id) return List_Id is
3774 Decl : Node_Id;
3775 Id : Entity_Id;
3776 Stmts : List_Id;
3778 begin
3779 Stmts := New_List;
3780 Decl := First_Non_Pragma (Component_Items (Comp_List));
3781 while Present (Decl) loop
3782 if Nkind (Decl) = N_Component_Declaration then
3783 Id := Defining_Identifier (Decl);
3785 if Has_Invariants (Etype (Id))
3786 and then In_Open_Scopes (Scope (R_Type))
3787 then
3788 if Has_Unchecked_Union (R_Type) then
3789 Error_Msg_NE
3790 ("invariants cannot be checked on components of "
3791 & "unchecked_union type&?", Decl, R_Type);
3792 return Empty_List;
3794 else
3795 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3796 end if;
3798 elsif Is_Access_Type (Etype (Id))
3799 and then not Is_Access_Constant (Etype (Id))
3800 and then Has_Invariants (Designated_Type (Etype (Id)))
3801 and then In_Open_Scopes (Scope (Designated_Type (Etype (Id))))
3802 then
3803 Append_To (Stmts, Build_Component_Invariant_Call (Id));
3804 end if;
3805 end if;
3807 Next (Decl);
3808 end loop;
3810 if Present (Variant_Part (Comp_List)) then
3811 declare
3812 Variant_Alts : constant List_Id := New_List;
3813 Var_Loc : Source_Ptr;
3814 Variant : Node_Id;
3815 Variant_Stmts : List_Id;
3817 begin
3818 Variant :=
3819 First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3820 while Present (Variant) loop
3821 Variant_Stmts :=
3822 Build_Invariant_Checks (Component_List (Variant));
3823 Var_Loc := Sloc (Variant);
3824 Append_To (Variant_Alts,
3825 Make_Case_Statement_Alternative (Var_Loc,
3826 Discrete_Choices =>
3827 New_Copy_List (Discrete_Choices (Variant)),
3828 Statements => Variant_Stmts));
3830 Next_Non_Pragma (Variant);
3831 end loop;
3833 -- The expression in the case statement is the reference to
3834 -- the discriminant of the target object.
3836 Append_To (Stmts,
3837 Make_Case_Statement (Var_Loc,
3838 Expression =>
3839 Make_Selected_Component (Var_Loc,
3840 Prefix => New_Occurrence_Of (Object_Entity, Var_Loc),
3841 Selector_Name => New_Occurrence_Of
3842 (Entity
3843 (Name (Variant_Part (Comp_List))), Var_Loc)),
3844 Alternatives => Variant_Alts));
3845 end;
3846 end if;
3848 return Stmts;
3849 end Build_Invariant_Checks;
3851 -- Start of processing for Build_Record_Invariant_Proc
3853 begin
3854 Invariant_Found := False;
3855 Type_Def := Type_Definition (Parent (R_Type));
3857 if Nkind (Type_Def) = N_Record_Definition
3858 and then not Null_Present (Type_Def)
3859 then
3860 Stmts := Build_Invariant_Checks (Component_List (Type_Def));
3861 else
3862 return Empty;
3863 end if;
3865 if not Invariant_Found then
3866 return Empty;
3867 end if;
3869 -- The name of the invariant procedure reflects the fact that the
3870 -- checks correspond to invariants on the component types. The
3871 -- record type itself may have invariants that will create a separate
3872 -- procedure whose name carries the Invariant suffix.
3874 Proc_Id :=
3875 Make_Defining_Identifier (Loc,
3876 Chars => New_External_Name (Chars (R_Type), "CInvariant"));
3878 Proc_Body :=
3879 Make_Subprogram_Body (Loc,
3880 Specification =>
3881 Make_Procedure_Specification (Loc,
3882 Defining_Unit_Name => Proc_Id,
3883 Parameter_Specifications => New_List (
3884 Make_Parameter_Specification (Loc,
3885 Defining_Identifier => Object_Entity,
3886 Parameter_Type => New_Occurrence_Of (R_Type, Loc)))),
3888 Declarations => Empty_List,
3889 Handled_Statement_Sequence =>
3890 Make_Handled_Sequence_Of_Statements (Loc,
3891 Statements => Stmts));
3893 Set_Ekind (Proc_Id, E_Procedure);
3894 Set_Is_Public (Proc_Id, Is_Public (R_Type));
3895 Set_Is_Internal (Proc_Id);
3896 Set_Has_Completion (Proc_Id);
3898 return Proc_Body;
3899 -- Insert_After (Nod, Proc_Body);
3900 -- Analyze (Proc_Body);
3901 end Build_Record_Invariant_Proc;
3903 ----------------------------
3904 -- Build_Slice_Assignment --
3905 ----------------------------
3907 -- Generates the following subprogram:
3909 -- procedure Assign
3910 -- (Source, Target : Array_Type,
3911 -- Left_Lo, Left_Hi : Index;
3912 -- Right_Lo, Right_Hi : Index;
3913 -- Rev : Boolean)
3914 -- is
3915 -- Li1 : Index;
3916 -- Ri1 : Index;
3918 -- begin
3920 -- if Left_Hi < Left_Lo then
3921 -- return;
3922 -- end if;
3924 -- if Rev then
3925 -- Li1 := Left_Hi;
3926 -- Ri1 := Right_Hi;
3927 -- else
3928 -- Li1 := Left_Lo;
3929 -- Ri1 := Right_Lo;
3930 -- end if;
3932 -- loop
3933 -- Target (Li1) := Source (Ri1);
3935 -- if Rev then
3936 -- exit when Li1 = Left_Lo;
3937 -- Li1 := Index'pred (Li1);
3938 -- Ri1 := Index'pred (Ri1);
3939 -- else
3940 -- exit when Li1 = Left_Hi;
3941 -- Li1 := Index'succ (Li1);
3942 -- Ri1 := Index'succ (Ri1);
3943 -- end if;
3944 -- end loop;
3945 -- end Assign;
3947 procedure Build_Slice_Assignment (Typ : Entity_Id) is
3948 Loc : constant Source_Ptr := Sloc (Typ);
3949 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
3951 Larray : constant Entity_Id := Make_Temporary (Loc, 'A');
3952 Rarray : constant Entity_Id := Make_Temporary (Loc, 'R');
3953 Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L');
3954 Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L');
3955 Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R');
3956 Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R');
3957 Rev : constant Entity_Id := Make_Temporary (Loc, 'D');
3958 -- Formal parameters of procedure
3960 Proc_Name : constant Entity_Id :=
3961 Make_Defining_Identifier (Loc,
3962 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
3964 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
3965 Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
3966 -- Subscripts for left and right sides
3968 Decls : List_Id;
3969 Loops : Node_Id;
3970 Stats : List_Id;
3972 begin
3973 -- Build declarations for indexes
3975 Decls := New_List;
3977 Append_To (Decls,
3978 Make_Object_Declaration (Loc,
3979 Defining_Identifier => Lnn,
3980 Object_Definition =>
3981 New_Occurrence_Of (Index, Loc)));
3983 Append_To (Decls,
3984 Make_Object_Declaration (Loc,
3985 Defining_Identifier => Rnn,
3986 Object_Definition =>
3987 New_Occurrence_Of (Index, Loc)));
3989 Stats := New_List;
3991 -- Build test for empty slice case
3993 Append_To (Stats,
3994 Make_If_Statement (Loc,
3995 Condition =>
3996 Make_Op_Lt (Loc,
3997 Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
3998 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
3999 Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
4001 -- Build initializations for indexes
4003 declare
4004 F_Init : constant List_Id := New_List;
4005 B_Init : constant List_Id := New_List;
4007 begin
4008 Append_To (F_Init,
4009 Make_Assignment_Statement (Loc,
4010 Name => New_Occurrence_Of (Lnn, Loc),
4011 Expression => New_Occurrence_Of (Left_Lo, Loc)));
4013 Append_To (F_Init,
4014 Make_Assignment_Statement (Loc,
4015 Name => New_Occurrence_Of (Rnn, Loc),
4016 Expression => New_Occurrence_Of (Right_Lo, Loc)));
4018 Append_To (B_Init,
4019 Make_Assignment_Statement (Loc,
4020 Name => New_Occurrence_Of (Lnn, Loc),
4021 Expression => New_Occurrence_Of (Left_Hi, Loc)));
4023 Append_To (B_Init,
4024 Make_Assignment_Statement (Loc,
4025 Name => New_Occurrence_Of (Rnn, Loc),
4026 Expression => New_Occurrence_Of (Right_Hi, Loc)));
4028 Append_To (Stats,
4029 Make_If_Statement (Loc,
4030 Condition => New_Occurrence_Of (Rev, Loc),
4031 Then_Statements => B_Init,
4032 Else_Statements => F_Init));
4033 end;
4035 -- Now construct the assignment statement
4037 Loops :=
4038 Make_Loop_Statement (Loc,
4039 Statements => New_List (
4040 Make_Assignment_Statement (Loc,
4041 Name =>
4042 Make_Indexed_Component (Loc,
4043 Prefix => New_Occurrence_Of (Larray, Loc),
4044 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
4045 Expression =>
4046 Make_Indexed_Component (Loc,
4047 Prefix => New_Occurrence_Of (Rarray, Loc),
4048 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
4049 End_Label => Empty);
4051 -- Build the exit condition and increment/decrement statements
4053 declare
4054 F_Ass : constant List_Id := New_List;
4055 B_Ass : constant List_Id := New_List;
4057 begin
4058 Append_To (F_Ass,
4059 Make_Exit_Statement (Loc,
4060 Condition =>
4061 Make_Op_Eq (Loc,
4062 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4063 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
4065 Append_To (F_Ass,
4066 Make_Assignment_Statement (Loc,
4067 Name => New_Occurrence_Of (Lnn, Loc),
4068 Expression =>
4069 Make_Attribute_Reference (Loc,
4070 Prefix =>
4071 New_Occurrence_Of (Index, Loc),
4072 Attribute_Name => Name_Succ,
4073 Expressions => New_List (
4074 New_Occurrence_Of (Lnn, Loc)))));
4076 Append_To (F_Ass,
4077 Make_Assignment_Statement (Loc,
4078 Name => New_Occurrence_Of (Rnn, Loc),
4079 Expression =>
4080 Make_Attribute_Reference (Loc,
4081 Prefix =>
4082 New_Occurrence_Of (Index, Loc),
4083 Attribute_Name => Name_Succ,
4084 Expressions => New_List (
4085 New_Occurrence_Of (Rnn, Loc)))));
4087 Append_To (B_Ass,
4088 Make_Exit_Statement (Loc,
4089 Condition =>
4090 Make_Op_Eq (Loc,
4091 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
4092 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
4094 Append_To (B_Ass,
4095 Make_Assignment_Statement (Loc,
4096 Name => New_Occurrence_Of (Lnn, Loc),
4097 Expression =>
4098 Make_Attribute_Reference (Loc,
4099 Prefix =>
4100 New_Occurrence_Of (Index, Loc),
4101 Attribute_Name => Name_Pred,
4102 Expressions => New_List (
4103 New_Occurrence_Of (Lnn, Loc)))));
4105 Append_To (B_Ass,
4106 Make_Assignment_Statement (Loc,
4107 Name => New_Occurrence_Of (Rnn, Loc),
4108 Expression =>
4109 Make_Attribute_Reference (Loc,
4110 Prefix =>
4111 New_Occurrence_Of (Index, Loc),
4112 Attribute_Name => Name_Pred,
4113 Expressions => New_List (
4114 New_Occurrence_Of (Rnn, Loc)))));
4116 Append_To (Statements (Loops),
4117 Make_If_Statement (Loc,
4118 Condition => New_Occurrence_Of (Rev, Loc),
4119 Then_Statements => B_Ass,
4120 Else_Statements => F_Ass));
4121 end;
4123 Append_To (Stats, Loops);
4125 declare
4126 Spec : Node_Id;
4127 Formals : List_Id := New_List;
4129 begin
4130 Formals := New_List (
4131 Make_Parameter_Specification (Loc,
4132 Defining_Identifier => Larray,
4133 Out_Present => True,
4134 Parameter_Type =>
4135 New_Occurrence_Of (Base_Type (Typ), Loc)),
4137 Make_Parameter_Specification (Loc,
4138 Defining_Identifier => Rarray,
4139 Parameter_Type =>
4140 New_Occurrence_Of (Base_Type (Typ), Loc)),
4142 Make_Parameter_Specification (Loc,
4143 Defining_Identifier => Left_Lo,
4144 Parameter_Type =>
4145 New_Occurrence_Of (Index, Loc)),
4147 Make_Parameter_Specification (Loc,
4148 Defining_Identifier => Left_Hi,
4149 Parameter_Type =>
4150 New_Occurrence_Of (Index, Loc)),
4152 Make_Parameter_Specification (Loc,
4153 Defining_Identifier => Right_Lo,
4154 Parameter_Type =>
4155 New_Occurrence_Of (Index, Loc)),
4157 Make_Parameter_Specification (Loc,
4158 Defining_Identifier => Right_Hi,
4159 Parameter_Type =>
4160 New_Occurrence_Of (Index, Loc)));
4162 Append_To (Formals,
4163 Make_Parameter_Specification (Loc,
4164 Defining_Identifier => Rev,
4165 Parameter_Type =>
4166 New_Occurrence_Of (Standard_Boolean, Loc)));
4168 Spec :=
4169 Make_Procedure_Specification (Loc,
4170 Defining_Unit_Name => Proc_Name,
4171 Parameter_Specifications => Formals);
4173 Discard_Node (
4174 Make_Subprogram_Body (Loc,
4175 Specification => Spec,
4176 Declarations => Decls,
4177 Handled_Statement_Sequence =>
4178 Make_Handled_Sequence_Of_Statements (Loc,
4179 Statements => Stats)));
4180 end;
4182 Set_TSS (Typ, Proc_Name);
4183 Set_Is_Pure (Proc_Name);
4184 end Build_Slice_Assignment;
4186 -----------------------------
4187 -- Build_Untagged_Equality --
4188 -----------------------------
4190 procedure Build_Untagged_Equality (Typ : Entity_Id) is
4191 Build_Eq : Boolean;
4192 Comp : Entity_Id;
4193 Decl : Node_Id;
4194 Op : Entity_Id;
4195 Prim : Elmt_Id;
4196 Eq_Op : Entity_Id;
4198 function User_Defined_Eq (T : Entity_Id) return Entity_Id;
4199 -- Check whether the type T has a user-defined primitive equality. If so
4200 -- return it, else return Empty. If true for a component of Typ, we have
4201 -- to build the primitive equality for it.
4203 ---------------------
4204 -- User_Defined_Eq --
4205 ---------------------
4207 function User_Defined_Eq (T : Entity_Id) return Entity_Id is
4208 Prim : Elmt_Id;
4209 Op : Entity_Id;
4211 begin
4212 Op := TSS (T, TSS_Composite_Equality);
4214 if Present (Op) then
4215 return Op;
4216 end if;
4218 Prim := First_Elmt (Collect_Primitive_Operations (T));
4219 while Present (Prim) loop
4220 Op := Node (Prim);
4222 if Chars (Op) = Name_Op_Eq
4223 and then Etype (Op) = Standard_Boolean
4224 and then Etype (First_Formal (Op)) = T
4225 and then Etype (Next_Formal (First_Formal (Op))) = T
4226 then
4227 return Op;
4228 end if;
4230 Next_Elmt (Prim);
4231 end loop;
4233 return Empty;
4234 end User_Defined_Eq;
4236 -- Start of processing for Build_Untagged_Equality
4238 begin
4239 -- If a record component has a primitive equality operation, we must
4240 -- build the corresponding one for the current type.
4242 Build_Eq := False;
4243 Comp := First_Component (Typ);
4244 while Present (Comp) loop
4245 if Is_Record_Type (Etype (Comp))
4246 and then Present (User_Defined_Eq (Etype (Comp)))
4247 then
4248 Build_Eq := True;
4249 end if;
4251 Next_Component (Comp);
4252 end loop;
4254 -- If there is a user-defined equality for the type, we do not create
4255 -- the implicit one.
4257 Prim := First_Elmt (Collect_Primitive_Operations (Typ));
4258 Eq_Op := Empty;
4259 while Present (Prim) loop
4260 if Chars (Node (Prim)) = Name_Op_Eq
4261 and then Comes_From_Source (Node (Prim))
4263 -- Don't we also need to check formal types and return type as in
4264 -- User_Defined_Eq above???
4266 then
4267 Eq_Op := Node (Prim);
4268 Build_Eq := False;
4269 exit;
4270 end if;
4272 Next_Elmt (Prim);
4273 end loop;
4275 -- If the type is derived, inherit the operation, if present, from the
4276 -- parent type. It may have been declared after the type derivation. If
4277 -- the parent type itself is derived, it may have inherited an operation
4278 -- that has itself been overridden, so update its alias and related
4279 -- flags. Ditto for inequality.
4281 if No (Eq_Op) and then Is_Derived_Type (Typ) then
4282 Prim := First_Elmt (Collect_Primitive_Operations (Etype (Typ)));
4283 while Present (Prim) loop
4284 if Chars (Node (Prim)) = Name_Op_Eq then
4285 Copy_TSS (Node (Prim), Typ);
4286 Build_Eq := False;
4288 declare
4289 Op : constant Entity_Id := User_Defined_Eq (Typ);
4290 Eq_Op : constant Entity_Id := Node (Prim);
4291 NE_Op : constant Entity_Id := Next_Entity (Eq_Op);
4293 begin
4294 if Present (Op) then
4295 Set_Alias (Op, Eq_Op);
4296 Set_Is_Abstract_Subprogram
4297 (Op, Is_Abstract_Subprogram (Eq_Op));
4299 if Chars (Next_Entity (Op)) = Name_Op_Ne then
4300 Set_Is_Abstract_Subprogram
4301 (Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
4302 end if;
4303 end if;
4304 end;
4306 exit;
4307 end if;
4309 Next_Elmt (Prim);
4310 end loop;
4311 end if;
4313 -- If not inherited and not user-defined, build body as for a type with
4314 -- tagged components.
4316 if Build_Eq then
4317 Decl :=
4318 Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
4319 Op := Defining_Entity (Decl);
4320 Set_TSS (Typ, Op);
4321 Set_Is_Pure (Op);
4323 if Is_Library_Level_Entity (Typ) then
4324 Set_Is_Public (Op);
4325 end if;
4326 end if;
4327 end Build_Untagged_Equality;
4329 -----------------------------------
4330 -- Build_Variant_Record_Equality --
4331 -----------------------------------
4333 -- Generates:
4335 -- function _Equality (X, Y : T) return Boolean is
4336 -- begin
4337 -- -- Compare discriminants
4339 -- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
4340 -- return False;
4341 -- end if;
4343 -- -- Compare components
4345 -- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
4346 -- return False;
4347 -- end if;
4349 -- -- Compare variant part
4351 -- case X.D1 is
4352 -- when V1 =>
4353 -- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
4354 -- return False;
4355 -- end if;
4356 -- ...
4357 -- when Vn =>
4358 -- if X.Cn /= Y.Cn or else ... then
4359 -- return False;
4360 -- end if;
4361 -- end case;
4363 -- return True;
4364 -- end _Equality;
4366 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
4367 Loc : constant Source_Ptr := Sloc (Typ);
4369 F : constant Entity_Id :=
4370 Make_Defining_Identifier (Loc,
4371 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
4373 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_X);
4374 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_Y);
4376 Def : constant Node_Id := Parent (Typ);
4377 Comps : constant Node_Id := Component_List (Type_Definition (Def));
4378 Stmts : constant List_Id := New_List;
4379 Pspecs : constant List_Id := New_List;
4381 begin
4382 -- If we have a variant record with restriction No_Implicit_Conditionals
4383 -- in effect, then we skip building the procedure. This is safe because
4384 -- if we can see the restriction, so can any caller, calls to equality
4385 -- test routines are not allowed for variant records if this restriction
4386 -- is active.
4388 if Restriction_Active (No_Implicit_Conditionals) then
4389 return;
4390 end if;
4392 -- Derived Unchecked_Union types no longer inherit the equality function
4393 -- of their parent.
4395 if Is_Derived_Type (Typ)
4396 and then not Is_Unchecked_Union (Typ)
4397 and then not Has_New_Non_Standard_Rep (Typ)
4398 then
4399 declare
4400 Parent_Eq : constant Entity_Id :=
4401 TSS (Root_Type (Typ), TSS_Composite_Equality);
4402 begin
4403 if Present (Parent_Eq) then
4404 Copy_TSS (Parent_Eq, Typ);
4405 return;
4406 end if;
4407 end;
4408 end if;
4410 Discard_Node (
4411 Make_Subprogram_Body (Loc,
4412 Specification =>
4413 Make_Function_Specification (Loc,
4414 Defining_Unit_Name => F,
4415 Parameter_Specifications => Pspecs,
4416 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
4417 Declarations => New_List,
4418 Handled_Statement_Sequence =>
4419 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stmts)));
4421 Append_To (Pspecs,
4422 Make_Parameter_Specification (Loc,
4423 Defining_Identifier => X,
4424 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4426 Append_To (Pspecs,
4427 Make_Parameter_Specification (Loc,
4428 Defining_Identifier => Y,
4429 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
4431 -- Unchecked_Unions require additional machinery to support equality.
4432 -- Two extra parameters (A and B) are added to the equality function
4433 -- parameter list for each discriminant of the type, in order to
4434 -- capture the inferred values of the discriminants in equality calls.
4435 -- The names of the parameters match the names of the corresponding
4436 -- discriminant, with an added suffix.
4438 if Is_Unchecked_Union (Typ) then
4439 declare
4440 Discr : Entity_Id;
4441 Discr_Type : Entity_Id;
4442 A, B : Entity_Id;
4443 New_Discrs : Elist_Id;
4445 begin
4446 New_Discrs := New_Elmt_List;
4448 Discr := First_Discriminant (Typ);
4449 while Present (Discr) loop
4450 Discr_Type := Etype (Discr);
4451 A := Make_Defining_Identifier (Loc,
4452 Chars => New_External_Name (Chars (Discr), 'A'));
4454 B := Make_Defining_Identifier (Loc,
4455 Chars => New_External_Name (Chars (Discr), 'B'));
4457 -- Add new parameters to the parameter list
4459 Append_To (Pspecs,
4460 Make_Parameter_Specification (Loc,
4461 Defining_Identifier => A,
4462 Parameter_Type =>
4463 New_Occurrence_Of (Discr_Type, Loc)));
4465 Append_To (Pspecs,
4466 Make_Parameter_Specification (Loc,
4467 Defining_Identifier => B,
4468 Parameter_Type =>
4469 New_Occurrence_Of (Discr_Type, Loc)));
4471 Append_Elmt (A, New_Discrs);
4473 -- Generate the following code to compare each of the inferred
4474 -- discriminants:
4476 -- if a /= b then
4477 -- return False;
4478 -- end if;
4480 Append_To (Stmts,
4481 Make_If_Statement (Loc,
4482 Condition =>
4483 Make_Op_Ne (Loc,
4484 Left_Opnd => New_Occurrence_Of (A, Loc),
4485 Right_Opnd => New_Occurrence_Of (B, Loc)),
4486 Then_Statements => New_List (
4487 Make_Simple_Return_Statement (Loc,
4488 Expression =>
4489 New_Occurrence_Of (Standard_False, Loc)))));
4490 Next_Discriminant (Discr);
4491 end loop;
4493 -- Generate component-by-component comparison. Note that we must
4494 -- propagate the inferred discriminants formals to act as
4495 -- the case statement switch. Their value is added when an
4496 -- equality call on unchecked unions is expanded.
4498 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
4499 end;
4501 -- Normal case (not unchecked union)
4503 else
4504 Append_To (Stmts,
4505 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
4506 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
4507 end if;
4509 Append_To (Stmts,
4510 Make_Simple_Return_Statement (Loc,
4511 Expression => New_Occurrence_Of (Standard_True, Loc)));
4513 Set_TSS (Typ, F);
4514 Set_Is_Pure (F);
4516 if not Debug_Generated_Code then
4517 Set_Debug_Info_Off (F);
4518 end if;
4519 end Build_Variant_Record_Equality;
4521 -----------------------------
4522 -- Check_Stream_Attributes --
4523 -----------------------------
4525 procedure Check_Stream_Attributes (Typ : Entity_Id) is
4526 Comp : Entity_Id;
4527 Par_Read : constant Boolean :=
4528 Stream_Attribute_Available (Typ, TSS_Stream_Read)
4529 and then not Has_Specified_Stream_Read (Typ);
4530 Par_Write : constant Boolean :=
4531 Stream_Attribute_Available (Typ, TSS_Stream_Write)
4532 and then not Has_Specified_Stream_Write (Typ);
4534 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
4535 -- Check that Comp has a user-specified Nam stream attribute
4537 ----------------
4538 -- Check_Attr --
4539 ----------------
4541 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
4542 begin
4543 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
4544 Error_Msg_Name_1 := Nam;
4545 Error_Msg_N
4546 ("|component& in limited extension must have% attribute", Comp);
4547 end if;
4548 end Check_Attr;
4550 -- Start of processing for Check_Stream_Attributes
4552 begin
4553 if Par_Read or else Par_Write then
4554 Comp := First_Component (Typ);
4555 while Present (Comp) loop
4556 if Comes_From_Source (Comp)
4557 and then Original_Record_Component (Comp) = Comp
4558 and then Is_Limited_Type (Etype (Comp))
4559 then
4560 if Par_Read then
4561 Check_Attr (Name_Read, TSS_Stream_Read);
4562 end if;
4564 if Par_Write then
4565 Check_Attr (Name_Write, TSS_Stream_Write);
4566 end if;
4567 end if;
4569 Next_Component (Comp);
4570 end loop;
4571 end if;
4572 end Check_Stream_Attributes;
4574 ----------------------
4575 -- Clean_Task_Names --
4576 ----------------------
4578 procedure Clean_Task_Names
4579 (Typ : Entity_Id;
4580 Proc_Id : Entity_Id)
4582 begin
4583 if Has_Task (Typ)
4584 and then not Restriction_Active (No_Implicit_Heap_Allocations)
4585 and then not Global_Discard_Names
4586 and then Tagged_Type_Expansion
4587 then
4588 Set_Uses_Sec_Stack (Proc_Id);
4589 end if;
4590 end Clean_Task_Names;
4592 ------------------------------
4593 -- Expand_Freeze_Array_Type --
4594 ------------------------------
4596 procedure Expand_Freeze_Array_Type (N : Node_Id) is
4597 Typ : constant Entity_Id := Entity (N);
4598 Base : constant Entity_Id := Base_Type (Typ);
4599 Comp_Typ : constant Entity_Id := Component_Type (Typ);
4601 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4603 begin
4604 -- Ensure that all freezing activities are properly flagged as Ghost
4606 Set_Ghost_Mode_From_Entity (Typ);
4608 if not Is_Bit_Packed_Array (Typ) then
4610 -- If the component contains tasks, so does the array type. This may
4611 -- not be indicated in the array type because the component may have
4612 -- been a private type at the point of definition. Same if component
4613 -- type is controlled or contains protected objects.
4615 Set_Has_Task (Base, Has_Task (Comp_Typ));
4616 Set_Has_Protected (Base, Has_Protected (Comp_Typ));
4617 Set_Has_Controlled_Component
4618 (Base, Has_Controlled_Component
4619 (Comp_Typ)
4620 or else
4621 Is_Controlled (Comp_Typ));
4623 if No (Init_Proc (Base)) then
4625 -- If this is an anonymous array created for a declaration with
4626 -- an initial value, its init_proc will never be called. The
4627 -- initial value itself may have been expanded into assignments,
4628 -- in which case the object declaration is carries the
4629 -- No_Initialization flag.
4631 if Is_Itype (Base)
4632 and then Nkind (Associated_Node_For_Itype (Base)) =
4633 N_Object_Declaration
4634 and then
4635 (Present (Expression (Associated_Node_For_Itype (Base)))
4636 or else No_Initialization (Associated_Node_For_Itype (Base)))
4637 then
4638 null;
4640 -- We do not need an init proc for string or wide [wide] string,
4641 -- since the only time these need initialization in normalize or
4642 -- initialize scalars mode, and these types are treated specially
4643 -- and do not need initialization procedures.
4645 elsif Is_Standard_String_Type (Base) then
4646 null;
4648 -- Otherwise we have to build an init proc for the subtype
4650 else
4651 Build_Array_Init_Proc (Base, N);
4652 end if;
4653 end if;
4655 if Typ = Base and then Has_Controlled_Component (Base) then
4656 Build_Controlling_Procs (Base);
4658 if not Is_Limited_Type (Comp_Typ)
4659 and then Number_Dimensions (Typ) = 1
4660 then
4661 Build_Slice_Assignment (Typ);
4662 end if;
4663 end if;
4665 -- For packed case, default initialization, except if the component type
4666 -- is itself a packed structure with an initialization procedure, or
4667 -- initialize/normalize scalars active, and we have a base type, or the
4668 -- type is public, because in that case a client might specify
4669 -- Normalize_Scalars and there better be a public Init_Proc for it.
4671 elsif (Present (Init_Proc (Component_Type (Base)))
4672 and then No (Base_Init_Proc (Base)))
4673 or else (Init_Or_Norm_Scalars and then Base = Typ)
4674 or else Is_Public (Typ)
4675 then
4676 Build_Array_Init_Proc (Base, N);
4677 end if;
4679 if Has_Invariants (Component_Type (Base))
4680 and then Typ = Base
4681 and then In_Open_Scopes (Scope (Component_Type (Base)))
4682 then
4683 -- Generate component invariant checking procedure. This is only
4684 -- relevant if the array type is within the scope of the component
4685 -- type. Otherwise an array object can only be built using the public
4686 -- subprograms for the component type, and calls to those will have
4687 -- invariant checks. The invariant procedure is only generated for
4688 -- a base type, not a subtype.
4690 Insert_Component_Invariant_Checks
4691 (N, Base, Build_Array_Invariant_Proc (Base, N));
4692 end if;
4694 Ghost_Mode := Save_Ghost_Mode;
4695 end Expand_Freeze_Array_Type;
4697 -----------------------------------
4698 -- Expand_Freeze_Class_Wide_Type --
4699 -----------------------------------
4701 procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
4702 function Is_C_Derivation (Typ : Entity_Id) return Boolean;
4703 -- Given a type, determine whether it is derived from a C or C++ root
4705 ---------------------
4706 -- Is_C_Derivation --
4707 ---------------------
4709 function Is_C_Derivation (Typ : Entity_Id) return Boolean is
4710 T : Entity_Id;
4712 begin
4713 T := Typ;
4714 loop
4715 if Is_CPP_Class (T)
4716 or else Convention (T) = Convention_C
4717 or else Convention (T) = Convention_CPP
4718 then
4719 return True;
4720 end if;
4722 exit when T = Etype (T);
4724 T := Etype (T);
4725 end loop;
4727 return False;
4728 end Is_C_Derivation;
4730 -- Local variables
4732 Typ : constant Entity_Id := Entity (N);
4733 Root : constant Entity_Id := Root_Type (Typ);
4735 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4737 -- Start of processing for Expand_Freeze_Class_Wide_Type
4739 begin
4740 -- Certain run-time configurations and targets do not provide support
4741 -- for controlled types.
4743 if Restriction_Active (No_Finalization) then
4744 return;
4746 -- Do not create TSS routine Finalize_Address when dispatching calls are
4747 -- disabled since the core of the routine is a dispatching call.
4749 elsif Restriction_Active (No_Dispatching_Calls) then
4750 return;
4752 -- Do not create TSS routine Finalize_Address for concurrent class-wide
4753 -- types. Ignore C, C++, CIL and Java types since it is assumed that the
4754 -- non-Ada side will handle their destruction.
4756 elsif Is_Concurrent_Type (Root)
4757 or else Is_C_Derivation (Root)
4758 or else Convention (Typ) = Convention_CPP
4759 then
4760 return;
4762 -- Do not create TSS routine Finalize_Address when compiling in CodePeer
4763 -- mode since the routine contains an Unchecked_Conversion.
4765 elsif CodePeer_Mode then
4766 return;
4767 end if;
4769 -- Ensure that all freezing activities are properly flagged as Ghost
4771 Set_Ghost_Mode_From_Entity (Typ);
4773 -- Create the body of TSS primitive Finalize_Address. This automatically
4774 -- sets the TSS entry for the class-wide type.
4776 Make_Finalize_Address_Body (Typ);
4777 Ghost_Mode := Save_Ghost_Mode;
4778 end Expand_Freeze_Class_Wide_Type;
4780 ------------------------------------
4781 -- Expand_Freeze_Enumeration_Type --
4782 ------------------------------------
4784 procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
4785 Typ : constant Entity_Id := Entity (N);
4786 Loc : constant Source_Ptr := Sloc (Typ);
4788 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
4790 Arr : Entity_Id;
4791 Ent : Entity_Id;
4792 Fent : Entity_Id;
4793 Is_Contiguous : Boolean;
4794 Ityp : Entity_Id;
4795 Last_Repval : Uint;
4796 Lst : List_Id;
4797 Num : Nat;
4798 Pos_Expr : Node_Id;
4800 Func : Entity_Id;
4801 pragma Warnings (Off, Func);
4803 begin
4804 -- Ensure that all freezing activities are properly flagged as Ghost
4806 Set_Ghost_Mode_From_Entity (Typ);
4808 -- Various optimizations possible if given representation is contiguous
4810 Is_Contiguous := True;
4812 Ent := First_Literal (Typ);
4813 Last_Repval := Enumeration_Rep (Ent);
4815 Next_Literal (Ent);
4816 while Present (Ent) loop
4817 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
4818 Is_Contiguous := False;
4819 exit;
4820 else
4821 Last_Repval := Enumeration_Rep (Ent);
4822 end if;
4824 Next_Literal (Ent);
4825 end loop;
4827 if Is_Contiguous then
4828 Set_Has_Contiguous_Rep (Typ);
4829 Ent := First_Literal (Typ);
4830 Num := 1;
4831 Lst := New_List (New_Occurrence_Of (Ent, Sloc (Ent)));
4833 else
4834 -- Build list of literal references
4836 Lst := New_List;
4837 Num := 0;
4839 Ent := First_Literal (Typ);
4840 while Present (Ent) loop
4841 Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
4842 Num := Num + 1;
4843 Next_Literal (Ent);
4844 end loop;
4845 end if;
4847 -- Now build an array declaration
4849 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4850 -- (v, v, v, v, v, ....)
4852 -- where ctype is the corresponding integer type. If the representation
4853 -- is contiguous, we only keep the first literal, which provides the
4854 -- offset for Pos_To_Rep computations.
4856 Arr :=
4857 Make_Defining_Identifier (Loc,
4858 Chars => New_External_Name (Chars (Typ), 'A'));
4860 Append_Freeze_Action (Typ,
4861 Make_Object_Declaration (Loc,
4862 Defining_Identifier => Arr,
4863 Constant_Present => True,
4865 Object_Definition =>
4866 Make_Constrained_Array_Definition (Loc,
4867 Discrete_Subtype_Definitions => New_List (
4868 Make_Subtype_Indication (Loc,
4869 Subtype_Mark => New_Occurrence_Of (Standard_Natural, Loc),
4870 Constraint =>
4871 Make_Range_Constraint (Loc,
4872 Range_Expression =>
4873 Make_Range (Loc,
4874 Low_Bound =>
4875 Make_Integer_Literal (Loc, 0),
4876 High_Bound =>
4877 Make_Integer_Literal (Loc, Num - 1))))),
4879 Component_Definition =>
4880 Make_Component_Definition (Loc,
4881 Aliased_Present => False,
4882 Subtype_Indication => New_Occurrence_Of (Typ, Loc))),
4884 Expression =>
4885 Make_Aggregate (Loc,
4886 Expressions => Lst)));
4888 Set_Enum_Pos_To_Rep (Typ, Arr);
4890 -- Now we build the function that converts representation values to
4891 -- position values. This function has the form:
4893 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4894 -- begin
4895 -- case ityp!(A) is
4896 -- when enum-lit'Enum_Rep => return posval;
4897 -- when enum-lit'Enum_Rep => return posval;
4898 -- ...
4899 -- when others =>
4900 -- [raise Constraint_Error when F "invalid data"]
4901 -- return -1;
4902 -- end case;
4903 -- end;
4905 -- Note: the F parameter determines whether the others case (no valid
4906 -- representation) raises Constraint_Error or returns a unique value
4907 -- of minus one. The latter case is used, e.g. in 'Valid code.
4909 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4910 -- the code generator making inappropriate assumptions about the range
4911 -- of the values in the case where the value is invalid. ityp is a
4912 -- signed or unsigned integer type of appropriate width.
4914 -- Note: if exceptions are not supported, then we suppress the raise
4915 -- and return -1 unconditionally (this is an erroneous program in any
4916 -- case and there is no obligation to raise Constraint_Error here). We
4917 -- also do this if pragma Restrictions (No_Exceptions) is active.
4919 -- Is this right??? What about No_Exception_Propagation???
4921 -- Representations are signed
4923 if Enumeration_Rep (First_Literal (Typ)) < 0 then
4925 -- The underlying type is signed. Reset the Is_Unsigned_Type
4926 -- explicitly, because it might have been inherited from
4927 -- parent type.
4929 Set_Is_Unsigned_Type (Typ, False);
4931 if Esize (Typ) <= Standard_Integer_Size then
4932 Ityp := Standard_Integer;
4933 else
4934 Ityp := Universal_Integer;
4935 end if;
4937 -- Representations are unsigned
4939 else
4940 if Esize (Typ) <= Standard_Integer_Size then
4941 Ityp := RTE (RE_Unsigned);
4942 else
4943 Ityp := RTE (RE_Long_Long_Unsigned);
4944 end if;
4945 end if;
4947 -- The body of the function is a case statement. First collect case
4948 -- alternatives, or optimize the contiguous case.
4950 Lst := New_List;
4952 -- If representation is contiguous, Pos is computed by subtracting
4953 -- the representation of the first literal.
4955 if Is_Contiguous then
4956 Ent := First_Literal (Typ);
4958 if Enumeration_Rep (Ent) = Last_Repval then
4960 -- Another special case: for a single literal, Pos is zero
4962 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4964 else
4965 Pos_Expr :=
4966 Convert_To (Standard_Integer,
4967 Make_Op_Subtract (Loc,
4968 Left_Opnd =>
4969 Unchecked_Convert_To
4970 (Ityp, Make_Identifier (Loc, Name_uA)),
4971 Right_Opnd =>
4972 Make_Integer_Literal (Loc,
4973 Intval => Enumeration_Rep (First_Literal (Typ)))));
4974 end if;
4976 Append_To (Lst,
4977 Make_Case_Statement_Alternative (Loc,
4978 Discrete_Choices => New_List (
4979 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4980 Low_Bound =>
4981 Make_Integer_Literal (Loc,
4982 Intval => Enumeration_Rep (Ent)),
4983 High_Bound =>
4984 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4986 Statements => New_List (
4987 Make_Simple_Return_Statement (Loc,
4988 Expression => Pos_Expr))));
4990 else
4991 Ent := First_Literal (Typ);
4992 while Present (Ent) loop
4993 Append_To (Lst,
4994 Make_Case_Statement_Alternative (Loc,
4995 Discrete_Choices => New_List (
4996 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
4997 Intval => Enumeration_Rep (Ent))),
4999 Statements => New_List (
5000 Make_Simple_Return_Statement (Loc,
5001 Expression =>
5002 Make_Integer_Literal (Loc,
5003 Intval => Enumeration_Pos (Ent))))));
5005 Next_Literal (Ent);
5006 end loop;
5007 end if;
5009 -- In normal mode, add the others clause with the test.
5010 -- If Predicates_Ignored is True, validity checks do not apply to
5011 -- the subtype.
5013 if not No_Exception_Handlers_Set
5014 and then not Predicates_Ignored (Typ)
5015 then
5016 Append_To (Lst,
5017 Make_Case_Statement_Alternative (Loc,
5018 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
5019 Statements => New_List (
5020 Make_Raise_Constraint_Error (Loc,
5021 Condition => Make_Identifier (Loc, Name_uF),
5022 Reason => CE_Invalid_Data),
5023 Make_Simple_Return_Statement (Loc,
5024 Expression => Make_Integer_Literal (Loc, -1)))));
5026 -- If either of the restrictions No_Exceptions_Handlers/Propagation is
5027 -- active then return -1 (we cannot usefully raise Constraint_Error in
5028 -- this case). See description above for further details.
5030 else
5031 Append_To (Lst,
5032 Make_Case_Statement_Alternative (Loc,
5033 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
5034 Statements => New_List (
5035 Make_Simple_Return_Statement (Loc,
5036 Expression => Make_Integer_Literal (Loc, -1)))));
5037 end if;
5039 -- Now we can build the function body
5041 Fent :=
5042 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
5044 Func :=
5045 Make_Subprogram_Body (Loc,
5046 Specification =>
5047 Make_Function_Specification (Loc,
5048 Defining_Unit_Name => Fent,
5049 Parameter_Specifications => New_List (
5050 Make_Parameter_Specification (Loc,
5051 Defining_Identifier =>
5052 Make_Defining_Identifier (Loc, Name_uA),
5053 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
5054 Make_Parameter_Specification (Loc,
5055 Defining_Identifier =>
5056 Make_Defining_Identifier (Loc, Name_uF),
5057 Parameter_Type =>
5058 New_Occurrence_Of (Standard_Boolean, Loc))),
5060 Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),
5062 Declarations => Empty_List,
5064 Handled_Statement_Sequence =>
5065 Make_Handled_Sequence_Of_Statements (Loc,
5066 Statements => New_List (
5067 Make_Case_Statement (Loc,
5068 Expression =>
5069 Unchecked_Convert_To
5070 (Ityp, Make_Identifier (Loc, Name_uA)),
5071 Alternatives => Lst))));
5073 Set_TSS (Typ, Fent);
5075 -- Set Pure flag (it will be reset if the current context is not Pure).
5076 -- We also pretend there was a pragma Pure_Function so that for purposes
5077 -- of optimization and constant-folding, we will consider the function
5078 -- Pure even if we are not in a Pure context).
5080 Set_Is_Pure (Fent);
5081 Set_Has_Pragma_Pure_Function (Fent);
5083 -- Unless we are in -gnatD mode, where we are debugging generated code,
5084 -- this is an internal entity for which we don't need debug info.
5086 if not Debug_Generated_Code then
5087 Set_Debug_Info_Off (Fent);
5088 end if;
5090 Ghost_Mode := Save_Ghost_Mode;
5092 exception
5093 when RE_Not_Available =>
5094 Ghost_Mode := Save_Ghost_Mode;
5095 return;
5096 end Expand_Freeze_Enumeration_Type;
5098 -------------------------------
5099 -- Expand_Freeze_Record_Type --
5100 -------------------------------
5102 procedure Expand_Freeze_Record_Type (N : Node_Id) is
5103 Typ : constant Node_Id := Entity (N);
5104 Typ_Decl : constant Node_Id := Parent (Typ);
5106 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
5108 Comp : Entity_Id;
5109 Comp_Typ : Entity_Id;
5110 Predef_List : List_Id;
5112 Wrapper_Decl_List : List_Id := No_List;
5113 Wrapper_Body_List : List_Id := No_List;
5115 Renamed_Eq : Node_Id := Empty;
5116 -- Defining unit name for the predefined equality function in the case
5117 -- where the type has a primitive operation that is a renaming of
5118 -- predefined equality (but only if there is also an overriding
5119 -- user-defined equality function). Used to pass this entity from
5120 -- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
5122 -- Start of processing for Expand_Freeze_Record_Type
5124 begin
5125 -- Ensure that all freezing activities are properly flagged as Ghost
5127 Set_Ghost_Mode_From_Entity (Typ);
5129 -- Build discriminant checking functions if not a derived type (for
5130 -- derived types that are not tagged types, always use the discriminant
5131 -- checking functions of the parent type). However, for untagged types
5132 -- the derivation may have taken place before the parent was frozen, so
5133 -- we copy explicitly the discriminant checking functions from the
5134 -- parent into the components of the derived type.
5136 if not Is_Derived_Type (Typ)
5137 or else Has_New_Non_Standard_Rep (Typ)
5138 or else Is_Tagged_Type (Typ)
5139 then
5140 Build_Discr_Checking_Funcs (Typ_Decl);
5142 elsif Is_Derived_Type (Typ)
5143 and then not Is_Tagged_Type (Typ)
5145 -- If we have a derived Unchecked_Union, we do not inherit the
5146 -- discriminant checking functions from the parent type since the
5147 -- discriminants are non existent.
5149 and then not Is_Unchecked_Union (Typ)
5150 and then Has_Discriminants (Typ)
5151 then
5152 declare
5153 Old_Comp : Entity_Id;
5155 begin
5156 Old_Comp :=
5157 First_Component (Base_Type (Underlying_Type (Etype (Typ))));
5158 Comp := First_Component (Typ);
5159 while Present (Comp) loop
5160 if Ekind (Comp) = E_Component
5161 and then Chars (Comp) = Chars (Old_Comp)
5162 then
5163 Set_Discriminant_Checking_Func
5164 (Comp, Discriminant_Checking_Func (Old_Comp));
5165 end if;
5167 Next_Component (Old_Comp);
5168 Next_Component (Comp);
5169 end loop;
5170 end;
5171 end if;
5173 if Is_Derived_Type (Typ)
5174 and then Is_Limited_Type (Typ)
5175 and then Is_Tagged_Type (Typ)
5176 then
5177 Check_Stream_Attributes (Typ);
5178 end if;
5180 -- Update task, protected, and controlled component flags, because some
5181 -- of the component types may have been private at the point of the
5182 -- record declaration. Detect anonymous access-to-controlled components.
5184 Comp := First_Component (Typ);
5185 while Present (Comp) loop
5186 Comp_Typ := Etype (Comp);
5188 if Has_Task (Comp_Typ) then
5189 Set_Has_Task (Typ);
5190 end if;
5192 if Has_Protected (Comp_Typ) then
5193 Set_Has_Protected (Typ);
5194 end if;
5196 -- Do not set Has_Controlled_Component on a class-wide equivalent
5197 -- type. See Make_CW_Equivalent_Type.
5199 if not Is_Class_Wide_Equivalent_Type (Typ)
5200 and then
5201 (Has_Controlled_Component (Comp_Typ)
5202 or else (Chars (Comp) /= Name_uParent
5203 and then (Is_Controlled_Active (Comp_Typ))))
5204 then
5205 Set_Has_Controlled_Component (Typ);
5206 end if;
5208 Next_Component (Comp);
5209 end loop;
5211 -- Handle constructors of untagged CPP_Class types
5213 if not Is_Tagged_Type (Typ) and then Is_CPP_Class (Typ) then
5214 Set_CPP_Constructors (Typ);
5215 end if;
5217 -- Creation of the Dispatch Table. Note that a Dispatch Table is built
5218 -- for regular tagged types as well as for Ada types deriving from a C++
5219 -- Class, but not for tagged types directly corresponding to C++ classes
5220 -- In the later case we assume that it is created in the C++ side and we
5221 -- just use it.
5223 if Is_Tagged_Type (Typ) then
5225 -- Add the _Tag component
5227 if Underlying_Type (Etype (Typ)) = Typ then
5228 Expand_Tagged_Root (Typ);
5229 end if;
5231 if Is_CPP_Class (Typ) then
5232 Set_All_DT_Position (Typ);
5234 -- Create the tag entities with a minimum decoration
5236 if Tagged_Type_Expansion then
5237 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5238 end if;
5240 Set_CPP_Constructors (Typ);
5242 else
5243 if not Building_Static_DT (Typ) then
5245 -- Usually inherited primitives are not delayed but the first
5246 -- Ada extension of a CPP_Class is an exception since the
5247 -- address of the inherited subprogram has to be inserted in
5248 -- the new Ada Dispatch Table and this is a freezing action.
5250 -- Similarly, if this is an inherited operation whose parent is
5251 -- not frozen yet, it is not in the DT of the parent, and we
5252 -- generate an explicit freeze node for the inherited operation
5253 -- so it is properly inserted in the DT of the current type.
5255 declare
5256 Elmt : Elmt_Id;
5257 Subp : Entity_Id;
5259 begin
5260 Elmt := First_Elmt (Primitive_Operations (Typ));
5261 while Present (Elmt) loop
5262 Subp := Node (Elmt);
5264 if Present (Alias (Subp)) then
5265 if Is_CPP_Class (Etype (Typ)) then
5266 Set_Has_Delayed_Freeze (Subp);
5268 elsif Has_Delayed_Freeze (Alias (Subp))
5269 and then not Is_Frozen (Alias (Subp))
5270 then
5271 Set_Is_Frozen (Subp, False);
5272 Set_Has_Delayed_Freeze (Subp);
5273 end if;
5274 end if;
5276 Next_Elmt (Elmt);
5277 end loop;
5278 end;
5279 end if;
5281 -- Unfreeze momentarily the type to add the predefined primitives
5282 -- operations. The reason we unfreeze is so that these predefined
5283 -- operations will indeed end up as primitive operations (which
5284 -- must be before the freeze point).
5286 Set_Is_Frozen (Typ, False);
5288 -- Do not add the spec of predefined primitives in case of
5289 -- CPP tagged type derivations that have convention CPP.
5291 if Is_CPP_Class (Root_Type (Typ))
5292 and then Convention (Typ) = Convention_CPP
5293 then
5294 null;
5296 -- Do not add the spec of the predefined primitives if we are
5297 -- compiling under restriction No_Dispatching_Calls.
5299 elsif not Restriction_Active (No_Dispatching_Calls) then
5300 Make_Predefined_Primitive_Specs (Typ, Predef_List, Renamed_Eq);
5301 Insert_List_Before_And_Analyze (N, Predef_List);
5302 end if;
5304 -- Ada 2005 (AI-391): For a nonabstract null extension, create
5305 -- wrapper functions for each nonoverridden inherited function
5306 -- with a controlling result of the type. The wrapper for such
5307 -- a function returns an extension aggregate that invokes the
5308 -- parent function.
5310 if Ada_Version >= Ada_2005
5311 and then not Is_Abstract_Type (Typ)
5312 and then Is_Null_Extension (Typ)
5313 then
5314 Make_Controlling_Function_Wrappers
5315 (Typ, Wrapper_Decl_List, Wrapper_Body_List);
5316 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
5317 end if;
5319 -- Ada 2005 (AI-251): For a nonabstract type extension, build
5320 -- null procedure declarations for each set of homographic null
5321 -- procedures that are inherited from interface types but not
5322 -- overridden. This is done to ensure that the dispatch table
5323 -- entry associated with such null primitives are properly filled.
5325 if Ada_Version >= Ada_2005
5326 and then Etype (Typ) /= Typ
5327 and then not Is_Abstract_Type (Typ)
5328 and then Has_Interfaces (Typ)
5329 then
5330 Insert_Actions (N, Make_Null_Procedure_Specs (Typ));
5331 end if;
5333 Set_Is_Frozen (Typ);
5335 if not Is_Derived_Type (Typ)
5336 or else Is_Tagged_Type (Etype (Typ))
5337 then
5338 Set_All_DT_Position (Typ);
5340 -- If this is a type derived from an untagged private type whose
5341 -- full view is tagged, the type is marked tagged for layout
5342 -- reasons, but it has no dispatch table.
5344 elsif Is_Derived_Type (Typ)
5345 and then Is_Private_Type (Etype (Typ))
5346 and then not Is_Tagged_Type (Etype (Typ))
5347 then
5348 return;
5349 end if;
5351 -- Create and decorate the tags. Suppress their creation when
5352 -- not Tagged_Type_Expansion because the dispatching mechanism is
5353 -- handled internally by the virtual target.
5355 if Tagged_Type_Expansion then
5356 Append_Freeze_Actions (Typ, Make_Tags (Typ));
5358 -- Generate dispatch table of locally defined tagged type.
5359 -- Dispatch tables of library level tagged types are built
5360 -- later (see Analyze_Declarations).
5362 if not Building_Static_DT (Typ) then
5363 Append_Freeze_Actions (Typ, Make_DT (Typ));
5364 end if;
5365 end if;
5367 -- If the type has unknown discriminants, propagate dispatching
5368 -- information to its underlying record view, which does not get
5369 -- its own dispatch table.
5371 if Is_Derived_Type (Typ)
5372 and then Has_Unknown_Discriminants (Typ)
5373 and then Present (Underlying_Record_View (Typ))
5374 then
5375 declare
5376 Rep : constant Entity_Id := Underlying_Record_View (Typ);
5377 begin
5378 Set_Access_Disp_Table
5379 (Rep, Access_Disp_Table (Typ));
5380 Set_Dispatch_Table_Wrappers
5381 (Rep, Dispatch_Table_Wrappers (Typ));
5382 Set_Direct_Primitive_Operations
5383 (Rep, Direct_Primitive_Operations (Typ));
5384 end;
5385 end if;
5387 -- Make sure that the primitives Initialize, Adjust and Finalize
5388 -- are Frozen before other TSS subprograms. We don't want them
5389 -- Frozen inside.
5391 if Is_Controlled (Typ) then
5392 if not Is_Limited_Type (Typ) then
5393 Append_Freeze_Actions (Typ,
5394 Freeze_Entity (Find_Prim_Op (Typ, Name_Adjust), Typ));
5395 end if;
5397 Append_Freeze_Actions (Typ,
5398 Freeze_Entity (Find_Prim_Op (Typ, Name_Initialize), Typ));
5400 Append_Freeze_Actions (Typ,
5401 Freeze_Entity (Find_Prim_Op (Typ, Name_Finalize), Typ));
5402 end if;
5404 -- Freeze rest of primitive operations. There is no need to handle
5405 -- the predefined primitives if we are compiling under restriction
5406 -- No_Dispatching_Calls.
5408 if not Restriction_Active (No_Dispatching_Calls) then
5409 Append_Freeze_Actions (Typ, Predefined_Primitive_Freeze (Typ));
5410 end if;
5411 end if;
5413 -- In the untagged case, ever since Ada 83 an equality function must
5414 -- be provided for variant records that are not unchecked unions.
5415 -- In Ada 2012 the equality function composes, and thus must be built
5416 -- explicitly just as for tagged records.
5418 elsif Has_Discriminants (Typ)
5419 and then not Is_Limited_Type (Typ)
5420 then
5421 declare
5422 Comps : constant Node_Id :=
5423 Component_List (Type_Definition (Typ_Decl));
5424 begin
5425 if Present (Comps)
5426 and then Present (Variant_Part (Comps))
5427 then
5428 Build_Variant_Record_Equality (Typ);
5429 end if;
5430 end;
5432 -- Otherwise create primitive equality operation (AI05-0123)
5434 -- This is done unconditionally to ensure that tools can be linked
5435 -- properly with user programs compiled with older language versions.
5436 -- In addition, this is needed because "=" composes for bounded strings
5437 -- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
5439 elsif Comes_From_Source (Typ)
5440 and then Convention (Typ) = Convention_Ada
5441 and then not Is_Limited_Type (Typ)
5442 then
5443 Build_Untagged_Equality (Typ);
5444 end if;
5446 -- Before building the record initialization procedure, if we are
5447 -- dealing with a concurrent record value type, then we must go through
5448 -- the discriminants, exchanging discriminals between the concurrent
5449 -- type and the concurrent record value type. See the section "Handling
5450 -- of Discriminants" in the Einfo spec for details.
5452 if Is_Concurrent_Record_Type (Typ)
5453 and then Has_Discriminants (Typ)
5454 then
5455 declare
5456 Ctyp : constant Entity_Id :=
5457 Corresponding_Concurrent_Type (Typ);
5458 Conc_Discr : Entity_Id;
5459 Rec_Discr : Entity_Id;
5460 Temp : Entity_Id;
5462 begin
5463 Conc_Discr := First_Discriminant (Ctyp);
5464 Rec_Discr := First_Discriminant (Typ);
5465 while Present (Conc_Discr) loop
5466 Temp := Discriminal (Conc_Discr);
5467 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
5468 Set_Discriminal (Rec_Discr, Temp);
5470 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
5471 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
5473 Next_Discriminant (Conc_Discr);
5474 Next_Discriminant (Rec_Discr);
5475 end loop;
5476 end;
5477 end if;
5479 if Has_Controlled_Component (Typ) then
5480 Build_Controlling_Procs (Typ);
5481 end if;
5483 Adjust_Discriminants (Typ);
5485 -- Do not need init for interfaces on virtual targets since they're
5486 -- abstract.
5488 if Tagged_Type_Expansion or else not Is_Interface (Typ) then
5489 Build_Record_Init_Proc (Typ_Decl, Typ);
5490 end if;
5492 -- For tagged type that are not interfaces, build bodies of primitive
5493 -- operations. Note: do this after building the record initialization
5494 -- procedure, since the primitive operations may need the initialization
5495 -- routine. There is no need to add predefined primitives of interfaces
5496 -- because all their predefined primitives are abstract.
5498 if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
5500 -- Do not add the body of predefined primitives in case of CPP tagged
5501 -- type derivations that have convention CPP.
5503 if Is_CPP_Class (Root_Type (Typ))
5504 and then Convention (Typ) = Convention_CPP
5505 then
5506 null;
5508 -- Do not add the body of the predefined primitives if we are
5509 -- compiling under restriction No_Dispatching_Calls or if we are
5510 -- compiling a CPP tagged type.
5512 elsif not Restriction_Active (No_Dispatching_Calls) then
5514 -- Create the body of TSS primitive Finalize_Address. This must
5515 -- be done before the bodies of all predefined primitives are
5516 -- created. If Typ is limited, Stream_Input and Stream_Read may
5517 -- produce build-in-place allocations and for those the expander
5518 -- needs Finalize_Address.
5520 Make_Finalize_Address_Body (Typ);
5521 Predef_List := Predefined_Primitive_Bodies (Typ, Renamed_Eq);
5522 Append_Freeze_Actions (Typ, Predef_List);
5523 end if;
5525 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5526 -- inherited functions, then add their bodies to the freeze actions.
5528 if Present (Wrapper_Body_List) then
5529 Append_Freeze_Actions (Typ, Wrapper_Body_List);
5530 end if;
5532 -- Create extra formals for the primitive operations of the type.
5533 -- This must be done before analyzing the body of the initialization
5534 -- procedure, because a self-referential type might call one of these
5535 -- primitives in the body of the init_proc itself.
5537 declare
5538 Elmt : Elmt_Id;
5539 Subp : Entity_Id;
5541 begin
5542 Elmt := First_Elmt (Primitive_Operations (Typ));
5543 while Present (Elmt) loop
5544 Subp := Node (Elmt);
5545 if not Has_Foreign_Convention (Subp)
5546 and then not Is_Predefined_Dispatching_Operation (Subp)
5547 then
5548 Create_Extra_Formals (Subp);
5549 end if;
5551 Next_Elmt (Elmt);
5552 end loop;
5553 end;
5554 end if;
5556 -- Check whether individual components have a defined invariant, and add
5557 -- the corresponding component invariant checks.
5559 -- Do not create an invariant procedure for some internally generated
5560 -- subtypes, in particular those created for objects of a class-wide
5561 -- type. Such types may have components to which invariant apply, but
5562 -- the corresponding checks will be applied when an object of the parent
5563 -- type is constructed.
5565 -- Such objects will show up in a class-wide postcondition, and the
5566 -- invariant will be checked, if necessary, upon return from the
5567 -- enclosing subprogram.
5569 if not Is_Class_Wide_Equivalent_Type (Typ) then
5570 Insert_Component_Invariant_Checks
5571 (N, Typ, Build_Record_Invariant_Proc (Typ, N));
5572 end if;
5574 Ghost_Mode := Save_Ghost_Mode;
5575 end Expand_Freeze_Record_Type;
5577 ------------------------------------
5578 -- Expand_N_Full_Type_Declaration --
5579 ------------------------------------
5581 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
5582 procedure Build_Master (Ptr_Typ : Entity_Id);
5583 -- Create the master associated with Ptr_Typ
5585 ------------------
5586 -- Build_Master --
5587 ------------------
5589 procedure Build_Master (Ptr_Typ : Entity_Id) is
5590 Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);
5592 begin
5593 -- If the designated type is an incomplete view coming from a
5594 -- limited-with'ed package, we need to use the nonlimited view in
5595 -- case it has tasks.
5597 if Ekind (Desig_Typ) in Incomplete_Kind
5598 and then Present (Non_Limited_View (Desig_Typ))
5599 then
5600 Desig_Typ := Non_Limited_View (Desig_Typ);
5601 end if;
5603 -- Anonymous access types are created for the components of the
5604 -- record parameter for an entry declaration. No master is created
5605 -- for such a type.
5607 if Comes_From_Source (N) and then Has_Task (Desig_Typ) then
5608 Build_Master_Entity (Ptr_Typ);
5609 Build_Master_Renaming (Ptr_Typ);
5611 -- Create a class-wide master because a Master_Id must be generated
5612 -- for access-to-limited-class-wide types whose root may be extended
5613 -- with task components.
5615 -- Note: This code covers access-to-limited-interfaces because they
5616 -- can be used to reference tasks implementing them.
5618 elsif Is_Limited_Class_Wide_Type (Desig_Typ)
5619 and then Tasking_Allowed
5620 then
5621 Build_Class_Wide_Master (Ptr_Typ);
5622 end if;
5623 end Build_Master;
5625 -- Local declarations
5627 Def_Id : constant Entity_Id := Defining_Identifier (N);
5628 B_Id : constant Entity_Id := Base_Type (Def_Id);
5629 FN : Node_Id;
5630 Par_Id : Entity_Id;
5632 -- Start of processing for Expand_N_Full_Type_Declaration
5634 begin
5635 if Is_Access_Type (Def_Id) then
5636 Build_Master (Def_Id);
5638 if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
5639 Expand_Access_Protected_Subprogram_Type (N);
5640 end if;
5642 -- Array of anonymous access-to-task pointers
5644 elsif Ada_Version >= Ada_2005
5645 and then Is_Array_Type (Def_Id)
5646 and then Is_Access_Type (Component_Type (Def_Id))
5647 and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
5648 then
5649 Build_Master (Component_Type (Def_Id));
5651 elsif Has_Task (Def_Id) then
5652 Expand_Previous_Access_Type (Def_Id);
5654 -- Check the components of a record type or array of records for
5655 -- anonymous access-to-task pointers.
5657 elsif Ada_Version >= Ada_2005
5658 and then (Is_Record_Type (Def_Id)
5659 or else
5660 (Is_Array_Type (Def_Id)
5661 and then Is_Record_Type (Component_Type (Def_Id))))
5662 then
5663 declare
5664 Comp : Entity_Id;
5665 First : Boolean;
5666 M_Id : Entity_Id;
5667 Typ : Entity_Id;
5669 begin
5670 if Is_Array_Type (Def_Id) then
5671 Comp := First_Entity (Component_Type (Def_Id));
5672 else
5673 Comp := First_Entity (Def_Id);
5674 end if;
5676 -- Examine all components looking for anonymous access-to-task
5677 -- types.
5679 First := True;
5680 while Present (Comp) loop
5681 Typ := Etype (Comp);
5683 if Ekind (Typ) = E_Anonymous_Access_Type
5684 and then Has_Task (Available_View (Designated_Type (Typ)))
5685 and then No (Master_Id (Typ))
5686 then
5687 -- Ensure that the record or array type have a _master
5689 if First then
5690 Build_Master_Entity (Def_Id);
5691 Build_Master_Renaming (Typ);
5692 M_Id := Master_Id (Typ);
5694 First := False;
5696 -- Reuse the same master to service any additional types
5698 else
5699 Set_Master_Id (Typ, M_Id);
5700 end if;
5701 end if;
5703 Next_Entity (Comp);
5704 end loop;
5705 end;
5706 end if;
5708 Par_Id := Etype (B_Id);
5710 -- The parent type is private then we need to inherit any TSS operations
5711 -- from the full view.
5713 if Ekind (Par_Id) in Private_Kind
5714 and then Present (Full_View (Par_Id))
5715 then
5716 Par_Id := Base_Type (Full_View (Par_Id));
5717 end if;
5719 if Nkind (Type_Definition (Original_Node (N))) =
5720 N_Derived_Type_Definition
5721 and then not Is_Tagged_Type (Def_Id)
5722 and then Present (Freeze_Node (Par_Id))
5723 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
5724 then
5725 Ensure_Freeze_Node (B_Id);
5726 FN := Freeze_Node (B_Id);
5728 if No (TSS_Elist (FN)) then
5729 Set_TSS_Elist (FN, New_Elmt_List);
5730 end if;
5732 declare
5733 T_E : constant Elist_Id := TSS_Elist (FN);
5734 Elmt : Elmt_Id;
5736 begin
5737 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
5738 while Present (Elmt) loop
5739 if Chars (Node (Elmt)) /= Name_uInit then
5740 Append_Elmt (Node (Elmt), T_E);
5741 end if;
5743 Next_Elmt (Elmt);
5744 end loop;
5746 -- If the derived type itself is private with a full view, then
5747 -- associate the full view with the inherited TSS_Elist as well.
5749 if Ekind (B_Id) in Private_Kind
5750 and then Present (Full_View (B_Id))
5751 then
5752 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
5753 Set_TSS_Elist
5754 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
5755 end if;
5756 end;
5757 end if;
5758 end Expand_N_Full_Type_Declaration;
5760 ---------------------------------
5761 -- Expand_N_Object_Declaration --
5762 ---------------------------------
5764 procedure Expand_N_Object_Declaration (N : Node_Id) is
5765 Loc : constant Source_Ptr := Sloc (N);
5766 Def_Id : constant Entity_Id := Defining_Identifier (N);
5767 Expr : constant Node_Id := Expression (N);
5768 Obj_Def : constant Node_Id := Object_Definition (N);
5769 Typ : constant Entity_Id := Etype (Def_Id);
5770 Base_Typ : constant Entity_Id := Base_Type (Typ);
5771 Expr_Q : Node_Id;
5773 function Build_Equivalent_Aggregate return Boolean;
5774 -- If the object has a constrained discriminated type and no initial
5775 -- value, it may be possible to build an equivalent aggregate instead,
5776 -- and prevent an actual call to the initialization procedure.
5778 procedure Default_Initialize_Object (After : Node_Id);
5779 -- Generate all default initialization actions for object Def_Id. Any
5780 -- new code is inserted after node After.
5782 function Rewrite_As_Renaming return Boolean;
5783 -- Indicate whether to rewrite a declaration with initialization into an
5784 -- object renaming declaration (see below).
5786 --------------------------------
5787 -- Build_Equivalent_Aggregate --
5788 --------------------------------
5790 function Build_Equivalent_Aggregate return Boolean is
5791 Aggr : Node_Id;
5792 Comp : Entity_Id;
5793 Discr : Elmt_Id;
5794 Full_Type : Entity_Id;
5796 begin
5797 Full_Type := Typ;
5799 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
5800 Full_Type := Full_View (Typ);
5801 end if;
5803 -- Only perform this transformation if Elaboration_Code is forbidden
5804 -- or undesirable, and if this is a global entity of a constrained
5805 -- record type.
5807 -- If Initialize_Scalars might be active this transformation cannot
5808 -- be performed either, because it will lead to different semantics
5809 -- or because elaboration code will in fact be created.
5811 if Ekind (Full_Type) /= E_Record_Subtype
5812 or else not Has_Discriminants (Full_Type)
5813 or else not Is_Constrained (Full_Type)
5814 or else Is_Controlled (Full_Type)
5815 or else Is_Limited_Type (Full_Type)
5816 or else not Restriction_Active (No_Initialize_Scalars)
5817 then
5818 return False;
5819 end if;
5821 if Ekind (Current_Scope) = E_Package
5822 and then
5823 (Restriction_Active (No_Elaboration_Code)
5824 or else Is_Preelaborated (Current_Scope))
5825 then
5826 -- Building a static aggregate is possible if the discriminants
5827 -- have static values and the other components have static
5828 -- defaults or none.
5830 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5831 while Present (Discr) loop
5832 if not Is_OK_Static_Expression (Node (Discr)) then
5833 return False;
5834 end if;
5836 Next_Elmt (Discr);
5837 end loop;
5839 -- Check that initialized components are OK, and that non-
5840 -- initialized components do not require a call to their own
5841 -- initialization procedure.
5843 Comp := First_Component (Full_Type);
5844 while Present (Comp) loop
5845 if Ekind (Comp) = E_Component
5846 and then Present (Expression (Parent (Comp)))
5847 and then
5848 not Is_OK_Static_Expression (Expression (Parent (Comp)))
5849 then
5850 return False;
5852 elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
5853 return False;
5855 end if;
5857 Next_Component (Comp);
5858 end loop;
5860 -- Everything is static, assemble the aggregate, discriminant
5861 -- values first.
5863 Aggr :=
5864 Make_Aggregate (Loc,
5865 Expressions => New_List,
5866 Component_Associations => New_List);
5868 Discr := First_Elmt (Discriminant_Constraint (Full_Type));
5869 while Present (Discr) loop
5870 Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
5871 Next_Elmt (Discr);
5872 end loop;
5874 -- Now collect values of initialized components
5876 Comp := First_Component (Full_Type);
5877 while Present (Comp) loop
5878 if Ekind (Comp) = E_Component
5879 and then Present (Expression (Parent (Comp)))
5880 then
5881 Append_To (Component_Associations (Aggr),
5882 Make_Component_Association (Loc,
5883 Choices => New_List (New_Occurrence_Of (Comp, Loc)),
5884 Expression => New_Copy_Tree
5885 (Expression (Parent (Comp)))));
5886 end if;
5888 Next_Component (Comp);
5889 end loop;
5891 -- Finally, box-initialize remaining components
5893 Append_To (Component_Associations (Aggr),
5894 Make_Component_Association (Loc,
5895 Choices => New_List (Make_Others_Choice (Loc)),
5896 Expression => Empty));
5897 Set_Box_Present (Last (Component_Associations (Aggr)));
5898 Set_Expression (N, Aggr);
5900 if Typ /= Full_Type then
5901 Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
5902 Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
5903 Analyze_And_Resolve (Aggr, Typ);
5904 else
5905 Analyze_And_Resolve (Aggr, Full_Type);
5906 end if;
5908 return True;
5910 else
5911 return False;
5912 end if;
5913 end Build_Equivalent_Aggregate;
5915 -------------------------------
5916 -- Default_Initialize_Object --
5917 -------------------------------
5919 procedure Default_Initialize_Object (After : Node_Id) is
5920 function New_Object_Reference return Node_Id;
5921 -- Return a new reference to Def_Id with attributes Assignment_OK and
5922 -- Must_Not_Freeze already set.
5924 --------------------------
5925 -- New_Object_Reference --
5926 --------------------------
5928 function New_Object_Reference return Node_Id is
5929 Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
5931 begin
5932 -- The call to the type init proc or [Deep_]Finalize must not
5933 -- freeze the related object as the call is internally generated.
5934 -- This way legal rep clauses that apply to the object will not be
5935 -- flagged. Note that the initialization call may be removed if
5936 -- pragma Import is encountered or moved to the freeze actions of
5937 -- the object because of an address clause.
5939 Set_Assignment_OK (Obj_Ref);
5940 Set_Must_Not_Freeze (Obj_Ref);
5942 return Obj_Ref;
5943 end New_Object_Reference;
5945 -- Local variables
5947 Exceptions_OK : constant Boolean :=
5948 not Restriction_Active (No_Exception_Propagation);
5950 Abrt_Blk : Node_Id;
5951 Abrt_Blk_Id : Entity_Id;
5952 Abrt_HSS : Node_Id;
5953 Aggr_Init : Node_Id;
5954 AUD : Entity_Id;
5955 Comp_Init : List_Id := No_List;
5956 Fin_Call : Node_Id;
5957 Init_Stmts : List_Id := No_List;
5958 Obj_Init : Node_Id := Empty;
5959 Obj_Ref : Node_Id;
5961 -- Start of processing for Default_Initialize_Object
5963 begin
5964 -- Default initialization is suppressed for objects that are already
5965 -- known to be imported (i.e. whose declaration specifies the Import
5966 -- aspect). Note that for objects with a pragma Import, we generate
5967 -- initialization here, and then remove it downstream when processing
5968 -- the pragma. It is also suppressed for variables for which a pragma
5969 -- Suppress_Initialization has been explicitly given
5971 if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
5972 return;
5973 end if;
5975 -- The expansion performed by this routine is as follows:
5977 -- begin
5978 -- Abort_Defer;
5979 -- Type_Init_Proc (Obj);
5981 -- begin
5982 -- [Deep_]Initialize (Obj);
5984 -- exception
5985 -- when others =>
5986 -- [Deep_]Finalize (Obj, Self => False);
5987 -- raise;
5988 -- end;
5989 -- at end
5990 -- Abort_Undefer_Direct;
5991 -- end;
5993 -- Initialize the components of the object
5995 if Has_Non_Null_Base_Init_Proc (Typ)
5996 and then not No_Initialization (N)
5997 and then not Initialization_Suppressed (Typ)
5998 then
5999 -- Do not initialize the components if No_Default_Initialization
6000 -- applies as the actual restriction check will occur later
6001 -- when the object is frozen as it is not known yet whether the
6002 -- object is imported or not.
6004 if not Restriction_Active (No_Default_Initialization) then
6006 -- If the values of the components are compile-time known, use
6007 -- their prebuilt aggregate form directly.
6009 Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));
6011 if Present (Aggr_Init) then
6012 Set_Expression
6013 (N, New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));
6015 -- If type has discriminants, try to build an equivalent
6016 -- aggregate using discriminant values from the declaration.
6017 -- This is a useful optimization, in particular if restriction
6018 -- No_Elaboration_Code is active.
6020 elsif Build_Equivalent_Aggregate then
6021 null;
6023 -- Otherwise invoke the type init proc, generate:
6024 -- Type_Init_Proc (Obj);
6026 else
6027 Obj_Ref := New_Object_Reference;
6029 if Comes_From_Source (Def_Id) then
6030 Initialization_Warning (Obj_Ref);
6031 end if;
6033 Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
6034 end if;
6035 end if;
6037 -- Provide a default value if the object needs simple initialization
6038 -- and does not already have an initial value. A generated temporary
6039 -- does not require initialization because it will be assigned later.
6041 elsif Needs_Simple_Initialization
6042 (Typ, Initialize_Scalars
6043 and then No (Following_Address_Clause (N)))
6044 and then not Is_Internal (Def_Id)
6045 and then not Has_Init_Expression (N)
6046 then
6047 Set_No_Initialization (N, False);
6048 Set_Expression (N, Get_Simple_Init_Val (Typ, N, Esize (Def_Id)));
6049 Analyze_And_Resolve (Expression (N), Typ);
6050 end if;
6052 -- Initialize the object, generate:
6053 -- [Deep_]Initialize (Obj);
6055 if Needs_Finalization (Typ) and then not No_Initialization (N) then
6056 Obj_Init :=
6057 Make_Init_Call
6058 (Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6059 Typ => Typ);
6060 end if;
6062 -- Build a special finalization block when both the object and its
6063 -- controlled components are to be initialized. The block finalizes
6064 -- the components if the object initialization fails. Generate:
6066 -- begin
6067 -- <Obj_Init>
6069 -- exception
6070 -- when others =>
6071 -- <Fin_Call>
6072 -- raise;
6073 -- end;
6075 if Has_Controlled_Component (Typ)
6076 and then Present (Comp_Init)
6077 and then Present (Obj_Init)
6078 and then Exceptions_OK
6079 then
6080 Init_Stmts := Comp_Init;
6082 Fin_Call :=
6083 Make_Final_Call
6084 (Obj_Ref => New_Object_Reference,
6085 Typ => Typ,
6086 Skip_Self => True);
6088 if Present (Fin_Call) then
6090 -- Do not emit warnings related to the elaboration order when a
6091 -- controlled object is declared before the body of Finalize is
6092 -- seen.
6094 Set_No_Elaboration_Check (Fin_Call);
6096 Append_To (Init_Stmts,
6097 Make_Block_Statement (Loc,
6098 Declarations => No_List,
6100 Handled_Statement_Sequence =>
6101 Make_Handled_Sequence_Of_Statements (Loc,
6102 Statements => New_List (Obj_Init),
6104 Exception_Handlers => New_List (
6105 Make_Exception_Handler (Loc,
6106 Exception_Choices => New_List (
6107 Make_Others_Choice (Loc)),
6109 Statements => New_List (
6110 Fin_Call,
6111 Make_Raise_Statement (Loc)))))));
6112 end if;
6114 -- Otherwise finalization is not required, the initialization calls
6115 -- are passed to the abort block building circuitry, generate:
6117 -- Type_Init_Proc (Obj);
6118 -- [Deep_]Initialize (Obj);
6120 else
6121 if Present (Comp_Init) then
6122 Init_Stmts := Comp_Init;
6123 end if;
6125 if Present (Obj_Init) then
6126 if No (Init_Stmts) then
6127 Init_Stmts := New_List;
6128 end if;
6130 Append_To (Init_Stmts, Obj_Init);
6131 end if;
6132 end if;
6134 -- Build an abort block to protect the initialization calls
6136 if Abort_Allowed
6137 and then Present (Comp_Init)
6138 and then Present (Obj_Init)
6139 then
6140 -- Generate:
6141 -- Abort_Defer;
6143 Prepend_To (Init_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
6145 -- When exceptions are propagated, abort deferral must take place
6146 -- in the presence of initialization or finalization exceptions.
6147 -- Generate:
6149 -- begin
6150 -- Abort_Defer;
6151 -- <Init_Stmts>
6152 -- at end
6153 -- Abort_Undefer_Direct;
6154 -- end;
6156 if Exceptions_OK then
6157 AUD := RTE (RE_Abort_Undefer_Direct);
6159 Abrt_HSS :=
6160 Make_Handled_Sequence_Of_Statements (Loc,
6161 Statements => Init_Stmts,
6162 At_End_Proc => New_Occurrence_Of (AUD, Loc));
6164 Abrt_Blk :=
6165 Make_Block_Statement (Loc,
6166 Handled_Statement_Sequence => Abrt_HSS);
6168 Add_Block_Identifier (Abrt_Blk, Abrt_Blk_Id);
6169 Expand_At_End_Handler (Abrt_HSS, Abrt_Blk_Id);
6171 -- Present the Abort_Undefer_Direct function to the backend so
6172 -- that it can inline the call to the function.
6174 Add_Inlined_Body (AUD, N);
6176 Init_Stmts := New_List (Abrt_Blk);
6178 -- Otherwise exceptions are not propagated. Generate:
6180 -- Abort_Defer;
6181 -- <Init_Stmts>
6182 -- Abort_Undefer;
6184 else
6185 Append_To (Init_Stmts,
6186 Build_Runtime_Call (Loc, RE_Abort_Undefer));
6187 end if;
6188 end if;
6190 -- Insert the whole initialization sequence into the tree. If the
6191 -- object has a delayed freeze, as will be the case when it has
6192 -- aspect specifications, the initialization sequence is part of
6193 -- the freeze actions.
6195 if Present (Init_Stmts) then
6196 if Has_Delayed_Freeze (Def_Id) then
6197 Append_Freeze_Actions (Def_Id, Init_Stmts);
6198 else
6199 Insert_Actions_After (After, Init_Stmts);
6200 end if;
6201 end if;
6202 end Default_Initialize_Object;
6204 -------------------------
6205 -- Rewrite_As_Renaming --
6206 -------------------------
6208 function Rewrite_As_Renaming return Boolean is
6209 begin
6210 -- If the object declaration appears in the form
6212 -- Obj : Ctrl_Typ := Func (...);
6214 -- where Ctrl_Typ is controlled but not immutably limited type, then
6215 -- the expansion of the function call should use a dereference of the
6216 -- result to reference the value on the secondary stack.
6218 -- Obj : Ctrl_Typ renames Func (...).all;
6220 -- As a result, the call avoids an extra copy. This an optimization,
6221 -- but it is required for passing ACATS tests in some cases where it
6222 -- would otherwise make two copies. The RM allows removing redunant
6223 -- Adjust/Finalize calls, but does not allow insertion of extra ones.
6225 -- This part is disabled for now, because it breaks GPS builds
6227 return (False -- ???
6228 and then Nkind (Expr_Q) = N_Explicit_Dereference
6229 and then not Comes_From_Source (Expr_Q)
6230 and then Nkind (Original_Node (Expr_Q)) = N_Function_Call
6231 and then Nkind (Object_Definition (N)) in N_Has_Entity
6232 and then (Needs_Finalization (Entity (Object_Definition (N)))))
6234 -- If the initializing expression is for a variable with attribute
6235 -- OK_To_Rename set, then transform:
6237 -- Obj : Typ := Expr;
6239 -- into
6241 -- Obj : Typ renames Expr;
6243 -- provided that Obj is not aliased. The aliased case has to be
6244 -- excluded in general because Expr will not be aliased in
6245 -- general.
6247 or else
6248 (not Aliased_Present (N)
6249 and then Is_Entity_Name (Expr_Q)
6250 and then Ekind (Entity (Expr_Q)) = E_Variable
6251 and then OK_To_Rename (Entity (Expr_Q))
6252 and then Is_Entity_Name (Obj_Def));
6253 end Rewrite_As_Renaming;
6255 -- Local variables
6257 Next_N : constant Node_Id := Next (N);
6258 Id_Ref : Node_Id;
6259 Tag_Assign : Node_Id;
6261 Init_After : Node_Id := N;
6262 -- Node after which the initialization actions are to be inserted. This
6263 -- is normally N, except for the case of a shared passive variable, in
6264 -- which case the init proc call must be inserted only after the bodies
6265 -- of the shared variable procedures have been seen.
6267 -- Start of processing for Expand_N_Object_Declaration
6269 begin
6270 -- Don't do anything for deferred constants. All proper actions will be
6271 -- expanded during the full declaration.
6273 if No (Expr) and Constant_Present (N) then
6274 return;
6275 end if;
6277 -- The type of the object cannot be abstract. This is diagnosed at the
6278 -- point the object is frozen, which happens after the declaration is
6279 -- fully expanded, so simply return now.
6281 if Is_Abstract_Type (Typ) then
6282 return;
6283 end if;
6285 -- First we do special processing for objects of a tagged type where
6286 -- this is the point at which the type is frozen. The creation of the
6287 -- dispatch table and the initialization procedure have to be deferred
6288 -- to this point, since we reference previously declared primitive
6289 -- subprograms.
6291 -- Force construction of dispatch tables of library level tagged types
6293 if Tagged_Type_Expansion
6294 and then Static_Dispatch_Tables
6295 and then Is_Library_Level_Entity (Def_Id)
6296 and then Is_Library_Level_Tagged_Type (Base_Typ)
6297 and then Ekind_In (Base_Typ, E_Record_Type,
6298 E_Protected_Type,
6299 E_Task_Type)
6300 and then not Has_Dispatch_Table (Base_Typ)
6301 then
6302 declare
6303 New_Nodes : List_Id := No_List;
6305 begin
6306 if Is_Concurrent_Type (Base_Typ) then
6307 New_Nodes := Make_DT (Corresponding_Record_Type (Base_Typ), N);
6308 else
6309 New_Nodes := Make_DT (Base_Typ, N);
6310 end if;
6312 if not Is_Empty_List (New_Nodes) then
6313 Insert_List_Before (N, New_Nodes);
6314 end if;
6315 end;
6316 end if;
6318 -- Make shared memory routines for shared passive variable
6320 if Is_Shared_Passive (Def_Id) then
6321 Init_After := Make_Shared_Var_Procs (N);
6322 end if;
6324 -- If tasks being declared, make sure we have an activation chain
6325 -- defined for the tasks (has no effect if we already have one), and
6326 -- also that a Master variable is established and that the appropriate
6327 -- enclosing construct is established as a task master.
6329 if Has_Task (Typ) then
6330 Build_Activation_Chain_Entity (N);
6331 Build_Master_Entity (Def_Id);
6332 end if;
6334 -- Default initialization required, and no expression present
6336 if No (Expr) then
6338 -- If we have a type with a variant part, the initialization proc
6339 -- will contain implicit tests of the discriminant values, which
6340 -- counts as a violation of the restriction No_Implicit_Conditionals.
6342 if Has_Variant_Part (Typ) then
6343 declare
6344 Msg : Boolean;
6346 begin
6347 Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);
6349 if Msg then
6350 Error_Msg_N
6351 ("\initialization of variant record tests discriminants",
6352 Obj_Def);
6353 return;
6354 end if;
6355 end;
6356 end if;
6358 -- For the default initialization case, if we have a private type
6359 -- with invariants, and invariant checks are enabled, then insert an
6360 -- invariant check after the object declaration. Note that it is OK
6361 -- to clobber the object with an invalid value since if the exception
6362 -- is raised, then the object will go out of scope. In the case where
6363 -- an array object is initialized with an aggregate, the expression
6364 -- is removed. Check flag Has_Init_Expression to avoid generating a
6365 -- junk invariant check and flag No_Initialization to avoid checking
6366 -- an uninitialized object such as a compiler temporary used for an
6367 -- aggregate.
6369 if Has_Invariants (Base_Typ)
6370 and then Present (Invariant_Procedure (Base_Typ))
6371 and then not Has_Init_Expression (N)
6372 and then not No_Initialization (N)
6373 then
6374 -- If entity has an address clause or aspect, make invariant
6375 -- call into a freeze action for the explicit freeze node for
6376 -- object. Otherwise insert invariant check after declaration.
6378 if Present (Following_Address_Clause (N))
6379 or else Has_Aspect (Def_Id, Aspect_Address)
6380 then
6381 Ensure_Freeze_Node (Def_Id);
6382 Set_Has_Delayed_Freeze (Def_Id);
6383 Set_Is_Frozen (Def_Id, False);
6385 if not Partial_View_Has_Unknown_Discr (Typ) then
6386 Append_Freeze_Action (Def_Id,
6387 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6388 end if;
6390 elsif not Partial_View_Has_Unknown_Discr (Typ) then
6391 Insert_After (N,
6392 Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
6393 end if;
6394 end if;
6396 Default_Initialize_Object (Init_After);
6398 -- Generate attribute for Persistent_BSS if needed
6400 if Persistent_BSS_Mode
6401 and then Comes_From_Source (N)
6402 and then Is_Potentially_Persistent_Type (Typ)
6403 and then not Has_Init_Expression (N)
6404 and then Is_Library_Level_Entity (Def_Id)
6405 then
6406 declare
6407 Prag : Node_Id;
6408 begin
6409 Prag :=
6410 Make_Linker_Section_Pragma
6411 (Def_Id, Sloc (N), ".persistent.bss");
6412 Insert_After (N, Prag);
6413 Analyze (Prag);
6414 end;
6415 end if;
6417 -- If access type, then we know it is null if not initialized
6419 if Is_Access_Type (Typ) then
6420 Set_Is_Known_Null (Def_Id);
6421 end if;
6423 -- Explicit initialization present
6425 else
6426 -- Obtain actual expression from qualified expression
6428 if Nkind (Expr) = N_Qualified_Expression then
6429 Expr_Q := Expression (Expr);
6430 else
6431 Expr_Q := Expr;
6432 end if;
6434 -- When we have the appropriate type of aggregate in the expression
6435 -- (it has been determined during analysis of the aggregate by
6436 -- setting the delay flag), let's perform in place assignment and
6437 -- thus avoid creating a temporary.
6439 if Is_Delayed_Aggregate (Expr_Q) then
6440 Convert_Aggr_In_Object_Decl (N);
6442 -- Ada 2005 (AI-318-02): If the initialization expression is a call
6443 -- to a build-in-place function, then access to the declared object
6444 -- must be passed to the function. Currently we limit such functions
6445 -- to those with constrained limited result subtypes, but eventually
6446 -- plan to expand the allowed forms of functions that are treated as
6447 -- build-in-place.
6449 elsif Ada_Version >= Ada_2005
6450 and then Is_Build_In_Place_Function_Call (Expr_Q)
6451 then
6452 Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
6454 -- The previous call expands the expression initializing the
6455 -- built-in-place object into further code that will be analyzed
6456 -- later. No further expansion needed here.
6458 return;
6460 -- Ada 2005 (AI-251): Rewrite the expression that initializes a
6461 -- class-wide interface object to ensure that we copy the full
6462 -- object, unless we are targetting a VM where interfaces are handled
6463 -- by VM itself. Note that if the root type of Typ is an ancestor of
6464 -- Expr's type, both types share the same dispatch table and there is
6465 -- no need to displace the pointer.
6467 elsif Is_Interface (Typ)
6469 -- Avoid never-ending recursion because if Equivalent_Type is set
6470 -- then we've done it already and must not do it again.
6472 and then not
6473 (Nkind (Obj_Def) = N_Identifier
6474 and then Present (Equivalent_Type (Entity (Obj_Def))))
6475 then
6476 pragma Assert (Is_Class_Wide_Type (Typ));
6478 -- If the object is a return object of an inherently limited type,
6479 -- which implies build-in-place treatment, bypass the special
6480 -- treatment of class-wide interface initialization below. In this
6481 -- case, the expansion of the return statement will take care of
6482 -- creating the object (via allocator) and initializing it.
6484 if Is_Return_Object (Def_Id) and then Is_Limited_View (Typ) then
6485 null;
6487 elsif Tagged_Type_Expansion then
6488 declare
6489 Iface : constant Entity_Id := Root_Type (Typ);
6490 Expr_N : Node_Id := Expr;
6491 Expr_Typ : Entity_Id;
6492 New_Expr : Node_Id;
6493 Obj_Id : Entity_Id;
6494 Tag_Comp : Node_Id;
6496 begin
6497 -- If the original node of the expression was a conversion
6498 -- to this specific class-wide interface type then restore
6499 -- the original node because we must copy the object before
6500 -- displacing the pointer to reference the secondary tag
6501 -- component. This code must be kept synchronized with the
6502 -- expansion done by routine Expand_Interface_Conversion
6504 if not Comes_From_Source (Expr_N)
6505 and then Nkind (Expr_N) = N_Explicit_Dereference
6506 and then Nkind (Original_Node (Expr_N)) = N_Type_Conversion
6507 and then Etype (Original_Node (Expr_N)) = Typ
6508 then
6509 Rewrite (Expr_N, Original_Node (Expression (N)));
6510 end if;
6512 -- Avoid expansion of redundant interface conversion
6514 if Is_Interface (Etype (Expr_N))
6515 and then Nkind (Expr_N) = N_Type_Conversion
6516 and then Etype (Expr_N) = Typ
6517 then
6518 Expr_N := Expression (Expr_N);
6519 Set_Expression (N, Expr_N);
6520 end if;
6522 Obj_Id := Make_Temporary (Loc, 'D', Expr_N);
6523 Expr_Typ := Base_Type (Etype (Expr_N));
6525 if Is_Class_Wide_Type (Expr_Typ) then
6526 Expr_Typ := Root_Type (Expr_Typ);
6527 end if;
6529 -- Replace
6530 -- CW : I'Class := Obj;
6531 -- by
6532 -- Tmp : T := Obj;
6533 -- type Ityp is not null access I'Class;
6534 -- CW : I'Class renames Ityp (Tmp.I_Tag'Address).all;
6536 if Comes_From_Source (Expr_N)
6537 and then Nkind (Expr_N) = N_Identifier
6538 and then not Is_Interface (Expr_Typ)
6539 and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
6540 and then (Expr_Typ = Etype (Expr_Typ)
6541 or else not
6542 Is_Variable_Size_Record (Etype (Expr_Typ)))
6543 then
6544 -- Copy the object
6546 Insert_Action (N,
6547 Make_Object_Declaration (Loc,
6548 Defining_Identifier => Obj_Id,
6549 Object_Definition =>
6550 New_Occurrence_Of (Expr_Typ, Loc),
6551 Expression => Relocate_Node (Expr_N)));
6553 -- Statically reference the tag associated with the
6554 -- interface
6556 Tag_Comp :=
6557 Make_Selected_Component (Loc,
6558 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6559 Selector_Name =>
6560 New_Occurrence_Of
6561 (Find_Interface_Tag (Expr_Typ, Iface), Loc));
6563 -- Replace
6564 -- IW : I'Class := Obj;
6565 -- by
6566 -- type Equiv_Record is record ... end record;
6567 -- implicit subtype CW is <Class_Wide_Subtype>;
6568 -- Tmp : CW := CW!(Obj);
6569 -- type Ityp is not null access I'Class;
6570 -- IW : I'Class renames
6571 -- Ityp!(Displace (Temp'Address, I'Tag)).all;
6573 else
6574 -- Generate the equivalent record type and update the
6575 -- subtype indication to reference it.
6577 Expand_Subtype_From_Expr
6578 (N => N,
6579 Unc_Type => Typ,
6580 Subtype_Indic => Obj_Def,
6581 Exp => Expr_N);
6583 if not Is_Interface (Etype (Expr_N)) then
6584 New_Expr := Relocate_Node (Expr_N);
6586 -- For interface types we use 'Address which displaces
6587 -- the pointer to the base of the object (if required)
6589 else
6590 New_Expr :=
6591 Unchecked_Convert_To (Etype (Obj_Def),
6592 Make_Explicit_Dereference (Loc,
6593 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
6594 Make_Attribute_Reference (Loc,
6595 Prefix => Relocate_Node (Expr_N),
6596 Attribute_Name => Name_Address))));
6597 end if;
6599 -- Copy the object
6601 if not Is_Limited_Record (Expr_Typ) then
6602 Insert_Action (N,
6603 Make_Object_Declaration (Loc,
6604 Defining_Identifier => Obj_Id,
6605 Object_Definition =>
6606 New_Occurrence_Of (Etype (Obj_Def), Loc),
6607 Expression => New_Expr));
6609 -- Rename limited type object since they cannot be copied
6610 -- This case occurs when the initialization expression
6611 -- has been previously expanded into a temporary object.
6613 else pragma Assert (not Comes_From_Source (Expr_Q));
6614 Insert_Action (N,
6615 Make_Object_Renaming_Declaration (Loc,
6616 Defining_Identifier => Obj_Id,
6617 Subtype_Mark =>
6618 New_Occurrence_Of (Etype (Obj_Def), Loc),
6619 Name =>
6620 Unchecked_Convert_To
6621 (Etype (Obj_Def), New_Expr)));
6622 end if;
6624 -- Dynamically reference the tag associated with the
6625 -- interface.
6627 Tag_Comp :=
6628 Make_Function_Call (Loc,
6629 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
6630 Parameter_Associations => New_List (
6631 Make_Attribute_Reference (Loc,
6632 Prefix => New_Occurrence_Of (Obj_Id, Loc),
6633 Attribute_Name => Name_Address),
6634 New_Occurrence_Of
6635 (Node (First_Elmt (Access_Disp_Table (Iface))),
6636 Loc)));
6637 end if;
6639 Rewrite (N,
6640 Make_Object_Renaming_Declaration (Loc,
6641 Defining_Identifier => Make_Temporary (Loc, 'D'),
6642 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
6643 Name =>
6644 Convert_Tag_To_Interface (Typ, Tag_Comp)));
6646 -- If the original entity comes from source, then mark the
6647 -- new entity as needing debug information, even though it's
6648 -- defined by a generated renaming that does not come from
6649 -- source, so that Materialize_Entity will be set on the
6650 -- entity when Debug_Renaming_Declaration is called during
6651 -- analysis.
6653 if Comes_From_Source (Def_Id) then
6654 Set_Debug_Info_Needed (Defining_Identifier (N));
6655 end if;
6657 Analyze (N, Suppress => All_Checks);
6659 -- Replace internal identifier of rewritten node by the
6660 -- identifier found in the sources. We also have to exchange
6661 -- entities containing their defining identifiers to ensure
6662 -- the correct replacement of the object declaration by this
6663 -- object renaming declaration because these identifiers
6664 -- were previously added by Enter_Name to the current scope.
6665 -- We must preserve the homonym chain of the source entity
6666 -- as well. We must also preserve the kind of the entity,
6667 -- which may be a constant. Preserve entity chain because
6668 -- itypes may have been generated already, and the full
6669 -- chain must be preserved for final freezing. Finally,
6670 -- preserve Comes_From_Source setting, so that debugging
6671 -- and cross-referencing information is properly kept, and
6672 -- preserve source location, to prevent spurious errors when
6673 -- entities are declared (they must have their own Sloc).
6675 declare
6676 New_Id : constant Entity_Id := Defining_Identifier (N);
6677 Next_Temp : constant Entity_Id := Next_Entity (New_Id);
6678 S_Flag : constant Boolean :=
6679 Comes_From_Source (Def_Id);
6681 begin
6682 Set_Next_Entity (New_Id, Next_Entity (Def_Id));
6683 Set_Next_Entity (Def_Id, Next_Temp);
6685 Set_Chars (Defining_Identifier (N), Chars (Def_Id));
6686 Set_Homonym (Defining_Identifier (N), Homonym (Def_Id));
6687 Set_Ekind (Defining_Identifier (N), Ekind (Def_Id));
6688 Set_Sloc (Defining_Identifier (N), Sloc (Def_Id));
6690 Set_Comes_From_Source (Def_Id, False);
6691 Exchange_Entities (Defining_Identifier (N), Def_Id);
6692 Set_Comes_From_Source (Def_Id, S_Flag);
6693 end;
6694 end;
6695 end if;
6697 return;
6699 -- Common case of explicit object initialization
6701 else
6702 -- In most cases, we must check that the initial value meets any
6703 -- constraint imposed by the declared type. However, there is one
6704 -- very important exception to this rule. If the entity has an
6705 -- unconstrained nominal subtype, then it acquired its constraints
6706 -- from the expression in the first place, and not only does this
6707 -- mean that the constraint check is not needed, but an attempt to
6708 -- perform the constraint check can cause order of elaboration
6709 -- problems.
6711 if not Is_Constr_Subt_For_U_Nominal (Typ) then
6713 -- If this is an allocator for an aggregate that has been
6714 -- allocated in place, delay checks until assignments are
6715 -- made, because the discriminants are not initialized.
6717 if Nkind (Expr) = N_Allocator and then No_Initialization (Expr)
6718 then
6719 null;
6721 -- Otherwise apply a constraint check now if no prev error
6723 elsif Nkind (Expr) /= N_Error then
6724 Apply_Constraint_Check (Expr, Typ);
6726 -- Deal with possible range check
6728 if Do_Range_Check (Expr) then
6730 -- If assignment checks are suppressed, turn off flag
6732 if Suppress_Assignment_Checks (N) then
6733 Set_Do_Range_Check (Expr, False);
6735 -- Otherwise generate the range check
6737 else
6738 Generate_Range_Check
6739 (Expr, Typ, CE_Range_Check_Failed);
6740 end if;
6741 end if;
6742 end if;
6743 end if;
6745 -- If the type is controlled and not inherently limited, then
6746 -- the target is adjusted after the copy and attached to the
6747 -- finalization list. However, no adjustment is done in the case
6748 -- where the object was initialized by a call to a function whose
6749 -- result is built in place, since no copy occurred. (Eventually
6750 -- we plan to support in-place function results for some cases
6751 -- of nonlimited types. ???) Similarly, no adjustment is required
6752 -- if we are going to rewrite the object declaration into a
6753 -- renaming declaration.
6755 if Needs_Finalization (Typ)
6756 and then not Is_Limited_View (Typ)
6757 and then not Rewrite_As_Renaming
6758 then
6759 Insert_Action_After (Init_After,
6760 Make_Adjust_Call (
6761 Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
6762 Typ => Base_Typ));
6763 end if;
6765 -- For tagged types, when an init value is given, the tag has to
6766 -- be re-initialized separately in order to avoid the propagation
6767 -- of a wrong tag coming from a view conversion unless the type
6768 -- is class wide (in this case the tag comes from the init value).
6769 -- Suppress the tag assignment when not Tagged_Type_Expansion
6770 -- because tags are represented implicitly in objects. Ditto for
6771 -- types that are CPP_CLASS, and for initializations that are
6772 -- aggregates, because they have to have the right tag.
6774 -- The re-assignment of the tag has to be done even if the object
6775 -- is a constant. The assignment must be analyzed after the
6776 -- declaration. If an address clause follows, this is handled as
6777 -- part of the freeze actions for the object, otherwise insert
6778 -- tag assignment here.
6780 Tag_Assign := Make_Tag_Assignment (N);
6782 if Present (Tag_Assign) then
6783 if Present (Following_Address_Clause (N)) then
6784 Ensure_Freeze_Node (Def_Id);
6786 else
6787 Insert_Action_After (Init_After, Tag_Assign);
6788 end if;
6790 -- Handle C++ constructor calls. Note that we do not check that
6791 -- Typ is a tagged type since the equivalent Ada type of a C++
6792 -- class that has no virtual methods is an untagged limited
6793 -- record type.
6795 elsif Is_CPP_Constructor_Call (Expr) then
6797 -- The call to the initialization procedure does NOT freeze the
6798 -- object being initialized.
6800 Id_Ref := New_Occurrence_Of (Def_Id, Loc);
6801 Set_Must_Not_Freeze (Id_Ref);
6802 Set_Assignment_OK (Id_Ref);
6804 Insert_Actions_After (Init_After,
6805 Build_Initialization_Call (Loc, Id_Ref, Typ,
6806 Constructor_Ref => Expr));
6808 -- We remove here the original call to the constructor
6809 -- to avoid its management in the backend
6811 Set_Expression (N, Empty);
6812 return;
6814 -- Handle initialization of limited tagged types
6816 elsif Is_Tagged_Type (Typ)
6817 and then Is_Class_Wide_Type (Typ)
6818 and then Is_Limited_Record (Typ)
6819 and then not Is_Limited_Interface (Typ)
6820 then
6821 -- Given that the type is limited we cannot perform a copy. If
6822 -- Expr_Q is the reference to a variable we mark the variable
6823 -- as OK_To_Rename to expand this declaration into a renaming
6824 -- declaration (see bellow).
6826 if Is_Entity_Name (Expr_Q) then
6827 Set_OK_To_Rename (Entity (Expr_Q));
6829 -- If we cannot convert the expression into a renaming we must
6830 -- consider it an internal error because the backend does not
6831 -- have support to handle it.
6833 else
6834 pragma Assert (False);
6835 raise Program_Error;
6836 end if;
6838 -- For discrete types, set the Is_Known_Valid flag if the
6839 -- initializing value is known to be valid. Only do this for
6840 -- source assignments, since otherwise we can end up turning
6841 -- on the known valid flag prematurely from inserted code.
6843 elsif Comes_From_Source (N)
6844 and then Is_Discrete_Type (Typ)
6845 and then Expr_Known_Valid (Expr)
6846 then
6847 Set_Is_Known_Valid (Def_Id);
6849 elsif Is_Access_Type (Typ) then
6851 -- For access types set the Is_Known_Non_Null flag if the
6852 -- initializing value is known to be non-null. We can also set
6853 -- Can_Never_Be_Null if this is a constant.
6855 if Known_Non_Null (Expr) then
6856 Set_Is_Known_Non_Null (Def_Id, True);
6858 if Constant_Present (N) then
6859 Set_Can_Never_Be_Null (Def_Id);
6860 end if;
6861 end if;
6862 end if;
6864 -- If validity checking on copies, validate initial expression.
6865 -- But skip this if declaration is for a generic type, since it
6866 -- makes no sense to validate generic types. Not clear if this
6867 -- can happen for legal programs, but it definitely can arise
6868 -- from previous instantiation errors.
6870 if Validity_Checks_On
6871 and then Validity_Check_Copies
6872 and then not Is_Generic_Type (Etype (Def_Id))
6873 then
6874 Ensure_Valid (Expr);
6875 Set_Is_Known_Valid (Def_Id);
6876 end if;
6877 end if;
6879 -- Cases where the back end cannot handle the initialization directly
6880 -- In such cases, we expand an assignment that will be appropriately
6881 -- handled by Expand_N_Assignment_Statement.
6883 -- The exclusion of the unconstrained case is wrong, but for now it
6884 -- is too much trouble ???
6886 if (Is_Possibly_Unaligned_Slice (Expr)
6887 or else (Is_Possibly_Unaligned_Object (Expr)
6888 and then not Represented_As_Scalar (Etype (Expr))))
6889 and then not (Is_Array_Type (Etype (Expr))
6890 and then not Is_Constrained (Etype (Expr)))
6891 then
6892 declare
6893 Stat : constant Node_Id :=
6894 Make_Assignment_Statement (Loc,
6895 Name => New_Occurrence_Of (Def_Id, Loc),
6896 Expression => Relocate_Node (Expr));
6897 begin
6898 Set_Expression (N, Empty);
6899 Set_No_Initialization (N);
6900 Set_Assignment_OK (Name (Stat));
6901 Set_No_Ctrl_Actions (Stat);
6902 Insert_After_And_Analyze (Init_After, Stat);
6903 end;
6904 end if;
6905 end if;
6907 if Nkind (Obj_Def) = N_Access_Definition
6908 and then not Is_Local_Anonymous_Access (Etype (Def_Id))
6909 then
6910 -- An Ada 2012 stand-alone object of an anonymous access type
6912 declare
6913 Loc : constant Source_Ptr := Sloc (N);
6915 Level : constant Entity_Id :=
6916 Make_Defining_Identifier (Sloc (N),
6917 Chars =>
6918 New_External_Name (Chars (Def_Id), Suffix => "L"));
6920 Level_Expr : Node_Id;
6921 Level_Decl : Node_Id;
6923 begin
6924 Set_Ekind (Level, Ekind (Def_Id));
6925 Set_Etype (Level, Standard_Natural);
6926 Set_Scope (Level, Scope (Def_Id));
6928 if No (Expr) then
6930 -- Set accessibility level of null
6932 Level_Expr :=
6933 Make_Integer_Literal (Loc, Scope_Depth (Standard_Standard));
6935 else
6936 Level_Expr := Dynamic_Accessibility_Level (Expr);
6937 end if;
6939 Level_Decl :=
6940 Make_Object_Declaration (Loc,
6941 Defining_Identifier => Level,
6942 Object_Definition =>
6943 New_Occurrence_Of (Standard_Natural, Loc),
6944 Expression => Level_Expr,
6945 Constant_Present => Constant_Present (N),
6946 Has_Init_Expression => True);
6948 Insert_Action_After (Init_After, Level_Decl);
6950 Set_Extra_Accessibility (Def_Id, Level);
6951 end;
6952 end if;
6954 -- If the object is default initialized and its type is subject to
6955 -- pragma Default_Initial_Condition, add a runtime check to verify
6956 -- the assumption of the pragma (SPARK RM 7.3.3). Generate:
6958 -- <Base_Typ>Default_Init_Cond (<Base_Typ> (Def_Id));
6960 -- Note that the check is generated for source objects only
6962 if Comes_From_Source (Def_Id)
6963 and then (Has_Default_Init_Cond (Typ)
6964 or else
6965 Has_Inherited_Default_Init_Cond (Typ))
6966 and then not Has_Init_Expression (N)
6967 then
6968 declare
6969 DIC_Call : constant Node_Id :=
6970 Build_Default_Init_Cond_Call (Loc, Def_Id, Typ);
6971 begin
6972 if Present (Next_N) then
6973 Insert_Before_And_Analyze (Next_N, DIC_Call);
6975 -- The object declaration is the last node in a declarative or a
6976 -- statement list.
6978 else
6979 Append_To (List_Containing (N), DIC_Call);
6980 Analyze (DIC_Call);
6981 end if;
6982 end;
6983 end if;
6985 -- Final transformation - turn the object declaration into a renaming
6986 -- if appropriate. If this is the completion of a deferred constant
6987 -- declaration, then this transformation generates what would be
6988 -- illegal code if written by hand, but that's OK.
6990 if Present (Expr) then
6991 if Rewrite_As_Renaming then
6992 Rewrite (N,
6993 Make_Object_Renaming_Declaration (Loc,
6994 Defining_Identifier => Defining_Identifier (N),
6995 Subtype_Mark => Obj_Def,
6996 Name => Expr_Q));
6998 -- We do not analyze this renaming declaration, because all its
6999 -- components have already been analyzed, and if we were to go
7000 -- ahead and analyze it, we would in effect be trying to generate
7001 -- another declaration of X, which won't do.
7003 Set_Renamed_Object (Defining_Identifier (N), Expr_Q);
7004 Set_Analyzed (N);
7006 -- We do need to deal with debug issues for this renaming
7008 -- First, if entity comes from source, then mark it as needing
7009 -- debug information, even though it is defined by a generated
7010 -- renaming that does not come from source.
7012 if Comes_From_Source (Defining_Identifier (N)) then
7013 Set_Debug_Info_Needed (Defining_Identifier (N));
7014 end if;
7016 -- Now call the routine to generate debug info for the renaming
7018 declare
7019 Decl : constant Node_Id := Debug_Renaming_Declaration (N);
7020 begin
7021 if Present (Decl) then
7022 Insert_Action (N, Decl);
7023 end if;
7024 end;
7025 end if;
7026 end if;
7028 -- Exception on library entity not available
7030 exception
7031 when RE_Not_Available =>
7032 return;
7033 end Expand_N_Object_Declaration;
7035 ---------------------------------
7036 -- Expand_N_Subtype_Indication --
7037 ---------------------------------
7039 -- Add a check on the range of the subtype. The static case is partially
7040 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
7041 -- to check here for the static case in order to avoid generating
7042 -- extraneous expanded code. Also deal with validity checking.
7044 procedure Expand_N_Subtype_Indication (N : Node_Id) is
7045 Ran : constant Node_Id := Range_Expression (Constraint (N));
7046 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7048 begin
7049 if Nkind (Constraint (N)) = N_Range_Constraint then
7050 Validity_Check_Range (Range_Expression (Constraint (N)));
7051 end if;
7053 if Nkind_In (Parent (N), N_Constrained_Array_Definition, N_Slice) then
7054 Apply_Range_Check (Ran, Typ);
7055 end if;
7056 end Expand_N_Subtype_Indication;
7058 ---------------------------
7059 -- Expand_N_Variant_Part --
7060 ---------------------------
7062 -- Note: this procedure no longer has any effect. It used to be that we
7063 -- would replace the choices in the last variant by a when others, and
7064 -- also expanded static predicates in variant choices here, but both of
7065 -- those activities were being done too early, since we can't check the
7066 -- choices until the statically predicated subtypes are frozen, which can
7067 -- happen as late as the free point of the record, and we can't change the
7068 -- last choice to an others before checking the choices, which is now done
7069 -- at the freeze point of the record.
7071 procedure Expand_N_Variant_Part (N : Node_Id) is
7072 begin
7073 null;
7074 end Expand_N_Variant_Part;
7076 ---------------------------------
7077 -- Expand_Previous_Access_Type --
7078 ---------------------------------
7080 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
7081 Ptr_Typ : Entity_Id;
7083 begin
7084 -- Find all access types in the current scope whose designated type is
7085 -- Def_Id and build master renamings for them.
7087 Ptr_Typ := First_Entity (Current_Scope);
7088 while Present (Ptr_Typ) loop
7089 if Is_Access_Type (Ptr_Typ)
7090 and then Designated_Type (Ptr_Typ) = Def_Id
7091 and then No (Master_Id (Ptr_Typ))
7092 then
7093 -- Ensure that the designated type has a master
7095 Build_Master_Entity (Def_Id);
7097 -- Private and incomplete types complicate the insertion of master
7098 -- renamings because the access type may precede the full view of
7099 -- the designated type. For this reason, the master renamings are
7100 -- inserted relative to the designated type.
7102 Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
7103 end if;
7105 Next_Entity (Ptr_Typ);
7106 end loop;
7107 end Expand_Previous_Access_Type;
7109 -----------------------------
7110 -- Expand_Record_Extension --
7111 -----------------------------
7113 -- Add a field _parent at the beginning of the record extension. This is
7114 -- used to implement inheritance. Here are some examples of expansion:
7116 -- 1. no discriminants
7117 -- type T2 is new T1 with null record;
7118 -- gives
7119 -- type T2 is new T1 with record
7120 -- _Parent : T1;
7121 -- end record;
7123 -- 2. renamed discriminants
7124 -- type T2 (B, C : Int) is new T1 (A => B) with record
7125 -- _Parent : T1 (A => B);
7126 -- D : Int;
7127 -- end;
7129 -- 3. inherited discriminants
7130 -- type T2 is new T1 with record -- discriminant A inherited
7131 -- _Parent : T1 (A);
7132 -- D : Int;
7133 -- end;
7135 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
7136 Indic : constant Node_Id := Subtype_Indication (Def);
7137 Loc : constant Source_Ptr := Sloc (Def);
7138 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
7139 Par_Subtype : Entity_Id;
7140 Comp_List : Node_Id;
7141 Comp_Decl : Node_Id;
7142 Parent_N : Node_Id;
7143 D : Entity_Id;
7144 List_Constr : constant List_Id := New_List;
7146 begin
7147 -- Expand_Record_Extension is called directly from the semantics, so
7148 -- we must check to see whether expansion is active before proceeding,
7149 -- because this affects the visibility of selected components in bodies
7150 -- of instances.
7152 if not Expander_Active then
7153 return;
7154 end if;
7156 -- This may be a derivation of an untagged private type whose full
7157 -- view is tagged, in which case the Derived_Type_Definition has no
7158 -- extension part. Build an empty one now.
7160 if No (Rec_Ext_Part) then
7161 Rec_Ext_Part :=
7162 Make_Record_Definition (Loc,
7163 End_Label => Empty,
7164 Component_List => Empty,
7165 Null_Present => True);
7167 Set_Record_Extension_Part (Def, Rec_Ext_Part);
7168 Mark_Rewrite_Insertion (Rec_Ext_Part);
7169 end if;
7171 Comp_List := Component_List (Rec_Ext_Part);
7173 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
7175 -- If the derived type inherits its discriminants the type of the
7176 -- _parent field must be constrained by the inherited discriminants
7178 if Has_Discriminants (T)
7179 and then Nkind (Indic) /= N_Subtype_Indication
7180 and then not Is_Constrained (Entity (Indic))
7181 then
7182 D := First_Discriminant (T);
7183 while Present (D) loop
7184 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
7185 Next_Discriminant (D);
7186 end loop;
7188 Par_Subtype :=
7189 Process_Subtype (
7190 Make_Subtype_Indication (Loc,
7191 Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
7192 Constraint =>
7193 Make_Index_Or_Discriminant_Constraint (Loc,
7194 Constraints => List_Constr)),
7195 Def);
7197 -- Otherwise the original subtype_indication is just what is needed
7199 else
7200 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
7201 end if;
7203 Set_Parent_Subtype (T, Par_Subtype);
7205 Comp_Decl :=
7206 Make_Component_Declaration (Loc,
7207 Defining_Identifier => Parent_N,
7208 Component_Definition =>
7209 Make_Component_Definition (Loc,
7210 Aliased_Present => False,
7211 Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));
7213 if Null_Present (Rec_Ext_Part) then
7214 Set_Component_List (Rec_Ext_Part,
7215 Make_Component_List (Loc,
7216 Component_Items => New_List (Comp_Decl),
7217 Variant_Part => Empty,
7218 Null_Present => False));
7219 Set_Null_Present (Rec_Ext_Part, False);
7221 elsif Null_Present (Comp_List)
7222 or else Is_Empty_List (Component_Items (Comp_List))
7223 then
7224 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7225 Set_Null_Present (Comp_List, False);
7227 else
7228 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7229 end if;
7231 Analyze (Comp_Decl);
7232 end Expand_Record_Extension;
7234 ------------------------
7235 -- Expand_Tagged_Root --
7236 ------------------------
7238 procedure Expand_Tagged_Root (T : Entity_Id) is
7239 Def : constant Node_Id := Type_Definition (Parent (T));
7240 Comp_List : Node_Id;
7241 Comp_Decl : Node_Id;
7242 Sloc_N : Source_Ptr;
7244 begin
7245 if Null_Present (Def) then
7246 Set_Component_List (Def,
7247 Make_Component_List (Sloc (Def),
7248 Component_Items => Empty_List,
7249 Variant_Part => Empty,
7250 Null_Present => True));
7251 end if;
7253 Comp_List := Component_List (Def);
7255 if Null_Present (Comp_List)
7256 or else Is_Empty_List (Component_Items (Comp_List))
7257 then
7258 Sloc_N := Sloc (Comp_List);
7259 else
7260 Sloc_N := Sloc (First (Component_Items (Comp_List)));
7261 end if;
7263 Comp_Decl :=
7264 Make_Component_Declaration (Sloc_N,
7265 Defining_Identifier => First_Tag_Component (T),
7266 Component_Definition =>
7267 Make_Component_Definition (Sloc_N,
7268 Aliased_Present => False,
7269 Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));
7271 if Null_Present (Comp_List)
7272 or else Is_Empty_List (Component_Items (Comp_List))
7273 then
7274 Set_Component_Items (Comp_List, New_List (Comp_Decl));
7275 Set_Null_Present (Comp_List, False);
7277 else
7278 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
7279 end if;
7281 -- We don't Analyze the whole expansion because the tag component has
7282 -- already been analyzed previously. Here we just insure that the tree
7283 -- is coherent with the semantic decoration
7285 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
7287 exception
7288 when RE_Not_Available =>
7289 return;
7290 end Expand_Tagged_Root;
7292 ------------------------------
7293 -- Freeze_Stream_Operations --
7294 ------------------------------
7296 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
7297 Names : constant array (1 .. 4) of TSS_Name_Type :=
7298 (TSS_Stream_Input,
7299 TSS_Stream_Output,
7300 TSS_Stream_Read,
7301 TSS_Stream_Write);
7302 Stream_Op : Entity_Id;
7304 begin
7305 -- Primitive operations of tagged types are frozen when the dispatch
7306 -- table is constructed.
7308 if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
7309 return;
7310 end if;
7312 for J in Names'Range loop
7313 Stream_Op := TSS (Typ, Names (J));
7315 if Present (Stream_Op)
7316 and then Is_Subprogram (Stream_Op)
7317 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
7318 N_Subprogram_Declaration
7319 and then not Is_Frozen (Stream_Op)
7320 then
7321 Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
7322 end if;
7323 end loop;
7324 end Freeze_Stream_Operations;
7326 -----------------
7327 -- Freeze_Type --
7328 -----------------
7330 -- Full type declarations are expanded at the point at which the type is
7331 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
7332 -- declarations generated by the freezing (e.g. the procedure generated
7333 -- for initialization) are chained in the Actions field list of the freeze
7334 -- node using Append_Freeze_Actions.
7336 function Freeze_Type (N : Node_Id) return Boolean is
7337 procedure Process_RACW_Types (Typ : Entity_Id);
7338 -- Validate and generate stubs for all RACW types associated with type
7339 -- Typ.
7341 procedure Process_Pending_Access_Types (Typ : Entity_Id);
7342 -- Associate type Typ's Finalize_Address primitive with the finalization
7343 -- masters of pending access-to-Typ types.
7345 ------------------------
7346 -- Process_RACW_Types --
7347 ------------------------
7349 procedure Process_RACW_Types (Typ : Entity_Id) is
7350 List : constant Elist_Id := Access_Types_To_Process (N);
7351 E : Elmt_Id;
7352 Seen : Boolean := False;
7354 begin
7355 if Present (List) then
7356 E := First_Elmt (List);
7357 while Present (E) loop
7358 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
7359 Validate_RACW_Primitives (Node (E));
7360 Seen := True;
7361 end if;
7363 Next_Elmt (E);
7364 end loop;
7365 end if;
7367 -- If there are RACWs designating this type, make stubs now
7369 if Seen then
7370 Remote_Types_Tagged_Full_View_Encountered (Typ);
7371 end if;
7372 end Process_RACW_Types;
7374 ----------------------------------
7375 -- Process_Pending_Access_Types --
7376 ----------------------------------
7378 procedure Process_Pending_Access_Types (Typ : Entity_Id) is
7379 E : Elmt_Id;
7381 begin
7382 -- Finalize_Address is not generated in CodePeer mode because the
7383 -- body contains address arithmetic. This processing is disabled.
7385 if CodePeer_Mode then
7386 null;
7388 -- Certain itypes are generated for contexts that cannot allocate
7389 -- objects and should not set primitive Finalize_Address.
7391 elsif Is_Itype (Typ)
7392 and then Nkind (Associated_Node_For_Itype (Typ)) =
7393 N_Explicit_Dereference
7394 then
7395 null;
7397 -- When an access type is declared after the incomplete view of a
7398 -- Taft-amendment type, the access type is considered pending in
7399 -- case the full view of the Taft-amendment type is controlled. If
7400 -- this is indeed the case, associate the Finalize_Address routine
7401 -- of the full view with the finalization masters of all pending
7402 -- access types. This scenario applies to anonymous access types as
7403 -- well.
7405 elsif Needs_Finalization (Typ)
7406 and then Present (Pending_Access_Types (Typ))
7407 then
7408 E := First_Elmt (Pending_Access_Types (Typ));
7409 while Present (E) loop
7411 -- Generate:
7412 -- Set_Finalize_Address
7413 -- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
7415 Append_Freeze_Action (Typ,
7416 Make_Set_Finalize_Address_Call
7417 (Loc => Sloc (N),
7418 Ptr_Typ => Node (E)));
7420 Next_Elmt (E);
7421 end loop;
7422 end if;
7423 end Process_Pending_Access_Types;
7425 -- Local variables
7427 Def_Id : constant Entity_Id := Entity (N);
7428 Result : Boolean := False;
7430 Save_Ghost_Mode : constant Ghost_Mode_Type := Ghost_Mode;
7432 -- Start of processing for Freeze_Type
7434 begin
7435 -- The type being frozen may be subject to pragma Ghost. Set the mode
7436 -- now to ensure that any nodes generated during freezing are properly
7437 -- marked as Ghost.
7439 Set_Ghost_Mode (N, Def_Id);
7441 -- Process any remote access-to-class-wide types designating the type
7442 -- being frozen.
7444 Process_RACW_Types (Def_Id);
7446 -- Freeze processing for record types
7448 if Is_Record_Type (Def_Id) then
7449 if Ekind (Def_Id) = E_Record_Type then
7450 Expand_Freeze_Record_Type (N);
7451 elsif Is_Class_Wide_Type (Def_Id) then
7452 Expand_Freeze_Class_Wide_Type (N);
7453 end if;
7455 -- Freeze processing for array types
7457 elsif Is_Array_Type (Def_Id) then
7458 Expand_Freeze_Array_Type (N);
7460 -- Freeze processing for access types
7462 -- For pool-specific access types, find out the pool object used for
7463 -- this type, needs actual expansion of it in some cases. Here are the
7464 -- different cases :
7466 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
7467 -- ---> don't use any storage pool
7469 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
7470 -- Expand:
7471 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
7473 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7474 -- ---> Storage Pool is the specified one
7476 -- See GNAT Pool packages in the Run-Time for more details
7478 elsif Ekind_In (Def_Id, E_Access_Type, E_General_Access_Type) then
7479 declare
7480 Loc : constant Source_Ptr := Sloc (N);
7481 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
7482 Pool_Object : Entity_Id;
7484 Freeze_Action_Typ : Entity_Id;
7486 begin
7487 -- Case 1
7489 -- Rep Clause "for Def_Id'Storage_Size use 0;"
7490 -- ---> don't use any storage pool
7492 if No_Pool_Assigned (Def_Id) then
7493 null;
7495 -- Case 2
7497 -- Rep Clause : for Def_Id'Storage_Size use Expr.
7498 -- ---> Expand:
7499 -- Def_Id__Pool : Stack_Bounded_Pool
7500 -- (Expr, DT'Size, DT'Alignment);
7502 elsif Has_Storage_Size_Clause (Def_Id) then
7503 declare
7504 DT_Size : Node_Id;
7505 DT_Align : Node_Id;
7507 begin
7508 -- For unconstrained composite types we give a size of zero
7509 -- so that the pool knows that it needs a special algorithm
7510 -- for variable size object allocation.
7512 if Is_Composite_Type (Desig_Type)
7513 and then not Is_Constrained (Desig_Type)
7514 then
7515 DT_Size := Make_Integer_Literal (Loc, 0);
7516 DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);
7518 else
7519 DT_Size :=
7520 Make_Attribute_Reference (Loc,
7521 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7522 Attribute_Name => Name_Max_Size_In_Storage_Elements);
7524 DT_Align :=
7525 Make_Attribute_Reference (Loc,
7526 Prefix => New_Occurrence_Of (Desig_Type, Loc),
7527 Attribute_Name => Name_Alignment);
7528 end if;
7530 Pool_Object :=
7531 Make_Defining_Identifier (Loc,
7532 Chars => New_External_Name (Chars (Def_Id), 'P'));
7534 -- We put the code associated with the pools in the entity
7535 -- that has the later freeze node, usually the access type
7536 -- but it can also be the designated_type; because the pool
7537 -- code requires both those types to be frozen
7539 if Is_Frozen (Desig_Type)
7540 and then (No (Freeze_Node (Desig_Type))
7541 or else Analyzed (Freeze_Node (Desig_Type)))
7542 then
7543 Freeze_Action_Typ := Def_Id;
7545 -- A Taft amendment type cannot get the freeze actions
7546 -- since the full view is not there.
7548 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
7549 and then No (Full_View (Desig_Type))
7550 then
7551 Freeze_Action_Typ := Def_Id;
7553 else
7554 Freeze_Action_Typ := Desig_Type;
7555 end if;
7557 Append_Freeze_Action (Freeze_Action_Typ,
7558 Make_Object_Declaration (Loc,
7559 Defining_Identifier => Pool_Object,
7560 Object_Definition =>
7561 Make_Subtype_Indication (Loc,
7562 Subtype_Mark =>
7563 New_Occurrence_Of
7564 (RTE (RE_Stack_Bounded_Pool), Loc),
7566 Constraint =>
7567 Make_Index_Or_Discriminant_Constraint (Loc,
7568 Constraints => New_List (
7570 -- First discriminant is the Pool Size
7572 New_Occurrence_Of (
7573 Storage_Size_Variable (Def_Id), Loc),
7575 -- Second discriminant is the element size
7577 DT_Size,
7579 -- Third discriminant is the alignment
7581 DT_Align)))));
7582 end;
7584 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
7586 -- Case 3
7588 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
7589 -- ---> Storage Pool is the specified one
7591 -- When compiling in Ada 2012 mode, ensure that the accessibility
7592 -- level of the subpool access type is not deeper than that of the
7593 -- pool_with_subpools.
7595 elsif Ada_Version >= Ada_2012
7596 and then Present (Associated_Storage_Pool (Def_Id))
7598 -- Omit this check for the case of a configurable run-time that
7599 -- does not provide package System.Storage_Pools.Subpools.
7601 and then RTE_Available (RE_Root_Storage_Pool_With_Subpools)
7602 then
7603 declare
7604 Loc : constant Source_Ptr := Sloc (Def_Id);
7605 Pool : constant Entity_Id :=
7606 Associated_Storage_Pool (Def_Id);
7607 RSPWS : constant Entity_Id :=
7608 RTE (RE_Root_Storage_Pool_With_Subpools);
7610 begin
7611 -- It is known that the accessibility level of the access
7612 -- type is deeper than that of the pool.
7614 if Type_Access_Level (Def_Id) > Object_Access_Level (Pool)
7615 and then not Accessibility_Checks_Suppressed (Def_Id)
7616 and then not Accessibility_Checks_Suppressed (Pool)
7617 then
7618 -- Static case: the pool is known to be a descendant of
7619 -- Root_Storage_Pool_With_Subpools.
7621 if Is_Ancestor (RSPWS, Etype (Pool)) then
7622 Error_Msg_N
7623 ("??subpool access type has deeper accessibility "
7624 & "level than pool", Def_Id);
7626 Append_Freeze_Action (Def_Id,
7627 Make_Raise_Program_Error (Loc,
7628 Reason => PE_Accessibility_Check_Failed));
7630 -- Dynamic case: when the pool is of a class-wide type,
7631 -- it may or may not support subpools depending on the
7632 -- path of derivation. Generate:
7634 -- if Def_Id in RSPWS'Class then
7635 -- raise Program_Error;
7636 -- end if;
7638 elsif Is_Class_Wide_Type (Etype (Pool)) then
7639 Append_Freeze_Action (Def_Id,
7640 Make_If_Statement (Loc,
7641 Condition =>
7642 Make_In (Loc,
7643 Left_Opnd => New_Occurrence_Of (Pool, Loc),
7644 Right_Opnd =>
7645 New_Occurrence_Of
7646 (Class_Wide_Type (RSPWS), Loc)),
7648 Then_Statements => New_List (
7649 Make_Raise_Program_Error (Loc,
7650 Reason => PE_Accessibility_Check_Failed))));
7651 end if;
7652 end if;
7653 end;
7654 end if;
7656 -- For access-to-controlled types (including class-wide types and
7657 -- Taft-amendment types, which potentially have controlled
7658 -- components), expand the list controller object that will store
7659 -- the dynamically allocated objects. Don't do this transformation
7660 -- for expander-generated access types, but do it for types that
7661 -- are the full view of types derived from other private types.
7662 -- Also suppress the list controller in the case of a designated
7663 -- type with convention Java, since this is used when binding to
7664 -- Java API specs, where there's no equivalent of a finalization
7665 -- list and we don't want to pull in the finalization support if
7666 -- not needed.
7668 if not Comes_From_Source (Def_Id)
7669 and then not Has_Private_Declaration (Def_Id)
7670 then
7671 null;
7673 -- An exception is made for types defined in the run-time because
7674 -- Ada.Tags.Tag itself is such a type and cannot afford this
7675 -- unnecessary overhead that would generates a loop in the
7676 -- expansion scheme. Another exception is if Restrictions
7677 -- (No_Finalization) is active, since then we know nothing is
7678 -- controlled.
7680 elsif Restriction_Active (No_Finalization)
7681 or else In_Runtime (Def_Id)
7682 then
7683 null;
7685 -- Create a finalization master for an access-to-controlled type
7686 -- or an access-to-incomplete type. It is assumed that the full
7687 -- view will be controlled.
7689 elsif Needs_Finalization (Desig_Type)
7690 or else (Is_Incomplete_Type (Desig_Type)
7691 and then No (Full_View (Desig_Type)))
7692 then
7693 Build_Finalization_Master (Def_Id);
7695 -- Create a finalization master when the designated type contains
7696 -- a private component. It is assumed that the full view will be
7697 -- controlled.
7699 elsif Has_Private_Component (Desig_Type) then
7700 Build_Finalization_Master
7701 (Typ => Def_Id,
7702 For_Private => True,
7703 Context_Scope => Scope (Def_Id),
7704 Insertion_Node => Declaration_Node (Desig_Type));
7705 end if;
7706 end;
7708 -- Freeze processing for enumeration types
7710 elsif Ekind (Def_Id) = E_Enumeration_Type then
7712 -- We only have something to do if we have a non-standard
7713 -- representation (i.e. at least one literal whose pos value
7714 -- is not the same as its representation)
7716 if Has_Non_Standard_Rep (Def_Id) then
7717 Expand_Freeze_Enumeration_Type (N);
7718 end if;
7720 -- Private types that are completed by a derivation from a private
7721 -- type have an internally generated full view, that needs to be
7722 -- frozen. This must be done explicitly because the two views share
7723 -- the freeze node, and the underlying full view is not visible when
7724 -- the freeze node is analyzed.
7726 elsif Is_Private_Type (Def_Id)
7727 and then Is_Derived_Type (Def_Id)
7728 and then Present (Full_View (Def_Id))
7729 and then Is_Itype (Full_View (Def_Id))
7730 and then Has_Private_Declaration (Full_View (Def_Id))
7731 and then Freeze_Node (Full_View (Def_Id)) = N
7732 then
7733 Set_Entity (N, Full_View (Def_Id));
7734 Result := Freeze_Type (N);
7735 Set_Entity (N, Def_Id);
7737 -- All other types require no expander action. There are such cases
7738 -- (e.g. task types and protected types). In such cases, the freeze
7739 -- nodes are there for use by Gigi.
7741 end if;
7743 -- Complete the initialization of all pending access types' finalization
7744 -- masters now that the designated type has been is frozen and primitive
7745 -- Finalize_Address generated.
7747 Process_Pending_Access_Types (Def_Id);
7748 Freeze_Stream_Operations (N, Def_Id);
7750 Ghost_Mode := Save_Ghost_Mode;
7751 return Result;
7753 exception
7754 when RE_Not_Available =>
7755 Ghost_Mode := Save_Ghost_Mode;
7756 return False;
7757 end Freeze_Type;
7759 -------------------------
7760 -- Get_Simple_Init_Val --
7761 -------------------------
7763 function Get_Simple_Init_Val
7764 (T : Entity_Id;
7765 N : Node_Id;
7766 Size : Uint := No_Uint) return Node_Id
7768 Loc : constant Source_Ptr := Sloc (N);
7769 Val : Node_Id;
7770 Result : Node_Id;
7771 Val_RE : RE_Id;
7773 Size_To_Use : Uint;
7774 -- This is the size to be used for computation of the appropriate
7775 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
7777 IV_Attribute : constant Boolean :=
7778 Nkind (N) = N_Attribute_Reference
7779 and then Attribute_Name (N) = Name_Invalid_Value;
7781 Lo_Bound : Uint;
7782 Hi_Bound : Uint;
7783 -- These are the values computed by the procedure Check_Subtype_Bounds
7785 procedure Check_Subtype_Bounds;
7786 -- This procedure examines the subtype T, and its ancestor subtypes and
7787 -- derived types to determine the best known information about the
7788 -- bounds of the subtype. After the call Lo_Bound is set either to
7789 -- No_Uint if no information can be determined, or to a value which
7790 -- represents a known low bound, i.e. a valid value of the subtype can
7791 -- not be less than this value. Hi_Bound is similarly set to a known
7792 -- high bound (valid value cannot be greater than this).
7794 --------------------------
7795 -- Check_Subtype_Bounds --
7796 --------------------------
7798 procedure Check_Subtype_Bounds is
7799 ST1 : Entity_Id;
7800 ST2 : Entity_Id;
7801 Lo : Node_Id;
7802 Hi : Node_Id;
7803 Loval : Uint;
7804 Hival : Uint;
7806 begin
7807 Lo_Bound := No_Uint;
7808 Hi_Bound := No_Uint;
7810 -- Loop to climb ancestor subtypes and derived types
7812 ST1 := T;
7813 loop
7814 if not Is_Discrete_Type (ST1) then
7815 return;
7816 end if;
7818 Lo := Type_Low_Bound (ST1);
7819 Hi := Type_High_Bound (ST1);
7821 if Compile_Time_Known_Value (Lo) then
7822 Loval := Expr_Value (Lo);
7824 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
7825 Lo_Bound := Loval;
7826 end if;
7827 end if;
7829 if Compile_Time_Known_Value (Hi) then
7830 Hival := Expr_Value (Hi);
7832 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
7833 Hi_Bound := Hival;
7834 end if;
7835 end if;
7837 ST2 := Ancestor_Subtype (ST1);
7839 if No (ST2) then
7840 ST2 := Etype (ST1);
7841 end if;
7843 exit when ST1 = ST2;
7844 ST1 := ST2;
7845 end loop;
7846 end Check_Subtype_Bounds;
7848 -- Start of processing for Get_Simple_Init_Val
7850 begin
7851 -- For a private type, we should always have an underlying type (because
7852 -- this was already checked in Needs_Simple_Initialization). What we do
7853 -- is to get the value for the underlying type and then do an unchecked
7854 -- conversion to the private type.
7856 if Is_Private_Type (T) then
7857 Val := Get_Simple_Init_Val (Underlying_Type (T), N, Size);
7859 -- A special case, if the underlying value is null, then qualify it
7860 -- with the underlying type, so that the null is properly typed.
7861 -- Similarly, if it is an aggregate it must be qualified, because an
7862 -- unchecked conversion does not provide a context for it.
7864 if Nkind_In (Val, N_Null, N_Aggregate) then
7865 Val :=
7866 Make_Qualified_Expression (Loc,
7867 Subtype_Mark =>
7868 New_Occurrence_Of (Underlying_Type (T), Loc),
7869 Expression => Val);
7870 end if;
7872 Result := Unchecked_Convert_To (T, Val);
7874 -- Don't truncate result (important for Initialize/Normalize_Scalars)
7876 if Nkind (Result) = N_Unchecked_Type_Conversion
7877 and then Is_Scalar_Type (Underlying_Type (T))
7878 then
7879 Set_No_Truncation (Result);
7880 end if;
7882 return Result;
7884 -- Scalars with Default_Value aspect. The first subtype may now be
7885 -- private, so retrieve value from underlying type.
7887 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
7888 if Is_Private_Type (First_Subtype (T)) then
7889 return Unchecked_Convert_To (T,
7890 Default_Aspect_Value (Full_View (First_Subtype (T))));
7891 else
7892 return
7893 Convert_To (T, Default_Aspect_Value (First_Subtype (T)));
7894 end if;
7896 -- Otherwise, for scalars, we must have normalize/initialize scalars
7897 -- case, or if the node N is an 'Invalid_Value attribute node.
7899 elsif Is_Scalar_Type (T) then
7900 pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
7902 -- Compute size of object. If it is given by the caller, we can use
7903 -- it directly, otherwise we use Esize (T) as an estimate. As far as
7904 -- we know this covers all cases correctly.
7906 if Size = No_Uint or else Size <= Uint_0 then
7907 Size_To_Use := UI_Max (Uint_1, Esize (T));
7908 else
7909 Size_To_Use := Size;
7910 end if;
7912 -- Maximum size to use is 64 bits, since we will create values of
7913 -- type Unsigned_64 and the range must fit this type.
7915 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
7916 Size_To_Use := Uint_64;
7917 end if;
7919 -- Check known bounds of subtype
7921 Check_Subtype_Bounds;
7923 -- Processing for Normalize_Scalars case
7925 if Normalize_Scalars and then not IV_Attribute then
7927 -- If zero is invalid, it is a convenient value to use that is
7928 -- for sure an appropriate invalid value in all situations.
7930 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
7931 Val := Make_Integer_Literal (Loc, 0);
7933 -- Cases where all one bits is the appropriate invalid value
7935 -- For modular types, all 1 bits is either invalid or valid. If
7936 -- it is valid, then there is nothing that can be done since there
7937 -- are no invalid values (we ruled out zero already).
7939 -- For signed integer types that have no negative values, either
7940 -- there is room for negative values, or there is not. If there
7941 -- is, then all 1-bits may be interpreted as minus one, which is
7942 -- certainly invalid. Alternatively it is treated as the largest
7943 -- positive value, in which case the observation for modular types
7944 -- still applies.
7946 -- For float types, all 1-bits is a NaN (not a number), which is
7947 -- certainly an appropriately invalid value.
7949 elsif Is_Unsigned_Type (T)
7950 or else Is_Floating_Point_Type (T)
7951 or else Is_Enumeration_Type (T)
7952 then
7953 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
7955 -- Resolve as Unsigned_64, because the largest number we can
7956 -- generate is out of range of universal integer.
7958 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
7960 -- Case of signed types
7962 else
7963 declare
7964 Signed_Size : constant Uint :=
7965 UI_Min (Uint_63, Size_To_Use - 1);
7967 begin
7968 -- Normally we like to use the most negative number. The one
7969 -- exception is when this number is in the known subtype
7970 -- range and the largest positive number is not in the known
7971 -- subtype range.
7973 -- For this exceptional case, use largest positive value
7975 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
7976 and then Lo_Bound <= (-(2 ** Signed_Size))
7977 and then Hi_Bound < 2 ** Signed_Size
7978 then
7979 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
7981 -- Normal case of largest negative value
7983 else
7984 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
7985 end if;
7986 end;
7987 end if;
7989 -- Here for Initialize_Scalars case (or Invalid_Value attribute used)
7991 else
7992 -- For float types, use float values from System.Scalar_Values
7994 if Is_Floating_Point_Type (T) then
7995 if Root_Type (T) = Standard_Short_Float then
7996 Val_RE := RE_IS_Isf;
7997 elsif Root_Type (T) = Standard_Float then
7998 Val_RE := RE_IS_Ifl;
7999 elsif Root_Type (T) = Standard_Long_Float then
8000 Val_RE := RE_IS_Ilf;
8001 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
8002 Val_RE := RE_IS_Ill;
8003 end if;
8005 -- If zero is invalid, use zero values from System.Scalar_Values
8007 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
8008 if Size_To_Use <= 8 then
8009 Val_RE := RE_IS_Iz1;
8010 elsif Size_To_Use <= 16 then
8011 Val_RE := RE_IS_Iz2;
8012 elsif Size_To_Use <= 32 then
8013 Val_RE := RE_IS_Iz4;
8014 else
8015 Val_RE := RE_IS_Iz8;
8016 end if;
8018 -- For unsigned, use unsigned values from System.Scalar_Values
8020 elsif Is_Unsigned_Type (T) then
8021 if Size_To_Use <= 8 then
8022 Val_RE := RE_IS_Iu1;
8023 elsif Size_To_Use <= 16 then
8024 Val_RE := RE_IS_Iu2;
8025 elsif Size_To_Use <= 32 then
8026 Val_RE := RE_IS_Iu4;
8027 else
8028 Val_RE := RE_IS_Iu8;
8029 end if;
8031 -- For signed, use signed values from System.Scalar_Values
8033 else
8034 if Size_To_Use <= 8 then
8035 Val_RE := RE_IS_Is1;
8036 elsif Size_To_Use <= 16 then
8037 Val_RE := RE_IS_Is2;
8038 elsif Size_To_Use <= 32 then
8039 Val_RE := RE_IS_Is4;
8040 else
8041 Val_RE := RE_IS_Is8;
8042 end if;
8043 end if;
8045 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
8046 end if;
8048 -- The final expression is obtained by doing an unchecked conversion
8049 -- of this result to the base type of the required subtype. Use the
8050 -- base type to prevent the unchecked conversion from chopping bits,
8051 -- and then we set Kill_Range_Check to preserve the "bad" value.
8053 Result := Unchecked_Convert_To (Base_Type (T), Val);
8055 -- Ensure result is not truncated, since we want the "bad" bits, and
8056 -- also kill range check on result.
8058 if Nkind (Result) = N_Unchecked_Type_Conversion then
8059 Set_No_Truncation (Result);
8060 Set_Kill_Range_Check (Result, True);
8061 end if;
8063 return Result;
8065 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
8067 elsif Is_Standard_String_Type (T) then
8068 pragma Assert (Init_Or_Norm_Scalars);
8070 return
8071 Make_Aggregate (Loc,
8072 Component_Associations => New_List (
8073 Make_Component_Association (Loc,
8074 Choices => New_List (
8075 Make_Others_Choice (Loc)),
8076 Expression =>
8077 Get_Simple_Init_Val
8078 (Component_Type (T), N, Esize (Root_Type (T))))));
8080 -- Access type is initialized to null
8082 elsif Is_Access_Type (T) then
8083 return Make_Null (Loc);
8085 -- No other possibilities should arise, since we should only be calling
8086 -- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
8087 -- indicating one of the above cases held.
8089 else
8090 raise Program_Error;
8091 end if;
8093 exception
8094 when RE_Not_Available =>
8095 return Empty;
8096 end Get_Simple_Init_Val;
8098 ------------------------------
8099 -- Has_New_Non_Standard_Rep --
8100 ------------------------------
8102 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
8103 begin
8104 if not Is_Derived_Type (T) then
8105 return Has_Non_Standard_Rep (T)
8106 or else Has_Non_Standard_Rep (Root_Type (T));
8108 -- If Has_Non_Standard_Rep is not set on the derived type, the
8109 -- representation is fully inherited.
8111 elsif not Has_Non_Standard_Rep (T) then
8112 return False;
8114 else
8115 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
8117 -- May need a more precise check here: the First_Rep_Item may be a
8118 -- stream attribute, which does not affect the representation of the
8119 -- type ???
8121 end if;
8122 end Has_New_Non_Standard_Rep;
8124 ----------------------
8125 -- Inline_Init_Proc --
8126 ----------------------
8128 function Inline_Init_Proc (Typ : Entity_Id) return Boolean is
8129 begin
8130 -- The initialization proc of protected records is not worth inlining.
8131 -- In addition, when compiled for another unit for inlining purposes,
8132 -- it may make reference to entities that have not been elaborated yet.
8133 -- The initialization proc of records that need finalization contains
8134 -- a nested clean-up procedure that makes it impractical to inline as
8135 -- well, except for simple controlled types themselves. And similar
8136 -- considerations apply to task types.
8138 if Is_Concurrent_Type (Typ) then
8139 return False;
8141 elsif Needs_Finalization (Typ) and then not Is_Controlled (Typ) then
8142 return False;
8144 elsif Has_Task (Typ) then
8145 return False;
8147 else
8148 return True;
8149 end if;
8150 end Inline_Init_Proc;
8152 ----------------
8153 -- In_Runtime --
8154 ----------------
8156 function In_Runtime (E : Entity_Id) return Boolean is
8157 S1 : Entity_Id;
8159 begin
8160 S1 := Scope (E);
8161 while Scope (S1) /= Standard_Standard loop
8162 S1 := Scope (S1);
8163 end loop;
8165 return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
8166 end In_Runtime;
8168 ---------------------------------------
8169 -- Insert_Component_Invariant_Checks --
8170 ---------------------------------------
8172 procedure Insert_Component_Invariant_Checks
8173 (N : Node_Id;
8174 Typ : Entity_Id;
8175 Proc : Node_Id)
8177 Loc : constant Source_Ptr := Sloc (Typ);
8178 Proc_Id : Entity_Id;
8180 begin
8181 if Present (Proc) then
8182 Proc_Id := Defining_Entity (Proc);
8184 if not Has_Invariants (Typ) then
8185 Set_Has_Invariants (Typ);
8186 Set_Is_Invariant_Procedure (Proc_Id);
8187 Set_Invariant_Procedure (Typ, Proc_Id);
8188 Insert_After (N, Proc);
8189 Analyze (Proc);
8191 else
8193 -- Find already created invariant subprogram, insert body of
8194 -- component invariant proc in its body, and add call after
8195 -- other checks.
8197 declare
8198 Bod : Node_Id;
8199 Inv_Id : constant Entity_Id := Invariant_Procedure (Typ);
8200 Call : constant Node_Id :=
8201 Make_Procedure_Call_Statement (Sloc (N),
8202 Name => New_Occurrence_Of (Proc_Id, Loc),
8203 Parameter_Associations =>
8204 New_List
8205 (New_Occurrence_Of (First_Formal (Inv_Id), Loc)));
8207 begin
8208 -- The invariant body has not been analyzed yet, so we do a
8209 -- sequential search forward, and retrieve it by name.
8211 Bod := Next (N);
8212 while Present (Bod) loop
8213 exit when Nkind (Bod) = N_Subprogram_Body
8214 and then Chars (Defining_Entity (Bod)) = Chars (Inv_Id);
8215 Next (Bod);
8216 end loop;
8218 -- If the body is not found, it is the case of an invariant
8219 -- appearing on a full declaration in a private part, in
8220 -- which case the type has been frozen but the invariant
8221 -- procedure for the composite type not created yet. Create
8222 -- body now.
8224 if No (Bod) then
8225 Build_Invariant_Procedure (Typ, Parent (Current_Scope));
8226 Bod := Unit_Declaration_Node
8227 (Corresponding_Body (Unit_Declaration_Node (Inv_Id)));
8228 end if;
8230 Append_To (Declarations (Bod), Proc);
8231 Append_To (Statements (Handled_Statement_Sequence (Bod)), Call);
8232 Analyze (Proc);
8233 Analyze (Call);
8234 end;
8235 end if;
8236 end if;
8237 end Insert_Component_Invariant_Checks;
8239 ----------------------------
8240 -- Initialization_Warning --
8241 ----------------------------
8243 procedure Initialization_Warning (E : Entity_Id) is
8244 Warning_Needed : Boolean;
8246 begin
8247 Warning_Needed := False;
8249 if Ekind (Current_Scope) = E_Package
8250 and then Static_Elaboration_Desired (Current_Scope)
8251 then
8252 if Is_Type (E) then
8253 if Is_Record_Type (E) then
8254 if Has_Discriminants (E)
8255 or else Is_Limited_Type (E)
8256 or else Has_Non_Standard_Rep (E)
8257 then
8258 Warning_Needed := True;
8260 else
8261 -- Verify that at least one component has an initialization
8262 -- expression. No need for a warning on a type if all its
8263 -- components have no initialization.
8265 declare
8266 Comp : Entity_Id;
8268 begin
8269 Comp := First_Component (E);
8270 while Present (Comp) loop
8271 if Ekind (Comp) = E_Discriminant
8272 or else
8273 (Nkind (Parent (Comp)) = N_Component_Declaration
8274 and then Present (Expression (Parent (Comp))))
8275 then
8276 Warning_Needed := True;
8277 exit;
8278 end if;
8280 Next_Component (Comp);
8281 end loop;
8282 end;
8283 end if;
8285 if Warning_Needed then
8286 Error_Msg_N
8287 ("Objects of the type cannot be initialized statically "
8288 & "by default??", Parent (E));
8289 end if;
8290 end if;
8292 else
8293 Error_Msg_N ("Object cannot be initialized statically??", E);
8294 end if;
8295 end if;
8296 end Initialization_Warning;
8298 ------------------
8299 -- Init_Formals --
8300 ------------------
8302 function Init_Formals (Typ : Entity_Id) return List_Id is
8303 Loc : constant Source_Ptr := Sloc (Typ);
8304 Formals : List_Id;
8306 begin
8307 -- First parameter is always _Init : in out typ. Note that we need this
8308 -- to be in/out because in the case of the task record value, there
8309 -- are default record fields (_Priority, _Size, -Task_Info) that may
8310 -- be referenced in the generated initialization routine.
8312 Formals := New_List (
8313 Make_Parameter_Specification (Loc,
8314 Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
8315 In_Present => True,
8316 Out_Present => True,
8317 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
8319 -- For task record value, or type that contains tasks, add two more
8320 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
8321 -- We also add these parameters for the task record type case.
8323 if Has_Task (Typ)
8324 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
8325 then
8326 Append_To (Formals,
8327 Make_Parameter_Specification (Loc,
8328 Defining_Identifier =>
8329 Make_Defining_Identifier (Loc, Name_uMaster),
8330 Parameter_Type =>
8331 New_Occurrence_Of (RTE (RE_Master_Id), Loc)));
8333 -- Add _Chain (not done for sequential elaboration policy, see
8334 -- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
8336 if Partition_Elaboration_Policy /= 'S' then
8337 Append_To (Formals,
8338 Make_Parameter_Specification (Loc,
8339 Defining_Identifier =>
8340 Make_Defining_Identifier (Loc, Name_uChain),
8341 In_Present => True,
8342 Out_Present => True,
8343 Parameter_Type =>
8344 New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
8345 end if;
8347 Append_To (Formals,
8348 Make_Parameter_Specification (Loc,
8349 Defining_Identifier =>
8350 Make_Defining_Identifier (Loc, Name_uTask_Name),
8351 In_Present => True,
8352 Parameter_Type => New_Occurrence_Of (Standard_String, Loc)));
8353 end if;
8355 return Formals;
8357 exception
8358 when RE_Not_Available =>
8359 return Empty_List;
8360 end Init_Formals;
8362 -------------------------
8363 -- Init_Secondary_Tags --
8364 -------------------------
8366 procedure Init_Secondary_Tags
8367 (Typ : Entity_Id;
8368 Target : Node_Id;
8369 Stmts_List : List_Id;
8370 Fixed_Comps : Boolean := True;
8371 Variable_Comps : Boolean := True)
8373 Loc : constant Source_Ptr := Sloc (Target);
8375 -- Inherit the C++ tag of the secondary dispatch table of Typ associated
8376 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8378 procedure Initialize_Tag
8379 (Typ : Entity_Id;
8380 Iface : Entity_Id;
8381 Tag_Comp : Entity_Id;
8382 Iface_Tag : Node_Id);
8383 -- Initialize the tag of the secondary dispatch table of Typ associated
8384 -- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
8385 -- Compiling under the CPP full ABI compatibility mode, if the ancestor
8386 -- of Typ CPP tagged type we generate code to inherit the contents of
8387 -- the dispatch table directly from the ancestor.
8389 --------------------
8390 -- Initialize_Tag --
8391 --------------------
8393 procedure Initialize_Tag
8394 (Typ : Entity_Id;
8395 Iface : Entity_Id;
8396 Tag_Comp : Entity_Id;
8397 Iface_Tag : Node_Id)
8399 Comp_Typ : Entity_Id;
8400 Offset_To_Top_Comp : Entity_Id := Empty;
8402 begin
8403 -- Initialize pointer to secondary DT associated with the interface
8405 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8406 Append_To (Stmts_List,
8407 Make_Assignment_Statement (Loc,
8408 Name =>
8409 Make_Selected_Component (Loc,
8410 Prefix => New_Copy_Tree (Target),
8411 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8412 Expression =>
8413 New_Occurrence_Of (Iface_Tag, Loc)));
8414 end if;
8416 Comp_Typ := Scope (Tag_Comp);
8418 -- Initialize the entries of the table of interfaces. We generate a
8419 -- different call when the parent of the type has variable size
8420 -- components.
8422 if Comp_Typ /= Etype (Comp_Typ)
8423 and then Is_Variable_Size_Record (Etype (Comp_Typ))
8424 and then Chars (Tag_Comp) /= Name_uTag
8425 then
8426 pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));
8428 -- Issue error if Set_Dynamic_Offset_To_Top is not available in a
8429 -- configurable run-time environment.
8431 if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
8432 Error_Msg_CRT
8433 ("variable size record with interface types", Typ);
8434 return;
8435 end if;
8437 -- Generate:
8438 -- Set_Dynamic_Offset_To_Top
8439 -- (This => Init,
8440 -- Interface_T => Iface'Tag,
8441 -- Offset_Value => n,
8442 -- Offset_Func => Fn'Address)
8444 Append_To (Stmts_List,
8445 Make_Procedure_Call_Statement (Loc,
8446 Name =>
8447 New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
8448 Parameter_Associations => New_List (
8449 Make_Attribute_Reference (Loc,
8450 Prefix => New_Copy_Tree (Target),
8451 Attribute_Name => Name_Address),
8453 Unchecked_Convert_To (RTE (RE_Tag),
8454 New_Occurrence_Of
8455 (Node (First_Elmt (Access_Disp_Table (Iface))),
8456 Loc)),
8458 Unchecked_Convert_To
8459 (RTE (RE_Storage_Offset),
8460 Make_Attribute_Reference (Loc,
8461 Prefix =>
8462 Make_Selected_Component (Loc,
8463 Prefix => New_Copy_Tree (Target),
8464 Selector_Name =>
8465 New_Occurrence_Of (Tag_Comp, Loc)),
8466 Attribute_Name => Name_Position)),
8468 Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
8469 Make_Attribute_Reference (Loc,
8470 Prefix => New_Occurrence_Of
8471 (DT_Offset_To_Top_Func (Tag_Comp), Loc),
8472 Attribute_Name => Name_Address)))));
8474 -- In this case the next component stores the value of the offset
8475 -- to the top.
8477 Offset_To_Top_Comp := Next_Entity (Tag_Comp);
8478 pragma Assert (Present (Offset_To_Top_Comp));
8480 Append_To (Stmts_List,
8481 Make_Assignment_Statement (Loc,
8482 Name =>
8483 Make_Selected_Component (Loc,
8484 Prefix => New_Copy_Tree (Target),
8485 Selector_Name =>
8486 New_Occurrence_Of (Offset_To_Top_Comp, Loc)),
8488 Expression =>
8489 Make_Attribute_Reference (Loc,
8490 Prefix =>
8491 Make_Selected_Component (Loc,
8492 Prefix => New_Copy_Tree (Target),
8493 Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
8494 Attribute_Name => Name_Position)));
8496 -- Normal case: No discriminants in the parent type
8498 else
8499 -- Don't need to set any value if this interface shares the
8500 -- primary dispatch table.
8502 if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
8503 Append_To (Stmts_List,
8504 Build_Set_Static_Offset_To_Top (Loc,
8505 Iface_Tag => New_Occurrence_Of (Iface_Tag, Loc),
8506 Offset_Value =>
8507 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8508 Make_Attribute_Reference (Loc,
8509 Prefix =>
8510 Make_Selected_Component (Loc,
8511 Prefix => New_Copy_Tree (Target),
8512 Selector_Name =>
8513 New_Occurrence_Of (Tag_Comp, Loc)),
8514 Attribute_Name => Name_Position))));
8515 end if;
8517 -- Generate:
8518 -- Register_Interface_Offset
8519 -- (This => Init,
8520 -- Interface_T => Iface'Tag,
8521 -- Is_Constant => True,
8522 -- Offset_Value => n,
8523 -- Offset_Func => null);
8525 if RTE_Available (RE_Register_Interface_Offset) then
8526 Append_To (Stmts_List,
8527 Make_Procedure_Call_Statement (Loc,
8528 Name =>
8529 New_Occurrence_Of
8530 (RTE (RE_Register_Interface_Offset), Loc),
8531 Parameter_Associations => New_List (
8532 Make_Attribute_Reference (Loc,
8533 Prefix => New_Copy_Tree (Target),
8534 Attribute_Name => Name_Address),
8536 Unchecked_Convert_To (RTE (RE_Tag),
8537 New_Occurrence_Of
8538 (Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
8540 New_Occurrence_Of (Standard_True, Loc),
8542 Unchecked_Convert_To (RTE (RE_Storage_Offset),
8543 Make_Attribute_Reference (Loc,
8544 Prefix =>
8545 Make_Selected_Component (Loc,
8546 Prefix => New_Copy_Tree (Target),
8547 Selector_Name =>
8548 New_Occurrence_Of (Tag_Comp, Loc)),
8549 Attribute_Name => Name_Position)),
8551 Make_Null (Loc))));
8552 end if;
8553 end if;
8554 end Initialize_Tag;
8556 -- Local variables
8558 Full_Typ : Entity_Id;
8559 Ifaces_List : Elist_Id;
8560 Ifaces_Comp_List : Elist_Id;
8561 Ifaces_Tag_List : Elist_Id;
8562 Iface_Elmt : Elmt_Id;
8563 Iface_Comp_Elmt : Elmt_Id;
8564 Iface_Tag_Elmt : Elmt_Id;
8565 Tag_Comp : Node_Id;
8566 In_Variable_Pos : Boolean;
8568 -- Start of processing for Init_Secondary_Tags
8570 begin
8571 -- Handle private types
8573 if Present (Full_View (Typ)) then
8574 Full_Typ := Full_View (Typ);
8575 else
8576 Full_Typ := Typ;
8577 end if;
8579 Collect_Interfaces_Info
8580 (Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
8582 Iface_Elmt := First_Elmt (Ifaces_List);
8583 Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
8584 Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
8585 while Present (Iface_Elmt) loop
8586 Tag_Comp := Node (Iface_Comp_Elmt);
8588 -- Check if parent of record type has variable size components
8590 In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
8591 and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
8593 -- If we are compiling under the CPP full ABI compatibility mode and
8594 -- the ancestor is a CPP_Pragma tagged type then we generate code to
8595 -- initialize the secondary tag components from tags that reference
8596 -- secondary tables filled with copy of parent slots.
8598 if Is_CPP_Class (Root_Type (Full_Typ)) then
8600 -- Reject interface components located at variable offset in
8601 -- C++ derivations. This is currently unsupported.
8603 if not Fixed_Comps and then In_Variable_Pos then
8605 -- Locate the first dynamic component of the record. Done to
8606 -- improve the text of the warning.
8608 declare
8609 Comp : Entity_Id;
8610 Comp_Typ : Entity_Id;
8612 begin
8613 Comp := First_Entity (Typ);
8614 while Present (Comp) loop
8615 Comp_Typ := Etype (Comp);
8617 if Ekind (Comp) /= E_Discriminant
8618 and then not Is_Tag (Comp)
8619 then
8620 exit when
8621 (Is_Record_Type (Comp_Typ)
8622 and then
8623 Is_Variable_Size_Record (Base_Type (Comp_Typ)))
8624 or else
8625 (Is_Array_Type (Comp_Typ)
8626 and then Is_Variable_Size_Array (Comp_Typ));
8627 end if;
8629 Next_Entity (Comp);
8630 end loop;
8632 pragma Assert (Present (Comp));
8633 Error_Msg_Node_2 := Comp;
8634 Error_Msg_NE
8635 ("parent type & with dynamic component & cannot be parent"
8636 & " of 'C'P'P derivation if new interfaces are present",
8637 Typ, Scope (Original_Record_Component (Comp)));
8639 Error_Msg_Sloc :=
8640 Sloc (Scope (Original_Record_Component (Comp)));
8641 Error_Msg_NE
8642 ("type derived from 'C'P'P type & defined #",
8643 Typ, Scope (Original_Record_Component (Comp)));
8645 -- Avoid duplicated warnings
8647 exit;
8648 end;
8650 -- Initialize secondary tags
8652 else
8653 Append_To (Stmts_List,
8654 Make_Assignment_Statement (Loc,
8655 Name =>
8656 Make_Selected_Component (Loc,
8657 Prefix => New_Copy_Tree (Target),
8658 Selector_Name =>
8659 New_Occurrence_Of (Node (Iface_Comp_Elmt), Loc)),
8660 Expression =>
8661 New_Occurrence_Of (Node (Iface_Tag_Elmt), Loc)));
8662 end if;
8664 -- Otherwise generate code to initialize the tag
8666 else
8667 if (In_Variable_Pos and then Variable_Comps)
8668 or else (not In_Variable_Pos and then Fixed_Comps)
8669 then
8670 Initialize_Tag (Full_Typ,
8671 Iface => Node (Iface_Elmt),
8672 Tag_Comp => Tag_Comp,
8673 Iface_Tag => Node (Iface_Tag_Elmt));
8674 end if;
8675 end if;
8677 Next_Elmt (Iface_Elmt);
8678 Next_Elmt (Iface_Comp_Elmt);
8679 Next_Elmt (Iface_Tag_Elmt);
8680 end loop;
8681 end Init_Secondary_Tags;
8683 ------------------------
8684 -- Is_User_Defined_Eq --
8685 ------------------------
8687 function Is_User_Defined_Equality (Prim : Node_Id) return Boolean is
8688 begin
8689 return Chars (Prim) = Name_Op_Eq
8690 and then Etype (First_Formal (Prim)) =
8691 Etype (Next_Formal (First_Formal (Prim)))
8692 and then Base_Type (Etype (Prim)) = Standard_Boolean;
8693 end Is_User_Defined_Equality;
8695 ----------------------------------------
8696 -- Make_Controlling_Function_Wrappers --
8697 ----------------------------------------
8699 procedure Make_Controlling_Function_Wrappers
8700 (Tag_Typ : Entity_Id;
8701 Decl_List : out List_Id;
8702 Body_List : out List_Id)
8704 Loc : constant Source_Ptr := Sloc (Tag_Typ);
8705 Prim_Elmt : Elmt_Id;
8706 Subp : Entity_Id;
8707 Actual_List : List_Id;
8708 Formal_List : List_Id;
8709 Formal : Entity_Id;
8710 Par_Formal : Entity_Id;
8711 Formal_Node : Node_Id;
8712 Func_Body : Node_Id;
8713 Func_Decl : Node_Id;
8714 Func_Spec : Node_Id;
8715 Return_Stmt : Node_Id;
8717 begin
8718 Decl_List := New_List;
8719 Body_List := New_List;
8721 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
8722 while Present (Prim_Elmt) loop
8723 Subp := Node (Prim_Elmt);
8725 -- If a primitive function with a controlling result of the type has
8726 -- not been overridden by the user, then we must create a wrapper
8727 -- function here that effectively overrides it and invokes the
8728 -- (non-abstract) parent function. This can only occur for a null
8729 -- extension. Note that functions with anonymous controlling access
8730 -- results don't qualify and must be overridden. We also exclude
8731 -- Input attributes, since each type will have its own version of
8732 -- Input constructed by the expander. The test for Comes_From_Source
8733 -- is needed to distinguish inherited operations from renamings
8734 -- (which also have Alias set). We exclude internal entities with
8735 -- Interface_Alias to avoid generating duplicated wrappers since
8736 -- the primitive which covers the interface is also available in
8737 -- the list of primitive operations.
8739 -- The function may be abstract, or require_Overriding may be set
8740 -- for it, because tests for null extensions may already have reset
8741 -- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
8742 -- set, functions that need wrappers are recognized by having an
8743 -- alias that returns the parent type.
8745 if Comes_From_Source (Subp)
8746 or else No (Alias (Subp))
8747 or else Present (Interface_Alias (Subp))
8748 or else Ekind (Subp) /= E_Function
8749 or else not Has_Controlling_Result (Subp)
8750 or else Is_Access_Type (Etype (Subp))
8751 or else Is_Abstract_Subprogram (Alias (Subp))
8752 or else Is_TSS (Subp, TSS_Stream_Input)
8753 then
8754 goto Next_Prim;
8756 elsif Is_Abstract_Subprogram (Subp)
8757 or else Requires_Overriding (Subp)
8758 or else
8759 (Is_Null_Extension (Etype (Subp))
8760 and then Etype (Alias (Subp)) /= Etype (Subp))
8761 then
8762 Formal_List := No_List;
8763 Formal := First_Formal (Subp);
8765 if Present (Formal) then
8766 Formal_List := New_List;
8768 while Present (Formal) loop
8769 Append
8770 (Make_Parameter_Specification
8771 (Loc,
8772 Defining_Identifier =>
8773 Make_Defining_Identifier (Sloc (Formal),
8774 Chars => Chars (Formal)),
8775 In_Present => In_Present (Parent (Formal)),
8776 Out_Present => Out_Present (Parent (Formal)),
8777 Null_Exclusion_Present =>
8778 Null_Exclusion_Present (Parent (Formal)),
8779 Parameter_Type =>
8780 New_Occurrence_Of (Etype (Formal), Loc),
8781 Expression =>
8782 New_Copy_Tree (Expression (Parent (Formal)))),
8783 Formal_List);
8785 Next_Formal (Formal);
8786 end loop;
8787 end if;
8789 Func_Spec :=
8790 Make_Function_Specification (Loc,
8791 Defining_Unit_Name =>
8792 Make_Defining_Identifier (Loc,
8793 Chars => Chars (Subp)),
8794 Parameter_Specifications => Formal_List,
8795 Result_Definition =>
8796 New_Occurrence_Of (Etype (Subp), Loc));
8798 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
8799 Append_To (Decl_List, Func_Decl);
8801 -- Build a wrapper body that calls the parent function. The body
8802 -- contains a single return statement that returns an extension
8803 -- aggregate whose ancestor part is a call to the parent function,
8804 -- passing the formals as actuals (with any controlling arguments
8805 -- converted to the types of the corresponding formals of the
8806 -- parent function, which might be anonymous access types), and
8807 -- having a null extension.
8809 Formal := First_Formal (Subp);
8810 Par_Formal := First_Formal (Alias (Subp));
8811 Formal_Node := First (Formal_List);
8813 if Present (Formal) then
8814 Actual_List := New_List;
8815 else
8816 Actual_List := No_List;
8817 end if;
8819 while Present (Formal) loop
8820 if Is_Controlling_Formal (Formal) then
8821 Append_To (Actual_List,
8822 Make_Type_Conversion (Loc,
8823 Subtype_Mark =>
8824 New_Occurrence_Of (Etype (Par_Formal), Loc),
8825 Expression =>
8826 New_Occurrence_Of
8827 (Defining_Identifier (Formal_Node), Loc)));
8828 else
8829 Append_To
8830 (Actual_List,
8831 New_Occurrence_Of
8832 (Defining_Identifier (Formal_Node), Loc));
8833 end if;
8835 Next_Formal (Formal);
8836 Next_Formal (Par_Formal);
8837 Next (Formal_Node);
8838 end loop;
8840 Return_Stmt :=
8841 Make_Simple_Return_Statement (Loc,
8842 Expression =>
8843 Make_Extension_Aggregate (Loc,
8844 Ancestor_Part =>
8845 Make_Function_Call (Loc,
8846 Name =>
8847 New_Occurrence_Of (Alias (Subp), Loc),
8848 Parameter_Associations => Actual_List),
8849 Null_Record_Present => True));
8851 Func_Body :=
8852 Make_Subprogram_Body (Loc,
8853 Specification => New_Copy_Tree (Func_Spec),
8854 Declarations => Empty_List,
8855 Handled_Statement_Sequence =>
8856 Make_Handled_Sequence_Of_Statements (Loc,
8857 Statements => New_List (Return_Stmt)));
8859 Set_Defining_Unit_Name
8860 (Specification (Func_Body),
8861 Make_Defining_Identifier (Loc, Chars (Subp)));
8863 Append_To (Body_List, Func_Body);
8865 -- Replace the inherited function with the wrapper function in the
8866 -- primitive operations list. We add the minimum decoration needed
8867 -- to override interface primitives.
8869 Set_Ekind (Defining_Unit_Name (Func_Spec), E_Function);
8871 Override_Dispatching_Operation
8872 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec),
8873 Is_Wrapper => True);
8874 end if;
8876 <<Next_Prim>>
8877 Next_Elmt (Prim_Elmt);
8878 end loop;
8879 end Make_Controlling_Function_Wrappers;
8881 -------------------
8882 -- Make_Eq_Body --
8883 -------------------
8885 function Make_Eq_Body
8886 (Typ : Entity_Id;
8887 Eq_Name : Name_Id) return Node_Id
8889 Loc : constant Source_Ptr := Sloc (Parent (Typ));
8890 Decl : Node_Id;
8891 Def : constant Node_Id := Parent (Typ);
8892 Stmts : constant List_Id := New_List;
8893 Variant_Case : Boolean := Has_Discriminants (Typ);
8894 Comps : Node_Id := Empty;
8895 Typ_Def : Node_Id := Type_Definition (Def);
8897 begin
8898 Decl :=
8899 Predef_Spec_Or_Body (Loc,
8900 Tag_Typ => Typ,
8901 Name => Eq_Name,
8902 Profile => New_List (
8903 Make_Parameter_Specification (Loc,
8904 Defining_Identifier =>
8905 Make_Defining_Identifier (Loc, Name_X),
8906 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
8908 Make_Parameter_Specification (Loc,
8909 Defining_Identifier =>
8910 Make_Defining_Identifier (Loc, Name_Y),
8911 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8913 Ret_Type => Standard_Boolean,
8914 For_Body => True);
8916 if Variant_Case then
8917 if Nkind (Typ_Def) = N_Derived_Type_Definition then
8918 Typ_Def := Record_Extension_Part (Typ_Def);
8919 end if;
8921 if Present (Typ_Def) then
8922 Comps := Component_List (Typ_Def);
8923 end if;
8925 Variant_Case :=
8926 Present (Comps) and then Present (Variant_Part (Comps));
8927 end if;
8929 if Variant_Case then
8930 Append_To (Stmts,
8931 Make_Eq_If (Typ, Discriminant_Specifications (Def)));
8932 Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
8933 Append_To (Stmts,
8934 Make_Simple_Return_Statement (Loc,
8935 Expression => New_Occurrence_Of (Standard_True, Loc)));
8937 else
8938 Append_To (Stmts,
8939 Make_Simple_Return_Statement (Loc,
8940 Expression =>
8941 Expand_Record_Equality
8942 (Typ,
8943 Typ => Typ,
8944 Lhs => Make_Identifier (Loc, Name_X),
8945 Rhs => Make_Identifier (Loc, Name_Y),
8946 Bodies => Declarations (Decl))));
8947 end if;
8949 Set_Handled_Statement_Sequence
8950 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
8951 return Decl;
8952 end Make_Eq_Body;
8954 ------------------
8955 -- Make_Eq_Case --
8956 ------------------
8958 -- <Make_Eq_If shared components>
8960 -- case X.D1 is
8961 -- when V1 => <Make_Eq_Case> on subcomponents
8962 -- ...
8963 -- when Vn => <Make_Eq_Case> on subcomponents
8964 -- end case;
8966 function Make_Eq_Case
8967 (E : Entity_Id;
8968 CL : Node_Id;
8969 Discrs : Elist_Id := New_Elmt_List) return List_Id
8971 Loc : constant Source_Ptr := Sloc (E);
8972 Result : constant List_Id := New_List;
8973 Variant : Node_Id;
8974 Alt_List : List_Id;
8976 function Corresponding_Formal (C : Node_Id) return Entity_Id;
8977 -- Given the discriminant that controls a given variant of an unchecked
8978 -- union, find the formal of the equality function that carries the
8979 -- inferred value of the discriminant.
8981 function External_Name (E : Entity_Id) return Name_Id;
8982 -- The value of a given discriminant is conveyed in the corresponding
8983 -- formal parameter of the equality routine. The name of this formal
8984 -- parameter carries a one-character suffix which is removed here.
8986 --------------------------
8987 -- Corresponding_Formal --
8988 --------------------------
8990 function Corresponding_Formal (C : Node_Id) return Entity_Id is
8991 Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
8992 Elm : Elmt_Id;
8994 begin
8995 Elm := First_Elmt (Discrs);
8996 while Present (Elm) loop
8997 if Chars (Discr) = External_Name (Node (Elm)) then
8998 return Node (Elm);
8999 end if;
9001 Next_Elmt (Elm);
9002 end loop;
9004 -- A formal of the proper name must be found
9006 raise Program_Error;
9007 end Corresponding_Formal;
9009 -------------------
9010 -- External_Name --
9011 -------------------
9013 function External_Name (E : Entity_Id) return Name_Id is
9014 begin
9015 Get_Name_String (Chars (E));
9016 Name_Len := Name_Len - 1;
9017 return Name_Find;
9018 end External_Name;
9020 -- Start of processing for Make_Eq_Case
9022 begin
9023 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
9025 if No (Variant_Part (CL)) then
9026 return Result;
9027 end if;
9029 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
9031 if No (Variant) then
9032 return Result;
9033 end if;
9035 Alt_List := New_List;
9036 while Present (Variant) loop
9037 Append_To (Alt_List,
9038 Make_Case_Statement_Alternative (Loc,
9039 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
9040 Statements =>
9041 Make_Eq_Case (E, Component_List (Variant), Discrs)));
9042 Next_Non_Pragma (Variant);
9043 end loop;
9045 -- If we have an Unchecked_Union, use one of the parameters of the
9046 -- enclosing equality routine that captures the discriminant, to use
9047 -- as the expression in the generated case statement.
9049 if Is_Unchecked_Union (E) then
9050 Append_To (Result,
9051 Make_Case_Statement (Loc,
9052 Expression =>
9053 New_Occurrence_Of (Corresponding_Formal (CL), Loc),
9054 Alternatives => Alt_List));
9056 else
9057 Append_To (Result,
9058 Make_Case_Statement (Loc,
9059 Expression =>
9060 Make_Selected_Component (Loc,
9061 Prefix => Make_Identifier (Loc, Name_X),
9062 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
9063 Alternatives => Alt_List));
9064 end if;
9066 return Result;
9067 end Make_Eq_Case;
9069 ----------------
9070 -- Make_Eq_If --
9071 ----------------
9073 -- Generates:
9075 -- if
9076 -- X.C1 /= Y.C1
9077 -- or else
9078 -- X.C2 /= Y.C2
9079 -- ...
9080 -- then
9081 -- return False;
9082 -- end if;
9084 -- or a null statement if the list L is empty
9086 function Make_Eq_If
9087 (E : Entity_Id;
9088 L : List_Id) return Node_Id
9090 Loc : constant Source_Ptr := Sloc (E);
9091 C : Node_Id;
9092 Field_Name : Name_Id;
9093 Cond : Node_Id;
9095 begin
9096 if No (L) then
9097 return Make_Null_Statement (Loc);
9099 else
9100 Cond := Empty;
9102 C := First_Non_Pragma (L);
9103 while Present (C) loop
9104 Field_Name := Chars (Defining_Identifier (C));
9106 -- The tags must not be compared: they are not part of the value.
9107 -- Ditto for parent interfaces because their equality operator is
9108 -- abstract.
9110 -- Note also that in the following, we use Make_Identifier for
9111 -- the component names. Use of New_Occurrence_Of to identify the
9112 -- components would be incorrect because the wrong entities for
9113 -- discriminants could be picked up in the private type case.
9115 if Field_Name = Name_uParent
9116 and then Is_Interface (Etype (Defining_Identifier (C)))
9117 then
9118 null;
9120 elsif Field_Name /= Name_uTag then
9121 Evolve_Or_Else (Cond,
9122 Make_Op_Ne (Loc,
9123 Left_Opnd =>
9124 Make_Selected_Component (Loc,
9125 Prefix => Make_Identifier (Loc, Name_X),
9126 Selector_Name => Make_Identifier (Loc, Field_Name)),
9128 Right_Opnd =>
9129 Make_Selected_Component (Loc,
9130 Prefix => Make_Identifier (Loc, Name_Y),
9131 Selector_Name => Make_Identifier (Loc, Field_Name))));
9132 end if;
9134 Next_Non_Pragma (C);
9135 end loop;
9137 if No (Cond) then
9138 return Make_Null_Statement (Loc);
9140 else
9141 return
9142 Make_Implicit_If_Statement (E,
9143 Condition => Cond,
9144 Then_Statements => New_List (
9145 Make_Simple_Return_Statement (Loc,
9146 Expression => New_Occurrence_Of (Standard_False, Loc))));
9147 end if;
9148 end if;
9149 end Make_Eq_If;
9151 -------------------
9152 -- Make_Neq_Body --
9153 -------------------
9155 function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is
9157 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
9158 -- Returns true if Prim is a renaming of an unresolved predefined
9159 -- inequality operation.
9161 --------------------------------
9162 -- Is_Predefined_Neq_Renaming --
9163 --------------------------------
9165 function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
9166 begin
9167 return Chars (Prim) /= Name_Op_Ne
9168 and then Present (Alias (Prim))
9169 and then Comes_From_Source (Prim)
9170 and then Is_Intrinsic_Subprogram (Alias (Prim))
9171 and then Chars (Alias (Prim)) = Name_Op_Ne;
9172 end Is_Predefined_Neq_Renaming;
9174 -- Local variables
9176 Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ));
9177 Stmts : constant List_Id := New_List;
9178 Decl : Node_Id;
9179 Eq_Prim : Entity_Id;
9180 Left_Op : Entity_Id;
9181 Renaming_Prim : Entity_Id;
9182 Right_Op : Entity_Id;
9183 Target : Entity_Id;
9185 -- Start of processing for Make_Neq_Body
9187 begin
9188 -- For a call on a renaming of a dispatching subprogram that is
9189 -- overridden, if the overriding occurred before the renaming, then
9190 -- the body executed is that of the overriding declaration, even if the
9191 -- overriding declaration is not visible at the place of the renaming;
9192 -- otherwise, the inherited or predefined subprogram is called, see
9193 -- (RM 8.5.4(8))
9195 -- Stage 1: Search for a renaming of the inequality primitive and also
9196 -- search for an overriding of the equality primitive located before the
9197 -- renaming declaration.
9199 declare
9200 Elmt : Elmt_Id;
9201 Prim : Node_Id;
9203 begin
9204 Eq_Prim := Empty;
9205 Renaming_Prim := Empty;
9207 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9208 while Present (Elmt) loop
9209 Prim := Node (Elmt);
9211 if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
9212 if No (Renaming_Prim) then
9213 pragma Assert (No (Eq_Prim));
9214 Eq_Prim := Prim;
9215 end if;
9217 elsif Is_Predefined_Neq_Renaming (Prim) then
9218 Renaming_Prim := Prim;
9219 end if;
9221 Next_Elmt (Elmt);
9222 end loop;
9223 end;
9225 -- No further action needed if no renaming was found
9227 if No (Renaming_Prim) then
9228 return Empty;
9229 end if;
9231 -- Stage 2: Replace the renaming declaration by a subprogram declaration
9232 -- (required to add its body)
9234 Decl := Parent (Parent (Renaming_Prim));
9235 Rewrite (Decl,
9236 Make_Subprogram_Declaration (Loc,
9237 Specification => Specification (Decl)));
9238 Set_Analyzed (Decl);
9240 -- Remove the decoration of intrinsic renaming subprogram
9242 Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
9243 Set_Convention (Renaming_Prim, Convention_Ada);
9244 Set_Alias (Renaming_Prim, Empty);
9245 Set_Has_Completion (Renaming_Prim, False);
9247 -- Stage 3: Build the corresponding body
9249 Left_Op := First_Formal (Renaming_Prim);
9250 Right_Op := Next_Formal (Left_Op);
9252 Decl :=
9253 Predef_Spec_Or_Body (Loc,
9254 Tag_Typ => Tag_Typ,
9255 Name => Chars (Renaming_Prim),
9256 Profile => New_List (
9257 Make_Parameter_Specification (Loc,
9258 Defining_Identifier =>
9259 Make_Defining_Identifier (Loc, Chars (Left_Op)),
9260 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9262 Make_Parameter_Specification (Loc,
9263 Defining_Identifier =>
9264 Make_Defining_Identifier (Loc, Chars (Right_Op)),
9265 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9267 Ret_Type => Standard_Boolean,
9268 For_Body => True);
9270 -- If the overriding of the equality primitive occurred before the
9271 -- renaming, then generate:
9273 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9274 -- begin
9275 -- return not Oeq (X, Y);
9276 -- end;
9278 if Present (Eq_Prim) then
9279 Target := Eq_Prim;
9281 -- Otherwise build a nested subprogram which performs the predefined
9282 -- evaluation of the equality operator. That is, generate:
9284 -- function <Neq_Name> (X : Y : Typ) return Boolean is
9285 -- function Oeq (X : Y) return Boolean is
9286 -- begin
9287 -- <<body of default implementation>>
9288 -- end;
9289 -- begin
9290 -- return not Oeq (X, Y);
9291 -- end;
9293 else
9294 declare
9295 Local_Subp : Node_Id;
9296 begin
9297 Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
9298 Set_Declarations (Decl, New_List (Local_Subp));
9299 Target := Defining_Entity (Local_Subp);
9300 end;
9301 end if;
9303 Append_To (Stmts,
9304 Make_Simple_Return_Statement (Loc,
9305 Expression =>
9306 Make_Op_Not (Loc,
9307 Make_Function_Call (Loc,
9308 Name => New_Occurrence_Of (Target, Loc),
9309 Parameter_Associations => New_List (
9310 Make_Identifier (Loc, Chars (Left_Op)),
9311 Make_Identifier (Loc, Chars (Right_Op)))))));
9313 Set_Handled_Statement_Sequence
9314 (Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
9315 return Decl;
9316 end Make_Neq_Body;
9318 -------------------------------
9319 -- Make_Null_Procedure_Specs --
9320 -------------------------------
9322 function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
9323 Decl_List : constant List_Id := New_List;
9324 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9325 Formal : Entity_Id;
9326 Formal_List : List_Id;
9327 New_Param_Spec : Node_Id;
9328 Parent_Subp : Entity_Id;
9329 Prim_Elmt : Elmt_Id;
9330 Subp : Entity_Id;
9332 begin
9333 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
9334 while Present (Prim_Elmt) loop
9335 Subp := Node (Prim_Elmt);
9337 -- If a null procedure inherited from an interface has not been
9338 -- overridden, then we build a null procedure declaration to
9339 -- override the inherited procedure.
9341 Parent_Subp := Alias (Subp);
9343 if Present (Parent_Subp)
9344 and then Is_Null_Interface_Primitive (Parent_Subp)
9345 then
9346 Formal_List := No_List;
9347 Formal := First_Formal (Subp);
9349 if Present (Formal) then
9350 Formal_List := New_List;
9352 while Present (Formal) loop
9354 -- Copy the parameter spec including default expressions
9356 New_Param_Spec :=
9357 New_Copy_Tree (Parent (Formal), New_Sloc => Loc);
9359 -- Generate a new defining identifier for the new formal.
9360 -- required because New_Copy_Tree does not duplicate
9361 -- semantic fields (except itypes).
9363 Set_Defining_Identifier (New_Param_Spec,
9364 Make_Defining_Identifier (Sloc (Formal),
9365 Chars => Chars (Formal)));
9367 -- For controlling arguments we must change their
9368 -- parameter type to reference the tagged type (instead
9369 -- of the interface type)
9371 if Is_Controlling_Formal (Formal) then
9372 if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
9373 then
9374 Set_Parameter_Type (New_Param_Spec,
9375 New_Occurrence_Of (Tag_Typ, Loc));
9377 else pragma Assert
9378 (Nkind (Parameter_Type (Parent (Formal))) =
9379 N_Access_Definition);
9380 Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
9381 New_Occurrence_Of (Tag_Typ, Loc));
9382 end if;
9383 end if;
9385 Append (New_Param_Spec, Formal_List);
9387 Next_Formal (Formal);
9388 end loop;
9389 end if;
9391 Append_To (Decl_List,
9392 Make_Subprogram_Declaration (Loc,
9393 Make_Procedure_Specification (Loc,
9394 Defining_Unit_Name =>
9395 Make_Defining_Identifier (Loc, Chars (Subp)),
9396 Parameter_Specifications => Formal_List,
9397 Null_Present => True)));
9398 end if;
9400 Next_Elmt (Prim_Elmt);
9401 end loop;
9403 return Decl_List;
9404 end Make_Null_Procedure_Specs;
9406 -------------------------------------
9407 -- Make_Predefined_Primitive_Specs --
9408 -------------------------------------
9410 procedure Make_Predefined_Primitive_Specs
9411 (Tag_Typ : Entity_Id;
9412 Predef_List : out List_Id;
9413 Renamed_Eq : out Entity_Id)
9415 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
9416 -- Returns true if Prim is a renaming of an unresolved predefined
9417 -- equality operation.
9419 -------------------------------
9420 -- Is_Predefined_Eq_Renaming --
9421 -------------------------------
9423 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
9424 begin
9425 return Chars (Prim) /= Name_Op_Eq
9426 and then Present (Alias (Prim))
9427 and then Comes_From_Source (Prim)
9428 and then Is_Intrinsic_Subprogram (Alias (Prim))
9429 and then Chars (Alias (Prim)) = Name_Op_Eq;
9430 end Is_Predefined_Eq_Renaming;
9432 -- Local variables
9434 Loc : constant Source_Ptr := Sloc (Tag_Typ);
9435 Res : constant List_Id := New_List;
9436 Eq_Name : Name_Id := Name_Op_Eq;
9437 Eq_Needed : Boolean;
9438 Eq_Spec : Node_Id;
9439 Prim : Elmt_Id;
9441 Has_Predef_Eq_Renaming : Boolean := False;
9442 -- Set to True if Tag_Typ has a primitive that renames the predefined
9443 -- equality operator. Used to implement (RM 8-5-4(8)).
9445 -- Start of processing for Make_Predefined_Primitive_Specs
9447 begin
9448 Renamed_Eq := Empty;
9450 -- Spec of _Size
9452 Append_To (Res, Predef_Spec_Or_Body (Loc,
9453 Tag_Typ => Tag_Typ,
9454 Name => Name_uSize,
9455 Profile => New_List (
9456 Make_Parameter_Specification (Loc,
9457 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9458 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9460 Ret_Type => Standard_Long_Long_Integer));
9462 -- Specs for dispatching stream attributes
9464 declare
9465 Stream_Op_TSS_Names :
9466 constant array (Integer range <>) of TSS_Name_Type :=
9467 (TSS_Stream_Read,
9468 TSS_Stream_Write,
9469 TSS_Stream_Input,
9470 TSS_Stream_Output);
9472 begin
9473 for Op in Stream_Op_TSS_Names'Range loop
9474 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
9475 Append_To (Res,
9476 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
9477 Stream_Op_TSS_Names (Op)));
9478 end if;
9479 end loop;
9480 end;
9482 -- Spec of "=" is expanded if the type is not limited and if a user
9483 -- defined "=" was not already declared for the non-full view of a
9484 -- private extension
9486 if not Is_Limited_Type (Tag_Typ) then
9487 Eq_Needed := True;
9488 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9489 while Present (Prim) loop
9491 -- If a primitive is encountered that renames the predefined
9492 -- equality operator before reaching any explicit equality
9493 -- primitive, then we still need to create a predefined equality
9494 -- function, because calls to it can occur via the renaming. A
9495 -- new name is created for the equality to avoid conflicting with
9496 -- any user-defined equality. (Note that this doesn't account for
9497 -- renamings of equality nested within subpackages???)
9499 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9500 Has_Predef_Eq_Renaming := True;
9501 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
9503 -- User-defined equality
9505 elsif Is_User_Defined_Equality (Node (Prim)) then
9506 if No (Alias (Node (Prim)))
9507 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
9508 N_Subprogram_Renaming_Declaration
9509 then
9510 Eq_Needed := False;
9511 exit;
9513 -- If the parent is not an interface type and has an abstract
9514 -- equality function explicitly defined in the sources, then
9515 -- the inherited equality is abstract as well, and no body can
9516 -- be created for it.
9518 elsif not Is_Interface (Etype (Tag_Typ))
9519 and then Present (Alias (Node (Prim)))
9520 and then Comes_From_Source (Alias (Node (Prim)))
9521 and then Is_Abstract_Subprogram (Alias (Node (Prim)))
9522 then
9523 Eq_Needed := False;
9524 exit;
9526 -- If the type has an equality function corresponding with
9527 -- a primitive defined in an interface type, the inherited
9528 -- equality is abstract as well, and no body can be created
9529 -- for it.
9531 elsif Present (Alias (Node (Prim)))
9532 and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
9533 and then
9534 Is_Interface
9535 (Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
9536 then
9537 Eq_Needed := False;
9538 exit;
9539 end if;
9540 end if;
9542 Next_Elmt (Prim);
9543 end loop;
9545 -- If a renaming of predefined equality was found but there was no
9546 -- user-defined equality (so Eq_Needed is still true), then set the
9547 -- name back to Name_Op_Eq. But in the case where a user-defined
9548 -- equality was located after such a renaming, then the predefined
9549 -- equality function is still needed, so Eq_Needed must be set back
9550 -- to True.
9552 if Eq_Name /= Name_Op_Eq then
9553 if Eq_Needed then
9554 Eq_Name := Name_Op_Eq;
9555 else
9556 Eq_Needed := True;
9557 end if;
9558 end if;
9560 if Eq_Needed then
9561 Eq_Spec := Predef_Spec_Or_Body (Loc,
9562 Tag_Typ => Tag_Typ,
9563 Name => Eq_Name,
9564 Profile => New_List (
9565 Make_Parameter_Specification (Loc,
9566 Defining_Identifier =>
9567 Make_Defining_Identifier (Loc, Name_X),
9568 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9570 Make_Parameter_Specification (Loc,
9571 Defining_Identifier =>
9572 Make_Defining_Identifier (Loc, Name_Y),
9573 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
9574 Ret_Type => Standard_Boolean);
9575 Append_To (Res, Eq_Spec);
9577 if Has_Predef_Eq_Renaming then
9578 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
9580 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
9581 while Present (Prim) loop
9583 -- Any renamings of equality that appeared before an
9584 -- overriding equality must be updated to refer to the
9585 -- entity for the predefined equality, otherwise calls via
9586 -- the renaming would get incorrectly resolved to call the
9587 -- user-defined equality function.
9589 if Is_Predefined_Eq_Renaming (Node (Prim)) then
9590 Set_Alias (Node (Prim), Renamed_Eq);
9592 -- Exit upon encountering a user-defined equality
9594 elsif Chars (Node (Prim)) = Name_Op_Eq
9595 and then No (Alias (Node (Prim)))
9596 then
9597 exit;
9598 end if;
9600 Next_Elmt (Prim);
9601 end loop;
9602 end if;
9603 end if;
9605 -- Spec for dispatching assignment
9607 Append_To (Res, Predef_Spec_Or_Body (Loc,
9608 Tag_Typ => Tag_Typ,
9609 Name => Name_uAssign,
9610 Profile => New_List (
9611 Make_Parameter_Specification (Loc,
9612 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
9613 Out_Present => True,
9614 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
9616 Make_Parameter_Specification (Loc,
9617 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
9618 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)))));
9619 end if;
9621 -- Ada 2005: Generate declarations for the following primitive
9622 -- operations for limited interfaces and synchronized types that
9623 -- implement a limited interface.
9625 -- Disp_Asynchronous_Select
9626 -- Disp_Conditional_Select
9627 -- Disp_Get_Prim_Op_Kind
9628 -- Disp_Get_Task_Id
9629 -- Disp_Requeue
9630 -- Disp_Timed_Select
9632 -- Disable the generation of these bodies if No_Dispatching_Calls,
9633 -- Ravenscar or ZFP is active.
9635 if Ada_Version >= Ada_2005
9636 and then not Restriction_Active (No_Dispatching_Calls)
9637 and then not Restriction_Active (No_Select_Statements)
9638 and then RTE_Available (RE_Select_Specific_Data)
9639 then
9640 -- These primitives are defined abstract in interface types
9642 if Is_Interface (Tag_Typ)
9643 and then Is_Limited_Record (Tag_Typ)
9644 then
9645 Append_To (Res,
9646 Make_Abstract_Subprogram_Declaration (Loc,
9647 Specification =>
9648 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9650 Append_To (Res,
9651 Make_Abstract_Subprogram_Declaration (Loc,
9652 Specification =>
9653 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9655 Append_To (Res,
9656 Make_Abstract_Subprogram_Declaration (Loc,
9657 Specification =>
9658 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9660 Append_To (Res,
9661 Make_Abstract_Subprogram_Declaration (Loc,
9662 Specification =>
9663 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9665 Append_To (Res,
9666 Make_Abstract_Subprogram_Declaration (Loc,
9667 Specification =>
9668 Make_Disp_Requeue_Spec (Tag_Typ)));
9670 Append_To (Res,
9671 Make_Abstract_Subprogram_Declaration (Loc,
9672 Specification =>
9673 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9675 -- If ancestor is an interface type, declare non-abstract primitives
9676 -- to override the abstract primitives of the interface type.
9678 -- In VM targets we define these primitives in all root tagged types
9679 -- that are not interface types. Done because in VM targets we don't
9680 -- have secondary dispatch tables and any derivation of Tag_Typ may
9681 -- cover limited interfaces (which always have these primitives since
9682 -- they may be ancestors of synchronized interface types).
9684 elsif (not Is_Interface (Tag_Typ)
9685 and then Is_Interface (Etype (Tag_Typ))
9686 and then Is_Limited_Record (Etype (Tag_Typ)))
9687 or else
9688 (Is_Concurrent_Record_Type (Tag_Typ)
9689 and then Has_Interfaces (Tag_Typ))
9690 or else
9691 (not Tagged_Type_Expansion
9692 and then not Is_Interface (Tag_Typ)
9693 and then Tag_Typ = Root_Type (Tag_Typ))
9694 then
9695 Append_To (Res,
9696 Make_Subprogram_Declaration (Loc,
9697 Specification =>
9698 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
9700 Append_To (Res,
9701 Make_Subprogram_Declaration (Loc,
9702 Specification =>
9703 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
9705 Append_To (Res,
9706 Make_Subprogram_Declaration (Loc,
9707 Specification =>
9708 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
9710 Append_To (Res,
9711 Make_Subprogram_Declaration (Loc,
9712 Specification =>
9713 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
9715 Append_To (Res,
9716 Make_Subprogram_Declaration (Loc,
9717 Specification =>
9718 Make_Disp_Requeue_Spec (Tag_Typ)));
9720 Append_To (Res,
9721 Make_Subprogram_Declaration (Loc,
9722 Specification =>
9723 Make_Disp_Timed_Select_Spec (Tag_Typ)));
9724 end if;
9725 end if;
9727 -- All tagged types receive their own Deep_Adjust and Deep_Finalize
9728 -- regardless of whether they are controlled or may contain controlled
9729 -- components.
9731 -- Do not generate the routines if finalization is disabled
9733 if Restriction_Active (No_Finalization) then
9734 null;
9736 else
9737 if not Is_Limited_Type (Tag_Typ) then
9738 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
9739 end if;
9741 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
9742 end if;
9744 Predef_List := Res;
9745 end Make_Predefined_Primitive_Specs;
9747 -------------------------
9748 -- Make_Tag_Assignment --
9749 -------------------------
9751 function Make_Tag_Assignment (N : Node_Id) return Node_Id is
9752 Loc : constant Source_Ptr := Sloc (N);
9753 Def_If : constant Entity_Id := Defining_Identifier (N);
9754 Expr : constant Node_Id := Expression (N);
9755 Typ : constant Entity_Id := Etype (Def_If);
9756 Full_Typ : constant Entity_Id := Underlying_Type (Typ);
9757 New_Ref : Node_Id;
9759 begin
9760 -- This expansion activity is called during analysis, but cannot
9761 -- be applied in ASIS mode when other expansion is disabled.
9763 if Is_Tagged_Type (Typ)
9764 and then not Is_Class_Wide_Type (Typ)
9765 and then not Is_CPP_Class (Typ)
9766 and then Tagged_Type_Expansion
9767 and then Nkind (Expr) /= N_Aggregate
9768 and then not ASIS_Mode
9769 and then (Nkind (Expr) /= N_Qualified_Expression
9770 or else Nkind (Expression (Expr)) /= N_Aggregate)
9771 then
9772 New_Ref :=
9773 Make_Selected_Component (Loc,
9774 Prefix => New_Occurrence_Of (Def_If, Loc),
9775 Selector_Name =>
9776 New_Occurrence_Of (First_Tag_Component (Full_Typ), Loc));
9777 Set_Assignment_OK (New_Ref);
9779 return
9780 Make_Assignment_Statement (Loc,
9781 Name => New_Ref,
9782 Expression =>
9783 Unchecked_Convert_To (RTE (RE_Tag),
9784 New_Occurrence_Of (Node
9785 (First_Elmt (Access_Disp_Table (Full_Typ))), Loc)));
9786 else
9787 return Empty;
9788 end if;
9789 end Make_Tag_Assignment;
9791 ---------------------------------
9792 -- Needs_Simple_Initialization --
9793 ---------------------------------
9795 function Needs_Simple_Initialization
9796 (T : Entity_Id;
9797 Consider_IS : Boolean := True) return Boolean
9799 Consider_IS_NS : constant Boolean :=
9800 Normalize_Scalars or (Initialize_Scalars and Consider_IS);
9802 begin
9803 -- Never need initialization if it is suppressed
9805 if Initialization_Suppressed (T) then
9806 return False;
9807 end if;
9809 -- Check for private type, in which case test applies to the underlying
9810 -- type of the private type.
9812 if Is_Private_Type (T) then
9813 declare
9814 RT : constant Entity_Id := Underlying_Type (T);
9815 begin
9816 if Present (RT) then
9817 return Needs_Simple_Initialization (RT);
9818 else
9819 return False;
9820 end if;
9821 end;
9823 -- Scalar type with Default_Value aspect requires initialization
9825 elsif Is_Scalar_Type (T) and then Has_Default_Aspect (T) then
9826 return True;
9828 -- Cases needing simple initialization are access types, and, if pragma
9829 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
9830 -- types.
9832 elsif Is_Access_Type (T)
9833 or else (Consider_IS_NS and then (Is_Scalar_Type (T)))
9834 then
9835 return True;
9837 -- If Initialize/Normalize_Scalars is in effect, string objects also
9838 -- need initialization, unless they are created in the course of
9839 -- expanding an aggregate (since in the latter case they will be
9840 -- filled with appropriate initializing values before they are used).
9842 elsif Consider_IS_NS
9843 and then Is_Standard_String_Type (T)
9844 and then
9845 (not Is_Itype (T)
9846 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
9847 then
9848 return True;
9850 else
9851 return False;
9852 end if;
9853 end Needs_Simple_Initialization;
9855 ----------------------
9856 -- Predef_Deep_Spec --
9857 ----------------------
9859 function Predef_Deep_Spec
9860 (Loc : Source_Ptr;
9861 Tag_Typ : Entity_Id;
9862 Name : TSS_Name_Type;
9863 For_Body : Boolean := False) return Node_Id
9865 Formals : List_Id;
9867 begin
9868 -- V : in out Tag_Typ
9870 Formals := New_List (
9871 Make_Parameter_Specification (Loc,
9872 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
9873 In_Present => True,
9874 Out_Present => True,
9875 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)));
9877 -- F : Boolean := True
9879 if Name = TSS_Deep_Adjust
9880 or else Name = TSS_Deep_Finalize
9881 then
9882 Append_To (Formals,
9883 Make_Parameter_Specification (Loc,
9884 Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
9885 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
9886 Expression => New_Occurrence_Of (Standard_True, Loc)));
9887 end if;
9889 return
9890 Predef_Spec_Or_Body (Loc,
9891 Name => Make_TSS_Name (Tag_Typ, Name),
9892 Tag_Typ => Tag_Typ,
9893 Profile => Formals,
9894 For_Body => For_Body);
9896 exception
9897 when RE_Not_Available =>
9898 return Empty;
9899 end Predef_Deep_Spec;
9901 -------------------------
9902 -- Predef_Spec_Or_Body --
9903 -------------------------
9905 function Predef_Spec_Or_Body
9906 (Loc : Source_Ptr;
9907 Tag_Typ : Entity_Id;
9908 Name : Name_Id;
9909 Profile : List_Id;
9910 Ret_Type : Entity_Id := Empty;
9911 For_Body : Boolean := False) return Node_Id
9913 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
9914 Spec : Node_Id;
9916 begin
9917 Set_Is_Public (Id, Is_Public (Tag_Typ));
9919 -- The internal flag is set to mark these declarations because they have
9920 -- specific properties. First, they are primitives even if they are not
9921 -- defined in the type scope (the freezing point is not necessarily in
9922 -- the same scope). Second, the predefined equality can be overridden by
9923 -- a user-defined equality, no body will be generated in this case.
9925 Set_Is_Internal (Id);
9927 if not Debug_Generated_Code then
9928 Set_Debug_Info_Off (Id);
9929 end if;
9931 if No (Ret_Type) then
9932 Spec :=
9933 Make_Procedure_Specification (Loc,
9934 Defining_Unit_Name => Id,
9935 Parameter_Specifications => Profile);
9936 else
9937 Spec :=
9938 Make_Function_Specification (Loc,
9939 Defining_Unit_Name => Id,
9940 Parameter_Specifications => Profile,
9941 Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
9942 end if;
9944 if Is_Interface (Tag_Typ) then
9945 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9947 -- If body case, return empty subprogram body. Note that this is ill-
9948 -- formed, because there is not even a null statement, and certainly not
9949 -- a return in the function case. The caller is expected to do surgery
9950 -- on the body to add the appropriate stuff.
9952 elsif For_Body then
9953 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
9955 -- For the case of an Input attribute predefined for an abstract type,
9956 -- generate an abstract specification. This will never be called, but we
9957 -- need the slot allocated in the dispatching table so that attributes
9958 -- typ'Class'Input and typ'Class'Output will work properly.
9960 elsif Is_TSS (Name, TSS_Stream_Input)
9961 and then Is_Abstract_Type (Tag_Typ)
9962 then
9963 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
9965 -- Normal spec case, where we return a subprogram declaration
9967 else
9968 return Make_Subprogram_Declaration (Loc, Spec);
9969 end if;
9970 end Predef_Spec_Or_Body;
9972 -----------------------------
9973 -- Predef_Stream_Attr_Spec --
9974 -----------------------------
9976 function Predef_Stream_Attr_Spec
9977 (Loc : Source_Ptr;
9978 Tag_Typ : Entity_Id;
9979 Name : TSS_Name_Type;
9980 For_Body : Boolean := False) return Node_Id
9982 Ret_Type : Entity_Id;
9984 begin
9985 if Name = TSS_Stream_Input then
9986 Ret_Type := Tag_Typ;
9987 else
9988 Ret_Type := Empty;
9989 end if;
9991 return
9992 Predef_Spec_Or_Body
9993 (Loc,
9994 Name => Make_TSS_Name (Tag_Typ, Name),
9995 Tag_Typ => Tag_Typ,
9996 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
9997 Ret_Type => Ret_Type,
9998 For_Body => For_Body);
9999 end Predef_Stream_Attr_Spec;
10001 ---------------------------------
10002 -- Predefined_Primitive_Bodies --
10003 ---------------------------------
10005 function Predefined_Primitive_Bodies
10006 (Tag_Typ : Entity_Id;
10007 Renamed_Eq : Entity_Id) return List_Id
10009 Loc : constant Source_Ptr := Sloc (Tag_Typ);
10010 Res : constant List_Id := New_List;
10011 Decl : Node_Id;
10012 Prim : Elmt_Id;
10013 Eq_Needed : Boolean;
10014 Eq_Name : Name_Id;
10015 Ent : Entity_Id;
10017 pragma Warnings (Off, Ent);
10019 begin
10020 pragma Assert (not Is_Interface (Tag_Typ));
10022 -- See if we have a predefined "=" operator
10024 if Present (Renamed_Eq) then
10025 Eq_Needed := True;
10026 Eq_Name := Chars (Renamed_Eq);
10028 -- If the parent is an interface type then it has defined all the
10029 -- predefined primitives abstract and we need to check if the type
10030 -- has some user defined "=" function which matches the profile of
10031 -- the Ada predefined equality operator to avoid generating it.
10033 elsif Is_Interface (Etype (Tag_Typ)) then
10034 Eq_Needed := True;
10035 Eq_Name := Name_Op_Eq;
10037 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10038 while Present (Prim) loop
10039 if Chars (Node (Prim)) = Name_Op_Eq
10040 and then not Is_Internal (Node (Prim))
10041 and then Present (First_Entity (Node (Prim)))
10043 -- The predefined equality primitive must have exactly two
10044 -- formals whose type is this tagged type
10046 and then Present (Last_Entity (Node (Prim)))
10047 and then Next_Entity (First_Entity (Node (Prim)))
10048 = Last_Entity (Node (Prim))
10049 and then Etype (First_Entity (Node (Prim))) = Tag_Typ
10050 and then Etype (Last_Entity (Node (Prim))) = Tag_Typ
10051 then
10052 Eq_Needed := False;
10053 Eq_Name := No_Name;
10054 exit;
10055 end if;
10057 Next_Elmt (Prim);
10058 end loop;
10060 else
10061 Eq_Needed := False;
10062 Eq_Name := No_Name;
10064 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10065 while Present (Prim) loop
10066 if Chars (Node (Prim)) = Name_Op_Eq
10067 and then Is_Internal (Node (Prim))
10068 then
10069 Eq_Needed := True;
10070 Eq_Name := Name_Op_Eq;
10071 exit;
10072 end if;
10074 Next_Elmt (Prim);
10075 end loop;
10076 end if;
10078 -- Body of _Size
10080 Decl := Predef_Spec_Or_Body (Loc,
10081 Tag_Typ => Tag_Typ,
10082 Name => Name_uSize,
10083 Profile => New_List (
10084 Make_Parameter_Specification (Loc,
10085 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10086 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10088 Ret_Type => Standard_Long_Long_Integer,
10089 For_Body => True);
10091 Set_Handled_Statement_Sequence (Decl,
10092 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10093 Make_Simple_Return_Statement (Loc,
10094 Expression =>
10095 Make_Attribute_Reference (Loc,
10096 Prefix => Make_Identifier (Loc, Name_X),
10097 Attribute_Name => Name_Size)))));
10099 Append_To (Res, Decl);
10101 -- Bodies for Dispatching stream IO routines. We need these only for
10102 -- non-limited types (in the limited case there is no dispatching).
10103 -- We also skip them if dispatching or finalization are not available
10104 -- or if stream operations are prohibited by restriction No_Streams or
10105 -- from use of pragma/aspect No_Tagged_Streams.
10107 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
10108 and then No (TSS (Tag_Typ, TSS_Stream_Read))
10109 then
10110 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
10111 Append_To (Res, Decl);
10112 end if;
10114 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
10115 and then No (TSS (Tag_Typ, TSS_Stream_Write))
10116 then
10117 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
10118 Append_To (Res, Decl);
10119 end if;
10121 -- Skip body of _Input for the abstract case, since the corresponding
10122 -- spec is abstract (see Predef_Spec_Or_Body).
10124 if not Is_Abstract_Type (Tag_Typ)
10125 and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
10126 and then No (TSS (Tag_Typ, TSS_Stream_Input))
10127 then
10128 Build_Record_Or_Elementary_Input_Function
10129 (Loc, Tag_Typ, Decl, Ent);
10130 Append_To (Res, Decl);
10131 end if;
10133 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
10134 and then No (TSS (Tag_Typ, TSS_Stream_Output))
10135 then
10136 Build_Record_Or_Elementary_Output_Procedure (Loc, Tag_Typ, Decl, Ent);
10137 Append_To (Res, Decl);
10138 end if;
10140 -- Ada 2005: Generate bodies for the following primitive operations for
10141 -- limited interfaces and synchronized types that implement a limited
10142 -- interface.
10144 -- disp_asynchronous_select
10145 -- disp_conditional_select
10146 -- disp_get_prim_op_kind
10147 -- disp_get_task_id
10148 -- disp_timed_select
10150 -- The interface versions will have null bodies
10152 -- Disable the generation of these bodies if No_Dispatching_Calls,
10153 -- Ravenscar or ZFP is active.
10155 -- In VM targets we define these primitives in all root tagged types
10156 -- that are not interface types. Done because in VM targets we don't
10157 -- have secondary dispatch tables and any derivation of Tag_Typ may
10158 -- cover limited interfaces (which always have these primitives since
10159 -- they may be ancestors of synchronized interface types).
10161 if Ada_Version >= Ada_2005
10162 and then not Is_Interface (Tag_Typ)
10163 and then
10164 ((Is_Interface (Etype (Tag_Typ))
10165 and then Is_Limited_Record (Etype (Tag_Typ)))
10166 or else
10167 (Is_Concurrent_Record_Type (Tag_Typ)
10168 and then Has_Interfaces (Tag_Typ))
10169 or else
10170 (not Tagged_Type_Expansion
10171 and then Tag_Typ = Root_Type (Tag_Typ)))
10172 and then not Restriction_Active (No_Dispatching_Calls)
10173 and then not Restriction_Active (No_Select_Statements)
10174 and then RTE_Available (RE_Select_Specific_Data)
10175 then
10176 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
10177 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
10178 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
10179 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
10180 Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
10181 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
10182 end if;
10184 if not Is_Limited_Type (Tag_Typ) and then not Is_Interface (Tag_Typ) then
10186 -- Body for equality
10188 if Eq_Needed then
10189 Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
10190 Append_To (Res, Decl);
10191 end if;
10193 -- Body for inequality (if required)
10195 Decl := Make_Neq_Body (Tag_Typ);
10197 if Present (Decl) then
10198 Append_To (Res, Decl);
10199 end if;
10201 -- Body for dispatching assignment
10203 Decl :=
10204 Predef_Spec_Or_Body (Loc,
10205 Tag_Typ => Tag_Typ,
10206 Name => Name_uAssign,
10207 Profile => New_List (
10208 Make_Parameter_Specification (Loc,
10209 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
10210 Out_Present => True,
10211 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
10213 Make_Parameter_Specification (Loc,
10214 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
10215 Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
10216 For_Body => True);
10218 Set_Handled_Statement_Sequence (Decl,
10219 Make_Handled_Sequence_Of_Statements (Loc, New_List (
10220 Make_Assignment_Statement (Loc,
10221 Name => Make_Identifier (Loc, Name_X),
10222 Expression => Make_Identifier (Loc, Name_Y)))));
10224 Append_To (Res, Decl);
10225 end if;
10227 -- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
10228 -- tagged types which do not contain controlled components.
10230 -- Do not generate the routines if finalization is disabled
10232 if Restriction_Active (No_Finalization) then
10233 null;
10235 elsif not Has_Controlled_Component (Tag_Typ) then
10236 if not Is_Limited_Type (Tag_Typ) then
10237 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
10239 if Is_Controlled (Tag_Typ) then
10240 Set_Handled_Statement_Sequence (Decl,
10241 Make_Handled_Sequence_Of_Statements (Loc,
10242 Statements => New_List (
10243 Make_Adjust_Call (
10244 Obj_Ref => Make_Identifier (Loc, Name_V),
10245 Typ => Tag_Typ))));
10247 else
10248 Set_Handled_Statement_Sequence (Decl,
10249 Make_Handled_Sequence_Of_Statements (Loc,
10250 Statements => New_List (
10251 Make_Null_Statement (Loc))));
10252 end if;
10254 Append_To (Res, Decl);
10255 end if;
10257 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
10259 if Is_Controlled (Tag_Typ) then
10260 Set_Handled_Statement_Sequence (Decl,
10261 Make_Handled_Sequence_Of_Statements (Loc,
10262 Statements => New_List (
10263 Make_Final_Call
10264 (Obj_Ref => Make_Identifier (Loc, Name_V),
10265 Typ => Tag_Typ))));
10267 else
10268 Set_Handled_Statement_Sequence (Decl,
10269 Make_Handled_Sequence_Of_Statements (Loc,
10270 Statements => New_List (Make_Null_Statement (Loc))));
10271 end if;
10273 Append_To (Res, Decl);
10274 end if;
10276 return Res;
10277 end Predefined_Primitive_Bodies;
10279 ---------------------------------
10280 -- Predefined_Primitive_Freeze --
10281 ---------------------------------
10283 function Predefined_Primitive_Freeze
10284 (Tag_Typ : Entity_Id) return List_Id
10286 Res : constant List_Id := New_List;
10287 Prim : Elmt_Id;
10288 Frnodes : List_Id;
10290 begin
10291 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
10292 while Present (Prim) loop
10293 if Is_Predefined_Dispatching_Operation (Node (Prim)) then
10294 Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);
10296 if Present (Frnodes) then
10297 Append_List_To (Res, Frnodes);
10298 end if;
10299 end if;
10301 Next_Elmt (Prim);
10302 end loop;
10304 return Res;
10305 end Predefined_Primitive_Freeze;
10307 -------------------------
10308 -- Stream_Operation_OK --
10309 -------------------------
10311 function Stream_Operation_OK
10312 (Typ : Entity_Id;
10313 Operation : TSS_Name_Type) return Boolean
10315 Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
10317 begin
10318 -- Special case of a limited type extension: a default implementation
10319 -- of the stream attributes Read or Write exists if that attribute
10320 -- has been specified or is available for an ancestor type; a default
10321 -- implementation of the attribute Output (resp. Input) exists if the
10322 -- attribute has been specified or Write (resp. Read) is available for
10323 -- an ancestor type. The last condition only applies under Ada 2005.
10325 if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
10326 if Operation = TSS_Stream_Read then
10327 Has_Predefined_Or_Specified_Stream_Attribute :=
10328 Has_Specified_Stream_Read (Typ);
10330 elsif Operation = TSS_Stream_Write then
10331 Has_Predefined_Or_Specified_Stream_Attribute :=
10332 Has_Specified_Stream_Write (Typ);
10334 elsif Operation = TSS_Stream_Input then
10335 Has_Predefined_Or_Specified_Stream_Attribute :=
10336 Has_Specified_Stream_Input (Typ)
10337 or else
10338 (Ada_Version >= Ada_2005
10339 and then Stream_Operation_OK (Typ, TSS_Stream_Read));
10341 elsif Operation = TSS_Stream_Output then
10342 Has_Predefined_Or_Specified_Stream_Attribute :=
10343 Has_Specified_Stream_Output (Typ)
10344 or else
10345 (Ada_Version >= Ada_2005
10346 and then Stream_Operation_OK (Typ, TSS_Stream_Write));
10347 end if;
10349 -- Case of inherited TSS_Stream_Read or TSS_Stream_Write
10351 if not Has_Predefined_Or_Specified_Stream_Attribute
10352 and then Is_Derived_Type (Typ)
10353 and then (Operation = TSS_Stream_Read
10354 or else Operation = TSS_Stream_Write)
10355 then
10356 Has_Predefined_Or_Specified_Stream_Attribute :=
10357 Present
10358 (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
10359 end if;
10360 end if;
10362 -- If the type is not limited, or else is limited but the attribute is
10363 -- explicitly specified or is predefined for the type, then return True,
10364 -- unless other conditions prevail, such as restrictions prohibiting
10365 -- streams or dispatching operations. We also return True for limited
10366 -- interfaces, because they may be extended by nonlimited types and
10367 -- permit inheritance in this case (addresses cases where an abstract
10368 -- extension doesn't get 'Input declared, as per comments below, but
10369 -- 'Class'Input must still be allowed). Note that attempts to apply
10370 -- stream attributes to a limited interface or its class-wide type
10371 -- (or limited extensions thereof) will still get properly rejected
10372 -- by Check_Stream_Attribute.
10374 -- We exclude the Input operation from being a predefined subprogram in
10375 -- the case where the associated type is an abstract extension, because
10376 -- the attribute is not callable in that case, per 13.13.2(49/2). Also,
10377 -- we don't want an abstract version created because types derived from
10378 -- the abstract type may not even have Input available (for example if
10379 -- derived from a private view of the abstract type that doesn't have
10380 -- a visible Input).
10382 -- Do not generate stream routines for type Finalization_Master because
10383 -- a master may never appear in types and therefore cannot be read or
10384 -- written.
10386 return
10387 (not Is_Limited_Type (Typ)
10388 or else Is_Interface (Typ)
10389 or else Has_Predefined_Or_Specified_Stream_Attribute)
10390 and then
10391 (Operation /= TSS_Stream_Input
10392 or else not Is_Abstract_Type (Typ)
10393 or else not Is_Derived_Type (Typ))
10394 and then not Has_Unknown_Discriminants (Typ)
10395 and then not
10396 (Is_Interface (Typ)
10397 and then
10398 (Is_Task_Interface (Typ)
10399 or else Is_Protected_Interface (Typ)
10400 or else Is_Synchronized_Interface (Typ)))
10401 and then not Restriction_Active (No_Streams)
10402 and then not Restriction_Active (No_Dispatch)
10403 and then No (No_Tagged_Streams_Pragma (Typ))
10404 and then not No_Run_Time_Mode
10405 and then RTE_Available (RE_Tag)
10406 and then No (Type_Without_Stream_Operation (Typ))
10407 and then RTE_Available (RE_Root_Stream_Type)
10408 and then not Is_RTE (Typ, RE_Finalization_Master);
10409 end Stream_Operation_OK;
10411 end Exp_Ch3;