Daily bump.
[official-gcc.git] / gcc / combine.c
blob46cd6db62ad83970dfbb61e7e93f827c26dfc63a
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "hash-set.h"
84 #include "machmode.h"
85 #include "vec.h"
86 #include "double-int.h"
87 #include "input.h"
88 #include "alias.h"
89 #include "symtab.h"
90 #include "wide-int.h"
91 #include "inchash.h"
92 #include "tree.h"
93 #include "stor-layout.h"
94 #include "tm_p.h"
95 #include "flags.h"
96 #include "regs.h"
97 #include "hard-reg-set.h"
98 #include "predict.h"
99 #include "function.h"
100 #include "dominance.h"
101 #include "cfg.h"
102 #include "cfgrtl.h"
103 #include "cfgcleanup.h"
104 #include "basic-block.h"
105 #include "insn-config.h"
106 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
107 #include "hashtab.h"
108 #include "statistics.h"
109 #include "real.h"
110 #include "fixed-value.h"
111 #include "expmed.h"
112 #include "dojump.h"
113 #include "explow.h"
114 #include "calls.h"
115 #include "emit-rtl.h"
116 #include "varasm.h"
117 #include "stmt.h"
118 #include "expr.h"
119 #include "insn-attr.h"
120 #include "recog.h"
121 #include "diagnostic-core.h"
122 #include "target.h"
123 #include "insn-codes.h"
124 #include "optabs.h"
125 #include "rtlhooks-def.h"
126 #include "params.h"
127 #include "tree-pass.h"
128 #include "df.h"
129 #include "valtrack.h"
130 #include "hash-map.h"
131 #include "is-a.h"
132 #include "plugin-api.h"
133 #include "ipa-ref.h"
134 #include "cgraph.h"
135 #include "obstack.h"
136 #include "rtl-iter.h"
138 /* Number of attempts to combine instructions in this function. */
140 static int combine_attempts;
142 /* Number of attempts that got as far as substitution in this function. */
144 static int combine_merges;
146 /* Number of instructions combined with added SETs in this function. */
148 static int combine_extras;
150 /* Number of instructions combined in this function. */
152 static int combine_successes;
154 /* Totals over entire compilation. */
156 static int total_attempts, total_merges, total_extras, total_successes;
158 /* combine_instructions may try to replace the right hand side of the
159 second instruction with the value of an associated REG_EQUAL note
160 before throwing it at try_combine. That is problematic when there
161 is a REG_DEAD note for a register used in the old right hand side
162 and can cause distribute_notes to do wrong things. This is the
163 second instruction if it has been so modified, null otherwise. */
165 static rtx_insn *i2mod;
167 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
169 static rtx i2mod_old_rhs;
171 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
173 static rtx i2mod_new_rhs;
175 typedef struct reg_stat_struct {
176 /* Record last point of death of (hard or pseudo) register n. */
177 rtx_insn *last_death;
179 /* Record last point of modification of (hard or pseudo) register n. */
180 rtx_insn *last_set;
182 /* The next group of fields allows the recording of the last value assigned
183 to (hard or pseudo) register n. We use this information to see if an
184 operation being processed is redundant given a prior operation performed
185 on the register. For example, an `and' with a constant is redundant if
186 all the zero bits are already known to be turned off.
188 We use an approach similar to that used by cse, but change it in the
189 following ways:
191 (1) We do not want to reinitialize at each label.
192 (2) It is useful, but not critical, to know the actual value assigned
193 to a register. Often just its form is helpful.
195 Therefore, we maintain the following fields:
197 last_set_value the last value assigned
198 last_set_label records the value of label_tick when the
199 register was assigned
200 last_set_table_tick records the value of label_tick when a
201 value using the register is assigned
202 last_set_invalid set to nonzero when it is not valid
203 to use the value of this register in some
204 register's value
206 To understand the usage of these tables, it is important to understand
207 the distinction between the value in last_set_value being valid and
208 the register being validly contained in some other expression in the
209 table.
211 (The next two parameters are out of date).
213 reg_stat[i].last_set_value is valid if it is nonzero, and either
214 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
216 Register I may validly appear in any expression returned for the value
217 of another register if reg_n_sets[i] is 1. It may also appear in the
218 value for register J if reg_stat[j].last_set_invalid is zero, or
219 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
221 If an expression is found in the table containing a register which may
222 not validly appear in an expression, the register is replaced by
223 something that won't match, (clobber (const_int 0)). */
225 /* Record last value assigned to (hard or pseudo) register n. */
227 rtx last_set_value;
229 /* Record the value of label_tick when an expression involving register n
230 is placed in last_set_value. */
232 int last_set_table_tick;
234 /* Record the value of label_tick when the value for register n is placed in
235 last_set_value. */
237 int last_set_label;
239 /* These fields are maintained in parallel with last_set_value and are
240 used to store the mode in which the register was last set, the bits
241 that were known to be zero when it was last set, and the number of
242 sign bits copies it was known to have when it was last set. */
244 unsigned HOST_WIDE_INT last_set_nonzero_bits;
245 char last_set_sign_bit_copies;
246 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
248 /* Set nonzero if references to register n in expressions should not be
249 used. last_set_invalid is set nonzero when this register is being
250 assigned to and last_set_table_tick == label_tick. */
252 char last_set_invalid;
254 /* Some registers that are set more than once and used in more than one
255 basic block are nevertheless always set in similar ways. For example,
256 a QImode register may be loaded from memory in two places on a machine
257 where byte loads zero extend.
259 We record in the following fields if a register has some leading bits
260 that are always equal to the sign bit, and what we know about the
261 nonzero bits of a register, specifically which bits are known to be
262 zero.
264 If an entry is zero, it means that we don't know anything special. */
266 unsigned char sign_bit_copies;
268 unsigned HOST_WIDE_INT nonzero_bits;
270 /* Record the value of the label_tick when the last truncation
271 happened. The field truncated_to_mode is only valid if
272 truncation_label == label_tick. */
274 int truncation_label;
276 /* Record the last truncation seen for this register. If truncation
277 is not a nop to this mode we might be able to save an explicit
278 truncation if we know that value already contains a truncated
279 value. */
281 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
282 } reg_stat_type;
285 static vec<reg_stat_type> reg_stat;
287 /* One plus the highest pseudo for which we track REG_N_SETS.
288 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
289 but during combine_split_insns new pseudos can be created. As we don't have
290 updated DF information in that case, it is hard to initialize the array
291 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
292 so instead of growing the arrays, just assume all newly created pseudos
293 during combine might be set multiple times. */
295 static unsigned int reg_n_sets_max;
297 /* Record the luid of the last insn that invalidated memory
298 (anything that writes memory, and subroutine calls, but not pushes). */
300 static int mem_last_set;
302 /* Record the luid of the last CALL_INSN
303 so we can tell whether a potential combination crosses any calls. */
305 static int last_call_luid;
307 /* When `subst' is called, this is the insn that is being modified
308 (by combining in a previous insn). The PATTERN of this insn
309 is still the old pattern partially modified and it should not be
310 looked at, but this may be used to examine the successors of the insn
311 to judge whether a simplification is valid. */
313 static rtx_insn *subst_insn;
315 /* This is the lowest LUID that `subst' is currently dealing with.
316 get_last_value will not return a value if the register was set at or
317 after this LUID. If not for this mechanism, we could get confused if
318 I2 or I1 in try_combine were an insn that used the old value of a register
319 to obtain a new value. In that case, we might erroneously get the
320 new value of the register when we wanted the old one. */
322 static int subst_low_luid;
324 /* This contains any hard registers that are used in newpat; reg_dead_at_p
325 must consider all these registers to be always live. */
327 static HARD_REG_SET newpat_used_regs;
329 /* This is an insn to which a LOG_LINKS entry has been added. If this
330 insn is the earlier than I2 or I3, combine should rescan starting at
331 that location. */
333 static rtx_insn *added_links_insn;
335 /* Basic block in which we are performing combines. */
336 static basic_block this_basic_block;
337 static bool optimize_this_for_speed_p;
340 /* Length of the currently allocated uid_insn_cost array. */
342 static int max_uid_known;
344 /* The following array records the insn_rtx_cost for every insn
345 in the instruction stream. */
347 static int *uid_insn_cost;
349 /* The following array records the LOG_LINKS for every insn in the
350 instruction stream as struct insn_link pointers. */
352 struct insn_link {
353 rtx_insn *insn;
354 unsigned int regno;
355 struct insn_link *next;
358 static struct insn_link **uid_log_links;
360 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
361 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
363 #define FOR_EACH_LOG_LINK(L, INSN) \
364 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
366 /* Links for LOG_LINKS are allocated from this obstack. */
368 static struct obstack insn_link_obstack;
370 /* Allocate a link. */
372 static inline struct insn_link *
373 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
375 struct insn_link *l
376 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
377 sizeof (struct insn_link));
378 l->insn = insn;
379 l->regno = regno;
380 l->next = next;
381 return l;
384 /* Incremented for each basic block. */
386 static int label_tick;
388 /* Reset to label_tick for each extended basic block in scanning order. */
390 static int label_tick_ebb_start;
392 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
393 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
395 static machine_mode nonzero_bits_mode;
397 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
398 be safely used. It is zero while computing them and after combine has
399 completed. This former test prevents propagating values based on
400 previously set values, which can be incorrect if a variable is modified
401 in a loop. */
403 static int nonzero_sign_valid;
406 /* Record one modification to rtl structure
407 to be undone by storing old_contents into *where. */
409 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
411 struct undo
413 struct undo *next;
414 enum undo_kind kind;
415 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
416 union { rtx *r; int *i; struct insn_link **l; } where;
419 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
420 num_undo says how many are currently recorded.
422 other_insn is nonzero if we have modified some other insn in the process
423 of working on subst_insn. It must be verified too. */
425 struct undobuf
427 struct undo *undos;
428 struct undo *frees;
429 rtx_insn *other_insn;
432 static struct undobuf undobuf;
434 /* Number of times the pseudo being substituted for
435 was found and replaced. */
437 static int n_occurrences;
439 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
440 machine_mode,
441 unsigned HOST_WIDE_INT,
442 unsigned HOST_WIDE_INT *);
443 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
444 machine_mode,
445 unsigned int, unsigned int *);
446 static void do_SUBST (rtx *, rtx);
447 static void do_SUBST_INT (int *, int);
448 static void init_reg_last (void);
449 static void setup_incoming_promotions (rtx_insn *);
450 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
451 static int cant_combine_insn_p (rtx_insn *);
452 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
453 rtx_insn *, rtx_insn *, rtx *, rtx *);
454 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
455 static int contains_muldiv (rtx);
456 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
457 int *, rtx_insn *);
458 static void undo_all (void);
459 static void undo_commit (void);
460 static rtx *find_split_point (rtx *, rtx_insn *, bool);
461 static rtx subst (rtx, rtx, rtx, int, int, int);
462 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
463 static rtx simplify_if_then_else (rtx);
464 static rtx simplify_set (rtx);
465 static rtx simplify_logical (rtx);
466 static rtx expand_compound_operation (rtx);
467 static const_rtx expand_field_assignment (const_rtx);
468 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
469 rtx, unsigned HOST_WIDE_INT, int, int, int);
470 static rtx extract_left_shift (rtx, int);
471 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
472 unsigned HOST_WIDE_INT *);
473 static rtx canon_reg_for_combine (rtx, rtx);
474 static rtx force_to_mode (rtx, machine_mode,
475 unsigned HOST_WIDE_INT, int);
476 static rtx if_then_else_cond (rtx, rtx *, rtx *);
477 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
478 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
479 static rtx make_field_assignment (rtx);
480 static rtx apply_distributive_law (rtx);
481 static rtx distribute_and_simplify_rtx (rtx, int);
482 static rtx simplify_and_const_int_1 (machine_mode, rtx,
483 unsigned HOST_WIDE_INT);
484 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
485 unsigned HOST_WIDE_INT);
486 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
487 HOST_WIDE_INT, machine_mode, int *);
488 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
489 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
490 int);
491 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
492 static rtx gen_lowpart_for_combine (machine_mode, rtx);
493 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
494 rtx, rtx *);
495 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
496 static void update_table_tick (rtx);
497 static void record_value_for_reg (rtx, rtx_insn *, rtx);
498 static void check_promoted_subreg (rtx_insn *, rtx);
499 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
500 static void record_dead_and_set_regs (rtx_insn *);
501 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
502 static rtx get_last_value (const_rtx);
503 static int use_crosses_set_p (const_rtx, int);
504 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
505 static int reg_dead_at_p (rtx, rtx_insn *);
506 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
507 static int reg_bitfield_target_p (rtx, rtx);
508 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
509 static void distribute_links (struct insn_link *);
510 static void mark_used_regs_combine (rtx);
511 static void record_promoted_value (rtx_insn *, rtx);
512 static bool unmentioned_reg_p (rtx, rtx);
513 static void record_truncated_values (rtx *, void *);
514 static bool reg_truncated_to_mode (machine_mode, const_rtx);
515 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
518 /* It is not safe to use ordinary gen_lowpart in combine.
519 See comments in gen_lowpart_for_combine. */
520 #undef RTL_HOOKS_GEN_LOWPART
521 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
523 /* Our implementation of gen_lowpart never emits a new pseudo. */
524 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
525 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
527 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
528 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
530 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
531 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
533 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
534 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
536 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
539 /* Convenience wrapper for the canonicalize_comparison target hook.
540 Target hooks cannot use enum rtx_code. */
541 static inline void
542 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
543 bool op0_preserve_value)
545 int code_int = (int)*code;
546 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
547 *code = (enum rtx_code)code_int;
550 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
551 PATTERN can not be split. Otherwise, it returns an insn sequence.
552 This is a wrapper around split_insns which ensures that the
553 reg_stat vector is made larger if the splitter creates a new
554 register. */
556 static rtx_insn *
557 combine_split_insns (rtx pattern, rtx insn)
559 rtx_insn *ret;
560 unsigned int nregs;
562 ret = safe_as_a <rtx_insn *> (split_insns (pattern, insn));
563 nregs = max_reg_num ();
564 if (nregs > reg_stat.length ())
565 reg_stat.safe_grow_cleared (nregs);
566 return ret;
569 /* This is used by find_single_use to locate an rtx in LOC that
570 contains exactly one use of DEST, which is typically either a REG
571 or CC0. It returns a pointer to the innermost rtx expression
572 containing DEST. Appearances of DEST that are being used to
573 totally replace it are not counted. */
575 static rtx *
576 find_single_use_1 (rtx dest, rtx *loc)
578 rtx x = *loc;
579 enum rtx_code code = GET_CODE (x);
580 rtx *result = NULL;
581 rtx *this_result;
582 int i;
583 const char *fmt;
585 switch (code)
587 case CONST:
588 case LABEL_REF:
589 case SYMBOL_REF:
590 CASE_CONST_ANY:
591 case CLOBBER:
592 return 0;
594 case SET:
595 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
596 of a REG that occupies all of the REG, the insn uses DEST if
597 it is mentioned in the destination or the source. Otherwise, we
598 need just check the source. */
599 if (GET_CODE (SET_DEST (x)) != CC0
600 && GET_CODE (SET_DEST (x)) != PC
601 && !REG_P (SET_DEST (x))
602 && ! (GET_CODE (SET_DEST (x)) == SUBREG
603 && REG_P (SUBREG_REG (SET_DEST (x)))
604 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
605 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
606 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
607 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
608 break;
610 return find_single_use_1 (dest, &SET_SRC (x));
612 case MEM:
613 case SUBREG:
614 return find_single_use_1 (dest, &XEXP (x, 0));
616 default:
617 break;
620 /* If it wasn't one of the common cases above, check each expression and
621 vector of this code. Look for a unique usage of DEST. */
623 fmt = GET_RTX_FORMAT (code);
624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
626 if (fmt[i] == 'e')
628 if (dest == XEXP (x, i)
629 || (REG_P (dest) && REG_P (XEXP (x, i))
630 && REGNO (dest) == REGNO (XEXP (x, i))))
631 this_result = loc;
632 else
633 this_result = find_single_use_1 (dest, &XEXP (x, i));
635 if (result == NULL)
636 result = this_result;
637 else if (this_result)
638 /* Duplicate usage. */
639 return NULL;
641 else if (fmt[i] == 'E')
643 int j;
645 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
647 if (XVECEXP (x, i, j) == dest
648 || (REG_P (dest)
649 && REG_P (XVECEXP (x, i, j))
650 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
651 this_result = loc;
652 else
653 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
655 if (result == NULL)
656 result = this_result;
657 else if (this_result)
658 return NULL;
663 return result;
667 /* See if DEST, produced in INSN, is used only a single time in the
668 sequel. If so, return a pointer to the innermost rtx expression in which
669 it is used.
671 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
673 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
674 care about REG_DEAD notes or LOG_LINKS.
676 Otherwise, we find the single use by finding an insn that has a
677 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
678 only referenced once in that insn, we know that it must be the first
679 and last insn referencing DEST. */
681 static rtx *
682 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
684 basic_block bb;
685 rtx_insn *next;
686 rtx *result;
687 struct insn_link *link;
689 #ifdef HAVE_cc0
690 if (dest == cc0_rtx)
692 next = NEXT_INSN (insn);
693 if (next == 0
694 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
695 return 0;
697 result = find_single_use_1 (dest, &PATTERN (next));
698 if (result && ploc)
699 *ploc = next;
700 return result;
702 #endif
704 if (!REG_P (dest))
705 return 0;
707 bb = BLOCK_FOR_INSN (insn);
708 for (next = NEXT_INSN (insn);
709 next && BLOCK_FOR_INSN (next) == bb;
710 next = NEXT_INSN (next))
711 if (INSN_P (next) && dead_or_set_p (next, dest))
713 FOR_EACH_LOG_LINK (link, next)
714 if (link->insn == insn && link->regno == REGNO (dest))
715 break;
717 if (link)
719 result = find_single_use_1 (dest, &PATTERN (next));
720 if (ploc)
721 *ploc = next;
722 return result;
726 return 0;
729 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
730 insn. The substitution can be undone by undo_all. If INTO is already
731 set to NEWVAL, do not record this change. Because computing NEWVAL might
732 also call SUBST, we have to compute it before we put anything into
733 the undo table. */
735 static void
736 do_SUBST (rtx *into, rtx newval)
738 struct undo *buf;
739 rtx oldval = *into;
741 if (oldval == newval)
742 return;
744 /* We'd like to catch as many invalid transformations here as
745 possible. Unfortunately, there are way too many mode changes
746 that are perfectly valid, so we'd waste too much effort for
747 little gain doing the checks here. Focus on catching invalid
748 transformations involving integer constants. */
749 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
750 && CONST_INT_P (newval))
752 /* Sanity check that we're replacing oldval with a CONST_INT
753 that is a valid sign-extension for the original mode. */
754 gcc_assert (INTVAL (newval)
755 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
757 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
758 CONST_INT is not valid, because after the replacement, the
759 original mode would be gone. Unfortunately, we can't tell
760 when do_SUBST is called to replace the operand thereof, so we
761 perform this test on oldval instead, checking whether an
762 invalid replacement took place before we got here. */
763 gcc_assert (!(GET_CODE (oldval) == SUBREG
764 && CONST_INT_P (SUBREG_REG (oldval))));
765 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
766 && CONST_INT_P (XEXP (oldval, 0))));
769 if (undobuf.frees)
770 buf = undobuf.frees, undobuf.frees = buf->next;
771 else
772 buf = XNEW (struct undo);
774 buf->kind = UNDO_RTX;
775 buf->where.r = into;
776 buf->old_contents.r = oldval;
777 *into = newval;
779 buf->next = undobuf.undos, undobuf.undos = buf;
782 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
784 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
785 for the value of a HOST_WIDE_INT value (including CONST_INT) is
786 not safe. */
788 static void
789 do_SUBST_INT (int *into, int newval)
791 struct undo *buf;
792 int oldval = *into;
794 if (oldval == newval)
795 return;
797 if (undobuf.frees)
798 buf = undobuf.frees, undobuf.frees = buf->next;
799 else
800 buf = XNEW (struct undo);
802 buf->kind = UNDO_INT;
803 buf->where.i = into;
804 buf->old_contents.i = oldval;
805 *into = newval;
807 buf->next = undobuf.undos, undobuf.undos = buf;
810 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
812 /* Similar to SUBST, but just substitute the mode. This is used when
813 changing the mode of a pseudo-register, so that any other
814 references to the entry in the regno_reg_rtx array will change as
815 well. */
817 static void
818 do_SUBST_MODE (rtx *into, machine_mode newval)
820 struct undo *buf;
821 machine_mode oldval = GET_MODE (*into);
823 if (oldval == newval)
824 return;
826 if (undobuf.frees)
827 buf = undobuf.frees, undobuf.frees = buf->next;
828 else
829 buf = XNEW (struct undo);
831 buf->kind = UNDO_MODE;
832 buf->where.r = into;
833 buf->old_contents.m = oldval;
834 adjust_reg_mode (*into, newval);
836 buf->next = undobuf.undos, undobuf.undos = buf;
839 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
841 #ifndef HAVE_cc0
842 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
844 static void
845 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
847 struct undo *buf;
848 struct insn_link * oldval = *into;
850 if (oldval == newval)
851 return;
853 if (undobuf.frees)
854 buf = undobuf.frees, undobuf.frees = buf->next;
855 else
856 buf = XNEW (struct undo);
858 buf->kind = UNDO_LINKS;
859 buf->where.l = into;
860 buf->old_contents.l = oldval;
861 *into = newval;
863 buf->next = undobuf.undos, undobuf.undos = buf;
866 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
867 #endif
869 /* Subroutine of try_combine. Determine whether the replacement patterns
870 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
871 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
872 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
873 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
874 of all the instructions can be estimated and the replacements are more
875 expensive than the original sequence. */
877 static bool
878 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
879 rtx newpat, rtx newi2pat, rtx newotherpat)
881 int i0_cost, i1_cost, i2_cost, i3_cost;
882 int new_i2_cost, new_i3_cost;
883 int old_cost, new_cost;
885 /* Lookup the original insn_rtx_costs. */
886 i2_cost = INSN_COST (i2);
887 i3_cost = INSN_COST (i3);
889 if (i1)
891 i1_cost = INSN_COST (i1);
892 if (i0)
894 i0_cost = INSN_COST (i0);
895 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
896 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
898 else
900 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
901 ? i1_cost + i2_cost + i3_cost : 0);
902 i0_cost = 0;
905 else
907 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
908 i1_cost = i0_cost = 0;
911 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
912 correct that. */
913 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
914 old_cost -= i1_cost;
917 /* Calculate the replacement insn_rtx_costs. */
918 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
919 if (newi2pat)
921 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
922 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
923 ? new_i2_cost + new_i3_cost : 0;
925 else
927 new_cost = new_i3_cost;
928 new_i2_cost = 0;
931 if (undobuf.other_insn)
933 int old_other_cost, new_other_cost;
935 old_other_cost = INSN_COST (undobuf.other_insn);
936 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
937 if (old_other_cost > 0 && new_other_cost > 0)
939 old_cost += old_other_cost;
940 new_cost += new_other_cost;
942 else
943 old_cost = 0;
946 /* Disallow this combination if both new_cost and old_cost are greater than
947 zero, and new_cost is greater than old cost. */
948 int reject = old_cost > 0 && new_cost > old_cost;
950 if (dump_file)
952 fprintf (dump_file, "%s combination of insns ",
953 reject ? "rejecting" : "allowing");
954 if (i0)
955 fprintf (dump_file, "%d, ", INSN_UID (i0));
956 if (i1 && INSN_UID (i1) != INSN_UID (i2))
957 fprintf (dump_file, "%d, ", INSN_UID (i1));
958 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
960 fprintf (dump_file, "original costs ");
961 if (i0)
962 fprintf (dump_file, "%d + ", i0_cost);
963 if (i1 && INSN_UID (i1) != INSN_UID (i2))
964 fprintf (dump_file, "%d + ", i1_cost);
965 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
967 if (newi2pat)
968 fprintf (dump_file, "replacement costs %d + %d = %d\n",
969 new_i2_cost, new_i3_cost, new_cost);
970 else
971 fprintf (dump_file, "replacement cost %d\n", new_cost);
974 if (reject)
975 return false;
977 /* Update the uid_insn_cost array with the replacement costs. */
978 INSN_COST (i2) = new_i2_cost;
979 INSN_COST (i3) = new_i3_cost;
980 if (i1)
982 INSN_COST (i1) = 0;
983 if (i0)
984 INSN_COST (i0) = 0;
987 return true;
991 /* Delete any insns that copy a register to itself. */
993 static void
994 delete_noop_moves (void)
996 rtx_insn *insn, *next;
997 basic_block bb;
999 FOR_EACH_BB_FN (bb, cfun)
1001 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
1003 next = NEXT_INSN (insn);
1004 if (INSN_P (insn) && noop_move_p (insn))
1006 if (dump_file)
1007 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1009 delete_insn_and_edges (insn);
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1017 static bool
1018 can_combine_def_p (df_ref def)
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1022 return false;
1024 unsigned int regno = DF_REF_REGNO (def);
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno == FRAME_POINTER_REGNUM
1028 && (!reload_completed || frame_pointer_needed))
1029 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 || (regno == HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed || frame_pointer_needed))
1032 #endif
1033 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1034 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1035 #endif
1037 return false;
1039 return true;
1042 /* Return false if we do not want to (or cannot) combine USE. */
1043 static bool
1044 can_combine_use_p (df_ref use)
1046 /* Do not consider the usage of the stack pointer by function call. */
1047 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1048 return false;
1050 return true;
1053 /* Fill in log links field for all insns. */
1055 static void
1056 create_log_links (void)
1058 basic_block bb;
1059 rtx_insn **next_use;
1060 rtx_insn *insn;
1061 df_ref def, use;
1063 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1065 /* Pass through each block from the end, recording the uses of each
1066 register and establishing log links when def is encountered.
1067 Note that we do not clear next_use array in order to save time,
1068 so we have to test whether the use is in the same basic block as def.
1070 There are a few cases below when we do not consider the definition or
1071 usage -- these are taken from original flow.c did. Don't ask me why it is
1072 done this way; I don't know and if it works, I don't want to know. */
1074 FOR_EACH_BB_FN (bb, cfun)
1076 FOR_BB_INSNS_REVERSE (bb, insn)
1078 if (!NONDEBUG_INSN_P (insn))
1079 continue;
1081 /* Log links are created only once. */
1082 gcc_assert (!LOG_LINKS (insn));
1084 FOR_EACH_INSN_DEF (def, insn)
1086 unsigned int regno = DF_REF_REGNO (def);
1087 rtx_insn *use_insn;
1089 if (!next_use[regno])
1090 continue;
1092 if (!can_combine_def_p (def))
1093 continue;
1095 use_insn = next_use[regno];
1096 next_use[regno] = NULL;
1098 if (BLOCK_FOR_INSN (use_insn) != bb)
1099 continue;
1101 /* flow.c claimed:
1103 We don't build a LOG_LINK for hard registers contained
1104 in ASM_OPERANDs. If these registers get replaced,
1105 we might wind up changing the semantics of the insn,
1106 even if reload can make what appear to be valid
1107 assignments later. */
1108 if (regno < FIRST_PSEUDO_REGISTER
1109 && asm_noperands (PATTERN (use_insn)) >= 0)
1110 continue;
1112 /* Don't add duplicate links between instructions. */
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, use_insn)
1115 if (insn == links->insn && regno == links->regno)
1116 break;
1118 if (!links)
1119 LOG_LINKS (use_insn)
1120 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1123 FOR_EACH_INSN_USE (use, insn)
1124 if (can_combine_use_p (use))
1125 next_use[DF_REF_REGNO (use)] = insn;
1129 free (next_use);
1132 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1133 true if we found a LOG_LINK that proves that A feeds B. This only works
1134 if there are no instructions between A and B which could have a link
1135 depending on A, since in that case we would not record a link for B.
1136 We also check the implicit dependency created by a cc0 setter/user
1137 pair. */
1139 static bool
1140 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1142 struct insn_link *links;
1143 FOR_EACH_LOG_LINK (links, b)
1144 if (links->insn == a)
1145 return true;
1146 #ifdef HAVE_cc0
1147 if (sets_cc0_p (a))
1148 return true;
1149 #endif
1150 return false;
1153 /* Main entry point for combiner. F is the first insn of the function.
1154 NREGS is the first unused pseudo-reg number.
1156 Return nonzero if the combiner has turned an indirect jump
1157 instruction into a direct jump. */
1158 static int
1159 combine_instructions (rtx_insn *f, unsigned int nregs)
1161 rtx_insn *insn, *next;
1162 #ifdef HAVE_cc0
1163 rtx_insn *prev;
1164 #endif
1165 struct insn_link *links, *nextlinks;
1166 rtx_insn *first;
1167 basic_block last_bb;
1169 int new_direct_jump_p = 0;
1171 for (first = f; first && !INSN_P (first); )
1172 first = NEXT_INSN (first);
1173 if (!first)
1174 return 0;
1176 combine_attempts = 0;
1177 combine_merges = 0;
1178 combine_extras = 0;
1179 combine_successes = 0;
1181 rtl_hooks = combine_rtl_hooks;
1183 reg_stat.safe_grow_cleared (nregs);
1185 init_recog_no_volatile ();
1187 /* Allocate array for insn info. */
1188 max_uid_known = get_max_uid ();
1189 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1190 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1191 gcc_obstack_init (&insn_link_obstack);
1193 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1195 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1196 problems when, for example, we have j <<= 1 in a loop. */
1198 nonzero_sign_valid = 0;
1199 label_tick = label_tick_ebb_start = 1;
1201 /* Scan all SETs and see if we can deduce anything about what
1202 bits are known to be zero for some registers and how many copies
1203 of the sign bit are known to exist for those registers.
1205 Also set any known values so that we can use it while searching
1206 for what bits are known to be set. */
1208 setup_incoming_promotions (first);
1209 /* Allow the entry block and the first block to fall into the same EBB.
1210 Conceptually the incoming promotions are assigned to the entry block. */
1211 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213 create_log_links ();
1214 FOR_EACH_BB_FN (this_basic_block, cfun)
1216 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1217 last_call_luid = 0;
1218 mem_last_set = -1;
1220 label_tick++;
1221 if (!single_pred_p (this_basic_block)
1222 || single_pred (this_basic_block) != last_bb)
1223 label_tick_ebb_start = label_tick;
1224 last_bb = this_basic_block;
1226 FOR_BB_INSNS (this_basic_block, insn)
1227 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1229 #ifdef AUTO_INC_DEC
1230 rtx links;
1231 #endif
1233 subst_low_luid = DF_INSN_LUID (insn);
1234 subst_insn = insn;
1236 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1237 insn);
1238 record_dead_and_set_regs (insn);
1240 #ifdef AUTO_INC_DEC
1241 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1242 if (REG_NOTE_KIND (links) == REG_INC)
1243 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1244 insn);
1245 #endif
1247 /* Record the current insn_rtx_cost of this instruction. */
1248 if (NONJUMP_INSN_P (insn))
1249 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1250 optimize_this_for_speed_p);
1251 if (dump_file)
1252 fprintf (dump_file, "insn_cost %d: %d\n",
1253 INSN_UID (insn), INSN_COST (insn));
1257 nonzero_sign_valid = 1;
1259 /* Now scan all the insns in forward order. */
1260 label_tick = label_tick_ebb_start = 1;
1261 init_reg_last ();
1262 setup_incoming_promotions (first);
1263 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1264 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1266 FOR_EACH_BB_FN (this_basic_block, cfun)
1268 rtx_insn *last_combined_insn = NULL;
1269 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1270 last_call_luid = 0;
1271 mem_last_set = -1;
1273 label_tick++;
1274 if (!single_pred_p (this_basic_block)
1275 || single_pred (this_basic_block) != last_bb)
1276 label_tick_ebb_start = label_tick;
1277 last_bb = this_basic_block;
1279 rtl_profile_for_bb (this_basic_block);
1280 for (insn = BB_HEAD (this_basic_block);
1281 insn != NEXT_INSN (BB_END (this_basic_block));
1282 insn = next ? next : NEXT_INSN (insn))
1284 next = 0;
1285 if (!NONDEBUG_INSN_P (insn))
1286 continue;
1288 while (last_combined_insn
1289 && last_combined_insn->deleted ())
1290 last_combined_insn = PREV_INSN (last_combined_insn);
1291 if (last_combined_insn == NULL_RTX
1292 || BARRIER_P (last_combined_insn)
1293 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1294 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1295 last_combined_insn = insn;
1297 /* See if we know about function return values before this
1298 insn based upon SUBREG flags. */
1299 check_promoted_subreg (insn, PATTERN (insn));
1301 /* See if we can find hardregs and subreg of pseudos in
1302 narrower modes. This could help turning TRUNCATEs
1303 into SUBREGs. */
1304 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1306 /* Try this insn with each insn it links back to. */
1308 FOR_EACH_LOG_LINK (links, insn)
1309 if ((next = try_combine (insn, links->insn, NULL,
1310 NULL, &new_direct_jump_p,
1311 last_combined_insn)) != 0)
1313 statistics_counter_event (cfun, "two-insn combine", 1);
1314 goto retry;
1317 /* Try each sequence of three linked insns ending with this one. */
1319 if (max_combine >= 3)
1320 FOR_EACH_LOG_LINK (links, insn)
1322 rtx_insn *link = links->insn;
1324 /* If the linked insn has been replaced by a note, then there
1325 is no point in pursuing this chain any further. */
1326 if (NOTE_P (link))
1327 continue;
1329 FOR_EACH_LOG_LINK (nextlinks, link)
1330 if ((next = try_combine (insn, link, nextlinks->insn,
1331 NULL, &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1334 statistics_counter_event (cfun, "three-insn combine", 1);
1335 goto retry;
1339 #ifdef HAVE_cc0
1340 /* Try to combine a jump insn that uses CC0
1341 with a preceding insn that sets CC0, and maybe with its
1342 logical predecessor as well.
1343 This is how we make decrement-and-branch insns.
1344 We need this special code because data flow connections
1345 via CC0 do not get entered in LOG_LINKS. */
1347 if (JUMP_P (insn)
1348 && (prev = prev_nonnote_insn (insn)) != 0
1349 && NONJUMP_INSN_P (prev)
1350 && sets_cc0_p (PATTERN (prev)))
1352 if ((next = try_combine (insn, prev, NULL, NULL,
1353 &new_direct_jump_p,
1354 last_combined_insn)) != 0)
1355 goto retry;
1357 FOR_EACH_LOG_LINK (nextlinks, prev)
1358 if ((next = try_combine (insn, prev, nextlinks->insn,
1359 NULL, &new_direct_jump_p,
1360 last_combined_insn)) != 0)
1361 goto retry;
1364 /* Do the same for an insn that explicitly references CC0. */
1365 if (NONJUMP_INSN_P (insn)
1366 && (prev = prev_nonnote_insn (insn)) != 0
1367 && NONJUMP_INSN_P (prev)
1368 && sets_cc0_p (PATTERN (prev))
1369 && GET_CODE (PATTERN (insn)) == SET
1370 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1372 if ((next = try_combine (insn, prev, NULL, NULL,
1373 &new_direct_jump_p,
1374 last_combined_insn)) != 0)
1375 goto retry;
1377 FOR_EACH_LOG_LINK (nextlinks, prev)
1378 if ((next = try_combine (insn, prev, nextlinks->insn,
1379 NULL, &new_direct_jump_p,
1380 last_combined_insn)) != 0)
1381 goto retry;
1384 /* Finally, see if any of the insns that this insn links to
1385 explicitly references CC0. If so, try this insn, that insn,
1386 and its predecessor if it sets CC0. */
1387 FOR_EACH_LOG_LINK (links, insn)
1388 if (NONJUMP_INSN_P (links->insn)
1389 && GET_CODE (PATTERN (links->insn)) == SET
1390 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1391 && (prev = prev_nonnote_insn (links->insn)) != 0
1392 && NONJUMP_INSN_P (prev)
1393 && sets_cc0_p (PATTERN (prev))
1394 && (next = try_combine (insn, links->insn,
1395 prev, NULL, &new_direct_jump_p,
1396 last_combined_insn)) != 0)
1397 goto retry;
1398 #endif
1400 /* Try combining an insn with two different insns whose results it
1401 uses. */
1402 if (max_combine >= 3)
1403 FOR_EACH_LOG_LINK (links, insn)
1404 for (nextlinks = links->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, links->insn,
1407 nextlinks->insn, NULL,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1412 statistics_counter_event (cfun, "three-insn combine", 1);
1413 goto retry;
1416 /* Try four-instruction combinations. */
1417 if (max_combine >= 4)
1418 FOR_EACH_LOG_LINK (links, insn)
1420 struct insn_link *next1;
1421 rtx_insn *link = links->insn;
1423 /* If the linked insn has been replaced by a note, then there
1424 is no point in pursuing this chain any further. */
1425 if (NOTE_P (link))
1426 continue;
1428 FOR_EACH_LOG_LINK (next1, link)
1430 rtx_insn *link1 = next1->insn;
1431 if (NOTE_P (link1))
1432 continue;
1433 /* I0 -> I1 -> I2 -> I3. */
1434 FOR_EACH_LOG_LINK (nextlinks, link1)
1435 if ((next = try_combine (insn, link, link1,
1436 nextlinks->insn,
1437 &new_direct_jump_p,
1438 last_combined_insn)) != 0)
1440 statistics_counter_event (cfun, "four-insn combine", 1);
1441 goto retry;
1443 /* I0, I1 -> I2, I2 -> I3. */
1444 for (nextlinks = next1->next; nextlinks;
1445 nextlinks = nextlinks->next)
1446 if ((next = try_combine (insn, link, link1,
1447 nextlinks->insn,
1448 &new_direct_jump_p,
1449 last_combined_insn)) != 0)
1451 statistics_counter_event (cfun, "four-insn combine", 1);
1452 goto retry;
1456 for (next1 = links->next; next1; next1 = next1->next)
1458 rtx_insn *link1 = next1->insn;
1459 if (NOTE_P (link1))
1460 continue;
1461 /* I0 -> I2; I1, I2 -> I3. */
1462 FOR_EACH_LOG_LINK (nextlinks, link)
1463 if ((next = try_combine (insn, link, link1,
1464 nextlinks->insn,
1465 &new_direct_jump_p,
1466 last_combined_insn)) != 0)
1468 statistics_counter_event (cfun, "four-insn combine", 1);
1469 goto retry;
1471 /* I0 -> I1; I1, I2 -> I3. */
1472 FOR_EACH_LOG_LINK (nextlinks, link1)
1473 if ((next = try_combine (insn, link, link1,
1474 nextlinks->insn,
1475 &new_direct_jump_p,
1476 last_combined_insn)) != 0)
1478 statistics_counter_event (cfun, "four-insn combine", 1);
1479 goto retry;
1484 /* Try this insn with each REG_EQUAL note it links back to. */
1485 FOR_EACH_LOG_LINK (links, insn)
1487 rtx set, note;
1488 rtx_insn *temp = links->insn;
1489 if ((set = single_set (temp)) != 0
1490 && (note = find_reg_equal_equiv_note (temp)) != 0
1491 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1492 /* Avoid using a register that may already been marked
1493 dead by an earlier instruction. */
1494 && ! unmentioned_reg_p (note, SET_SRC (set))
1495 && (GET_MODE (note) == VOIDmode
1496 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1497 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1499 /* Temporarily replace the set's source with the
1500 contents of the REG_EQUAL note. The insn will
1501 be deleted or recognized by try_combine. */
1502 rtx orig = SET_SRC (set);
1503 SET_SRC (set) = note;
1504 i2mod = temp;
1505 i2mod_old_rhs = copy_rtx (orig);
1506 i2mod_new_rhs = copy_rtx (note);
1507 next = try_combine (insn, i2mod, NULL, NULL,
1508 &new_direct_jump_p,
1509 last_combined_insn);
1510 i2mod = NULL;
1511 if (next)
1513 statistics_counter_event (cfun, "insn-with-note combine", 1);
1514 goto retry;
1516 SET_SRC (set) = orig;
1520 if (!NOTE_P (insn))
1521 record_dead_and_set_regs (insn);
1523 retry:
1528 default_rtl_profile ();
1529 clear_bb_flags ();
1530 new_direct_jump_p |= purge_all_dead_edges ();
1531 delete_noop_moves ();
1533 /* Clean up. */
1534 obstack_free (&insn_link_obstack, NULL);
1535 free (uid_log_links);
1536 free (uid_insn_cost);
1537 reg_stat.release ();
1540 struct undo *undo, *next;
1541 for (undo = undobuf.frees; undo; undo = next)
1543 next = undo->next;
1544 free (undo);
1546 undobuf.frees = 0;
1549 total_attempts += combine_attempts;
1550 total_merges += combine_merges;
1551 total_extras += combine_extras;
1552 total_successes += combine_successes;
1554 nonzero_sign_valid = 0;
1555 rtl_hooks = general_rtl_hooks;
1557 /* Make recognizer allow volatile MEMs again. */
1558 init_recog ();
1560 return new_direct_jump_p;
1563 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1565 static void
1566 init_reg_last (void)
1568 unsigned int i;
1569 reg_stat_type *p;
1571 FOR_EACH_VEC_ELT (reg_stat, i, p)
1572 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1575 /* Set up any promoted values for incoming argument registers. */
1577 static void
1578 setup_incoming_promotions (rtx_insn *first)
1580 tree arg;
1581 bool strictly_local = false;
1583 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1584 arg = DECL_CHAIN (arg))
1586 rtx x, reg = DECL_INCOMING_RTL (arg);
1587 int uns1, uns3;
1588 machine_mode mode1, mode2, mode3, mode4;
1590 /* Only continue if the incoming argument is in a register. */
1591 if (!REG_P (reg))
1592 continue;
1594 /* Determine, if possible, whether all call sites of the current
1595 function lie within the current compilation unit. (This does
1596 take into account the exporting of a function via taking its
1597 address, and so forth.) */
1598 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1600 /* The mode and signedness of the argument before any promotions happen
1601 (equal to the mode of the pseudo holding it at that stage). */
1602 mode1 = TYPE_MODE (TREE_TYPE (arg));
1603 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1605 /* The mode and signedness of the argument after any source language and
1606 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1607 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1608 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1610 /* The mode and signedness of the argument as it is actually passed,
1611 see assign_parm_setup_reg in function.c. */
1612 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1613 TREE_TYPE (cfun->decl), 0);
1615 /* The mode of the register in which the argument is being passed. */
1616 mode4 = GET_MODE (reg);
1618 /* Eliminate sign extensions in the callee when:
1619 (a) A mode promotion has occurred; */
1620 if (mode1 == mode3)
1621 continue;
1622 /* (b) The mode of the register is the same as the mode of
1623 the argument as it is passed; */
1624 if (mode3 != mode4)
1625 continue;
1626 /* (c) There's no language level extension; */
1627 if (mode1 == mode2)
1629 /* (c.1) All callers are from the current compilation unit. If that's
1630 the case we don't have to rely on an ABI, we only have to know
1631 what we're generating right now, and we know that we will do the
1632 mode1 to mode2 promotion with the given sign. */
1633 else if (!strictly_local)
1634 continue;
1635 /* (c.2) The combination of the two promotions is useful. This is
1636 true when the signs match, or if the first promotion is unsigned.
1637 In the later case, (sign_extend (zero_extend x)) is the same as
1638 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1639 else if (uns1)
1640 uns3 = true;
1641 else if (uns3)
1642 continue;
1644 /* Record that the value was promoted from mode1 to mode3,
1645 so that any sign extension at the head of the current
1646 function may be eliminated. */
1647 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1648 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1649 record_value_for_reg (reg, first, x);
1653 /* Called via note_stores. If X is a pseudo that is narrower than
1654 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1656 If we are setting only a portion of X and we can't figure out what
1657 portion, assume all bits will be used since we don't know what will
1658 be happening.
1660 Similarly, set how many bits of X are known to be copies of the sign bit
1661 at all locations in the function. This is the smallest number implied
1662 by any set of X. */
1664 static void
1665 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1667 rtx_insn *insn = (rtx_insn *) data;
1668 unsigned int num;
1670 if (REG_P (x)
1671 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1672 /* If this register is undefined at the start of the file, we can't
1673 say what its contents were. */
1674 && ! REGNO_REG_SET_P
1675 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1676 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1678 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1680 if (set == 0 || GET_CODE (set) == CLOBBER)
1682 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1683 rsp->sign_bit_copies = 1;
1684 return;
1687 /* If this register is being initialized using itself, and the
1688 register is uninitialized in this basic block, and there are
1689 no LOG_LINKS which set the register, then part of the
1690 register is uninitialized. In that case we can't assume
1691 anything about the number of nonzero bits.
1693 ??? We could do better if we checked this in
1694 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1695 could avoid making assumptions about the insn which initially
1696 sets the register, while still using the information in other
1697 insns. We would have to be careful to check every insn
1698 involved in the combination. */
1700 if (insn
1701 && reg_referenced_p (x, PATTERN (insn))
1702 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1703 REGNO (x)))
1705 struct insn_link *link;
1707 FOR_EACH_LOG_LINK (link, insn)
1708 if (dead_or_set_p (link->insn, x))
1709 break;
1710 if (!link)
1712 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1713 rsp->sign_bit_copies = 1;
1714 return;
1718 /* If this is a complex assignment, see if we can convert it into a
1719 simple assignment. */
1720 set = expand_field_assignment (set);
1722 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1723 set what we know about X. */
1725 if (SET_DEST (set) == x
1726 || (paradoxical_subreg_p (SET_DEST (set))
1727 && SUBREG_REG (SET_DEST (set)) == x))
1729 rtx src = SET_SRC (set);
1731 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1732 /* If X is narrower than a word and SRC is a non-negative
1733 constant that would appear negative in the mode of X,
1734 sign-extend it for use in reg_stat[].nonzero_bits because some
1735 machines (maybe most) will actually do the sign-extension
1736 and this is the conservative approach.
1738 ??? For 2.5, try to tighten up the MD files in this regard
1739 instead of this kludge. */
1741 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
1742 && CONST_INT_P (src)
1743 && INTVAL (src) > 0
1744 && val_signbit_known_set_p (GET_MODE (x), INTVAL (src)))
1745 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (GET_MODE (x)));
1746 #endif
1748 /* Don't call nonzero_bits if it cannot change anything. */
1749 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1750 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1751 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1752 if (rsp->sign_bit_copies == 0
1753 || rsp->sign_bit_copies > num)
1754 rsp->sign_bit_copies = num;
1756 else
1758 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1759 rsp->sign_bit_copies = 1;
1764 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1765 optionally insns that were previously combined into I3 or that will be
1766 combined into the merger of INSN and I3. The order is PRED, PRED2,
1767 INSN, SUCC, SUCC2, I3.
1769 Return 0 if the combination is not allowed for any reason.
1771 If the combination is allowed, *PDEST will be set to the single
1772 destination of INSN and *PSRC to the single source, and this function
1773 will return 1. */
1775 static int
1776 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1777 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1778 rtx *pdest, rtx *psrc)
1780 int i;
1781 const_rtx set = 0;
1782 rtx src, dest;
1783 rtx_insn *p;
1784 #ifdef AUTO_INC_DEC
1785 rtx link;
1786 #endif
1787 bool all_adjacent = true;
1788 int (*is_volatile_p) (const_rtx);
1790 if (succ)
1792 if (succ2)
1794 if (next_active_insn (succ2) != i3)
1795 all_adjacent = false;
1796 if (next_active_insn (succ) != succ2)
1797 all_adjacent = false;
1799 else if (next_active_insn (succ) != i3)
1800 all_adjacent = false;
1801 if (next_active_insn (insn) != succ)
1802 all_adjacent = false;
1804 else if (next_active_insn (insn) != i3)
1805 all_adjacent = false;
1807 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1808 or a PARALLEL consisting of such a SET and CLOBBERs.
1810 If INSN has CLOBBER parallel parts, ignore them for our processing.
1811 By definition, these happen during the execution of the insn. When it
1812 is merged with another insn, all bets are off. If they are, in fact,
1813 needed and aren't also supplied in I3, they may be added by
1814 recog_for_combine. Otherwise, it won't match.
1816 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1817 note.
1819 Get the source and destination of INSN. If more than one, can't
1820 combine. */
1822 if (GET_CODE (PATTERN (insn)) == SET)
1823 set = PATTERN (insn);
1824 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1825 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1827 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1829 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1831 switch (GET_CODE (elt))
1833 /* This is important to combine floating point insns
1834 for the SH4 port. */
1835 case USE:
1836 /* Combining an isolated USE doesn't make sense.
1837 We depend here on combinable_i3pat to reject them. */
1838 /* The code below this loop only verifies that the inputs of
1839 the SET in INSN do not change. We call reg_set_between_p
1840 to verify that the REG in the USE does not change between
1841 I3 and INSN.
1842 If the USE in INSN was for a pseudo register, the matching
1843 insn pattern will likely match any register; combining this
1844 with any other USE would only be safe if we knew that the
1845 used registers have identical values, or if there was
1846 something to tell them apart, e.g. different modes. For
1847 now, we forgo such complicated tests and simply disallow
1848 combining of USES of pseudo registers with any other USE. */
1849 if (REG_P (XEXP (elt, 0))
1850 && GET_CODE (PATTERN (i3)) == PARALLEL)
1852 rtx i3pat = PATTERN (i3);
1853 int i = XVECLEN (i3pat, 0) - 1;
1854 unsigned int regno = REGNO (XEXP (elt, 0));
1858 rtx i3elt = XVECEXP (i3pat, 0, i);
1860 if (GET_CODE (i3elt) == USE
1861 && REG_P (XEXP (i3elt, 0))
1862 && (REGNO (XEXP (i3elt, 0)) == regno
1863 ? reg_set_between_p (XEXP (elt, 0),
1864 PREV_INSN (insn), i3)
1865 : regno >= FIRST_PSEUDO_REGISTER))
1866 return 0;
1868 while (--i >= 0);
1870 break;
1872 /* We can ignore CLOBBERs. */
1873 case CLOBBER:
1874 break;
1876 case SET:
1877 /* Ignore SETs whose result isn't used but not those that
1878 have side-effects. */
1879 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1880 && insn_nothrow_p (insn)
1881 && !side_effects_p (elt))
1882 break;
1884 /* If we have already found a SET, this is a second one and
1885 so we cannot combine with this insn. */
1886 if (set)
1887 return 0;
1889 set = elt;
1890 break;
1892 default:
1893 /* Anything else means we can't combine. */
1894 return 0;
1898 if (set == 0
1899 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1900 so don't do anything with it. */
1901 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1902 return 0;
1904 else
1905 return 0;
1907 if (set == 0)
1908 return 0;
1910 /* The simplification in expand_field_assignment may call back to
1911 get_last_value, so set safe guard here. */
1912 subst_low_luid = DF_INSN_LUID (insn);
1914 set = expand_field_assignment (set);
1915 src = SET_SRC (set), dest = SET_DEST (set);
1917 /* Don't eliminate a store in the stack pointer. */
1918 if (dest == stack_pointer_rtx
1919 /* Don't combine with an insn that sets a register to itself if it has
1920 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1921 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1922 /* Can't merge an ASM_OPERANDS. */
1923 || GET_CODE (src) == ASM_OPERANDS
1924 /* Can't merge a function call. */
1925 || GET_CODE (src) == CALL
1926 /* Don't eliminate a function call argument. */
1927 || (CALL_P (i3)
1928 && (find_reg_fusage (i3, USE, dest)
1929 || (REG_P (dest)
1930 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1931 && global_regs[REGNO (dest)])))
1932 /* Don't substitute into an incremented register. */
1933 || FIND_REG_INC_NOTE (i3, dest)
1934 || (succ && FIND_REG_INC_NOTE (succ, dest))
1935 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1936 /* Don't substitute into a non-local goto, this confuses CFG. */
1937 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1938 /* Make sure that DEST is not used after SUCC but before I3. */
1939 || (!all_adjacent
1940 && ((succ2
1941 && (reg_used_between_p (dest, succ2, i3)
1942 || reg_used_between_p (dest, succ, succ2)))
1943 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1944 /* Make sure that the value that is to be substituted for the register
1945 does not use any registers whose values alter in between. However,
1946 If the insns are adjacent, a use can't cross a set even though we
1947 think it might (this can happen for a sequence of insns each setting
1948 the same destination; last_set of that register might point to
1949 a NOTE). If INSN has a REG_EQUIV note, the register is always
1950 equivalent to the memory so the substitution is valid even if there
1951 are intervening stores. Also, don't move a volatile asm or
1952 UNSPEC_VOLATILE across any other insns. */
1953 || (! all_adjacent
1954 && (((!MEM_P (src)
1955 || ! find_reg_note (insn, REG_EQUIV, src))
1956 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1957 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1958 || GET_CODE (src) == UNSPEC_VOLATILE))
1959 /* Don't combine across a CALL_INSN, because that would possibly
1960 change whether the life span of some REGs crosses calls or not,
1961 and it is a pain to update that information.
1962 Exception: if source is a constant, moving it later can't hurt.
1963 Accept that as a special case. */
1964 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1965 return 0;
1967 /* DEST must either be a REG or CC0. */
1968 if (REG_P (dest))
1970 /* If register alignment is being enforced for multi-word items in all
1971 cases except for parameters, it is possible to have a register copy
1972 insn referencing a hard register that is not allowed to contain the
1973 mode being copied and which would not be valid as an operand of most
1974 insns. Eliminate this problem by not combining with such an insn.
1976 Also, on some machines we don't want to extend the life of a hard
1977 register. */
1979 if (REG_P (src)
1980 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1981 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1982 /* Don't extend the life of a hard register unless it is
1983 user variable (if we have few registers) or it can't
1984 fit into the desired register (meaning something special
1985 is going on).
1986 Also avoid substituting a return register into I3, because
1987 reload can't handle a conflict with constraints of other
1988 inputs. */
1989 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1990 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1991 return 0;
1993 else if (GET_CODE (dest) != CC0)
1994 return 0;
1997 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1998 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1999 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2001 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2003 /* If the clobber represents an earlyclobber operand, we must not
2004 substitute an expression containing the clobbered register.
2005 As we do not analyze the constraint strings here, we have to
2006 make the conservative assumption. However, if the register is
2007 a fixed hard reg, the clobber cannot represent any operand;
2008 we leave it up to the machine description to either accept or
2009 reject use-and-clobber patterns. */
2010 if (!REG_P (reg)
2011 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2012 || !fixed_regs[REGNO (reg)])
2013 if (reg_overlap_mentioned_p (reg, src))
2014 return 0;
2017 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2018 or not), reject, unless nothing volatile comes between it and I3 */
2020 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2022 /* Make sure neither succ nor succ2 contains a volatile reference. */
2023 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2024 return 0;
2025 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2026 return 0;
2027 /* We'll check insns between INSN and I3 below. */
2030 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2031 to be an explicit register variable, and was chosen for a reason. */
2033 if (GET_CODE (src) == ASM_OPERANDS
2034 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2035 return 0;
2037 /* If INSN contains volatile references (specifically volatile MEMs),
2038 we cannot combine across any other volatile references.
2039 Even if INSN doesn't contain volatile references, any intervening
2040 volatile insn might affect machine state. */
2042 is_volatile_p = volatile_refs_p (PATTERN (insn))
2043 ? volatile_refs_p
2044 : volatile_insn_p;
2046 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2047 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2048 return 0;
2050 /* If INSN contains an autoincrement or autodecrement, make sure that
2051 register is not used between there and I3, and not already used in
2052 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2053 Also insist that I3 not be a jump; if it were one
2054 and the incremented register were spilled, we would lose. */
2056 #ifdef AUTO_INC_DEC
2057 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2058 if (REG_NOTE_KIND (link) == REG_INC
2059 && (JUMP_P (i3)
2060 || reg_used_between_p (XEXP (link, 0), insn, i3)
2061 || (pred != NULL_RTX
2062 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2063 || (pred2 != NULL_RTX
2064 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2065 || (succ != NULL_RTX
2066 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2067 || (succ2 != NULL_RTX
2068 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2069 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2070 return 0;
2071 #endif
2073 #ifdef HAVE_cc0
2074 /* Don't combine an insn that follows a CC0-setting insn.
2075 An insn that uses CC0 must not be separated from the one that sets it.
2076 We do, however, allow I2 to follow a CC0-setting insn if that insn
2077 is passed as I1; in that case it will be deleted also.
2078 We also allow combining in this case if all the insns are adjacent
2079 because that would leave the two CC0 insns adjacent as well.
2080 It would be more logical to test whether CC0 occurs inside I1 or I2,
2081 but that would be much slower, and this ought to be equivalent. */
2083 p = prev_nonnote_insn (insn);
2084 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2085 && ! all_adjacent)
2086 return 0;
2087 #endif
2089 /* If we get here, we have passed all the tests and the combination is
2090 to be allowed. */
2092 *pdest = dest;
2093 *psrc = src;
2095 return 1;
2098 /* LOC is the location within I3 that contains its pattern or the component
2099 of a PARALLEL of the pattern. We validate that it is valid for combining.
2101 One problem is if I3 modifies its output, as opposed to replacing it
2102 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2103 doing so would produce an insn that is not equivalent to the original insns.
2105 Consider:
2107 (set (reg:DI 101) (reg:DI 100))
2108 (set (subreg:SI (reg:DI 101) 0) <foo>)
2110 This is NOT equivalent to:
2112 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2113 (set (reg:DI 101) (reg:DI 100))])
2115 Not only does this modify 100 (in which case it might still be valid
2116 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2118 We can also run into a problem if I2 sets a register that I1
2119 uses and I1 gets directly substituted into I3 (not via I2). In that
2120 case, we would be getting the wrong value of I2DEST into I3, so we
2121 must reject the combination. This case occurs when I2 and I1 both
2122 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2123 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2124 of a SET must prevent combination from occurring. The same situation
2125 can occur for I0, in which case I0_NOT_IN_SRC is set.
2127 Before doing the above check, we first try to expand a field assignment
2128 into a set of logical operations.
2130 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2131 we place a register that is both set and used within I3. If more than one
2132 such register is detected, we fail.
2134 Return 1 if the combination is valid, zero otherwise. */
2136 static int
2137 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2138 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2140 rtx x = *loc;
2142 if (GET_CODE (x) == SET)
2144 rtx set = x ;
2145 rtx dest = SET_DEST (set);
2146 rtx src = SET_SRC (set);
2147 rtx inner_dest = dest;
2148 rtx subdest;
2150 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2151 || GET_CODE (inner_dest) == SUBREG
2152 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2153 inner_dest = XEXP (inner_dest, 0);
2155 /* Check for the case where I3 modifies its output, as discussed
2156 above. We don't want to prevent pseudos from being combined
2157 into the address of a MEM, so only prevent the combination if
2158 i1 or i2 set the same MEM. */
2159 if ((inner_dest != dest &&
2160 (!MEM_P (inner_dest)
2161 || rtx_equal_p (i2dest, inner_dest)
2162 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2163 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2164 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2165 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2166 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2168 /* This is the same test done in can_combine_p except we can't test
2169 all_adjacent; we don't have to, since this instruction will stay
2170 in place, thus we are not considering increasing the lifetime of
2171 INNER_DEST.
2173 Also, if this insn sets a function argument, combining it with
2174 something that might need a spill could clobber a previous
2175 function argument; the all_adjacent test in can_combine_p also
2176 checks this; here, we do a more specific test for this case. */
2178 || (REG_P (inner_dest)
2179 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2180 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2181 GET_MODE (inner_dest))))
2182 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2183 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2184 return 0;
2186 /* If DEST is used in I3, it is being killed in this insn, so
2187 record that for later. We have to consider paradoxical
2188 subregs here, since they kill the whole register, but we
2189 ignore partial subregs, STRICT_LOW_PART, etc.
2190 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2191 STACK_POINTER_REGNUM, since these are always considered to be
2192 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2193 subdest = dest;
2194 if (GET_CODE (subdest) == SUBREG
2195 && (GET_MODE_SIZE (GET_MODE (subdest))
2196 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2197 subdest = SUBREG_REG (subdest);
2198 if (pi3dest_killed
2199 && REG_P (subdest)
2200 && reg_referenced_p (subdest, PATTERN (i3))
2201 && REGNO (subdest) != FRAME_POINTER_REGNUM
2202 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2203 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
2204 #endif
2205 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2206 && (REGNO (subdest) != ARG_POINTER_REGNUM
2207 || ! fixed_regs [REGNO (subdest)])
2208 #endif
2209 && REGNO (subdest) != STACK_POINTER_REGNUM)
2211 if (*pi3dest_killed)
2212 return 0;
2214 *pi3dest_killed = subdest;
2218 else if (GET_CODE (x) == PARALLEL)
2220 int i;
2222 for (i = 0; i < XVECLEN (x, 0); i++)
2223 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2224 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2225 return 0;
2228 return 1;
2231 /* Return 1 if X is an arithmetic expression that contains a multiplication
2232 and division. We don't count multiplications by powers of two here. */
2234 static int
2235 contains_muldiv (rtx x)
2237 switch (GET_CODE (x))
2239 case MOD: case DIV: case UMOD: case UDIV:
2240 return 1;
2242 case MULT:
2243 return ! (CONST_INT_P (XEXP (x, 1))
2244 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2245 default:
2246 if (BINARY_P (x))
2247 return contains_muldiv (XEXP (x, 0))
2248 || contains_muldiv (XEXP (x, 1));
2250 if (UNARY_P (x))
2251 return contains_muldiv (XEXP (x, 0));
2253 return 0;
2257 /* Determine whether INSN can be used in a combination. Return nonzero if
2258 not. This is used in try_combine to detect early some cases where we
2259 can't perform combinations. */
2261 static int
2262 cant_combine_insn_p (rtx_insn *insn)
2264 rtx set;
2265 rtx src, dest;
2267 /* If this isn't really an insn, we can't do anything.
2268 This can occur when flow deletes an insn that it has merged into an
2269 auto-increment address. */
2270 if (! INSN_P (insn))
2271 return 1;
2273 /* Never combine loads and stores involving hard regs that are likely
2274 to be spilled. The register allocator can usually handle such
2275 reg-reg moves by tying. If we allow the combiner to make
2276 substitutions of likely-spilled regs, reload might die.
2277 As an exception, we allow combinations involving fixed regs; these are
2278 not available to the register allocator so there's no risk involved. */
2280 set = single_set (insn);
2281 if (! set)
2282 return 0;
2283 src = SET_SRC (set);
2284 dest = SET_DEST (set);
2285 if (GET_CODE (src) == SUBREG)
2286 src = SUBREG_REG (src);
2287 if (GET_CODE (dest) == SUBREG)
2288 dest = SUBREG_REG (dest);
2289 if (REG_P (src) && REG_P (dest)
2290 && ((HARD_REGISTER_P (src)
2291 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2292 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2293 || (HARD_REGISTER_P (dest)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2296 return 1;
2298 return 0;
2301 struct likely_spilled_retval_info
2303 unsigned regno, nregs;
2304 unsigned mask;
2307 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2308 hard registers that are known to be written to / clobbered in full. */
2309 static void
2310 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2312 struct likely_spilled_retval_info *const info =
2313 (struct likely_spilled_retval_info *) data;
2314 unsigned regno, nregs;
2315 unsigned new_mask;
2317 if (!REG_P (XEXP (set, 0)))
2318 return;
2319 regno = REGNO (x);
2320 if (regno >= info->regno + info->nregs)
2321 return;
2322 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2323 if (regno + nregs <= info->regno)
2324 return;
2325 new_mask = (2U << (nregs - 1)) - 1;
2326 if (regno < info->regno)
2327 new_mask >>= info->regno - regno;
2328 else
2329 new_mask <<= regno - info->regno;
2330 info->mask &= ~new_mask;
2333 /* Return nonzero iff part of the return value is live during INSN, and
2334 it is likely spilled. This can happen when more than one insn is needed
2335 to copy the return value, e.g. when we consider to combine into the
2336 second copy insn for a complex value. */
2338 static int
2339 likely_spilled_retval_p (rtx_insn *insn)
2341 rtx_insn *use = BB_END (this_basic_block);
2342 rtx reg;
2343 rtx_insn *p;
2344 unsigned regno, nregs;
2345 /* We assume here that no machine mode needs more than
2346 32 hard registers when the value overlaps with a register
2347 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2348 unsigned mask;
2349 struct likely_spilled_retval_info info;
2351 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2352 return 0;
2353 reg = XEXP (PATTERN (use), 0);
2354 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2355 return 0;
2356 regno = REGNO (reg);
2357 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2358 if (nregs == 1)
2359 return 0;
2360 mask = (2U << (nregs - 1)) - 1;
2362 /* Disregard parts of the return value that are set later. */
2363 info.regno = regno;
2364 info.nregs = nregs;
2365 info.mask = mask;
2366 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2367 if (INSN_P (p))
2368 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2369 mask = info.mask;
2371 /* Check if any of the (probably) live return value registers is
2372 likely spilled. */
2373 nregs --;
2376 if ((mask & 1 << nregs)
2377 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2378 return 1;
2379 } while (nregs--);
2380 return 0;
2383 /* Adjust INSN after we made a change to its destination.
2385 Changing the destination can invalidate notes that say something about
2386 the results of the insn and a LOG_LINK pointing to the insn. */
2388 static void
2389 adjust_for_new_dest (rtx_insn *insn)
2391 /* For notes, be conservative and simply remove them. */
2392 remove_reg_equal_equiv_notes (insn);
2394 /* The new insn will have a destination that was previously the destination
2395 of an insn just above it. Call distribute_links to make a LOG_LINK from
2396 the next use of that destination. */
2398 rtx set = single_set (insn);
2399 gcc_assert (set);
2401 rtx reg = SET_DEST (set);
2403 while (GET_CODE (reg) == ZERO_EXTRACT
2404 || GET_CODE (reg) == STRICT_LOW_PART
2405 || GET_CODE (reg) == SUBREG)
2406 reg = XEXP (reg, 0);
2407 gcc_assert (REG_P (reg));
2409 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2411 df_insn_rescan (insn);
2414 /* Return TRUE if combine can reuse reg X in mode MODE.
2415 ADDED_SETS is nonzero if the original set is still required. */
2416 static bool
2417 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2419 unsigned int regno;
2421 if (!REG_P (x))
2422 return false;
2424 regno = REGNO (x);
2425 /* Allow hard registers if the new mode is legal, and occupies no more
2426 registers than the old mode. */
2427 if (regno < FIRST_PSEUDO_REGISTER)
2428 return (HARD_REGNO_MODE_OK (regno, mode)
2429 && (hard_regno_nregs[regno][GET_MODE (x)]
2430 >= hard_regno_nregs[regno][mode]));
2432 /* Or a pseudo that is only used once. */
2433 return (regno < reg_n_sets_max
2434 && REG_N_SETS (regno) == 1
2435 && !added_sets
2436 && !REG_USERVAR_P (x));
2440 /* Check whether X, the destination of a set, refers to part of
2441 the register specified by REG. */
2443 static bool
2444 reg_subword_p (rtx x, rtx reg)
2446 /* Check that reg is an integer mode register. */
2447 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2448 return false;
2450 if (GET_CODE (x) == STRICT_LOW_PART
2451 || GET_CODE (x) == ZERO_EXTRACT)
2452 x = XEXP (x, 0);
2454 return GET_CODE (x) == SUBREG
2455 && SUBREG_REG (x) == reg
2456 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2459 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2460 Note that the INSN should be deleted *after* removing dead edges, so
2461 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2462 but not for a (set (pc) (label_ref FOO)). */
2464 static void
2465 update_cfg_for_uncondjump (rtx_insn *insn)
2467 basic_block bb = BLOCK_FOR_INSN (insn);
2468 gcc_assert (BB_END (bb) == insn);
2470 purge_dead_edges (bb);
2472 delete_insn (insn);
2473 if (EDGE_COUNT (bb->succs) == 1)
2475 rtx_insn *insn;
2477 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2479 /* Remove barriers from the footer if there are any. */
2480 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2481 if (BARRIER_P (insn))
2483 if (PREV_INSN (insn))
2484 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2485 else
2486 BB_FOOTER (bb) = NEXT_INSN (insn);
2487 if (NEXT_INSN (insn))
2488 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2490 else if (LABEL_P (insn))
2491 break;
2495 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2496 by an arbitrary number of CLOBBERs. */
2497 static bool
2498 is_parallel_of_n_reg_sets (rtx pat, int n)
2500 if (GET_CODE (pat) != PARALLEL)
2501 return false;
2503 int len = XVECLEN (pat, 0);
2504 if (len < n)
2505 return false;
2507 int i;
2508 for (i = 0; i < n; i++)
2509 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2510 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2511 return false;
2512 for ( ; i < len; i++)
2513 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2514 return false;
2516 return true;
2519 #ifndef HAVE_cc0
2520 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2521 CLOBBERs), can be split into individual SETs in that order, without
2522 changing semantics. */
2523 static bool
2524 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2526 if (!insn_nothrow_p (insn))
2527 return false;
2529 rtx pat = PATTERN (insn);
2531 int i, j;
2532 for (i = 0; i < n; i++)
2534 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2535 return false;
2537 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2539 for (j = i + 1; j < n; j++)
2540 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2541 return false;
2544 return true;
2546 #endif
2548 /* Try to combine the insns I0, I1 and I2 into I3.
2549 Here I0, I1 and I2 appear earlier than I3.
2550 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2553 If we are combining more than two insns and the resulting insn is not
2554 recognized, try splitting it into two insns. If that happens, I2 and I3
2555 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2556 Otherwise, I0, I1 and I2 are pseudo-deleted.
2558 Return 0 if the combination does not work. Then nothing is changed.
2559 If we did the combination, return the insn at which combine should
2560 resume scanning.
2562 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2563 new direct jump instruction.
2565 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2566 been I3 passed to an earlier try_combine within the same basic
2567 block. */
2569 static rtx_insn *
2570 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2571 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2573 /* New patterns for I3 and I2, respectively. */
2574 rtx newpat, newi2pat = 0;
2575 rtvec newpat_vec_with_clobbers = 0;
2576 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2577 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2578 dead. */
2579 int added_sets_0, added_sets_1, added_sets_2;
2580 /* Total number of SETs to put into I3. */
2581 int total_sets;
2582 /* Nonzero if I2's or I1's body now appears in I3. */
2583 int i2_is_used = 0, i1_is_used = 0;
2584 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2585 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2586 /* Contains I3 if the destination of I3 is used in its source, which means
2587 that the old life of I3 is being killed. If that usage is placed into
2588 I2 and not in I3, a REG_DEAD note must be made. */
2589 rtx i3dest_killed = 0;
2590 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2591 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2592 /* Copy of SET_SRC of I1 and I0, if needed. */
2593 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2594 /* Set if I2DEST was reused as a scratch register. */
2595 bool i2scratch = false;
2596 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2597 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2598 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2599 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2600 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2601 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2602 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2603 /* Notes that must be added to REG_NOTES in I3 and I2. */
2604 rtx new_i3_notes, new_i2_notes;
2605 /* Notes that we substituted I3 into I2 instead of the normal case. */
2606 int i3_subst_into_i2 = 0;
2607 /* Notes that I1, I2 or I3 is a MULT operation. */
2608 int have_mult = 0;
2609 int swap_i2i3 = 0;
2610 int changed_i3_dest = 0;
2612 int maxreg;
2613 rtx_insn *temp_insn;
2614 rtx temp_expr;
2615 struct insn_link *link;
2616 rtx other_pat = 0;
2617 rtx new_other_notes;
2618 int i;
2620 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2621 never be). */
2622 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2623 return 0;
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2633 rtx set0, set3;
2635 if (!flag_expensive_optimizations)
2636 return 0;
2638 for (i = 0; i < 4; i++)
2640 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2641 rtx set = single_set (insn);
2642 rtx src;
2643 if (!set)
2644 continue;
2645 src = SET_SRC (set);
2646 if (CONSTANT_P (src))
2648 ngood += 2;
2649 break;
2651 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2652 ngood++;
2653 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2654 || GET_CODE (src) == LSHIFTRT)
2655 nshift++;
2658 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2659 are likely manipulating its value. Ideally we'll be able to combine
2660 all four insns into a bitfield insertion of some kind.
2662 Note the source in I0 might be inside a sign/zero extension and the
2663 memory modes in I0 and I3 might be different. So extract the address
2664 from the destination of I3 and search for it in the source of I0.
2666 In the event that there's a match but the source/dest do not actually
2667 refer to the same memory, the worst that happens is we try some
2668 combinations that we wouldn't have otherwise. */
2669 if ((set0 = single_set (i0))
2670 /* Ensure the source of SET0 is a MEM, possibly buried inside
2671 an extension. */
2672 && (GET_CODE (SET_SRC (set0)) == MEM
2673 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2674 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2675 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2676 && (set3 = single_set (i3))
2677 /* Ensure the destination of SET3 is a MEM. */
2678 && GET_CODE (SET_DEST (set3)) == MEM
2679 /* Would it be better to extract the base address for the MEM
2680 in SET3 and look for that? I don't have cases where it matters
2681 but I could envision such cases. */
2682 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2683 ngood += 2;
2685 if (ngood < 2 && nshift < 2)
2686 return 0;
2689 /* Exit early if one of the insns involved can't be used for
2690 combinations. */
2691 if (CALL_P (i2)
2692 || (i1 && CALL_P (i1))
2693 || (i0 && CALL_P (i0))
2694 || cant_combine_insn_p (i3)
2695 || cant_combine_insn_p (i2)
2696 || (i1 && cant_combine_insn_p (i1))
2697 || (i0 && cant_combine_insn_p (i0))
2698 || likely_spilled_retval_p (i3))
2699 return 0;
2701 combine_attempts++;
2702 undobuf.other_insn = 0;
2704 /* Reset the hard register usage information. */
2705 CLEAR_HARD_REG_SET (newpat_used_regs);
2707 if (dump_file && (dump_flags & TDF_DETAILS))
2709 if (i0)
2710 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2711 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2712 else if (i1)
2713 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2714 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2715 else
2716 fprintf (dump_file, "\nTrying %d -> %d:\n",
2717 INSN_UID (i2), INSN_UID (i3));
2720 /* If multiple insns feed into one of I2 or I3, they can be in any
2721 order. To simplify the code below, reorder them in sequence. */
2722 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2723 temp_insn = i2, i2 = i0, i0 = temp_insn;
2724 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2725 temp_insn = i1, i1 = i0, i0 = temp_insn;
2726 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2727 temp_insn = i1, i1 = i2, i2 = temp_insn;
2729 added_links_insn = 0;
2731 /* First check for one important special case that the code below will
2732 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2733 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2734 we may be able to replace that destination with the destination of I3.
2735 This occurs in the common code where we compute both a quotient and
2736 remainder into a structure, in which case we want to do the computation
2737 directly into the structure to avoid register-register copies.
2739 Note that this case handles both multiple sets in I2 and also cases
2740 where I2 has a number of CLOBBERs inside the PARALLEL.
2742 We make very conservative checks below and only try to handle the
2743 most common cases of this. For example, we only handle the case
2744 where I2 and I3 are adjacent to avoid making difficult register
2745 usage tests. */
2747 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2748 && REG_P (SET_SRC (PATTERN (i3)))
2749 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2750 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2751 && GET_CODE (PATTERN (i2)) == PARALLEL
2752 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2753 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2754 below would need to check what is inside (and reg_overlap_mentioned_p
2755 doesn't support those codes anyway). Don't allow those destinations;
2756 the resulting insn isn't likely to be recognized anyway. */
2757 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2759 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2760 SET_DEST (PATTERN (i3)))
2761 && next_active_insn (i2) == i3)
2763 rtx p2 = PATTERN (i2);
2765 /* Make sure that the destination of I3,
2766 which we are going to substitute into one output of I2,
2767 is not used within another output of I2. We must avoid making this:
2768 (parallel [(set (mem (reg 69)) ...)
2769 (set (reg 69) ...)])
2770 which is not well-defined as to order of actions.
2771 (Besides, reload can't handle output reloads for this.)
2773 The problem can also happen if the dest of I3 is a memory ref,
2774 if another dest in I2 is an indirect memory ref. */
2775 for (i = 0; i < XVECLEN (p2, 0); i++)
2776 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2777 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2778 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2779 SET_DEST (XVECEXP (p2, 0, i))))
2780 break;
2782 /* Make sure this PARALLEL is not an asm. We do not allow combining
2783 that usually (see can_combine_p), so do not here either. */
2784 for (i = 0; i < XVECLEN (p2, 0); i++)
2785 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2786 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2787 break;
2789 if (i == XVECLEN (p2, 0))
2790 for (i = 0; i < XVECLEN (p2, 0); i++)
2791 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2792 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2794 combine_merges++;
2796 subst_insn = i3;
2797 subst_low_luid = DF_INSN_LUID (i2);
2799 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2800 i2src = SET_SRC (XVECEXP (p2, 0, i));
2801 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2802 i2dest_killed = dead_or_set_p (i2, i2dest);
2804 /* Replace the dest in I2 with our dest and make the resulting
2805 insn the new pattern for I3. Then skip to where we validate
2806 the pattern. Everything was set up above. */
2807 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2808 newpat = p2;
2809 i3_subst_into_i2 = 1;
2810 goto validate_replacement;
2814 /* If I2 is setting a pseudo to a constant and I3 is setting some
2815 sub-part of it to another constant, merge them by making a new
2816 constant. */
2817 if (i1 == 0
2818 && (temp_expr = single_set (i2)) != 0
2819 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2820 && GET_CODE (PATTERN (i3)) == SET
2821 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2822 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2824 rtx dest = SET_DEST (PATTERN (i3));
2825 int offset = -1;
2826 int width = 0;
2828 if (GET_CODE (dest) == ZERO_EXTRACT)
2830 if (CONST_INT_P (XEXP (dest, 1))
2831 && CONST_INT_P (XEXP (dest, 2)))
2833 width = INTVAL (XEXP (dest, 1));
2834 offset = INTVAL (XEXP (dest, 2));
2835 dest = XEXP (dest, 0);
2836 if (BITS_BIG_ENDIAN)
2837 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2840 else
2842 if (GET_CODE (dest) == STRICT_LOW_PART)
2843 dest = XEXP (dest, 0);
2844 width = GET_MODE_PRECISION (GET_MODE (dest));
2845 offset = 0;
2848 if (offset >= 0)
2850 /* If this is the low part, we're done. */
2851 if (subreg_lowpart_p (dest))
2853 /* Handle the case where inner is twice the size of outer. */
2854 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2855 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2856 offset += GET_MODE_PRECISION (GET_MODE (dest));
2857 /* Otherwise give up for now. */
2858 else
2859 offset = -1;
2862 if (offset >= 0)
2864 rtx inner = SET_SRC (PATTERN (i3));
2865 rtx outer = SET_SRC (temp_expr);
2867 wide_int o
2868 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2869 std::make_pair (inner, GET_MODE (dest)),
2870 offset, width);
2872 combine_merges++;
2873 subst_insn = i3;
2874 subst_low_luid = DF_INSN_LUID (i2);
2875 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 i2dest = SET_DEST (temp_expr);
2877 i2dest_killed = dead_or_set_p (i2, i2dest);
2879 /* Replace the source in I2 with the new constant and make the
2880 resulting insn the new pattern for I3. Then skip to where we
2881 validate the pattern. Everything was set up above. */
2882 SUBST (SET_SRC (temp_expr),
2883 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2885 newpat = PATTERN (i2);
2887 /* The dest of I3 has been replaced with the dest of I2. */
2888 changed_i3_dest = 1;
2889 goto validate_replacement;
2893 #ifndef HAVE_cc0
2894 /* If we have no I1 and I2 looks like:
2895 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2896 (set Y OP)])
2897 make up a dummy I1 that is
2898 (set Y OP)
2899 and change I2 to be
2900 (set (reg:CC X) (compare:CC Y (const_int 0)))
2902 (We can ignore any trailing CLOBBERs.)
2904 This undoes a previous combination and allows us to match a branch-and-
2905 decrement insn. */
2907 if (i1 == 0
2908 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2909 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2910 == MODE_CC)
2911 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2912 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2913 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2914 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2916 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2918 /* We make I1 with the same INSN_UID as I2. This gives it
2919 the same DF_INSN_LUID for value tracking. Our fake I1 will
2920 never appear in the insn stream so giving it the same INSN_UID
2921 as I2 will not cause a problem. */
2923 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2924 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2925 -1, NULL_RTX);
2926 INSN_UID (i1) = INSN_UID (i2);
2928 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2929 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2930 SET_DEST (PATTERN (i1)));
2931 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2932 SUBST_LINK (LOG_LINKS (i2),
2933 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2936 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2937 make those two SETs separate I1 and I2 insns, and make an I0 that is
2938 the original I1. */
2939 if (i0 == 0
2940 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2941 && can_split_parallel_of_n_reg_sets (i2, 2)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2943 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2945 /* If there is no I1, there is no I0 either. */
2946 i0 = i1;
2948 /* We make I1 with the same INSN_UID as I2. This gives it
2949 the same DF_INSN_LUID for value tracking. Our fake I1 will
2950 never appear in the insn stream so giving it the same INSN_UID
2951 as I2 will not cause a problem. */
2953 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2954 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2955 -1, NULL_RTX);
2956 INSN_UID (i1) = INSN_UID (i2);
2958 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2960 #endif
2962 /* Verify that I2 and I1 are valid for combining. */
2963 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2964 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2965 &i1dest, &i1src))
2966 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2967 &i0dest, &i0src)))
2969 undo_all ();
2970 return 0;
2973 /* Record whether I2DEST is used in I2SRC and similarly for the other
2974 cases. Knowing this will help in register status updating below. */
2975 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2976 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2977 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2978 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2979 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2980 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2981 i2dest_killed = dead_or_set_p (i2, i2dest);
2982 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2983 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2985 /* For the earlier insns, determine which of the subsequent ones they
2986 feed. */
2987 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2988 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2989 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2990 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2991 && reg_overlap_mentioned_p (i0dest, i2src))));
2993 /* Ensure that I3's pattern can be the destination of combines. */
2994 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2995 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2996 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2997 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2998 &i3dest_killed))
3000 undo_all ();
3001 return 0;
3004 /* See if any of the insns is a MULT operation. Unless one is, we will
3005 reject a combination that is, since it must be slower. Be conservative
3006 here. */
3007 if (GET_CODE (i2src) == MULT
3008 || (i1 != 0 && GET_CODE (i1src) == MULT)
3009 || (i0 != 0 && GET_CODE (i0src) == MULT)
3010 || (GET_CODE (PATTERN (i3)) == SET
3011 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3012 have_mult = 1;
3014 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3015 We used to do this EXCEPT in one case: I3 has a post-inc in an
3016 output operand. However, that exception can give rise to insns like
3017 mov r3,(r3)+
3018 which is a famous insn on the PDP-11 where the value of r3 used as the
3019 source was model-dependent. Avoid this sort of thing. */
3021 #if 0
3022 if (!(GET_CODE (PATTERN (i3)) == SET
3023 && REG_P (SET_SRC (PATTERN (i3)))
3024 && MEM_P (SET_DEST (PATTERN (i3)))
3025 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3026 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3027 /* It's not the exception. */
3028 #endif
3029 #ifdef AUTO_INC_DEC
3031 rtx link;
3032 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3033 if (REG_NOTE_KIND (link) == REG_INC
3034 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3035 || (i1 != 0
3036 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3038 undo_all ();
3039 return 0;
3042 #endif
3044 /* See if the SETs in I1 or I2 need to be kept around in the merged
3045 instruction: whenever the value set there is still needed past I3.
3046 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3048 For the SET in I1, we have two cases: if I1 and I2 independently feed
3049 into I3, the set in I1 needs to be kept around unless I1DEST dies
3050 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3051 in I1 needs to be kept around unless I1DEST dies or is set in either
3052 I2 or I3. The same considerations apply to I0. */
3054 added_sets_2 = !dead_or_set_p (i3, i2dest);
3056 if (i1)
3057 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3058 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3059 else
3060 added_sets_1 = 0;
3062 if (i0)
3063 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3064 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3065 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3066 && dead_or_set_p (i2, i0dest)));
3067 else
3068 added_sets_0 = 0;
3070 /* We are about to copy insns for the case where they need to be kept
3071 around. Check that they can be copied in the merged instruction. */
3073 if (targetm.cannot_copy_insn_p
3074 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3075 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3076 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3078 undo_all ();
3079 return 0;
3082 /* If the set in I2 needs to be kept around, we must make a copy of
3083 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3084 PATTERN (I2), we are only substituting for the original I1DEST, not into
3085 an already-substituted copy. This also prevents making self-referential
3086 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3087 I2DEST. */
3089 if (added_sets_2)
3091 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3092 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
3093 else
3094 i2pat = copy_rtx (PATTERN (i2));
3097 if (added_sets_1)
3099 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3100 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
3101 else
3102 i1pat = copy_rtx (PATTERN (i1));
3105 if (added_sets_0)
3107 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3108 i0pat = gen_rtx_SET (VOIDmode, i0dest, copy_rtx (i0src));
3109 else
3110 i0pat = copy_rtx (PATTERN (i0));
3113 combine_merges++;
3115 /* Substitute in the latest insn for the regs set by the earlier ones. */
3117 maxreg = max_reg_num ();
3119 subst_insn = i3;
3121 #ifndef HAVE_cc0
3122 /* Many machines that don't use CC0 have insns that can both perform an
3123 arithmetic operation and set the condition code. These operations will
3124 be represented as a PARALLEL with the first element of the vector
3125 being a COMPARE of an arithmetic operation with the constant zero.
3126 The second element of the vector will set some pseudo to the result
3127 of the same arithmetic operation. If we simplify the COMPARE, we won't
3128 match such a pattern and so will generate an extra insn. Here we test
3129 for this case, where both the comparison and the operation result are
3130 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3131 I2SRC. Later we will make the PARALLEL that contains I2. */
3133 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3134 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3135 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3136 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3138 rtx newpat_dest;
3139 rtx *cc_use_loc = NULL;
3140 rtx_insn *cc_use_insn = NULL;
3141 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3142 machine_mode compare_mode, orig_compare_mode;
3143 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3145 newpat = PATTERN (i3);
3146 newpat_dest = SET_DEST (newpat);
3147 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3149 if (undobuf.other_insn == 0
3150 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3151 &cc_use_insn)))
3153 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3154 compare_code = simplify_compare_const (compare_code,
3155 GET_MODE (i2dest), op0, &op1);
3156 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3159 /* Do the rest only if op1 is const0_rtx, which may be the
3160 result of simplification. */
3161 if (op1 == const0_rtx)
3163 /* If a single use of the CC is found, prepare to modify it
3164 when SELECT_CC_MODE returns a new CC-class mode, or when
3165 the above simplify_compare_const() returned a new comparison
3166 operator. undobuf.other_insn is assigned the CC use insn
3167 when modifying it. */
3168 if (cc_use_loc)
3170 #ifdef SELECT_CC_MODE
3171 machine_mode new_mode
3172 = SELECT_CC_MODE (compare_code, op0, op1);
3173 if (new_mode != orig_compare_mode
3174 && can_change_dest_mode (SET_DEST (newpat),
3175 added_sets_2, new_mode))
3177 unsigned int regno = REGNO (newpat_dest);
3178 compare_mode = new_mode;
3179 if (regno < FIRST_PSEUDO_REGISTER)
3180 newpat_dest = gen_rtx_REG (compare_mode, regno);
3181 else
3183 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3184 newpat_dest = regno_reg_rtx[regno];
3187 #endif
3188 /* Cases for modifying the CC-using comparison. */
3189 if (compare_code != orig_compare_code
3190 /* ??? Do we need to verify the zero rtx? */
3191 && XEXP (*cc_use_loc, 1) == const0_rtx)
3193 /* Replace cc_use_loc with entire new RTX. */
3194 SUBST (*cc_use_loc,
3195 gen_rtx_fmt_ee (compare_code, compare_mode,
3196 newpat_dest, const0_rtx));
3197 undobuf.other_insn = cc_use_insn;
3199 else if (compare_mode != orig_compare_mode)
3201 /* Just replace the CC reg with a new mode. */
3202 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3203 undobuf.other_insn = cc_use_insn;
3207 /* Now we modify the current newpat:
3208 First, SET_DEST(newpat) is updated if the CC mode has been
3209 altered. For targets without SELECT_CC_MODE, this should be
3210 optimized away. */
3211 if (compare_mode != orig_compare_mode)
3212 SUBST (SET_DEST (newpat), newpat_dest);
3213 /* This is always done to propagate i2src into newpat. */
3214 SUBST (SET_SRC (newpat),
3215 gen_rtx_COMPARE (compare_mode, op0, op1));
3216 /* Create new version of i2pat if needed; the below PARALLEL
3217 creation needs this to work correctly. */
3218 if (! rtx_equal_p (i2src, op0))
3219 i2pat = gen_rtx_SET (VOIDmode, i2dest, op0);
3220 i2_is_used = 1;
3223 #endif
3225 if (i2_is_used == 0)
3227 /* It is possible that the source of I2 or I1 may be performing
3228 an unneeded operation, such as a ZERO_EXTEND of something
3229 that is known to have the high part zero. Handle that case
3230 by letting subst look at the inner insns.
3232 Another way to do this would be to have a function that tries
3233 to simplify a single insn instead of merging two or more
3234 insns. We don't do this because of the potential of infinite
3235 loops and because of the potential extra memory required.
3236 However, doing it the way we are is a bit of a kludge and
3237 doesn't catch all cases.
3239 But only do this if -fexpensive-optimizations since it slows
3240 things down and doesn't usually win.
3242 This is not done in the COMPARE case above because the
3243 unmodified I2PAT is used in the PARALLEL and so a pattern
3244 with a modified I2SRC would not match. */
3246 if (flag_expensive_optimizations)
3248 /* Pass pc_rtx so no substitutions are done, just
3249 simplifications. */
3250 if (i1)
3252 subst_low_luid = DF_INSN_LUID (i1);
3253 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3256 subst_low_luid = DF_INSN_LUID (i2);
3257 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3260 n_occurrences = 0; /* `subst' counts here */
3261 subst_low_luid = DF_INSN_LUID (i2);
3263 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3264 copy of I2SRC each time we substitute it, in order to avoid creating
3265 self-referential RTL when we will be substituting I1SRC for I1DEST
3266 later. Likewise if I0 feeds into I2, either directly or indirectly
3267 through I1, and I0DEST is in I0SRC. */
3268 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3269 (i1_feeds_i2_n && i1dest_in_i1src)
3270 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3271 && i0dest_in_i0src));
3272 substed_i2 = 1;
3274 /* Record whether I2's body now appears within I3's body. */
3275 i2_is_used = n_occurrences;
3278 /* If we already got a failure, don't try to do more. Otherwise, try to
3279 substitute I1 if we have it. */
3281 if (i1 && GET_CODE (newpat) != CLOBBER)
3283 /* Check that an autoincrement side-effect on I1 has not been lost.
3284 This happens if I1DEST is mentioned in I2 and dies there, and
3285 has disappeared from the new pattern. */
3286 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3287 && i1_feeds_i2_n
3288 && dead_or_set_p (i2, i1dest)
3289 && !reg_overlap_mentioned_p (i1dest, newpat))
3290 /* Before we can do this substitution, we must redo the test done
3291 above (see detailed comments there) that ensures I1DEST isn't
3292 mentioned in any SETs in NEWPAT that are field assignments. */
3293 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3294 0, 0, 0))
3296 undo_all ();
3297 return 0;
3300 n_occurrences = 0;
3301 subst_low_luid = DF_INSN_LUID (i1);
3303 /* If the following substitution will modify I1SRC, make a copy of it
3304 for the case where it is substituted for I1DEST in I2PAT later. */
3305 if (added_sets_2 && i1_feeds_i2_n)
3306 i1src_copy = copy_rtx (i1src);
3308 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3309 copy of I1SRC each time we substitute it, in order to avoid creating
3310 self-referential RTL when we will be substituting I0SRC for I0DEST
3311 later. */
3312 newpat = subst (newpat, i1dest, i1src, 0, 0,
3313 i0_feeds_i1_n && i0dest_in_i0src);
3314 substed_i1 = 1;
3316 /* Record whether I1's body now appears within I3's body. */
3317 i1_is_used = n_occurrences;
3320 /* Likewise for I0 if we have it. */
3322 if (i0 && GET_CODE (newpat) != CLOBBER)
3324 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3325 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3326 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3327 && !reg_overlap_mentioned_p (i0dest, newpat))
3328 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3329 0, 0, 0))
3331 undo_all ();
3332 return 0;
3335 /* If the following substitution will modify I0SRC, make a copy of it
3336 for the case where it is substituted for I0DEST in I1PAT later. */
3337 if (added_sets_1 && i0_feeds_i1_n)
3338 i0src_copy = copy_rtx (i0src);
3339 /* And a copy for I0DEST in I2PAT substitution. */
3340 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3341 || (i0_feeds_i2_n)))
3342 i0src_copy2 = copy_rtx (i0src);
3344 n_occurrences = 0;
3345 subst_low_luid = DF_INSN_LUID (i0);
3346 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3347 substed_i0 = 1;
3350 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3351 to count all the ways that I2SRC and I1SRC can be used. */
3352 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3353 && i2_is_used + added_sets_2 > 1)
3354 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3355 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3356 > 1))
3357 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3358 && (n_occurrences + added_sets_0
3359 + (added_sets_1 && i0_feeds_i1_n)
3360 + (added_sets_2 && i0_feeds_i2_n)
3361 > 1))
3362 /* Fail if we tried to make a new register. */
3363 || max_reg_num () != maxreg
3364 /* Fail if we couldn't do something and have a CLOBBER. */
3365 || GET_CODE (newpat) == CLOBBER
3366 /* Fail if this new pattern is a MULT and we didn't have one before
3367 at the outer level. */
3368 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3369 && ! have_mult))
3371 undo_all ();
3372 return 0;
3375 /* If the actions of the earlier insns must be kept
3376 in addition to substituting them into the latest one,
3377 we must make a new PARALLEL for the latest insn
3378 to hold additional the SETs. */
3380 if (added_sets_0 || added_sets_1 || added_sets_2)
3382 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3383 combine_extras++;
3385 if (GET_CODE (newpat) == PARALLEL)
3387 rtvec old = XVEC (newpat, 0);
3388 total_sets = XVECLEN (newpat, 0) + extra_sets;
3389 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3390 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3391 sizeof (old->elem[0]) * old->num_elem);
3393 else
3395 rtx old = newpat;
3396 total_sets = 1 + extra_sets;
3397 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3398 XVECEXP (newpat, 0, 0) = old;
3401 if (added_sets_0)
3402 XVECEXP (newpat, 0, --total_sets) = i0pat;
3404 if (added_sets_1)
3406 rtx t = i1pat;
3407 if (i0_feeds_i1_n)
3408 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3410 XVECEXP (newpat, 0, --total_sets) = t;
3412 if (added_sets_2)
3414 rtx t = i2pat;
3415 if (i1_feeds_i2_n)
3416 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3417 i0_feeds_i1_n && i0dest_in_i0src);
3418 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3419 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3421 XVECEXP (newpat, 0, --total_sets) = t;
3425 validate_replacement:
3427 /* Note which hard regs this insn has as inputs. */
3428 mark_used_regs_combine (newpat);
3430 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3431 consider splitting this pattern, we might need these clobbers. */
3432 if (i1 && GET_CODE (newpat) == PARALLEL
3433 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3435 int len = XVECLEN (newpat, 0);
3437 newpat_vec_with_clobbers = rtvec_alloc (len);
3438 for (i = 0; i < len; i++)
3439 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3442 /* We have recognized nothing yet. */
3443 insn_code_number = -1;
3445 /* See if this is a PARALLEL of two SETs where one SET's destination is
3446 a register that is unused and this isn't marked as an instruction that
3447 might trap in an EH region. In that case, we just need the other SET.
3448 We prefer this over the PARALLEL.
3450 This can occur when simplifying a divmod insn. We *must* test for this
3451 case here because the code below that splits two independent SETs doesn't
3452 handle this case correctly when it updates the register status.
3454 It's pointless doing this if we originally had two sets, one from
3455 i3, and one from i2. Combining then splitting the parallel results
3456 in the original i2 again plus an invalid insn (which we delete).
3457 The net effect is only to move instructions around, which makes
3458 debug info less accurate. */
3460 if (!(added_sets_2 && i1 == 0)
3461 && is_parallel_of_n_reg_sets (newpat, 2)
3462 && asm_noperands (newpat) < 0)
3464 rtx set0 = XVECEXP (newpat, 0, 0);
3465 rtx set1 = XVECEXP (newpat, 0, 1);
3466 rtx oldpat = newpat;
3468 if (((REG_P (SET_DEST (set1))
3469 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3470 || (GET_CODE (SET_DEST (set1)) == SUBREG
3471 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3472 && insn_nothrow_p (i3)
3473 && !side_effects_p (SET_SRC (set1)))
3475 newpat = set0;
3476 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3479 else if (((REG_P (SET_DEST (set0))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3481 || (GET_CODE (SET_DEST (set0)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED,
3483 SUBREG_REG (SET_DEST (set0)))))
3484 && insn_nothrow_p (i3)
3485 && !side_effects_p (SET_SRC (set0)))
3487 newpat = set1;
3488 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490 if (insn_code_number >= 0)
3491 changed_i3_dest = 1;
3494 if (insn_code_number < 0)
3495 newpat = oldpat;
3498 /* Is the result of combination a valid instruction? */
3499 if (insn_code_number < 0)
3500 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3502 /* If we were combining three insns and the result is a simple SET
3503 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3504 insns. There are two ways to do this. It can be split using a
3505 machine-specific method (like when you have an addition of a large
3506 constant) or by combine in the function find_split_point. */
3508 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3509 && asm_noperands (newpat) < 0)
3511 rtx parallel, *split;
3512 rtx_insn *m_split_insn;
3514 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3515 use I2DEST as a scratch register will help. In the latter case,
3516 convert I2DEST to the mode of the source of NEWPAT if we can. */
3518 m_split_insn = combine_split_insns (newpat, i3);
3520 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3521 inputs of NEWPAT. */
3523 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3524 possible to try that as a scratch reg. This would require adding
3525 more code to make it work though. */
3527 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3529 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3531 /* First try to split using the original register as a
3532 scratch register. */
3533 parallel = gen_rtx_PARALLEL (VOIDmode,
3534 gen_rtvec (2, newpat,
3535 gen_rtx_CLOBBER (VOIDmode,
3536 i2dest)));
3537 m_split_insn = combine_split_insns (parallel, i3);
3539 /* If that didn't work, try changing the mode of I2DEST if
3540 we can. */
3541 if (m_split_insn == 0
3542 && new_mode != GET_MODE (i2dest)
3543 && new_mode != VOIDmode
3544 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3546 machine_mode old_mode = GET_MODE (i2dest);
3547 rtx ni2dest;
3549 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3550 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3551 else
3553 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3554 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3557 parallel = (gen_rtx_PARALLEL
3558 (VOIDmode,
3559 gen_rtvec (2, newpat,
3560 gen_rtx_CLOBBER (VOIDmode,
3561 ni2dest))));
3562 m_split_insn = combine_split_insns (parallel, i3);
3564 if (m_split_insn == 0
3565 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3567 struct undo *buf;
3569 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3570 buf = undobuf.undos;
3571 undobuf.undos = buf->next;
3572 buf->next = undobuf.frees;
3573 undobuf.frees = buf;
3577 i2scratch = m_split_insn != 0;
3580 /* If recog_for_combine has discarded clobbers, try to use them
3581 again for the split. */
3582 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3584 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3585 m_split_insn = combine_split_insns (parallel, i3);
3588 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3590 rtx m_split_pat = PATTERN (m_split_insn);
3591 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3592 if (insn_code_number >= 0)
3593 newpat = m_split_pat;
3595 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3596 && (next_nonnote_nondebug_insn (i2) == i3
3597 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3599 rtx i2set, i3set;
3600 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3601 newi2pat = PATTERN (m_split_insn);
3603 i3set = single_set (NEXT_INSN (m_split_insn));
3604 i2set = single_set (m_split_insn);
3606 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3608 /* If I2 or I3 has multiple SETs, we won't know how to track
3609 register status, so don't use these insns. If I2's destination
3610 is used between I2 and I3, we also can't use these insns. */
3612 if (i2_code_number >= 0 && i2set && i3set
3613 && (next_nonnote_nondebug_insn (i2) == i3
3614 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3615 insn_code_number = recog_for_combine (&newi3pat, i3,
3616 &new_i3_notes);
3617 if (insn_code_number >= 0)
3618 newpat = newi3pat;
3620 /* It is possible that both insns now set the destination of I3.
3621 If so, we must show an extra use of it. */
3623 if (insn_code_number >= 0)
3625 rtx new_i3_dest = SET_DEST (i3set);
3626 rtx new_i2_dest = SET_DEST (i2set);
3628 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3629 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3630 || GET_CODE (new_i3_dest) == SUBREG)
3631 new_i3_dest = XEXP (new_i3_dest, 0);
3633 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3634 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3635 || GET_CODE (new_i2_dest) == SUBREG)
3636 new_i2_dest = XEXP (new_i2_dest, 0);
3638 if (REG_P (new_i3_dest)
3639 && REG_P (new_i2_dest)
3640 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3641 && REGNO (new_i2_dest) < reg_n_sets_max)
3642 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3646 /* If we can split it and use I2DEST, go ahead and see if that
3647 helps things be recognized. Verify that none of the registers
3648 are set between I2 and I3. */
3649 if (insn_code_number < 0
3650 && (split = find_split_point (&newpat, i3, false)) != 0
3651 #ifdef HAVE_cc0
3652 && REG_P (i2dest)
3653 #endif
3654 /* We need I2DEST in the proper mode. If it is a hard register
3655 or the only use of a pseudo, we can change its mode.
3656 Make sure we don't change a hard register to have a mode that
3657 isn't valid for it, or change the number of registers. */
3658 && (GET_MODE (*split) == GET_MODE (i2dest)
3659 || GET_MODE (*split) == VOIDmode
3660 || can_change_dest_mode (i2dest, added_sets_2,
3661 GET_MODE (*split)))
3662 && (next_nonnote_nondebug_insn (i2) == i3
3663 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3664 /* We can't overwrite I2DEST if its value is still used by
3665 NEWPAT. */
3666 && ! reg_referenced_p (i2dest, newpat))
3668 rtx newdest = i2dest;
3669 enum rtx_code split_code = GET_CODE (*split);
3670 machine_mode split_mode = GET_MODE (*split);
3671 bool subst_done = false;
3672 newi2pat = NULL_RTX;
3674 i2scratch = true;
3676 /* *SPLIT may be part of I2SRC, so make sure we have the
3677 original expression around for later debug processing.
3678 We should not need I2SRC any more in other cases. */
3679 if (MAY_HAVE_DEBUG_INSNS)
3680 i2src = copy_rtx (i2src);
3681 else
3682 i2src = NULL;
3684 /* Get NEWDEST as a register in the proper mode. We have already
3685 validated that we can do this. */
3686 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3688 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3689 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3690 else
3692 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3693 newdest = regno_reg_rtx[REGNO (i2dest)];
3697 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3698 an ASHIFT. This can occur if it was inside a PLUS and hence
3699 appeared to be a memory address. This is a kludge. */
3700 if (split_code == MULT
3701 && CONST_INT_P (XEXP (*split, 1))
3702 && INTVAL (XEXP (*split, 1)) > 0
3703 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3705 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3706 XEXP (*split, 0), GEN_INT (i)));
3707 /* Update split_code because we may not have a multiply
3708 anymore. */
3709 split_code = GET_CODE (*split);
3712 #ifdef INSN_SCHEDULING
3713 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3714 be written as a ZERO_EXTEND. */
3715 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3717 #ifdef LOAD_EXTEND_OP
3718 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3719 what it really is. */
3720 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3721 == SIGN_EXTEND)
3722 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3723 SUBREG_REG (*split)));
3724 else
3725 #endif
3726 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3727 SUBREG_REG (*split)));
3729 #endif
3731 /* Attempt to split binary operators using arithmetic identities. */
3732 if (BINARY_P (SET_SRC (newpat))
3733 && split_mode == GET_MODE (SET_SRC (newpat))
3734 && ! side_effects_p (SET_SRC (newpat)))
3736 rtx setsrc = SET_SRC (newpat);
3737 machine_mode mode = GET_MODE (setsrc);
3738 enum rtx_code code = GET_CODE (setsrc);
3739 rtx src_op0 = XEXP (setsrc, 0);
3740 rtx src_op1 = XEXP (setsrc, 1);
3742 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3743 if (rtx_equal_p (src_op0, src_op1))
3745 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3746 SUBST (XEXP (setsrc, 0), newdest);
3747 SUBST (XEXP (setsrc, 1), newdest);
3748 subst_done = true;
3750 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3751 else if ((code == PLUS || code == MULT)
3752 && GET_CODE (src_op0) == code
3753 && GET_CODE (XEXP (src_op0, 0)) == code
3754 && (INTEGRAL_MODE_P (mode)
3755 || (FLOAT_MODE_P (mode)
3756 && flag_unsafe_math_optimizations)))
3758 rtx p = XEXP (XEXP (src_op0, 0), 0);
3759 rtx q = XEXP (XEXP (src_op0, 0), 1);
3760 rtx r = XEXP (src_op0, 1);
3761 rtx s = src_op1;
3763 /* Split both "((X op Y) op X) op Y" and
3764 "((X op Y) op Y) op X" as "T op T" where T is
3765 "X op Y". */
3766 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3767 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3769 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3770 XEXP (src_op0, 0));
3771 SUBST (XEXP (setsrc, 0), newdest);
3772 SUBST (XEXP (setsrc, 1), newdest);
3773 subst_done = true;
3775 /* Split "((X op X) op Y) op Y)" as "T op T" where
3776 T is "X op Y". */
3777 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3779 rtx tmp = simplify_gen_binary (code, mode, p, r);
3780 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3781 SUBST (XEXP (setsrc, 0), newdest);
3782 SUBST (XEXP (setsrc, 1), newdest);
3783 subst_done = true;
3788 if (!subst_done)
3790 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3791 SUBST (*split, newdest);
3794 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3796 /* recog_for_combine might have added CLOBBERs to newi2pat.
3797 Make sure NEWPAT does not depend on the clobbered regs. */
3798 if (GET_CODE (newi2pat) == PARALLEL)
3799 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3800 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3802 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3803 if (reg_overlap_mentioned_p (reg, newpat))
3805 undo_all ();
3806 return 0;
3810 /* If the split point was a MULT and we didn't have one before,
3811 don't use one now. */
3812 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3813 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3817 /* Check for a case where we loaded from memory in a narrow mode and
3818 then sign extended it, but we need both registers. In that case,
3819 we have a PARALLEL with both loads from the same memory location.
3820 We can split this into a load from memory followed by a register-register
3821 copy. This saves at least one insn, more if register allocation can
3822 eliminate the copy.
3824 We cannot do this if the destination of the first assignment is a
3825 condition code register or cc0. We eliminate this case by making sure
3826 the SET_DEST and SET_SRC have the same mode.
3828 We cannot do this if the destination of the second assignment is
3829 a register that we have already assumed is zero-extended. Similarly
3830 for a SUBREG of such a register. */
3832 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3833 && GET_CODE (newpat) == PARALLEL
3834 && XVECLEN (newpat, 0) == 2
3835 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3836 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3837 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3838 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3839 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3840 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3841 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3842 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3843 DF_INSN_LUID (i2))
3844 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3845 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3846 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3847 (REG_P (temp_expr)
3848 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3849 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3850 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3851 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3852 != GET_MODE_MASK (word_mode))))
3853 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3854 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3855 (REG_P (temp_expr)
3856 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3857 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3858 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3859 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3860 != GET_MODE_MASK (word_mode)))))
3861 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3862 SET_SRC (XVECEXP (newpat, 0, 1)))
3863 && ! find_reg_note (i3, REG_UNUSED,
3864 SET_DEST (XVECEXP (newpat, 0, 0))))
3866 rtx ni2dest;
3868 newi2pat = XVECEXP (newpat, 0, 0);
3869 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3870 newpat = XVECEXP (newpat, 0, 1);
3871 SUBST (SET_SRC (newpat),
3872 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3873 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3875 if (i2_code_number >= 0)
3876 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3878 if (insn_code_number >= 0)
3879 swap_i2i3 = 1;
3882 /* Similarly, check for a case where we have a PARALLEL of two independent
3883 SETs but we started with three insns. In this case, we can do the sets
3884 as two separate insns. This case occurs when some SET allows two
3885 other insns to combine, but the destination of that SET is still live.
3887 Also do this if we started with two insns and (at least) one of the
3888 resulting sets is a noop; this noop will be deleted later. */
3890 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3891 && GET_CODE (newpat) == PARALLEL
3892 && XVECLEN (newpat, 0) == 2
3893 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3894 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3895 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3896 || set_noop_p (XVECEXP (newpat, 0, 1)))
3897 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3898 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3899 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3900 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3901 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3902 XVECEXP (newpat, 0, 0))
3903 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3904 XVECEXP (newpat, 0, 1))
3905 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3906 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3908 rtx set0 = XVECEXP (newpat, 0, 0);
3909 rtx set1 = XVECEXP (newpat, 0, 1);
3911 /* Normally, it doesn't matter which of the two is done first,
3912 but the one that references cc0 can't be the second, and
3913 one which uses any regs/memory set in between i2 and i3 can't
3914 be first. The PARALLEL might also have been pre-existing in i3,
3915 so we need to make sure that we won't wrongly hoist a SET to i2
3916 that would conflict with a death note present in there. */
3917 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3918 && !(REG_P (SET_DEST (set1))
3919 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3920 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3921 && find_reg_note (i2, REG_DEAD,
3922 SUBREG_REG (SET_DEST (set1))))
3923 #ifdef HAVE_cc0
3924 && !reg_referenced_p (cc0_rtx, set0)
3925 #endif
3926 /* If I3 is a jump, ensure that set0 is a jump so that
3927 we do not create invalid RTL. */
3928 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3931 newi2pat = set1;
3932 newpat = set0;
3934 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3935 && !(REG_P (SET_DEST (set0))
3936 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3937 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3938 && find_reg_note (i2, REG_DEAD,
3939 SUBREG_REG (SET_DEST (set0))))
3940 #ifdef HAVE_cc0
3941 && !reg_referenced_p (cc0_rtx, set1)
3942 #endif
3943 /* If I3 is a jump, ensure that set1 is a jump so that
3944 we do not create invalid RTL. */
3945 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3948 newi2pat = set0;
3949 newpat = set1;
3951 else
3953 undo_all ();
3954 return 0;
3957 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3959 if (i2_code_number >= 0)
3961 /* recog_for_combine might have added CLOBBERs to newi2pat.
3962 Make sure NEWPAT does not depend on the clobbered regs. */
3963 if (GET_CODE (newi2pat) == PARALLEL)
3965 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3966 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3968 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3969 if (reg_overlap_mentioned_p (reg, newpat))
3971 undo_all ();
3972 return 0;
3977 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3981 /* If it still isn't recognized, fail and change things back the way they
3982 were. */
3983 if ((insn_code_number < 0
3984 /* Is the result a reasonable ASM_OPERANDS? */
3985 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3987 undo_all ();
3988 return 0;
3991 /* If we had to change another insn, make sure it is valid also. */
3992 if (undobuf.other_insn)
3994 CLEAR_HARD_REG_SET (newpat_used_regs);
3996 other_pat = PATTERN (undobuf.other_insn);
3997 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3998 &new_other_notes);
4000 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4002 undo_all ();
4003 return 0;
4007 #ifdef HAVE_cc0
4008 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4009 they are adjacent to each other or not. */
4011 rtx_insn *p = prev_nonnote_insn (i3);
4012 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4013 && sets_cc0_p (newi2pat))
4015 undo_all ();
4016 return 0;
4019 #endif
4021 /* Only allow this combination if insn_rtx_costs reports that the
4022 replacement instructions are cheaper than the originals. */
4023 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4025 undo_all ();
4026 return 0;
4029 if (MAY_HAVE_DEBUG_INSNS)
4031 struct undo *undo;
4033 for (undo = undobuf.undos; undo; undo = undo->next)
4034 if (undo->kind == UNDO_MODE)
4036 rtx reg = *undo->where.r;
4037 machine_mode new_mode = GET_MODE (reg);
4038 machine_mode old_mode = undo->old_contents.m;
4040 /* Temporarily revert mode back. */
4041 adjust_reg_mode (reg, old_mode);
4043 if (reg == i2dest && i2scratch)
4045 /* If we used i2dest as a scratch register with a
4046 different mode, substitute it for the original
4047 i2src while its original mode is temporarily
4048 restored, and then clear i2scratch so that we don't
4049 do it again later. */
4050 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4051 this_basic_block);
4052 i2scratch = false;
4053 /* Put back the new mode. */
4054 adjust_reg_mode (reg, new_mode);
4056 else
4058 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4059 rtx_insn *first, *last;
4061 if (reg == i2dest)
4063 first = i2;
4064 last = last_combined_insn;
4066 else
4068 first = i3;
4069 last = undobuf.other_insn;
4070 gcc_assert (last);
4071 if (DF_INSN_LUID (last)
4072 < DF_INSN_LUID (last_combined_insn))
4073 last = last_combined_insn;
4076 /* We're dealing with a reg that changed mode but not
4077 meaning, so we want to turn it into a subreg for
4078 the new mode. However, because of REG sharing and
4079 because its mode had already changed, we have to do
4080 it in two steps. First, replace any debug uses of
4081 reg, with its original mode temporarily restored,
4082 with this copy we have created; then, replace the
4083 copy with the SUBREG of the original shared reg,
4084 once again changed to the new mode. */
4085 propagate_for_debug (first, last, reg, tempreg,
4086 this_basic_block);
4087 adjust_reg_mode (reg, new_mode);
4088 propagate_for_debug (first, last, tempreg,
4089 lowpart_subreg (old_mode, reg, new_mode),
4090 this_basic_block);
4095 /* If we will be able to accept this, we have made a
4096 change to the destination of I3. This requires us to
4097 do a few adjustments. */
4099 if (changed_i3_dest)
4101 PATTERN (i3) = newpat;
4102 adjust_for_new_dest (i3);
4105 /* We now know that we can do this combination. Merge the insns and
4106 update the status of registers and LOG_LINKS. */
4108 if (undobuf.other_insn)
4110 rtx note, next;
4112 PATTERN (undobuf.other_insn) = other_pat;
4114 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4115 ensure that they are still valid. Then add any non-duplicate
4116 notes added by recog_for_combine. */
4117 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4119 next = XEXP (note, 1);
4121 if ((REG_NOTE_KIND (note) == REG_DEAD
4122 && !reg_referenced_p (XEXP (note, 0),
4123 PATTERN (undobuf.other_insn)))
4124 ||(REG_NOTE_KIND (note) == REG_UNUSED
4125 && !reg_set_p (XEXP (note, 0),
4126 PATTERN (undobuf.other_insn))))
4127 remove_note (undobuf.other_insn, note);
4130 distribute_notes (new_other_notes, undobuf.other_insn,
4131 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4132 NULL_RTX);
4135 if (swap_i2i3)
4137 rtx_insn *insn;
4138 struct insn_link *link;
4139 rtx ni2dest;
4141 /* I3 now uses what used to be its destination and which is now
4142 I2's destination. This requires us to do a few adjustments. */
4143 PATTERN (i3) = newpat;
4144 adjust_for_new_dest (i3);
4146 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4147 so we still will.
4149 However, some later insn might be using I2's dest and have
4150 a LOG_LINK pointing at I3. We must remove this link.
4151 The simplest way to remove the link is to point it at I1,
4152 which we know will be a NOTE. */
4154 /* newi2pat is usually a SET here; however, recog_for_combine might
4155 have added some clobbers. */
4156 if (GET_CODE (newi2pat) == PARALLEL)
4157 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4158 else
4159 ni2dest = SET_DEST (newi2pat);
4161 for (insn = NEXT_INSN (i3);
4162 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4163 || insn != BB_HEAD (this_basic_block->next_bb));
4164 insn = NEXT_INSN (insn))
4166 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4168 FOR_EACH_LOG_LINK (link, insn)
4169 if (link->insn == i3)
4170 link->insn = i1;
4172 break;
4178 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4179 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4180 rtx midnotes = 0;
4181 int from_luid;
4182 /* Compute which registers we expect to eliminate. newi2pat may be setting
4183 either i3dest or i2dest, so we must check it. */
4184 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4185 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4186 || !i2dest_killed
4187 ? 0 : i2dest);
4188 /* For i1, we need to compute both local elimination and global
4189 elimination information with respect to newi2pat because i1dest
4190 may be the same as i3dest, in which case newi2pat may be setting
4191 i1dest. Global information is used when distributing REG_DEAD
4192 note for i2 and i3, in which case it does matter if newi2pat sets
4193 i1dest or not.
4195 Local information is used when distributing REG_DEAD note for i1,
4196 in which case it doesn't matter if newi2pat sets i1dest or not.
4197 See PR62151, if we have four insns combination:
4198 i0: r0 <- i0src
4199 i1: r1 <- i1src (using r0)
4200 REG_DEAD (r0)
4201 i2: r0 <- i2src (using r1)
4202 i3: r3 <- i3src (using r0)
4203 ix: using r0
4204 From i1's point of view, r0 is eliminated, no matter if it is set
4205 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4206 should be discarded.
4208 Note local information only affects cases in forms like "I1->I2->I3",
4209 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4210 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4211 i0dest anyway. */
4212 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4213 || !i1dest_killed
4214 ? 0 : i1dest);
4215 rtx elim_i1 = (local_elim_i1 == 0
4216 || (newi2pat && reg_set_p (i1dest, newi2pat))
4217 ? 0 : i1dest);
4218 /* Same case as i1. */
4219 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4220 ? 0 : i0dest);
4221 rtx elim_i0 = (local_elim_i0 == 0
4222 || (newi2pat && reg_set_p (i0dest, newi2pat))
4223 ? 0 : i0dest);
4225 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4226 clear them. */
4227 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4228 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4229 if (i1)
4230 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4231 if (i0)
4232 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4234 /* Ensure that we do not have something that should not be shared but
4235 occurs multiple times in the new insns. Check this by first
4236 resetting all the `used' flags and then copying anything is shared. */
4238 reset_used_flags (i3notes);
4239 reset_used_flags (i2notes);
4240 reset_used_flags (i1notes);
4241 reset_used_flags (i0notes);
4242 reset_used_flags (newpat);
4243 reset_used_flags (newi2pat);
4244 if (undobuf.other_insn)
4245 reset_used_flags (PATTERN (undobuf.other_insn));
4247 i3notes = copy_rtx_if_shared (i3notes);
4248 i2notes = copy_rtx_if_shared (i2notes);
4249 i1notes = copy_rtx_if_shared (i1notes);
4250 i0notes = copy_rtx_if_shared (i0notes);
4251 newpat = copy_rtx_if_shared (newpat);
4252 newi2pat = copy_rtx_if_shared (newi2pat);
4253 if (undobuf.other_insn)
4254 reset_used_flags (PATTERN (undobuf.other_insn));
4256 INSN_CODE (i3) = insn_code_number;
4257 PATTERN (i3) = newpat;
4259 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4261 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4263 reset_used_flags (call_usage);
4264 call_usage = copy_rtx (call_usage);
4266 if (substed_i2)
4268 /* I2SRC must still be meaningful at this point. Some splitting
4269 operations can invalidate I2SRC, but those operations do not
4270 apply to calls. */
4271 gcc_assert (i2src);
4272 replace_rtx (call_usage, i2dest, i2src);
4275 if (substed_i1)
4276 replace_rtx (call_usage, i1dest, i1src);
4277 if (substed_i0)
4278 replace_rtx (call_usage, i0dest, i0src);
4280 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4283 if (undobuf.other_insn)
4284 INSN_CODE (undobuf.other_insn) = other_code_number;
4286 /* We had one special case above where I2 had more than one set and
4287 we replaced a destination of one of those sets with the destination
4288 of I3. In that case, we have to update LOG_LINKS of insns later
4289 in this basic block. Note that this (expensive) case is rare.
4291 Also, in this case, we must pretend that all REG_NOTEs for I2
4292 actually came from I3, so that REG_UNUSED notes from I2 will be
4293 properly handled. */
4295 if (i3_subst_into_i2)
4297 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4298 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4299 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4300 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4301 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4302 && ! find_reg_note (i2, REG_UNUSED,
4303 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4304 for (temp_insn = NEXT_INSN (i2);
4305 temp_insn
4306 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4307 || BB_HEAD (this_basic_block) != temp_insn);
4308 temp_insn = NEXT_INSN (temp_insn))
4309 if (temp_insn != i3 && INSN_P (temp_insn))
4310 FOR_EACH_LOG_LINK (link, temp_insn)
4311 if (link->insn == i2)
4312 link->insn = i3;
4314 if (i3notes)
4316 rtx link = i3notes;
4317 while (XEXP (link, 1))
4318 link = XEXP (link, 1);
4319 XEXP (link, 1) = i2notes;
4321 else
4322 i3notes = i2notes;
4323 i2notes = 0;
4326 LOG_LINKS (i3) = NULL;
4327 REG_NOTES (i3) = 0;
4328 LOG_LINKS (i2) = NULL;
4329 REG_NOTES (i2) = 0;
4331 if (newi2pat)
4333 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4334 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4335 this_basic_block);
4336 INSN_CODE (i2) = i2_code_number;
4337 PATTERN (i2) = newi2pat;
4339 else
4341 if (MAY_HAVE_DEBUG_INSNS && i2src)
4342 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4343 this_basic_block);
4344 SET_INSN_DELETED (i2);
4347 if (i1)
4349 LOG_LINKS (i1) = NULL;
4350 REG_NOTES (i1) = 0;
4351 if (MAY_HAVE_DEBUG_INSNS)
4352 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4353 this_basic_block);
4354 SET_INSN_DELETED (i1);
4357 if (i0)
4359 LOG_LINKS (i0) = NULL;
4360 REG_NOTES (i0) = 0;
4361 if (MAY_HAVE_DEBUG_INSNS)
4362 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4363 this_basic_block);
4364 SET_INSN_DELETED (i0);
4367 /* Get death notes for everything that is now used in either I3 or
4368 I2 and used to die in a previous insn. If we built two new
4369 patterns, move from I1 to I2 then I2 to I3 so that we get the
4370 proper movement on registers that I2 modifies. */
4372 if (i0)
4373 from_luid = DF_INSN_LUID (i0);
4374 else if (i1)
4375 from_luid = DF_INSN_LUID (i1);
4376 else
4377 from_luid = DF_INSN_LUID (i2);
4378 if (newi2pat)
4379 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4380 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4382 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4383 if (i3notes)
4384 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4385 elim_i2, elim_i1, elim_i0);
4386 if (i2notes)
4387 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4388 elim_i2, elim_i1, elim_i0);
4389 if (i1notes)
4390 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4391 elim_i2, local_elim_i1, local_elim_i0);
4392 if (i0notes)
4393 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4394 elim_i2, elim_i1, local_elim_i0);
4395 if (midnotes)
4396 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4397 elim_i2, elim_i1, elim_i0);
4399 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4400 know these are REG_UNUSED and want them to go to the desired insn,
4401 so we always pass it as i3. */
4403 if (newi2pat && new_i2_notes)
4404 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4405 NULL_RTX);
4407 if (new_i3_notes)
4408 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4409 NULL_RTX);
4411 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4412 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4413 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4414 in that case, it might delete I2. Similarly for I2 and I1.
4415 Show an additional death due to the REG_DEAD note we make here. If
4416 we discard it in distribute_notes, we will decrement it again. */
4418 if (i3dest_killed)
4420 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4421 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4422 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4423 elim_i1, elim_i0);
4424 else
4425 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4426 elim_i2, elim_i1, elim_i0);
4429 if (i2dest_in_i2src)
4431 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4432 if (newi2pat && reg_set_p (i2dest, newi2pat))
4433 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4434 NULL_RTX, NULL_RTX);
4435 else
4436 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4437 NULL_RTX, NULL_RTX, NULL_RTX);
4440 if (i1dest_in_i1src)
4442 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4443 if (newi2pat && reg_set_p (i1dest, newi2pat))
4444 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4445 NULL_RTX, NULL_RTX);
4446 else
4447 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4448 NULL_RTX, NULL_RTX, NULL_RTX);
4451 if (i0dest_in_i0src)
4453 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4454 if (newi2pat && reg_set_p (i0dest, newi2pat))
4455 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4456 NULL_RTX, NULL_RTX);
4457 else
4458 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4459 NULL_RTX, NULL_RTX, NULL_RTX);
4462 distribute_links (i3links);
4463 distribute_links (i2links);
4464 distribute_links (i1links);
4465 distribute_links (i0links);
4467 if (REG_P (i2dest))
4469 struct insn_link *link;
4470 rtx_insn *i2_insn = 0;
4471 rtx i2_val = 0, set;
4473 /* The insn that used to set this register doesn't exist, and
4474 this life of the register may not exist either. See if one of
4475 I3's links points to an insn that sets I2DEST. If it does,
4476 that is now the last known value for I2DEST. If we don't update
4477 this and I2 set the register to a value that depended on its old
4478 contents, we will get confused. If this insn is used, thing
4479 will be set correctly in combine_instructions. */
4480 FOR_EACH_LOG_LINK (link, i3)
4481 if ((set = single_set (link->insn)) != 0
4482 && rtx_equal_p (i2dest, SET_DEST (set)))
4483 i2_insn = link->insn, i2_val = SET_SRC (set);
4485 record_value_for_reg (i2dest, i2_insn, i2_val);
4487 /* If the reg formerly set in I2 died only once and that was in I3,
4488 zero its use count so it won't make `reload' do any work. */
4489 if (! added_sets_2
4490 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4491 && ! i2dest_in_i2src
4492 && REGNO (i2dest) < reg_n_sets_max)
4493 INC_REG_N_SETS (REGNO (i2dest), -1);
4496 if (i1 && REG_P (i1dest))
4498 struct insn_link *link;
4499 rtx_insn *i1_insn = 0;
4500 rtx i1_val = 0, set;
4502 FOR_EACH_LOG_LINK (link, i3)
4503 if ((set = single_set (link->insn)) != 0
4504 && rtx_equal_p (i1dest, SET_DEST (set)))
4505 i1_insn = link->insn, i1_val = SET_SRC (set);
4507 record_value_for_reg (i1dest, i1_insn, i1_val);
4509 if (! added_sets_1
4510 && ! i1dest_in_i1src
4511 && REGNO (i1dest) < reg_n_sets_max)
4512 INC_REG_N_SETS (REGNO (i1dest), -1);
4515 if (i0 && REG_P (i0dest))
4517 struct insn_link *link;
4518 rtx_insn *i0_insn = 0;
4519 rtx i0_val = 0, set;
4521 FOR_EACH_LOG_LINK (link, i3)
4522 if ((set = single_set (link->insn)) != 0
4523 && rtx_equal_p (i0dest, SET_DEST (set)))
4524 i0_insn = link->insn, i0_val = SET_SRC (set);
4526 record_value_for_reg (i0dest, i0_insn, i0_val);
4528 if (! added_sets_0
4529 && ! i0dest_in_i0src
4530 && REGNO (i0dest) < reg_n_sets_max)
4531 INC_REG_N_SETS (REGNO (i0dest), -1);
4534 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4535 been made to this insn. The order is important, because newi2pat
4536 can affect nonzero_bits of newpat. */
4537 if (newi2pat)
4538 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4539 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4542 if (undobuf.other_insn != NULL_RTX)
4544 if (dump_file)
4546 fprintf (dump_file, "modifying other_insn ");
4547 dump_insn_slim (dump_file, undobuf.other_insn);
4549 df_insn_rescan (undobuf.other_insn);
4552 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4554 if (dump_file)
4556 fprintf (dump_file, "modifying insn i0 ");
4557 dump_insn_slim (dump_file, i0);
4559 df_insn_rescan (i0);
4562 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4564 if (dump_file)
4566 fprintf (dump_file, "modifying insn i1 ");
4567 dump_insn_slim (dump_file, i1);
4569 df_insn_rescan (i1);
4572 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4574 if (dump_file)
4576 fprintf (dump_file, "modifying insn i2 ");
4577 dump_insn_slim (dump_file, i2);
4579 df_insn_rescan (i2);
4582 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4584 if (dump_file)
4586 fprintf (dump_file, "modifying insn i3 ");
4587 dump_insn_slim (dump_file, i3);
4589 df_insn_rescan (i3);
4592 /* Set new_direct_jump_p if a new return or simple jump instruction
4593 has been created. Adjust the CFG accordingly. */
4594 if (returnjump_p (i3) || any_uncondjump_p (i3))
4596 *new_direct_jump_p = 1;
4597 mark_jump_label (PATTERN (i3), i3, 0);
4598 update_cfg_for_uncondjump (i3);
4601 if (undobuf.other_insn != NULL_RTX
4602 && (returnjump_p (undobuf.other_insn)
4603 || any_uncondjump_p (undobuf.other_insn)))
4605 *new_direct_jump_p = 1;
4606 update_cfg_for_uncondjump (undobuf.other_insn);
4609 /* A noop might also need cleaning up of CFG, if it comes from the
4610 simplification of a jump. */
4611 if (JUMP_P (i3)
4612 && GET_CODE (newpat) == SET
4613 && SET_SRC (newpat) == pc_rtx
4614 && SET_DEST (newpat) == pc_rtx)
4616 *new_direct_jump_p = 1;
4617 update_cfg_for_uncondjump (i3);
4620 if (undobuf.other_insn != NULL_RTX
4621 && JUMP_P (undobuf.other_insn)
4622 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4623 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4624 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4626 *new_direct_jump_p = 1;
4627 update_cfg_for_uncondjump (undobuf.other_insn);
4630 combine_successes++;
4631 undo_commit ();
4633 if (added_links_insn
4634 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4635 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4636 return added_links_insn;
4637 else
4638 return newi2pat ? i2 : i3;
4641 /* Undo all the modifications recorded in undobuf. */
4643 static void
4644 undo_all (void)
4646 struct undo *undo, *next;
4648 for (undo = undobuf.undos; undo; undo = next)
4650 next = undo->next;
4651 switch (undo->kind)
4653 case UNDO_RTX:
4654 *undo->where.r = undo->old_contents.r;
4655 break;
4656 case UNDO_INT:
4657 *undo->where.i = undo->old_contents.i;
4658 break;
4659 case UNDO_MODE:
4660 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4661 break;
4662 case UNDO_LINKS:
4663 *undo->where.l = undo->old_contents.l;
4664 break;
4665 default:
4666 gcc_unreachable ();
4669 undo->next = undobuf.frees;
4670 undobuf.frees = undo;
4673 undobuf.undos = 0;
4676 /* We've committed to accepting the changes we made. Move all
4677 of the undos to the free list. */
4679 static void
4680 undo_commit (void)
4682 struct undo *undo, *next;
4684 for (undo = undobuf.undos; undo; undo = next)
4686 next = undo->next;
4687 undo->next = undobuf.frees;
4688 undobuf.frees = undo;
4690 undobuf.undos = 0;
4693 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4694 where we have an arithmetic expression and return that point. LOC will
4695 be inside INSN.
4697 try_combine will call this function to see if an insn can be split into
4698 two insns. */
4700 static rtx *
4701 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4703 rtx x = *loc;
4704 enum rtx_code code = GET_CODE (x);
4705 rtx *split;
4706 unsigned HOST_WIDE_INT len = 0;
4707 HOST_WIDE_INT pos = 0;
4708 int unsignedp = 0;
4709 rtx inner = NULL_RTX;
4711 /* First special-case some codes. */
4712 switch (code)
4714 case SUBREG:
4715 #ifdef INSN_SCHEDULING
4716 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4717 point. */
4718 if (MEM_P (SUBREG_REG (x)))
4719 return loc;
4720 #endif
4721 return find_split_point (&SUBREG_REG (x), insn, false);
4723 case MEM:
4724 #ifdef HAVE_lo_sum
4725 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4726 using LO_SUM and HIGH. */
4727 if (GET_CODE (XEXP (x, 0)) == CONST
4728 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
4730 machine_mode address_mode = get_address_mode (x);
4732 SUBST (XEXP (x, 0),
4733 gen_rtx_LO_SUM (address_mode,
4734 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4735 XEXP (x, 0)));
4736 return &XEXP (XEXP (x, 0), 0);
4738 #endif
4740 /* If we have a PLUS whose second operand is a constant and the
4741 address is not valid, perhaps will can split it up using
4742 the machine-specific way to split large constants. We use
4743 the first pseudo-reg (one of the virtual regs) as a placeholder;
4744 it will not remain in the result. */
4745 if (GET_CODE (XEXP (x, 0)) == PLUS
4746 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4747 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4748 MEM_ADDR_SPACE (x)))
4750 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4751 rtx_insn *seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
4752 XEXP (x, 0)),
4753 subst_insn);
4755 /* This should have produced two insns, each of which sets our
4756 placeholder. If the source of the second is a valid address,
4757 we can make put both sources together and make a split point
4758 in the middle. */
4760 if (seq
4761 && NEXT_INSN (seq) != NULL_RTX
4762 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4763 && NONJUMP_INSN_P (seq)
4764 && GET_CODE (PATTERN (seq)) == SET
4765 && SET_DEST (PATTERN (seq)) == reg
4766 && ! reg_mentioned_p (reg,
4767 SET_SRC (PATTERN (seq)))
4768 && NONJUMP_INSN_P (NEXT_INSN (seq))
4769 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4770 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4771 && memory_address_addr_space_p
4772 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4773 MEM_ADDR_SPACE (x)))
4775 rtx src1 = SET_SRC (PATTERN (seq));
4776 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4778 /* Replace the placeholder in SRC2 with SRC1. If we can
4779 find where in SRC2 it was placed, that can become our
4780 split point and we can replace this address with SRC2.
4781 Just try two obvious places. */
4783 src2 = replace_rtx (src2, reg, src1);
4784 split = 0;
4785 if (XEXP (src2, 0) == src1)
4786 split = &XEXP (src2, 0);
4787 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4788 && XEXP (XEXP (src2, 0), 0) == src1)
4789 split = &XEXP (XEXP (src2, 0), 0);
4791 if (split)
4793 SUBST (XEXP (x, 0), src2);
4794 return split;
4798 /* If that didn't work, perhaps the first operand is complex and
4799 needs to be computed separately, so make a split point there.
4800 This will occur on machines that just support REG + CONST
4801 and have a constant moved through some previous computation. */
4803 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4804 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4805 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4806 return &XEXP (XEXP (x, 0), 0);
4809 /* If we have a PLUS whose first operand is complex, try computing it
4810 separately by making a split there. */
4811 if (GET_CODE (XEXP (x, 0)) == PLUS
4812 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4813 MEM_ADDR_SPACE (x))
4814 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4815 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4816 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4817 return &XEXP (XEXP (x, 0), 0);
4818 break;
4820 case SET:
4821 #ifdef HAVE_cc0
4822 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4823 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4824 we need to put the operand into a register. So split at that
4825 point. */
4827 if (SET_DEST (x) == cc0_rtx
4828 && GET_CODE (SET_SRC (x)) != COMPARE
4829 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4830 && !OBJECT_P (SET_SRC (x))
4831 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4832 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4833 return &SET_SRC (x);
4834 #endif
4836 /* See if we can split SET_SRC as it stands. */
4837 split = find_split_point (&SET_SRC (x), insn, true);
4838 if (split && split != &SET_SRC (x))
4839 return split;
4841 /* See if we can split SET_DEST as it stands. */
4842 split = find_split_point (&SET_DEST (x), insn, false);
4843 if (split && split != &SET_DEST (x))
4844 return split;
4846 /* See if this is a bitfield assignment with everything constant. If
4847 so, this is an IOR of an AND, so split it into that. */
4848 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4849 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4850 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4851 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4852 && CONST_INT_P (SET_SRC (x))
4853 && ((INTVAL (XEXP (SET_DEST (x), 1))
4854 + INTVAL (XEXP (SET_DEST (x), 2)))
4855 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4856 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4858 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4859 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4860 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4861 rtx dest = XEXP (SET_DEST (x), 0);
4862 machine_mode mode = GET_MODE (dest);
4863 unsigned HOST_WIDE_INT mask
4864 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4865 rtx or_mask;
4867 if (BITS_BIG_ENDIAN)
4868 pos = GET_MODE_PRECISION (mode) - len - pos;
4870 or_mask = gen_int_mode (src << pos, mode);
4871 if (src == mask)
4872 SUBST (SET_SRC (x),
4873 simplify_gen_binary (IOR, mode, dest, or_mask));
4874 else
4876 rtx negmask = gen_int_mode (~(mask << pos), mode);
4877 SUBST (SET_SRC (x),
4878 simplify_gen_binary (IOR, mode,
4879 simplify_gen_binary (AND, mode,
4880 dest, negmask),
4881 or_mask));
4884 SUBST (SET_DEST (x), dest);
4886 split = find_split_point (&SET_SRC (x), insn, true);
4887 if (split && split != &SET_SRC (x))
4888 return split;
4891 /* Otherwise, see if this is an operation that we can split into two.
4892 If so, try to split that. */
4893 code = GET_CODE (SET_SRC (x));
4895 switch (code)
4897 case AND:
4898 /* If we are AND'ing with a large constant that is only a single
4899 bit and the result is only being used in a context where we
4900 need to know if it is zero or nonzero, replace it with a bit
4901 extraction. This will avoid the large constant, which might
4902 have taken more than one insn to make. If the constant were
4903 not a valid argument to the AND but took only one insn to make,
4904 this is no worse, but if it took more than one insn, it will
4905 be better. */
4907 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4908 && REG_P (XEXP (SET_SRC (x), 0))
4909 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4910 && REG_P (SET_DEST (x))
4911 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4912 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4913 && XEXP (*split, 0) == SET_DEST (x)
4914 && XEXP (*split, 1) == const0_rtx)
4916 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4917 XEXP (SET_SRC (x), 0),
4918 pos, NULL_RTX, 1, 1, 0, 0);
4919 if (extraction != 0)
4921 SUBST (SET_SRC (x), extraction);
4922 return find_split_point (loc, insn, false);
4925 break;
4927 case NE:
4928 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4929 is known to be on, this can be converted into a NEG of a shift. */
4930 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4931 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4932 && 1 <= (pos = exact_log2
4933 (nonzero_bits (XEXP (SET_SRC (x), 0),
4934 GET_MODE (XEXP (SET_SRC (x), 0))))))
4936 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4938 SUBST (SET_SRC (x),
4939 gen_rtx_NEG (mode,
4940 gen_rtx_LSHIFTRT (mode,
4941 XEXP (SET_SRC (x), 0),
4942 GEN_INT (pos))));
4944 split = find_split_point (&SET_SRC (x), insn, true);
4945 if (split && split != &SET_SRC (x))
4946 return split;
4948 break;
4950 case SIGN_EXTEND:
4951 inner = XEXP (SET_SRC (x), 0);
4953 /* We can't optimize if either mode is a partial integer
4954 mode as we don't know how many bits are significant
4955 in those modes. */
4956 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4957 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4958 break;
4960 pos = 0;
4961 len = GET_MODE_PRECISION (GET_MODE (inner));
4962 unsignedp = 0;
4963 break;
4965 case SIGN_EXTRACT:
4966 case ZERO_EXTRACT:
4967 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4968 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4970 inner = XEXP (SET_SRC (x), 0);
4971 len = INTVAL (XEXP (SET_SRC (x), 1));
4972 pos = INTVAL (XEXP (SET_SRC (x), 2));
4974 if (BITS_BIG_ENDIAN)
4975 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4976 unsignedp = (code == ZERO_EXTRACT);
4978 break;
4980 default:
4981 break;
4984 if (len && pos >= 0
4985 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
4987 machine_mode mode = GET_MODE (SET_SRC (x));
4989 /* For unsigned, we have a choice of a shift followed by an
4990 AND or two shifts. Use two shifts for field sizes where the
4991 constant might be too large. We assume here that we can
4992 always at least get 8-bit constants in an AND insn, which is
4993 true for every current RISC. */
4995 if (unsignedp && len <= 8)
4997 unsigned HOST_WIDE_INT mask
4998 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4999 SUBST (SET_SRC (x),
5000 gen_rtx_AND (mode,
5001 gen_rtx_LSHIFTRT
5002 (mode, gen_lowpart (mode, inner),
5003 GEN_INT (pos)),
5004 gen_int_mode (mask, mode)));
5006 split = find_split_point (&SET_SRC (x), insn, true);
5007 if (split && split != &SET_SRC (x))
5008 return split;
5010 else
5012 SUBST (SET_SRC (x),
5013 gen_rtx_fmt_ee
5014 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5015 gen_rtx_ASHIFT (mode,
5016 gen_lowpart (mode, inner),
5017 GEN_INT (GET_MODE_PRECISION (mode)
5018 - len - pos)),
5019 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5021 split = find_split_point (&SET_SRC (x), insn, true);
5022 if (split && split != &SET_SRC (x))
5023 return split;
5027 /* See if this is a simple operation with a constant as the second
5028 operand. It might be that this constant is out of range and hence
5029 could be used as a split point. */
5030 if (BINARY_P (SET_SRC (x))
5031 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5032 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5033 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5034 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5035 return &XEXP (SET_SRC (x), 1);
5037 /* Finally, see if this is a simple operation with its first operand
5038 not in a register. The operation might require this operand in a
5039 register, so return it as a split point. We can always do this
5040 because if the first operand were another operation, we would have
5041 already found it as a split point. */
5042 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5043 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5044 return &XEXP (SET_SRC (x), 0);
5046 return 0;
5048 case AND:
5049 case IOR:
5050 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5051 it is better to write this as (not (ior A B)) so we can split it.
5052 Similarly for IOR. */
5053 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5055 SUBST (*loc,
5056 gen_rtx_NOT (GET_MODE (x),
5057 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5058 GET_MODE (x),
5059 XEXP (XEXP (x, 0), 0),
5060 XEXP (XEXP (x, 1), 0))));
5061 return find_split_point (loc, insn, set_src);
5064 /* Many RISC machines have a large set of logical insns. If the
5065 second operand is a NOT, put it first so we will try to split the
5066 other operand first. */
5067 if (GET_CODE (XEXP (x, 1)) == NOT)
5069 rtx tem = XEXP (x, 0);
5070 SUBST (XEXP (x, 0), XEXP (x, 1));
5071 SUBST (XEXP (x, 1), tem);
5073 break;
5075 case PLUS:
5076 case MINUS:
5077 /* Canonicalization can produce (minus A (mult B C)), where C is a
5078 constant. It may be better to try splitting (plus (mult B -C) A)
5079 instead if this isn't a multiply by a power of two. */
5080 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5081 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5082 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5084 machine_mode mode = GET_MODE (x);
5085 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5086 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5087 SUBST (*loc, gen_rtx_PLUS (mode,
5088 gen_rtx_MULT (mode,
5089 XEXP (XEXP (x, 1), 0),
5090 gen_int_mode (other_int,
5091 mode)),
5092 XEXP (x, 0)));
5093 return find_split_point (loc, insn, set_src);
5096 /* Split at a multiply-accumulate instruction. However if this is
5097 the SET_SRC, we likely do not have such an instruction and it's
5098 worthless to try this split. */
5099 if (!set_src && GET_CODE (XEXP (x, 0)) == MULT)
5100 return loc;
5102 default:
5103 break;
5106 /* Otherwise, select our actions depending on our rtx class. */
5107 switch (GET_RTX_CLASS (code))
5109 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5110 case RTX_TERNARY:
5111 split = find_split_point (&XEXP (x, 2), insn, false);
5112 if (split)
5113 return split;
5114 /* ... fall through ... */
5115 case RTX_BIN_ARITH:
5116 case RTX_COMM_ARITH:
5117 case RTX_COMPARE:
5118 case RTX_COMM_COMPARE:
5119 split = find_split_point (&XEXP (x, 1), insn, false);
5120 if (split)
5121 return split;
5122 /* ... fall through ... */
5123 case RTX_UNARY:
5124 /* Some machines have (and (shift ...) ...) insns. If X is not
5125 an AND, but XEXP (X, 0) is, use it as our split point. */
5126 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5127 return &XEXP (x, 0);
5129 split = find_split_point (&XEXP (x, 0), insn, false);
5130 if (split)
5131 return split;
5132 return loc;
5134 default:
5135 /* Otherwise, we don't have a split point. */
5136 return 0;
5140 /* Throughout X, replace FROM with TO, and return the result.
5141 The result is TO if X is FROM;
5142 otherwise the result is X, but its contents may have been modified.
5143 If they were modified, a record was made in undobuf so that
5144 undo_all will (among other things) return X to its original state.
5146 If the number of changes necessary is too much to record to undo,
5147 the excess changes are not made, so the result is invalid.
5148 The changes already made can still be undone.
5149 undobuf.num_undo is incremented for such changes, so by testing that
5150 the caller can tell whether the result is valid.
5152 `n_occurrences' is incremented each time FROM is replaced.
5154 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5156 IN_COND is nonzero if we are at the top level of a condition.
5158 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5159 by copying if `n_occurrences' is nonzero. */
5161 static rtx
5162 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5164 enum rtx_code code = GET_CODE (x);
5165 machine_mode op0_mode = VOIDmode;
5166 const char *fmt;
5167 int len, i;
5168 rtx new_rtx;
5170 /* Two expressions are equal if they are identical copies of a shared
5171 RTX or if they are both registers with the same register number
5172 and mode. */
5174 #define COMBINE_RTX_EQUAL_P(X,Y) \
5175 ((X) == (Y) \
5176 || (REG_P (X) && REG_P (Y) \
5177 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5179 /* Do not substitute into clobbers of regs -- this will never result in
5180 valid RTL. */
5181 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5182 return x;
5184 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5186 n_occurrences++;
5187 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5190 /* If X and FROM are the same register but different modes, they
5191 will not have been seen as equal above. However, the log links code
5192 will make a LOG_LINKS entry for that case. If we do nothing, we
5193 will try to rerecognize our original insn and, when it succeeds,
5194 we will delete the feeding insn, which is incorrect.
5196 So force this insn not to match in this (rare) case. */
5197 if (! in_dest && code == REG && REG_P (from)
5198 && reg_overlap_mentioned_p (x, from))
5199 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5201 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5202 of which may contain things that can be combined. */
5203 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5204 return x;
5206 /* It is possible to have a subexpression appear twice in the insn.
5207 Suppose that FROM is a register that appears within TO.
5208 Then, after that subexpression has been scanned once by `subst',
5209 the second time it is scanned, TO may be found. If we were
5210 to scan TO here, we would find FROM within it and create a
5211 self-referent rtl structure which is completely wrong. */
5212 if (COMBINE_RTX_EQUAL_P (x, to))
5213 return to;
5215 /* Parallel asm_operands need special attention because all of the
5216 inputs are shared across the arms. Furthermore, unsharing the
5217 rtl results in recognition failures. Failure to handle this case
5218 specially can result in circular rtl.
5220 Solve this by doing a normal pass across the first entry of the
5221 parallel, and only processing the SET_DESTs of the subsequent
5222 entries. Ug. */
5224 if (code == PARALLEL
5225 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5226 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5228 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5230 /* If this substitution failed, this whole thing fails. */
5231 if (GET_CODE (new_rtx) == CLOBBER
5232 && XEXP (new_rtx, 0) == const0_rtx)
5233 return new_rtx;
5235 SUBST (XVECEXP (x, 0, 0), new_rtx);
5237 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5239 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5241 if (!REG_P (dest)
5242 && GET_CODE (dest) != CC0
5243 && GET_CODE (dest) != PC)
5245 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5247 /* If this substitution failed, this whole thing fails. */
5248 if (GET_CODE (new_rtx) == CLOBBER
5249 && XEXP (new_rtx, 0) == const0_rtx)
5250 return new_rtx;
5252 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5256 else
5258 len = GET_RTX_LENGTH (code);
5259 fmt = GET_RTX_FORMAT (code);
5261 /* We don't need to process a SET_DEST that is a register, CC0,
5262 or PC, so set up to skip this common case. All other cases
5263 where we want to suppress replacing something inside a
5264 SET_SRC are handled via the IN_DEST operand. */
5265 if (code == SET
5266 && (REG_P (SET_DEST (x))
5267 || GET_CODE (SET_DEST (x)) == CC0
5268 || GET_CODE (SET_DEST (x)) == PC))
5269 fmt = "ie";
5271 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5272 constant. */
5273 if (fmt[0] == 'e')
5274 op0_mode = GET_MODE (XEXP (x, 0));
5276 for (i = 0; i < len; i++)
5278 if (fmt[i] == 'E')
5280 int j;
5281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5283 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5285 new_rtx = (unique_copy && n_occurrences
5286 ? copy_rtx (to) : to);
5287 n_occurrences++;
5289 else
5291 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5292 unique_copy);
5294 /* If this substitution failed, this whole thing
5295 fails. */
5296 if (GET_CODE (new_rtx) == CLOBBER
5297 && XEXP (new_rtx, 0) == const0_rtx)
5298 return new_rtx;
5301 SUBST (XVECEXP (x, i, j), new_rtx);
5304 else if (fmt[i] == 'e')
5306 /* If this is a register being set, ignore it. */
5307 new_rtx = XEXP (x, i);
5308 if (in_dest
5309 && i == 0
5310 && (((code == SUBREG || code == ZERO_EXTRACT)
5311 && REG_P (new_rtx))
5312 || code == STRICT_LOW_PART))
5315 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5317 /* In general, don't install a subreg involving two
5318 modes not tieable. It can worsen register
5319 allocation, and can even make invalid reload
5320 insns, since the reg inside may need to be copied
5321 from in the outside mode, and that may be invalid
5322 if it is an fp reg copied in integer mode.
5324 We allow two exceptions to this: It is valid if
5325 it is inside another SUBREG and the mode of that
5326 SUBREG and the mode of the inside of TO is
5327 tieable and it is valid if X is a SET that copies
5328 FROM to CC0. */
5330 if (GET_CODE (to) == SUBREG
5331 && ! MODES_TIEABLE_P (GET_MODE (to),
5332 GET_MODE (SUBREG_REG (to)))
5333 && ! (code == SUBREG
5334 && MODES_TIEABLE_P (GET_MODE (x),
5335 GET_MODE (SUBREG_REG (to))))
5336 #ifdef HAVE_cc0
5337 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
5338 #endif
5340 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5342 if (code == SUBREG
5343 && REG_P (to)
5344 && REGNO (to) < FIRST_PSEUDO_REGISTER
5345 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5346 SUBREG_BYTE (x),
5347 GET_MODE (x)) < 0)
5348 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5350 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5351 n_occurrences++;
5353 else
5354 /* If we are in a SET_DEST, suppress most cases unless we
5355 have gone inside a MEM, in which case we want to
5356 simplify the address. We assume here that things that
5357 are actually part of the destination have their inner
5358 parts in the first expression. This is true for SUBREG,
5359 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5360 things aside from REG and MEM that should appear in a
5361 SET_DEST. */
5362 new_rtx = subst (XEXP (x, i), from, to,
5363 (((in_dest
5364 && (code == SUBREG || code == STRICT_LOW_PART
5365 || code == ZERO_EXTRACT))
5366 || code == SET)
5367 && i == 0),
5368 code == IF_THEN_ELSE && i == 0,
5369 unique_copy);
5371 /* If we found that we will have to reject this combination,
5372 indicate that by returning the CLOBBER ourselves, rather than
5373 an expression containing it. This will speed things up as
5374 well as prevent accidents where two CLOBBERs are considered
5375 to be equal, thus producing an incorrect simplification. */
5377 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5378 return new_rtx;
5380 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5382 machine_mode mode = GET_MODE (x);
5384 x = simplify_subreg (GET_MODE (x), new_rtx,
5385 GET_MODE (SUBREG_REG (x)),
5386 SUBREG_BYTE (x));
5387 if (! x)
5388 x = gen_rtx_CLOBBER (mode, const0_rtx);
5390 else if (CONST_SCALAR_INT_P (new_rtx)
5391 && GET_CODE (x) == ZERO_EXTEND)
5393 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5394 new_rtx, GET_MODE (XEXP (x, 0)));
5395 gcc_assert (x);
5397 else
5398 SUBST (XEXP (x, i), new_rtx);
5403 /* Check if we are loading something from the constant pool via float
5404 extension; in this case we would undo compress_float_constant
5405 optimization and degenerate constant load to an immediate value. */
5406 if (GET_CODE (x) == FLOAT_EXTEND
5407 && MEM_P (XEXP (x, 0))
5408 && MEM_READONLY_P (XEXP (x, 0)))
5410 rtx tmp = avoid_constant_pool_reference (x);
5411 if (x != tmp)
5412 return x;
5415 /* Try to simplify X. If the simplification changed the code, it is likely
5416 that further simplification will help, so loop, but limit the number
5417 of repetitions that will be performed. */
5419 for (i = 0; i < 4; i++)
5421 /* If X is sufficiently simple, don't bother trying to do anything
5422 with it. */
5423 if (code != CONST_INT && code != REG && code != CLOBBER)
5424 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5426 if (GET_CODE (x) == code)
5427 break;
5429 code = GET_CODE (x);
5431 /* We no longer know the original mode of operand 0 since we
5432 have changed the form of X) */
5433 op0_mode = VOIDmode;
5436 return x;
5439 /* Simplify X, a piece of RTL. We just operate on the expression at the
5440 outer level; call `subst' to simplify recursively. Return the new
5441 expression.
5443 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5444 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5445 of a condition. */
5447 static rtx
5448 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5449 int in_cond)
5451 enum rtx_code code = GET_CODE (x);
5452 machine_mode mode = GET_MODE (x);
5453 rtx temp;
5454 int i;
5456 /* If this is a commutative operation, put a constant last and a complex
5457 expression first. We don't need to do this for comparisons here. */
5458 if (COMMUTATIVE_ARITH_P (x)
5459 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5461 temp = XEXP (x, 0);
5462 SUBST (XEXP (x, 0), XEXP (x, 1));
5463 SUBST (XEXP (x, 1), temp);
5466 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5467 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5468 things. Check for cases where both arms are testing the same
5469 condition.
5471 Don't do anything if all operands are very simple. */
5473 if ((BINARY_P (x)
5474 && ((!OBJECT_P (XEXP (x, 0))
5475 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5476 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5477 || (!OBJECT_P (XEXP (x, 1))
5478 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5479 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5480 || (UNARY_P (x)
5481 && (!OBJECT_P (XEXP (x, 0))
5482 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5483 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5485 rtx cond, true_rtx, false_rtx;
5487 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5488 if (cond != 0
5489 /* If everything is a comparison, what we have is highly unlikely
5490 to be simpler, so don't use it. */
5491 && ! (COMPARISON_P (x)
5492 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5494 rtx cop1 = const0_rtx;
5495 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5497 if (cond_code == NE && COMPARISON_P (cond))
5498 return x;
5500 /* Simplify the alternative arms; this may collapse the true and
5501 false arms to store-flag values. Be careful to use copy_rtx
5502 here since true_rtx or false_rtx might share RTL with x as a
5503 result of the if_then_else_cond call above. */
5504 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5505 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5507 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5508 is unlikely to be simpler. */
5509 if (general_operand (true_rtx, VOIDmode)
5510 && general_operand (false_rtx, VOIDmode))
5512 enum rtx_code reversed;
5514 /* Restarting if we generate a store-flag expression will cause
5515 us to loop. Just drop through in this case. */
5517 /* If the result values are STORE_FLAG_VALUE and zero, we can
5518 just make the comparison operation. */
5519 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5520 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5521 cond, cop1);
5522 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5523 && ((reversed = reversed_comparison_code_parts
5524 (cond_code, cond, cop1, NULL))
5525 != UNKNOWN))
5526 x = simplify_gen_relational (reversed, mode, VOIDmode,
5527 cond, cop1);
5529 /* Likewise, we can make the negate of a comparison operation
5530 if the result values are - STORE_FLAG_VALUE and zero. */
5531 else if (CONST_INT_P (true_rtx)
5532 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5533 && false_rtx == const0_rtx)
5534 x = simplify_gen_unary (NEG, mode,
5535 simplify_gen_relational (cond_code,
5536 mode, VOIDmode,
5537 cond, cop1),
5538 mode);
5539 else if (CONST_INT_P (false_rtx)
5540 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5541 && true_rtx == const0_rtx
5542 && ((reversed = reversed_comparison_code_parts
5543 (cond_code, cond, cop1, NULL))
5544 != UNKNOWN))
5545 x = simplify_gen_unary (NEG, mode,
5546 simplify_gen_relational (reversed,
5547 mode, VOIDmode,
5548 cond, cop1),
5549 mode);
5550 else
5551 return gen_rtx_IF_THEN_ELSE (mode,
5552 simplify_gen_relational (cond_code,
5553 mode,
5554 VOIDmode,
5555 cond,
5556 cop1),
5557 true_rtx, false_rtx);
5559 code = GET_CODE (x);
5560 op0_mode = VOIDmode;
5565 /* Try to fold this expression in case we have constants that weren't
5566 present before. */
5567 temp = 0;
5568 switch (GET_RTX_CLASS (code))
5570 case RTX_UNARY:
5571 if (op0_mode == VOIDmode)
5572 op0_mode = GET_MODE (XEXP (x, 0));
5573 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5574 break;
5575 case RTX_COMPARE:
5576 case RTX_COMM_COMPARE:
5578 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5579 if (cmp_mode == VOIDmode)
5581 cmp_mode = GET_MODE (XEXP (x, 1));
5582 if (cmp_mode == VOIDmode)
5583 cmp_mode = op0_mode;
5585 temp = simplify_relational_operation (code, mode, cmp_mode,
5586 XEXP (x, 0), XEXP (x, 1));
5588 break;
5589 case RTX_COMM_ARITH:
5590 case RTX_BIN_ARITH:
5591 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5592 break;
5593 case RTX_BITFIELD_OPS:
5594 case RTX_TERNARY:
5595 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5596 XEXP (x, 1), XEXP (x, 2));
5597 break;
5598 default:
5599 break;
5602 if (temp)
5604 x = temp;
5605 code = GET_CODE (temp);
5606 op0_mode = VOIDmode;
5607 mode = GET_MODE (temp);
5610 /* First see if we can apply the inverse distributive law. */
5611 if (code == PLUS || code == MINUS
5612 || code == AND || code == IOR || code == XOR)
5614 x = apply_distributive_law (x);
5615 code = GET_CODE (x);
5616 op0_mode = VOIDmode;
5619 /* If CODE is an associative operation not otherwise handled, see if we
5620 can associate some operands. This can win if they are constants or
5621 if they are logically related (i.e. (a & b) & a). */
5622 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5623 || code == AND || code == IOR || code == XOR
5624 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5625 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5626 || (flag_associative_math && FLOAT_MODE_P (mode))))
5628 if (GET_CODE (XEXP (x, 0)) == code)
5630 rtx other = XEXP (XEXP (x, 0), 0);
5631 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5632 rtx inner_op1 = XEXP (x, 1);
5633 rtx inner;
5635 /* Make sure we pass the constant operand if any as the second
5636 one if this is a commutative operation. */
5637 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5639 rtx tem = inner_op0;
5640 inner_op0 = inner_op1;
5641 inner_op1 = tem;
5643 inner = simplify_binary_operation (code == MINUS ? PLUS
5644 : code == DIV ? MULT
5645 : code,
5646 mode, inner_op0, inner_op1);
5648 /* For commutative operations, try the other pair if that one
5649 didn't simplify. */
5650 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5652 other = XEXP (XEXP (x, 0), 1);
5653 inner = simplify_binary_operation (code, mode,
5654 XEXP (XEXP (x, 0), 0),
5655 XEXP (x, 1));
5658 if (inner)
5659 return simplify_gen_binary (code, mode, other, inner);
5663 /* A little bit of algebraic simplification here. */
5664 switch (code)
5666 case MEM:
5667 /* Ensure that our address has any ASHIFTs converted to MULT in case
5668 address-recognizing predicates are called later. */
5669 temp = make_compound_operation (XEXP (x, 0), MEM);
5670 SUBST (XEXP (x, 0), temp);
5671 break;
5673 case SUBREG:
5674 if (op0_mode == VOIDmode)
5675 op0_mode = GET_MODE (SUBREG_REG (x));
5677 /* See if this can be moved to simplify_subreg. */
5678 if (CONSTANT_P (SUBREG_REG (x))
5679 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5680 /* Don't call gen_lowpart if the inner mode
5681 is VOIDmode and we cannot simplify it, as SUBREG without
5682 inner mode is invalid. */
5683 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5684 || gen_lowpart_common (mode, SUBREG_REG (x))))
5685 return gen_lowpart (mode, SUBREG_REG (x));
5687 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5688 break;
5690 rtx temp;
5691 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5692 SUBREG_BYTE (x));
5693 if (temp)
5694 return temp;
5696 /* If op is known to have all lower bits zero, the result is zero. */
5697 if (!in_dest
5698 && SCALAR_INT_MODE_P (mode)
5699 && SCALAR_INT_MODE_P (op0_mode)
5700 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5701 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5702 && HWI_COMPUTABLE_MODE_P (op0_mode)
5703 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5704 & GET_MODE_MASK (mode)) == 0)
5705 return CONST0_RTX (mode);
5708 /* Don't change the mode of the MEM if that would change the meaning
5709 of the address. */
5710 if (MEM_P (SUBREG_REG (x))
5711 && (MEM_VOLATILE_P (SUBREG_REG (x))
5712 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5713 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5714 return gen_rtx_CLOBBER (mode, const0_rtx);
5716 /* Note that we cannot do any narrowing for non-constants since
5717 we might have been counting on using the fact that some bits were
5718 zero. We now do this in the SET. */
5720 break;
5722 case NEG:
5723 temp = expand_compound_operation (XEXP (x, 0));
5725 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5726 replaced by (lshiftrt X C). This will convert
5727 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5729 if (GET_CODE (temp) == ASHIFTRT
5730 && CONST_INT_P (XEXP (temp, 1))
5731 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5732 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5733 INTVAL (XEXP (temp, 1)));
5735 /* If X has only a single bit that might be nonzero, say, bit I, convert
5736 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5737 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5738 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5739 or a SUBREG of one since we'd be making the expression more
5740 complex if it was just a register. */
5742 if (!REG_P (temp)
5743 && ! (GET_CODE (temp) == SUBREG
5744 && REG_P (SUBREG_REG (temp)))
5745 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5747 rtx temp1 = simplify_shift_const
5748 (NULL_RTX, ASHIFTRT, mode,
5749 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5750 GET_MODE_PRECISION (mode) - 1 - i),
5751 GET_MODE_PRECISION (mode) - 1 - i);
5753 /* If all we did was surround TEMP with the two shifts, we
5754 haven't improved anything, so don't use it. Otherwise,
5755 we are better off with TEMP1. */
5756 if (GET_CODE (temp1) != ASHIFTRT
5757 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5758 || XEXP (XEXP (temp1, 0), 0) != temp)
5759 return temp1;
5761 break;
5763 case TRUNCATE:
5764 /* We can't handle truncation to a partial integer mode here
5765 because we don't know the real bitsize of the partial
5766 integer mode. */
5767 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5768 break;
5770 if (HWI_COMPUTABLE_MODE_P (mode))
5771 SUBST (XEXP (x, 0),
5772 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5773 GET_MODE_MASK (mode), 0));
5775 /* We can truncate a constant value and return it. */
5776 if (CONST_INT_P (XEXP (x, 0)))
5777 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5779 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5780 whose value is a comparison can be replaced with a subreg if
5781 STORE_FLAG_VALUE permits. */
5782 if (HWI_COMPUTABLE_MODE_P (mode)
5783 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5784 && (temp = get_last_value (XEXP (x, 0)))
5785 && COMPARISON_P (temp))
5786 return gen_lowpart (mode, XEXP (x, 0));
5787 break;
5789 case CONST:
5790 /* (const (const X)) can become (const X). Do it this way rather than
5791 returning the inner CONST since CONST can be shared with a
5792 REG_EQUAL note. */
5793 if (GET_CODE (XEXP (x, 0)) == CONST)
5794 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5795 break;
5797 #ifdef HAVE_lo_sum
5798 case LO_SUM:
5799 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5800 can add in an offset. find_split_point will split this address up
5801 again if it doesn't match. */
5802 if (GET_CODE (XEXP (x, 0)) == HIGH
5803 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5804 return XEXP (x, 1);
5805 break;
5806 #endif
5808 case PLUS:
5809 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5810 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5811 bit-field and can be replaced by either a sign_extend or a
5812 sign_extract. The `and' may be a zero_extend and the two
5813 <c>, -<c> constants may be reversed. */
5814 if (GET_CODE (XEXP (x, 0)) == XOR
5815 && CONST_INT_P (XEXP (x, 1))
5816 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5817 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5818 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5819 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5820 && HWI_COMPUTABLE_MODE_P (mode)
5821 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5822 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5823 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5824 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5825 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5826 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5827 == (unsigned int) i + 1))))
5828 return simplify_shift_const
5829 (NULL_RTX, ASHIFTRT, mode,
5830 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5831 XEXP (XEXP (XEXP (x, 0), 0), 0),
5832 GET_MODE_PRECISION (mode) - (i + 1)),
5833 GET_MODE_PRECISION (mode) - (i + 1));
5835 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5836 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5837 the bitsize of the mode - 1. This allows simplification of
5838 "a = (b & 8) == 0;" */
5839 if (XEXP (x, 1) == constm1_rtx
5840 && !REG_P (XEXP (x, 0))
5841 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5842 && REG_P (SUBREG_REG (XEXP (x, 0))))
5843 && nonzero_bits (XEXP (x, 0), mode) == 1)
5844 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5845 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5846 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5847 GET_MODE_PRECISION (mode) - 1),
5848 GET_MODE_PRECISION (mode) - 1);
5850 /* If we are adding two things that have no bits in common, convert
5851 the addition into an IOR. This will often be further simplified,
5852 for example in cases like ((a & 1) + (a & 2)), which can
5853 become a & 3. */
5855 if (HWI_COMPUTABLE_MODE_P (mode)
5856 && (nonzero_bits (XEXP (x, 0), mode)
5857 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5859 /* Try to simplify the expression further. */
5860 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5861 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5863 /* If we could, great. If not, do not go ahead with the IOR
5864 replacement, since PLUS appears in many special purpose
5865 address arithmetic instructions. */
5866 if (GET_CODE (temp) != CLOBBER
5867 && (GET_CODE (temp) != IOR
5868 || ((XEXP (temp, 0) != XEXP (x, 0)
5869 || XEXP (temp, 1) != XEXP (x, 1))
5870 && (XEXP (temp, 0) != XEXP (x, 1)
5871 || XEXP (temp, 1) != XEXP (x, 0)))))
5872 return temp;
5874 break;
5876 case MINUS:
5877 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5878 (and <foo> (const_int pow2-1)) */
5879 if (GET_CODE (XEXP (x, 1)) == AND
5880 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5881 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5882 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5883 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5884 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5885 break;
5887 case MULT:
5888 /* If we have (mult (plus A B) C), apply the distributive law and then
5889 the inverse distributive law to see if things simplify. This
5890 occurs mostly in addresses, often when unrolling loops. */
5892 if (GET_CODE (XEXP (x, 0)) == PLUS)
5894 rtx result = distribute_and_simplify_rtx (x, 0);
5895 if (result)
5896 return result;
5899 /* Try simplify a*(b/c) as (a*b)/c. */
5900 if (FLOAT_MODE_P (mode) && flag_associative_math
5901 && GET_CODE (XEXP (x, 0)) == DIV)
5903 rtx tem = simplify_binary_operation (MULT, mode,
5904 XEXP (XEXP (x, 0), 0),
5905 XEXP (x, 1));
5906 if (tem)
5907 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5909 break;
5911 case UDIV:
5912 /* If this is a divide by a power of two, treat it as a shift if
5913 its first operand is a shift. */
5914 if (CONST_INT_P (XEXP (x, 1))
5915 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5916 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5917 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5918 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5919 || GET_CODE (XEXP (x, 0)) == ROTATE
5920 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5921 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5922 break;
5924 case EQ: case NE:
5925 case GT: case GTU: case GE: case GEU:
5926 case LT: case LTU: case LE: case LEU:
5927 case UNEQ: case LTGT:
5928 case UNGT: case UNGE:
5929 case UNLT: case UNLE:
5930 case UNORDERED: case ORDERED:
5931 /* If the first operand is a condition code, we can't do anything
5932 with it. */
5933 if (GET_CODE (XEXP (x, 0)) == COMPARE
5934 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5935 && ! CC0_P (XEXP (x, 0))))
5937 rtx op0 = XEXP (x, 0);
5938 rtx op1 = XEXP (x, 1);
5939 enum rtx_code new_code;
5941 if (GET_CODE (op0) == COMPARE)
5942 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5944 /* Simplify our comparison, if possible. */
5945 new_code = simplify_comparison (code, &op0, &op1);
5947 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5948 if only the low-order bit is possibly nonzero in X (such as when
5949 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5950 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5951 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5952 (plus X 1).
5954 Remove any ZERO_EXTRACT we made when thinking this was a
5955 comparison. It may now be simpler to use, e.g., an AND. If a
5956 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5957 the call to make_compound_operation in the SET case.
5959 Don't apply these optimizations if the caller would
5960 prefer a comparison rather than a value.
5961 E.g., for the condition in an IF_THEN_ELSE most targets need
5962 an explicit comparison. */
5964 if (in_cond)
5967 else if (STORE_FLAG_VALUE == 1
5968 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5969 && op1 == const0_rtx
5970 && mode == GET_MODE (op0)
5971 && nonzero_bits (op0, mode) == 1)
5972 return gen_lowpart (mode,
5973 expand_compound_operation (op0));
5975 else if (STORE_FLAG_VALUE == 1
5976 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5977 && op1 == const0_rtx
5978 && mode == GET_MODE (op0)
5979 && (num_sign_bit_copies (op0, mode)
5980 == GET_MODE_PRECISION (mode)))
5982 op0 = expand_compound_operation (op0);
5983 return simplify_gen_unary (NEG, mode,
5984 gen_lowpart (mode, op0),
5985 mode);
5988 else if (STORE_FLAG_VALUE == 1
5989 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5990 && op1 == const0_rtx
5991 && mode == GET_MODE (op0)
5992 && nonzero_bits (op0, mode) == 1)
5994 op0 = expand_compound_operation (op0);
5995 return simplify_gen_binary (XOR, mode,
5996 gen_lowpart (mode, op0),
5997 const1_rtx);
6000 else if (STORE_FLAG_VALUE == 1
6001 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6002 && op1 == const0_rtx
6003 && mode == GET_MODE (op0)
6004 && (num_sign_bit_copies (op0, mode)
6005 == GET_MODE_PRECISION (mode)))
6007 op0 = expand_compound_operation (op0);
6008 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6011 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6012 those above. */
6013 if (in_cond)
6016 else if (STORE_FLAG_VALUE == -1
6017 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6018 && op1 == const0_rtx
6019 && mode == GET_MODE (op0)
6020 && (num_sign_bit_copies (op0, mode)
6021 == GET_MODE_PRECISION (mode)))
6022 return gen_lowpart (mode,
6023 expand_compound_operation (op0));
6025 else if (STORE_FLAG_VALUE == -1
6026 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6027 && op1 == const0_rtx
6028 && mode == GET_MODE (op0)
6029 && nonzero_bits (op0, mode) == 1)
6031 op0 = expand_compound_operation (op0);
6032 return simplify_gen_unary (NEG, mode,
6033 gen_lowpart (mode, op0),
6034 mode);
6037 else if (STORE_FLAG_VALUE == -1
6038 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6039 && op1 == const0_rtx
6040 && mode == GET_MODE (op0)
6041 && (num_sign_bit_copies (op0, mode)
6042 == GET_MODE_PRECISION (mode)))
6044 op0 = expand_compound_operation (op0);
6045 return simplify_gen_unary (NOT, mode,
6046 gen_lowpart (mode, op0),
6047 mode);
6050 /* If X is 0/1, (eq X 0) is X-1. */
6051 else if (STORE_FLAG_VALUE == -1
6052 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6053 && op1 == const0_rtx
6054 && mode == GET_MODE (op0)
6055 && nonzero_bits (op0, mode) == 1)
6057 op0 = expand_compound_operation (op0);
6058 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6061 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6062 one bit that might be nonzero, we can convert (ne x 0) to
6063 (ashift x c) where C puts the bit in the sign bit. Remove any
6064 AND with STORE_FLAG_VALUE when we are done, since we are only
6065 going to test the sign bit. */
6066 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6067 && HWI_COMPUTABLE_MODE_P (mode)
6068 && val_signbit_p (mode, STORE_FLAG_VALUE)
6069 && op1 == const0_rtx
6070 && mode == GET_MODE (op0)
6071 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6073 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6074 expand_compound_operation (op0),
6075 GET_MODE_PRECISION (mode) - 1 - i);
6076 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6077 return XEXP (x, 0);
6078 else
6079 return x;
6082 /* If the code changed, return a whole new comparison.
6083 We also need to avoid using SUBST in cases where
6084 simplify_comparison has widened a comparison with a CONST_INT,
6085 since in that case the wider CONST_INT may fail the sanity
6086 checks in do_SUBST. */
6087 if (new_code != code
6088 || (CONST_INT_P (op1)
6089 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6090 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6091 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6093 /* Otherwise, keep this operation, but maybe change its operands.
6094 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6095 SUBST (XEXP (x, 0), op0);
6096 SUBST (XEXP (x, 1), op1);
6098 break;
6100 case IF_THEN_ELSE:
6101 return simplify_if_then_else (x);
6103 case ZERO_EXTRACT:
6104 case SIGN_EXTRACT:
6105 case ZERO_EXTEND:
6106 case SIGN_EXTEND:
6107 /* If we are processing SET_DEST, we are done. */
6108 if (in_dest)
6109 return x;
6111 return expand_compound_operation (x);
6113 case SET:
6114 return simplify_set (x);
6116 case AND:
6117 case IOR:
6118 return simplify_logical (x);
6120 case ASHIFT:
6121 case LSHIFTRT:
6122 case ASHIFTRT:
6123 case ROTATE:
6124 case ROTATERT:
6125 /* If this is a shift by a constant amount, simplify it. */
6126 if (CONST_INT_P (XEXP (x, 1)))
6127 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6128 INTVAL (XEXP (x, 1)));
6130 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6131 SUBST (XEXP (x, 1),
6132 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6133 ((unsigned HOST_WIDE_INT) 1
6134 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6135 - 1,
6136 0));
6137 break;
6139 default:
6140 break;
6143 return x;
6146 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6148 static rtx
6149 simplify_if_then_else (rtx x)
6151 machine_mode mode = GET_MODE (x);
6152 rtx cond = XEXP (x, 0);
6153 rtx true_rtx = XEXP (x, 1);
6154 rtx false_rtx = XEXP (x, 2);
6155 enum rtx_code true_code = GET_CODE (cond);
6156 int comparison_p = COMPARISON_P (cond);
6157 rtx temp;
6158 int i;
6159 enum rtx_code false_code;
6160 rtx reversed;
6162 /* Simplify storing of the truth value. */
6163 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6164 return simplify_gen_relational (true_code, mode, VOIDmode,
6165 XEXP (cond, 0), XEXP (cond, 1));
6167 /* Also when the truth value has to be reversed. */
6168 if (comparison_p
6169 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6170 && (reversed = reversed_comparison (cond, mode)))
6171 return reversed;
6173 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6174 in it is being compared against certain values. Get the true and false
6175 comparisons and see if that says anything about the value of each arm. */
6177 if (comparison_p
6178 && ((false_code = reversed_comparison_code (cond, NULL))
6179 != UNKNOWN)
6180 && REG_P (XEXP (cond, 0)))
6182 HOST_WIDE_INT nzb;
6183 rtx from = XEXP (cond, 0);
6184 rtx true_val = XEXP (cond, 1);
6185 rtx false_val = true_val;
6186 int swapped = 0;
6188 /* If FALSE_CODE is EQ, swap the codes and arms. */
6190 if (false_code == EQ)
6192 swapped = 1, true_code = EQ, false_code = NE;
6193 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6196 /* If we are comparing against zero and the expression being tested has
6197 only a single bit that might be nonzero, that is its value when it is
6198 not equal to zero. Similarly if it is known to be -1 or 0. */
6200 if (true_code == EQ && true_val == const0_rtx
6201 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6203 false_code = EQ;
6204 false_val = gen_int_mode (nzb, GET_MODE (from));
6206 else if (true_code == EQ && true_val == const0_rtx
6207 && (num_sign_bit_copies (from, GET_MODE (from))
6208 == GET_MODE_PRECISION (GET_MODE (from))))
6210 false_code = EQ;
6211 false_val = constm1_rtx;
6214 /* Now simplify an arm if we know the value of the register in the
6215 branch and it is used in the arm. Be careful due to the potential
6216 of locally-shared RTL. */
6218 if (reg_mentioned_p (from, true_rtx))
6219 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6220 from, true_val),
6221 pc_rtx, pc_rtx, 0, 0, 0);
6222 if (reg_mentioned_p (from, false_rtx))
6223 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6224 from, false_val),
6225 pc_rtx, pc_rtx, 0, 0, 0);
6227 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6228 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6230 true_rtx = XEXP (x, 1);
6231 false_rtx = XEXP (x, 2);
6232 true_code = GET_CODE (cond);
6235 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6236 reversed, do so to avoid needing two sets of patterns for
6237 subtract-and-branch insns. Similarly if we have a constant in the true
6238 arm, the false arm is the same as the first operand of the comparison, or
6239 the false arm is more complicated than the true arm. */
6241 if (comparison_p
6242 && reversed_comparison_code (cond, NULL) != UNKNOWN
6243 && (true_rtx == pc_rtx
6244 || (CONSTANT_P (true_rtx)
6245 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6246 || true_rtx == const0_rtx
6247 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6248 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6249 && !OBJECT_P (false_rtx))
6250 || reg_mentioned_p (true_rtx, false_rtx)
6251 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6253 true_code = reversed_comparison_code (cond, NULL);
6254 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6255 SUBST (XEXP (x, 1), false_rtx);
6256 SUBST (XEXP (x, 2), true_rtx);
6258 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
6259 cond = XEXP (x, 0);
6261 /* It is possible that the conditional has been simplified out. */
6262 true_code = GET_CODE (cond);
6263 comparison_p = COMPARISON_P (cond);
6266 /* If the two arms are identical, we don't need the comparison. */
6268 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6269 return true_rtx;
6271 /* Convert a == b ? b : a to "a". */
6272 if (true_code == EQ && ! side_effects_p (cond)
6273 && !HONOR_NANS (mode)
6274 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6275 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6276 return false_rtx;
6277 else if (true_code == NE && ! side_effects_p (cond)
6278 && !HONOR_NANS (mode)
6279 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6280 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6281 return true_rtx;
6283 /* Look for cases where we have (abs x) or (neg (abs X)). */
6285 if (GET_MODE_CLASS (mode) == MODE_INT
6286 && comparison_p
6287 && XEXP (cond, 1) == const0_rtx
6288 && GET_CODE (false_rtx) == NEG
6289 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6290 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6291 && ! side_effects_p (true_rtx))
6292 switch (true_code)
6294 case GT:
6295 case GE:
6296 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6297 case LT:
6298 case LE:
6299 return
6300 simplify_gen_unary (NEG, mode,
6301 simplify_gen_unary (ABS, mode, true_rtx, mode),
6302 mode);
6303 default:
6304 break;
6307 /* Look for MIN or MAX. */
6309 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6310 && comparison_p
6311 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6312 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6313 && ! side_effects_p (cond))
6314 switch (true_code)
6316 case GE:
6317 case GT:
6318 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6319 case LE:
6320 case LT:
6321 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6322 case GEU:
6323 case GTU:
6324 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6325 case LEU:
6326 case LTU:
6327 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6328 default:
6329 break;
6332 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6333 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6334 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6335 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6336 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6337 neither 1 or -1, but it isn't worth checking for. */
6339 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6340 && comparison_p
6341 && GET_MODE_CLASS (mode) == MODE_INT
6342 && ! side_effects_p (x))
6344 rtx t = make_compound_operation (true_rtx, SET);
6345 rtx f = make_compound_operation (false_rtx, SET);
6346 rtx cond_op0 = XEXP (cond, 0);
6347 rtx cond_op1 = XEXP (cond, 1);
6348 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6349 machine_mode m = mode;
6350 rtx z = 0, c1 = NULL_RTX;
6352 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6353 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6354 || GET_CODE (t) == ASHIFT
6355 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6356 && rtx_equal_p (XEXP (t, 0), f))
6357 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6359 /* If an identity-zero op is commutative, check whether there
6360 would be a match if we swapped the operands. */
6361 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6362 || GET_CODE (t) == XOR)
6363 && rtx_equal_p (XEXP (t, 1), f))
6364 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6365 else if (GET_CODE (t) == SIGN_EXTEND
6366 && (GET_CODE (XEXP (t, 0)) == PLUS
6367 || GET_CODE (XEXP (t, 0)) == MINUS
6368 || GET_CODE (XEXP (t, 0)) == IOR
6369 || GET_CODE (XEXP (t, 0)) == XOR
6370 || GET_CODE (XEXP (t, 0)) == ASHIFT
6371 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6372 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6373 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6374 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6375 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6376 && (num_sign_bit_copies (f, GET_MODE (f))
6377 > (unsigned int)
6378 (GET_MODE_PRECISION (mode)
6379 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6381 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6382 extend_op = SIGN_EXTEND;
6383 m = GET_MODE (XEXP (t, 0));
6385 else if (GET_CODE (t) == SIGN_EXTEND
6386 && (GET_CODE (XEXP (t, 0)) == PLUS
6387 || GET_CODE (XEXP (t, 0)) == IOR
6388 || GET_CODE (XEXP (t, 0)) == XOR)
6389 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6390 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6391 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6392 && (num_sign_bit_copies (f, GET_MODE (f))
6393 > (unsigned int)
6394 (GET_MODE_PRECISION (mode)
6395 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6397 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6398 extend_op = SIGN_EXTEND;
6399 m = GET_MODE (XEXP (t, 0));
6401 else if (GET_CODE (t) == ZERO_EXTEND
6402 && (GET_CODE (XEXP (t, 0)) == PLUS
6403 || GET_CODE (XEXP (t, 0)) == MINUS
6404 || GET_CODE (XEXP (t, 0)) == IOR
6405 || GET_CODE (XEXP (t, 0)) == XOR
6406 || GET_CODE (XEXP (t, 0)) == ASHIFT
6407 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6408 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6409 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6410 && HWI_COMPUTABLE_MODE_P (mode)
6411 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6412 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6413 && ((nonzero_bits (f, GET_MODE (f))
6414 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6415 == 0))
6417 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6418 extend_op = ZERO_EXTEND;
6419 m = GET_MODE (XEXP (t, 0));
6421 else if (GET_CODE (t) == ZERO_EXTEND
6422 && (GET_CODE (XEXP (t, 0)) == PLUS
6423 || GET_CODE (XEXP (t, 0)) == IOR
6424 || GET_CODE (XEXP (t, 0)) == XOR)
6425 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6426 && HWI_COMPUTABLE_MODE_P (mode)
6427 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6428 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6429 && ((nonzero_bits (f, GET_MODE (f))
6430 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6431 == 0))
6433 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6434 extend_op = ZERO_EXTEND;
6435 m = GET_MODE (XEXP (t, 0));
6438 if (z)
6440 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6441 cond_op0, cond_op1),
6442 pc_rtx, pc_rtx, 0, 0, 0);
6443 temp = simplify_gen_binary (MULT, m, temp,
6444 simplify_gen_binary (MULT, m, c1,
6445 const_true_rtx));
6446 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6447 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6449 if (extend_op != UNKNOWN)
6450 temp = simplify_gen_unary (extend_op, mode, temp, m);
6452 return temp;
6456 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6457 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6458 negation of a single bit, we can convert this operation to a shift. We
6459 can actually do this more generally, but it doesn't seem worth it. */
6461 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6462 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6463 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6464 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6465 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6466 == GET_MODE_PRECISION (mode))
6467 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6468 return
6469 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6470 gen_lowpart (mode, XEXP (cond, 0)), i);
6472 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6473 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6474 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6475 && GET_MODE (XEXP (cond, 0)) == mode
6476 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6477 == nonzero_bits (XEXP (cond, 0), mode)
6478 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6479 return XEXP (cond, 0);
6481 return x;
6484 /* Simplify X, a SET expression. Return the new expression. */
6486 static rtx
6487 simplify_set (rtx x)
6489 rtx src = SET_SRC (x);
6490 rtx dest = SET_DEST (x);
6491 machine_mode mode
6492 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6493 rtx_insn *other_insn;
6494 rtx *cc_use;
6496 /* (set (pc) (return)) gets written as (return). */
6497 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6498 return src;
6500 /* Now that we know for sure which bits of SRC we are using, see if we can
6501 simplify the expression for the object knowing that we only need the
6502 low-order bits. */
6504 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6506 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6507 SUBST (SET_SRC (x), src);
6510 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6511 the comparison result and try to simplify it unless we already have used
6512 undobuf.other_insn. */
6513 if ((GET_MODE_CLASS (mode) == MODE_CC
6514 || GET_CODE (src) == COMPARE
6515 || CC0_P (dest))
6516 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6517 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6518 && COMPARISON_P (*cc_use)
6519 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6521 enum rtx_code old_code = GET_CODE (*cc_use);
6522 enum rtx_code new_code;
6523 rtx op0, op1, tmp;
6524 int other_changed = 0;
6525 rtx inner_compare = NULL_RTX;
6526 machine_mode compare_mode = GET_MODE (dest);
6528 if (GET_CODE (src) == COMPARE)
6530 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6531 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6533 inner_compare = op0;
6534 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6537 else
6538 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6540 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6541 op0, op1);
6542 if (!tmp)
6543 new_code = old_code;
6544 else if (!CONSTANT_P (tmp))
6546 new_code = GET_CODE (tmp);
6547 op0 = XEXP (tmp, 0);
6548 op1 = XEXP (tmp, 1);
6550 else
6552 rtx pat = PATTERN (other_insn);
6553 undobuf.other_insn = other_insn;
6554 SUBST (*cc_use, tmp);
6556 /* Attempt to simplify CC user. */
6557 if (GET_CODE (pat) == SET)
6559 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6560 if (new_rtx != NULL_RTX)
6561 SUBST (SET_SRC (pat), new_rtx);
6564 /* Convert X into a no-op move. */
6565 SUBST (SET_DEST (x), pc_rtx);
6566 SUBST (SET_SRC (x), pc_rtx);
6567 return x;
6570 /* Simplify our comparison, if possible. */
6571 new_code = simplify_comparison (new_code, &op0, &op1);
6573 #ifdef SELECT_CC_MODE
6574 /* If this machine has CC modes other than CCmode, check to see if we
6575 need to use a different CC mode here. */
6576 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6577 compare_mode = GET_MODE (op0);
6578 else if (inner_compare
6579 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6580 && new_code == old_code
6581 && op0 == XEXP (inner_compare, 0)
6582 && op1 == XEXP (inner_compare, 1))
6583 compare_mode = GET_MODE (inner_compare);
6584 else
6585 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6587 #ifndef HAVE_cc0
6588 /* If the mode changed, we have to change SET_DEST, the mode in the
6589 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6590 a hard register, just build new versions with the proper mode. If it
6591 is a pseudo, we lose unless it is only time we set the pseudo, in
6592 which case we can safely change its mode. */
6593 if (compare_mode != GET_MODE (dest))
6595 if (can_change_dest_mode (dest, 0, compare_mode))
6597 unsigned int regno = REGNO (dest);
6598 rtx new_dest;
6600 if (regno < FIRST_PSEUDO_REGISTER)
6601 new_dest = gen_rtx_REG (compare_mode, regno);
6602 else
6604 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6605 new_dest = regno_reg_rtx[regno];
6608 SUBST (SET_DEST (x), new_dest);
6609 SUBST (XEXP (*cc_use, 0), new_dest);
6610 other_changed = 1;
6612 dest = new_dest;
6615 #endif /* cc0 */
6616 #endif /* SELECT_CC_MODE */
6618 /* If the code changed, we have to build a new comparison in
6619 undobuf.other_insn. */
6620 if (new_code != old_code)
6622 int other_changed_previously = other_changed;
6623 unsigned HOST_WIDE_INT mask;
6624 rtx old_cc_use = *cc_use;
6626 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6627 dest, const0_rtx));
6628 other_changed = 1;
6630 /* If the only change we made was to change an EQ into an NE or
6631 vice versa, OP0 has only one bit that might be nonzero, and OP1
6632 is zero, check if changing the user of the condition code will
6633 produce a valid insn. If it won't, we can keep the original code
6634 in that insn by surrounding our operation with an XOR. */
6636 if (((old_code == NE && new_code == EQ)
6637 || (old_code == EQ && new_code == NE))
6638 && ! other_changed_previously && op1 == const0_rtx
6639 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6640 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6642 rtx pat = PATTERN (other_insn), note = 0;
6644 if ((recog_for_combine (&pat, other_insn, &note) < 0
6645 && ! check_asm_operands (pat)))
6647 *cc_use = old_cc_use;
6648 other_changed = 0;
6650 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6651 gen_int_mode (mask,
6652 GET_MODE (op0)));
6657 if (other_changed)
6658 undobuf.other_insn = other_insn;
6660 /* Otherwise, if we didn't previously have a COMPARE in the
6661 correct mode, we need one. */
6662 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
6664 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6665 src = SET_SRC (x);
6667 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6669 SUBST (SET_SRC (x), op0);
6670 src = SET_SRC (x);
6672 /* Otherwise, update the COMPARE if needed. */
6673 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6675 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6676 src = SET_SRC (x);
6679 else
6681 /* Get SET_SRC in a form where we have placed back any
6682 compound expressions. Then do the checks below. */
6683 src = make_compound_operation (src, SET);
6684 SUBST (SET_SRC (x), src);
6687 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6688 and X being a REG or (subreg (reg)), we may be able to convert this to
6689 (set (subreg:m2 x) (op)).
6691 We can always do this if M1 is narrower than M2 because that means that
6692 we only care about the low bits of the result.
6694 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6695 perform a narrower operation than requested since the high-order bits will
6696 be undefined. On machine where it is defined, this transformation is safe
6697 as long as M1 and M2 have the same number of words. */
6699 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6700 && !OBJECT_P (SUBREG_REG (src))
6701 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6702 / UNITS_PER_WORD)
6703 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6704 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6705 #ifndef WORD_REGISTER_OPERATIONS
6706 && (GET_MODE_SIZE (GET_MODE (src))
6707 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
6708 #endif
6709 #ifdef CANNOT_CHANGE_MODE_CLASS
6710 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6711 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6712 GET_MODE (SUBREG_REG (src)),
6713 GET_MODE (src)))
6714 #endif
6715 && (REG_P (dest)
6716 || (GET_CODE (dest) == SUBREG
6717 && REG_P (SUBREG_REG (dest)))))
6719 SUBST (SET_DEST (x),
6720 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6721 dest));
6722 SUBST (SET_SRC (x), SUBREG_REG (src));
6724 src = SET_SRC (x), dest = SET_DEST (x);
6727 #ifdef HAVE_cc0
6728 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6729 in SRC. */
6730 if (dest == cc0_rtx
6731 && GET_CODE (src) == SUBREG
6732 && subreg_lowpart_p (src)
6733 && (GET_MODE_PRECISION (GET_MODE (src))
6734 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6736 rtx inner = SUBREG_REG (src);
6737 machine_mode inner_mode = GET_MODE (inner);
6739 /* Here we make sure that we don't have a sign bit on. */
6740 if (val_signbit_known_clear_p (GET_MODE (src),
6741 nonzero_bits (inner, inner_mode)))
6743 SUBST (SET_SRC (x), inner);
6744 src = SET_SRC (x);
6747 #endif
6749 #ifdef LOAD_EXTEND_OP
6750 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6751 would require a paradoxical subreg. Replace the subreg with a
6752 zero_extend to avoid the reload that would otherwise be required. */
6754 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6755 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6756 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6757 && SUBREG_BYTE (src) == 0
6758 && paradoxical_subreg_p (src)
6759 && MEM_P (SUBREG_REG (src)))
6761 SUBST (SET_SRC (x),
6762 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6763 GET_MODE (src), SUBREG_REG (src)));
6765 src = SET_SRC (x);
6767 #endif
6769 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6770 are comparing an item known to be 0 or -1 against 0, use a logical
6771 operation instead. Check for one of the arms being an IOR of the other
6772 arm with some value. We compute three terms to be IOR'ed together. In
6773 practice, at most two will be nonzero. Then we do the IOR's. */
6775 if (GET_CODE (dest) != PC
6776 && GET_CODE (src) == IF_THEN_ELSE
6777 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6778 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6779 && XEXP (XEXP (src, 0), 1) == const0_rtx
6780 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6781 #ifdef HAVE_conditional_move
6782 && ! can_conditionally_move_p (GET_MODE (src))
6783 #endif
6784 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6785 GET_MODE (XEXP (XEXP (src, 0), 0)))
6786 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6787 && ! side_effects_p (src))
6789 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6790 ? XEXP (src, 1) : XEXP (src, 2));
6791 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6792 ? XEXP (src, 2) : XEXP (src, 1));
6793 rtx term1 = const0_rtx, term2, term3;
6795 if (GET_CODE (true_rtx) == IOR
6796 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6797 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6798 else if (GET_CODE (true_rtx) == IOR
6799 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6800 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6801 else if (GET_CODE (false_rtx) == IOR
6802 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6803 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6804 else if (GET_CODE (false_rtx) == IOR
6805 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6806 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6808 term2 = simplify_gen_binary (AND, GET_MODE (src),
6809 XEXP (XEXP (src, 0), 0), true_rtx);
6810 term3 = simplify_gen_binary (AND, GET_MODE (src),
6811 simplify_gen_unary (NOT, GET_MODE (src),
6812 XEXP (XEXP (src, 0), 0),
6813 GET_MODE (src)),
6814 false_rtx);
6816 SUBST (SET_SRC (x),
6817 simplify_gen_binary (IOR, GET_MODE (src),
6818 simplify_gen_binary (IOR, GET_MODE (src),
6819 term1, term2),
6820 term3));
6822 src = SET_SRC (x);
6825 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6826 whole thing fail. */
6827 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6828 return src;
6829 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6830 return dest;
6831 else
6832 /* Convert this into a field assignment operation, if possible. */
6833 return make_field_assignment (x);
6836 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6837 result. */
6839 static rtx
6840 simplify_logical (rtx x)
6842 machine_mode mode = GET_MODE (x);
6843 rtx op0 = XEXP (x, 0);
6844 rtx op1 = XEXP (x, 1);
6846 switch (GET_CODE (x))
6848 case AND:
6849 /* We can call simplify_and_const_int only if we don't lose
6850 any (sign) bits when converting INTVAL (op1) to
6851 "unsigned HOST_WIDE_INT". */
6852 if (CONST_INT_P (op1)
6853 && (HWI_COMPUTABLE_MODE_P (mode)
6854 || INTVAL (op1) > 0))
6856 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6857 if (GET_CODE (x) != AND)
6858 return x;
6860 op0 = XEXP (x, 0);
6861 op1 = XEXP (x, 1);
6864 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6865 apply the distributive law and then the inverse distributive
6866 law to see if things simplify. */
6867 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6869 rtx result = distribute_and_simplify_rtx (x, 0);
6870 if (result)
6871 return result;
6873 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6875 rtx result = distribute_and_simplify_rtx (x, 1);
6876 if (result)
6877 return result;
6879 break;
6881 case IOR:
6882 /* If we have (ior (and A B) C), apply the distributive law and then
6883 the inverse distributive law to see if things simplify. */
6885 if (GET_CODE (op0) == AND)
6887 rtx result = distribute_and_simplify_rtx (x, 0);
6888 if (result)
6889 return result;
6892 if (GET_CODE (op1) == AND)
6894 rtx result = distribute_and_simplify_rtx (x, 1);
6895 if (result)
6896 return result;
6898 break;
6900 default:
6901 gcc_unreachable ();
6904 return x;
6907 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6908 operations" because they can be replaced with two more basic operations.
6909 ZERO_EXTEND is also considered "compound" because it can be replaced with
6910 an AND operation, which is simpler, though only one operation.
6912 The function expand_compound_operation is called with an rtx expression
6913 and will convert it to the appropriate shifts and AND operations,
6914 simplifying at each stage.
6916 The function make_compound_operation is called to convert an expression
6917 consisting of shifts and ANDs into the equivalent compound expression.
6918 It is the inverse of this function, loosely speaking. */
6920 static rtx
6921 expand_compound_operation (rtx x)
6923 unsigned HOST_WIDE_INT pos = 0, len;
6924 int unsignedp = 0;
6925 unsigned int modewidth;
6926 rtx tem;
6928 switch (GET_CODE (x))
6930 case ZERO_EXTEND:
6931 unsignedp = 1;
6932 case SIGN_EXTEND:
6933 /* We can't necessarily use a const_int for a multiword mode;
6934 it depends on implicitly extending the value.
6935 Since we don't know the right way to extend it,
6936 we can't tell whether the implicit way is right.
6938 Even for a mode that is no wider than a const_int,
6939 we can't win, because we need to sign extend one of its bits through
6940 the rest of it, and we don't know which bit. */
6941 if (CONST_INT_P (XEXP (x, 0)))
6942 return x;
6944 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6945 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6946 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6947 reloaded. If not for that, MEM's would very rarely be safe.
6949 Reject MODEs bigger than a word, because we might not be able
6950 to reference a two-register group starting with an arbitrary register
6951 (and currently gen_lowpart might crash for a SUBREG). */
6953 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6954 return x;
6956 /* Reject MODEs that aren't scalar integers because turning vector
6957 or complex modes into shifts causes problems. */
6959 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6960 return x;
6962 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6963 /* If the inner object has VOIDmode (the only way this can happen
6964 is if it is an ASM_OPERANDS), we can't do anything since we don't
6965 know how much masking to do. */
6966 if (len == 0)
6967 return x;
6969 break;
6971 case ZERO_EXTRACT:
6972 unsignedp = 1;
6974 /* ... fall through ... */
6976 case SIGN_EXTRACT:
6977 /* If the operand is a CLOBBER, just return it. */
6978 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6979 return XEXP (x, 0);
6981 if (!CONST_INT_P (XEXP (x, 1))
6982 || !CONST_INT_P (XEXP (x, 2))
6983 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6984 return x;
6986 /* Reject MODEs that aren't scalar integers because turning vector
6987 or complex modes into shifts causes problems. */
6989 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6990 return x;
6992 len = INTVAL (XEXP (x, 1));
6993 pos = INTVAL (XEXP (x, 2));
6995 /* This should stay within the object being extracted, fail otherwise. */
6996 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
6997 return x;
6999 if (BITS_BIG_ENDIAN)
7000 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7002 break;
7004 default:
7005 return x;
7007 /* Convert sign extension to zero extension, if we know that the high
7008 bit is not set, as this is easier to optimize. It will be converted
7009 back to cheaper alternative in make_extraction. */
7010 if (GET_CODE (x) == SIGN_EXTEND
7011 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7012 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7013 & ~(((unsigned HOST_WIDE_INT)
7014 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7015 >> 1))
7016 == 0)))
7018 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
7019 rtx temp2 = expand_compound_operation (temp);
7021 /* Make sure this is a profitable operation. */
7022 if (set_src_cost (x, optimize_this_for_speed_p)
7023 > set_src_cost (temp2, optimize_this_for_speed_p))
7024 return temp2;
7025 else if (set_src_cost (x, optimize_this_for_speed_p)
7026 > set_src_cost (temp, optimize_this_for_speed_p))
7027 return temp;
7028 else
7029 return x;
7032 /* We can optimize some special cases of ZERO_EXTEND. */
7033 if (GET_CODE (x) == ZERO_EXTEND)
7035 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7036 know that the last value didn't have any inappropriate bits
7037 set. */
7038 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7039 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7040 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7041 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7042 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7043 return XEXP (XEXP (x, 0), 0);
7045 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7046 if (GET_CODE (XEXP (x, 0)) == SUBREG
7047 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7048 && subreg_lowpart_p (XEXP (x, 0))
7049 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7050 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7051 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7052 return SUBREG_REG (XEXP (x, 0));
7054 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7055 is a comparison and STORE_FLAG_VALUE permits. This is like
7056 the first case, but it works even when GET_MODE (x) is larger
7057 than HOST_WIDE_INT. */
7058 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7059 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7060 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7061 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7062 <= HOST_BITS_PER_WIDE_INT)
7063 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7064 return XEXP (XEXP (x, 0), 0);
7066 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7067 if (GET_CODE (XEXP (x, 0)) == SUBREG
7068 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7069 && subreg_lowpart_p (XEXP (x, 0))
7070 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7071 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7072 <= HOST_BITS_PER_WIDE_INT)
7073 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7074 return SUBREG_REG (XEXP (x, 0));
7078 /* If we reach here, we want to return a pair of shifts. The inner
7079 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7080 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7081 logical depending on the value of UNSIGNEDP.
7083 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7084 converted into an AND of a shift.
7086 We must check for the case where the left shift would have a negative
7087 count. This can happen in a case like (x >> 31) & 255 on machines
7088 that can't shift by a constant. On those machines, we would first
7089 combine the shift with the AND to produce a variable-position
7090 extraction. Then the constant of 31 would be substituted in
7091 to produce such a position. */
7093 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7094 if (modewidth >= pos + len)
7096 machine_mode mode = GET_MODE (x);
7097 tem = gen_lowpart (mode, XEXP (x, 0));
7098 if (!tem || GET_CODE (tem) == CLOBBER)
7099 return x;
7100 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7101 tem, modewidth - pos - len);
7102 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7103 mode, tem, modewidth - len);
7105 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7106 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7107 simplify_shift_const (NULL_RTX, LSHIFTRT,
7108 GET_MODE (x),
7109 XEXP (x, 0), pos),
7110 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7111 else
7112 /* Any other cases we can't handle. */
7113 return x;
7115 /* If we couldn't do this for some reason, return the original
7116 expression. */
7117 if (GET_CODE (tem) == CLOBBER)
7118 return x;
7120 return tem;
7123 /* X is a SET which contains an assignment of one object into
7124 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7125 or certain SUBREGS). If possible, convert it into a series of
7126 logical operations.
7128 We half-heartedly support variable positions, but do not at all
7129 support variable lengths. */
7131 static const_rtx
7132 expand_field_assignment (const_rtx x)
7134 rtx inner;
7135 rtx pos; /* Always counts from low bit. */
7136 int len;
7137 rtx mask, cleared, masked;
7138 machine_mode compute_mode;
7140 /* Loop until we find something we can't simplify. */
7141 while (1)
7143 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7144 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7146 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7147 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7148 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7150 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7151 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7153 inner = XEXP (SET_DEST (x), 0);
7154 len = INTVAL (XEXP (SET_DEST (x), 1));
7155 pos = XEXP (SET_DEST (x), 2);
7157 /* A constant position should stay within the width of INNER. */
7158 if (CONST_INT_P (pos)
7159 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7160 break;
7162 if (BITS_BIG_ENDIAN)
7164 if (CONST_INT_P (pos))
7165 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7166 - INTVAL (pos));
7167 else if (GET_CODE (pos) == MINUS
7168 && CONST_INT_P (XEXP (pos, 1))
7169 && (INTVAL (XEXP (pos, 1))
7170 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7171 /* If position is ADJUST - X, new position is X. */
7172 pos = XEXP (pos, 0);
7173 else
7175 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7176 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7177 gen_int_mode (prec - len,
7178 GET_MODE (pos)),
7179 pos);
7184 /* A SUBREG between two modes that occupy the same numbers of words
7185 can be done by moving the SUBREG to the source. */
7186 else if (GET_CODE (SET_DEST (x)) == SUBREG
7187 /* We need SUBREGs to compute nonzero_bits properly. */
7188 && nonzero_sign_valid
7189 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7190 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7191 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7192 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7194 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
7195 gen_lowpart
7196 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7197 SET_SRC (x)));
7198 continue;
7200 else
7201 break;
7203 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7204 inner = SUBREG_REG (inner);
7206 compute_mode = GET_MODE (inner);
7208 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7209 if (! SCALAR_INT_MODE_P (compute_mode))
7211 machine_mode imode;
7213 /* Don't do anything for vector or complex integral types. */
7214 if (! FLOAT_MODE_P (compute_mode))
7215 break;
7217 /* Try to find an integral mode to pun with. */
7218 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7219 if (imode == BLKmode)
7220 break;
7222 compute_mode = imode;
7223 inner = gen_lowpart (imode, inner);
7226 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7227 if (len >= HOST_BITS_PER_WIDE_INT)
7228 break;
7230 /* Now compute the equivalent expression. Make a copy of INNER
7231 for the SET_DEST in case it is a MEM into which we will substitute;
7232 we don't want shared RTL in that case. */
7233 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7234 compute_mode);
7235 cleared = simplify_gen_binary (AND, compute_mode,
7236 simplify_gen_unary (NOT, compute_mode,
7237 simplify_gen_binary (ASHIFT,
7238 compute_mode,
7239 mask, pos),
7240 compute_mode),
7241 inner);
7242 masked = simplify_gen_binary (ASHIFT, compute_mode,
7243 simplify_gen_binary (
7244 AND, compute_mode,
7245 gen_lowpart (compute_mode, SET_SRC (x)),
7246 mask),
7247 pos);
7249 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
7250 simplify_gen_binary (IOR, compute_mode,
7251 cleared, masked));
7254 return x;
7257 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7258 it is an RTX that represents the (variable) starting position; otherwise,
7259 POS is the (constant) starting bit position. Both are counted from the LSB.
7261 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7263 IN_DEST is nonzero if this is a reference in the destination of a SET.
7264 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7265 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7266 be used.
7268 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7269 ZERO_EXTRACT should be built even for bits starting at bit 0.
7271 MODE is the desired mode of the result (if IN_DEST == 0).
7273 The result is an RTX for the extraction or NULL_RTX if the target
7274 can't handle it. */
7276 static rtx
7277 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7278 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7279 int in_dest, int in_compare)
7281 /* This mode describes the size of the storage area
7282 to fetch the overall value from. Within that, we
7283 ignore the POS lowest bits, etc. */
7284 machine_mode is_mode = GET_MODE (inner);
7285 machine_mode inner_mode;
7286 machine_mode wanted_inner_mode;
7287 machine_mode wanted_inner_reg_mode = word_mode;
7288 machine_mode pos_mode = word_mode;
7289 machine_mode extraction_mode = word_mode;
7290 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7291 rtx new_rtx = 0;
7292 rtx orig_pos_rtx = pos_rtx;
7293 HOST_WIDE_INT orig_pos;
7295 if (pos_rtx && CONST_INT_P (pos_rtx))
7296 pos = INTVAL (pos_rtx), pos_rtx = 0;
7298 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7300 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7301 consider just the QI as the memory to extract from.
7302 The subreg adds or removes high bits; its mode is
7303 irrelevant to the meaning of this extraction,
7304 since POS and LEN count from the lsb. */
7305 if (MEM_P (SUBREG_REG (inner)))
7306 is_mode = GET_MODE (SUBREG_REG (inner));
7307 inner = SUBREG_REG (inner);
7309 else if (GET_CODE (inner) == ASHIFT
7310 && CONST_INT_P (XEXP (inner, 1))
7311 && pos_rtx == 0 && pos == 0
7312 && len > UINTVAL (XEXP (inner, 1)))
7314 /* We're extracting the least significant bits of an rtx
7315 (ashift X (const_int C)), where LEN > C. Extract the
7316 least significant (LEN - C) bits of X, giving an rtx
7317 whose mode is MODE, then shift it left C times. */
7318 new_rtx = make_extraction (mode, XEXP (inner, 0),
7319 0, 0, len - INTVAL (XEXP (inner, 1)),
7320 unsignedp, in_dest, in_compare);
7321 if (new_rtx != 0)
7322 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7324 else if (GET_CODE (inner) == TRUNCATE)
7325 inner = XEXP (inner, 0);
7327 inner_mode = GET_MODE (inner);
7329 /* See if this can be done without an extraction. We never can if the
7330 width of the field is not the same as that of some integer mode. For
7331 registers, we can only avoid the extraction if the position is at the
7332 low-order bit and this is either not in the destination or we have the
7333 appropriate STRICT_LOW_PART operation available.
7335 For MEM, we can avoid an extract if the field starts on an appropriate
7336 boundary and we can change the mode of the memory reference. */
7338 if (tmode != BLKmode
7339 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7340 && !MEM_P (inner)
7341 && (inner_mode == tmode
7342 || !REG_P (inner)
7343 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7344 || reg_truncated_to_mode (tmode, inner))
7345 && (! in_dest
7346 || (REG_P (inner)
7347 && have_insn_for (STRICT_LOW_PART, tmode))))
7348 || (MEM_P (inner) && pos_rtx == 0
7349 && (pos
7350 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7351 : BITS_PER_UNIT)) == 0
7352 /* We can't do this if we are widening INNER_MODE (it
7353 may not be aligned, for one thing). */
7354 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7355 && (inner_mode == tmode
7356 || (! mode_dependent_address_p (XEXP (inner, 0),
7357 MEM_ADDR_SPACE (inner))
7358 && ! MEM_VOLATILE_P (inner))))))
7360 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7361 field. If the original and current mode are the same, we need not
7362 adjust the offset. Otherwise, we do if bytes big endian.
7364 If INNER is not a MEM, get a piece consisting of just the field
7365 of interest (in this case POS % BITS_PER_WORD must be 0). */
7367 if (MEM_P (inner))
7369 HOST_WIDE_INT offset;
7371 /* POS counts from lsb, but make OFFSET count in memory order. */
7372 if (BYTES_BIG_ENDIAN)
7373 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7374 else
7375 offset = pos / BITS_PER_UNIT;
7377 new_rtx = adjust_address_nv (inner, tmode, offset);
7379 else if (REG_P (inner))
7381 if (tmode != inner_mode)
7383 /* We can't call gen_lowpart in a DEST since we
7384 always want a SUBREG (see below) and it would sometimes
7385 return a new hard register. */
7386 if (pos || in_dest)
7388 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7390 if (WORDS_BIG_ENDIAN
7391 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7392 final_word = ((GET_MODE_SIZE (inner_mode)
7393 - GET_MODE_SIZE (tmode))
7394 / UNITS_PER_WORD) - final_word;
7396 final_word *= UNITS_PER_WORD;
7397 if (BYTES_BIG_ENDIAN &&
7398 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7399 final_word += (GET_MODE_SIZE (inner_mode)
7400 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7402 /* Avoid creating invalid subregs, for example when
7403 simplifying (x>>32)&255. */
7404 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7405 return NULL_RTX;
7407 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7409 else
7410 new_rtx = gen_lowpart (tmode, inner);
7412 else
7413 new_rtx = inner;
7415 else
7416 new_rtx = force_to_mode (inner, tmode,
7417 len >= HOST_BITS_PER_WIDE_INT
7418 ? ~(unsigned HOST_WIDE_INT) 0
7419 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7422 /* If this extraction is going into the destination of a SET,
7423 make a STRICT_LOW_PART unless we made a MEM. */
7425 if (in_dest)
7426 return (MEM_P (new_rtx) ? new_rtx
7427 : (GET_CODE (new_rtx) != SUBREG
7428 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7429 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7431 if (mode == tmode)
7432 return new_rtx;
7434 if (CONST_SCALAR_INT_P (new_rtx))
7435 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7436 mode, new_rtx, tmode);
7438 /* If we know that no extraneous bits are set, and that the high
7439 bit is not set, convert the extraction to the cheaper of
7440 sign and zero extension, that are equivalent in these cases. */
7441 if (flag_expensive_optimizations
7442 && (HWI_COMPUTABLE_MODE_P (tmode)
7443 && ((nonzero_bits (new_rtx, tmode)
7444 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7445 == 0)))
7447 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7448 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7450 /* Prefer ZERO_EXTENSION, since it gives more information to
7451 backends. */
7452 if (set_src_cost (temp, optimize_this_for_speed_p)
7453 <= set_src_cost (temp1, optimize_this_for_speed_p))
7454 return temp;
7455 return temp1;
7458 /* Otherwise, sign- or zero-extend unless we already are in the
7459 proper mode. */
7461 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7462 mode, new_rtx));
7465 /* Unless this is a COMPARE or we have a funny memory reference,
7466 don't do anything with zero-extending field extracts starting at
7467 the low-order bit since they are simple AND operations. */
7468 if (pos_rtx == 0 && pos == 0 && ! in_dest
7469 && ! in_compare && unsignedp)
7470 return 0;
7472 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7473 if the position is not a constant and the length is not 1. In all
7474 other cases, we would only be going outside our object in cases when
7475 an original shift would have been undefined. */
7476 if (MEM_P (inner)
7477 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7478 || (pos_rtx != 0 && len != 1)))
7479 return 0;
7481 enum extraction_pattern pattern = (in_dest ? EP_insv
7482 : unsignedp ? EP_extzv : EP_extv);
7484 /* If INNER is not from memory, we want it to have the mode of a register
7485 extraction pattern's structure operand, or word_mode if there is no
7486 such pattern. The same applies to extraction_mode and pos_mode
7487 and their respective operands.
7489 For memory, assume that the desired extraction_mode and pos_mode
7490 are the same as for a register operation, since at present we don't
7491 have named patterns for aligned memory structures. */
7492 struct extraction_insn insn;
7493 if (get_best_reg_extraction_insn (&insn, pattern,
7494 GET_MODE_BITSIZE (inner_mode), mode))
7496 wanted_inner_reg_mode = insn.struct_mode;
7497 pos_mode = insn.pos_mode;
7498 extraction_mode = insn.field_mode;
7501 /* Never narrow an object, since that might not be safe. */
7503 if (mode != VOIDmode
7504 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7505 extraction_mode = mode;
7507 if (!MEM_P (inner))
7508 wanted_inner_mode = wanted_inner_reg_mode;
7509 else
7511 /* Be careful not to go beyond the extracted object and maintain the
7512 natural alignment of the memory. */
7513 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7514 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7515 > GET_MODE_BITSIZE (wanted_inner_mode))
7517 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7518 gcc_assert (wanted_inner_mode != VOIDmode);
7522 orig_pos = pos;
7524 if (BITS_BIG_ENDIAN)
7526 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7527 BITS_BIG_ENDIAN style. If position is constant, compute new
7528 position. Otherwise, build subtraction.
7529 Note that POS is relative to the mode of the original argument.
7530 If it's a MEM we need to recompute POS relative to that.
7531 However, if we're extracting from (or inserting into) a register,
7532 we want to recompute POS relative to wanted_inner_mode. */
7533 int width = (MEM_P (inner)
7534 ? GET_MODE_BITSIZE (is_mode)
7535 : GET_MODE_BITSIZE (wanted_inner_mode));
7537 if (pos_rtx == 0)
7538 pos = width - len - pos;
7539 else
7540 pos_rtx
7541 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7542 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7543 pos_rtx);
7544 /* POS may be less than 0 now, but we check for that below.
7545 Note that it can only be less than 0 if !MEM_P (inner). */
7548 /* If INNER has a wider mode, and this is a constant extraction, try to
7549 make it smaller and adjust the byte to point to the byte containing
7550 the value. */
7551 if (wanted_inner_mode != VOIDmode
7552 && inner_mode != wanted_inner_mode
7553 && ! pos_rtx
7554 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7555 && MEM_P (inner)
7556 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7557 && ! MEM_VOLATILE_P (inner))
7559 int offset = 0;
7561 /* The computations below will be correct if the machine is big
7562 endian in both bits and bytes or little endian in bits and bytes.
7563 If it is mixed, we must adjust. */
7565 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7566 adjust OFFSET to compensate. */
7567 if (BYTES_BIG_ENDIAN
7568 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7569 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7571 /* We can now move to the desired byte. */
7572 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7573 * GET_MODE_SIZE (wanted_inner_mode);
7574 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7576 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7577 && is_mode != wanted_inner_mode)
7578 offset = (GET_MODE_SIZE (is_mode)
7579 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7581 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7584 /* If INNER is not memory, get it into the proper mode. If we are changing
7585 its mode, POS must be a constant and smaller than the size of the new
7586 mode. */
7587 else if (!MEM_P (inner))
7589 /* On the LHS, don't create paradoxical subregs implicitely truncating
7590 the register unless TRULY_NOOP_TRUNCATION. */
7591 if (in_dest
7592 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7593 wanted_inner_mode))
7594 return NULL_RTX;
7596 if (GET_MODE (inner) != wanted_inner_mode
7597 && (pos_rtx != 0
7598 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7599 return NULL_RTX;
7601 if (orig_pos < 0)
7602 return NULL_RTX;
7604 inner = force_to_mode (inner, wanted_inner_mode,
7605 pos_rtx
7606 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7607 ? ~(unsigned HOST_WIDE_INT) 0
7608 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7609 << orig_pos),
7613 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7614 have to zero extend. Otherwise, we can just use a SUBREG. */
7615 if (pos_rtx != 0
7616 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7618 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7619 GET_MODE (pos_rtx));
7621 /* If we know that no extraneous bits are set, and that the high
7622 bit is not set, convert extraction to cheaper one - either
7623 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7624 cases. */
7625 if (flag_expensive_optimizations
7626 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7627 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7628 & ~(((unsigned HOST_WIDE_INT)
7629 GET_MODE_MASK (GET_MODE (pos_rtx)))
7630 >> 1))
7631 == 0)))
7633 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7634 GET_MODE (pos_rtx));
7636 /* Prefer ZERO_EXTENSION, since it gives more information to
7637 backends. */
7638 if (set_src_cost (temp1, optimize_this_for_speed_p)
7639 < set_src_cost (temp, optimize_this_for_speed_p))
7640 temp = temp1;
7642 pos_rtx = temp;
7645 /* Make POS_RTX unless we already have it and it is correct. If we don't
7646 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7647 be a CONST_INT. */
7648 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7649 pos_rtx = orig_pos_rtx;
7651 else if (pos_rtx == 0)
7652 pos_rtx = GEN_INT (pos);
7654 /* Make the required operation. See if we can use existing rtx. */
7655 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7656 extraction_mode, inner, GEN_INT (len), pos_rtx);
7657 if (! in_dest)
7658 new_rtx = gen_lowpart (mode, new_rtx);
7660 return new_rtx;
7663 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7664 with any other operations in X. Return X without that shift if so. */
7666 static rtx
7667 extract_left_shift (rtx x, int count)
7669 enum rtx_code code = GET_CODE (x);
7670 machine_mode mode = GET_MODE (x);
7671 rtx tem;
7673 switch (code)
7675 case ASHIFT:
7676 /* This is the shift itself. If it is wide enough, we will return
7677 either the value being shifted if the shift count is equal to
7678 COUNT or a shift for the difference. */
7679 if (CONST_INT_P (XEXP (x, 1))
7680 && INTVAL (XEXP (x, 1)) >= count)
7681 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7682 INTVAL (XEXP (x, 1)) - count);
7683 break;
7685 case NEG: case NOT:
7686 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7687 return simplify_gen_unary (code, mode, tem, mode);
7689 break;
7691 case PLUS: case IOR: case XOR: case AND:
7692 /* If we can safely shift this constant and we find the inner shift,
7693 make a new operation. */
7694 if (CONST_INT_P (XEXP (x, 1))
7695 && (UINTVAL (XEXP (x, 1))
7696 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7697 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7699 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7700 return simplify_gen_binary (code, mode, tem,
7701 gen_int_mode (val, mode));
7703 break;
7705 default:
7706 break;
7709 return 0;
7712 /* Look at the expression rooted at X. Look for expressions
7713 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7714 Form these expressions.
7716 Return the new rtx, usually just X.
7718 Also, for machines like the VAX that don't have logical shift insns,
7719 try to convert logical to arithmetic shift operations in cases where
7720 they are equivalent. This undoes the canonicalizations to logical
7721 shifts done elsewhere.
7723 We try, as much as possible, to re-use rtl expressions to save memory.
7725 IN_CODE says what kind of expression we are processing. Normally, it is
7726 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7727 being kludges), it is MEM. When processing the arguments of a comparison
7728 or a COMPARE against zero, it is COMPARE. */
7731 make_compound_operation (rtx x, enum rtx_code in_code)
7733 enum rtx_code code = GET_CODE (x);
7734 machine_mode mode = GET_MODE (x);
7735 int mode_width = GET_MODE_PRECISION (mode);
7736 rtx rhs, lhs;
7737 enum rtx_code next_code;
7738 int i, j;
7739 rtx new_rtx = 0;
7740 rtx tem;
7741 const char *fmt;
7743 /* Select the code to be used in recursive calls. Once we are inside an
7744 address, we stay there. If we have a comparison, set to COMPARE,
7745 but once inside, go back to our default of SET. */
7747 next_code = (code == MEM ? MEM
7748 : ((code == PLUS || code == MINUS)
7749 && SCALAR_INT_MODE_P (mode)) ? MEM
7750 : ((code == COMPARE || COMPARISON_P (x))
7751 && XEXP (x, 1) == const0_rtx) ? COMPARE
7752 : in_code == COMPARE ? SET : in_code);
7754 /* Process depending on the code of this operation. If NEW is set
7755 nonzero, it will be returned. */
7757 switch (code)
7759 case ASHIFT:
7760 /* Convert shifts by constants into multiplications if inside
7761 an address. */
7762 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7763 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7764 && INTVAL (XEXP (x, 1)) >= 0
7765 && SCALAR_INT_MODE_P (mode))
7767 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7768 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7770 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7771 if (GET_CODE (new_rtx) == NEG)
7773 new_rtx = XEXP (new_rtx, 0);
7774 multval = -multval;
7776 multval = trunc_int_for_mode (multval, mode);
7777 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7779 break;
7781 case PLUS:
7782 lhs = XEXP (x, 0);
7783 rhs = XEXP (x, 1);
7784 lhs = make_compound_operation (lhs, next_code);
7785 rhs = make_compound_operation (rhs, next_code);
7786 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7787 && SCALAR_INT_MODE_P (mode))
7789 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7790 XEXP (lhs, 1));
7791 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7793 else if (GET_CODE (lhs) == MULT
7794 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7796 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7797 simplify_gen_unary (NEG, mode,
7798 XEXP (lhs, 1),
7799 mode));
7800 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7802 else
7804 SUBST (XEXP (x, 0), lhs);
7805 SUBST (XEXP (x, 1), rhs);
7806 goto maybe_swap;
7808 x = gen_lowpart (mode, new_rtx);
7809 goto maybe_swap;
7811 case MINUS:
7812 lhs = XEXP (x, 0);
7813 rhs = XEXP (x, 1);
7814 lhs = make_compound_operation (lhs, next_code);
7815 rhs = make_compound_operation (rhs, next_code);
7816 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7817 && SCALAR_INT_MODE_P (mode))
7819 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7820 XEXP (rhs, 1));
7821 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7823 else if (GET_CODE (rhs) == MULT
7824 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7826 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7827 simplify_gen_unary (NEG, mode,
7828 XEXP (rhs, 1),
7829 mode));
7830 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7832 else
7834 SUBST (XEXP (x, 0), lhs);
7835 SUBST (XEXP (x, 1), rhs);
7836 return x;
7838 return gen_lowpart (mode, new_rtx);
7840 case AND:
7841 /* If the second operand is not a constant, we can't do anything
7842 with it. */
7843 if (!CONST_INT_P (XEXP (x, 1)))
7844 break;
7846 /* If the constant is a power of two minus one and the first operand
7847 is a logical right shift, make an extraction. */
7848 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7849 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7851 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7852 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7853 0, in_code == COMPARE);
7856 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7857 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7858 && subreg_lowpart_p (XEXP (x, 0))
7859 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7860 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7862 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7863 next_code);
7864 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7865 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7866 0, in_code == COMPARE);
7868 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7869 else if ((GET_CODE (XEXP (x, 0)) == XOR
7870 || GET_CODE (XEXP (x, 0)) == IOR)
7871 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7872 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7873 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7875 /* Apply the distributive law, and then try to make extractions. */
7876 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7877 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7878 XEXP (x, 1)),
7879 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7880 XEXP (x, 1)));
7881 new_rtx = make_compound_operation (new_rtx, in_code);
7884 /* If we are have (and (rotate X C) M) and C is larger than the number
7885 of bits in M, this is an extraction. */
7887 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7888 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7889 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7890 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7892 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7893 new_rtx = make_extraction (mode, new_rtx,
7894 (GET_MODE_PRECISION (mode)
7895 - INTVAL (XEXP (XEXP (x, 0), 1))),
7896 NULL_RTX, i, 1, 0, in_code == COMPARE);
7899 /* On machines without logical shifts, if the operand of the AND is
7900 a logical shift and our mask turns off all the propagated sign
7901 bits, we can replace the logical shift with an arithmetic shift. */
7902 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7903 && !have_insn_for (LSHIFTRT, mode)
7904 && have_insn_for (ASHIFTRT, mode)
7905 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7906 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7907 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7908 && mode_width <= HOST_BITS_PER_WIDE_INT)
7910 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7912 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7913 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7914 SUBST (XEXP (x, 0),
7915 gen_rtx_ASHIFTRT (mode,
7916 make_compound_operation
7917 (XEXP (XEXP (x, 0), 0), next_code),
7918 XEXP (XEXP (x, 0), 1)));
7921 /* If the constant is one less than a power of two, this might be
7922 representable by an extraction even if no shift is present.
7923 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7924 we are in a COMPARE. */
7925 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7926 new_rtx = make_extraction (mode,
7927 make_compound_operation (XEXP (x, 0),
7928 next_code),
7929 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7931 /* If we are in a comparison and this is an AND with a power of two,
7932 convert this into the appropriate bit extract. */
7933 else if (in_code == COMPARE
7934 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7935 new_rtx = make_extraction (mode,
7936 make_compound_operation (XEXP (x, 0),
7937 next_code),
7938 i, NULL_RTX, 1, 1, 0, 1);
7940 break;
7942 case LSHIFTRT:
7943 /* If the sign bit is known to be zero, replace this with an
7944 arithmetic shift. */
7945 if (have_insn_for (ASHIFTRT, mode)
7946 && ! have_insn_for (LSHIFTRT, mode)
7947 && mode_width <= HOST_BITS_PER_WIDE_INT
7948 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7950 new_rtx = gen_rtx_ASHIFTRT (mode,
7951 make_compound_operation (XEXP (x, 0),
7952 next_code),
7953 XEXP (x, 1));
7954 break;
7957 /* ... fall through ... */
7959 case ASHIFTRT:
7960 lhs = XEXP (x, 0);
7961 rhs = XEXP (x, 1);
7963 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7964 this is a SIGN_EXTRACT. */
7965 if (CONST_INT_P (rhs)
7966 && GET_CODE (lhs) == ASHIFT
7967 && CONST_INT_P (XEXP (lhs, 1))
7968 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7969 && INTVAL (XEXP (lhs, 1)) >= 0
7970 && INTVAL (rhs) < mode_width)
7972 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7973 new_rtx = make_extraction (mode, new_rtx,
7974 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7975 NULL_RTX, mode_width - INTVAL (rhs),
7976 code == LSHIFTRT, 0, in_code == COMPARE);
7977 break;
7980 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7981 If so, try to merge the shifts into a SIGN_EXTEND. We could
7982 also do this for some cases of SIGN_EXTRACT, but it doesn't
7983 seem worth the effort; the case checked for occurs on Alpha. */
7985 if (!OBJECT_P (lhs)
7986 && ! (GET_CODE (lhs) == SUBREG
7987 && (OBJECT_P (SUBREG_REG (lhs))))
7988 && CONST_INT_P (rhs)
7989 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7990 && INTVAL (rhs) < mode_width
7991 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7992 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7993 0, NULL_RTX, mode_width - INTVAL (rhs),
7994 code == LSHIFTRT, 0, in_code == COMPARE);
7996 break;
7998 case SUBREG:
7999 /* Call ourselves recursively on the inner expression. If we are
8000 narrowing the object and it has a different RTL code from
8001 what it originally did, do this SUBREG as a force_to_mode. */
8003 rtx inner = SUBREG_REG (x), simplified;
8004 enum rtx_code subreg_code = in_code;
8006 /* If in_code is COMPARE, it isn't always safe to pass it through
8007 to the recursive make_compound_operation call. */
8008 if (subreg_code == COMPARE
8009 && (!subreg_lowpart_p (x)
8010 || GET_CODE (inner) == SUBREG
8011 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8012 is (const_int 0), rather than
8013 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8014 || (GET_CODE (inner) == AND
8015 && CONST_INT_P (XEXP (inner, 1))
8016 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8017 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8018 >= GET_MODE_BITSIZE (mode))))
8019 subreg_code = SET;
8021 tem = make_compound_operation (inner, subreg_code);
8023 simplified
8024 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8025 if (simplified)
8026 tem = simplified;
8028 if (GET_CODE (tem) != GET_CODE (inner)
8029 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8030 && subreg_lowpart_p (x))
8032 rtx newer
8033 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8035 /* If we have something other than a SUBREG, we might have
8036 done an expansion, so rerun ourselves. */
8037 if (GET_CODE (newer) != SUBREG)
8038 newer = make_compound_operation (newer, in_code);
8040 /* force_to_mode can expand compounds. If it just re-expanded the
8041 compound, use gen_lowpart to convert to the desired mode. */
8042 if (rtx_equal_p (newer, x)
8043 /* Likewise if it re-expanded the compound only partially.
8044 This happens for SUBREG of ZERO_EXTRACT if they extract
8045 the same number of bits. */
8046 || (GET_CODE (newer) == SUBREG
8047 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8048 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8049 && GET_CODE (inner) == AND
8050 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8051 return gen_lowpart (GET_MODE (x), tem);
8053 return newer;
8056 if (simplified)
8057 return tem;
8059 break;
8061 default:
8062 break;
8065 if (new_rtx)
8067 x = gen_lowpart (mode, new_rtx);
8068 code = GET_CODE (x);
8071 /* Now recursively process each operand of this operation. We need to
8072 handle ZERO_EXTEND specially so that we don't lose track of the
8073 inner mode. */
8074 if (GET_CODE (x) == ZERO_EXTEND)
8076 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8077 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8078 new_rtx, GET_MODE (XEXP (x, 0)));
8079 if (tem)
8080 return tem;
8081 SUBST (XEXP (x, 0), new_rtx);
8082 return x;
8085 fmt = GET_RTX_FORMAT (code);
8086 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8087 if (fmt[i] == 'e')
8089 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8090 SUBST (XEXP (x, i), new_rtx);
8092 else if (fmt[i] == 'E')
8093 for (j = 0; j < XVECLEN (x, i); j++)
8095 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8096 SUBST (XVECEXP (x, i, j), new_rtx);
8099 maybe_swap:
8100 /* If this is a commutative operation, the changes to the operands
8101 may have made it noncanonical. */
8102 if (COMMUTATIVE_ARITH_P (x)
8103 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8105 tem = XEXP (x, 0);
8106 SUBST (XEXP (x, 0), XEXP (x, 1));
8107 SUBST (XEXP (x, 1), tem);
8110 return x;
8113 /* Given M see if it is a value that would select a field of bits
8114 within an item, but not the entire word. Return -1 if not.
8115 Otherwise, return the starting position of the field, where 0 is the
8116 low-order bit.
8118 *PLEN is set to the length of the field. */
8120 static int
8121 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8123 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8124 int pos = m ? ctz_hwi (m) : -1;
8125 int len = 0;
8127 if (pos >= 0)
8128 /* Now shift off the low-order zero bits and see if we have a
8129 power of two minus 1. */
8130 len = exact_log2 ((m >> pos) + 1);
8132 if (len <= 0)
8133 pos = -1;
8135 *plen = len;
8136 return pos;
8139 /* If X refers to a register that equals REG in value, replace these
8140 references with REG. */
8141 static rtx
8142 canon_reg_for_combine (rtx x, rtx reg)
8144 rtx op0, op1, op2;
8145 const char *fmt;
8146 int i;
8147 bool copied;
8149 enum rtx_code code = GET_CODE (x);
8150 switch (GET_RTX_CLASS (code))
8152 case RTX_UNARY:
8153 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8154 if (op0 != XEXP (x, 0))
8155 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8156 GET_MODE (reg));
8157 break;
8159 case RTX_BIN_ARITH:
8160 case RTX_COMM_ARITH:
8161 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8162 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8163 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8164 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8165 break;
8167 case RTX_COMPARE:
8168 case RTX_COMM_COMPARE:
8169 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8170 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8171 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8172 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8173 GET_MODE (op0), op0, op1);
8174 break;
8176 case RTX_TERNARY:
8177 case RTX_BITFIELD_OPS:
8178 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8179 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8180 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8181 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8182 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8183 GET_MODE (op0), op0, op1, op2);
8185 case RTX_OBJ:
8186 if (REG_P (x))
8188 if (rtx_equal_p (get_last_value (reg), x)
8189 || rtx_equal_p (reg, get_last_value (x)))
8190 return reg;
8191 else
8192 break;
8195 /* fall through */
8197 default:
8198 fmt = GET_RTX_FORMAT (code);
8199 copied = false;
8200 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8201 if (fmt[i] == 'e')
8203 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8204 if (op != XEXP (x, i))
8206 if (!copied)
8208 copied = true;
8209 x = copy_rtx (x);
8211 XEXP (x, i) = op;
8214 else if (fmt[i] == 'E')
8216 int j;
8217 for (j = 0; j < XVECLEN (x, i); j++)
8219 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8220 if (op != XVECEXP (x, i, j))
8222 if (!copied)
8224 copied = true;
8225 x = copy_rtx (x);
8227 XVECEXP (x, i, j) = op;
8232 break;
8235 return x;
8238 /* Return X converted to MODE. If the value is already truncated to
8239 MODE we can just return a subreg even though in the general case we
8240 would need an explicit truncation. */
8242 static rtx
8243 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8245 if (!CONST_INT_P (x)
8246 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8247 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8248 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8250 /* Bit-cast X into an integer mode. */
8251 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8252 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8253 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8254 x, GET_MODE (x));
8257 return gen_lowpart (mode, x);
8260 /* See if X can be simplified knowing that we will only refer to it in
8261 MODE and will only refer to those bits that are nonzero in MASK.
8262 If other bits are being computed or if masking operations are done
8263 that select a superset of the bits in MASK, they can sometimes be
8264 ignored.
8266 Return a possibly simplified expression, but always convert X to
8267 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8269 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8270 are all off in X. This is used when X will be complemented, by either
8271 NOT, NEG, or XOR. */
8273 static rtx
8274 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8275 int just_select)
8277 enum rtx_code code = GET_CODE (x);
8278 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8279 machine_mode op_mode;
8280 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8281 rtx op0, op1, temp;
8283 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8284 code below will do the wrong thing since the mode of such an
8285 expression is VOIDmode.
8287 Also do nothing if X is a CLOBBER; this can happen if X was
8288 the return value from a call to gen_lowpart. */
8289 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8290 return x;
8292 /* We want to perform the operation in its present mode unless we know
8293 that the operation is valid in MODE, in which case we do the operation
8294 in MODE. */
8295 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8296 && have_insn_for (code, mode))
8297 ? mode : GET_MODE (x));
8299 /* It is not valid to do a right-shift in a narrower mode
8300 than the one it came in with. */
8301 if ((code == LSHIFTRT || code == ASHIFTRT)
8302 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8303 op_mode = GET_MODE (x);
8305 /* Truncate MASK to fit OP_MODE. */
8306 if (op_mode)
8307 mask &= GET_MODE_MASK (op_mode);
8309 /* When we have an arithmetic operation, or a shift whose count we
8310 do not know, we need to assume that all bits up to the highest-order
8311 bit in MASK will be needed. This is how we form such a mask. */
8312 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8313 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8314 else
8315 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8316 - 1);
8318 /* Determine what bits of X are guaranteed to be (non)zero. */
8319 nonzero = nonzero_bits (x, mode);
8321 /* If none of the bits in X are needed, return a zero. */
8322 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8323 x = const0_rtx;
8325 /* If X is a CONST_INT, return a new one. Do this here since the
8326 test below will fail. */
8327 if (CONST_INT_P (x))
8329 if (SCALAR_INT_MODE_P (mode))
8330 return gen_int_mode (INTVAL (x) & mask, mode);
8331 else
8333 x = GEN_INT (INTVAL (x) & mask);
8334 return gen_lowpart_common (mode, x);
8338 /* If X is narrower than MODE and we want all the bits in X's mode, just
8339 get X in the proper mode. */
8340 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8341 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8342 return gen_lowpart (mode, x);
8344 /* We can ignore the effect of a SUBREG if it narrows the mode or
8345 if the constant masks to zero all the bits the mode doesn't have. */
8346 if (GET_CODE (x) == SUBREG
8347 && subreg_lowpart_p (x)
8348 && ((GET_MODE_SIZE (GET_MODE (x))
8349 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8350 || (0 == (mask
8351 & GET_MODE_MASK (GET_MODE (x))
8352 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8353 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8355 /* The arithmetic simplifications here only work for scalar integer modes. */
8356 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8357 return gen_lowpart_or_truncate (mode, x);
8359 switch (code)
8361 case CLOBBER:
8362 /* If X is a (clobber (const_int)), return it since we know we are
8363 generating something that won't match. */
8364 return x;
8366 case SIGN_EXTEND:
8367 case ZERO_EXTEND:
8368 case ZERO_EXTRACT:
8369 case SIGN_EXTRACT:
8370 x = expand_compound_operation (x);
8371 if (GET_CODE (x) != code)
8372 return force_to_mode (x, mode, mask, next_select);
8373 break;
8375 case TRUNCATE:
8376 /* Similarly for a truncate. */
8377 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8379 case AND:
8380 /* If this is an AND with a constant, convert it into an AND
8381 whose constant is the AND of that constant with MASK. If it
8382 remains an AND of MASK, delete it since it is redundant. */
8384 if (CONST_INT_P (XEXP (x, 1)))
8386 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8387 mask & INTVAL (XEXP (x, 1)));
8389 /* If X is still an AND, see if it is an AND with a mask that
8390 is just some low-order bits. If so, and it is MASK, we don't
8391 need it. */
8393 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8394 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8395 == mask))
8396 x = XEXP (x, 0);
8398 /* If it remains an AND, try making another AND with the bits
8399 in the mode mask that aren't in MASK turned on. If the
8400 constant in the AND is wide enough, this might make a
8401 cheaper constant. */
8403 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8404 && GET_MODE_MASK (GET_MODE (x)) != mask
8405 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8407 unsigned HOST_WIDE_INT cval
8408 = UINTVAL (XEXP (x, 1))
8409 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8410 rtx y;
8412 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8413 gen_int_mode (cval, GET_MODE (x)));
8414 if (set_src_cost (y, optimize_this_for_speed_p)
8415 < set_src_cost (x, optimize_this_for_speed_p))
8416 x = y;
8419 break;
8422 goto binop;
8424 case PLUS:
8425 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8426 low-order bits (as in an alignment operation) and FOO is already
8427 aligned to that boundary, mask C1 to that boundary as well.
8428 This may eliminate that PLUS and, later, the AND. */
8431 unsigned int width = GET_MODE_PRECISION (mode);
8432 unsigned HOST_WIDE_INT smask = mask;
8434 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8435 number, sign extend it. */
8437 if (width < HOST_BITS_PER_WIDE_INT
8438 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8439 smask |= HOST_WIDE_INT_M1U << width;
8441 if (CONST_INT_P (XEXP (x, 1))
8442 && exact_log2 (- smask) >= 0
8443 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8444 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8445 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8446 (INTVAL (XEXP (x, 1)) & smask)),
8447 mode, smask, next_select);
8450 /* ... fall through ... */
8452 case MULT:
8453 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8454 most significant bit in MASK since carries from those bits will
8455 affect the bits we are interested in. */
8456 mask = fuller_mask;
8457 goto binop;
8459 case MINUS:
8460 /* If X is (minus C Y) where C's least set bit is larger than any bit
8461 in the mask, then we may replace with (neg Y). */
8462 if (CONST_INT_P (XEXP (x, 0))
8463 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8465 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8466 GET_MODE (x));
8467 return force_to_mode (x, mode, mask, next_select);
8470 /* Similarly, if C contains every bit in the fuller_mask, then we may
8471 replace with (not Y). */
8472 if (CONST_INT_P (XEXP (x, 0))
8473 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8475 x = simplify_gen_unary (NOT, GET_MODE (x),
8476 XEXP (x, 1), GET_MODE (x));
8477 return force_to_mode (x, mode, mask, next_select);
8480 mask = fuller_mask;
8481 goto binop;
8483 case IOR:
8484 case XOR:
8485 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8486 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8487 operation which may be a bitfield extraction. Ensure that the
8488 constant we form is not wider than the mode of X. */
8490 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8491 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8492 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8493 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8494 && CONST_INT_P (XEXP (x, 1))
8495 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8496 + floor_log2 (INTVAL (XEXP (x, 1))))
8497 < GET_MODE_PRECISION (GET_MODE (x)))
8498 && (UINTVAL (XEXP (x, 1))
8499 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8501 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8502 << INTVAL (XEXP (XEXP (x, 0), 1)),
8503 GET_MODE (x));
8504 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8505 XEXP (XEXP (x, 0), 0), temp);
8506 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8507 XEXP (XEXP (x, 0), 1));
8508 return force_to_mode (x, mode, mask, next_select);
8511 binop:
8512 /* For most binary operations, just propagate into the operation and
8513 change the mode if we have an operation of that mode. */
8515 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8516 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8518 /* If we ended up truncating both operands, truncate the result of the
8519 operation instead. */
8520 if (GET_CODE (op0) == TRUNCATE
8521 && GET_CODE (op1) == TRUNCATE)
8523 op0 = XEXP (op0, 0);
8524 op1 = XEXP (op1, 0);
8527 op0 = gen_lowpart_or_truncate (op_mode, op0);
8528 op1 = gen_lowpart_or_truncate (op_mode, op1);
8530 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8531 x = simplify_gen_binary (code, op_mode, op0, op1);
8532 break;
8534 case ASHIFT:
8535 /* For left shifts, do the same, but just for the first operand.
8536 However, we cannot do anything with shifts where we cannot
8537 guarantee that the counts are smaller than the size of the mode
8538 because such a count will have a different meaning in a
8539 wider mode. */
8541 if (! (CONST_INT_P (XEXP (x, 1))
8542 && INTVAL (XEXP (x, 1)) >= 0
8543 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8544 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8545 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8546 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8547 break;
8549 /* If the shift count is a constant and we can do arithmetic in
8550 the mode of the shift, refine which bits we need. Otherwise, use the
8551 conservative form of the mask. */
8552 if (CONST_INT_P (XEXP (x, 1))
8553 && INTVAL (XEXP (x, 1)) >= 0
8554 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8555 && HWI_COMPUTABLE_MODE_P (op_mode))
8556 mask >>= INTVAL (XEXP (x, 1));
8557 else
8558 mask = fuller_mask;
8560 op0 = gen_lowpart_or_truncate (op_mode,
8561 force_to_mode (XEXP (x, 0), op_mode,
8562 mask, next_select));
8564 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8565 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8566 break;
8568 case LSHIFTRT:
8569 /* Here we can only do something if the shift count is a constant,
8570 this shift constant is valid for the host, and we can do arithmetic
8571 in OP_MODE. */
8573 if (CONST_INT_P (XEXP (x, 1))
8574 && INTVAL (XEXP (x, 1)) >= 0
8575 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8576 && HWI_COMPUTABLE_MODE_P (op_mode))
8578 rtx inner = XEXP (x, 0);
8579 unsigned HOST_WIDE_INT inner_mask;
8581 /* Select the mask of the bits we need for the shift operand. */
8582 inner_mask = mask << INTVAL (XEXP (x, 1));
8584 /* We can only change the mode of the shift if we can do arithmetic
8585 in the mode of the shift and INNER_MASK is no wider than the
8586 width of X's mode. */
8587 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8588 op_mode = GET_MODE (x);
8590 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8592 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8593 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8596 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8597 shift and AND produces only copies of the sign bit (C2 is one less
8598 than a power of two), we can do this with just a shift. */
8600 if (GET_CODE (x) == LSHIFTRT
8601 && CONST_INT_P (XEXP (x, 1))
8602 /* The shift puts one of the sign bit copies in the least significant
8603 bit. */
8604 && ((INTVAL (XEXP (x, 1))
8605 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8606 >= GET_MODE_PRECISION (GET_MODE (x)))
8607 && exact_log2 (mask + 1) >= 0
8608 /* Number of bits left after the shift must be more than the mask
8609 needs. */
8610 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8611 <= GET_MODE_PRECISION (GET_MODE (x)))
8612 /* Must be more sign bit copies than the mask needs. */
8613 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8614 >= exact_log2 (mask + 1)))
8615 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8616 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8617 - exact_log2 (mask + 1)));
8619 goto shiftrt;
8621 case ASHIFTRT:
8622 /* If we are just looking for the sign bit, we don't need this shift at
8623 all, even if it has a variable count. */
8624 if (val_signbit_p (GET_MODE (x), mask))
8625 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8627 /* If this is a shift by a constant, get a mask that contains those bits
8628 that are not copies of the sign bit. We then have two cases: If
8629 MASK only includes those bits, this can be a logical shift, which may
8630 allow simplifications. If MASK is a single-bit field not within
8631 those bits, we are requesting a copy of the sign bit and hence can
8632 shift the sign bit to the appropriate location. */
8634 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8635 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8637 int i;
8639 /* If the considered data is wider than HOST_WIDE_INT, we can't
8640 represent a mask for all its bits in a single scalar.
8641 But we only care about the lower bits, so calculate these. */
8643 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8645 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8647 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8648 is the number of bits a full-width mask would have set.
8649 We need only shift if these are fewer than nonzero can
8650 hold. If not, we must keep all bits set in nonzero. */
8652 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8653 < HOST_BITS_PER_WIDE_INT)
8654 nonzero >>= INTVAL (XEXP (x, 1))
8655 + HOST_BITS_PER_WIDE_INT
8656 - GET_MODE_PRECISION (GET_MODE (x)) ;
8658 else
8660 nonzero = GET_MODE_MASK (GET_MODE (x));
8661 nonzero >>= INTVAL (XEXP (x, 1));
8664 if ((mask & ~nonzero) == 0)
8666 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8667 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8668 if (GET_CODE (x) != ASHIFTRT)
8669 return force_to_mode (x, mode, mask, next_select);
8672 else if ((i = exact_log2 (mask)) >= 0)
8674 x = simplify_shift_const
8675 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8676 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8678 if (GET_CODE (x) != ASHIFTRT)
8679 return force_to_mode (x, mode, mask, next_select);
8683 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8684 even if the shift count isn't a constant. */
8685 if (mask == 1)
8686 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8687 XEXP (x, 0), XEXP (x, 1));
8689 shiftrt:
8691 /* If this is a zero- or sign-extension operation that just affects bits
8692 we don't care about, remove it. Be sure the call above returned
8693 something that is still a shift. */
8695 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8696 && CONST_INT_P (XEXP (x, 1))
8697 && INTVAL (XEXP (x, 1)) >= 0
8698 && (INTVAL (XEXP (x, 1))
8699 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8700 && GET_CODE (XEXP (x, 0)) == ASHIFT
8701 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8702 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8703 next_select);
8705 break;
8707 case ROTATE:
8708 case ROTATERT:
8709 /* If the shift count is constant and we can do computations
8710 in the mode of X, compute where the bits we care about are.
8711 Otherwise, we can't do anything. Don't change the mode of
8712 the shift or propagate MODE into the shift, though. */
8713 if (CONST_INT_P (XEXP (x, 1))
8714 && INTVAL (XEXP (x, 1)) >= 0)
8716 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8717 GET_MODE (x),
8718 gen_int_mode (mask, GET_MODE (x)),
8719 XEXP (x, 1));
8720 if (temp && CONST_INT_P (temp))
8721 x = simplify_gen_binary (code, GET_MODE (x),
8722 force_to_mode (XEXP (x, 0), GET_MODE (x),
8723 INTVAL (temp), next_select),
8724 XEXP (x, 1));
8726 break;
8728 case NEG:
8729 /* If we just want the low-order bit, the NEG isn't needed since it
8730 won't change the low-order bit. */
8731 if (mask == 1)
8732 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8734 /* We need any bits less significant than the most significant bit in
8735 MASK since carries from those bits will affect the bits we are
8736 interested in. */
8737 mask = fuller_mask;
8738 goto unop;
8740 case NOT:
8741 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8742 same as the XOR case above. Ensure that the constant we form is not
8743 wider than the mode of X. */
8745 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8746 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8747 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8748 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8749 < GET_MODE_PRECISION (GET_MODE (x)))
8750 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8752 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8753 GET_MODE (x));
8754 temp = simplify_gen_binary (XOR, GET_MODE (x),
8755 XEXP (XEXP (x, 0), 0), temp);
8756 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8757 temp, XEXP (XEXP (x, 0), 1));
8759 return force_to_mode (x, mode, mask, next_select);
8762 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8763 use the full mask inside the NOT. */
8764 mask = fuller_mask;
8766 unop:
8767 op0 = gen_lowpart_or_truncate (op_mode,
8768 force_to_mode (XEXP (x, 0), mode, mask,
8769 next_select));
8770 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8771 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8772 break;
8774 case NE:
8775 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8776 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8777 which is equal to STORE_FLAG_VALUE. */
8778 if ((mask & ~STORE_FLAG_VALUE) == 0
8779 && XEXP (x, 1) == const0_rtx
8780 && GET_MODE (XEXP (x, 0)) == mode
8781 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8782 && (nonzero_bits (XEXP (x, 0), mode)
8783 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8784 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8786 break;
8788 case IF_THEN_ELSE:
8789 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8790 written in a narrower mode. We play it safe and do not do so. */
8792 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8793 force_to_mode (XEXP (x, 1), mode,
8794 mask, next_select));
8795 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8796 force_to_mode (XEXP (x, 2), mode,
8797 mask, next_select));
8798 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8799 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8800 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8801 op0, op1);
8802 break;
8804 default:
8805 break;
8808 /* Ensure we return a value of the proper mode. */
8809 return gen_lowpart_or_truncate (mode, x);
8812 /* Return nonzero if X is an expression that has one of two values depending on
8813 whether some other value is zero or nonzero. In that case, we return the
8814 value that is being tested, *PTRUE is set to the value if the rtx being
8815 returned has a nonzero value, and *PFALSE is set to the other alternative.
8817 If we return zero, we set *PTRUE and *PFALSE to X. */
8819 static rtx
8820 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8822 machine_mode mode = GET_MODE (x);
8823 enum rtx_code code = GET_CODE (x);
8824 rtx cond0, cond1, true0, true1, false0, false1;
8825 unsigned HOST_WIDE_INT nz;
8827 /* If we are comparing a value against zero, we are done. */
8828 if ((code == NE || code == EQ)
8829 && XEXP (x, 1) == const0_rtx)
8831 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8832 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8833 return XEXP (x, 0);
8836 /* If this is a unary operation whose operand has one of two values, apply
8837 our opcode to compute those values. */
8838 else if (UNARY_P (x)
8839 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8841 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8842 *pfalse = simplify_gen_unary (code, mode, false0,
8843 GET_MODE (XEXP (x, 0)));
8844 return cond0;
8847 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8848 make can't possibly match and would suppress other optimizations. */
8849 else if (code == COMPARE)
8852 /* If this is a binary operation, see if either side has only one of two
8853 values. If either one does or if both do and they are conditional on
8854 the same value, compute the new true and false values. */
8855 else if (BINARY_P (x))
8857 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8858 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8860 if ((cond0 != 0 || cond1 != 0)
8861 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8863 /* If if_then_else_cond returned zero, then true/false are the
8864 same rtl. We must copy one of them to prevent invalid rtl
8865 sharing. */
8866 if (cond0 == 0)
8867 true0 = copy_rtx (true0);
8868 else if (cond1 == 0)
8869 true1 = copy_rtx (true1);
8871 if (COMPARISON_P (x))
8873 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8874 true0, true1);
8875 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8876 false0, false1);
8878 else
8880 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8881 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8884 return cond0 ? cond0 : cond1;
8887 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8888 operands is zero when the other is nonzero, and vice-versa,
8889 and STORE_FLAG_VALUE is 1 or -1. */
8891 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8892 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8893 || code == UMAX)
8894 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8896 rtx op0 = XEXP (XEXP (x, 0), 1);
8897 rtx op1 = XEXP (XEXP (x, 1), 1);
8899 cond0 = XEXP (XEXP (x, 0), 0);
8900 cond1 = XEXP (XEXP (x, 1), 0);
8902 if (COMPARISON_P (cond0)
8903 && COMPARISON_P (cond1)
8904 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8905 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8906 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8907 || ((swap_condition (GET_CODE (cond0))
8908 == reversed_comparison_code (cond1, NULL))
8909 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8910 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8911 && ! side_effects_p (x))
8913 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8914 *pfalse = simplify_gen_binary (MULT, mode,
8915 (code == MINUS
8916 ? simplify_gen_unary (NEG, mode,
8917 op1, mode)
8918 : op1),
8919 const_true_rtx);
8920 return cond0;
8924 /* Similarly for MULT, AND and UMIN, except that for these the result
8925 is always zero. */
8926 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8927 && (code == MULT || code == AND || code == UMIN)
8928 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8930 cond0 = XEXP (XEXP (x, 0), 0);
8931 cond1 = XEXP (XEXP (x, 1), 0);
8933 if (COMPARISON_P (cond0)
8934 && COMPARISON_P (cond1)
8935 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8936 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8937 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8938 || ((swap_condition (GET_CODE (cond0))
8939 == reversed_comparison_code (cond1, NULL))
8940 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8941 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8942 && ! side_effects_p (x))
8944 *ptrue = *pfalse = const0_rtx;
8945 return cond0;
8950 else if (code == IF_THEN_ELSE)
8952 /* If we have IF_THEN_ELSE already, extract the condition and
8953 canonicalize it if it is NE or EQ. */
8954 cond0 = XEXP (x, 0);
8955 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8956 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8957 return XEXP (cond0, 0);
8958 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8960 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8961 return XEXP (cond0, 0);
8963 else
8964 return cond0;
8967 /* If X is a SUBREG, we can narrow both the true and false values
8968 if the inner expression, if there is a condition. */
8969 else if (code == SUBREG
8970 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
8971 &true0, &false0)))
8973 true0 = simplify_gen_subreg (mode, true0,
8974 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8975 false0 = simplify_gen_subreg (mode, false0,
8976 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
8977 if (true0 && false0)
8979 *ptrue = true0;
8980 *pfalse = false0;
8981 return cond0;
8985 /* If X is a constant, this isn't special and will cause confusions
8986 if we treat it as such. Likewise if it is equivalent to a constant. */
8987 else if (CONSTANT_P (x)
8988 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
8991 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8992 will be least confusing to the rest of the compiler. */
8993 else if (mode == BImode)
8995 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
8996 return x;
8999 /* If X is known to be either 0 or -1, those are the true and
9000 false values when testing X. */
9001 else if (x == constm1_rtx || x == const0_rtx
9002 || (mode != VOIDmode
9003 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9005 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9006 return x;
9009 /* Likewise for 0 or a single bit. */
9010 else if (HWI_COMPUTABLE_MODE_P (mode)
9011 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9013 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9014 return x;
9017 /* Otherwise fail; show no condition with true and false values the same. */
9018 *ptrue = *pfalse = x;
9019 return 0;
9022 /* Return the value of expression X given the fact that condition COND
9023 is known to be true when applied to REG as its first operand and VAL
9024 as its second. X is known to not be shared and so can be modified in
9025 place.
9027 We only handle the simplest cases, and specifically those cases that
9028 arise with IF_THEN_ELSE expressions. */
9030 static rtx
9031 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9033 enum rtx_code code = GET_CODE (x);
9034 rtx temp;
9035 const char *fmt;
9036 int i, j;
9038 if (side_effects_p (x))
9039 return x;
9041 /* If either operand of the condition is a floating point value,
9042 then we have to avoid collapsing an EQ comparison. */
9043 if (cond == EQ
9044 && rtx_equal_p (x, reg)
9045 && ! FLOAT_MODE_P (GET_MODE (x))
9046 && ! FLOAT_MODE_P (GET_MODE (val)))
9047 return val;
9049 if (cond == UNEQ && rtx_equal_p (x, reg))
9050 return val;
9052 /* If X is (abs REG) and we know something about REG's relationship
9053 with zero, we may be able to simplify this. */
9055 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9056 switch (cond)
9058 case GE: case GT: case EQ:
9059 return XEXP (x, 0);
9060 case LT: case LE:
9061 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9062 XEXP (x, 0),
9063 GET_MODE (XEXP (x, 0)));
9064 default:
9065 break;
9068 /* The only other cases we handle are MIN, MAX, and comparisons if the
9069 operands are the same as REG and VAL. */
9071 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9073 if (rtx_equal_p (XEXP (x, 0), val))
9074 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
9076 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9078 if (COMPARISON_P (x))
9080 if (comparison_dominates_p (cond, code))
9081 return const_true_rtx;
9083 code = reversed_comparison_code (x, NULL);
9084 if (code != UNKNOWN
9085 && comparison_dominates_p (cond, code))
9086 return const0_rtx;
9087 else
9088 return x;
9090 else if (code == SMAX || code == SMIN
9091 || code == UMIN || code == UMAX)
9093 int unsignedp = (code == UMIN || code == UMAX);
9095 /* Do not reverse the condition when it is NE or EQ.
9096 This is because we cannot conclude anything about
9097 the value of 'SMAX (x, y)' when x is not equal to y,
9098 but we can when x equals y. */
9099 if ((code == SMAX || code == UMAX)
9100 && ! (cond == EQ || cond == NE))
9101 cond = reverse_condition (cond);
9103 switch (cond)
9105 case GE: case GT:
9106 return unsignedp ? x : XEXP (x, 1);
9107 case LE: case LT:
9108 return unsignedp ? x : XEXP (x, 0);
9109 case GEU: case GTU:
9110 return unsignedp ? XEXP (x, 1) : x;
9111 case LEU: case LTU:
9112 return unsignedp ? XEXP (x, 0) : x;
9113 default:
9114 break;
9119 else if (code == SUBREG)
9121 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9122 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9124 if (SUBREG_REG (x) != r)
9126 /* We must simplify subreg here, before we lose track of the
9127 original inner_mode. */
9128 new_rtx = simplify_subreg (GET_MODE (x), r,
9129 inner_mode, SUBREG_BYTE (x));
9130 if (new_rtx)
9131 return new_rtx;
9132 else
9133 SUBST (SUBREG_REG (x), r);
9136 return x;
9138 /* We don't have to handle SIGN_EXTEND here, because even in the
9139 case of replacing something with a modeless CONST_INT, a
9140 CONST_INT is already (supposed to be) a valid sign extension for
9141 its narrower mode, which implies it's already properly
9142 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9143 story is different. */
9144 else if (code == ZERO_EXTEND)
9146 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9147 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9149 if (XEXP (x, 0) != r)
9151 /* We must simplify the zero_extend here, before we lose
9152 track of the original inner_mode. */
9153 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9154 r, inner_mode);
9155 if (new_rtx)
9156 return new_rtx;
9157 else
9158 SUBST (XEXP (x, 0), r);
9161 return x;
9164 fmt = GET_RTX_FORMAT (code);
9165 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9167 if (fmt[i] == 'e')
9168 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9169 else if (fmt[i] == 'E')
9170 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9171 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9172 cond, reg, val));
9175 return x;
9178 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9179 assignment as a field assignment. */
9181 static int
9182 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9184 if (widen_x && GET_MODE (x) != GET_MODE (y))
9186 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9187 return 0;
9188 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9189 return 0;
9190 /* For big endian, adjust the memory offset. */
9191 if (BYTES_BIG_ENDIAN)
9192 x = adjust_address_nv (x, GET_MODE (y),
9193 -subreg_lowpart_offset (GET_MODE (x),
9194 GET_MODE (y)));
9195 else
9196 x = adjust_address_nv (x, GET_MODE (y), 0);
9199 if (x == y || rtx_equal_p (x, y))
9200 return 1;
9202 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9203 return 0;
9205 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9206 Note that all SUBREGs of MEM are paradoxical; otherwise they
9207 would have been rewritten. */
9208 if (MEM_P (x) && GET_CODE (y) == SUBREG
9209 && MEM_P (SUBREG_REG (y))
9210 && rtx_equal_p (SUBREG_REG (y),
9211 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9212 return 1;
9214 if (MEM_P (y) && GET_CODE (x) == SUBREG
9215 && MEM_P (SUBREG_REG (x))
9216 && rtx_equal_p (SUBREG_REG (x),
9217 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9218 return 1;
9220 /* We used to see if get_last_value of X and Y were the same but that's
9221 not correct. In one direction, we'll cause the assignment to have
9222 the wrong destination and in the case, we'll import a register into this
9223 insn that might have already have been dead. So fail if none of the
9224 above cases are true. */
9225 return 0;
9228 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9229 Return that assignment if so.
9231 We only handle the most common cases. */
9233 static rtx
9234 make_field_assignment (rtx x)
9236 rtx dest = SET_DEST (x);
9237 rtx src = SET_SRC (x);
9238 rtx assign;
9239 rtx rhs, lhs;
9240 HOST_WIDE_INT c1;
9241 HOST_WIDE_INT pos;
9242 unsigned HOST_WIDE_INT len;
9243 rtx other;
9244 machine_mode mode;
9246 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9247 a clear of a one-bit field. We will have changed it to
9248 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9249 for a SUBREG. */
9251 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9252 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9253 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9254 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9256 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9257 1, 1, 1, 0);
9258 if (assign != 0)
9259 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9260 return x;
9263 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9264 && subreg_lowpart_p (XEXP (src, 0))
9265 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9266 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9267 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9268 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9269 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9270 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9272 assign = make_extraction (VOIDmode, dest, 0,
9273 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9274 1, 1, 1, 0);
9275 if (assign != 0)
9276 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
9277 return x;
9280 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9281 one-bit field. */
9282 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9283 && XEXP (XEXP (src, 0), 0) == const1_rtx
9284 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9286 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9287 1, 1, 1, 0);
9288 if (assign != 0)
9289 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
9290 return x;
9293 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9294 SRC is an AND with all bits of that field set, then we can discard
9295 the AND. */
9296 if (GET_CODE (dest) == ZERO_EXTRACT
9297 && CONST_INT_P (XEXP (dest, 1))
9298 && GET_CODE (src) == AND
9299 && CONST_INT_P (XEXP (src, 1)))
9301 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9302 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9303 unsigned HOST_WIDE_INT ze_mask;
9305 if (width >= HOST_BITS_PER_WIDE_INT)
9306 ze_mask = -1;
9307 else
9308 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9310 /* Complete overlap. We can remove the source AND. */
9311 if ((and_mask & ze_mask) == ze_mask)
9312 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
9314 /* Partial overlap. We can reduce the source AND. */
9315 if ((and_mask & ze_mask) != and_mask)
9317 mode = GET_MODE (src);
9318 src = gen_rtx_AND (mode, XEXP (src, 0),
9319 gen_int_mode (and_mask & ze_mask, mode));
9320 return gen_rtx_SET (VOIDmode, dest, src);
9324 /* The other case we handle is assignments into a constant-position
9325 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9326 a mask that has all one bits except for a group of zero bits and
9327 OTHER is known to have zeros where C1 has ones, this is such an
9328 assignment. Compute the position and length from C1. Shift OTHER
9329 to the appropriate position, force it to the required mode, and
9330 make the extraction. Check for the AND in both operands. */
9332 /* One or more SUBREGs might obscure the constant-position field
9333 assignment. The first one we are likely to encounter is an outer
9334 narrowing SUBREG, which we can just strip for the purposes of
9335 identifying the constant-field assignment. */
9336 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9337 src = SUBREG_REG (src);
9339 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9340 return x;
9342 rhs = expand_compound_operation (XEXP (src, 0));
9343 lhs = expand_compound_operation (XEXP (src, 1));
9345 if (GET_CODE (rhs) == AND
9346 && CONST_INT_P (XEXP (rhs, 1))
9347 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9348 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9349 /* The second SUBREG that might get in the way is a paradoxical
9350 SUBREG around the first operand of the AND. We want to
9351 pretend the operand is as wide as the destination here. We
9352 do this by adjusting the MEM to wider mode for the sole
9353 purpose of the call to rtx_equal_for_field_assignment_p. Also
9354 note this trick only works for MEMs. */
9355 else if (GET_CODE (rhs) == AND
9356 && paradoxical_subreg_p (XEXP (rhs, 0))
9357 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9358 && CONST_INT_P (XEXP (rhs, 1))
9359 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9360 dest, true))
9361 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9362 else if (GET_CODE (lhs) == AND
9363 && CONST_INT_P (XEXP (lhs, 1))
9364 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9365 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9366 /* The second SUBREG that might get in the way is a paradoxical
9367 SUBREG around the first operand of the AND. We want to
9368 pretend the operand is as wide as the destination here. We
9369 do this by adjusting the MEM to wider mode for the sole
9370 purpose of the call to rtx_equal_for_field_assignment_p. Also
9371 note this trick only works for MEMs. */
9372 else if (GET_CODE (lhs) == AND
9373 && paradoxical_subreg_p (XEXP (lhs, 0))
9374 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9375 && CONST_INT_P (XEXP (lhs, 1))
9376 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9377 dest, true))
9378 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9379 else
9380 return x;
9382 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9383 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9384 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9385 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9386 return x;
9388 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9389 if (assign == 0)
9390 return x;
9392 /* The mode to use for the source is the mode of the assignment, or of
9393 what is inside a possible STRICT_LOW_PART. */
9394 mode = (GET_CODE (assign) == STRICT_LOW_PART
9395 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9397 /* Shift OTHER right POS places and make it the source, restricting it
9398 to the proper length and mode. */
9400 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9401 GET_MODE (src),
9402 other, pos),
9403 dest);
9404 src = force_to_mode (src, mode,
9405 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9406 ? ~(unsigned HOST_WIDE_INT) 0
9407 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9410 /* If SRC is masked by an AND that does not make a difference in
9411 the value being stored, strip it. */
9412 if (GET_CODE (assign) == ZERO_EXTRACT
9413 && CONST_INT_P (XEXP (assign, 1))
9414 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9415 && GET_CODE (src) == AND
9416 && CONST_INT_P (XEXP (src, 1))
9417 && UINTVAL (XEXP (src, 1))
9418 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9419 src = XEXP (src, 0);
9421 return gen_rtx_SET (VOIDmode, assign, src);
9424 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9425 if so. */
9427 static rtx
9428 apply_distributive_law (rtx x)
9430 enum rtx_code code = GET_CODE (x);
9431 enum rtx_code inner_code;
9432 rtx lhs, rhs, other;
9433 rtx tem;
9435 /* Distributivity is not true for floating point as it can change the
9436 value. So we don't do it unless -funsafe-math-optimizations. */
9437 if (FLOAT_MODE_P (GET_MODE (x))
9438 && ! flag_unsafe_math_optimizations)
9439 return x;
9441 /* The outer operation can only be one of the following: */
9442 if (code != IOR && code != AND && code != XOR
9443 && code != PLUS && code != MINUS)
9444 return x;
9446 lhs = XEXP (x, 0);
9447 rhs = XEXP (x, 1);
9449 /* If either operand is a primitive we can't do anything, so get out
9450 fast. */
9451 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9452 return x;
9454 lhs = expand_compound_operation (lhs);
9455 rhs = expand_compound_operation (rhs);
9456 inner_code = GET_CODE (lhs);
9457 if (inner_code != GET_CODE (rhs))
9458 return x;
9460 /* See if the inner and outer operations distribute. */
9461 switch (inner_code)
9463 case LSHIFTRT:
9464 case ASHIFTRT:
9465 case AND:
9466 case IOR:
9467 /* These all distribute except over PLUS. */
9468 if (code == PLUS || code == MINUS)
9469 return x;
9470 break;
9472 case MULT:
9473 if (code != PLUS && code != MINUS)
9474 return x;
9475 break;
9477 case ASHIFT:
9478 /* This is also a multiply, so it distributes over everything. */
9479 break;
9481 /* This used to handle SUBREG, but this turned out to be counter-
9482 productive, since (subreg (op ...)) usually is not handled by
9483 insn patterns, and this "optimization" therefore transformed
9484 recognizable patterns into unrecognizable ones. Therefore the
9485 SUBREG case was removed from here.
9487 It is possible that distributing SUBREG over arithmetic operations
9488 leads to an intermediate result than can then be optimized further,
9489 e.g. by moving the outer SUBREG to the other side of a SET as done
9490 in simplify_set. This seems to have been the original intent of
9491 handling SUBREGs here.
9493 However, with current GCC this does not appear to actually happen,
9494 at least on major platforms. If some case is found where removing
9495 the SUBREG case here prevents follow-on optimizations, distributing
9496 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9498 default:
9499 return x;
9502 /* Set LHS and RHS to the inner operands (A and B in the example
9503 above) and set OTHER to the common operand (C in the example).
9504 There is only one way to do this unless the inner operation is
9505 commutative. */
9506 if (COMMUTATIVE_ARITH_P (lhs)
9507 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9508 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9509 else if (COMMUTATIVE_ARITH_P (lhs)
9510 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9511 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9512 else if (COMMUTATIVE_ARITH_P (lhs)
9513 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9514 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9515 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9516 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9517 else
9518 return x;
9520 /* Form the new inner operation, seeing if it simplifies first. */
9521 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9523 /* There is one exception to the general way of distributing:
9524 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9525 if (code == XOR && inner_code == IOR)
9527 inner_code = AND;
9528 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9531 /* We may be able to continuing distributing the result, so call
9532 ourselves recursively on the inner operation before forming the
9533 outer operation, which we return. */
9534 return simplify_gen_binary (inner_code, GET_MODE (x),
9535 apply_distributive_law (tem), other);
9538 /* See if X is of the form (* (+ A B) C), and if so convert to
9539 (+ (* A C) (* B C)) and try to simplify.
9541 Most of the time, this results in no change. However, if some of
9542 the operands are the same or inverses of each other, simplifications
9543 will result.
9545 For example, (and (ior A B) (not B)) can occur as the result of
9546 expanding a bit field assignment. When we apply the distributive
9547 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9548 which then simplifies to (and (A (not B))).
9550 Note that no checks happen on the validity of applying the inverse
9551 distributive law. This is pointless since we can do it in the
9552 few places where this routine is called.
9554 N is the index of the term that is decomposed (the arithmetic operation,
9555 i.e. (+ A B) in the first example above). !N is the index of the term that
9556 is distributed, i.e. of C in the first example above. */
9557 static rtx
9558 distribute_and_simplify_rtx (rtx x, int n)
9560 machine_mode mode;
9561 enum rtx_code outer_code, inner_code;
9562 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9564 /* Distributivity is not true for floating point as it can change the
9565 value. So we don't do it unless -funsafe-math-optimizations. */
9566 if (FLOAT_MODE_P (GET_MODE (x))
9567 && ! flag_unsafe_math_optimizations)
9568 return NULL_RTX;
9570 decomposed = XEXP (x, n);
9571 if (!ARITHMETIC_P (decomposed))
9572 return NULL_RTX;
9574 mode = GET_MODE (x);
9575 outer_code = GET_CODE (x);
9576 distributed = XEXP (x, !n);
9578 inner_code = GET_CODE (decomposed);
9579 inner_op0 = XEXP (decomposed, 0);
9580 inner_op1 = XEXP (decomposed, 1);
9582 /* Special case (and (xor B C) (not A)), which is equivalent to
9583 (xor (ior A B) (ior A C)) */
9584 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9586 distributed = XEXP (distributed, 0);
9587 outer_code = IOR;
9590 if (n == 0)
9592 /* Distribute the second term. */
9593 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9594 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9596 else
9598 /* Distribute the first term. */
9599 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9600 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9603 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9604 new_op0, new_op1));
9605 if (GET_CODE (tmp) != outer_code
9606 && (set_src_cost (tmp, optimize_this_for_speed_p)
9607 < set_src_cost (x, optimize_this_for_speed_p)))
9608 return tmp;
9610 return NULL_RTX;
9613 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9614 in MODE. Return an equivalent form, if different from (and VAROP
9615 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9617 static rtx
9618 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9619 unsigned HOST_WIDE_INT constop)
9621 unsigned HOST_WIDE_INT nonzero;
9622 unsigned HOST_WIDE_INT orig_constop;
9623 rtx orig_varop;
9624 int i;
9626 orig_varop = varop;
9627 orig_constop = constop;
9628 if (GET_CODE (varop) == CLOBBER)
9629 return NULL_RTX;
9631 /* Simplify VAROP knowing that we will be only looking at some of the
9632 bits in it.
9634 Note by passing in CONSTOP, we guarantee that the bits not set in
9635 CONSTOP are not significant and will never be examined. We must
9636 ensure that is the case by explicitly masking out those bits
9637 before returning. */
9638 varop = force_to_mode (varop, mode, constop, 0);
9640 /* If VAROP is a CLOBBER, we will fail so return it. */
9641 if (GET_CODE (varop) == CLOBBER)
9642 return varop;
9644 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9645 to VAROP and return the new constant. */
9646 if (CONST_INT_P (varop))
9647 return gen_int_mode (INTVAL (varop) & constop, mode);
9649 /* See what bits may be nonzero in VAROP. Unlike the general case of
9650 a call to nonzero_bits, here we don't care about bits outside
9651 MODE. */
9653 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9655 /* Turn off all bits in the constant that are known to already be zero.
9656 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9657 which is tested below. */
9659 constop &= nonzero;
9661 /* If we don't have any bits left, return zero. */
9662 if (constop == 0)
9663 return const0_rtx;
9665 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9666 a power of two, we can replace this with an ASHIFT. */
9667 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9668 && (i = exact_log2 (constop)) >= 0)
9669 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9671 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9672 or XOR, then try to apply the distributive law. This may eliminate
9673 operations if either branch can be simplified because of the AND.
9674 It may also make some cases more complex, but those cases probably
9675 won't match a pattern either with or without this. */
9677 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9678 return
9679 gen_lowpart
9680 (mode,
9681 apply_distributive_law
9682 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9683 simplify_and_const_int (NULL_RTX,
9684 GET_MODE (varop),
9685 XEXP (varop, 0),
9686 constop),
9687 simplify_and_const_int (NULL_RTX,
9688 GET_MODE (varop),
9689 XEXP (varop, 1),
9690 constop))));
9692 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9693 the AND and see if one of the operands simplifies to zero. If so, we
9694 may eliminate it. */
9696 if (GET_CODE (varop) == PLUS
9697 && exact_log2 (constop + 1) >= 0)
9699 rtx o0, o1;
9701 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9702 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9703 if (o0 == const0_rtx)
9704 return o1;
9705 if (o1 == const0_rtx)
9706 return o0;
9709 /* Make a SUBREG if necessary. If we can't make it, fail. */
9710 varop = gen_lowpart (mode, varop);
9711 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9712 return NULL_RTX;
9714 /* If we are only masking insignificant bits, return VAROP. */
9715 if (constop == nonzero)
9716 return varop;
9718 if (varop == orig_varop && constop == orig_constop)
9719 return NULL_RTX;
9721 /* Otherwise, return an AND. */
9722 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9726 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9727 in MODE.
9729 Return an equivalent form, if different from X. Otherwise, return X. If
9730 X is zero, we are to always construct the equivalent form. */
9732 static rtx
9733 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9734 unsigned HOST_WIDE_INT constop)
9736 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9737 if (tem)
9738 return tem;
9740 if (!x)
9741 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9742 gen_int_mode (constop, mode));
9743 if (GET_MODE (x) != mode)
9744 x = gen_lowpart (mode, x);
9745 return x;
9748 /* Given a REG, X, compute which bits in X can be nonzero.
9749 We don't care about bits outside of those defined in MODE.
9751 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9752 a shift, AND, or zero_extract, we can do better. */
9754 static rtx
9755 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9756 const_rtx known_x ATTRIBUTE_UNUSED,
9757 machine_mode known_mode ATTRIBUTE_UNUSED,
9758 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9759 unsigned HOST_WIDE_INT *nonzero)
9761 rtx tem;
9762 reg_stat_type *rsp;
9764 /* If X is a register whose nonzero bits value is current, use it.
9765 Otherwise, if X is a register whose value we can find, use that
9766 value. Otherwise, use the previously-computed global nonzero bits
9767 for this register. */
9769 rsp = &reg_stat[REGNO (x)];
9770 if (rsp->last_set_value != 0
9771 && (rsp->last_set_mode == mode
9772 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9773 && GET_MODE_CLASS (mode) == MODE_INT))
9774 && ((rsp->last_set_label >= label_tick_ebb_start
9775 && rsp->last_set_label < label_tick)
9776 || (rsp->last_set_label == label_tick
9777 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9778 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9779 && REGNO (x) < reg_n_sets_max
9780 && REG_N_SETS (REGNO (x)) == 1
9781 && !REGNO_REG_SET_P
9782 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9783 REGNO (x)))))
9785 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9787 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9788 /* We don't know anything about the upper bits. */
9789 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9791 *nonzero &= mask;
9792 return NULL;
9795 tem = get_last_value (x);
9797 if (tem)
9799 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9800 /* If X is narrower than MODE and TEM is a non-negative
9801 constant that would appear negative in the mode of X,
9802 sign-extend it for use in reg_nonzero_bits because some
9803 machines (maybe most) will actually do the sign-extension
9804 and this is the conservative approach.
9806 ??? For 2.5, try to tighten up the MD files in this regard
9807 instead of this kludge. */
9809 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode)
9810 && CONST_INT_P (tem)
9811 && INTVAL (tem) > 0
9812 && val_signbit_known_set_p (GET_MODE (x), INTVAL (tem)))
9813 tem = GEN_INT (INTVAL (tem) | ~GET_MODE_MASK (GET_MODE (x)));
9814 #endif
9815 return tem;
9817 else if (nonzero_sign_valid && rsp->nonzero_bits)
9819 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9821 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9822 /* We don't know anything about the upper bits. */
9823 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9825 *nonzero &= mask;
9828 return NULL;
9831 /* Return the number of bits at the high-order end of X that are known to
9832 be equal to the sign bit. X will be used in mode MODE; if MODE is
9833 VOIDmode, X will be used in its own mode. The returned value will always
9834 be between 1 and the number of bits in MODE. */
9836 static rtx
9837 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9838 const_rtx known_x ATTRIBUTE_UNUSED,
9839 machine_mode known_mode
9840 ATTRIBUTE_UNUSED,
9841 unsigned int known_ret ATTRIBUTE_UNUSED,
9842 unsigned int *result)
9844 rtx tem;
9845 reg_stat_type *rsp;
9847 rsp = &reg_stat[REGNO (x)];
9848 if (rsp->last_set_value != 0
9849 && rsp->last_set_mode == mode
9850 && ((rsp->last_set_label >= label_tick_ebb_start
9851 && rsp->last_set_label < label_tick)
9852 || (rsp->last_set_label == label_tick
9853 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9854 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9855 && REGNO (x) < reg_n_sets_max
9856 && REG_N_SETS (REGNO (x)) == 1
9857 && !REGNO_REG_SET_P
9858 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9859 REGNO (x)))))
9861 *result = rsp->last_set_sign_bit_copies;
9862 return NULL;
9865 tem = get_last_value (x);
9866 if (tem != 0)
9867 return tem;
9869 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9870 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9871 *result = rsp->sign_bit_copies;
9873 return NULL;
9876 /* Return the number of "extended" bits there are in X, when interpreted
9877 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9878 unsigned quantities, this is the number of high-order zero bits.
9879 For signed quantities, this is the number of copies of the sign bit
9880 minus 1. In both case, this function returns the number of "spare"
9881 bits. For example, if two quantities for which this function returns
9882 at least 1 are added, the addition is known not to overflow.
9884 This function will always return 0 unless called during combine, which
9885 implies that it must be called from a define_split. */
9887 unsigned int
9888 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9890 if (nonzero_sign_valid == 0)
9891 return 0;
9893 return (unsignedp
9894 ? (HWI_COMPUTABLE_MODE_P (mode)
9895 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9896 - floor_log2 (nonzero_bits (x, mode)))
9897 : 0)
9898 : num_sign_bit_copies (x, mode) - 1);
9901 /* This function is called from `simplify_shift_const' to merge two
9902 outer operations. Specifically, we have already found that we need
9903 to perform operation *POP0 with constant *PCONST0 at the outermost
9904 position. We would now like to also perform OP1 with constant CONST1
9905 (with *POP0 being done last).
9907 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9908 the resulting operation. *PCOMP_P is set to 1 if we would need to
9909 complement the innermost operand, otherwise it is unchanged.
9911 MODE is the mode in which the operation will be done. No bits outside
9912 the width of this mode matter. It is assumed that the width of this mode
9913 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9915 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9916 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9917 result is simply *PCONST0.
9919 If the resulting operation cannot be expressed as one operation, we
9920 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9922 static int
9923 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9925 enum rtx_code op0 = *pop0;
9926 HOST_WIDE_INT const0 = *pconst0;
9928 const0 &= GET_MODE_MASK (mode);
9929 const1 &= GET_MODE_MASK (mode);
9931 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9932 if (op0 == AND)
9933 const1 &= const0;
9935 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9936 if OP0 is SET. */
9938 if (op1 == UNKNOWN || op0 == SET)
9939 return 1;
9941 else if (op0 == UNKNOWN)
9942 op0 = op1, const0 = const1;
9944 else if (op0 == op1)
9946 switch (op0)
9948 case AND:
9949 const0 &= const1;
9950 break;
9951 case IOR:
9952 const0 |= const1;
9953 break;
9954 case XOR:
9955 const0 ^= const1;
9956 break;
9957 case PLUS:
9958 const0 += const1;
9959 break;
9960 case NEG:
9961 op0 = UNKNOWN;
9962 break;
9963 default:
9964 break;
9968 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9969 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9970 return 0;
9972 /* If the two constants aren't the same, we can't do anything. The
9973 remaining six cases can all be done. */
9974 else if (const0 != const1)
9975 return 0;
9977 else
9978 switch (op0)
9980 case IOR:
9981 if (op1 == AND)
9982 /* (a & b) | b == b */
9983 op0 = SET;
9984 else /* op1 == XOR */
9985 /* (a ^ b) | b == a | b */
9987 break;
9989 case XOR:
9990 if (op1 == AND)
9991 /* (a & b) ^ b == (~a) & b */
9992 op0 = AND, *pcomp_p = 1;
9993 else /* op1 == IOR */
9994 /* (a | b) ^ b == a & ~b */
9995 op0 = AND, const0 = ~const0;
9996 break;
9998 case AND:
9999 if (op1 == IOR)
10000 /* (a | b) & b == b */
10001 op0 = SET;
10002 else /* op1 == XOR */
10003 /* (a ^ b) & b) == (~a) & b */
10004 *pcomp_p = 1;
10005 break;
10006 default:
10007 break;
10010 /* Check for NO-OP cases. */
10011 const0 &= GET_MODE_MASK (mode);
10012 if (const0 == 0
10013 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10014 op0 = UNKNOWN;
10015 else if (const0 == 0 && op0 == AND)
10016 op0 = SET;
10017 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10018 && op0 == AND)
10019 op0 = UNKNOWN;
10021 *pop0 = op0;
10023 /* ??? Slightly redundant with the above mask, but not entirely.
10024 Moving this above means we'd have to sign-extend the mode mask
10025 for the final test. */
10026 if (op0 != UNKNOWN && op0 != NEG)
10027 *pconst0 = trunc_int_for_mode (const0, mode);
10029 return 1;
10032 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10033 the shift in. The original shift operation CODE is performed on OP in
10034 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10035 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10036 result of the shift is subject to operation OUTER_CODE with operand
10037 OUTER_CONST. */
10039 static machine_mode
10040 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10041 machine_mode orig_mode, machine_mode mode,
10042 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10044 if (orig_mode == mode)
10045 return mode;
10046 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10048 /* In general we can't perform in wider mode for right shift and rotate. */
10049 switch (code)
10051 case ASHIFTRT:
10052 /* We can still widen if the bits brought in from the left are identical
10053 to the sign bit of ORIG_MODE. */
10054 if (num_sign_bit_copies (op, mode)
10055 > (unsigned) (GET_MODE_PRECISION (mode)
10056 - GET_MODE_PRECISION (orig_mode)))
10057 return mode;
10058 return orig_mode;
10060 case LSHIFTRT:
10061 /* Similarly here but with zero bits. */
10062 if (HWI_COMPUTABLE_MODE_P (mode)
10063 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10064 return mode;
10066 /* We can also widen if the bits brought in will be masked off. This
10067 operation is performed in ORIG_MODE. */
10068 if (outer_code == AND)
10070 int care_bits = low_bitmask_len (orig_mode, outer_const);
10072 if (care_bits >= 0
10073 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10074 return mode;
10076 /* fall through */
10078 case ROTATE:
10079 return orig_mode;
10081 case ROTATERT:
10082 gcc_unreachable ();
10084 default:
10085 return mode;
10089 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10090 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10091 if we cannot simplify it. Otherwise, return a simplified value.
10093 The shift is normally computed in the widest mode we find in VAROP, as
10094 long as it isn't a different number of words than RESULT_MODE. Exceptions
10095 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10097 static rtx
10098 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10099 rtx varop, int orig_count)
10101 enum rtx_code orig_code = code;
10102 rtx orig_varop = varop;
10103 int count;
10104 machine_mode mode = result_mode;
10105 machine_mode shift_mode, tmode;
10106 unsigned int mode_words
10107 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10108 /* We form (outer_op (code varop count) (outer_const)). */
10109 enum rtx_code outer_op = UNKNOWN;
10110 HOST_WIDE_INT outer_const = 0;
10111 int complement_p = 0;
10112 rtx new_rtx, x;
10114 /* Make sure and truncate the "natural" shift on the way in. We don't
10115 want to do this inside the loop as it makes it more difficult to
10116 combine shifts. */
10117 if (SHIFT_COUNT_TRUNCATED)
10118 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10120 /* If we were given an invalid count, don't do anything except exactly
10121 what was requested. */
10123 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10124 return NULL_RTX;
10126 count = orig_count;
10128 /* Unless one of the branches of the `if' in this loop does a `continue',
10129 we will `break' the loop after the `if'. */
10131 while (count != 0)
10133 /* If we have an operand of (clobber (const_int 0)), fail. */
10134 if (GET_CODE (varop) == CLOBBER)
10135 return NULL_RTX;
10137 /* Convert ROTATERT to ROTATE. */
10138 if (code == ROTATERT)
10140 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10141 code = ROTATE;
10142 if (VECTOR_MODE_P (result_mode))
10143 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10144 else
10145 count = bitsize - count;
10148 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10149 mode, outer_op, outer_const);
10151 /* Handle cases where the count is greater than the size of the mode
10152 minus 1. For ASHIFT, use the size minus one as the count (this can
10153 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10154 take the count modulo the size. For other shifts, the result is
10155 zero.
10157 Since these shifts are being produced by the compiler by combining
10158 multiple operations, each of which are defined, we know what the
10159 result is supposed to be. */
10161 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10163 if (code == ASHIFTRT)
10164 count = GET_MODE_PRECISION (shift_mode) - 1;
10165 else if (code == ROTATE || code == ROTATERT)
10166 count %= GET_MODE_PRECISION (shift_mode);
10167 else
10169 /* We can't simply return zero because there may be an
10170 outer op. */
10171 varop = const0_rtx;
10172 count = 0;
10173 break;
10177 /* If we discovered we had to complement VAROP, leave. Making a NOT
10178 here would cause an infinite loop. */
10179 if (complement_p)
10180 break;
10182 /* An arithmetic right shift of a quantity known to be -1 or 0
10183 is a no-op. */
10184 if (code == ASHIFTRT
10185 && (num_sign_bit_copies (varop, shift_mode)
10186 == GET_MODE_PRECISION (shift_mode)))
10188 count = 0;
10189 break;
10192 /* If we are doing an arithmetic right shift and discarding all but
10193 the sign bit copies, this is equivalent to doing a shift by the
10194 bitsize minus one. Convert it into that shift because it will often
10195 allow other simplifications. */
10197 if (code == ASHIFTRT
10198 && (count + num_sign_bit_copies (varop, shift_mode)
10199 >= GET_MODE_PRECISION (shift_mode)))
10200 count = GET_MODE_PRECISION (shift_mode) - 1;
10202 /* We simplify the tests below and elsewhere by converting
10203 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10204 `make_compound_operation' will convert it to an ASHIFTRT for
10205 those machines (such as VAX) that don't have an LSHIFTRT. */
10206 if (code == ASHIFTRT
10207 && val_signbit_known_clear_p (shift_mode,
10208 nonzero_bits (varop, shift_mode)))
10209 code = LSHIFTRT;
10211 if (((code == LSHIFTRT
10212 && HWI_COMPUTABLE_MODE_P (shift_mode)
10213 && !(nonzero_bits (varop, shift_mode) >> count))
10214 || (code == ASHIFT
10215 && HWI_COMPUTABLE_MODE_P (shift_mode)
10216 && !((nonzero_bits (varop, shift_mode) << count)
10217 & GET_MODE_MASK (shift_mode))))
10218 && !side_effects_p (varop))
10219 varop = const0_rtx;
10221 switch (GET_CODE (varop))
10223 case SIGN_EXTEND:
10224 case ZERO_EXTEND:
10225 case SIGN_EXTRACT:
10226 case ZERO_EXTRACT:
10227 new_rtx = expand_compound_operation (varop);
10228 if (new_rtx != varop)
10230 varop = new_rtx;
10231 continue;
10233 break;
10235 case MEM:
10236 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10237 minus the width of a smaller mode, we can do this with a
10238 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10239 if ((code == ASHIFTRT || code == LSHIFTRT)
10240 && ! mode_dependent_address_p (XEXP (varop, 0),
10241 MEM_ADDR_SPACE (varop))
10242 && ! MEM_VOLATILE_P (varop)
10243 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10244 MODE_INT, 1)) != BLKmode)
10246 new_rtx = adjust_address_nv (varop, tmode,
10247 BYTES_BIG_ENDIAN ? 0
10248 : count / BITS_PER_UNIT);
10250 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10251 : ZERO_EXTEND, mode, new_rtx);
10252 count = 0;
10253 continue;
10255 break;
10257 case SUBREG:
10258 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10259 the same number of words as what we've seen so far. Then store
10260 the widest mode in MODE. */
10261 if (subreg_lowpart_p (varop)
10262 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10263 > GET_MODE_SIZE (GET_MODE (varop)))
10264 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10265 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10266 == mode_words
10267 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10268 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10270 varop = SUBREG_REG (varop);
10271 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10272 mode = GET_MODE (varop);
10273 continue;
10275 break;
10277 case MULT:
10278 /* Some machines use MULT instead of ASHIFT because MULT
10279 is cheaper. But it is still better on those machines to
10280 merge two shifts into one. */
10281 if (CONST_INT_P (XEXP (varop, 1))
10282 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10284 varop
10285 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10286 XEXP (varop, 0),
10287 GEN_INT (exact_log2 (
10288 UINTVAL (XEXP (varop, 1)))));
10289 continue;
10291 break;
10293 case UDIV:
10294 /* Similar, for when divides are cheaper. */
10295 if (CONST_INT_P (XEXP (varop, 1))
10296 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10298 varop
10299 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10300 XEXP (varop, 0),
10301 GEN_INT (exact_log2 (
10302 UINTVAL (XEXP (varop, 1)))));
10303 continue;
10305 break;
10307 case ASHIFTRT:
10308 /* If we are extracting just the sign bit of an arithmetic
10309 right shift, that shift is not needed. However, the sign
10310 bit of a wider mode may be different from what would be
10311 interpreted as the sign bit in a narrower mode, so, if
10312 the result is narrower, don't discard the shift. */
10313 if (code == LSHIFTRT
10314 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10315 && (GET_MODE_BITSIZE (result_mode)
10316 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10318 varop = XEXP (varop, 0);
10319 continue;
10322 /* ... fall through ... */
10324 case LSHIFTRT:
10325 case ASHIFT:
10326 case ROTATE:
10327 /* Here we have two nested shifts. The result is usually the
10328 AND of a new shift with a mask. We compute the result below. */
10329 if (CONST_INT_P (XEXP (varop, 1))
10330 && INTVAL (XEXP (varop, 1)) >= 0
10331 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10332 && HWI_COMPUTABLE_MODE_P (result_mode)
10333 && HWI_COMPUTABLE_MODE_P (mode)
10334 && !VECTOR_MODE_P (result_mode))
10336 enum rtx_code first_code = GET_CODE (varop);
10337 unsigned int first_count = INTVAL (XEXP (varop, 1));
10338 unsigned HOST_WIDE_INT mask;
10339 rtx mask_rtx;
10341 /* We have one common special case. We can't do any merging if
10342 the inner code is an ASHIFTRT of a smaller mode. However, if
10343 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10344 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10345 we can convert it to
10346 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10347 This simplifies certain SIGN_EXTEND operations. */
10348 if (code == ASHIFT && first_code == ASHIFTRT
10349 && count == (GET_MODE_PRECISION (result_mode)
10350 - GET_MODE_PRECISION (GET_MODE (varop))))
10352 /* C3 has the low-order C1 bits zero. */
10354 mask = GET_MODE_MASK (mode)
10355 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10357 varop = simplify_and_const_int (NULL_RTX, result_mode,
10358 XEXP (varop, 0), mask);
10359 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10360 varop, count);
10361 count = first_count;
10362 code = ASHIFTRT;
10363 continue;
10366 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10367 than C1 high-order bits equal to the sign bit, we can convert
10368 this to either an ASHIFT or an ASHIFTRT depending on the
10369 two counts.
10371 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10373 if (code == ASHIFTRT && first_code == ASHIFT
10374 && GET_MODE (varop) == shift_mode
10375 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10376 > first_count))
10378 varop = XEXP (varop, 0);
10379 count -= first_count;
10380 if (count < 0)
10382 count = -count;
10383 code = ASHIFT;
10386 continue;
10389 /* There are some cases we can't do. If CODE is ASHIFTRT,
10390 we can only do this if FIRST_CODE is also ASHIFTRT.
10392 We can't do the case when CODE is ROTATE and FIRST_CODE is
10393 ASHIFTRT.
10395 If the mode of this shift is not the mode of the outer shift,
10396 we can't do this if either shift is a right shift or ROTATE.
10398 Finally, we can't do any of these if the mode is too wide
10399 unless the codes are the same.
10401 Handle the case where the shift codes are the same
10402 first. */
10404 if (code == first_code)
10406 if (GET_MODE (varop) != result_mode
10407 && (code == ASHIFTRT || code == LSHIFTRT
10408 || code == ROTATE))
10409 break;
10411 count += first_count;
10412 varop = XEXP (varop, 0);
10413 continue;
10416 if (code == ASHIFTRT
10417 || (code == ROTATE && first_code == ASHIFTRT)
10418 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10419 || (GET_MODE (varop) != result_mode
10420 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10421 || first_code == ROTATE
10422 || code == ROTATE)))
10423 break;
10425 /* To compute the mask to apply after the shift, shift the
10426 nonzero bits of the inner shift the same way the
10427 outer shift will. */
10429 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10430 result_mode);
10432 mask_rtx
10433 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10434 GEN_INT (count));
10436 /* Give up if we can't compute an outer operation to use. */
10437 if (mask_rtx == 0
10438 || !CONST_INT_P (mask_rtx)
10439 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10440 INTVAL (mask_rtx),
10441 result_mode, &complement_p))
10442 break;
10444 /* If the shifts are in the same direction, we add the
10445 counts. Otherwise, we subtract them. */
10446 if ((code == ASHIFTRT || code == LSHIFTRT)
10447 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10448 count += first_count;
10449 else
10450 count -= first_count;
10452 /* If COUNT is positive, the new shift is usually CODE,
10453 except for the two exceptions below, in which case it is
10454 FIRST_CODE. If the count is negative, FIRST_CODE should
10455 always be used */
10456 if (count > 0
10457 && ((first_code == ROTATE && code == ASHIFT)
10458 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10459 code = first_code;
10460 else if (count < 0)
10461 code = first_code, count = -count;
10463 varop = XEXP (varop, 0);
10464 continue;
10467 /* If we have (A << B << C) for any shift, we can convert this to
10468 (A << C << B). This wins if A is a constant. Only try this if
10469 B is not a constant. */
10471 else if (GET_CODE (varop) == code
10472 && CONST_INT_P (XEXP (varop, 0))
10473 && !CONST_INT_P (XEXP (varop, 1)))
10475 rtx new_rtx = simplify_const_binary_operation (code, mode,
10476 XEXP (varop, 0),
10477 GEN_INT (count));
10478 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10479 count = 0;
10480 continue;
10482 break;
10484 case NOT:
10485 if (VECTOR_MODE_P (mode))
10486 break;
10488 /* Make this fit the case below. */
10489 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10490 continue;
10492 case IOR:
10493 case AND:
10494 case XOR:
10495 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10496 with C the size of VAROP - 1 and the shift is logical if
10497 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10498 we have an (le X 0) operation. If we have an arithmetic shift
10499 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10500 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10502 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10503 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10504 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10505 && (code == LSHIFTRT || code == ASHIFTRT)
10506 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10507 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10509 count = 0;
10510 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10511 const0_rtx);
10513 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10514 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10516 continue;
10519 /* If we have (shift (logical)), move the logical to the outside
10520 to allow it to possibly combine with another logical and the
10521 shift to combine with another shift. This also canonicalizes to
10522 what a ZERO_EXTRACT looks like. Also, some machines have
10523 (and (shift)) insns. */
10525 if (CONST_INT_P (XEXP (varop, 1))
10526 /* We can't do this if we have (ashiftrt (xor)) and the
10527 constant has its sign bit set in shift_mode with shift_mode
10528 wider than result_mode. */
10529 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10530 && result_mode != shift_mode
10531 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10532 shift_mode))
10533 && (new_rtx = simplify_const_binary_operation
10534 (code, result_mode,
10535 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10536 GEN_INT (count))) != 0
10537 && CONST_INT_P (new_rtx)
10538 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10539 INTVAL (new_rtx), result_mode, &complement_p))
10541 varop = XEXP (varop, 0);
10542 continue;
10545 /* If we can't do that, try to simplify the shift in each arm of the
10546 logical expression, make a new logical expression, and apply
10547 the inverse distributive law. This also can't be done for
10548 (ashiftrt (xor)) where we've widened the shift and the constant
10549 changes the sign bit. */
10550 if (CONST_INT_P (XEXP (varop, 1))
10551 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10552 && result_mode != shift_mode
10553 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10554 shift_mode)))
10556 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10557 XEXP (varop, 0), count);
10558 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10559 XEXP (varop, 1), count);
10561 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10562 lhs, rhs);
10563 varop = apply_distributive_law (varop);
10565 count = 0;
10566 continue;
10568 break;
10570 case EQ:
10571 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10572 says that the sign bit can be tested, FOO has mode MODE, C is
10573 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10574 that may be nonzero. */
10575 if (code == LSHIFTRT
10576 && XEXP (varop, 1) == const0_rtx
10577 && GET_MODE (XEXP (varop, 0)) == result_mode
10578 && count == (GET_MODE_PRECISION (result_mode) - 1)
10579 && HWI_COMPUTABLE_MODE_P (result_mode)
10580 && STORE_FLAG_VALUE == -1
10581 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10582 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10583 &complement_p))
10585 varop = XEXP (varop, 0);
10586 count = 0;
10587 continue;
10589 break;
10591 case NEG:
10592 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10593 than the number of bits in the mode is equivalent to A. */
10594 if (code == LSHIFTRT
10595 && count == (GET_MODE_PRECISION (result_mode) - 1)
10596 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10598 varop = XEXP (varop, 0);
10599 count = 0;
10600 continue;
10603 /* NEG commutes with ASHIFT since it is multiplication. Move the
10604 NEG outside to allow shifts to combine. */
10605 if (code == ASHIFT
10606 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10607 &complement_p))
10609 varop = XEXP (varop, 0);
10610 continue;
10612 break;
10614 case PLUS:
10615 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10616 is one less than the number of bits in the mode is
10617 equivalent to (xor A 1). */
10618 if (code == LSHIFTRT
10619 && count == (GET_MODE_PRECISION (result_mode) - 1)
10620 && XEXP (varop, 1) == constm1_rtx
10621 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10622 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10623 &complement_p))
10625 count = 0;
10626 varop = XEXP (varop, 0);
10627 continue;
10630 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10631 that might be nonzero in BAR are those being shifted out and those
10632 bits are known zero in FOO, we can replace the PLUS with FOO.
10633 Similarly in the other operand order. This code occurs when
10634 we are computing the size of a variable-size array. */
10636 if ((code == ASHIFTRT || code == LSHIFTRT)
10637 && count < HOST_BITS_PER_WIDE_INT
10638 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10639 && (nonzero_bits (XEXP (varop, 1), result_mode)
10640 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10642 varop = XEXP (varop, 0);
10643 continue;
10645 else if ((code == ASHIFTRT || code == LSHIFTRT)
10646 && count < HOST_BITS_PER_WIDE_INT
10647 && HWI_COMPUTABLE_MODE_P (result_mode)
10648 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10649 >> count)
10650 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10651 & nonzero_bits (XEXP (varop, 1),
10652 result_mode)))
10654 varop = XEXP (varop, 1);
10655 continue;
10658 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10659 if (code == ASHIFT
10660 && CONST_INT_P (XEXP (varop, 1))
10661 && (new_rtx = simplify_const_binary_operation
10662 (ASHIFT, result_mode,
10663 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10664 GEN_INT (count))) != 0
10665 && CONST_INT_P (new_rtx)
10666 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10667 INTVAL (new_rtx), result_mode, &complement_p))
10669 varop = XEXP (varop, 0);
10670 continue;
10673 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10674 signbit', and attempt to change the PLUS to an XOR and move it to
10675 the outer operation as is done above in the AND/IOR/XOR case
10676 leg for shift(logical). See details in logical handling above
10677 for reasoning in doing so. */
10678 if (code == LSHIFTRT
10679 && CONST_INT_P (XEXP (varop, 1))
10680 && mode_signbit_p (result_mode, XEXP (varop, 1))
10681 && (new_rtx = simplify_const_binary_operation
10682 (code, result_mode,
10683 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10684 GEN_INT (count))) != 0
10685 && CONST_INT_P (new_rtx)
10686 && merge_outer_ops (&outer_op, &outer_const, XOR,
10687 INTVAL (new_rtx), result_mode, &complement_p))
10689 varop = XEXP (varop, 0);
10690 continue;
10693 break;
10695 case MINUS:
10696 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10697 with C the size of VAROP - 1 and the shift is logical if
10698 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10699 we have a (gt X 0) operation. If the shift is arithmetic with
10700 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10701 we have a (neg (gt X 0)) operation. */
10703 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10704 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10705 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10706 && (code == LSHIFTRT || code == ASHIFTRT)
10707 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10708 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10709 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10711 count = 0;
10712 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10713 const0_rtx);
10715 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10716 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10718 continue;
10720 break;
10722 case TRUNCATE:
10723 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10724 if the truncate does not affect the value. */
10725 if (code == LSHIFTRT
10726 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10727 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10728 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10729 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10730 - GET_MODE_PRECISION (GET_MODE (varop)))))
10732 rtx varop_inner = XEXP (varop, 0);
10734 varop_inner
10735 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10736 XEXP (varop_inner, 0),
10737 GEN_INT
10738 (count + INTVAL (XEXP (varop_inner, 1))));
10739 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10740 count = 0;
10741 continue;
10743 break;
10745 default:
10746 break;
10749 break;
10752 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10753 outer_op, outer_const);
10755 /* We have now finished analyzing the shift. The result should be
10756 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10757 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10758 to the result of the shift. OUTER_CONST is the relevant constant,
10759 but we must turn off all bits turned off in the shift. */
10761 if (outer_op == UNKNOWN
10762 && orig_code == code && orig_count == count
10763 && varop == orig_varop
10764 && shift_mode == GET_MODE (varop))
10765 return NULL_RTX;
10767 /* Make a SUBREG if necessary. If we can't make it, fail. */
10768 varop = gen_lowpart (shift_mode, varop);
10769 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10770 return NULL_RTX;
10772 /* If we have an outer operation and we just made a shift, it is
10773 possible that we could have simplified the shift were it not
10774 for the outer operation. So try to do the simplification
10775 recursively. */
10777 if (outer_op != UNKNOWN)
10778 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10779 else
10780 x = NULL_RTX;
10782 if (x == NULL_RTX)
10783 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10785 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10786 turn off all the bits that the shift would have turned off. */
10787 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10788 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10789 GET_MODE_MASK (result_mode) >> orig_count);
10791 /* Do the remainder of the processing in RESULT_MODE. */
10792 x = gen_lowpart_or_truncate (result_mode, x);
10794 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10795 operation. */
10796 if (complement_p)
10797 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10799 if (outer_op != UNKNOWN)
10801 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10802 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10803 outer_const = trunc_int_for_mode (outer_const, result_mode);
10805 if (outer_op == AND)
10806 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10807 else if (outer_op == SET)
10809 /* This means that we have determined that the result is
10810 equivalent to a constant. This should be rare. */
10811 if (!side_effects_p (x))
10812 x = GEN_INT (outer_const);
10814 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10815 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10816 else
10817 x = simplify_gen_binary (outer_op, result_mode, x,
10818 GEN_INT (outer_const));
10821 return x;
10824 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10825 The result of the shift is RESULT_MODE. If we cannot simplify it,
10826 return X or, if it is NULL, synthesize the expression with
10827 simplify_gen_binary. Otherwise, return a simplified value.
10829 The shift is normally computed in the widest mode we find in VAROP, as
10830 long as it isn't a different number of words than RESULT_MODE. Exceptions
10831 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10833 static rtx
10834 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10835 rtx varop, int count)
10837 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10838 if (tem)
10839 return tem;
10841 if (!x)
10842 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10843 if (GET_MODE (x) != result_mode)
10844 x = gen_lowpart (result_mode, x);
10845 return x;
10849 /* Like recog, but we receive the address of a pointer to a new pattern.
10850 We try to match the rtx that the pointer points to.
10851 If that fails, we may try to modify or replace the pattern,
10852 storing the replacement into the same pointer object.
10854 Modifications include deletion or addition of CLOBBERs.
10856 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10857 the CLOBBERs are placed.
10859 The value is the final insn code from the pattern ultimately matched,
10860 or -1. */
10862 static int
10863 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10865 rtx pat = *pnewpat;
10866 rtx pat_without_clobbers;
10867 int insn_code_number;
10868 int num_clobbers_to_add = 0;
10869 int i;
10870 rtx notes = NULL_RTX;
10871 rtx old_notes, old_pat;
10872 int old_icode;
10874 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10875 we use to indicate that something didn't match. If we find such a
10876 thing, force rejection. */
10877 if (GET_CODE (pat) == PARALLEL)
10878 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10879 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10880 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10881 return -1;
10883 old_pat = PATTERN (insn);
10884 old_notes = REG_NOTES (insn);
10885 PATTERN (insn) = pat;
10886 REG_NOTES (insn) = NULL_RTX;
10888 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10889 if (dump_file && (dump_flags & TDF_DETAILS))
10891 if (insn_code_number < 0)
10892 fputs ("Failed to match this instruction:\n", dump_file);
10893 else
10894 fputs ("Successfully matched this instruction:\n", dump_file);
10895 print_rtl_single (dump_file, pat);
10898 /* If it isn't, there is the possibility that we previously had an insn
10899 that clobbered some register as a side effect, but the combined
10900 insn doesn't need to do that. So try once more without the clobbers
10901 unless this represents an ASM insn. */
10903 if (insn_code_number < 0 && ! check_asm_operands (pat)
10904 && GET_CODE (pat) == PARALLEL)
10906 int pos;
10908 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10909 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10911 if (i != pos)
10912 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10913 pos++;
10916 SUBST_INT (XVECLEN (pat, 0), pos);
10918 if (pos == 1)
10919 pat = XVECEXP (pat, 0, 0);
10921 PATTERN (insn) = pat;
10922 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10923 if (dump_file && (dump_flags & TDF_DETAILS))
10925 if (insn_code_number < 0)
10926 fputs ("Failed to match this instruction:\n", dump_file);
10927 else
10928 fputs ("Successfully matched this instruction:\n", dump_file);
10929 print_rtl_single (dump_file, pat);
10933 pat_without_clobbers = pat;
10935 PATTERN (insn) = old_pat;
10936 REG_NOTES (insn) = old_notes;
10938 /* Recognize all noop sets, these will be killed by followup pass. */
10939 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10940 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10942 /* If we had any clobbers to add, make a new pattern than contains
10943 them. Then check to make sure that all of them are dead. */
10944 if (num_clobbers_to_add)
10946 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10947 rtvec_alloc (GET_CODE (pat) == PARALLEL
10948 ? (XVECLEN (pat, 0)
10949 + num_clobbers_to_add)
10950 : num_clobbers_to_add + 1));
10952 if (GET_CODE (pat) == PARALLEL)
10953 for (i = 0; i < XVECLEN (pat, 0); i++)
10954 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10955 else
10956 XVECEXP (newpat, 0, 0) = pat;
10958 add_clobbers (newpat, insn_code_number);
10960 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10961 i < XVECLEN (newpat, 0); i++)
10963 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10964 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10965 return -1;
10966 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10968 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10969 notes = alloc_reg_note (REG_UNUSED,
10970 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10973 pat = newpat;
10976 if (insn_code_number >= 0
10977 && insn_code_number != NOOP_MOVE_INSN_CODE)
10979 old_pat = PATTERN (insn);
10980 old_notes = REG_NOTES (insn);
10981 old_icode = INSN_CODE (insn);
10982 PATTERN (insn) = pat;
10983 REG_NOTES (insn) = notes;
10985 /* Allow targets to reject combined insn. */
10986 if (!targetm.legitimate_combined_insn (insn))
10988 if (dump_file && (dump_flags & TDF_DETAILS))
10989 fputs ("Instruction not appropriate for target.",
10990 dump_file);
10992 /* Callers expect recog_for_combine to strip
10993 clobbers from the pattern on failure. */
10994 pat = pat_without_clobbers;
10995 notes = NULL_RTX;
10997 insn_code_number = -1;
11000 PATTERN (insn) = old_pat;
11001 REG_NOTES (insn) = old_notes;
11002 INSN_CODE (insn) = old_icode;
11005 *pnewpat = pat;
11006 *pnotes = notes;
11008 return insn_code_number;
11011 /* Like gen_lowpart_general but for use by combine. In combine it
11012 is not possible to create any new pseudoregs. However, it is
11013 safe to create invalid memory addresses, because combine will
11014 try to recognize them and all they will do is make the combine
11015 attempt fail.
11017 If for some reason this cannot do its job, an rtx
11018 (clobber (const_int 0)) is returned.
11019 An insn containing that will not be recognized. */
11021 static rtx
11022 gen_lowpart_for_combine (machine_mode omode, rtx x)
11024 machine_mode imode = GET_MODE (x);
11025 unsigned int osize = GET_MODE_SIZE (omode);
11026 unsigned int isize = GET_MODE_SIZE (imode);
11027 rtx result;
11029 if (omode == imode)
11030 return x;
11032 /* We can only support MODE being wider than a word if X is a
11033 constant integer or has a mode the same size. */
11034 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11035 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11036 goto fail;
11038 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11039 won't know what to do. So we will strip off the SUBREG here and
11040 process normally. */
11041 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11043 x = SUBREG_REG (x);
11045 /* For use in case we fall down into the address adjustments
11046 further below, we need to adjust the known mode and size of
11047 x; imode and isize, since we just adjusted x. */
11048 imode = GET_MODE (x);
11050 if (imode == omode)
11051 return x;
11053 isize = GET_MODE_SIZE (imode);
11056 result = gen_lowpart_common (omode, x);
11058 if (result)
11059 return result;
11061 if (MEM_P (x))
11063 int offset = 0;
11065 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11066 address. */
11067 if (MEM_VOLATILE_P (x)
11068 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11069 goto fail;
11071 /* If we want to refer to something bigger than the original memref,
11072 generate a paradoxical subreg instead. That will force a reload
11073 of the original memref X. */
11074 if (isize < osize)
11075 return gen_rtx_SUBREG (omode, x, 0);
11077 if (WORDS_BIG_ENDIAN)
11078 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11080 /* Adjust the address so that the address-after-the-data is
11081 unchanged. */
11082 if (BYTES_BIG_ENDIAN)
11083 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11085 return adjust_address_nv (x, omode, offset);
11088 /* If X is a comparison operator, rewrite it in a new mode. This
11089 probably won't match, but may allow further simplifications. */
11090 else if (COMPARISON_P (x))
11091 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11093 /* If we couldn't simplify X any other way, just enclose it in a
11094 SUBREG. Normally, this SUBREG won't match, but some patterns may
11095 include an explicit SUBREG or we may simplify it further in combine. */
11096 else
11098 int offset = 0;
11099 rtx res;
11101 offset = subreg_lowpart_offset (omode, imode);
11102 if (imode == VOIDmode)
11104 imode = int_mode_for_mode (omode);
11105 x = gen_lowpart_common (imode, x);
11106 if (x == NULL)
11107 goto fail;
11109 res = simplify_gen_subreg (omode, x, imode, offset);
11110 if (res)
11111 return res;
11114 fail:
11115 return gen_rtx_CLOBBER (omode, const0_rtx);
11118 /* Try to simplify a comparison between OP0 and a constant OP1,
11119 where CODE is the comparison code that will be tested, into a
11120 (CODE OP0 const0_rtx) form.
11122 The result is a possibly different comparison code to use.
11123 *POP1 may be updated. */
11125 static enum rtx_code
11126 simplify_compare_const (enum rtx_code code, machine_mode mode,
11127 rtx op0, rtx *pop1)
11129 unsigned int mode_width = GET_MODE_PRECISION (mode);
11130 HOST_WIDE_INT const_op = INTVAL (*pop1);
11132 /* Get the constant we are comparing against and turn off all bits
11133 not on in our mode. */
11134 if (mode != VOIDmode)
11135 const_op = trunc_int_for_mode (const_op, mode);
11137 /* If we are comparing against a constant power of two and the value
11138 being compared can only have that single bit nonzero (e.g., it was
11139 `and'ed with that bit), we can replace this with a comparison
11140 with zero. */
11141 if (const_op
11142 && (code == EQ || code == NE || code == GE || code == GEU
11143 || code == LT || code == LTU)
11144 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11145 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11146 && (nonzero_bits (op0, mode)
11147 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11149 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11150 const_op = 0;
11153 /* Similarly, if we are comparing a value known to be either -1 or
11154 0 with -1, change it to the opposite comparison against zero. */
11155 if (const_op == -1
11156 && (code == EQ || code == NE || code == GT || code == LE
11157 || code == GEU || code == LTU)
11158 && num_sign_bit_copies (op0, mode) == mode_width)
11160 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11161 const_op = 0;
11164 /* Do some canonicalizations based on the comparison code. We prefer
11165 comparisons against zero and then prefer equality comparisons.
11166 If we can reduce the size of a constant, we will do that too. */
11167 switch (code)
11169 case LT:
11170 /* < C is equivalent to <= (C - 1) */
11171 if (const_op > 0)
11173 const_op -= 1;
11174 code = LE;
11175 /* ... fall through to LE case below. */
11177 else
11178 break;
11180 case LE:
11181 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11182 if (const_op < 0)
11184 const_op += 1;
11185 code = LT;
11188 /* If we are doing a <= 0 comparison on a value known to have
11189 a zero sign bit, we can replace this with == 0. */
11190 else if (const_op == 0
11191 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11192 && (nonzero_bits (op0, mode)
11193 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11194 == 0)
11195 code = EQ;
11196 break;
11198 case GE:
11199 /* >= C is equivalent to > (C - 1). */
11200 if (const_op > 0)
11202 const_op -= 1;
11203 code = GT;
11204 /* ... fall through to GT below. */
11206 else
11207 break;
11209 case GT:
11210 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11211 if (const_op < 0)
11213 const_op += 1;
11214 code = GE;
11217 /* If we are doing a > 0 comparison on a value known to have
11218 a zero sign bit, we can replace this with != 0. */
11219 else if (const_op == 0
11220 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11221 && (nonzero_bits (op0, mode)
11222 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11223 == 0)
11224 code = NE;
11225 break;
11227 case LTU:
11228 /* < C is equivalent to <= (C - 1). */
11229 if (const_op > 0)
11231 const_op -= 1;
11232 code = LEU;
11233 /* ... fall through ... */
11235 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11236 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11237 && (unsigned HOST_WIDE_INT) const_op
11238 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11240 const_op = 0;
11241 code = GE;
11242 break;
11244 else
11245 break;
11247 case LEU:
11248 /* unsigned <= 0 is equivalent to == 0 */
11249 if (const_op == 0)
11250 code = EQ;
11251 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11252 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11253 && (unsigned HOST_WIDE_INT) const_op
11254 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11256 const_op = 0;
11257 code = GE;
11259 break;
11261 case GEU:
11262 /* >= C is equivalent to > (C - 1). */
11263 if (const_op > 1)
11265 const_op -= 1;
11266 code = GTU;
11267 /* ... fall through ... */
11270 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11271 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11272 && (unsigned HOST_WIDE_INT) const_op
11273 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11275 const_op = 0;
11276 code = LT;
11277 break;
11279 else
11280 break;
11282 case GTU:
11283 /* unsigned > 0 is equivalent to != 0 */
11284 if (const_op == 0)
11285 code = NE;
11286 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11287 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11288 && (unsigned HOST_WIDE_INT) const_op
11289 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11291 const_op = 0;
11292 code = LT;
11294 break;
11296 default:
11297 break;
11300 *pop1 = GEN_INT (const_op);
11301 return code;
11304 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11305 comparison code that will be tested.
11307 The result is a possibly different comparison code to use. *POP0 and
11308 *POP1 may be updated.
11310 It is possible that we might detect that a comparison is either always
11311 true or always false. However, we do not perform general constant
11312 folding in combine, so this knowledge isn't useful. Such tautologies
11313 should have been detected earlier. Hence we ignore all such cases. */
11315 static enum rtx_code
11316 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11318 rtx op0 = *pop0;
11319 rtx op1 = *pop1;
11320 rtx tem, tem1;
11321 int i;
11322 machine_mode mode, tmode;
11324 /* Try a few ways of applying the same transformation to both operands. */
11325 while (1)
11327 #ifndef WORD_REGISTER_OPERATIONS
11328 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11329 so check specially. */
11330 if (code != GTU && code != GEU && code != LTU && code != LEU
11331 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11332 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11333 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11334 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11335 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11336 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11337 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11338 && CONST_INT_P (XEXP (op0, 1))
11339 && XEXP (op0, 1) == XEXP (op1, 1)
11340 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11341 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11342 && (INTVAL (XEXP (op0, 1))
11343 == (GET_MODE_PRECISION (GET_MODE (op0))
11344 - (GET_MODE_PRECISION
11345 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11347 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11348 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11350 #endif
11352 /* If both operands are the same constant shift, see if we can ignore the
11353 shift. We can if the shift is a rotate or if the bits shifted out of
11354 this shift are known to be zero for both inputs and if the type of
11355 comparison is compatible with the shift. */
11356 if (GET_CODE (op0) == GET_CODE (op1)
11357 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11358 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11359 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11360 && (code != GT && code != LT && code != GE && code != LE))
11361 || (GET_CODE (op0) == ASHIFTRT
11362 && (code != GTU && code != LTU
11363 && code != GEU && code != LEU)))
11364 && CONST_INT_P (XEXP (op0, 1))
11365 && INTVAL (XEXP (op0, 1)) >= 0
11366 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11367 && XEXP (op0, 1) == XEXP (op1, 1))
11369 machine_mode mode = GET_MODE (op0);
11370 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11371 int shift_count = INTVAL (XEXP (op0, 1));
11373 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11374 mask &= (mask >> shift_count) << shift_count;
11375 else if (GET_CODE (op0) == ASHIFT)
11376 mask = (mask & (mask << shift_count)) >> shift_count;
11378 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11379 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11380 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11381 else
11382 break;
11385 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11386 SUBREGs are of the same mode, and, in both cases, the AND would
11387 be redundant if the comparison was done in the narrower mode,
11388 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11389 and the operand's possibly nonzero bits are 0xffffff01; in that case
11390 if we only care about QImode, we don't need the AND). This case
11391 occurs if the output mode of an scc insn is not SImode and
11392 STORE_FLAG_VALUE == 1 (e.g., the 386).
11394 Similarly, check for a case where the AND's are ZERO_EXTEND
11395 operations from some narrower mode even though a SUBREG is not
11396 present. */
11398 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11399 && CONST_INT_P (XEXP (op0, 1))
11400 && CONST_INT_P (XEXP (op1, 1)))
11402 rtx inner_op0 = XEXP (op0, 0);
11403 rtx inner_op1 = XEXP (op1, 0);
11404 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11405 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11406 int changed = 0;
11408 if (paradoxical_subreg_p (inner_op0)
11409 && GET_CODE (inner_op1) == SUBREG
11410 && (GET_MODE (SUBREG_REG (inner_op0))
11411 == GET_MODE (SUBREG_REG (inner_op1)))
11412 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11413 <= HOST_BITS_PER_WIDE_INT)
11414 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11415 GET_MODE (SUBREG_REG (inner_op0)))))
11416 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11417 GET_MODE (SUBREG_REG (inner_op1))))))
11419 op0 = SUBREG_REG (inner_op0);
11420 op1 = SUBREG_REG (inner_op1);
11422 /* The resulting comparison is always unsigned since we masked
11423 off the original sign bit. */
11424 code = unsigned_condition (code);
11426 changed = 1;
11429 else if (c0 == c1)
11430 for (tmode = GET_CLASS_NARROWEST_MODE
11431 (GET_MODE_CLASS (GET_MODE (op0)));
11432 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11433 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11435 op0 = gen_lowpart (tmode, inner_op0);
11436 op1 = gen_lowpart (tmode, inner_op1);
11437 code = unsigned_condition (code);
11438 changed = 1;
11439 break;
11442 if (! changed)
11443 break;
11446 /* If both operands are NOT, we can strip off the outer operation
11447 and adjust the comparison code for swapped operands; similarly for
11448 NEG, except that this must be an equality comparison. */
11449 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11450 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11451 && (code == EQ || code == NE)))
11452 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11454 else
11455 break;
11458 /* If the first operand is a constant, swap the operands and adjust the
11459 comparison code appropriately, but don't do this if the second operand
11460 is already a constant integer. */
11461 if (swap_commutative_operands_p (op0, op1))
11463 tem = op0, op0 = op1, op1 = tem;
11464 code = swap_condition (code);
11467 /* We now enter a loop during which we will try to simplify the comparison.
11468 For the most part, we only are concerned with comparisons with zero,
11469 but some things may really be comparisons with zero but not start
11470 out looking that way. */
11472 while (CONST_INT_P (op1))
11474 machine_mode mode = GET_MODE (op0);
11475 unsigned int mode_width = GET_MODE_PRECISION (mode);
11476 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11477 int equality_comparison_p;
11478 int sign_bit_comparison_p;
11479 int unsigned_comparison_p;
11480 HOST_WIDE_INT const_op;
11482 /* We only want to handle integral modes. This catches VOIDmode,
11483 CCmode, and the floating-point modes. An exception is that we
11484 can handle VOIDmode if OP0 is a COMPARE or a comparison
11485 operation. */
11487 if (GET_MODE_CLASS (mode) != MODE_INT
11488 && ! (mode == VOIDmode
11489 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11490 break;
11492 /* Try to simplify the compare to constant, possibly changing the
11493 comparison op, and/or changing op1 to zero. */
11494 code = simplify_compare_const (code, mode, op0, &op1);
11495 const_op = INTVAL (op1);
11497 /* Compute some predicates to simplify code below. */
11499 equality_comparison_p = (code == EQ || code == NE);
11500 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11501 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11502 || code == GEU);
11504 /* If this is a sign bit comparison and we can do arithmetic in
11505 MODE, say that we will only be needing the sign bit of OP0. */
11506 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11507 op0 = force_to_mode (op0, mode,
11508 (unsigned HOST_WIDE_INT) 1
11509 << (GET_MODE_PRECISION (mode) - 1),
11512 /* Now try cases based on the opcode of OP0. If none of the cases
11513 does a "continue", we exit this loop immediately after the
11514 switch. */
11516 switch (GET_CODE (op0))
11518 case ZERO_EXTRACT:
11519 /* If we are extracting a single bit from a variable position in
11520 a constant that has only a single bit set and are comparing it
11521 with zero, we can convert this into an equality comparison
11522 between the position and the location of the single bit. */
11523 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11524 have already reduced the shift count modulo the word size. */
11525 if (!SHIFT_COUNT_TRUNCATED
11526 && CONST_INT_P (XEXP (op0, 0))
11527 && XEXP (op0, 1) == const1_rtx
11528 && equality_comparison_p && const_op == 0
11529 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11531 if (BITS_BIG_ENDIAN)
11532 i = BITS_PER_WORD - 1 - i;
11534 op0 = XEXP (op0, 2);
11535 op1 = GEN_INT (i);
11536 const_op = i;
11538 /* Result is nonzero iff shift count is equal to I. */
11539 code = reverse_condition (code);
11540 continue;
11543 /* ... fall through ... */
11545 case SIGN_EXTRACT:
11546 tem = expand_compound_operation (op0);
11547 if (tem != op0)
11549 op0 = tem;
11550 continue;
11552 break;
11554 case NOT:
11555 /* If testing for equality, we can take the NOT of the constant. */
11556 if (equality_comparison_p
11557 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11559 op0 = XEXP (op0, 0);
11560 op1 = tem;
11561 continue;
11564 /* If just looking at the sign bit, reverse the sense of the
11565 comparison. */
11566 if (sign_bit_comparison_p)
11568 op0 = XEXP (op0, 0);
11569 code = (code == GE ? LT : GE);
11570 continue;
11572 break;
11574 case NEG:
11575 /* If testing for equality, we can take the NEG of the constant. */
11576 if (equality_comparison_p
11577 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11579 op0 = XEXP (op0, 0);
11580 op1 = tem;
11581 continue;
11584 /* The remaining cases only apply to comparisons with zero. */
11585 if (const_op != 0)
11586 break;
11588 /* When X is ABS or is known positive,
11589 (neg X) is < 0 if and only if X != 0. */
11591 if (sign_bit_comparison_p
11592 && (GET_CODE (XEXP (op0, 0)) == ABS
11593 || (mode_width <= HOST_BITS_PER_WIDE_INT
11594 && (nonzero_bits (XEXP (op0, 0), mode)
11595 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11596 == 0)))
11598 op0 = XEXP (op0, 0);
11599 code = (code == LT ? NE : EQ);
11600 continue;
11603 /* If we have NEG of something whose two high-order bits are the
11604 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11605 if (num_sign_bit_copies (op0, mode) >= 2)
11607 op0 = XEXP (op0, 0);
11608 code = swap_condition (code);
11609 continue;
11611 break;
11613 case ROTATE:
11614 /* If we are testing equality and our count is a constant, we
11615 can perform the inverse operation on our RHS. */
11616 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11617 && (tem = simplify_binary_operation (ROTATERT, mode,
11618 op1, XEXP (op0, 1))) != 0)
11620 op0 = XEXP (op0, 0);
11621 op1 = tem;
11622 continue;
11625 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11626 a particular bit. Convert it to an AND of a constant of that
11627 bit. This will be converted into a ZERO_EXTRACT. */
11628 if (const_op == 0 && sign_bit_comparison_p
11629 && CONST_INT_P (XEXP (op0, 1))
11630 && mode_width <= HOST_BITS_PER_WIDE_INT)
11632 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11633 ((unsigned HOST_WIDE_INT) 1
11634 << (mode_width - 1
11635 - INTVAL (XEXP (op0, 1)))));
11636 code = (code == LT ? NE : EQ);
11637 continue;
11640 /* Fall through. */
11642 case ABS:
11643 /* ABS is ignorable inside an equality comparison with zero. */
11644 if (const_op == 0 && equality_comparison_p)
11646 op0 = XEXP (op0, 0);
11647 continue;
11649 break;
11651 case SIGN_EXTEND:
11652 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11653 (compare FOO CONST) if CONST fits in FOO's mode and we
11654 are either testing inequality or have an unsigned
11655 comparison with ZERO_EXTEND or a signed comparison with
11656 SIGN_EXTEND. But don't do it if we don't have a compare
11657 insn of the given mode, since we'd have to revert it
11658 later on, and then we wouldn't know whether to sign- or
11659 zero-extend. */
11660 mode = GET_MODE (XEXP (op0, 0));
11661 if (GET_MODE_CLASS (mode) == MODE_INT
11662 && ! unsigned_comparison_p
11663 && HWI_COMPUTABLE_MODE_P (mode)
11664 && trunc_int_for_mode (const_op, mode) == const_op
11665 && have_insn_for (COMPARE, mode))
11667 op0 = XEXP (op0, 0);
11668 continue;
11670 break;
11672 case SUBREG:
11673 /* Check for the case where we are comparing A - C1 with C2, that is
11675 (subreg:MODE (plus (A) (-C1))) op (C2)
11677 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11678 comparison in the wider mode. One of the following two conditions
11679 must be true in order for this to be valid:
11681 1. The mode extension results in the same bit pattern being added
11682 on both sides and the comparison is equality or unsigned. As
11683 C2 has been truncated to fit in MODE, the pattern can only be
11684 all 0s or all 1s.
11686 2. The mode extension results in the sign bit being copied on
11687 each side.
11689 The difficulty here is that we have predicates for A but not for
11690 (A - C1) so we need to check that C1 is within proper bounds so
11691 as to perturbate A as little as possible. */
11693 if (mode_width <= HOST_BITS_PER_WIDE_INT
11694 && subreg_lowpart_p (op0)
11695 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11696 && GET_CODE (SUBREG_REG (op0)) == PLUS
11697 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11699 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11700 rtx a = XEXP (SUBREG_REG (op0), 0);
11701 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11703 if ((c1 > 0
11704 && (unsigned HOST_WIDE_INT) c1
11705 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11706 && (equality_comparison_p || unsigned_comparison_p)
11707 /* (A - C1) zero-extends if it is positive and sign-extends
11708 if it is negative, C2 both zero- and sign-extends. */
11709 && ((0 == (nonzero_bits (a, inner_mode)
11710 & ~GET_MODE_MASK (mode))
11711 && const_op >= 0)
11712 /* (A - C1) sign-extends if it is positive and 1-extends
11713 if it is negative, C2 both sign- and 1-extends. */
11714 || (num_sign_bit_copies (a, inner_mode)
11715 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11716 - mode_width)
11717 && const_op < 0)))
11718 || ((unsigned HOST_WIDE_INT) c1
11719 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11720 /* (A - C1) always sign-extends, like C2. */
11721 && num_sign_bit_copies (a, inner_mode)
11722 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11723 - (mode_width - 1))))
11725 op0 = SUBREG_REG (op0);
11726 continue;
11730 /* If the inner mode is narrower and we are extracting the low part,
11731 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11732 if (subreg_lowpart_p (op0)
11733 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11734 /* Fall through */ ;
11735 else
11736 break;
11738 /* ... fall through ... */
11740 case ZERO_EXTEND:
11741 mode = GET_MODE (XEXP (op0, 0));
11742 if (GET_MODE_CLASS (mode) == MODE_INT
11743 && (unsigned_comparison_p || equality_comparison_p)
11744 && HWI_COMPUTABLE_MODE_P (mode)
11745 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11746 && const_op >= 0
11747 && have_insn_for (COMPARE, mode))
11749 op0 = XEXP (op0, 0);
11750 continue;
11752 break;
11754 case PLUS:
11755 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11756 this for equality comparisons due to pathological cases involving
11757 overflows. */
11758 if (equality_comparison_p
11759 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11760 op1, XEXP (op0, 1))))
11762 op0 = XEXP (op0, 0);
11763 op1 = tem;
11764 continue;
11767 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11768 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11769 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11771 op0 = XEXP (XEXP (op0, 0), 0);
11772 code = (code == LT ? EQ : NE);
11773 continue;
11775 break;
11777 case MINUS:
11778 /* We used to optimize signed comparisons against zero, but that
11779 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11780 arrive here as equality comparisons, or (GEU, LTU) are
11781 optimized away. No need to special-case them. */
11783 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11784 (eq B (minus A C)), whichever simplifies. We can only do
11785 this for equality comparisons due to pathological cases involving
11786 overflows. */
11787 if (equality_comparison_p
11788 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11789 XEXP (op0, 1), op1)))
11791 op0 = XEXP (op0, 0);
11792 op1 = tem;
11793 continue;
11796 if (equality_comparison_p
11797 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11798 XEXP (op0, 0), op1)))
11800 op0 = XEXP (op0, 1);
11801 op1 = tem;
11802 continue;
11805 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11806 of bits in X minus 1, is one iff X > 0. */
11807 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11808 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11809 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11810 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11812 op0 = XEXP (op0, 1);
11813 code = (code == GE ? LE : GT);
11814 continue;
11816 break;
11818 case XOR:
11819 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11820 if C is zero or B is a constant. */
11821 if (equality_comparison_p
11822 && 0 != (tem = simplify_binary_operation (XOR, mode,
11823 XEXP (op0, 1), op1)))
11825 op0 = XEXP (op0, 0);
11826 op1 = tem;
11827 continue;
11829 break;
11831 case EQ: case NE:
11832 case UNEQ: case LTGT:
11833 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11834 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11835 case UNORDERED: case ORDERED:
11836 /* We can't do anything if OP0 is a condition code value, rather
11837 than an actual data value. */
11838 if (const_op != 0
11839 || CC0_P (XEXP (op0, 0))
11840 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11841 break;
11843 /* Get the two operands being compared. */
11844 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11845 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11846 else
11847 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11849 /* Check for the cases where we simply want the result of the
11850 earlier test or the opposite of that result. */
11851 if (code == NE || code == EQ
11852 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11853 && (code == LT || code == GE)))
11855 enum rtx_code new_code;
11856 if (code == LT || code == NE)
11857 new_code = GET_CODE (op0);
11858 else
11859 new_code = reversed_comparison_code (op0, NULL);
11861 if (new_code != UNKNOWN)
11863 code = new_code;
11864 op0 = tem;
11865 op1 = tem1;
11866 continue;
11869 break;
11871 case IOR:
11872 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11873 iff X <= 0. */
11874 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11875 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11876 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11878 op0 = XEXP (op0, 1);
11879 code = (code == GE ? GT : LE);
11880 continue;
11882 break;
11884 case AND:
11885 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11886 will be converted to a ZERO_EXTRACT later. */
11887 if (const_op == 0 && equality_comparison_p
11888 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11889 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
11891 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
11892 XEXP (XEXP (op0, 0), 1));
11893 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
11894 continue;
11897 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11898 zero and X is a comparison and C1 and C2 describe only bits set
11899 in STORE_FLAG_VALUE, we can compare with X. */
11900 if (const_op == 0 && equality_comparison_p
11901 && mode_width <= HOST_BITS_PER_WIDE_INT
11902 && CONST_INT_P (XEXP (op0, 1))
11903 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
11904 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11905 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
11906 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
11908 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11909 << INTVAL (XEXP (XEXP (op0, 0), 1)));
11910 if ((~STORE_FLAG_VALUE & mask) == 0
11911 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
11912 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
11913 && COMPARISON_P (tem))))
11915 op0 = XEXP (XEXP (op0, 0), 0);
11916 continue;
11920 /* If we are doing an equality comparison of an AND of a bit equal
11921 to the sign bit, replace this with a LT or GE comparison of
11922 the underlying value. */
11923 if (equality_comparison_p
11924 && const_op == 0
11925 && CONST_INT_P (XEXP (op0, 1))
11926 && mode_width <= HOST_BITS_PER_WIDE_INT
11927 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
11928 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11930 op0 = XEXP (op0, 0);
11931 code = (code == EQ ? GE : LT);
11932 continue;
11935 /* If this AND operation is really a ZERO_EXTEND from a narrower
11936 mode, the constant fits within that mode, and this is either an
11937 equality or unsigned comparison, try to do this comparison in
11938 the narrower mode.
11940 Note that in:
11942 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11943 -> (ne:DI (reg:SI 4) (const_int 0))
11945 unless TRULY_NOOP_TRUNCATION allows it or the register is
11946 known to hold a value of the required mode the
11947 transformation is invalid. */
11948 if ((equality_comparison_p || unsigned_comparison_p)
11949 && CONST_INT_P (XEXP (op0, 1))
11950 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
11951 & GET_MODE_MASK (mode))
11952 + 1)) >= 0
11953 && const_op >> i == 0
11954 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
11955 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode, GET_MODE (op0))
11956 || (REG_P (XEXP (op0, 0))
11957 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
11959 op0 = gen_lowpart (tmode, XEXP (op0, 0));
11960 continue;
11963 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11964 fits in both M1 and M2 and the SUBREG is either paradoxical
11965 or represents the low part, permute the SUBREG and the AND
11966 and try again. */
11967 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
11969 unsigned HOST_WIDE_INT c1;
11970 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
11971 /* Require an integral mode, to avoid creating something like
11972 (AND:SF ...). */
11973 if (SCALAR_INT_MODE_P (tmode)
11974 /* It is unsafe to commute the AND into the SUBREG if the
11975 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11976 not defined. As originally written the upper bits
11977 have a defined value due to the AND operation.
11978 However, if we commute the AND inside the SUBREG then
11979 they no longer have defined values and the meaning of
11980 the code has been changed. */
11981 && (0
11982 #ifdef WORD_REGISTER_OPERATIONS
11983 || (mode_width > GET_MODE_PRECISION (tmode)
11984 && mode_width <= BITS_PER_WORD)
11985 #endif
11986 || (mode_width <= GET_MODE_PRECISION (tmode)
11987 && subreg_lowpart_p (XEXP (op0, 0))))
11988 && CONST_INT_P (XEXP (op0, 1))
11989 && mode_width <= HOST_BITS_PER_WIDE_INT
11990 && HWI_COMPUTABLE_MODE_P (tmode)
11991 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
11992 && (c1 & ~GET_MODE_MASK (tmode)) == 0
11993 && c1 != mask
11994 && c1 != GET_MODE_MASK (tmode))
11996 op0 = simplify_gen_binary (AND, tmode,
11997 SUBREG_REG (XEXP (op0, 0)),
11998 gen_int_mode (c1, tmode));
11999 op0 = gen_lowpart (mode, op0);
12000 continue;
12004 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12005 if (const_op == 0 && equality_comparison_p
12006 && XEXP (op0, 1) == const1_rtx
12007 && GET_CODE (XEXP (op0, 0)) == NOT)
12009 op0 = simplify_and_const_int (NULL_RTX, mode,
12010 XEXP (XEXP (op0, 0), 0), 1);
12011 code = (code == NE ? EQ : NE);
12012 continue;
12015 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12016 (eq (and (lshiftrt X) 1) 0).
12017 Also handle the case where (not X) is expressed using xor. */
12018 if (const_op == 0 && equality_comparison_p
12019 && XEXP (op0, 1) == const1_rtx
12020 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12022 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12023 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12025 if (GET_CODE (shift_op) == NOT
12026 || (GET_CODE (shift_op) == XOR
12027 && CONST_INT_P (XEXP (shift_op, 1))
12028 && CONST_INT_P (shift_count)
12029 && HWI_COMPUTABLE_MODE_P (mode)
12030 && (UINTVAL (XEXP (shift_op, 1))
12031 == (unsigned HOST_WIDE_INT) 1
12032 << INTVAL (shift_count))))
12035 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12036 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12037 code = (code == NE ? EQ : NE);
12038 continue;
12041 break;
12043 case ASHIFT:
12044 /* If we have (compare (ashift FOO N) (const_int C)) and
12045 the high order N bits of FOO (N+1 if an inequality comparison)
12046 are known to be zero, we can do this by comparing FOO with C
12047 shifted right N bits so long as the low-order N bits of C are
12048 zero. */
12049 if (CONST_INT_P (XEXP (op0, 1))
12050 && INTVAL (XEXP (op0, 1)) >= 0
12051 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12052 < HOST_BITS_PER_WIDE_INT)
12053 && (((unsigned HOST_WIDE_INT) const_op
12054 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12055 - 1)) == 0)
12056 && mode_width <= HOST_BITS_PER_WIDE_INT
12057 && (nonzero_bits (XEXP (op0, 0), mode)
12058 & ~(mask >> (INTVAL (XEXP (op0, 1))
12059 + ! equality_comparison_p))) == 0)
12061 /* We must perform a logical shift, not an arithmetic one,
12062 as we want the top N bits of C to be zero. */
12063 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12065 temp >>= INTVAL (XEXP (op0, 1));
12066 op1 = gen_int_mode (temp, mode);
12067 op0 = XEXP (op0, 0);
12068 continue;
12071 /* If we are doing a sign bit comparison, it means we are testing
12072 a particular bit. Convert it to the appropriate AND. */
12073 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12074 && mode_width <= HOST_BITS_PER_WIDE_INT)
12076 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12077 ((unsigned HOST_WIDE_INT) 1
12078 << (mode_width - 1
12079 - INTVAL (XEXP (op0, 1)))));
12080 code = (code == LT ? NE : EQ);
12081 continue;
12084 /* If this an equality comparison with zero and we are shifting
12085 the low bit to the sign bit, we can convert this to an AND of the
12086 low-order bit. */
12087 if (const_op == 0 && equality_comparison_p
12088 && CONST_INT_P (XEXP (op0, 1))
12089 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12091 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12092 continue;
12094 break;
12096 case ASHIFTRT:
12097 /* If this is an equality comparison with zero, we can do this
12098 as a logical shift, which might be much simpler. */
12099 if (equality_comparison_p && const_op == 0
12100 && CONST_INT_P (XEXP (op0, 1)))
12102 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12103 XEXP (op0, 0),
12104 INTVAL (XEXP (op0, 1)));
12105 continue;
12108 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12109 do the comparison in a narrower mode. */
12110 if (! unsigned_comparison_p
12111 && CONST_INT_P (XEXP (op0, 1))
12112 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12113 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12114 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12115 MODE_INT, 1)) != BLKmode
12116 && (((unsigned HOST_WIDE_INT) const_op
12117 + (GET_MODE_MASK (tmode) >> 1) + 1)
12118 <= GET_MODE_MASK (tmode)))
12120 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12121 continue;
12124 /* Likewise if OP0 is a PLUS of a sign extension with a
12125 constant, which is usually represented with the PLUS
12126 between the shifts. */
12127 if (! unsigned_comparison_p
12128 && CONST_INT_P (XEXP (op0, 1))
12129 && GET_CODE (XEXP (op0, 0)) == PLUS
12130 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12131 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12132 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12133 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12134 MODE_INT, 1)) != BLKmode
12135 && (((unsigned HOST_WIDE_INT) const_op
12136 + (GET_MODE_MASK (tmode) >> 1) + 1)
12137 <= GET_MODE_MASK (tmode)))
12139 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12140 rtx add_const = XEXP (XEXP (op0, 0), 1);
12141 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12142 add_const, XEXP (op0, 1));
12144 op0 = simplify_gen_binary (PLUS, tmode,
12145 gen_lowpart (tmode, inner),
12146 new_const);
12147 continue;
12150 /* ... fall through ... */
12151 case LSHIFTRT:
12152 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12153 the low order N bits of FOO are known to be zero, we can do this
12154 by comparing FOO with C shifted left N bits so long as no
12155 overflow occurs. Even if the low order N bits of FOO aren't known
12156 to be zero, if the comparison is >= or < we can use the same
12157 optimization and for > or <= by setting all the low
12158 order N bits in the comparison constant. */
12159 if (CONST_INT_P (XEXP (op0, 1))
12160 && INTVAL (XEXP (op0, 1)) > 0
12161 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12162 && mode_width <= HOST_BITS_PER_WIDE_INT
12163 && (((unsigned HOST_WIDE_INT) const_op
12164 + (GET_CODE (op0) != LSHIFTRT
12165 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12166 + 1)
12167 : 0))
12168 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12170 unsigned HOST_WIDE_INT low_bits
12171 = (nonzero_bits (XEXP (op0, 0), mode)
12172 & (((unsigned HOST_WIDE_INT) 1
12173 << INTVAL (XEXP (op0, 1))) - 1));
12174 if (low_bits == 0 || !equality_comparison_p)
12176 /* If the shift was logical, then we must make the condition
12177 unsigned. */
12178 if (GET_CODE (op0) == LSHIFTRT)
12179 code = unsigned_condition (code);
12181 const_op <<= INTVAL (XEXP (op0, 1));
12182 if (low_bits != 0
12183 && (code == GT || code == GTU
12184 || code == LE || code == LEU))
12185 const_op
12186 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12187 op1 = GEN_INT (const_op);
12188 op0 = XEXP (op0, 0);
12189 continue;
12193 /* If we are using this shift to extract just the sign bit, we
12194 can replace this with an LT or GE comparison. */
12195 if (const_op == 0
12196 && (equality_comparison_p || sign_bit_comparison_p)
12197 && CONST_INT_P (XEXP (op0, 1))
12198 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12200 op0 = XEXP (op0, 0);
12201 code = (code == NE || code == GT ? LT : GE);
12202 continue;
12204 break;
12206 default:
12207 break;
12210 break;
12213 /* Now make any compound operations involved in this comparison. Then,
12214 check for an outmost SUBREG on OP0 that is not doing anything or is
12215 paradoxical. The latter transformation must only be performed when
12216 it is known that the "extra" bits will be the same in op0 and op1 or
12217 that they don't matter. There are three cases to consider:
12219 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12220 care bits and we can assume they have any convenient value. So
12221 making the transformation is safe.
12223 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12224 In this case the upper bits of op0 are undefined. We should not make
12225 the simplification in that case as we do not know the contents of
12226 those bits.
12228 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12229 UNKNOWN. In that case we know those bits are zeros or ones. We must
12230 also be sure that they are the same as the upper bits of op1.
12232 We can never remove a SUBREG for a non-equality comparison because
12233 the sign bit is in a different place in the underlying object. */
12235 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12236 op1 = make_compound_operation (op1, SET);
12238 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12239 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12240 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12241 && (code == NE || code == EQ))
12243 if (paradoxical_subreg_p (op0))
12245 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12246 implemented. */
12247 if (REG_P (SUBREG_REG (op0)))
12249 op0 = SUBREG_REG (op0);
12250 op1 = gen_lowpart (GET_MODE (op0), op1);
12253 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12254 <= HOST_BITS_PER_WIDE_INT)
12255 && (nonzero_bits (SUBREG_REG (op0),
12256 GET_MODE (SUBREG_REG (op0)))
12257 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12259 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12261 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12262 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12263 op0 = SUBREG_REG (op0), op1 = tem;
12267 /* We now do the opposite procedure: Some machines don't have compare
12268 insns in all modes. If OP0's mode is an integer mode smaller than a
12269 word and we can't do a compare in that mode, see if there is a larger
12270 mode for which we can do the compare. There are a number of cases in
12271 which we can use the wider mode. */
12273 mode = GET_MODE (op0);
12274 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12275 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12276 && ! have_insn_for (COMPARE, mode))
12277 for (tmode = GET_MODE_WIDER_MODE (mode);
12278 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12279 tmode = GET_MODE_WIDER_MODE (tmode))
12280 if (have_insn_for (COMPARE, tmode))
12282 int zero_extended;
12284 /* If this is a test for negative, we can make an explicit
12285 test of the sign bit. Test this first so we can use
12286 a paradoxical subreg to extend OP0. */
12288 if (op1 == const0_rtx && (code == LT || code == GE)
12289 && HWI_COMPUTABLE_MODE_P (mode))
12291 unsigned HOST_WIDE_INT sign
12292 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12293 op0 = simplify_gen_binary (AND, tmode,
12294 gen_lowpart (tmode, op0),
12295 gen_int_mode (sign, tmode));
12296 code = (code == LT) ? NE : EQ;
12297 break;
12300 /* If the only nonzero bits in OP0 and OP1 are those in the
12301 narrower mode and this is an equality or unsigned comparison,
12302 we can use the wider mode. Similarly for sign-extended
12303 values, in which case it is true for all comparisons. */
12304 zero_extended = ((code == EQ || code == NE
12305 || code == GEU || code == GTU
12306 || code == LEU || code == LTU)
12307 && (nonzero_bits (op0, tmode)
12308 & ~GET_MODE_MASK (mode)) == 0
12309 && ((CONST_INT_P (op1)
12310 || (nonzero_bits (op1, tmode)
12311 & ~GET_MODE_MASK (mode)) == 0)));
12313 if (zero_extended
12314 || ((num_sign_bit_copies (op0, tmode)
12315 > (unsigned int) (GET_MODE_PRECISION (tmode)
12316 - GET_MODE_PRECISION (mode)))
12317 && (num_sign_bit_copies (op1, tmode)
12318 > (unsigned int) (GET_MODE_PRECISION (tmode)
12319 - GET_MODE_PRECISION (mode)))))
12321 /* If OP0 is an AND and we don't have an AND in MODE either,
12322 make a new AND in the proper mode. */
12323 if (GET_CODE (op0) == AND
12324 && !have_insn_for (AND, mode))
12325 op0 = simplify_gen_binary (AND, tmode,
12326 gen_lowpart (tmode,
12327 XEXP (op0, 0)),
12328 gen_lowpart (tmode,
12329 XEXP (op0, 1)));
12330 else
12332 if (zero_extended)
12334 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12335 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12337 else
12339 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12340 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12342 break;
12347 /* We may have changed the comparison operands. Re-canonicalize. */
12348 if (swap_commutative_operands_p (op0, op1))
12350 tem = op0, op0 = op1, op1 = tem;
12351 code = swap_condition (code);
12354 /* If this machine only supports a subset of valid comparisons, see if we
12355 can convert an unsupported one into a supported one. */
12356 target_canonicalize_comparison (&code, &op0, &op1, 0);
12358 *pop0 = op0;
12359 *pop1 = op1;
12361 return code;
12364 /* Utility function for record_value_for_reg. Count number of
12365 rtxs in X. */
12366 static int
12367 count_rtxs (rtx x)
12369 enum rtx_code code = GET_CODE (x);
12370 const char *fmt;
12371 int i, j, ret = 1;
12373 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12374 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12376 rtx x0 = XEXP (x, 0);
12377 rtx x1 = XEXP (x, 1);
12379 if (x0 == x1)
12380 return 1 + 2 * count_rtxs (x0);
12382 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12383 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12384 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12385 return 2 + 2 * count_rtxs (x0)
12386 + count_rtxs (x == XEXP (x1, 0)
12387 ? XEXP (x1, 1) : XEXP (x1, 0));
12389 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12390 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12391 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12392 return 2 + 2 * count_rtxs (x1)
12393 + count_rtxs (x == XEXP (x0, 0)
12394 ? XEXP (x0, 1) : XEXP (x0, 0));
12397 fmt = GET_RTX_FORMAT (code);
12398 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12399 if (fmt[i] == 'e')
12400 ret += count_rtxs (XEXP (x, i));
12401 else if (fmt[i] == 'E')
12402 for (j = 0; j < XVECLEN (x, i); j++)
12403 ret += count_rtxs (XVECEXP (x, i, j));
12405 return ret;
12408 /* Utility function for following routine. Called when X is part of a value
12409 being stored into last_set_value. Sets last_set_table_tick
12410 for each register mentioned. Similar to mention_regs in cse.c */
12412 static void
12413 update_table_tick (rtx x)
12415 enum rtx_code code = GET_CODE (x);
12416 const char *fmt = GET_RTX_FORMAT (code);
12417 int i, j;
12419 if (code == REG)
12421 unsigned int regno = REGNO (x);
12422 unsigned int endregno = END_REGNO (x);
12423 unsigned int r;
12425 for (r = regno; r < endregno; r++)
12427 reg_stat_type *rsp = &reg_stat[r];
12428 rsp->last_set_table_tick = label_tick;
12431 return;
12434 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12435 if (fmt[i] == 'e')
12437 /* Check for identical subexpressions. If x contains
12438 identical subexpression we only have to traverse one of
12439 them. */
12440 if (i == 0 && ARITHMETIC_P (x))
12442 /* Note that at this point x1 has already been
12443 processed. */
12444 rtx x0 = XEXP (x, 0);
12445 rtx x1 = XEXP (x, 1);
12447 /* If x0 and x1 are identical then there is no need to
12448 process x0. */
12449 if (x0 == x1)
12450 break;
12452 /* If x0 is identical to a subexpression of x1 then while
12453 processing x1, x0 has already been processed. Thus we
12454 are done with x. */
12455 if (ARITHMETIC_P (x1)
12456 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12457 break;
12459 /* If x1 is identical to a subexpression of x0 then we
12460 still have to process the rest of x0. */
12461 if (ARITHMETIC_P (x0)
12462 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12464 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12465 break;
12469 update_table_tick (XEXP (x, i));
12471 else if (fmt[i] == 'E')
12472 for (j = 0; j < XVECLEN (x, i); j++)
12473 update_table_tick (XVECEXP (x, i, j));
12476 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12477 are saying that the register is clobbered and we no longer know its
12478 value. If INSN is zero, don't update reg_stat[].last_set; this is
12479 only permitted with VALUE also zero and is used to invalidate the
12480 register. */
12482 static void
12483 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12485 unsigned int regno = REGNO (reg);
12486 unsigned int endregno = END_REGNO (reg);
12487 unsigned int i;
12488 reg_stat_type *rsp;
12490 /* If VALUE contains REG and we have a previous value for REG, substitute
12491 the previous value. */
12492 if (value && insn && reg_overlap_mentioned_p (reg, value))
12494 rtx tem;
12496 /* Set things up so get_last_value is allowed to see anything set up to
12497 our insn. */
12498 subst_low_luid = DF_INSN_LUID (insn);
12499 tem = get_last_value (reg);
12501 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12502 it isn't going to be useful and will take a lot of time to process,
12503 so just use the CLOBBER. */
12505 if (tem)
12507 if (ARITHMETIC_P (tem)
12508 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12509 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12510 tem = XEXP (tem, 0);
12511 else if (count_occurrences (value, reg, 1) >= 2)
12513 /* If there are two or more occurrences of REG in VALUE,
12514 prevent the value from growing too much. */
12515 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12516 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12519 value = replace_rtx (copy_rtx (value), reg, tem);
12523 /* For each register modified, show we don't know its value, that
12524 we don't know about its bitwise content, that its value has been
12525 updated, and that we don't know the location of the death of the
12526 register. */
12527 for (i = regno; i < endregno; i++)
12529 rsp = &reg_stat[i];
12531 if (insn)
12532 rsp->last_set = insn;
12534 rsp->last_set_value = 0;
12535 rsp->last_set_mode = VOIDmode;
12536 rsp->last_set_nonzero_bits = 0;
12537 rsp->last_set_sign_bit_copies = 0;
12538 rsp->last_death = 0;
12539 rsp->truncated_to_mode = VOIDmode;
12542 /* Mark registers that are being referenced in this value. */
12543 if (value)
12544 update_table_tick (value);
12546 /* Now update the status of each register being set.
12547 If someone is using this register in this block, set this register
12548 to invalid since we will get confused between the two lives in this
12549 basic block. This makes using this register always invalid. In cse, we
12550 scan the table to invalidate all entries using this register, but this
12551 is too much work for us. */
12553 for (i = regno; i < endregno; i++)
12555 rsp = &reg_stat[i];
12556 rsp->last_set_label = label_tick;
12557 if (!insn
12558 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12559 rsp->last_set_invalid = 1;
12560 else
12561 rsp->last_set_invalid = 0;
12564 /* The value being assigned might refer to X (like in "x++;"). In that
12565 case, we must replace it with (clobber (const_int 0)) to prevent
12566 infinite loops. */
12567 rsp = &reg_stat[regno];
12568 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12570 value = copy_rtx (value);
12571 if (!get_last_value_validate (&value, insn, label_tick, 1))
12572 value = 0;
12575 /* For the main register being modified, update the value, the mode, the
12576 nonzero bits, and the number of sign bit copies. */
12578 rsp->last_set_value = value;
12580 if (value)
12582 machine_mode mode = GET_MODE (reg);
12583 subst_low_luid = DF_INSN_LUID (insn);
12584 rsp->last_set_mode = mode;
12585 if (GET_MODE_CLASS (mode) == MODE_INT
12586 && HWI_COMPUTABLE_MODE_P (mode))
12587 mode = nonzero_bits_mode;
12588 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12589 rsp->last_set_sign_bit_copies
12590 = num_sign_bit_copies (value, GET_MODE (reg));
12594 /* Called via note_stores from record_dead_and_set_regs to handle one
12595 SET or CLOBBER in an insn. DATA is the instruction in which the
12596 set is occurring. */
12598 static void
12599 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12601 rtx_insn *record_dead_insn = (rtx_insn *) data;
12603 if (GET_CODE (dest) == SUBREG)
12604 dest = SUBREG_REG (dest);
12606 if (!record_dead_insn)
12608 if (REG_P (dest))
12609 record_value_for_reg (dest, NULL, NULL_RTX);
12610 return;
12613 if (REG_P (dest))
12615 /* If we are setting the whole register, we know its value. Otherwise
12616 show that we don't know the value. We can handle SUBREG in
12617 some cases. */
12618 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12619 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12620 else if (GET_CODE (setter) == SET
12621 && GET_CODE (SET_DEST (setter)) == SUBREG
12622 && SUBREG_REG (SET_DEST (setter)) == dest
12623 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12624 && subreg_lowpart_p (SET_DEST (setter)))
12625 record_value_for_reg (dest, record_dead_insn,
12626 gen_lowpart (GET_MODE (dest),
12627 SET_SRC (setter)));
12628 else
12629 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12631 else if (MEM_P (dest)
12632 /* Ignore pushes, they clobber nothing. */
12633 && ! push_operand (dest, GET_MODE (dest)))
12634 mem_last_set = DF_INSN_LUID (record_dead_insn);
12637 /* Update the records of when each REG was most recently set or killed
12638 for the things done by INSN. This is the last thing done in processing
12639 INSN in the combiner loop.
12641 We update reg_stat[], in particular fields last_set, last_set_value,
12642 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12643 last_death, and also the similar information mem_last_set (which insn
12644 most recently modified memory) and last_call_luid (which insn was the
12645 most recent subroutine call). */
12647 static void
12648 record_dead_and_set_regs (rtx_insn *insn)
12650 rtx link;
12651 unsigned int i;
12653 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12655 if (REG_NOTE_KIND (link) == REG_DEAD
12656 && REG_P (XEXP (link, 0)))
12658 unsigned int regno = REGNO (XEXP (link, 0));
12659 unsigned int endregno = END_REGNO (XEXP (link, 0));
12661 for (i = regno; i < endregno; i++)
12663 reg_stat_type *rsp;
12665 rsp = &reg_stat[i];
12666 rsp->last_death = insn;
12669 else if (REG_NOTE_KIND (link) == REG_INC)
12670 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12673 if (CALL_P (insn))
12675 hard_reg_set_iterator hrsi;
12676 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12678 reg_stat_type *rsp;
12680 rsp = &reg_stat[i];
12681 rsp->last_set_invalid = 1;
12682 rsp->last_set = insn;
12683 rsp->last_set_value = 0;
12684 rsp->last_set_mode = VOIDmode;
12685 rsp->last_set_nonzero_bits = 0;
12686 rsp->last_set_sign_bit_copies = 0;
12687 rsp->last_death = 0;
12688 rsp->truncated_to_mode = VOIDmode;
12691 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12693 /* We can't combine into a call pattern. Remember, though, that
12694 the return value register is set at this LUID. We could
12695 still replace a register with the return value from the
12696 wrong subroutine call! */
12697 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12699 else
12700 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12703 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12704 register present in the SUBREG, so for each such SUBREG go back and
12705 adjust nonzero and sign bit information of the registers that are
12706 known to have some zero/sign bits set.
12708 This is needed because when combine blows the SUBREGs away, the
12709 information on zero/sign bits is lost and further combines can be
12710 missed because of that. */
12712 static void
12713 record_promoted_value (rtx_insn *insn, rtx subreg)
12715 struct insn_link *links;
12716 rtx set;
12717 unsigned int regno = REGNO (SUBREG_REG (subreg));
12718 machine_mode mode = GET_MODE (subreg);
12720 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12721 return;
12723 for (links = LOG_LINKS (insn); links;)
12725 reg_stat_type *rsp;
12727 insn = links->insn;
12728 set = single_set (insn);
12730 if (! set || !REG_P (SET_DEST (set))
12731 || REGNO (SET_DEST (set)) != regno
12732 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12734 links = links->next;
12735 continue;
12738 rsp = &reg_stat[regno];
12739 if (rsp->last_set == insn)
12741 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12742 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12745 if (REG_P (SET_SRC (set)))
12747 regno = REGNO (SET_SRC (set));
12748 links = LOG_LINKS (insn);
12750 else
12751 break;
12755 /* Check if X, a register, is known to contain a value already
12756 truncated to MODE. In this case we can use a subreg to refer to
12757 the truncated value even though in the generic case we would need
12758 an explicit truncation. */
12760 static bool
12761 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12763 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12764 machine_mode truncated = rsp->truncated_to_mode;
12766 if (truncated == 0
12767 || rsp->truncation_label < label_tick_ebb_start)
12768 return false;
12769 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12770 return true;
12771 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12772 return true;
12773 return false;
12776 /* If X is a hard reg or a subreg record the mode that the register is
12777 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12778 to turn a truncate into a subreg using this information. Return true
12779 if traversing X is complete. */
12781 static bool
12782 record_truncated_value (rtx x)
12784 machine_mode truncated_mode;
12785 reg_stat_type *rsp;
12787 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12789 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12790 truncated_mode = GET_MODE (x);
12792 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12793 return true;
12795 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12796 return true;
12798 x = SUBREG_REG (x);
12800 /* ??? For hard-regs we now record everything. We might be able to
12801 optimize this using last_set_mode. */
12802 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12803 truncated_mode = GET_MODE (x);
12804 else
12805 return false;
12807 rsp = &reg_stat[REGNO (x)];
12808 if (rsp->truncated_to_mode == 0
12809 || rsp->truncation_label < label_tick_ebb_start
12810 || (GET_MODE_SIZE (truncated_mode)
12811 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12813 rsp->truncated_to_mode = truncated_mode;
12814 rsp->truncation_label = label_tick;
12817 return true;
12820 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12821 the modes they are used in. This can help truning TRUNCATEs into
12822 SUBREGs. */
12824 static void
12825 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12827 subrtx_var_iterator::array_type array;
12828 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12829 if (record_truncated_value (*iter))
12830 iter.skip_subrtxes ();
12833 /* Scan X for promoted SUBREGs. For each one found,
12834 note what it implies to the registers used in it. */
12836 static void
12837 check_promoted_subreg (rtx_insn *insn, rtx x)
12839 if (GET_CODE (x) == SUBREG
12840 && SUBREG_PROMOTED_VAR_P (x)
12841 && REG_P (SUBREG_REG (x)))
12842 record_promoted_value (insn, x);
12843 else
12845 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12846 int i, j;
12848 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12849 switch (format[i])
12851 case 'e':
12852 check_promoted_subreg (insn, XEXP (x, i));
12853 break;
12854 case 'V':
12855 case 'E':
12856 if (XVEC (x, i) != 0)
12857 for (j = 0; j < XVECLEN (x, i); j++)
12858 check_promoted_subreg (insn, XVECEXP (x, i, j));
12859 break;
12864 /* Verify that all the registers and memory references mentioned in *LOC are
12865 still valid. *LOC was part of a value set in INSN when label_tick was
12866 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12867 the invalid references with (clobber (const_int 0)) and return 1. This
12868 replacement is useful because we often can get useful information about
12869 the form of a value (e.g., if it was produced by a shift that always
12870 produces -1 or 0) even though we don't know exactly what registers it
12871 was produced from. */
12873 static int
12874 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12876 rtx x = *loc;
12877 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12878 int len = GET_RTX_LENGTH (GET_CODE (x));
12879 int i, j;
12881 if (REG_P (x))
12883 unsigned int regno = REGNO (x);
12884 unsigned int endregno = END_REGNO (x);
12885 unsigned int j;
12887 for (j = regno; j < endregno; j++)
12889 reg_stat_type *rsp = &reg_stat[j];
12890 if (rsp->last_set_invalid
12891 /* If this is a pseudo-register that was only set once and not
12892 live at the beginning of the function, it is always valid. */
12893 || (! (regno >= FIRST_PSEUDO_REGISTER
12894 && regno < reg_n_sets_max
12895 && REG_N_SETS (regno) == 1
12896 && (!REGNO_REG_SET_P
12897 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
12898 regno)))
12899 && rsp->last_set_label > tick))
12901 if (replace)
12902 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12903 return replace;
12907 return 1;
12909 /* If this is a memory reference, make sure that there were no stores after
12910 it that might have clobbered the value. We don't have alias info, so we
12911 assume any store invalidates it. Moreover, we only have local UIDs, so
12912 we also assume that there were stores in the intervening basic blocks. */
12913 else if (MEM_P (x) && !MEM_READONLY_P (x)
12914 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
12916 if (replace)
12917 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
12918 return replace;
12921 for (i = 0; i < len; i++)
12923 if (fmt[i] == 'e')
12925 /* Check for identical subexpressions. If x contains
12926 identical subexpression we only have to traverse one of
12927 them. */
12928 if (i == 1 && ARITHMETIC_P (x))
12930 /* Note that at this point x0 has already been checked
12931 and found valid. */
12932 rtx x0 = XEXP (x, 0);
12933 rtx x1 = XEXP (x, 1);
12935 /* If x0 and x1 are identical then x is also valid. */
12936 if (x0 == x1)
12937 return 1;
12939 /* If x1 is identical to a subexpression of x0 then
12940 while checking x0, x1 has already been checked. Thus
12941 it is valid and so as x. */
12942 if (ARITHMETIC_P (x0)
12943 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12944 return 1;
12946 /* If x0 is identical to a subexpression of x1 then x is
12947 valid iff the rest of x1 is valid. */
12948 if (ARITHMETIC_P (x1)
12949 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12950 return
12951 get_last_value_validate (&XEXP (x1,
12952 x0 == XEXP (x1, 0) ? 1 : 0),
12953 insn, tick, replace);
12956 if (get_last_value_validate (&XEXP (x, i), insn, tick,
12957 replace) == 0)
12958 return 0;
12960 else if (fmt[i] == 'E')
12961 for (j = 0; j < XVECLEN (x, i); j++)
12962 if (get_last_value_validate (&XVECEXP (x, i, j),
12963 insn, tick, replace) == 0)
12964 return 0;
12967 /* If we haven't found a reason for it to be invalid, it is valid. */
12968 return 1;
12971 /* Get the last value assigned to X, if known. Some registers
12972 in the value may be replaced with (clobber (const_int 0)) if their value
12973 is known longer known reliably. */
12975 static rtx
12976 get_last_value (const_rtx x)
12978 unsigned int regno;
12979 rtx value;
12980 reg_stat_type *rsp;
12982 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12983 then convert it to the desired mode. If this is a paradoxical SUBREG,
12984 we cannot predict what values the "extra" bits might have. */
12985 if (GET_CODE (x) == SUBREG
12986 && subreg_lowpart_p (x)
12987 && !paradoxical_subreg_p (x)
12988 && (value = get_last_value (SUBREG_REG (x))) != 0)
12989 return gen_lowpart (GET_MODE (x), value);
12991 if (!REG_P (x))
12992 return 0;
12994 regno = REGNO (x);
12995 rsp = &reg_stat[regno];
12996 value = rsp->last_set_value;
12998 /* If we don't have a value, or if it isn't for this basic block and
12999 it's either a hard register, set more than once, or it's a live
13000 at the beginning of the function, return 0.
13002 Because if it's not live at the beginning of the function then the reg
13003 is always set before being used (is never used without being set).
13004 And, if it's set only once, and it's always set before use, then all
13005 uses must have the same last value, even if it's not from this basic
13006 block. */
13008 if (value == 0
13009 || (rsp->last_set_label < label_tick_ebb_start
13010 && (regno < FIRST_PSEUDO_REGISTER
13011 || regno >= reg_n_sets_max
13012 || REG_N_SETS (regno) != 1
13013 || REGNO_REG_SET_P
13014 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13015 return 0;
13017 /* If the value was set in a later insn than the ones we are processing,
13018 we can't use it even if the register was only set once. */
13019 if (rsp->last_set_label == label_tick
13020 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13021 return 0;
13023 /* If the value has all its registers valid, return it. */
13024 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13025 return value;
13027 /* Otherwise, make a copy and replace any invalid register with
13028 (clobber (const_int 0)). If that fails for some reason, return 0. */
13030 value = copy_rtx (value);
13031 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13032 return value;
13034 return 0;
13037 /* Return nonzero if expression X refers to a REG or to memory
13038 that is set in an instruction more recent than FROM_LUID. */
13040 static int
13041 use_crosses_set_p (const_rtx x, int from_luid)
13043 const char *fmt;
13044 int i;
13045 enum rtx_code code = GET_CODE (x);
13047 if (code == REG)
13049 unsigned int regno = REGNO (x);
13050 unsigned endreg = END_REGNO (x);
13052 #ifdef PUSH_ROUNDING
13053 /* Don't allow uses of the stack pointer to be moved,
13054 because we don't know whether the move crosses a push insn. */
13055 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13056 return 1;
13057 #endif
13058 for (; regno < endreg; regno++)
13060 reg_stat_type *rsp = &reg_stat[regno];
13061 if (rsp->last_set
13062 && rsp->last_set_label == label_tick
13063 && DF_INSN_LUID (rsp->last_set) > from_luid)
13064 return 1;
13066 return 0;
13069 if (code == MEM && mem_last_set > from_luid)
13070 return 1;
13072 fmt = GET_RTX_FORMAT (code);
13074 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13076 if (fmt[i] == 'E')
13078 int j;
13079 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13080 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13081 return 1;
13083 else if (fmt[i] == 'e'
13084 && use_crosses_set_p (XEXP (x, i), from_luid))
13085 return 1;
13087 return 0;
13090 /* Define three variables used for communication between the following
13091 routines. */
13093 static unsigned int reg_dead_regno, reg_dead_endregno;
13094 static int reg_dead_flag;
13096 /* Function called via note_stores from reg_dead_at_p.
13098 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13099 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13101 static void
13102 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13104 unsigned int regno, endregno;
13106 if (!REG_P (dest))
13107 return;
13109 regno = REGNO (dest);
13110 endregno = END_REGNO (dest);
13111 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13112 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13115 /* Return nonzero if REG is known to be dead at INSN.
13117 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13118 referencing REG, it is dead. If we hit a SET referencing REG, it is
13119 live. Otherwise, see if it is live or dead at the start of the basic
13120 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13121 must be assumed to be always live. */
13123 static int
13124 reg_dead_at_p (rtx reg, rtx_insn *insn)
13126 basic_block block;
13127 unsigned int i;
13129 /* Set variables for reg_dead_at_p_1. */
13130 reg_dead_regno = REGNO (reg);
13131 reg_dead_endregno = END_REGNO (reg);
13133 reg_dead_flag = 0;
13135 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13136 we allow the machine description to decide whether use-and-clobber
13137 patterns are OK. */
13138 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13140 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13141 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13142 return 0;
13145 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13146 beginning of basic block. */
13147 block = BLOCK_FOR_INSN (insn);
13148 for (;;)
13150 if (INSN_P (insn))
13152 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13153 return 1;
13155 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13156 if (reg_dead_flag)
13157 return reg_dead_flag == 1 ? 1 : 0;
13159 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13160 return 1;
13163 if (insn == BB_HEAD (block))
13164 break;
13166 insn = PREV_INSN (insn);
13169 /* Look at live-in sets for the basic block that we were in. */
13170 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13171 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13172 return 0;
13174 return 1;
13177 /* Note hard registers in X that are used. */
13179 static void
13180 mark_used_regs_combine (rtx x)
13182 RTX_CODE code = GET_CODE (x);
13183 unsigned int regno;
13184 int i;
13186 switch (code)
13188 case LABEL_REF:
13189 case SYMBOL_REF:
13190 case CONST:
13191 CASE_CONST_ANY:
13192 case PC:
13193 case ADDR_VEC:
13194 case ADDR_DIFF_VEC:
13195 case ASM_INPUT:
13196 #ifdef HAVE_cc0
13197 /* CC0 must die in the insn after it is set, so we don't need to take
13198 special note of it here. */
13199 case CC0:
13200 #endif
13201 return;
13203 case CLOBBER:
13204 /* If we are clobbering a MEM, mark any hard registers inside the
13205 address as used. */
13206 if (MEM_P (XEXP (x, 0)))
13207 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13208 return;
13210 case REG:
13211 regno = REGNO (x);
13212 /* A hard reg in a wide mode may really be multiple registers.
13213 If so, mark all of them just like the first. */
13214 if (regno < FIRST_PSEUDO_REGISTER)
13216 /* None of this applies to the stack, frame or arg pointers. */
13217 if (regno == STACK_POINTER_REGNUM
13218 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
13219 || regno == HARD_FRAME_POINTER_REGNUM
13220 #endif
13221 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13222 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13223 #endif
13224 || regno == FRAME_POINTER_REGNUM)
13225 return;
13227 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13229 return;
13231 case SET:
13233 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13234 the address. */
13235 rtx testreg = SET_DEST (x);
13237 while (GET_CODE (testreg) == SUBREG
13238 || GET_CODE (testreg) == ZERO_EXTRACT
13239 || GET_CODE (testreg) == STRICT_LOW_PART)
13240 testreg = XEXP (testreg, 0);
13242 if (MEM_P (testreg))
13243 mark_used_regs_combine (XEXP (testreg, 0));
13245 mark_used_regs_combine (SET_SRC (x));
13247 return;
13249 default:
13250 break;
13253 /* Recursively scan the operands of this expression. */
13256 const char *fmt = GET_RTX_FORMAT (code);
13258 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13260 if (fmt[i] == 'e')
13261 mark_used_regs_combine (XEXP (x, i));
13262 else if (fmt[i] == 'E')
13264 int j;
13266 for (j = 0; j < XVECLEN (x, i); j++)
13267 mark_used_regs_combine (XVECEXP (x, i, j));
13273 /* Remove register number REGNO from the dead registers list of INSN.
13275 Return the note used to record the death, if there was one. */
13278 remove_death (unsigned int regno, rtx_insn *insn)
13280 rtx note = find_regno_note (insn, REG_DEAD, regno);
13282 if (note)
13283 remove_note (insn, note);
13285 return note;
13288 /* For each register (hardware or pseudo) used within expression X, if its
13289 death is in an instruction with luid between FROM_LUID (inclusive) and
13290 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13291 list headed by PNOTES.
13293 That said, don't move registers killed by maybe_kill_insn.
13295 This is done when X is being merged by combination into TO_INSN. These
13296 notes will then be distributed as needed. */
13298 static void
13299 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13300 rtx *pnotes)
13302 const char *fmt;
13303 int len, i;
13304 enum rtx_code code = GET_CODE (x);
13306 if (code == REG)
13308 unsigned int regno = REGNO (x);
13309 rtx_insn *where_dead = reg_stat[regno].last_death;
13311 /* Don't move the register if it gets killed in between from and to. */
13312 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13313 && ! reg_referenced_p (x, maybe_kill_insn))
13314 return;
13316 if (where_dead
13317 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13318 && DF_INSN_LUID (where_dead) >= from_luid
13319 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13321 rtx note = remove_death (regno, where_dead);
13323 /* It is possible for the call above to return 0. This can occur
13324 when last_death points to I2 or I1 that we combined with.
13325 In that case make a new note.
13327 We must also check for the case where X is a hard register
13328 and NOTE is a death note for a range of hard registers
13329 including X. In that case, we must put REG_DEAD notes for
13330 the remaining registers in place of NOTE. */
13332 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13333 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13334 > GET_MODE_SIZE (GET_MODE (x))))
13336 unsigned int deadregno = REGNO (XEXP (note, 0));
13337 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
13338 unsigned int ourend = END_HARD_REGNO (x);
13339 unsigned int i;
13341 for (i = deadregno; i < deadend; i++)
13342 if (i < regno || i >= ourend)
13343 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13346 /* If we didn't find any note, or if we found a REG_DEAD note that
13347 covers only part of the given reg, and we have a multi-reg hard
13348 register, then to be safe we must check for REG_DEAD notes
13349 for each register other than the first. They could have
13350 their own REG_DEAD notes lying around. */
13351 else if ((note == 0
13352 || (note != 0
13353 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13354 < GET_MODE_SIZE (GET_MODE (x)))))
13355 && regno < FIRST_PSEUDO_REGISTER
13356 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
13358 unsigned int ourend = END_HARD_REGNO (x);
13359 unsigned int i, offset;
13360 rtx oldnotes = 0;
13362 if (note)
13363 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13364 else
13365 offset = 1;
13367 for (i = regno + offset; i < ourend; i++)
13368 move_deaths (regno_reg_rtx[i],
13369 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13372 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13374 XEXP (note, 1) = *pnotes;
13375 *pnotes = note;
13377 else
13378 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13381 return;
13384 else if (GET_CODE (x) == SET)
13386 rtx dest = SET_DEST (x);
13388 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13390 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13391 that accesses one word of a multi-word item, some
13392 piece of everything register in the expression is used by
13393 this insn, so remove any old death. */
13394 /* ??? So why do we test for equality of the sizes? */
13396 if (GET_CODE (dest) == ZERO_EXTRACT
13397 || GET_CODE (dest) == STRICT_LOW_PART
13398 || (GET_CODE (dest) == SUBREG
13399 && (((GET_MODE_SIZE (GET_MODE (dest))
13400 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13401 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13402 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13404 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13405 return;
13408 /* If this is some other SUBREG, we know it replaces the entire
13409 value, so use that as the destination. */
13410 if (GET_CODE (dest) == SUBREG)
13411 dest = SUBREG_REG (dest);
13413 /* If this is a MEM, adjust deaths of anything used in the address.
13414 For a REG (the only other possibility), the entire value is
13415 being replaced so the old value is not used in this insn. */
13417 if (MEM_P (dest))
13418 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13419 to_insn, pnotes);
13420 return;
13423 else if (GET_CODE (x) == CLOBBER)
13424 return;
13426 len = GET_RTX_LENGTH (code);
13427 fmt = GET_RTX_FORMAT (code);
13429 for (i = 0; i < len; i++)
13431 if (fmt[i] == 'E')
13433 int j;
13434 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13435 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13436 to_insn, pnotes);
13438 else if (fmt[i] == 'e')
13439 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13443 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13444 pattern of an insn. X must be a REG. */
13446 static int
13447 reg_bitfield_target_p (rtx x, rtx body)
13449 int i;
13451 if (GET_CODE (body) == SET)
13453 rtx dest = SET_DEST (body);
13454 rtx target;
13455 unsigned int regno, tregno, endregno, endtregno;
13457 if (GET_CODE (dest) == ZERO_EXTRACT)
13458 target = XEXP (dest, 0);
13459 else if (GET_CODE (dest) == STRICT_LOW_PART)
13460 target = SUBREG_REG (XEXP (dest, 0));
13461 else
13462 return 0;
13464 if (GET_CODE (target) == SUBREG)
13465 target = SUBREG_REG (target);
13467 if (!REG_P (target))
13468 return 0;
13470 tregno = REGNO (target), regno = REGNO (x);
13471 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13472 return target == x;
13474 endtregno = end_hard_regno (GET_MODE (target), tregno);
13475 endregno = end_hard_regno (GET_MODE (x), regno);
13477 return endregno > tregno && regno < endtregno;
13480 else if (GET_CODE (body) == PARALLEL)
13481 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13482 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13483 return 1;
13485 return 0;
13488 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13489 as appropriate. I3 and I2 are the insns resulting from the combination
13490 insns including FROM (I2 may be zero).
13492 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13493 not need REG_DEAD notes because they are being substituted for. This
13494 saves searching in the most common cases.
13496 Each note in the list is either ignored or placed on some insns, depending
13497 on the type of note. */
13499 static void
13500 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13501 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13503 rtx note, next_note;
13504 rtx tem_note;
13505 rtx_insn *tem_insn;
13507 for (note = notes; note; note = next_note)
13509 rtx_insn *place = 0, *place2 = 0;
13511 next_note = XEXP (note, 1);
13512 switch (REG_NOTE_KIND (note))
13514 case REG_BR_PROB:
13515 case REG_BR_PRED:
13516 /* Doesn't matter much where we put this, as long as it's somewhere.
13517 It is preferable to keep these notes on branches, which is most
13518 likely to be i3. */
13519 place = i3;
13520 break;
13522 case REG_NON_LOCAL_GOTO:
13523 if (JUMP_P (i3))
13524 place = i3;
13525 else
13527 gcc_assert (i2 && JUMP_P (i2));
13528 place = i2;
13530 break;
13532 case REG_EH_REGION:
13533 /* These notes must remain with the call or trapping instruction. */
13534 if (CALL_P (i3))
13535 place = i3;
13536 else if (i2 && CALL_P (i2))
13537 place = i2;
13538 else
13540 gcc_assert (cfun->can_throw_non_call_exceptions);
13541 if (may_trap_p (i3))
13542 place = i3;
13543 else if (i2 && may_trap_p (i2))
13544 place = i2;
13545 /* ??? Otherwise assume we've combined things such that we
13546 can now prove that the instructions can't trap. Drop the
13547 note in this case. */
13549 break;
13551 case REG_ARGS_SIZE:
13552 /* ??? How to distribute between i3-i1. Assume i3 contains the
13553 entire adjustment. Assert i3 contains at least some adjust. */
13554 if (!noop_move_p (i3))
13556 int old_size, args_size = INTVAL (XEXP (note, 0));
13557 /* fixup_args_size_notes looks at REG_NORETURN note,
13558 so ensure the note is placed there first. */
13559 if (CALL_P (i3))
13561 rtx *np;
13562 for (np = &next_note; *np; np = &XEXP (*np, 1))
13563 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13565 rtx n = *np;
13566 *np = XEXP (n, 1);
13567 XEXP (n, 1) = REG_NOTES (i3);
13568 REG_NOTES (i3) = n;
13569 break;
13572 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13573 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13574 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13575 gcc_assert (old_size != args_size
13576 || (CALL_P (i3)
13577 && !ACCUMULATE_OUTGOING_ARGS
13578 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13580 break;
13582 case REG_NORETURN:
13583 case REG_SETJMP:
13584 case REG_TM:
13585 case REG_CALL_DECL:
13586 /* These notes must remain with the call. It should not be
13587 possible for both I2 and I3 to be a call. */
13588 if (CALL_P (i3))
13589 place = i3;
13590 else
13592 gcc_assert (i2 && CALL_P (i2));
13593 place = i2;
13595 break;
13597 case REG_UNUSED:
13598 /* Any clobbers for i3 may still exist, and so we must process
13599 REG_UNUSED notes from that insn.
13601 Any clobbers from i2 or i1 can only exist if they were added by
13602 recog_for_combine. In that case, recog_for_combine created the
13603 necessary REG_UNUSED notes. Trying to keep any original
13604 REG_UNUSED notes from these insns can cause incorrect output
13605 if it is for the same register as the original i3 dest.
13606 In that case, we will notice that the register is set in i3,
13607 and then add a REG_UNUSED note for the destination of i3, which
13608 is wrong. However, it is possible to have REG_UNUSED notes from
13609 i2 or i1 for register which were both used and clobbered, so
13610 we keep notes from i2 or i1 if they will turn into REG_DEAD
13611 notes. */
13613 /* If this register is set or clobbered in I3, put the note there
13614 unless there is one already. */
13615 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13617 if (from_insn != i3)
13618 break;
13620 if (! (REG_P (XEXP (note, 0))
13621 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13622 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13623 place = i3;
13625 /* Otherwise, if this register is used by I3, then this register
13626 now dies here, so we must put a REG_DEAD note here unless there
13627 is one already. */
13628 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13629 && ! (REG_P (XEXP (note, 0))
13630 ? find_regno_note (i3, REG_DEAD,
13631 REGNO (XEXP (note, 0)))
13632 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13634 PUT_REG_NOTE_KIND (note, REG_DEAD);
13635 place = i3;
13637 break;
13639 case REG_EQUAL:
13640 case REG_EQUIV:
13641 case REG_NOALIAS:
13642 /* These notes say something about results of an insn. We can
13643 only support them if they used to be on I3 in which case they
13644 remain on I3. Otherwise they are ignored.
13646 If the note refers to an expression that is not a constant, we
13647 must also ignore the note since we cannot tell whether the
13648 equivalence is still true. It might be possible to do
13649 slightly better than this (we only have a problem if I2DEST
13650 or I1DEST is present in the expression), but it doesn't
13651 seem worth the trouble. */
13653 if (from_insn == i3
13654 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13655 place = i3;
13656 break;
13658 case REG_INC:
13659 /* These notes say something about how a register is used. They must
13660 be present on any use of the register in I2 or I3. */
13661 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13662 place = i3;
13664 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13666 if (place)
13667 place2 = i2;
13668 else
13669 place = i2;
13671 break;
13673 case REG_LABEL_TARGET:
13674 case REG_LABEL_OPERAND:
13675 /* This can show up in several ways -- either directly in the
13676 pattern, or hidden off in the constant pool with (or without?)
13677 a REG_EQUAL note. */
13678 /* ??? Ignore the without-reg_equal-note problem for now. */
13679 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13680 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13681 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13682 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13683 place = i3;
13685 if (i2
13686 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13687 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13688 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13689 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13691 if (place)
13692 place2 = i2;
13693 else
13694 place = i2;
13697 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13698 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13699 there. */
13700 if (place && JUMP_P (place)
13701 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13702 && (JUMP_LABEL (place) == NULL
13703 || JUMP_LABEL (place) == XEXP (note, 0)))
13705 rtx label = JUMP_LABEL (place);
13707 if (!label)
13708 JUMP_LABEL (place) = XEXP (note, 0);
13709 else if (LABEL_P (label))
13710 LABEL_NUSES (label)--;
13713 if (place2 && JUMP_P (place2)
13714 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13715 && (JUMP_LABEL (place2) == NULL
13716 || JUMP_LABEL (place2) == XEXP (note, 0)))
13718 rtx label = JUMP_LABEL (place2);
13720 if (!label)
13721 JUMP_LABEL (place2) = XEXP (note, 0);
13722 else if (LABEL_P (label))
13723 LABEL_NUSES (label)--;
13724 place2 = 0;
13726 break;
13728 case REG_NONNEG:
13729 /* This note says something about the value of a register prior
13730 to the execution of an insn. It is too much trouble to see
13731 if the note is still correct in all situations. It is better
13732 to simply delete it. */
13733 break;
13735 case REG_DEAD:
13736 /* If we replaced the right hand side of FROM_INSN with a
13737 REG_EQUAL note, the original use of the dying register
13738 will not have been combined into I3 and I2. In such cases,
13739 FROM_INSN is guaranteed to be the first of the combined
13740 instructions, so we simply need to search back before
13741 FROM_INSN for the previous use or set of this register,
13742 then alter the notes there appropriately.
13744 If the register is used as an input in I3, it dies there.
13745 Similarly for I2, if it is nonzero and adjacent to I3.
13747 If the register is not used as an input in either I3 or I2
13748 and it is not one of the registers we were supposed to eliminate,
13749 there are two possibilities. We might have a non-adjacent I2
13750 or we might have somehow eliminated an additional register
13751 from a computation. For example, we might have had A & B where
13752 we discover that B will always be zero. In this case we will
13753 eliminate the reference to A.
13755 In both cases, we must search to see if we can find a previous
13756 use of A and put the death note there. */
13758 if (from_insn
13759 && from_insn == i2mod
13760 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13761 tem_insn = from_insn;
13762 else
13764 if (from_insn
13765 && CALL_P (from_insn)
13766 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13767 place = from_insn;
13768 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13769 place = i3;
13770 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13771 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13772 place = i2;
13773 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13774 && !(i2mod
13775 && reg_overlap_mentioned_p (XEXP (note, 0),
13776 i2mod_old_rhs)))
13777 || rtx_equal_p (XEXP (note, 0), elim_i1)
13778 || rtx_equal_p (XEXP (note, 0), elim_i0))
13779 break;
13780 tem_insn = i3;
13781 /* If the new I2 sets the same register that is marked dead
13782 in the note, the note now should not be put on I2, as the
13783 note refers to a previous incarnation of the reg. */
13784 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13785 tem_insn = i2;
13788 if (place == 0)
13790 basic_block bb = this_basic_block;
13792 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13794 if (!NONDEBUG_INSN_P (tem_insn))
13796 if (tem_insn == BB_HEAD (bb))
13797 break;
13798 continue;
13801 /* If the register is being set at TEM_INSN, see if that is all
13802 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13803 into a REG_UNUSED note instead. Don't delete sets to
13804 global register vars. */
13805 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13806 || !global_regs[REGNO (XEXP (note, 0))])
13807 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13809 rtx set = single_set (tem_insn);
13810 rtx inner_dest = 0;
13811 #ifdef HAVE_cc0
13812 rtx_insn *cc0_setter = NULL;
13813 #endif
13815 if (set != 0)
13816 for (inner_dest = SET_DEST (set);
13817 (GET_CODE (inner_dest) == STRICT_LOW_PART
13818 || GET_CODE (inner_dest) == SUBREG
13819 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13820 inner_dest = XEXP (inner_dest, 0))
13823 /* Verify that it was the set, and not a clobber that
13824 modified the register.
13826 CC0 targets must be careful to maintain setter/user
13827 pairs. If we cannot delete the setter due to side
13828 effects, mark the user with an UNUSED note instead
13829 of deleting it. */
13831 if (set != 0 && ! side_effects_p (SET_SRC (set))
13832 && rtx_equal_p (XEXP (note, 0), inner_dest)
13833 #ifdef HAVE_cc0
13834 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13835 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13836 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
13837 #endif
13840 /* Move the notes and links of TEM_INSN elsewhere.
13841 This might delete other dead insns recursively.
13842 First set the pattern to something that won't use
13843 any register. */
13844 rtx old_notes = REG_NOTES (tem_insn);
13846 PATTERN (tem_insn) = pc_rtx;
13847 REG_NOTES (tem_insn) = NULL;
13849 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13850 NULL_RTX, NULL_RTX, NULL_RTX);
13851 distribute_links (LOG_LINKS (tem_insn));
13853 SET_INSN_DELETED (tem_insn);
13854 if (tem_insn == i2)
13855 i2 = NULL;
13857 #ifdef HAVE_cc0
13858 /* Delete the setter too. */
13859 if (cc0_setter)
13861 PATTERN (cc0_setter) = pc_rtx;
13862 old_notes = REG_NOTES (cc0_setter);
13863 REG_NOTES (cc0_setter) = NULL;
13865 distribute_notes (old_notes, cc0_setter,
13866 cc0_setter, NULL,
13867 NULL_RTX, NULL_RTX, NULL_RTX);
13868 distribute_links (LOG_LINKS (cc0_setter));
13870 SET_INSN_DELETED (cc0_setter);
13871 if (cc0_setter == i2)
13872 i2 = NULL;
13874 #endif
13876 else
13878 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13880 /* If there isn't already a REG_UNUSED note, put one
13881 here. Do not place a REG_DEAD note, even if
13882 the register is also used here; that would not
13883 match the algorithm used in lifetime analysis
13884 and can cause the consistency check in the
13885 scheduler to fail. */
13886 if (! find_regno_note (tem_insn, REG_UNUSED,
13887 REGNO (XEXP (note, 0))))
13888 place = tem_insn;
13889 break;
13892 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13893 || (CALL_P (tem_insn)
13894 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
13896 place = tem_insn;
13898 /* If we are doing a 3->2 combination, and we have a
13899 register which formerly died in i3 and was not used
13900 by i2, which now no longer dies in i3 and is used in
13901 i2 but does not die in i2, and place is between i2
13902 and i3, then we may need to move a link from place to
13903 i2. */
13904 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
13905 && from_insn
13906 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
13907 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13909 struct insn_link *links = LOG_LINKS (place);
13910 LOG_LINKS (place) = NULL;
13911 distribute_links (links);
13913 break;
13916 if (tem_insn == BB_HEAD (bb))
13917 break;
13922 /* If the register is set or already dead at PLACE, we needn't do
13923 anything with this note if it is still a REG_DEAD note.
13924 We check here if it is set at all, not if is it totally replaced,
13925 which is what `dead_or_set_p' checks, so also check for it being
13926 set partially. */
13928 if (place && REG_NOTE_KIND (note) == REG_DEAD)
13930 unsigned int regno = REGNO (XEXP (note, 0));
13931 reg_stat_type *rsp = &reg_stat[regno];
13933 if (dead_or_set_p (place, XEXP (note, 0))
13934 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
13936 /* Unless the register previously died in PLACE, clear
13937 last_death. [I no longer understand why this is
13938 being done.] */
13939 if (rsp->last_death != place)
13940 rsp->last_death = 0;
13941 place = 0;
13943 else
13944 rsp->last_death = place;
13946 /* If this is a death note for a hard reg that is occupying
13947 multiple registers, ensure that we are still using all
13948 parts of the object. If we find a piece of the object
13949 that is unused, we must arrange for an appropriate REG_DEAD
13950 note to be added for it. However, we can't just emit a USE
13951 and tag the note to it, since the register might actually
13952 be dead; so we recourse, and the recursive call then finds
13953 the previous insn that used this register. */
13955 if (place && regno < FIRST_PSEUDO_REGISTER
13956 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
13958 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
13959 bool all_used = true;
13960 unsigned int i;
13962 for (i = regno; i < endregno; i++)
13963 if ((! refers_to_regno_p (i, PATTERN (place))
13964 && ! find_regno_fusage (place, USE, i))
13965 || dead_or_set_regno_p (place, i))
13967 all_used = false;
13968 break;
13971 if (! all_used)
13973 /* Put only REG_DEAD notes for pieces that are
13974 not already dead or set. */
13976 for (i = regno; i < endregno;
13977 i += hard_regno_nregs[i][reg_raw_mode[i]])
13979 rtx piece = regno_reg_rtx[i];
13980 basic_block bb = this_basic_block;
13982 if (! dead_or_set_p (place, piece)
13983 && ! reg_bitfield_target_p (piece,
13984 PATTERN (place)))
13986 rtx new_note = alloc_reg_note (REG_DEAD, piece,
13987 NULL_RTX);
13989 distribute_notes (new_note, place, place,
13990 NULL, NULL_RTX, NULL_RTX,
13991 NULL_RTX);
13993 else if (! refers_to_regno_p (i, PATTERN (place))
13994 && ! find_regno_fusage (place, USE, i))
13995 for (tem_insn = PREV_INSN (place); ;
13996 tem_insn = PREV_INSN (tem_insn))
13998 if (!NONDEBUG_INSN_P (tem_insn))
14000 if (tem_insn == BB_HEAD (bb))
14001 break;
14002 continue;
14004 if (dead_or_set_p (tem_insn, piece)
14005 || reg_bitfield_target_p (piece,
14006 PATTERN (tem_insn)))
14008 add_reg_note (tem_insn, REG_UNUSED, piece);
14009 break;
14014 place = 0;
14018 break;
14020 default:
14021 /* Any other notes should not be present at this point in the
14022 compilation. */
14023 gcc_unreachable ();
14026 if (place)
14028 XEXP (note, 1) = REG_NOTES (place);
14029 REG_NOTES (place) = note;
14032 if (place2)
14033 add_shallow_copy_of_reg_note (place2, note);
14037 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14038 I3, I2, and I1 to new locations. This is also called to add a link
14039 pointing at I3 when I3's destination is changed. */
14041 static void
14042 distribute_links (struct insn_link *links)
14044 struct insn_link *link, *next_link;
14046 for (link = links; link; link = next_link)
14048 rtx_insn *place = 0;
14049 rtx_insn *insn;
14050 rtx set, reg;
14052 next_link = link->next;
14054 /* If the insn that this link points to is a NOTE, ignore it. */
14055 if (NOTE_P (link->insn))
14056 continue;
14058 set = 0;
14059 rtx pat = PATTERN (link->insn);
14060 if (GET_CODE (pat) == SET)
14061 set = pat;
14062 else if (GET_CODE (pat) == PARALLEL)
14064 int i;
14065 for (i = 0; i < XVECLEN (pat, 0); i++)
14067 set = XVECEXP (pat, 0, i);
14068 if (GET_CODE (set) != SET)
14069 continue;
14071 reg = SET_DEST (set);
14072 while (GET_CODE (reg) == ZERO_EXTRACT
14073 || GET_CODE (reg) == STRICT_LOW_PART
14074 || GET_CODE (reg) == SUBREG)
14075 reg = XEXP (reg, 0);
14077 if (!REG_P (reg))
14078 continue;
14080 if (REGNO (reg) == link->regno)
14081 break;
14083 if (i == XVECLEN (pat, 0))
14084 continue;
14086 else
14087 continue;
14089 reg = SET_DEST (set);
14091 while (GET_CODE (reg) == ZERO_EXTRACT
14092 || GET_CODE (reg) == STRICT_LOW_PART
14093 || GET_CODE (reg) == SUBREG)
14094 reg = XEXP (reg, 0);
14096 /* A LOG_LINK is defined as being placed on the first insn that uses
14097 a register and points to the insn that sets the register. Start
14098 searching at the next insn after the target of the link and stop
14099 when we reach a set of the register or the end of the basic block.
14101 Note that this correctly handles the link that used to point from
14102 I3 to I2. Also note that not much searching is typically done here
14103 since most links don't point very far away. */
14105 for (insn = NEXT_INSN (link->insn);
14106 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14107 || BB_HEAD (this_basic_block->next_bb) != insn));
14108 insn = NEXT_INSN (insn))
14109 if (DEBUG_INSN_P (insn))
14110 continue;
14111 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14113 if (reg_referenced_p (reg, PATTERN (insn)))
14114 place = insn;
14115 break;
14117 else if (CALL_P (insn)
14118 && find_reg_fusage (insn, USE, reg))
14120 place = insn;
14121 break;
14123 else if (INSN_P (insn) && reg_set_p (reg, insn))
14124 break;
14126 /* If we found a place to put the link, place it there unless there
14127 is already a link to the same insn as LINK at that point. */
14129 if (place)
14131 struct insn_link *link2;
14133 FOR_EACH_LOG_LINK (link2, place)
14134 if (link2->insn == link->insn && link2->regno == link->regno)
14135 break;
14137 if (link2 == NULL)
14139 link->next = LOG_LINKS (place);
14140 LOG_LINKS (place) = link;
14142 /* Set added_links_insn to the earliest insn we added a
14143 link to. */
14144 if (added_links_insn == 0
14145 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14146 added_links_insn = place;
14152 /* Check for any register or memory mentioned in EQUIV that is not
14153 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14154 of EXPR where some registers may have been replaced by constants. */
14156 static bool
14157 unmentioned_reg_p (rtx equiv, rtx expr)
14159 subrtx_iterator::array_type array;
14160 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14162 const_rtx x = *iter;
14163 if ((REG_P (x) || MEM_P (x))
14164 && !reg_mentioned_p (x, expr))
14165 return true;
14167 return false;
14170 DEBUG_FUNCTION void
14171 dump_combine_stats (FILE *file)
14173 fprintf
14174 (file,
14175 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14176 combine_attempts, combine_merges, combine_extras, combine_successes);
14179 void
14180 dump_combine_total_stats (FILE *file)
14182 fprintf
14183 (file,
14184 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14185 total_attempts, total_merges, total_extras, total_successes);
14188 /* Try combining insns through substitution. */
14189 static unsigned int
14190 rest_of_handle_combine (void)
14192 int rebuild_jump_labels_after_combine;
14194 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14195 df_note_add_problem ();
14196 df_analyze ();
14198 regstat_init_n_sets_and_refs ();
14199 reg_n_sets_max = max_reg_num ();
14201 rebuild_jump_labels_after_combine
14202 = combine_instructions (get_insns (), max_reg_num ());
14204 /* Combining insns may have turned an indirect jump into a
14205 direct jump. Rebuild the JUMP_LABEL fields of jumping
14206 instructions. */
14207 if (rebuild_jump_labels_after_combine)
14209 timevar_push (TV_JUMP);
14210 rebuild_jump_labels (get_insns ());
14211 cleanup_cfg (0);
14212 timevar_pop (TV_JUMP);
14215 regstat_free_n_sets_and_refs ();
14216 return 0;
14219 namespace {
14221 const pass_data pass_data_combine =
14223 RTL_PASS, /* type */
14224 "combine", /* name */
14225 OPTGROUP_NONE, /* optinfo_flags */
14226 TV_COMBINE, /* tv_id */
14227 PROP_cfglayout, /* properties_required */
14228 0, /* properties_provided */
14229 0, /* properties_destroyed */
14230 0, /* todo_flags_start */
14231 TODO_df_finish, /* todo_flags_finish */
14234 class pass_combine : public rtl_opt_pass
14236 public:
14237 pass_combine (gcc::context *ctxt)
14238 : rtl_opt_pass (pass_data_combine, ctxt)
14241 /* opt_pass methods: */
14242 virtual bool gate (function *) { return (optimize > 0); }
14243 virtual unsigned int execute (function *)
14245 return rest_of_handle_combine ();
14248 }; // class pass_combine
14250 } // anon namespace
14252 rtl_opt_pass *
14253 make_pass_combine (gcc::context *ctxt)
14255 return new pass_combine (ctxt);