2013-11-19 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / cfgloop.c
bloba5eb4da3490b619b0e9e6f5d8255f500a52f5aa3
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "gimple.h"
32 #include "gimple-iterator.h"
33 #include "gimple-ssa.h"
34 #include "pointer-set.h"
35 #include "ggc.h"
36 #include "dumpfile.h"
38 static void flow_loops_cfg_dump (FILE *);
40 /* Dump loop related CFG information. */
42 static void
43 flow_loops_cfg_dump (FILE *file)
45 basic_block bb;
47 if (!file)
48 return;
50 FOR_EACH_BB (bb)
52 edge succ;
53 edge_iterator ei;
55 fprintf (file, ";; %d succs { ", bb->index);
56 FOR_EACH_EDGE (succ, ei, bb->succs)
57 fprintf (file, "%d ", succ->dest->index);
58 fprintf (file, "}\n");
62 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
64 bool
65 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
67 unsigned odepth = loop_depth (outer);
69 return (loop_depth (loop) > odepth
70 && (*loop->superloops)[odepth] == outer);
73 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
74 loops within LOOP. */
76 struct loop *
77 superloop_at_depth (struct loop *loop, unsigned depth)
79 unsigned ldepth = loop_depth (loop);
81 gcc_assert (depth <= ldepth);
83 if (depth == ldepth)
84 return loop;
86 return (*loop->superloops)[depth];
89 /* Returns the list of the latch edges of LOOP. */
91 static vec<edge>
92 get_loop_latch_edges (const struct loop *loop)
94 edge_iterator ei;
95 edge e;
96 vec<edge> ret = vNULL;
98 FOR_EACH_EDGE (e, ei, loop->header->preds)
100 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
101 ret.safe_push (e);
104 return ret;
107 /* Dump the loop information specified by LOOP to the stream FILE
108 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
110 void
111 flow_loop_dump (const struct loop *loop, FILE *file,
112 void (*loop_dump_aux) (const struct loop *, FILE *, int),
113 int verbose)
115 basic_block *bbs;
116 unsigned i;
117 vec<edge> latches;
118 edge e;
120 if (! loop || ! loop->header)
121 return;
123 fprintf (file, ";;\n;; Loop %d\n", loop->num);
125 fprintf (file, ";; header %d, ", loop->header->index);
126 if (loop->latch)
127 fprintf (file, "latch %d\n", loop->latch->index);
128 else
130 fprintf (file, "multiple latches:");
131 latches = get_loop_latch_edges (loop);
132 FOR_EACH_VEC_ELT (latches, i, e)
133 fprintf (file, " %d", e->src->index);
134 latches.release ();
135 fprintf (file, "\n");
138 fprintf (file, ";; depth %d, outer %ld\n",
139 loop_depth (loop), (long) (loop_outer (loop)
140 ? loop_outer (loop)->num : -1));
142 fprintf (file, ";; nodes:");
143 bbs = get_loop_body (loop);
144 for (i = 0; i < loop->num_nodes; i++)
145 fprintf (file, " %d", bbs[i]->index);
146 free (bbs);
147 fprintf (file, "\n");
149 if (loop_dump_aux)
150 loop_dump_aux (loop, file, verbose);
153 /* Dump the loop information about loops to the stream FILE,
154 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
156 void
157 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
159 struct loop *loop;
161 if (!current_loops || ! file)
162 return;
164 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
166 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
168 flow_loop_dump (loop, file, loop_dump_aux, verbose);
171 if (verbose)
172 flow_loops_cfg_dump (file);
175 /* Free data allocated for LOOP. */
177 void
178 flow_loop_free (struct loop *loop)
180 struct loop_exit *exit, *next;
182 vec_free (loop->superloops);
184 /* Break the list of the loop exit records. They will be freed when the
185 corresponding edge is rescanned or removed, and this avoids
186 accessing the (already released) head of the list stored in the
187 loop structure. */
188 for (exit = loop->exits->next; exit != loop->exits; exit = next)
190 next = exit->next;
191 exit->next = exit;
192 exit->prev = exit;
195 ggc_free (loop->exits);
196 ggc_free (loop);
199 /* Free all the memory allocated for LOOPS. */
201 void
202 flow_loops_free (struct loops *loops)
204 if (loops->larray)
206 unsigned i;
207 loop_p loop;
209 /* Free the loop descriptors. */
210 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
212 if (!loop)
213 continue;
215 flow_loop_free (loop);
218 vec_free (loops->larray);
222 /* Find the nodes contained within the LOOP with header HEADER.
223 Return the number of nodes within the loop. */
226 flow_loop_nodes_find (basic_block header, struct loop *loop)
228 vec<basic_block> stack = vNULL;
229 int num_nodes = 1;
230 edge latch;
231 edge_iterator latch_ei;
233 header->loop_father = loop;
235 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
237 if (latch->src->loop_father == loop
238 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
239 continue;
241 num_nodes++;
242 stack.safe_push (latch->src);
243 latch->src->loop_father = loop;
245 while (!stack.is_empty ())
247 basic_block node;
248 edge e;
249 edge_iterator ei;
251 node = stack.pop ();
253 FOR_EACH_EDGE (e, ei, node->preds)
255 basic_block ancestor = e->src;
257 if (ancestor->loop_father != loop)
259 ancestor->loop_father = loop;
260 num_nodes++;
261 stack.safe_push (ancestor);
266 stack.release ();
268 return num_nodes;
271 /* Records the vector of superloops of the loop LOOP, whose immediate
272 superloop is FATHER. */
274 static void
275 establish_preds (struct loop *loop, struct loop *father)
277 loop_p ploop;
278 unsigned depth = loop_depth (father) + 1;
279 unsigned i;
281 loop->superloops = 0;
282 vec_alloc (loop->superloops, depth);
283 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
284 loop->superloops->quick_push (ploop);
285 loop->superloops->quick_push (father);
287 for (ploop = loop->inner; ploop; ploop = ploop->next)
288 establish_preds (ploop, loop);
291 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
292 added loop. If LOOP has some children, take care of that their
293 pred field will be initialized correctly. */
295 void
296 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
298 loop->next = father->inner;
299 father->inner = loop;
301 establish_preds (loop, father);
304 /* Remove LOOP from the loop hierarchy tree. */
306 void
307 flow_loop_tree_node_remove (struct loop *loop)
309 struct loop *prev, *father;
311 father = loop_outer (loop);
313 /* Remove loop from the list of sons. */
314 if (father->inner == loop)
315 father->inner = loop->next;
316 else
318 for (prev = father->inner; prev->next != loop; prev = prev->next)
319 continue;
320 prev->next = loop->next;
323 loop->superloops = NULL;
326 /* Allocates and returns new loop structure. */
328 struct loop *
329 alloc_loop (void)
331 struct loop *loop = ggc_alloc_cleared_loop ();
333 loop->exits = ggc_alloc_cleared_loop_exit ();
334 loop->exits->next = loop->exits->prev = loop->exits;
335 loop->can_be_parallel = false;
337 return loop;
340 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
341 (including the root of the loop tree). */
343 void
344 init_loops_structure (struct function *fn,
345 struct loops *loops, unsigned num_loops)
347 struct loop *root;
349 memset (loops, 0, sizeof *loops);
350 vec_alloc (loops->larray, num_loops);
352 /* Dummy loop containing whole function. */
353 root = alloc_loop ();
354 root->num_nodes = n_basic_blocks_for_fn (fn);
355 root->latch = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
356 root->header = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
357 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
358 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
360 loops->larray->quick_push (root);
361 loops->tree_root = root;
364 /* Returns whether HEADER is a loop header. */
366 bool
367 bb_loop_header_p (basic_block header)
369 edge_iterator ei;
370 edge e;
372 /* If we have an abnormal predecessor, do not consider the
373 loop (not worth the problems). */
374 if (bb_has_abnormal_pred (header))
375 return false;
377 /* Look for back edges where a predecessor is dominated
378 by this block. A natural loop has a single entry
379 node (header) that dominates all the nodes in the
380 loop. It also has single back edge to the header
381 from a latch node. */
382 FOR_EACH_EDGE (e, ei, header->preds)
384 basic_block latch = e->src;
385 if (latch != ENTRY_BLOCK_PTR
386 && dominated_by_p (CDI_DOMINATORS, latch, header))
387 return true;
390 return false;
393 /* Find all the natural loops in the function and save in LOOPS structure and
394 recalculate loop_father information in basic block structures.
395 If LOOPS is non-NULL then the loop structures for already recorded loops
396 will be re-used and their number will not change. We assume that no
397 stale loops exist in LOOPS.
398 When LOOPS is NULL it is allocated and re-built from scratch.
399 Return the built LOOPS structure. */
401 struct loops *
402 flow_loops_find (struct loops *loops)
404 bool from_scratch = (loops == NULL);
405 int *rc_order;
406 int b;
407 unsigned i;
408 vec<loop_p> larray;
410 /* Ensure that the dominators are computed. */
411 calculate_dominance_info (CDI_DOMINATORS);
413 if (!loops)
415 loops = ggc_alloc_cleared_loops ();
416 init_loops_structure (cfun, loops, 1);
419 /* Ensure that loop exits were released. */
420 gcc_assert (loops->exits == NULL);
422 /* Taking care of this degenerate case makes the rest of
423 this code simpler. */
424 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
425 return loops;
427 /* The root loop node contains all basic-blocks. */
428 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
430 /* Compute depth first search order of the CFG so that outer
431 natural loops will be found before inner natural loops. */
432 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
433 pre_and_rev_post_order_compute (NULL, rc_order, false);
435 /* Gather all loop headers in reverse completion order and allocate
436 loop structures for loops that are not already present. */
437 larray.create (loops->larray->length ());
438 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
440 basic_block header = BASIC_BLOCK (rc_order[b]);
441 if (bb_loop_header_p (header))
443 struct loop *loop;
445 /* The current active loop tree has valid loop-fathers for
446 header blocks. */
447 if (!from_scratch
448 && header->loop_father->header == header)
450 loop = header->loop_father;
451 /* If we found an existing loop remove it from the
452 loop tree. It is going to be inserted again
453 below. */
454 flow_loop_tree_node_remove (loop);
456 else
458 /* Otherwise allocate a new loop structure for the loop. */
459 loop = alloc_loop ();
460 /* ??? We could re-use unused loop slots here. */
461 loop->num = loops->larray->length ();
462 vec_safe_push (loops->larray, loop);
463 loop->header = header;
465 if (!from_scratch
466 && dump_file && (dump_flags & TDF_DETAILS))
467 fprintf (dump_file, "flow_loops_find: discovered new "
468 "loop %d with header %d\n",
469 loop->num, header->index);
471 /* Reset latch, we recompute it below. */
472 loop->latch = NULL;
473 larray.safe_push (loop);
476 /* Make blocks part of the loop root node at start. */
477 header->loop_father = loops->tree_root;
480 free (rc_order);
482 /* Now iterate over the loops found, insert them into the loop tree
483 and assign basic-block ownership. */
484 for (i = 0; i < larray.length (); ++i)
486 struct loop *loop = larray[i];
487 basic_block header = loop->header;
488 edge_iterator ei;
489 edge e;
491 flow_loop_tree_node_add (header->loop_father, loop);
492 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
494 /* Look for the latch for this header block, if it has just a
495 single one. */
496 FOR_EACH_EDGE (e, ei, header->preds)
498 basic_block latch = e->src;
500 if (flow_bb_inside_loop_p (loop, latch))
502 if (loop->latch != NULL)
504 /* More than one latch edge. */
505 loop->latch = NULL;
506 break;
508 loop->latch = latch;
513 larray.release ();
515 return loops;
518 /* Ratio of frequencies of edges so that one of more latch edges is
519 considered to belong to inner loop with same header. */
520 #define HEAVY_EDGE_RATIO 8
522 /* Minimum number of samples for that we apply
523 find_subloop_latch_edge_by_profile heuristics. */
524 #define HEAVY_EDGE_MIN_SAMPLES 10
526 /* If the profile info is available, finds an edge in LATCHES that much more
527 frequent than the remaining edges. Returns such an edge, or NULL if we do
528 not find one.
530 We do not use guessed profile here, only the measured one. The guessed
531 profile is usually too flat and unreliable for this (and it is mostly based
532 on the loop structure of the program, so it does not make much sense to
533 derive the loop structure from it). */
535 static edge
536 find_subloop_latch_edge_by_profile (vec<edge> latches)
538 unsigned i;
539 edge e, me = NULL;
540 gcov_type mcount = 0, tcount = 0;
542 FOR_EACH_VEC_ELT (latches, i, e)
544 if (e->count > mcount)
546 me = e;
547 mcount = e->count;
549 tcount += e->count;
552 if (tcount < HEAVY_EDGE_MIN_SAMPLES
553 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
554 return NULL;
556 if (dump_file)
557 fprintf (dump_file,
558 "Found latch edge %d -> %d using profile information.\n",
559 me->src->index, me->dest->index);
560 return me;
563 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
564 on the structure of induction variables. Returns this edge, or NULL if we
565 do not find any.
567 We are quite conservative, and look just for an obvious simple innermost
568 loop (which is the case where we would lose the most performance by not
569 disambiguating the loop). More precisely, we look for the following
570 situation: The source of the chosen latch edge dominates sources of all
571 the other latch edges. Additionally, the header does not contain a phi node
572 such that the argument from the chosen edge is equal to the argument from
573 another edge. */
575 static edge
576 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
578 edge e, latch = latches[0];
579 unsigned i;
580 gimple phi;
581 gimple_stmt_iterator psi;
582 tree lop;
583 basic_block bb;
585 /* Find the candidate for the latch edge. */
586 for (i = 1; latches.iterate (i, &e); i++)
587 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
588 latch = e;
590 /* Verify that it dominates all the latch edges. */
591 FOR_EACH_VEC_ELT (latches, i, e)
592 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
593 return NULL;
595 /* Check for a phi node that would deny that this is a latch edge of
596 a subloop. */
597 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
599 phi = gsi_stmt (psi);
600 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
602 /* Ignore the values that are not changed inside the subloop. */
603 if (TREE_CODE (lop) != SSA_NAME
604 || SSA_NAME_DEF_STMT (lop) == phi)
605 continue;
606 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
607 if (!bb || !flow_bb_inside_loop_p (loop, bb))
608 continue;
610 FOR_EACH_VEC_ELT (latches, i, e)
611 if (e != latch
612 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
613 return NULL;
616 if (dump_file)
617 fprintf (dump_file,
618 "Found latch edge %d -> %d using iv structure.\n",
619 latch->src->index, latch->dest->index);
620 return latch;
623 /* If we can determine that one of the several latch edges of LOOP behaves
624 as a latch edge of a separate subloop, returns this edge. Otherwise
625 returns NULL. */
627 static edge
628 find_subloop_latch_edge (struct loop *loop)
630 vec<edge> latches = get_loop_latch_edges (loop);
631 edge latch = NULL;
633 if (latches.length () > 1)
635 latch = find_subloop_latch_edge_by_profile (latches);
637 if (!latch
638 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
639 should use cfghook for this, but it is hard to imagine it would
640 be useful elsewhere. */
641 && current_ir_type () == IR_GIMPLE)
642 latch = find_subloop_latch_edge_by_ivs (loop, latches);
645 latches.release ();
646 return latch;
649 /* Callback for make_forwarder_block. Returns true if the edge E is marked
650 in the set MFB_REIS_SET. */
652 static struct pointer_set_t *mfb_reis_set;
653 static bool
654 mfb_redirect_edges_in_set (edge e)
656 return pointer_set_contains (mfb_reis_set, e);
659 /* Creates a subloop of LOOP with latch edge LATCH. */
661 static void
662 form_subloop (struct loop *loop, edge latch)
664 edge_iterator ei;
665 edge e, new_entry;
666 struct loop *new_loop;
668 mfb_reis_set = pointer_set_create ();
669 FOR_EACH_EDGE (e, ei, loop->header->preds)
671 if (e != latch)
672 pointer_set_insert (mfb_reis_set, e);
674 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
675 NULL);
676 pointer_set_destroy (mfb_reis_set);
678 loop->header = new_entry->src;
680 /* Find the blocks and subloops that belong to the new loop, and add it to
681 the appropriate place in the loop tree. */
682 new_loop = alloc_loop ();
683 new_loop->header = new_entry->dest;
684 new_loop->latch = latch->src;
685 add_loop (new_loop, loop);
688 /* Make all the latch edges of LOOP to go to a single forwarder block --
689 a new latch of LOOP. */
691 static void
692 merge_latch_edges (struct loop *loop)
694 vec<edge> latches = get_loop_latch_edges (loop);
695 edge latch, e;
696 unsigned i;
698 gcc_assert (latches.length () > 0);
700 if (latches.length () == 1)
701 loop->latch = latches[0]->src;
702 else
704 if (dump_file)
705 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
707 mfb_reis_set = pointer_set_create ();
708 FOR_EACH_VEC_ELT (latches, i, e)
709 pointer_set_insert (mfb_reis_set, e);
710 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
711 NULL);
712 pointer_set_destroy (mfb_reis_set);
714 loop->header = latch->dest;
715 loop->latch = latch->src;
718 latches.release ();
721 /* LOOP may have several latch edges. Transform it into (possibly several)
722 loops with single latch edge. */
724 static void
725 disambiguate_multiple_latches (struct loop *loop)
727 edge e;
729 /* We eliminate the multiple latches by splitting the header to the forwarder
730 block F and the rest R, and redirecting the edges. There are two cases:
732 1) If there is a latch edge E that corresponds to a subloop (we guess
733 that based on profile -- if it is taken much more often than the
734 remaining edges; and on trees, using the information about induction
735 variables of the loops), we redirect E to R, all the remaining edges to
736 F, then rescan the loops and try again for the outer loop.
737 2) If there is no such edge, we redirect all latch edges to F, and the
738 entry edges to R, thus making F the single latch of the loop. */
740 if (dump_file)
741 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
742 loop->num);
744 /* During latch merging, we may need to redirect the entry edges to a new
745 block. This would cause problems if the entry edge was the one from the
746 entry block. To avoid having to handle this case specially, split
747 such entry edge. */
748 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
749 if (e)
750 split_edge (e);
752 while (1)
754 e = find_subloop_latch_edge (loop);
755 if (!e)
756 break;
758 form_subloop (loop, e);
761 merge_latch_edges (loop);
764 /* Split loops with multiple latch edges. */
766 void
767 disambiguate_loops_with_multiple_latches (void)
769 struct loop *loop;
771 FOR_EACH_LOOP (loop, 0)
773 if (!loop->latch)
774 disambiguate_multiple_latches (loop);
778 /* Return nonzero if basic block BB belongs to LOOP. */
779 bool
780 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
782 struct loop *source_loop;
784 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
785 return 0;
787 source_loop = bb->loop_father;
788 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
791 /* Enumeration predicate for get_loop_body_with_size. */
792 static bool
793 glb_enum_p (const_basic_block bb, const void *glb_loop)
795 const struct loop *const loop = (const struct loop *) glb_loop;
796 return (bb != loop->header
797 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
800 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
801 order against direction of edges from latch. Specially, if
802 header != latch, latch is the 1-st block. LOOP cannot be the fake
803 loop tree root, and its size must be at most MAX_SIZE. The blocks
804 in the LOOP body are stored to BODY, and the size of the LOOP is
805 returned. */
807 unsigned
808 get_loop_body_with_size (const struct loop *loop, basic_block *body,
809 unsigned max_size)
811 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
812 body, max_size, loop);
815 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
816 order against direction of edges from latch. Specially, if
817 header != latch, latch is the 1-st block. */
819 basic_block *
820 get_loop_body (const struct loop *loop)
822 basic_block *body, bb;
823 unsigned tv = 0;
825 gcc_assert (loop->num_nodes);
827 body = XNEWVEC (basic_block, loop->num_nodes);
829 if (loop->latch == EXIT_BLOCK_PTR)
831 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
832 special-case the fake loop that contains the whole function. */
833 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
834 body[tv++] = loop->header;
835 body[tv++] = EXIT_BLOCK_PTR;
836 FOR_EACH_BB (bb)
837 body[tv++] = bb;
839 else
840 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
842 gcc_assert (tv == loop->num_nodes);
843 return body;
846 /* Fills dominance descendants inside LOOP of the basic block BB into
847 array TOVISIT from index *TV. */
849 static void
850 fill_sons_in_loop (const struct loop *loop, basic_block bb,
851 basic_block *tovisit, int *tv)
853 basic_block son, postpone = NULL;
855 tovisit[(*tv)++] = bb;
856 for (son = first_dom_son (CDI_DOMINATORS, bb);
857 son;
858 son = next_dom_son (CDI_DOMINATORS, son))
860 if (!flow_bb_inside_loop_p (loop, son))
861 continue;
863 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
865 postpone = son;
866 continue;
868 fill_sons_in_loop (loop, son, tovisit, tv);
871 if (postpone)
872 fill_sons_in_loop (loop, postpone, tovisit, tv);
875 /* Gets body of a LOOP (that must be different from the outermost loop)
876 sorted by dominance relation. Additionally, if a basic block s dominates
877 the latch, then only blocks dominated by s are be after it. */
879 basic_block *
880 get_loop_body_in_dom_order (const struct loop *loop)
882 basic_block *tovisit;
883 int tv;
885 gcc_assert (loop->num_nodes);
887 tovisit = XNEWVEC (basic_block, loop->num_nodes);
889 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
891 tv = 0;
892 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
894 gcc_assert (tv == (int) loop->num_nodes);
896 return tovisit;
899 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
901 basic_block *
902 get_loop_body_in_custom_order (const struct loop *loop,
903 int (*bb_comparator) (const void *, const void *))
905 basic_block *bbs = get_loop_body (loop);
907 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
909 return bbs;
912 /* Get body of a LOOP in breadth first sort order. */
914 basic_block *
915 get_loop_body_in_bfs_order (const struct loop *loop)
917 basic_block *blocks;
918 basic_block bb;
919 bitmap visited;
920 unsigned int i = 0;
921 unsigned int vc = 1;
923 gcc_assert (loop->num_nodes);
924 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
926 blocks = XNEWVEC (basic_block, loop->num_nodes);
927 visited = BITMAP_ALLOC (NULL);
929 bb = loop->header;
930 while (i < loop->num_nodes)
932 edge e;
933 edge_iterator ei;
935 if (bitmap_set_bit (visited, bb->index))
936 /* This basic block is now visited */
937 blocks[i++] = bb;
939 FOR_EACH_EDGE (e, ei, bb->succs)
941 if (flow_bb_inside_loop_p (loop, e->dest))
943 if (bitmap_set_bit (visited, e->dest->index))
944 blocks[i++] = e->dest;
948 gcc_assert (i >= vc);
950 bb = blocks[vc++];
953 BITMAP_FREE (visited);
954 return blocks;
957 /* Hash function for struct loop_exit. */
959 static hashval_t
960 loop_exit_hash (const void *ex)
962 const struct loop_exit *const exit = (const struct loop_exit *) ex;
964 return htab_hash_pointer (exit->e);
967 /* Equality function for struct loop_exit. Compares with edge. */
969 static int
970 loop_exit_eq (const void *ex, const void *e)
972 const struct loop_exit *const exit = (const struct loop_exit *) ex;
974 return exit->e == e;
977 /* Frees the list of loop exit descriptions EX. */
979 static void
980 loop_exit_free (void *ex)
982 struct loop_exit *exit = (struct loop_exit *) ex, *next;
984 for (; exit; exit = next)
986 next = exit->next_e;
988 exit->next->prev = exit->prev;
989 exit->prev->next = exit->next;
991 ggc_free (exit);
995 /* Returns the list of records for E as an exit of a loop. */
997 static struct loop_exit *
998 get_exit_descriptions (edge e)
1000 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1001 htab_hash_pointer (e));
1004 /* Updates the lists of loop exits in that E appears.
1005 If REMOVED is true, E is being removed, and we
1006 just remove it from the lists of exits.
1007 If NEW_EDGE is true and E is not a loop exit, we
1008 do not try to remove it from loop exit lists. */
1010 void
1011 rescan_loop_exit (edge e, bool new_edge, bool removed)
1013 void **slot;
1014 struct loop_exit *exits = NULL, *exit;
1015 struct loop *aloop, *cloop;
1017 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1018 return;
1020 if (!removed
1021 && e->src->loop_father != NULL
1022 && e->dest->loop_father != NULL
1023 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1025 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1026 for (aloop = e->src->loop_father;
1027 aloop != cloop;
1028 aloop = loop_outer (aloop))
1030 exit = ggc_alloc_loop_exit ();
1031 exit->e = e;
1033 exit->next = aloop->exits->next;
1034 exit->prev = aloop->exits;
1035 exit->next->prev = exit;
1036 exit->prev->next = exit;
1038 exit->next_e = exits;
1039 exits = exit;
1043 if (!exits && new_edge)
1044 return;
1046 slot = htab_find_slot_with_hash (current_loops->exits, e,
1047 htab_hash_pointer (e),
1048 exits ? INSERT : NO_INSERT);
1049 if (!slot)
1050 return;
1052 if (exits)
1054 if (*slot)
1055 loop_exit_free (*slot);
1056 *slot = exits;
1058 else
1059 htab_clear_slot (current_loops->exits, slot);
1062 /* For each loop, record list of exit edges, and start maintaining these
1063 lists. */
1065 void
1066 record_loop_exits (void)
1068 basic_block bb;
1069 edge_iterator ei;
1070 edge e;
1072 if (!current_loops)
1073 return;
1075 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1076 return;
1077 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1079 gcc_assert (current_loops->exits == NULL);
1080 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1081 loop_exit_hash, loop_exit_eq,
1082 loop_exit_free);
1084 FOR_EACH_BB (bb)
1086 FOR_EACH_EDGE (e, ei, bb->succs)
1088 rescan_loop_exit (e, true, false);
1093 /* Dumps information about the exit in *SLOT to FILE.
1094 Callback for htab_traverse. */
1096 static int
1097 dump_recorded_exit (void **slot, void *file)
1099 struct loop_exit *exit = (struct loop_exit *) *slot;
1100 unsigned n = 0;
1101 edge e = exit->e;
1103 for (; exit != NULL; exit = exit->next_e)
1104 n++;
1106 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1107 e->src->index, e->dest->index, n);
1109 return 1;
1112 /* Dumps the recorded exits of loops to FILE. */
1114 extern void dump_recorded_exits (FILE *);
1115 void
1116 dump_recorded_exits (FILE *file)
1118 if (!current_loops->exits)
1119 return;
1120 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1123 /* Releases lists of loop exits. */
1125 void
1126 release_recorded_exits (void)
1128 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1129 htab_delete (current_loops->exits);
1130 current_loops->exits = NULL;
1131 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1134 /* Returns the list of the exit edges of a LOOP. */
1136 vec<edge>
1137 get_loop_exit_edges (const struct loop *loop)
1139 vec<edge> edges = vNULL;
1140 edge e;
1141 unsigned i;
1142 basic_block *body;
1143 edge_iterator ei;
1144 struct loop_exit *exit;
1146 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1148 /* If we maintain the lists of exits, use them. Otherwise we must
1149 scan the body of the loop. */
1150 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1152 for (exit = loop->exits->next; exit->e; exit = exit->next)
1153 edges.safe_push (exit->e);
1155 else
1157 body = get_loop_body (loop);
1158 for (i = 0; i < loop->num_nodes; i++)
1159 FOR_EACH_EDGE (e, ei, body[i]->succs)
1161 if (!flow_bb_inside_loop_p (loop, e->dest))
1162 edges.safe_push (e);
1164 free (body);
1167 return edges;
1170 /* Counts the number of conditional branches inside LOOP. */
1172 unsigned
1173 num_loop_branches (const struct loop *loop)
1175 unsigned i, n;
1176 basic_block * body;
1178 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1180 body = get_loop_body (loop);
1181 n = 0;
1182 for (i = 0; i < loop->num_nodes; i++)
1183 if (EDGE_COUNT (body[i]->succs) >= 2)
1184 n++;
1185 free (body);
1187 return n;
1190 /* Adds basic block BB to LOOP. */
1191 void
1192 add_bb_to_loop (basic_block bb, struct loop *loop)
1194 unsigned i;
1195 loop_p ploop;
1196 edge_iterator ei;
1197 edge e;
1199 gcc_assert (bb->loop_father == NULL);
1200 bb->loop_father = loop;
1201 loop->num_nodes++;
1202 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1203 ploop->num_nodes++;
1205 FOR_EACH_EDGE (e, ei, bb->succs)
1207 rescan_loop_exit (e, true, false);
1209 FOR_EACH_EDGE (e, ei, bb->preds)
1211 rescan_loop_exit (e, true, false);
1215 /* Remove basic block BB from loops. */
1216 void
1217 remove_bb_from_loops (basic_block bb)
1219 unsigned i;
1220 struct loop *loop = bb->loop_father;
1221 loop_p ploop;
1222 edge_iterator ei;
1223 edge e;
1225 gcc_assert (loop != NULL);
1226 loop->num_nodes--;
1227 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1228 ploop->num_nodes--;
1229 bb->loop_father = NULL;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 rescan_loop_exit (e, false, true);
1235 FOR_EACH_EDGE (e, ei, bb->preds)
1237 rescan_loop_exit (e, false, true);
1241 /* Finds nearest common ancestor in loop tree for given loops. */
1242 struct loop *
1243 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1245 unsigned sdepth, ddepth;
1247 if (!loop_s) return loop_d;
1248 if (!loop_d) return loop_s;
1250 sdepth = loop_depth (loop_s);
1251 ddepth = loop_depth (loop_d);
1253 if (sdepth < ddepth)
1254 loop_d = (*loop_d->superloops)[sdepth];
1255 else if (sdepth > ddepth)
1256 loop_s = (*loop_s->superloops)[ddepth];
1258 while (loop_s != loop_d)
1260 loop_s = loop_outer (loop_s);
1261 loop_d = loop_outer (loop_d);
1263 return loop_s;
1266 /* Removes LOOP from structures and frees its data. */
1268 void
1269 delete_loop (struct loop *loop)
1271 /* Remove the loop from structure. */
1272 flow_loop_tree_node_remove (loop);
1274 /* Remove loop from loops array. */
1275 (*current_loops->larray)[loop->num] = NULL;
1277 /* Free loop data. */
1278 flow_loop_free (loop);
1281 /* Cancels the LOOP; it must be innermost one. */
1283 static void
1284 cancel_loop (struct loop *loop)
1286 basic_block *bbs;
1287 unsigned i;
1288 struct loop *outer = loop_outer (loop);
1290 gcc_assert (!loop->inner);
1292 /* Move blocks up one level (they should be removed as soon as possible). */
1293 bbs = get_loop_body (loop);
1294 for (i = 0; i < loop->num_nodes; i++)
1295 bbs[i]->loop_father = outer;
1297 free (bbs);
1298 delete_loop (loop);
1301 /* Cancels LOOP and all its subloops. */
1302 void
1303 cancel_loop_tree (struct loop *loop)
1305 while (loop->inner)
1306 cancel_loop_tree (loop->inner);
1307 cancel_loop (loop);
1310 /* Checks that information about loops is correct
1311 -- sizes of loops are all right
1312 -- results of get_loop_body really belong to the loop
1313 -- loop header have just single entry edge and single latch edge
1314 -- loop latches have only single successor that is header of their loop
1315 -- irreducible loops are correctly marked
1316 -- the cached loop depth and loop father of each bb is correct
1318 DEBUG_FUNCTION void
1319 verify_loop_structure (void)
1321 unsigned *sizes, i, j;
1322 sbitmap irreds;
1323 basic_block bb, *bbs;
1324 struct loop *loop;
1325 int err = 0;
1326 edge e;
1327 unsigned num = number_of_loops (cfun);
1328 struct loop_exit *exit, *mexit;
1329 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1330 sbitmap visited;
1332 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1334 error ("loop verification on loop tree that needs fixup");
1335 err = 1;
1338 /* We need up-to-date dominators, compute or verify them. */
1339 if (!dom_available)
1340 calculate_dominance_info (CDI_DOMINATORS);
1341 else
1342 verify_dominators (CDI_DOMINATORS);
1344 /* Check the headers. */
1345 FOR_EACH_BB (bb)
1346 if (bb_loop_header_p (bb))
1348 if (bb->loop_father->header == NULL)
1350 error ("loop with header %d marked for removal", bb->index);
1351 err = 1;
1353 else if (bb->loop_father->header != bb)
1355 error ("loop with header %d not in loop tree", bb->index);
1356 err = 1;
1359 else if (bb->loop_father->header == bb)
1361 error ("non-loop with header %d not marked for removal", bb->index);
1362 err = 1;
1365 /* Check the recorded loop father and sizes of loops. */
1366 visited = sbitmap_alloc (last_basic_block);
1367 bitmap_clear (visited);
1368 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1369 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1371 unsigned n;
1373 if (loop->header == NULL)
1375 error ("removed loop %d in loop tree", loop->num);
1376 err = 1;
1377 continue;
1380 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1381 if (loop->num_nodes != n)
1383 error ("size of loop %d should be %d, not %d",
1384 loop->num, n, loop->num_nodes);
1385 err = 1;
1388 for (j = 0; j < n; j++)
1390 bb = bbs[j];
1392 if (!flow_bb_inside_loop_p (loop, bb))
1394 error ("bb %d does not belong to loop %d",
1395 bb->index, loop->num);
1396 err = 1;
1399 /* Ignore this block if it is in an inner loop. */
1400 if (bitmap_bit_p (visited, bb->index))
1401 continue;
1402 bitmap_set_bit (visited, bb->index);
1404 if (bb->loop_father != loop)
1406 error ("bb %d has father loop %d, should be loop %d",
1407 bb->index, bb->loop_father->num, loop->num);
1408 err = 1;
1412 free (bbs);
1413 sbitmap_free (visited);
1415 /* Check headers and latches. */
1416 FOR_EACH_LOOP (loop, 0)
1418 i = loop->num;
1419 if (loop->header == NULL)
1420 continue;
1421 if (!bb_loop_header_p (loop->header))
1423 error ("loop %d%'s header is not a loop header", i);
1424 err = 1;
1426 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1427 && EDGE_COUNT (loop->header->preds) != 2)
1429 error ("loop %d%'s header does not have exactly 2 entries", i);
1430 err = 1;
1432 if (loop->latch)
1434 if (!find_edge (loop->latch, loop->header))
1436 error ("loop %d%'s latch does not have an edge to its header", i);
1437 err = 1;
1439 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1441 error ("loop %d%'s latch is not dominated by its header", i);
1442 err = 1;
1445 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1447 if (!single_succ_p (loop->latch))
1449 error ("loop %d%'s latch does not have exactly 1 successor", i);
1450 err = 1;
1452 if (single_succ (loop->latch) != loop->header)
1454 error ("loop %d%'s latch does not have header as successor", i);
1455 err = 1;
1457 if (loop->latch->loop_father != loop)
1459 error ("loop %d%'s latch does not belong directly to it", i);
1460 err = 1;
1463 if (loop->header->loop_father != loop)
1465 error ("loop %d%'s header does not belong directly to it", i);
1466 err = 1;
1468 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1469 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1471 error ("loop %d%'s latch is marked as part of irreducible region", i);
1472 err = 1;
1476 /* Check irreducible loops. */
1477 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1479 /* Record old info. */
1480 irreds = sbitmap_alloc (last_basic_block);
1481 FOR_EACH_BB (bb)
1483 edge_iterator ei;
1484 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1485 bitmap_set_bit (irreds, bb->index);
1486 else
1487 bitmap_clear_bit (irreds, bb->index);
1488 FOR_EACH_EDGE (e, ei, bb->succs)
1489 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1490 e->flags |= EDGE_ALL_FLAGS + 1;
1493 /* Recount it. */
1494 mark_irreducible_loops ();
1496 /* Compare. */
1497 FOR_EACH_BB (bb)
1499 edge_iterator ei;
1501 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1502 && !bitmap_bit_p (irreds, bb->index))
1504 error ("basic block %d should be marked irreducible", bb->index);
1505 err = 1;
1507 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1508 && bitmap_bit_p (irreds, bb->index))
1510 error ("basic block %d should not be marked irreducible", bb->index);
1511 err = 1;
1513 FOR_EACH_EDGE (e, ei, bb->succs)
1515 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1516 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1518 error ("edge from %d to %d should be marked irreducible",
1519 e->src->index, e->dest->index);
1520 err = 1;
1522 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1523 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1525 error ("edge from %d to %d should not be marked irreducible",
1526 e->src->index, e->dest->index);
1527 err = 1;
1529 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1532 free (irreds);
1535 /* Check the recorded loop exits. */
1536 FOR_EACH_LOOP (loop, 0)
1538 if (!loop->exits || loop->exits->e != NULL)
1540 error ("corrupted head of the exits list of loop %d",
1541 loop->num);
1542 err = 1;
1544 else
1546 /* Check that the list forms a cycle, and all elements except
1547 for the head are nonnull. */
1548 for (mexit = loop->exits, exit = mexit->next, i = 0;
1549 exit->e && exit != mexit;
1550 exit = exit->next)
1552 if (i++ & 1)
1553 mexit = mexit->next;
1556 if (exit != loop->exits)
1558 error ("corrupted exits list of loop %d", loop->num);
1559 err = 1;
1563 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1565 if (loop->exits->next != loop->exits)
1567 error ("nonempty exits list of loop %d, but exits are not recorded",
1568 loop->num);
1569 err = 1;
1574 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1576 unsigned n_exits = 0, eloops;
1578 sizes = XCNEWVEC (unsigned, num);
1579 memset (sizes, 0, sizeof (unsigned) * num);
1580 FOR_EACH_BB (bb)
1582 edge_iterator ei;
1583 if (bb->loop_father == current_loops->tree_root)
1584 continue;
1585 FOR_EACH_EDGE (e, ei, bb->succs)
1587 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1588 continue;
1590 n_exits++;
1591 exit = get_exit_descriptions (e);
1592 if (!exit)
1594 error ("exit %d->%d not recorded",
1595 e->src->index, e->dest->index);
1596 err = 1;
1598 eloops = 0;
1599 for (; exit; exit = exit->next_e)
1600 eloops++;
1602 for (loop = bb->loop_father;
1603 loop != e->dest->loop_father
1604 /* When a loop exit is also an entry edge which
1605 can happen when avoiding CFG manipulations
1606 then the last loop exited is the outer loop
1607 of the loop entered. */
1608 && loop != loop_outer (e->dest->loop_father);
1609 loop = loop_outer (loop))
1611 eloops--;
1612 sizes[loop->num]++;
1615 if (eloops != 0)
1617 error ("wrong list of exited loops for edge %d->%d",
1618 e->src->index, e->dest->index);
1619 err = 1;
1624 if (n_exits != htab_elements (current_loops->exits))
1626 error ("too many loop exits recorded");
1627 err = 1;
1630 FOR_EACH_LOOP (loop, 0)
1632 eloops = 0;
1633 for (exit = loop->exits->next; exit->e; exit = exit->next)
1634 eloops++;
1635 if (eloops != sizes[loop->num])
1637 error ("%d exits recorded for loop %d (having %d exits)",
1638 eloops, loop->num, sizes[loop->num]);
1639 err = 1;
1643 free (sizes);
1646 gcc_assert (!err);
1648 if (!dom_available)
1649 free_dominance_info (CDI_DOMINATORS);
1652 /* Returns latch edge of LOOP. */
1653 edge
1654 loop_latch_edge (const struct loop *loop)
1656 return find_edge (loop->latch, loop->header);
1659 /* Returns preheader edge of LOOP. */
1660 edge
1661 loop_preheader_edge (const struct loop *loop)
1663 edge e;
1664 edge_iterator ei;
1666 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1668 FOR_EACH_EDGE (e, ei, loop->header->preds)
1669 if (e->src != loop->latch)
1670 break;
1672 return e;
1675 /* Returns true if E is an exit of LOOP. */
1677 bool
1678 loop_exit_edge_p (const struct loop *loop, const_edge e)
1680 return (flow_bb_inside_loop_p (loop, e->src)
1681 && !flow_bb_inside_loop_p (loop, e->dest));
1684 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1685 or more than one exit. If loops do not have the exits recorded, NULL
1686 is returned always. */
1688 edge
1689 single_exit (const struct loop *loop)
1691 struct loop_exit *exit = loop->exits->next;
1693 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1694 return NULL;
1696 if (exit->e && exit->next == loop->exits)
1697 return exit->e;
1698 else
1699 return NULL;
1702 /* Returns true when BB has an incoming edge exiting LOOP. */
1704 bool
1705 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1707 edge e;
1708 edge_iterator ei;
1710 FOR_EACH_EDGE (e, ei, bb->preds)
1711 if (loop_exit_edge_p (loop, e))
1712 return true;
1714 return false;
1717 /* Returns true when BB has an outgoing edge exiting LOOP. */
1719 bool
1720 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1722 edge e;
1723 edge_iterator ei;
1725 FOR_EACH_EDGE (e, ei, bb->succs)
1726 if (loop_exit_edge_p (loop, e))
1727 return true;
1729 return false;
1732 /* Return location corresponding to the loop control condition if possible. */
1734 location_t
1735 get_loop_location (struct loop *loop)
1737 rtx insn = NULL;
1738 struct niter_desc *desc = NULL;
1739 edge exit;
1741 /* For a for or while loop, we would like to return the location
1742 of the for or while statement, if possible. To do this, look
1743 for the branch guarding the loop back-edge. */
1745 /* If this is a simple loop with an in_edge, then the loop control
1746 branch is typically at the end of its source. */
1747 desc = get_simple_loop_desc (loop);
1748 if (desc->in_edge)
1750 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1752 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1753 return INSN_LOCATION (insn);
1756 /* If loop has a single exit, then the loop control branch
1757 must be at the end of its source. */
1758 if ((exit = single_exit (loop)))
1760 FOR_BB_INSNS_REVERSE (exit->src, insn)
1762 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1763 return INSN_LOCATION (insn);
1766 /* Next check the latch, to see if it is non-empty. */
1767 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1769 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1770 return INSN_LOCATION (insn);
1772 /* Finally, if none of the above identifies the loop control branch,
1773 return the first location in the loop header. */
1774 FOR_BB_INSNS (loop->header, insn)
1776 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1777 return INSN_LOCATION (insn);
1779 /* If all else fails, simply return the current function location. */
1780 return DECL_SOURCE_LOCATION (current_function_decl);
1783 /* Records that every statement in LOOP is executed I_BOUND times.
1784 REALISTIC is true if I_BOUND is expected to be close to the real number
1785 of iterations. UPPER is true if we are sure the loop iterates at most
1786 I_BOUND times. */
1788 void
1789 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
1790 bool upper)
1792 /* Update the bounds only when there is no previous estimation, or when the
1793 current estimation is smaller. */
1794 if (upper
1795 && (!loop->any_upper_bound
1796 || i_bound.ult (loop->nb_iterations_upper_bound)))
1798 loop->any_upper_bound = true;
1799 loop->nb_iterations_upper_bound = i_bound;
1801 if (realistic
1802 && (!loop->any_estimate
1803 || i_bound.ult (loop->nb_iterations_estimate)))
1805 loop->any_estimate = true;
1806 loop->nb_iterations_estimate = i_bound;
1809 /* If an upper bound is smaller than the realistic estimate of the
1810 number of iterations, use the upper bound instead. */
1811 if (loop->any_upper_bound
1812 && loop->any_estimate
1813 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
1814 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1817 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1818 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1819 on the number of iterations of LOOP could not be derived, returns -1. */
1821 HOST_WIDE_INT
1822 get_estimated_loop_iterations_int (struct loop *loop)
1824 double_int nit;
1825 HOST_WIDE_INT hwi_nit;
1827 if (!get_estimated_loop_iterations (loop, &nit))
1828 return -1;
1830 if (!nit.fits_shwi ())
1831 return -1;
1832 hwi_nit = nit.to_shwi ();
1834 return hwi_nit < 0 ? -1 : hwi_nit;
1837 /* Returns an upper bound on the number of executions of statements
1838 in the LOOP. For statements before the loop exit, this exceeds
1839 the number of execution of the latch by one. */
1841 HOST_WIDE_INT
1842 max_stmt_executions_int (struct loop *loop)
1844 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1845 HOST_WIDE_INT snit;
1847 if (nit == -1)
1848 return -1;
1850 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1852 /* If the computation overflows, return -1. */
1853 return snit < 0 ? -1 : snit;
1856 /* Sets NIT to the estimated number of executions of the latch of the
1857 LOOP. If we have no reliable estimate, the function returns false, otherwise
1858 returns true. */
1860 bool
1861 get_estimated_loop_iterations (struct loop *loop, double_int *nit)
1863 /* Even if the bound is not recorded, possibly we can derrive one from
1864 profile. */
1865 if (!loop->any_estimate)
1867 if (loop->header->count)
1869 *nit = gcov_type_to_double_int
1870 (expected_loop_iterations_unbounded (loop) + 1);
1871 return true;
1873 return false;
1876 *nit = loop->nb_iterations_estimate;
1877 return true;
1880 /* Sets NIT to an upper bound for the maximum number of executions of the
1881 latch of the LOOP. If we have no reliable estimate, the function returns
1882 false, otherwise returns true. */
1884 bool
1885 get_max_loop_iterations (struct loop *loop, double_int *nit)
1887 if (!loop->any_upper_bound)
1888 return false;
1890 *nit = loop->nb_iterations_upper_bound;
1891 return true;
1894 /* Similar to get_max_loop_iterations, but returns the estimate only
1895 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1896 on the number of iterations of LOOP could not be derived, returns -1. */
1898 HOST_WIDE_INT
1899 get_max_loop_iterations_int (struct loop *loop)
1901 double_int nit;
1902 HOST_WIDE_INT hwi_nit;
1904 if (!get_max_loop_iterations (loop, &nit))
1905 return -1;
1907 if (!nit.fits_shwi ())
1908 return -1;
1909 hwi_nit = nit.to_shwi ();
1911 return hwi_nit < 0 ? -1 : hwi_nit;
1914 /* Returns the loop depth of the loop BB belongs to. */
1917 bb_loop_depth (const_basic_block bb)
1919 return bb->loop_father ? loop_depth (bb->loop_father) : 0;