* regclass.c (fix_register): Fix typo.
[official-gcc.git] / gcc / final.c
blobec57842e079dda1d91e6a4da8f638884dfa83f7a
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
71 #ifdef XCOFF_DEBUGGING_INFO
72 #include "xcoffout.h" /* Needed for external data
73 declarations for e.g. AIX 4.x. */
74 #endif
76 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
77 #include "dwarf2out.h"
78 #endif
80 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
81 null default for it to save conditionalization later. */
82 #ifndef CC_STATUS_INIT
83 #define CC_STATUS_INIT
84 #endif
86 /* How to start an assembler comment. */
87 #ifndef ASM_COMMENT_START
88 #define ASM_COMMENT_START ";#"
89 #endif
91 /* Is the given character a logical line separator for the assembler? */
92 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
93 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
94 #endif
96 #ifndef JUMP_TABLES_IN_TEXT_SECTION
97 #define JUMP_TABLES_IN_TEXT_SECTION 0
98 #endif
100 /* Last insn processed by final_scan_insn. */
101 static rtx debug_insn;
102 rtx current_output_insn;
104 /* Line number of last NOTE. */
105 static int last_linenum;
107 /* Highest line number in current block. */
108 static int high_block_linenum;
110 /* Likewise for function. */
111 static int high_function_linenum;
113 /* Filename of last NOTE. */
114 static const char *last_filename;
116 /* Number of basic blocks seen so far;
117 used if profile_block_flag is set. */
118 static int count_basic_blocks;
120 /* Number of instrumented arcs when profile_arc_flag is set. */
121 extern int count_instrumented_edges;
123 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
125 /* Nonzero while outputting an `asm' with operands.
126 This means that inconsistencies are the user's fault, so don't abort.
127 The precise value is the insn being output, to pass to error_for_asm. */
128 static rtx this_is_asm_operands;
130 /* Number of operands of this insn, for an `asm' with operands. */
131 static unsigned int insn_noperands;
133 /* Compare optimization flag. */
135 static rtx last_ignored_compare = 0;
137 /* Flag indicating this insn is the start of a new basic block. */
139 static int new_block = 1;
141 /* Assign a unique number to each insn that is output.
142 This can be used to generate unique local labels. */
144 static int insn_counter = 0;
146 #ifdef HAVE_cc0
147 /* This variable contains machine-dependent flags (defined in tm.h)
148 set and examined by output routines
149 that describe how to interpret the condition codes properly. */
151 CC_STATUS cc_status;
153 /* During output of an insn, this contains a copy of cc_status
154 from before the insn. */
156 CC_STATUS cc_prev_status;
157 #endif
159 /* Indexed by hardware reg number, is 1 if that register is ever
160 used in the current function.
162 In life_analysis, or in stupid_life_analysis, this is set
163 up to record the hard regs used explicitly. Reload adds
164 in the hard regs used for holding pseudo regs. Final uses
165 it to generate the code in the function prologue and epilogue
166 to save and restore registers as needed. */
168 char regs_ever_live[FIRST_PSEUDO_REGISTER];
170 /* Nonzero means current function must be given a frame pointer.
171 Set in stmt.c if anything is allocated on the stack there.
172 Set in reload1.c if anything is allocated on the stack there. */
174 int frame_pointer_needed;
176 /* Assign unique numbers to labels generated for profiling. */
178 int profile_label_no;
180 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182 static int block_depth;
184 /* Nonzero if have enabled APP processing of our assembler output. */
186 static int app_on;
188 /* If we are outputting an insn sequence, this contains the sequence rtx.
189 Zero otherwise. */
191 rtx final_sequence;
193 #ifdef ASSEMBLER_DIALECT
195 /* Number of the assembler dialect to use, starting at 0. */
196 static int dialect_number;
197 #endif
199 /* Indexed by line number, nonzero if there is a note for that line. */
201 static char *line_note_exists;
203 #ifdef HAVE_conditional_execution
204 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
205 rtx current_insn_predicate;
206 #endif
208 /* Linked list to hold line numbers for each basic block. */
210 struct bb_list
212 struct bb_list *next; /* pointer to next basic block */
213 int line_num; /* line number */
214 int file_label_num; /* LPBC<n> label # for stored filename */
215 int func_label_num; /* LPBC<n> label # for stored function name */
218 static struct bb_list *bb_head = 0; /* Head of basic block list */
219 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
220 static int bb_file_label_num = -1; /* Current label # for file */
221 static int bb_func_label_num = -1; /* Current label # for func */
223 /* Linked list to hold the strings for each file and function name output. */
225 struct bb_str
227 struct bb_str *next; /* pointer to next string */
228 const char *string; /* string */
229 int label_num; /* label number */
230 int length; /* string length */
233 static struct bb_str *sbb_head = 0; /* Head of string list. */
234 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
235 static int sbb_label_num = 0; /* Last label used */
237 #ifdef HAVE_ATTR_length
238 static int asm_insn_count PARAMS ((rtx));
239 #endif
240 static void profile_function PARAMS ((FILE *));
241 static void profile_after_prologue PARAMS ((FILE *));
242 static void add_bb PARAMS ((FILE *));
243 static int add_bb_string PARAMS ((const char *, int));
244 static void notice_source_line PARAMS ((rtx));
245 static rtx walk_alter_subreg PARAMS ((rtx));
246 static void output_asm_name PARAMS ((void));
247 static void output_operand PARAMS ((rtx, int));
248 #ifdef LEAF_REGISTERS
249 static void leaf_renumber_regs PARAMS ((rtx));
250 #endif
251 #ifdef HAVE_cc0
252 static int alter_cond PARAMS ((rtx));
253 #endif
254 #ifndef ADDR_VEC_ALIGN
255 static int final_addr_vec_align PARAMS ((rtx));
256 #endif
257 #ifdef HAVE_ATTR_length
258 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
259 #endif
261 /* Initialize data in final at the beginning of a compilation. */
263 void
264 init_final (filename)
265 const char *filename ATTRIBUTE_UNUSED;
267 app_on = 0;
268 final_sequence = 0;
270 #ifdef ASSEMBLER_DIALECT
271 dialect_number = ASSEMBLER_DIALECT;
272 #endif
275 /* Called at end of source file,
276 to output the block-profiling table for this entire compilation. */
278 void
279 end_final (filename)
280 const char *filename;
282 int i;
284 if (profile_block_flag || profile_arc_flag)
286 char name[20];
287 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
288 int size, rounded;
289 struct bb_list *ptr;
290 struct bb_str *sptr;
291 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
292 int gcov_type_bytes = GCOV_TYPE_SIZE / BITS_PER_UNIT;
293 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
294 unsigned int align2 = LONG_TYPE_SIZE;
296 if (profile_block_flag)
297 size = long_bytes * count_basic_blocks;
298 else
299 size = gcov_type_bytes * count_instrumented_edges;
300 rounded = size;
302 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
303 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
304 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
306 /* ??? This _really_ ought to be done with a structure layout
307 and with assemble_constructor. If long_bytes != pointer_bytes
308 we'll be emitting unaligned data at some point. */
309 if (long_bytes != pointer_bytes)
310 abort ();
312 data_section ();
314 /* Output the main header, of 11 words:
315 0: 1 if this file is initialized, else 0.
316 1: address of file name (LPBX1).
317 2: address of table of counts (LPBX2).
318 3: number of counts in the table.
319 4: always 0, for compatibility with Sun.
321 The following are GNU extensions:
323 5: address of table of start addrs of basic blocks (LPBX3).
324 6: Number of bytes in this header.
325 7: address of table of function names (LPBX4).
326 8: address of table of line numbers (LPBX5) or 0.
327 9: address of table of file names (LPBX6) or 0.
328 10: space reserved for basic block profiling. */
330 ASM_OUTPUT_ALIGN (asm_out_file, align);
332 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
334 /* Zero word. */
335 assemble_integer (const0_rtx, long_bytes, align2, 1);
337 /* Address of filename. */
338 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
339 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
340 align2, 1);
342 /* Address of count table. */
343 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
344 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
345 align2, 1);
347 /* Count of the # of basic blocks or # of instrumented arcs. */
348 if (profile_block_flag)
349 assemble_integer (GEN_INT (profile_block_flag
350 ? count_basic_blocks
351 : count_instrumented_edges),
352 long_bytes, align2, 1);
354 /* Zero word (link field). */
355 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
357 /* address of basic block start address table */
358 if (profile_block_flag)
360 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
361 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
362 pointer_bytes, align2, 1);
364 else
365 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
367 /* Byte count for extended structure. */
368 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, align2, 1);
370 /* Address of function name table. */
371 if (profile_block_flag)
373 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
374 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
375 pointer_bytes, align2, 1);
377 else
378 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
380 /* Address of line number and filename tables if debugging. */
381 if (write_symbols != NO_DEBUG && profile_block_flag)
383 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
384 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
385 pointer_bytes, align2, 1);
386 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
387 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
388 pointer_bytes, align2, 1);
390 else
392 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
393 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
396 /* Space for extension ptr (link field). */
397 assemble_integer (const0_rtx, UNITS_PER_WORD, align2, 1);
399 /* Output the file name changing the suffix to .d for
400 Sun tcov compatibility. */
401 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
403 char *cwd = getpwd ();
404 int len = strlen (filename) + strlen (cwd) + 1;
405 char *data_file = (char *) alloca (len + 4);
407 strcpy (data_file, cwd);
408 strcat (data_file, "/");
409 strcat (data_file, filename);
410 strip_off_ending (data_file, len);
411 if (profile_block_flag)
412 strcat (data_file, ".d");
413 else
414 strcat (data_file, ".da");
415 assemble_string (data_file, strlen (data_file) + 1);
418 /* Make space for the table of counts. */
419 if (size == 0)
421 /* Realign data section. */
422 ASM_OUTPUT_ALIGN (asm_out_file, align);
423 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
424 if (size != 0)
425 assemble_zeros (size);
427 else
429 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
430 #ifdef ASM_OUTPUT_SHARED_LOCAL
431 if (flag_shared_data)
432 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
433 else
434 #endif
435 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
436 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name,
437 size, BIGGEST_ALIGNMENT);
438 #else
439 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
440 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
441 BIGGEST_ALIGNMENT);
442 #else
443 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
444 #endif
445 #endif
448 /* Output any basic block strings */
449 if (profile_block_flag)
451 readonly_data_section ();
452 if (sbb_head)
454 ASM_OUTPUT_ALIGN (asm_out_file, align);
455 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
457 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
458 sptr->label_num);
459 assemble_string (sptr->string, sptr->length);
464 /* Output the table of addresses. */
465 if (profile_block_flag)
467 /* Realign in new section */
468 ASM_OUTPUT_ALIGN (asm_out_file, align);
469 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
470 for (i = 0; i < count_basic_blocks; i++)
472 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
473 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
474 pointer_bytes, align2, 1);
478 /* Output the table of function names. */
479 if (profile_block_flag)
481 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
482 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
484 if (ptr->func_label_num >= 0)
486 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
487 ptr->func_label_num);
488 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
489 pointer_bytes, align2, 1);
491 else
492 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
495 for (; i < count_basic_blocks; i++)
496 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
499 if (write_symbols != NO_DEBUG && profile_block_flag)
501 /* Output the table of line numbers. */
502 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
503 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
504 assemble_integer (GEN_INT (ptr->line_num), long_bytes, align2, 1);
506 for (; i < count_basic_blocks; i++)
507 assemble_integer (const0_rtx, long_bytes, align2, 1);
509 /* Output the table of file names. */
510 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
511 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
513 if (ptr->file_label_num >= 0)
515 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
516 ptr->file_label_num);
517 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
518 pointer_bytes, align2, 1);
520 else
521 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
524 for (; i < count_basic_blocks; i++)
525 assemble_integer (const0_rtx, pointer_bytes, align2, 1);
528 /* End with the address of the table of addresses,
529 so we can find it easily, as the last word in the file's text. */
530 if (profile_block_flag)
532 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
533 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
534 pointer_bytes, align2, 1);
539 /* Default target function prologue and epilogue assembler output.
541 If not overridden for epilogue code, then the function body itself
542 contains return instructions wherever needed. */
543 void
544 default_function_pro_epilogue (file, size)
545 FILE *file ATTRIBUTE_UNUSED;
546 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
550 /* Default target hook that outputs nothing to a stream. */
551 void
552 no_asm_to_stream (file)
553 FILE *file ATTRIBUTE_UNUSED;
557 /* Enable APP processing of subsequent output.
558 Used before the output from an `asm' statement. */
560 void
561 app_enable ()
563 if (! app_on)
565 fputs (ASM_APP_ON, asm_out_file);
566 app_on = 1;
570 /* Disable APP processing of subsequent output.
571 Called from varasm.c before most kinds of output. */
573 void
574 app_disable ()
576 if (app_on)
578 fputs (ASM_APP_OFF, asm_out_file);
579 app_on = 0;
583 /* Return the number of slots filled in the current
584 delayed branch sequence (we don't count the insn needing the
585 delay slot). Zero if not in a delayed branch sequence. */
587 #ifdef DELAY_SLOTS
589 dbr_sequence_length ()
591 if (final_sequence != 0)
592 return XVECLEN (final_sequence, 0) - 1;
593 else
594 return 0;
596 #endif
598 /* The next two pages contain routines used to compute the length of an insn
599 and to shorten branches. */
601 /* Arrays for insn lengths, and addresses. The latter is referenced by
602 `insn_current_length'. */
604 static short *insn_lengths;
606 #ifdef HAVE_ATTR_length
607 varray_type insn_addresses_;
608 #endif
610 /* Max uid for which the above arrays are valid. */
611 static int insn_lengths_max_uid;
613 /* Address of insn being processed. Used by `insn_current_length'. */
614 int insn_current_address;
616 /* Address of insn being processed in previous iteration. */
617 int insn_last_address;
619 /* konwn invariant alignment of insn being processed. */
620 int insn_current_align;
622 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
623 gives the next following alignment insn that increases the known
624 alignment, or NULL_RTX if there is no such insn.
625 For any alignment obtained this way, we can again index uid_align with
626 its uid to obtain the next following align that in turn increases the
627 alignment, till we reach NULL_RTX; the sequence obtained this way
628 for each insn we'll call the alignment chain of this insn in the following
629 comments. */
631 struct label_alignment
633 short alignment;
634 short max_skip;
637 static rtx *uid_align;
638 static int *uid_shuid;
639 static struct label_alignment *label_align;
641 /* Indicate that branch shortening hasn't yet been done. */
643 void
644 init_insn_lengths ()
646 if (label_align)
648 free (label_align);
649 label_align = 0;
651 if (uid_shuid)
653 free (uid_shuid);
654 uid_shuid = 0;
656 if (insn_lengths)
658 free (insn_lengths);
659 insn_lengths = 0;
660 insn_lengths_max_uid = 0;
662 #ifdef HAVE_ATTR_length
663 INSN_ADDRESSES_FREE ();
664 #endif
665 if (uid_align)
667 free (uid_align);
668 uid_align = 0;
672 /* Obtain the current length of an insn. If branch shortening has been done,
673 get its actual length. Otherwise, get its maximum length. */
676 get_attr_length (insn)
677 rtx insn ATTRIBUTE_UNUSED;
679 #ifdef HAVE_ATTR_length
680 rtx body;
681 int i;
682 int length = 0;
684 if (insn_lengths_max_uid > INSN_UID (insn))
685 return insn_lengths[INSN_UID (insn)];
686 else
687 switch (GET_CODE (insn))
689 case NOTE:
690 case BARRIER:
691 case CODE_LABEL:
692 return 0;
694 case CALL_INSN:
695 length = insn_default_length (insn);
696 break;
698 case JUMP_INSN:
699 body = PATTERN (insn);
700 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
702 /* Alignment is machine-dependent and should be handled by
703 ADDR_VEC_ALIGN. */
705 else
706 length = insn_default_length (insn);
707 break;
709 case INSN:
710 body = PATTERN (insn);
711 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
712 return 0;
714 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
715 length = asm_insn_count (body) * insn_default_length (insn);
716 else if (GET_CODE (body) == SEQUENCE)
717 for (i = 0; i < XVECLEN (body, 0); i++)
718 length += get_attr_length (XVECEXP (body, 0, i));
719 else
720 length = insn_default_length (insn);
721 break;
723 default:
724 break;
727 #ifdef ADJUST_INSN_LENGTH
728 ADJUST_INSN_LENGTH (insn, length);
729 #endif
730 return length;
731 #else /* not HAVE_ATTR_length */
732 return 0;
733 #endif /* not HAVE_ATTR_length */
736 /* Code to handle alignment inside shorten_branches. */
738 /* Here is an explanation how the algorithm in align_fuzz can give
739 proper results:
741 Call a sequence of instructions beginning with alignment point X
742 and continuing until the next alignment point `block X'. When `X'
743 is used in an expression, it means the alignment value of the
744 alignment point.
746 Call the distance between the start of the first insn of block X, and
747 the end of the last insn of block X `IX', for the `inner size of X'.
748 This is clearly the sum of the instruction lengths.
750 Likewise with the next alignment-delimited block following X, which we
751 shall call block Y.
753 Call the distance between the start of the first insn of block X, and
754 the start of the first insn of block Y `OX', for the `outer size of X'.
756 The estimated padding is then OX - IX.
758 OX can be safely estimated as
760 if (X >= Y)
761 OX = round_up(IX, Y)
762 else
763 OX = round_up(IX, X) + Y - X
765 Clearly est(IX) >= real(IX), because that only depends on the
766 instruction lengths, and those being overestimated is a given.
768 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
769 we needn't worry about that when thinking about OX.
771 When X >= Y, the alignment provided by Y adds no uncertainty factor
772 for branch ranges starting before X, so we can just round what we have.
773 But when X < Y, we don't know anything about the, so to speak,
774 `middle bits', so we have to assume the worst when aligning up from an
775 address mod X to one mod Y, which is Y - X. */
777 #ifndef LABEL_ALIGN
778 #define LABEL_ALIGN(LABEL) align_labels_log
779 #endif
781 #ifndef LABEL_ALIGN_MAX_SKIP
782 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
783 #endif
785 #ifndef LOOP_ALIGN
786 #define LOOP_ALIGN(LABEL) align_loops_log
787 #endif
789 #ifndef LOOP_ALIGN_MAX_SKIP
790 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
791 #endif
793 #ifndef LABEL_ALIGN_AFTER_BARRIER
794 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
795 #endif
797 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
798 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
799 #endif
801 #ifndef ADDR_VEC_ALIGN
802 static int
803 final_addr_vec_align (addr_vec)
804 rtx addr_vec;
806 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
808 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
809 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
810 return exact_log2 (align);
814 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
815 #endif
817 #ifndef INSN_LENGTH_ALIGNMENT
818 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
819 #endif
821 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
823 static int min_labelno, max_labelno;
825 #define LABEL_TO_ALIGNMENT(LABEL) \
826 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
828 #define LABEL_TO_MAX_SKIP(LABEL) \
829 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
831 /* For the benefit of port specific code do this also as a function. */
834 label_to_alignment (label)
835 rtx label;
837 return LABEL_TO_ALIGNMENT (label);
840 #ifdef HAVE_ATTR_length
841 /* The differences in addresses
842 between a branch and its target might grow or shrink depending on
843 the alignment the start insn of the range (the branch for a forward
844 branch or the label for a backward branch) starts out on; if these
845 differences are used naively, they can even oscillate infinitely.
846 We therefore want to compute a 'worst case' address difference that
847 is independent of the alignment the start insn of the range end
848 up on, and that is at least as large as the actual difference.
849 The function align_fuzz calculates the amount we have to add to the
850 naively computed difference, by traversing the part of the alignment
851 chain of the start insn of the range that is in front of the end insn
852 of the range, and considering for each alignment the maximum amount
853 that it might contribute to a size increase.
855 For casesi tables, we also want to know worst case minimum amounts of
856 address difference, in case a machine description wants to introduce
857 some common offset that is added to all offsets in a table.
858 For this purpose, align_fuzz with a growth argument of 0 comuptes the
859 appropriate adjustment. */
861 /* Compute the maximum delta by which the difference of the addresses of
862 START and END might grow / shrink due to a different address for start
863 which changes the size of alignment insns between START and END.
864 KNOWN_ALIGN_LOG is the alignment known for START.
865 GROWTH should be ~0 if the objective is to compute potential code size
866 increase, and 0 if the objective is to compute potential shrink.
867 The return value is undefined for any other value of GROWTH. */
869 static int
870 align_fuzz (start, end, known_align_log, growth)
871 rtx start, end;
872 int known_align_log;
873 unsigned growth;
875 int uid = INSN_UID (start);
876 rtx align_label;
877 int known_align = 1 << known_align_log;
878 int end_shuid = INSN_SHUID (end);
879 int fuzz = 0;
881 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
883 int align_addr, new_align;
885 uid = INSN_UID (align_label);
886 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
887 if (uid_shuid[uid] > end_shuid)
888 break;
889 known_align_log = LABEL_TO_ALIGNMENT (align_label);
890 new_align = 1 << known_align_log;
891 if (new_align < known_align)
892 continue;
893 fuzz += (-align_addr ^ growth) & (new_align - known_align);
894 known_align = new_align;
896 return fuzz;
899 /* Compute a worst-case reference address of a branch so that it
900 can be safely used in the presence of aligned labels. Since the
901 size of the branch itself is unknown, the size of the branch is
902 not included in the range. I.e. for a forward branch, the reference
903 address is the end address of the branch as known from the previous
904 branch shortening pass, minus a value to account for possible size
905 increase due to alignment. For a backward branch, it is the start
906 address of the branch as known from the current pass, plus a value
907 to account for possible size increase due to alignment.
908 NB.: Therefore, the maximum offset allowed for backward branches needs
909 to exclude the branch size. */
912 insn_current_reference_address (branch)
913 rtx branch;
915 rtx dest, seq;
916 int seq_uid;
918 if (! INSN_ADDRESSES_SET_P ())
919 return 0;
921 seq = NEXT_INSN (PREV_INSN (branch));
922 seq_uid = INSN_UID (seq);
923 if (GET_CODE (branch) != JUMP_INSN)
924 /* This can happen for example on the PA; the objective is to know the
925 offset to address something in front of the start of the function.
926 Thus, we can treat it like a backward branch.
927 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
928 any alignment we'd encounter, so we skip the call to align_fuzz. */
929 return insn_current_address;
930 dest = JUMP_LABEL (branch);
932 /* BRANCH has no proper alignment chain set, so use SEQ.
933 BRANCH also has no INSN_SHUID. */
934 if (INSN_SHUID (seq) < INSN_SHUID (dest))
936 /* Forward branch. */
937 return (insn_last_address + insn_lengths[seq_uid]
938 - align_fuzz (seq, dest, length_unit_log, ~0));
940 else
942 /* Backward branch. */
943 return (insn_current_address
944 + align_fuzz (dest, seq, length_unit_log, ~0));
947 #endif /* HAVE_ATTR_length */
949 /* Make a pass over all insns and compute their actual lengths by shortening
950 any branches of variable length if possible. */
952 /* Give a default value for the lowest address in a function. */
954 #ifndef FIRST_INSN_ADDRESS
955 #define FIRST_INSN_ADDRESS 0
956 #endif
958 /* shorten_branches might be called multiple times: for example, the SH
959 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
960 In order to do this, it needs proper length information, which it obtains
961 by calling shorten_branches. This cannot be collapsed with
962 shorten_branches itself into a single pass unless we also want to intergate
963 reorg.c, since the branch splitting exposes new instructions with delay
964 slots. */
966 void
967 shorten_branches (first)
968 rtx first ATTRIBUTE_UNUSED;
970 rtx insn;
971 int max_uid;
972 int i;
973 int max_log;
974 int max_skip;
975 #ifdef HAVE_ATTR_length
976 #define MAX_CODE_ALIGN 16
977 rtx seq;
978 int something_changed = 1;
979 char *varying_length;
980 rtx body;
981 int uid;
982 rtx align_tab[MAX_CODE_ALIGN];
984 #endif
986 /* We must do some computations even when not actually shortening, in
987 order to get the alignment information for the labels. */
989 init_insn_lengths ();
991 /* Compute maximum UID and allocate label_align / uid_shuid. */
992 max_uid = get_max_uid ();
994 max_labelno = max_label_num ();
995 min_labelno = get_first_label_num ();
996 label_align = (struct label_alignment *)
997 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
999 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1001 /* Initialize label_align and set up uid_shuid to be strictly
1002 monotonically rising with insn order. */
1003 /* We use max_log here to keep track of the maximum alignment we want to
1004 impose on the next CODE_LABEL (or the current one if we are processing
1005 the CODE_LABEL itself). */
1007 max_log = 0;
1008 max_skip = 0;
1010 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1012 int log;
1014 INSN_SHUID (insn) = i++;
1015 if (INSN_P (insn))
1017 /* reorg might make the first insn of a loop being run once only,
1018 and delete the label in front of it. Then we want to apply
1019 the loop alignment to the new label created by reorg, which
1020 is separated by the former loop start insn from the
1021 NOTE_INSN_LOOP_BEG. */
1023 else if (GET_CODE (insn) == CODE_LABEL)
1025 rtx next;
1027 log = LABEL_ALIGN (insn);
1028 if (max_log < log)
1030 max_log = log;
1031 max_skip = LABEL_ALIGN_MAX_SKIP;
1033 next = NEXT_INSN (insn);
1034 /* ADDR_VECs only take room if read-only data goes into the text
1035 section. */
1036 if (JUMP_TABLES_IN_TEXT_SECTION
1037 #if !defined(READONLY_DATA_SECTION)
1038 || 1
1039 #endif
1041 if (next && GET_CODE (next) == JUMP_INSN)
1043 rtx nextbody = PATTERN (next);
1044 if (GET_CODE (nextbody) == ADDR_VEC
1045 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1047 log = ADDR_VEC_ALIGN (next);
1048 if (max_log < log)
1050 max_log = log;
1051 max_skip = LABEL_ALIGN_MAX_SKIP;
1055 LABEL_TO_ALIGNMENT (insn) = max_log;
1056 LABEL_TO_MAX_SKIP (insn) = max_skip;
1057 max_log = 0;
1058 max_skip = 0;
1060 else if (GET_CODE (insn) == BARRIER)
1062 rtx label;
1064 for (label = insn; label && ! INSN_P (label);
1065 label = NEXT_INSN (label))
1066 if (GET_CODE (label) == CODE_LABEL)
1068 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1069 if (max_log < log)
1071 max_log = log;
1072 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1074 break;
1077 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1078 sequences in order to handle reorg output efficiently. */
1079 else if (GET_CODE (insn) == NOTE
1080 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1082 rtx label;
1083 int nest = 0;
1085 /* Search for the label that starts the loop.
1086 Don't skip past the end of the loop, since that could
1087 lead to putting an alignment where it does not belong.
1088 However, a label after a nested (non-)loop would be OK. */
1089 for (label = insn; label; label = NEXT_INSN (label))
1091 if (GET_CODE (label) == NOTE
1092 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1093 nest++;
1094 else if (GET_CODE (label) == NOTE
1095 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1096 && --nest == 0)
1097 break;
1098 else if (GET_CODE (label) == CODE_LABEL)
1100 log = LOOP_ALIGN (label);
1101 if (max_log < log)
1103 max_log = log;
1104 max_skip = LOOP_ALIGN_MAX_SKIP;
1106 break;
1110 else
1111 continue;
1113 #ifdef HAVE_ATTR_length
1115 /* Allocate the rest of the arrays. */
1116 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1117 insn_lengths_max_uid = max_uid;
1118 /* Syntax errors can lead to labels being outside of the main insn stream.
1119 Initialize insn_addresses, so that we get reproducible results. */
1120 INSN_ADDRESSES_ALLOC (max_uid);
1122 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1124 /* Initialize uid_align. We scan instructions
1125 from end to start, and keep in align_tab[n] the last seen insn
1126 that does an alignment of at least n+1, i.e. the successor
1127 in the alignment chain for an insn that does / has a known
1128 alignment of n. */
1129 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1131 for (i = MAX_CODE_ALIGN; --i >= 0;)
1132 align_tab[i] = NULL_RTX;
1133 seq = get_last_insn ();
1134 for (; seq; seq = PREV_INSN (seq))
1136 int uid = INSN_UID (seq);
1137 int log;
1138 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1139 uid_align[uid] = align_tab[0];
1140 if (log)
1142 /* Found an alignment label. */
1143 uid_align[uid] = align_tab[log];
1144 for (i = log - 1; i >= 0; i--)
1145 align_tab[i] = seq;
1148 #ifdef CASE_VECTOR_SHORTEN_MODE
1149 if (optimize)
1151 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1152 label fields. */
1154 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1155 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1156 int rel;
1158 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1160 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1161 int len, i, min, max, insn_shuid;
1162 int min_align;
1163 addr_diff_vec_flags flags;
1165 if (GET_CODE (insn) != JUMP_INSN
1166 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1167 continue;
1168 pat = PATTERN (insn);
1169 len = XVECLEN (pat, 1);
1170 if (len <= 0)
1171 abort ();
1172 min_align = MAX_CODE_ALIGN;
1173 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1175 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1176 int shuid = INSN_SHUID (lab);
1177 if (shuid < min)
1179 min = shuid;
1180 min_lab = lab;
1182 if (shuid > max)
1184 max = shuid;
1185 max_lab = lab;
1187 if (min_align > LABEL_TO_ALIGNMENT (lab))
1188 min_align = LABEL_TO_ALIGNMENT (lab);
1190 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1191 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1192 insn_shuid = INSN_SHUID (insn);
1193 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1194 flags.min_align = min_align;
1195 flags.base_after_vec = rel > insn_shuid;
1196 flags.min_after_vec = min > insn_shuid;
1197 flags.max_after_vec = max > insn_shuid;
1198 flags.min_after_base = min > rel;
1199 flags.max_after_base = max > rel;
1200 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1203 #endif /* CASE_VECTOR_SHORTEN_MODE */
1205 /* Compute initial lengths, addresses, and varying flags for each insn. */
1206 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1207 insn != 0;
1208 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1210 uid = INSN_UID (insn);
1212 insn_lengths[uid] = 0;
1214 if (GET_CODE (insn) == CODE_LABEL)
1216 int log = LABEL_TO_ALIGNMENT (insn);
1217 if (log)
1219 int align = 1 << log;
1220 int new_address = (insn_current_address + align - 1) & -align;
1221 insn_lengths[uid] = new_address - insn_current_address;
1225 INSN_ADDRESSES (uid) = insn_current_address;
1227 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1228 || GET_CODE (insn) == CODE_LABEL)
1229 continue;
1230 if (INSN_DELETED_P (insn))
1231 continue;
1233 body = PATTERN (insn);
1234 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1236 /* This only takes room if read-only data goes into the text
1237 section. */
1238 if (JUMP_TABLES_IN_TEXT_SECTION
1239 #if !defined(READONLY_DATA_SECTION)
1240 || 1
1241 #endif
1243 insn_lengths[uid] = (XVECLEN (body,
1244 GET_CODE (body) == ADDR_DIFF_VEC)
1245 * GET_MODE_SIZE (GET_MODE (body)));
1246 /* Alignment is handled by ADDR_VEC_ALIGN. */
1248 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1249 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1250 else if (GET_CODE (body) == SEQUENCE)
1252 int i;
1253 int const_delay_slots;
1254 #ifdef DELAY_SLOTS
1255 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1256 #else
1257 const_delay_slots = 0;
1258 #endif
1259 /* Inside a delay slot sequence, we do not do any branch shortening
1260 if the shortening could change the number of delay slots
1261 of the branch. */
1262 for (i = 0; i < XVECLEN (body, 0); i++)
1264 rtx inner_insn = XVECEXP (body, 0, i);
1265 int inner_uid = INSN_UID (inner_insn);
1266 int inner_length;
1268 if (GET_CODE (body) == ASM_INPUT
1269 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1270 inner_length = (asm_insn_count (PATTERN (inner_insn))
1271 * insn_default_length (inner_insn));
1272 else
1273 inner_length = insn_default_length (inner_insn);
1275 insn_lengths[inner_uid] = inner_length;
1276 if (const_delay_slots)
1278 if ((varying_length[inner_uid]
1279 = insn_variable_length_p (inner_insn)) != 0)
1280 varying_length[uid] = 1;
1281 INSN_ADDRESSES (inner_uid) = (insn_current_address
1282 + insn_lengths[uid]);
1284 else
1285 varying_length[inner_uid] = 0;
1286 insn_lengths[uid] += inner_length;
1289 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1291 insn_lengths[uid] = insn_default_length (insn);
1292 varying_length[uid] = insn_variable_length_p (insn);
1295 /* If needed, do any adjustment. */
1296 #ifdef ADJUST_INSN_LENGTH
1297 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1298 if (insn_lengths[uid] < 0)
1299 fatal_insn ("Negative insn length", insn);
1300 #endif
1303 /* Now loop over all the insns finding varying length insns. For each,
1304 get the current insn length. If it has changed, reflect the change.
1305 When nothing changes for a full pass, we are done. */
1307 while (something_changed)
1309 something_changed = 0;
1310 insn_current_align = MAX_CODE_ALIGN - 1;
1311 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1312 insn != 0;
1313 insn = NEXT_INSN (insn))
1315 int new_length;
1316 #ifdef ADJUST_INSN_LENGTH
1317 int tmp_length;
1318 #endif
1319 int length_align;
1321 uid = INSN_UID (insn);
1323 if (GET_CODE (insn) == CODE_LABEL)
1325 int log = LABEL_TO_ALIGNMENT (insn);
1326 if (log > insn_current_align)
1328 int align = 1 << log;
1329 int new_address= (insn_current_address + align - 1) & -align;
1330 insn_lengths[uid] = new_address - insn_current_address;
1331 insn_current_align = log;
1332 insn_current_address = new_address;
1334 else
1335 insn_lengths[uid] = 0;
1336 INSN_ADDRESSES (uid) = insn_current_address;
1337 continue;
1340 length_align = INSN_LENGTH_ALIGNMENT (insn);
1341 if (length_align < insn_current_align)
1342 insn_current_align = length_align;
1344 insn_last_address = INSN_ADDRESSES (uid);
1345 INSN_ADDRESSES (uid) = insn_current_address;
1347 #ifdef CASE_VECTOR_SHORTEN_MODE
1348 if (optimize && GET_CODE (insn) == JUMP_INSN
1349 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1351 rtx body = PATTERN (insn);
1352 int old_length = insn_lengths[uid];
1353 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1354 rtx min_lab = XEXP (XEXP (body, 2), 0);
1355 rtx max_lab = XEXP (XEXP (body, 3), 0);
1356 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1357 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1358 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1359 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1360 rtx prev;
1361 int rel_align = 0;
1363 /* Try to find a known alignment for rel_lab. */
1364 for (prev = rel_lab;
1365 prev
1366 && ! insn_lengths[INSN_UID (prev)]
1367 && ! (varying_length[INSN_UID (prev)] & 1);
1368 prev = PREV_INSN (prev))
1369 if (varying_length[INSN_UID (prev)] & 2)
1371 rel_align = LABEL_TO_ALIGNMENT (prev);
1372 break;
1375 /* See the comment on addr_diff_vec_flags in rtl.h for the
1376 meaning of the flags values. base: REL_LAB vec: INSN */
1377 /* Anything after INSN has still addresses from the last
1378 pass; adjust these so that they reflect our current
1379 estimate for this pass. */
1380 if (flags.base_after_vec)
1381 rel_addr += insn_current_address - insn_last_address;
1382 if (flags.min_after_vec)
1383 min_addr += insn_current_address - insn_last_address;
1384 if (flags.max_after_vec)
1385 max_addr += insn_current_address - insn_last_address;
1386 /* We want to know the worst case, i.e. lowest possible value
1387 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1388 its offset is positive, and we have to be wary of code shrink;
1389 otherwise, it is negative, and we have to be vary of code
1390 size increase. */
1391 if (flags.min_after_base)
1393 /* If INSN is between REL_LAB and MIN_LAB, the size
1394 changes we are about to make can change the alignment
1395 within the observed offset, therefore we have to break
1396 it up into two parts that are independent. */
1397 if (! flags.base_after_vec && flags.min_after_vec)
1399 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1400 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1402 else
1403 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1405 else
1407 if (flags.base_after_vec && ! flags.min_after_vec)
1409 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1410 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1412 else
1413 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1415 /* Likewise, determine the highest lowest possible value
1416 for the offset of MAX_LAB. */
1417 if (flags.max_after_base)
1419 if (! flags.base_after_vec && flags.max_after_vec)
1421 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1422 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1424 else
1425 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1427 else
1429 if (flags.base_after_vec && ! flags.max_after_vec)
1431 max_addr += align_fuzz (max_lab, insn, 0, 0);
1432 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1434 else
1435 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1437 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1438 max_addr - rel_addr,
1439 body));
1440 if (JUMP_TABLES_IN_TEXT_SECTION
1441 #if !defined(READONLY_DATA_SECTION)
1442 || 1
1443 #endif
1446 insn_lengths[uid]
1447 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1448 insn_current_address += insn_lengths[uid];
1449 if (insn_lengths[uid] != old_length)
1450 something_changed = 1;
1453 continue;
1455 #endif /* CASE_VECTOR_SHORTEN_MODE */
1457 if (! (varying_length[uid]))
1459 if (GET_CODE (insn) == INSN
1460 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1462 int i;
1464 body = PATTERN (insn);
1465 for (i = 0; i < XVECLEN (body, 0); i++)
1467 rtx inner_insn = XVECEXP (body, 0, i);
1468 int inner_uid = INSN_UID (inner_insn);
1470 INSN_ADDRESSES (inner_uid) = insn_current_address;
1472 insn_current_address += insn_lengths[inner_uid];
1475 else
1476 insn_current_address += insn_lengths[uid];
1478 continue;
1481 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1483 int i;
1485 body = PATTERN (insn);
1486 new_length = 0;
1487 for (i = 0; i < XVECLEN (body, 0); i++)
1489 rtx inner_insn = XVECEXP (body, 0, i);
1490 int inner_uid = INSN_UID (inner_insn);
1491 int inner_length;
1493 INSN_ADDRESSES (inner_uid) = insn_current_address;
1495 /* insn_current_length returns 0 for insns with a
1496 non-varying length. */
1497 if (! varying_length[inner_uid])
1498 inner_length = insn_lengths[inner_uid];
1499 else
1500 inner_length = insn_current_length (inner_insn);
1502 if (inner_length != insn_lengths[inner_uid])
1504 insn_lengths[inner_uid] = inner_length;
1505 something_changed = 1;
1507 insn_current_address += insn_lengths[inner_uid];
1508 new_length += inner_length;
1511 else
1513 new_length = insn_current_length (insn);
1514 insn_current_address += new_length;
1517 #ifdef ADJUST_INSN_LENGTH
1518 /* If needed, do any adjustment. */
1519 tmp_length = new_length;
1520 ADJUST_INSN_LENGTH (insn, new_length);
1521 insn_current_address += (new_length - tmp_length);
1522 #endif
1524 if (new_length != insn_lengths[uid])
1526 insn_lengths[uid] = new_length;
1527 something_changed = 1;
1530 /* For a non-optimizing compile, do only a single pass. */
1531 if (!optimize)
1532 break;
1535 free (varying_length);
1537 #endif /* HAVE_ATTR_length */
1540 #ifdef HAVE_ATTR_length
1541 /* Given the body of an INSN known to be generated by an ASM statement, return
1542 the number of machine instructions likely to be generated for this insn.
1543 This is used to compute its length. */
1545 static int
1546 asm_insn_count (body)
1547 rtx body;
1549 const char *template;
1550 int count = 1;
1552 if (GET_CODE (body) == ASM_INPUT)
1553 template = XSTR (body, 0);
1554 else
1555 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1557 for (; *template; template++)
1558 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1559 count++;
1561 return count;
1563 #endif
1565 /* Output assembler code for the start of a function,
1566 and initialize some of the variables in this file
1567 for the new function. The label for the function and associated
1568 assembler pseudo-ops have already been output in `assemble_start_function'.
1570 FIRST is the first insn of the rtl for the function being compiled.
1571 FILE is the file to write assembler code to.
1572 OPTIMIZE is nonzero if we should eliminate redundant
1573 test and compare insns. */
1575 void
1576 final_start_function (first, file, optimize)
1577 rtx first;
1578 FILE *file;
1579 int optimize ATTRIBUTE_UNUSED;
1581 block_depth = 0;
1583 this_is_asm_operands = 0;
1585 #ifdef NON_SAVING_SETJMP
1586 /* A function that calls setjmp should save and restore all the
1587 call-saved registers on a system where longjmp clobbers them. */
1588 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1590 int i;
1592 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1593 if (!call_used_regs[i])
1594 regs_ever_live[i] = 1;
1596 #endif
1598 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1599 notice_source_line (first);
1600 high_block_linenum = high_function_linenum = last_linenum;
1602 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1604 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1605 if (write_symbols != DWARF2_DEBUG)
1606 dwarf2out_begin_prologue (0, NULL);
1607 #endif
1609 #ifdef LEAF_REG_REMAP
1610 if (current_function_uses_only_leaf_regs)
1611 leaf_renumber_regs (first);
1612 #endif
1614 /* The Sun386i and perhaps other machines don't work right
1615 if the profiling code comes after the prologue. */
1616 #ifdef PROFILE_BEFORE_PROLOGUE
1617 if (profile_flag)
1618 profile_function (file);
1619 #endif /* PROFILE_BEFORE_PROLOGUE */
1621 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1622 if (dwarf2out_do_frame ())
1623 dwarf2out_frame_debug (NULL_RTX);
1624 #endif
1626 /* If debugging, assign block numbers to all of the blocks in this
1627 function. */
1628 if (write_symbols)
1630 remove_unnecessary_notes ();
1631 reorder_blocks ();
1632 number_blocks (current_function_decl);
1633 /* We never actually put out begin/end notes for the top-level
1634 block in the function. But, conceptually, that block is
1635 always needed. */
1636 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1639 /* First output the function prologue: code to set up the stack frame. */
1640 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1642 /* If the machine represents the prologue as RTL, the profiling code must
1643 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1644 #ifdef HAVE_prologue
1645 if (! HAVE_prologue)
1646 #endif
1647 profile_after_prologue (file);
1649 profile_label_no++;
1651 /* If we are doing basic block profiling, remember a printable version
1652 of the function name. */
1653 if (profile_block_flag)
1655 bb_func_label_num =
1656 add_bb_string ((*decl_printable_name) (current_function_decl, 2),
1657 FALSE);
1661 static void
1662 profile_after_prologue (file)
1663 FILE *file ATTRIBUTE_UNUSED;
1665 #ifdef FUNCTION_BLOCK_PROFILER
1666 if (profile_block_flag)
1668 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1670 #endif /* FUNCTION_BLOCK_PROFILER */
1672 #ifndef PROFILE_BEFORE_PROLOGUE
1673 if (profile_flag)
1674 profile_function (file);
1675 #endif /* not PROFILE_BEFORE_PROLOGUE */
1678 static void
1679 profile_function (file)
1680 FILE *file;
1682 #ifndef NO_PROFILE_COUNTERS
1683 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1684 #endif
1685 #if defined(ASM_OUTPUT_REG_PUSH)
1686 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1687 int sval = current_function_returns_struct;
1688 #endif
1689 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1690 int cxt = current_function_needs_context;
1691 #endif
1692 #endif /* ASM_OUTPUT_REG_PUSH */
1694 #ifndef NO_PROFILE_COUNTERS
1695 data_section ();
1696 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1697 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1698 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1699 #endif
1701 function_section (current_function_decl);
1703 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1704 if (sval)
1705 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1706 #else
1707 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1708 if (sval)
1710 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1712 #endif
1713 #endif
1715 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1716 if (cxt)
1717 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1718 #else
1719 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1720 if (cxt)
1722 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1724 #endif
1725 #endif
1727 FUNCTION_PROFILER (file, profile_label_no);
1729 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1730 if (cxt)
1731 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1732 #else
1733 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1734 if (cxt)
1736 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1738 #endif
1739 #endif
1741 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1742 if (sval)
1743 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1744 #else
1745 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1746 if (sval)
1748 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1750 #endif
1751 #endif
1754 /* Output assembler code for the end of a function.
1755 For clarity, args are same as those of `final_start_function'
1756 even though not all of them are needed. */
1758 void
1759 final_end_function ()
1761 app_disable ();
1763 (*debug_hooks->end_function) (high_function_linenum);
1765 /* Finally, output the function epilogue:
1766 code to restore the stack frame and return to the caller. */
1767 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1769 /* And debug output. */
1770 (*debug_hooks->end_epilogue) ();
1772 #if defined (DWARF2_UNWIND_INFO)
1773 if (write_symbols != DWARF2_DEBUG && dwarf2out_do_frame ())
1774 dwarf2out_end_epilogue ();
1775 #endif
1777 bb_func_label_num = -1; /* not in function, nuke label # */
1780 /* Add a block to the linked list that remembers the current line/file/function
1781 for basic block profiling. Emit the label in front of the basic block and
1782 the instructions that increment the count field. */
1784 static void
1785 add_bb (file)
1786 FILE *file;
1788 struct bb_list *ptr =
1789 (struct bb_list *) permalloc (sizeof (struct bb_list));
1791 /* Add basic block to linked list. */
1792 ptr->next = 0;
1793 ptr->line_num = last_linenum;
1794 ptr->file_label_num = bb_file_label_num;
1795 ptr->func_label_num = bb_func_label_num;
1796 *bb_tail = ptr;
1797 bb_tail = &ptr->next;
1799 /* Enable the table of basic-block use counts
1800 to point at the code it applies to. */
1801 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1803 /* Before first insn of this basic block, increment the
1804 count of times it was entered. */
1805 #ifdef BLOCK_PROFILER
1806 BLOCK_PROFILER (file, count_basic_blocks);
1807 #endif
1808 #ifdef HAVE_cc0
1809 CC_STATUS_INIT;
1810 #endif
1812 new_block = 0;
1813 count_basic_blocks++;
1816 /* Add a string to be used for basic block profiling. */
1818 static int
1819 add_bb_string (string, perm_p)
1820 const char *string;
1821 int perm_p;
1823 int len;
1824 struct bb_str *ptr = 0;
1826 if (!string)
1828 string = "<unknown>";
1829 perm_p = TRUE;
1832 /* Allocate a new string if the current string isn't permanent. If
1833 the string is permanent search for the same string in other
1834 allocations. */
1836 len = strlen (string) + 1;
1837 if (!perm_p)
1839 char *p = (char *) permalloc (len);
1840 memcpy (p, string, len);
1841 string = p;
1843 else
1844 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1845 if (ptr->string == string)
1846 break;
1848 /* Allocate a new string block if we need to. */
1849 if (!ptr)
1851 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1852 ptr->next = 0;
1853 ptr->length = len;
1854 ptr->label_num = sbb_label_num++;
1855 ptr->string = string;
1856 *sbb_tail = ptr;
1857 sbb_tail = &ptr->next;
1860 return ptr->label_num;
1863 /* Output assembler code for some insns: all or part of a function.
1864 For description of args, see `final_start_function', above.
1866 PRESCAN is 1 if we are not really outputting,
1867 just scanning as if we were outputting.
1868 Prescanning deletes and rearranges insns just like ordinary output.
1869 PRESCAN is -2 if we are outputting after having prescanned.
1870 In this case, don't try to delete or rearrange insns
1871 because that has already been done.
1872 Prescanning is done only on certain machines. */
1874 void
1875 final (first, file, optimize, prescan)
1876 rtx first;
1877 FILE *file;
1878 int optimize;
1879 int prescan;
1881 register rtx insn;
1882 int max_line = 0;
1883 int max_uid = 0;
1885 last_ignored_compare = 0;
1886 new_block = 1;
1888 /* Make a map indicating which line numbers appear in this function.
1889 When producing SDB debugging info, delete troublesome line number
1890 notes from inlined functions in other files as well as duplicate
1891 line number notes. */
1892 #ifdef SDB_DEBUGGING_INFO
1893 if (write_symbols == SDB_DEBUG)
1895 rtx last = 0;
1896 for (insn = first; insn; insn = NEXT_INSN (insn))
1897 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1899 if ((RTX_INTEGRATED_P (insn)
1900 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1901 || (last != 0
1902 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1903 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1905 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1906 NOTE_SOURCE_FILE (insn) = 0;
1907 continue;
1909 last = insn;
1910 if (NOTE_LINE_NUMBER (insn) > max_line)
1911 max_line = NOTE_LINE_NUMBER (insn);
1914 else
1915 #endif
1917 for (insn = first; insn; insn = NEXT_INSN (insn))
1918 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1919 max_line = NOTE_LINE_NUMBER (insn);
1922 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1924 for (insn = first; insn; insn = NEXT_INSN (insn))
1926 if (INSN_UID (insn) > max_uid) /* find largest UID */
1927 max_uid = INSN_UID (insn);
1928 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1929 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1930 #ifdef HAVE_cc0
1931 /* If CC tracking across branches is enabled, record the insn which
1932 jumps to each branch only reached from one place. */
1933 if (optimize && GET_CODE (insn) == JUMP_INSN)
1935 rtx lab = JUMP_LABEL (insn);
1936 if (lab && LABEL_NUSES (lab) == 1)
1938 LABEL_REFS (lab) = insn;
1941 #endif
1944 init_recog ();
1946 CC_STATUS_INIT;
1948 /* Output the insns. */
1949 for (insn = NEXT_INSN (first); insn;)
1951 #ifdef HAVE_ATTR_length
1952 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1954 #ifdef STACK_REGS
1955 /* Irritatingly, the reg-stack pass is creating new instructions
1956 and because of REG_DEAD note abuse it has to run after
1957 shorten_branches. Fake address of -1 then. */
1958 insn_current_address = -1;
1959 #else
1960 /* This can be triggered by bugs elsewhere in the compiler if
1961 new insns are created after init_insn_lengths is called. */
1962 abort ();
1963 #endif
1965 else
1966 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1967 #endif /* HAVE_ATTR_length */
1969 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1972 /* Do basic-block profiling here
1973 if the last insn was a conditional branch. */
1974 if (profile_block_flag && new_block)
1975 add_bb (file);
1977 free (line_note_exists);
1978 line_note_exists = NULL;
1981 const char *
1982 get_insn_template (code, insn)
1983 int code;
1984 rtx insn;
1986 const void *output = insn_data[code].output;
1987 switch (insn_data[code].output_format)
1989 case INSN_OUTPUT_FORMAT_SINGLE:
1990 return (const char *) output;
1991 case INSN_OUTPUT_FORMAT_MULTI:
1992 return ((const char *const *) output)[which_alternative];
1993 case INSN_OUTPUT_FORMAT_FUNCTION:
1994 if (insn == NULL)
1995 abort ();
1996 return (*(insn_output_fn) output) (recog_data.operand, insn);
1998 default:
1999 abort ();
2003 /* The final scan for one insn, INSN.
2004 Args are same as in `final', except that INSN
2005 is the insn being scanned.
2006 Value returned is the next insn to be scanned.
2008 NOPEEPHOLES is the flag to disallow peephole processing (currently
2009 used for within delayed branch sequence output). */
2012 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2013 rtx insn;
2014 FILE *file;
2015 int optimize ATTRIBUTE_UNUSED;
2016 int prescan;
2017 int nopeepholes ATTRIBUTE_UNUSED;
2019 #ifdef HAVE_cc0
2020 rtx set;
2021 #endif
2023 insn_counter++;
2025 /* Ignore deleted insns. These can occur when we split insns (due to a
2026 template of "#") while not optimizing. */
2027 if (INSN_DELETED_P (insn))
2028 return NEXT_INSN (insn);
2030 switch (GET_CODE (insn))
2032 case NOTE:
2033 if (prescan > 0)
2034 break;
2036 switch (NOTE_LINE_NUMBER (insn))
2038 case NOTE_INSN_DELETED:
2039 case NOTE_INSN_LOOP_BEG:
2040 case NOTE_INSN_LOOP_END:
2041 case NOTE_INSN_LOOP_CONT:
2042 case NOTE_INSN_LOOP_VTOP:
2043 case NOTE_INSN_FUNCTION_END:
2044 case NOTE_INSN_REPEATED_LINE_NUMBER:
2045 case NOTE_INSN_RANGE_BEG:
2046 case NOTE_INSN_RANGE_END:
2047 case NOTE_INSN_LIVE:
2048 case NOTE_INSN_EXPECTED_VALUE:
2049 break;
2051 case NOTE_INSN_BASIC_BLOCK:
2052 #ifdef IA64_UNWIND_INFO
2053 IA64_UNWIND_EMIT (asm_out_file, insn);
2054 #endif
2055 if (flag_debug_asm)
2056 fprintf (asm_out_file, "\t%s basic block %d\n",
2057 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2058 break;
2060 case NOTE_INSN_EH_REGION_BEG:
2061 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2062 NOTE_EH_HANDLER (insn));
2063 break;
2065 case NOTE_INSN_EH_REGION_END:
2066 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2067 NOTE_EH_HANDLER (insn));
2068 break;
2070 case NOTE_INSN_PROLOGUE_END:
2071 (*targetm.asm_out.function_end_prologue) (file);
2072 profile_after_prologue (file);
2073 break;
2075 case NOTE_INSN_EPILOGUE_BEG:
2076 (*targetm.asm_out.function_begin_epilogue) (file);
2077 break;
2079 case NOTE_INSN_FUNCTION_BEG:
2080 app_disable ();
2081 (*debug_hooks->end_prologue) (last_linenum);
2082 break;
2084 case NOTE_INSN_BLOCK_BEG:
2085 if (debug_info_level == DINFO_LEVEL_NORMAL
2086 || debug_info_level == DINFO_LEVEL_VERBOSE
2087 || write_symbols == DWARF_DEBUG
2088 || write_symbols == DWARF2_DEBUG)
2090 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2092 app_disable ();
2093 ++block_depth;
2094 high_block_linenum = last_linenum;
2096 /* Output debugging info about the symbol-block beginning. */
2097 (*debug_hooks->begin_block) (last_linenum, n);
2099 /* Mark this block as output. */
2100 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2102 break;
2104 case NOTE_INSN_BLOCK_END:
2105 if (debug_info_level == DINFO_LEVEL_NORMAL
2106 || debug_info_level == DINFO_LEVEL_VERBOSE
2107 || write_symbols == DWARF_DEBUG
2108 || write_symbols == DWARF2_DEBUG)
2110 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2112 app_disable ();
2114 /* End of a symbol-block. */
2115 --block_depth;
2116 if (block_depth < 0)
2117 abort ();
2119 (*debug_hooks->end_block) (high_block_linenum, n);
2121 break;
2123 case NOTE_INSN_DELETED_LABEL:
2124 /* Emit the label. We may have deleted the CODE_LABEL because
2125 the label could be proved to be unreachable, though still
2126 referenced (in the form of having its address taken. */
2127 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2128 break;
2130 case 0:
2131 break;
2133 default:
2134 if (NOTE_LINE_NUMBER (insn) <= 0)
2135 abort ();
2137 /* This note is a line-number. */
2139 register rtx note;
2140 int note_after = 0;
2142 /* If there is anything real after this note, output it.
2143 If another line note follows, omit this one. */
2144 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2146 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2147 break;
2149 /* These types of notes can be significant
2150 so make sure the preceding line number stays. */
2151 else if (GET_CODE (note) == NOTE
2152 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2153 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2154 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2155 break;
2156 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2158 /* Another line note follows; we can delete this note
2159 if no intervening line numbers have notes elsewhere. */
2160 int num;
2161 for (num = NOTE_LINE_NUMBER (insn) + 1;
2162 num < NOTE_LINE_NUMBER (note);
2163 num++)
2164 if (line_note_exists[num])
2165 break;
2167 if (num >= NOTE_LINE_NUMBER (note))
2168 note_after = 1;
2169 break;
2173 /* Output this line note if it is the first or the last line
2174 note in a row. */
2175 if (!note_after)
2177 notice_source_line (insn);
2178 (*debug_hooks->source_line) (last_linenum, last_filename);
2181 break;
2183 break;
2185 case BARRIER:
2186 #if defined (DWARF2_UNWIND_INFO)
2187 if (dwarf2out_do_frame ())
2188 dwarf2out_frame_debug (insn);
2189 #endif
2190 break;
2192 case CODE_LABEL:
2193 /* The target port might emit labels in the output function for
2194 some insn, e.g. sh.c output_branchy_insn. */
2195 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2197 int align = LABEL_TO_ALIGNMENT (insn);
2198 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2199 int max_skip = LABEL_TO_MAX_SKIP (insn);
2200 #endif
2202 if (align && NEXT_INSN (insn))
2203 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2204 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2205 #else
2206 ASM_OUTPUT_ALIGN (file, align);
2207 #endif
2209 #ifdef HAVE_cc0
2210 CC_STATUS_INIT;
2211 /* If this label is reached from only one place, set the condition
2212 codes from the instruction just before the branch. */
2214 /* Disabled because some insns set cc_status in the C output code
2215 and NOTICE_UPDATE_CC alone can set incorrect status. */
2216 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2218 rtx jump = LABEL_REFS (insn);
2219 rtx barrier = prev_nonnote_insn (insn);
2220 rtx prev;
2221 /* If the LABEL_REFS field of this label has been set to point
2222 at a branch, the predecessor of the branch is a regular
2223 insn, and that branch is the only way to reach this label,
2224 set the condition codes based on the branch and its
2225 predecessor. */
2226 if (barrier && GET_CODE (barrier) == BARRIER
2227 && jump && GET_CODE (jump) == JUMP_INSN
2228 && (prev = prev_nonnote_insn (jump))
2229 && GET_CODE (prev) == INSN)
2231 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2232 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2235 #endif
2236 if (prescan > 0)
2237 break;
2238 new_block = 1;
2240 #ifdef FINAL_PRESCAN_LABEL
2241 FINAL_PRESCAN_INSN (insn, NULL, 0);
2242 #endif
2244 if (LABEL_NAME (insn))
2245 (*debug_hooks->label) (insn);
2247 if (app_on)
2249 fputs (ASM_APP_OFF, file);
2250 app_on = 0;
2252 if (NEXT_INSN (insn) != 0
2253 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2255 rtx nextbody = PATTERN (NEXT_INSN (insn));
2257 /* If this label is followed by a jump-table,
2258 make sure we put the label in the read-only section. Also
2259 possibly write the label and jump table together. */
2261 if (GET_CODE (nextbody) == ADDR_VEC
2262 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2264 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2265 /* In this case, the case vector is being moved by the
2266 target, so don't output the label at all. Leave that
2267 to the back end macros. */
2268 #else
2269 if (! JUMP_TABLES_IN_TEXT_SECTION)
2271 readonly_data_section ();
2272 #ifdef READONLY_DATA_SECTION
2273 ASM_OUTPUT_ALIGN (file,
2274 exact_log2 (BIGGEST_ALIGNMENT
2275 / BITS_PER_UNIT));
2276 #endif /* READONLY_DATA_SECTION */
2278 else
2279 function_section (current_function_decl);
2281 #ifdef ASM_OUTPUT_CASE_LABEL
2282 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2283 NEXT_INSN (insn));
2284 #else
2285 if (LABEL_ALTERNATE_NAME (insn))
2286 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2287 else
2288 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2289 #endif
2290 #endif
2291 break;
2294 if (LABEL_ALTERNATE_NAME (insn))
2295 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2296 else
2297 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2298 break;
2300 default:
2302 register rtx body = PATTERN (insn);
2303 int insn_code_number;
2304 const char *template;
2305 #ifdef HAVE_cc0
2306 rtx note;
2307 #endif
2309 /* An INSN, JUMP_INSN or CALL_INSN.
2310 First check for special kinds that recog doesn't recognize. */
2312 if (GET_CODE (body) == USE /* These are just declarations */
2313 || GET_CODE (body) == CLOBBER)
2314 break;
2316 #ifdef HAVE_cc0
2317 /* If there is a REG_CC_SETTER note on this insn, it means that
2318 the setting of the condition code was done in the delay slot
2319 of the insn that branched here. So recover the cc status
2320 from the insn that set it. */
2322 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2323 if (note)
2325 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2326 cc_prev_status = cc_status;
2328 #endif
2330 /* Detect insns that are really jump-tables
2331 and output them as such. */
2333 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2335 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2336 register int vlen, idx;
2337 #endif
2339 if (prescan > 0)
2340 break;
2342 if (app_on)
2344 fputs (ASM_APP_OFF, file);
2345 app_on = 0;
2348 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2349 if (GET_CODE (body) == ADDR_VEC)
2351 #ifdef ASM_OUTPUT_ADDR_VEC
2352 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2353 #else
2354 abort ();
2355 #endif
2357 else
2359 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2360 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2361 #else
2362 abort ();
2363 #endif
2365 #else
2366 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2367 for (idx = 0; idx < vlen; idx++)
2369 if (GET_CODE (body) == ADDR_VEC)
2371 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2372 ASM_OUTPUT_ADDR_VEC_ELT
2373 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2374 #else
2375 abort ();
2376 #endif
2378 else
2380 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2381 ASM_OUTPUT_ADDR_DIFF_ELT
2382 (file,
2383 body,
2384 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2385 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2386 #else
2387 abort ();
2388 #endif
2391 #ifdef ASM_OUTPUT_CASE_END
2392 ASM_OUTPUT_CASE_END (file,
2393 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2394 insn);
2395 #endif
2396 #endif
2398 function_section (current_function_decl);
2400 break;
2403 /* Do basic-block profiling when we reach a new block.
2404 Done here to avoid jump tables. */
2405 if (profile_block_flag && new_block)
2406 add_bb (file);
2408 if (GET_CODE (body) == ASM_INPUT)
2410 /* There's no telling what that did to the condition codes. */
2411 CC_STATUS_INIT;
2412 if (prescan > 0)
2413 break;
2414 if (! app_on)
2416 fputs (ASM_APP_ON, file);
2417 app_on = 1;
2419 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2420 break;
2423 /* Detect `asm' construct with operands. */
2424 if (asm_noperands (body) >= 0)
2426 unsigned int noperands = asm_noperands (body);
2427 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2428 const char *string;
2430 /* There's no telling what that did to the condition codes. */
2431 CC_STATUS_INIT;
2432 if (prescan > 0)
2433 break;
2435 if (! app_on)
2437 fputs (ASM_APP_ON, file);
2438 app_on = 1;
2441 /* Get out the operand values. */
2442 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2443 /* Inhibit aborts on what would otherwise be compiler bugs. */
2444 insn_noperands = noperands;
2445 this_is_asm_operands = insn;
2447 /* Output the insn using them. */
2448 output_asm_insn (string, ops);
2449 this_is_asm_operands = 0;
2450 break;
2453 if (prescan <= 0 && app_on)
2455 fputs (ASM_APP_OFF, file);
2456 app_on = 0;
2459 if (GET_CODE (body) == SEQUENCE)
2461 /* A delayed-branch sequence */
2462 register int i;
2463 rtx next;
2465 if (prescan > 0)
2466 break;
2467 final_sequence = body;
2469 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2470 force the restoration of a comparison that was previously
2471 thought unnecessary. If that happens, cancel this sequence
2472 and cause that insn to be restored. */
2474 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2475 if (next != XVECEXP (body, 0, 1))
2477 final_sequence = 0;
2478 return next;
2481 for (i = 1; i < XVECLEN (body, 0); i++)
2483 rtx insn = XVECEXP (body, 0, i);
2484 rtx next = NEXT_INSN (insn);
2485 /* We loop in case any instruction in a delay slot gets
2486 split. */
2488 insn = final_scan_insn (insn, file, 0, prescan, 1);
2489 while (insn != next);
2491 #ifdef DBR_OUTPUT_SEQEND
2492 DBR_OUTPUT_SEQEND (file);
2493 #endif
2494 final_sequence = 0;
2496 /* If the insn requiring the delay slot was a CALL_INSN, the
2497 insns in the delay slot are actually executed before the
2498 called function. Hence we don't preserve any CC-setting
2499 actions in these insns and the CC must be marked as being
2500 clobbered by the function. */
2501 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2503 CC_STATUS_INIT;
2506 /* Following a conditional branch sequence, we have a new basic
2507 block. */
2508 if (profile_block_flag)
2510 rtx insn = XVECEXP (body, 0, 0);
2511 rtx body = PATTERN (insn);
2513 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2514 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2515 || (GET_CODE (insn) == JUMP_INSN
2516 && GET_CODE (body) == PARALLEL
2517 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2518 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2519 new_block = 1;
2521 break;
2524 /* We have a real machine instruction as rtl. */
2526 body = PATTERN (insn);
2528 #ifdef HAVE_cc0
2529 set = single_set (insn);
2531 /* Check for redundant test and compare instructions
2532 (when the condition codes are already set up as desired).
2533 This is done only when optimizing; if not optimizing,
2534 it should be possible for the user to alter a variable
2535 with the debugger in between statements
2536 and the next statement should reexamine the variable
2537 to compute the condition codes. */
2539 if (optimize)
2541 #if 0
2542 rtx set = single_set (insn);
2543 #endif
2545 if (set
2546 && GET_CODE (SET_DEST (set)) == CC0
2547 && insn != last_ignored_compare)
2549 if (GET_CODE (SET_SRC (set)) == SUBREG)
2550 SET_SRC (set) = alter_subreg (SET_SRC (set));
2551 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2553 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2554 XEXP (SET_SRC (set), 0)
2555 = alter_subreg (XEXP (SET_SRC (set), 0));
2556 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2557 XEXP (SET_SRC (set), 1)
2558 = alter_subreg (XEXP (SET_SRC (set), 1));
2560 if ((cc_status.value1 != 0
2561 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2562 || (cc_status.value2 != 0
2563 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2565 /* Don't delete insn if it has an addressing side-effect. */
2566 if (! FIND_REG_INC_NOTE (insn, 0)
2567 /* or if anything in it is volatile. */
2568 && ! volatile_refs_p (PATTERN (insn)))
2570 /* We don't really delete the insn; just ignore it. */
2571 last_ignored_compare = insn;
2572 break;
2577 #endif
2579 /* Following a conditional branch, we have a new basic block.
2580 But if we are inside a sequence, the new block starts after the
2581 last insn of the sequence. */
2582 if (profile_block_flag && final_sequence == 0
2583 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2584 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2585 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2586 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2587 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2588 new_block = 1;
2590 #ifndef STACK_REGS
2591 /* Don't bother outputting obvious no-ops, even without -O.
2592 This optimization is fast and doesn't interfere with debugging.
2593 Don't do this if the insn is in a delay slot, since this
2594 will cause an improper number of delay insns to be written. */
2595 if (final_sequence == 0
2596 && prescan >= 0
2597 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2598 && GET_CODE (SET_SRC (body)) == REG
2599 && GET_CODE (SET_DEST (body)) == REG
2600 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2601 break;
2602 #endif
2604 #ifdef HAVE_cc0
2605 /* If this is a conditional branch, maybe modify it
2606 if the cc's are in a nonstandard state
2607 so that it accomplishes the same thing that it would
2608 do straightforwardly if the cc's were set up normally. */
2610 if (cc_status.flags != 0
2611 && GET_CODE (insn) == JUMP_INSN
2612 && GET_CODE (body) == SET
2613 && SET_DEST (body) == pc_rtx
2614 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2615 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2616 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2617 /* This is done during prescan; it is not done again
2618 in final scan when prescan has been done. */
2619 && prescan >= 0)
2621 /* This function may alter the contents of its argument
2622 and clear some of the cc_status.flags bits.
2623 It may also return 1 meaning condition now always true
2624 or -1 meaning condition now always false
2625 or 2 meaning condition nontrivial but altered. */
2626 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2627 /* If condition now has fixed value, replace the IF_THEN_ELSE
2628 with its then-operand or its else-operand. */
2629 if (result == 1)
2630 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2631 if (result == -1)
2632 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2634 /* The jump is now either unconditional or a no-op.
2635 If it has become a no-op, don't try to output it.
2636 (It would not be recognized.) */
2637 if (SET_SRC (body) == pc_rtx)
2639 PUT_CODE (insn, NOTE);
2640 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2641 NOTE_SOURCE_FILE (insn) = 0;
2642 break;
2644 else if (GET_CODE (SET_SRC (body)) == RETURN)
2645 /* Replace (set (pc) (return)) with (return). */
2646 PATTERN (insn) = body = SET_SRC (body);
2648 /* Rerecognize the instruction if it has changed. */
2649 if (result != 0)
2650 INSN_CODE (insn) = -1;
2653 /* Make same adjustments to instructions that examine the
2654 condition codes without jumping and instructions that
2655 handle conditional moves (if this machine has either one). */
2657 if (cc_status.flags != 0
2658 && set != 0)
2660 rtx cond_rtx, then_rtx, else_rtx;
2662 if (GET_CODE (insn) != JUMP_INSN
2663 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2665 cond_rtx = XEXP (SET_SRC (set), 0);
2666 then_rtx = XEXP (SET_SRC (set), 1);
2667 else_rtx = XEXP (SET_SRC (set), 2);
2669 else
2671 cond_rtx = SET_SRC (set);
2672 then_rtx = const_true_rtx;
2673 else_rtx = const0_rtx;
2676 switch (GET_CODE (cond_rtx))
2678 case GTU:
2679 case GT:
2680 case LTU:
2681 case LT:
2682 case GEU:
2683 case GE:
2684 case LEU:
2685 case LE:
2686 case EQ:
2687 case NE:
2689 register int result;
2690 if (XEXP (cond_rtx, 0) != cc0_rtx)
2691 break;
2692 result = alter_cond (cond_rtx);
2693 if (result == 1)
2694 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2695 else if (result == -1)
2696 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2697 else if (result == 2)
2698 INSN_CODE (insn) = -1;
2699 if (SET_DEST (set) == SET_SRC (set))
2701 PUT_CODE (insn, NOTE);
2702 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2703 NOTE_SOURCE_FILE (insn) = 0;
2706 break;
2708 default:
2709 break;
2713 #endif
2715 #ifdef HAVE_peephole
2716 /* Do machine-specific peephole optimizations if desired. */
2718 if (optimize && !flag_no_peephole && !nopeepholes)
2720 rtx next = peephole (insn);
2721 /* When peepholing, if there were notes within the peephole,
2722 emit them before the peephole. */
2723 if (next != 0 && next != NEXT_INSN (insn))
2725 rtx prev = PREV_INSN (insn);
2726 rtx note;
2728 for (note = NEXT_INSN (insn); note != next;
2729 note = NEXT_INSN (note))
2730 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2732 /* In case this is prescan, put the notes
2733 in proper position for later rescan. */
2734 note = NEXT_INSN (insn);
2735 PREV_INSN (note) = prev;
2736 NEXT_INSN (prev) = note;
2737 NEXT_INSN (PREV_INSN (next)) = insn;
2738 PREV_INSN (insn) = PREV_INSN (next);
2739 NEXT_INSN (insn) = next;
2740 PREV_INSN (next) = insn;
2743 /* PEEPHOLE might have changed this. */
2744 body = PATTERN (insn);
2746 #endif
2748 /* Try to recognize the instruction.
2749 If successful, verify that the operands satisfy the
2750 constraints for the instruction. Crash if they don't,
2751 since `reload' should have changed them so that they do. */
2753 insn_code_number = recog_memoized (insn);
2754 cleanup_subreg_operands (insn);
2756 /* Dump the insn in the assembly for debugging. */
2757 if (flag_dump_rtl_in_asm)
2759 print_rtx_head = ASM_COMMENT_START;
2760 print_rtl_single (asm_out_file, insn);
2761 print_rtx_head = "";
2764 if (! constrain_operands_cached (1))
2765 fatal_insn_not_found (insn);
2767 /* Some target machines need to prescan each insn before
2768 it is output. */
2770 #ifdef FINAL_PRESCAN_INSN
2771 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2772 #endif
2774 #ifdef HAVE_conditional_execution
2775 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2776 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2777 else
2778 current_insn_predicate = NULL_RTX;
2779 #endif
2781 #ifdef HAVE_cc0
2782 cc_prev_status = cc_status;
2784 /* Update `cc_status' for this instruction.
2785 The instruction's output routine may change it further.
2786 If the output routine for a jump insn needs to depend
2787 on the cc status, it should look at cc_prev_status. */
2789 NOTICE_UPDATE_CC (body, insn);
2790 #endif
2792 current_output_insn = debug_insn = insn;
2794 #if defined (DWARF2_UNWIND_INFO)
2795 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2796 dwarf2out_frame_debug (insn);
2797 #endif
2799 /* Find the proper template for this insn. */
2800 template = get_insn_template (insn_code_number, insn);
2802 /* If the C code returns 0, it means that it is a jump insn
2803 which follows a deleted test insn, and that test insn
2804 needs to be reinserted. */
2805 if (template == 0)
2807 rtx prev;
2809 if (prev_nonnote_insn (insn) != last_ignored_compare)
2810 abort ();
2811 new_block = 0;
2813 /* We have already processed the notes between the setter and
2814 the user. Make sure we don't process them again, this is
2815 particularly important if one of the notes is a block
2816 scope note or an EH note. */
2817 for (prev = insn;
2818 prev != last_ignored_compare;
2819 prev = PREV_INSN (prev))
2821 if (GET_CODE (prev) == NOTE)
2823 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
2824 NOTE_SOURCE_FILE (prev) = 0;
2828 return prev;
2831 /* If the template is the string "#", it means that this insn must
2832 be split. */
2833 if (template[0] == '#' && template[1] == '\0')
2835 rtx new = try_split (body, insn, 0);
2837 /* If we didn't split the insn, go away. */
2838 if (new == insn && PATTERN (new) == body)
2839 fatal_insn ("Could not split insn", insn);
2841 #ifdef HAVE_ATTR_length
2842 /* This instruction should have been split in shorten_branches,
2843 to ensure that we would have valid length info for the
2844 splitees. */
2845 abort ();
2846 #endif
2848 new_block = 0;
2849 return new;
2852 if (prescan > 0)
2853 break;
2855 #ifdef IA64_UNWIND_INFO
2856 IA64_UNWIND_EMIT (asm_out_file, insn);
2857 #endif
2858 /* Output assembler code from the template. */
2860 output_asm_insn (template, recog_data.operand);
2862 #if defined (DWARF2_UNWIND_INFO)
2863 #if defined (HAVE_prologue)
2864 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2865 dwarf2out_frame_debug (insn);
2866 #else
2867 if (!ACCUMULATE_OUTGOING_ARGS
2868 && GET_CODE (insn) == INSN
2869 && dwarf2out_do_frame ())
2870 dwarf2out_frame_debug (insn);
2871 #endif
2872 #endif
2874 #if 0
2875 /* It's not at all clear why we did this and doing so interferes
2876 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2877 with this out. */
2879 /* Mark this insn as having been output. */
2880 INSN_DELETED_P (insn) = 1;
2881 #endif
2883 current_output_insn = debug_insn = 0;
2886 return NEXT_INSN (insn);
2889 /* Output debugging info to the assembler file FILE
2890 based on the NOTE-insn INSN, assumed to be a line number. */
2892 static void
2893 notice_source_line (insn)
2894 rtx insn;
2896 register const char *filename = NOTE_SOURCE_FILE (insn);
2898 /* Remember filename for basic block profiling.
2899 Filenames are allocated on the permanent obstack
2900 or are passed in ARGV, so we don't have to save
2901 the string. */
2903 if (profile_block_flag && last_filename != filename)
2904 bb_file_label_num = add_bb_string (filename, TRUE);
2906 last_filename = filename;
2907 last_linenum = NOTE_LINE_NUMBER (insn);
2908 high_block_linenum = MAX (last_linenum, high_block_linenum);
2909 high_function_linenum = MAX (last_linenum, high_function_linenum);
2912 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2913 directly to the desired hard register. */
2915 void
2916 cleanup_subreg_operands (insn)
2917 rtx insn;
2919 int i;
2920 extract_insn_cached (insn);
2921 for (i = 0; i < recog_data.n_operands; i++)
2923 if (GET_CODE (recog_data.operand[i]) == SUBREG)
2924 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
2925 else if (GET_CODE (recog_data.operand[i]) == PLUS
2926 || GET_CODE (recog_data.operand[i]) == MULT
2927 || GET_CODE (recog_data.operand[i]) == MEM)
2928 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
2931 for (i = 0; i < recog_data.n_dups; i++)
2933 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2934 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
2935 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2936 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2937 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2938 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
2942 /* If X is a SUBREG, replace it with a REG or a MEM,
2943 based on the thing it is a subreg of. */
2946 alter_subreg (x)
2947 register rtx x;
2949 register rtx y = SUBREG_REG (x);
2951 if (GET_CODE (y) == SUBREG)
2952 y = alter_subreg (y);
2954 /* If reload is operating, we may be replacing inside this SUBREG.
2955 Check for that and make a new one if so. */
2956 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
2957 x = copy_rtx (x);
2959 if (GET_CODE (y) == REG)
2961 int regno = subreg_hard_regno (x, 1);
2963 PUT_CODE (x, REG);
2964 REGNO (x) = regno;
2965 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2966 /* This field has a different meaning for REGs and SUBREGs. Make sure
2967 to clear it! */
2968 x->used = 0;
2970 else if (GET_CODE (y) == MEM)
2972 HOST_WIDE_INT offset = SUBREG_BYTE (x);
2974 /* Catch these instead of generating incorrect code. */
2975 if ((offset % GET_MODE_SIZE (GET_MODE (x))) != 0)
2976 abort ();
2978 PUT_CODE (x, MEM);
2979 MEM_COPY_ATTRIBUTES (x, y);
2980 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
2983 return x;
2986 /* Do alter_subreg on all the SUBREGs contained in X. */
2988 static rtx
2989 walk_alter_subreg (x)
2990 rtx x;
2992 switch (GET_CODE (x))
2994 case PLUS:
2995 case MULT:
2996 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
2997 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
2998 break;
3000 case MEM:
3001 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3002 break;
3004 case SUBREG:
3005 return alter_subreg (x);
3007 default:
3008 break;
3011 return x;
3014 #ifdef HAVE_cc0
3016 /* Given BODY, the body of a jump instruction, alter the jump condition
3017 as required by the bits that are set in cc_status.flags.
3018 Not all of the bits there can be handled at this level in all cases.
3020 The value is normally 0.
3021 1 means that the condition has become always true.
3022 -1 means that the condition has become always false.
3023 2 means that COND has been altered. */
3025 static int
3026 alter_cond (cond)
3027 register rtx cond;
3029 int value = 0;
3031 if (cc_status.flags & CC_REVERSED)
3033 value = 2;
3034 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3037 if (cc_status.flags & CC_INVERTED)
3039 value = 2;
3040 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3043 if (cc_status.flags & CC_NOT_POSITIVE)
3044 switch (GET_CODE (cond))
3046 case LE:
3047 case LEU:
3048 case GEU:
3049 /* Jump becomes unconditional. */
3050 return 1;
3052 case GT:
3053 case GTU:
3054 case LTU:
3055 /* Jump becomes no-op. */
3056 return -1;
3058 case GE:
3059 PUT_CODE (cond, EQ);
3060 value = 2;
3061 break;
3063 case LT:
3064 PUT_CODE (cond, NE);
3065 value = 2;
3066 break;
3068 default:
3069 break;
3072 if (cc_status.flags & CC_NOT_NEGATIVE)
3073 switch (GET_CODE (cond))
3075 case GE:
3076 case GEU:
3077 /* Jump becomes unconditional. */
3078 return 1;
3080 case LT:
3081 case LTU:
3082 /* Jump becomes no-op. */
3083 return -1;
3085 case LE:
3086 case LEU:
3087 PUT_CODE (cond, EQ);
3088 value = 2;
3089 break;
3091 case GT:
3092 case GTU:
3093 PUT_CODE (cond, NE);
3094 value = 2;
3095 break;
3097 default:
3098 break;
3101 if (cc_status.flags & CC_NO_OVERFLOW)
3102 switch (GET_CODE (cond))
3104 case GEU:
3105 /* Jump becomes unconditional. */
3106 return 1;
3108 case LEU:
3109 PUT_CODE (cond, EQ);
3110 value = 2;
3111 break;
3113 case GTU:
3114 PUT_CODE (cond, NE);
3115 value = 2;
3116 break;
3118 case LTU:
3119 /* Jump becomes no-op. */
3120 return -1;
3122 default:
3123 break;
3126 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3127 switch (GET_CODE (cond))
3129 default:
3130 abort ();
3132 case NE:
3133 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3134 value = 2;
3135 break;
3137 case EQ:
3138 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3139 value = 2;
3140 break;
3143 if (cc_status.flags & CC_NOT_SIGNED)
3144 /* The flags are valid if signed condition operators are converted
3145 to unsigned. */
3146 switch (GET_CODE (cond))
3148 case LE:
3149 PUT_CODE (cond, LEU);
3150 value = 2;
3151 break;
3153 case LT:
3154 PUT_CODE (cond, LTU);
3155 value = 2;
3156 break;
3158 case GT:
3159 PUT_CODE (cond, GTU);
3160 value = 2;
3161 break;
3163 case GE:
3164 PUT_CODE (cond, GEU);
3165 value = 2;
3166 break;
3168 default:
3169 break;
3172 return value;
3174 #endif
3176 /* Report inconsistency between the assembler template and the operands.
3177 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3179 void
3180 output_operand_lossage (msgid)
3181 const char *msgid;
3183 if (this_is_asm_operands)
3184 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3185 else
3186 internal_error ("output_operand: %s", _(msgid));
3189 /* Output of assembler code from a template, and its subroutines. */
3191 /* Output text from TEMPLATE to the assembler output file,
3192 obeying %-directions to substitute operands taken from
3193 the vector OPERANDS.
3195 %N (for N a digit) means print operand N in usual manner.
3196 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3197 and print the label name with no punctuation.
3198 %cN means require operand N to be a constant
3199 and print the constant expression with no punctuation.
3200 %aN means expect operand N to be a memory address
3201 (not a memory reference!) and print a reference
3202 to that address.
3203 %nN means expect operand N to be a constant
3204 and print a constant expression for minus the value
3205 of the operand, with no other punctuation. */
3207 static void
3208 output_asm_name ()
3210 if (flag_print_asm_name)
3212 /* Annotate the assembly with a comment describing the pattern and
3213 alternative used. */
3214 if (debug_insn)
3216 register int num = INSN_CODE (debug_insn);
3217 fprintf (asm_out_file, "\t%s %d\t%s",
3218 ASM_COMMENT_START, INSN_UID (debug_insn),
3219 insn_data[num].name);
3220 if (insn_data[num].n_alternatives > 1)
3221 fprintf (asm_out_file, "/%d", which_alternative + 1);
3222 #ifdef HAVE_ATTR_length
3223 fprintf (asm_out_file, "\t[length = %d]",
3224 get_attr_length (debug_insn));
3225 #endif
3226 /* Clear this so only the first assembler insn
3227 of any rtl insn will get the special comment for -dp. */
3228 debug_insn = 0;
3233 void
3234 output_asm_insn (template, operands)
3235 const char *template;
3236 rtx *operands;
3238 register const char *p;
3239 register int c;
3241 /* An insn may return a null string template
3242 in a case where no assembler code is needed. */
3243 if (*template == 0)
3244 return;
3246 p = template;
3247 putc ('\t', asm_out_file);
3249 #ifdef ASM_OUTPUT_OPCODE
3250 ASM_OUTPUT_OPCODE (asm_out_file, p);
3251 #endif
3253 while ((c = *p++))
3254 switch (c)
3256 case '\n':
3257 output_asm_name ();
3258 putc (c, asm_out_file);
3259 #ifdef ASM_OUTPUT_OPCODE
3260 while ((c = *p) == '\t')
3262 putc (c, asm_out_file);
3263 p++;
3265 ASM_OUTPUT_OPCODE (asm_out_file, p);
3266 #endif
3267 break;
3269 #ifdef ASSEMBLER_DIALECT
3270 case '{':
3272 register int i;
3274 /* If we want the first dialect, do nothing. Otherwise, skip
3275 DIALECT_NUMBER of strings ending with '|'. */
3276 for (i = 0; i < dialect_number; i++)
3278 while (*p && *p != '}' && *p++ != '|')
3280 if (*p == '}')
3281 break;
3282 if (*p == '|')
3283 p++;
3286 break;
3288 case '|':
3289 /* Skip to close brace. */
3290 while (*p && *p++ != '}')
3292 break;
3294 case '}':
3295 break;
3296 #endif
3298 case '%':
3299 /* %% outputs a single %. */
3300 if (*p == '%')
3302 p++;
3303 putc (c, asm_out_file);
3305 /* %= outputs a number which is unique to each insn in the entire
3306 compilation. This is useful for making local labels that are
3307 referred to more than once in a given insn. */
3308 else if (*p == '=')
3310 p++;
3311 fprintf (asm_out_file, "%d", insn_counter);
3313 /* % followed by a letter and some digits
3314 outputs an operand in a special way depending on the letter.
3315 Letters `acln' are implemented directly.
3316 Other letters are passed to `output_operand' so that
3317 the PRINT_OPERAND macro can define them. */
3318 else if (ISLOWER (*p) || ISUPPER (*p))
3320 int letter = *p++;
3321 c = atoi (p);
3323 if (! (*p >= '0' && *p <= '9'))
3324 output_operand_lossage ("operand number missing after %-letter");
3325 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3326 output_operand_lossage ("operand number out of range");
3327 else if (letter == 'l')
3328 output_asm_label (operands[c]);
3329 else if (letter == 'a')
3330 output_address (operands[c]);
3331 else if (letter == 'c')
3333 if (CONSTANT_ADDRESS_P (operands[c]))
3334 output_addr_const (asm_out_file, operands[c]);
3335 else
3336 output_operand (operands[c], 'c');
3338 else if (letter == 'n')
3340 if (GET_CODE (operands[c]) == CONST_INT)
3341 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3342 - INTVAL (operands[c]));
3343 else
3345 putc ('-', asm_out_file);
3346 output_addr_const (asm_out_file, operands[c]);
3349 else
3350 output_operand (operands[c], letter);
3352 while ((c = *p) >= '0' && c <= '9')
3353 p++;
3355 /* % followed by a digit outputs an operand the default way. */
3356 else if (*p >= '0' && *p <= '9')
3358 c = atoi (p);
3359 if (this_is_asm_operands
3360 && (c < 0 || (unsigned int) c >= insn_noperands))
3361 output_operand_lossage ("operand number out of range");
3362 else
3363 output_operand (operands[c], 0);
3364 while ((c = *p) >= '0' && c <= '9')
3365 p++;
3367 /* % followed by punctuation: output something for that
3368 punctuation character alone, with no operand.
3369 The PRINT_OPERAND macro decides what is actually done. */
3370 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3371 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3372 output_operand (NULL_RTX, *p++);
3373 #endif
3374 else
3375 output_operand_lossage ("invalid %%-code");
3376 break;
3378 default:
3379 putc (c, asm_out_file);
3382 output_asm_name ();
3384 putc ('\n', asm_out_file);
3387 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3389 void
3390 output_asm_label (x)
3391 rtx x;
3393 char buf[256];
3395 if (GET_CODE (x) == LABEL_REF)
3396 x = XEXP (x, 0);
3397 if (GET_CODE (x) == CODE_LABEL
3398 || (GET_CODE (x) == NOTE
3399 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3400 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3401 else
3402 output_operand_lossage ("`%l' operand isn't a label");
3404 assemble_name (asm_out_file, buf);
3407 /* Print operand X using machine-dependent assembler syntax.
3408 The macro PRINT_OPERAND is defined just to control this function.
3409 CODE is a non-digit that preceded the operand-number in the % spec,
3410 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3411 between the % and the digits.
3412 When CODE is a non-letter, X is 0.
3414 The meanings of the letters are machine-dependent and controlled
3415 by PRINT_OPERAND. */
3417 static void
3418 output_operand (x, code)
3419 rtx x;
3420 int code ATTRIBUTE_UNUSED;
3422 if (x && GET_CODE (x) == SUBREG)
3423 x = alter_subreg (x);
3425 /* If X is a pseudo-register, abort now rather than writing trash to the
3426 assembler file. */
3428 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3429 abort ();
3431 PRINT_OPERAND (asm_out_file, x, code);
3434 /* Print a memory reference operand for address X
3435 using machine-dependent assembler syntax.
3436 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3438 void
3439 output_address (x)
3440 rtx x;
3442 walk_alter_subreg (x);
3443 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3446 /* Print an integer constant expression in assembler syntax.
3447 Addition and subtraction are the only arithmetic
3448 that may appear in these expressions. */
3450 void
3451 output_addr_const (file, x)
3452 FILE *file;
3453 rtx x;
3455 char buf[256];
3457 restart:
3458 switch (GET_CODE (x))
3460 case PC:
3461 if (flag_pic)
3462 putc ('.', file);
3463 else
3464 abort ();
3465 break;
3467 case SYMBOL_REF:
3468 #ifdef ASM_OUTPUT_SYMBOL_REF
3469 ASM_OUTPUT_SYMBOL_REF (file, x);
3470 #else
3471 assemble_name (file, XSTR (x, 0));
3472 #endif
3473 break;
3475 case LABEL_REF:
3476 x = XEXP (x, 0);
3477 /* Fall through. */
3478 case CODE_LABEL:
3479 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3480 assemble_name (file, buf);
3481 break;
3483 case CONST_INT:
3484 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3485 break;
3487 case CONST:
3488 /* This used to output parentheses around the expression,
3489 but that does not work on the 386 (either ATT or BSD assembler). */
3490 output_addr_const (file, XEXP (x, 0));
3491 break;
3493 case CONST_DOUBLE:
3494 if (GET_MODE (x) == VOIDmode)
3496 /* We can use %d if the number is one word and positive. */
3497 if (CONST_DOUBLE_HIGH (x))
3498 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3499 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3500 else if (CONST_DOUBLE_LOW (x) < 0)
3501 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3502 else
3503 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3505 else
3506 /* We can't handle floating point constants;
3507 PRINT_OPERAND must handle them. */
3508 output_operand_lossage ("floating constant misused");
3509 break;
3511 case PLUS:
3512 /* Some assemblers need integer constants to appear last (eg masm). */
3513 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3515 output_addr_const (file, XEXP (x, 1));
3516 if (INTVAL (XEXP (x, 0)) >= 0)
3517 fprintf (file, "+");
3518 output_addr_const (file, XEXP (x, 0));
3520 else
3522 output_addr_const (file, XEXP (x, 0));
3523 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3524 || INTVAL (XEXP (x, 1)) >= 0)
3525 fprintf (file, "+");
3526 output_addr_const (file, XEXP (x, 1));
3528 break;
3530 case MINUS:
3531 /* Avoid outputting things like x-x or x+5-x,
3532 since some assemblers can't handle that. */
3533 x = simplify_subtraction (x);
3534 if (GET_CODE (x) != MINUS)
3535 goto restart;
3537 output_addr_const (file, XEXP (x, 0));
3538 fprintf (file, "-");
3539 if ((GET_CODE (XEXP (x, 1)) == CONST_INT
3540 && INTVAL (XEXP (x, 1)) < 0)
3541 || GET_CODE (XEXP (x, 1)) != CONST_INT)
3543 fputs (targetm.asm_out.open_paren, file);
3544 output_addr_const (file, XEXP (x, 1));
3545 fputs (targetm.asm_out.close_paren, file);
3547 else
3548 output_addr_const (file, XEXP (x, 1));
3549 break;
3551 case ZERO_EXTEND:
3552 case SIGN_EXTEND:
3553 output_addr_const (file, XEXP (x, 0));
3554 break;
3556 default:
3557 #ifdef OUTPUT_ADDR_CONST_EXTRA
3558 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3559 break;
3561 fail:
3562 #endif
3563 output_operand_lossage ("invalid expression as operand");
3567 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3568 %R prints the value of REGISTER_PREFIX.
3569 %L prints the value of LOCAL_LABEL_PREFIX.
3570 %U prints the value of USER_LABEL_PREFIX.
3571 %I prints the value of IMMEDIATE_PREFIX.
3572 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3573 Also supported are %d, %x, %s, %e, %f, %g and %%.
3575 We handle alternate assembler dialects here, just like output_asm_insn. */
3577 void
3578 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3580 #ifndef ANSI_PROTOTYPES
3581 FILE *file;
3582 const char *p;
3583 #endif
3584 va_list argptr;
3585 char buf[10];
3586 char *q, c;
3588 VA_START (argptr, p);
3590 #ifndef ANSI_PROTOTYPES
3591 file = va_arg (argptr, FILE *);
3592 p = va_arg (argptr, const char *);
3593 #endif
3595 buf[0] = '%';
3597 while ((c = *p++))
3598 switch (c)
3600 #ifdef ASSEMBLER_DIALECT
3601 case '{':
3603 int i;
3605 /* If we want the first dialect, do nothing. Otherwise, skip
3606 DIALECT_NUMBER of strings ending with '|'. */
3607 for (i = 0; i < dialect_number; i++)
3609 while (*p && *p++ != '|')
3612 if (*p == '|')
3613 p++;
3616 break;
3618 case '|':
3619 /* Skip to close brace. */
3620 while (*p && *p++ != '}')
3622 break;
3624 case '}':
3625 break;
3626 #endif
3628 case '%':
3629 c = *p++;
3630 q = &buf[1];
3631 while ((c >= '0' && c <= '9') || c == '.')
3633 *q++ = c;
3634 c = *p++;
3636 switch (c)
3638 case '%':
3639 fprintf (file, "%%");
3640 break;
3642 case 'd': case 'i': case 'u':
3643 case 'x': case 'p': case 'X':
3644 case 'o':
3645 *q++ = c;
3646 *q = 0;
3647 fprintf (file, buf, va_arg (argptr, int));
3648 break;
3650 case 'w':
3651 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3652 but we do not check for those cases. It means that the value
3653 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3655 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3656 #else
3657 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3658 *q++ = 'l';
3659 #else
3660 *q++ = 'l';
3661 *q++ = 'l';
3662 #endif
3663 #endif
3665 *q++ = *p++;
3666 *q = 0;
3667 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3668 break;
3670 case 'l':
3671 *q++ = c;
3672 *q++ = *p++;
3673 *q = 0;
3674 fprintf (file, buf, va_arg (argptr, long));
3675 break;
3677 case 'e':
3678 case 'f':
3679 case 'g':
3680 *q++ = c;
3681 *q = 0;
3682 fprintf (file, buf, va_arg (argptr, double));
3683 break;
3685 case 's':
3686 *q++ = c;
3687 *q = 0;
3688 fprintf (file, buf, va_arg (argptr, char *));
3689 break;
3691 case 'O':
3692 #ifdef ASM_OUTPUT_OPCODE
3693 ASM_OUTPUT_OPCODE (asm_out_file, p);
3694 #endif
3695 break;
3697 case 'R':
3698 #ifdef REGISTER_PREFIX
3699 fprintf (file, "%s", REGISTER_PREFIX);
3700 #endif
3701 break;
3703 case 'I':
3704 #ifdef IMMEDIATE_PREFIX
3705 fprintf (file, "%s", IMMEDIATE_PREFIX);
3706 #endif
3707 break;
3709 case 'L':
3710 #ifdef LOCAL_LABEL_PREFIX
3711 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3712 #endif
3713 break;
3715 case 'U':
3716 fputs (user_label_prefix, file);
3717 break;
3719 #ifdef ASM_FPRINTF_EXTENSIONS
3720 /* Upper case letters are reserved for general use by asm_fprintf
3721 and so are not available to target specific code. In order to
3722 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3723 they are defined here. As they get turned into real extensions
3724 to asm_fprintf they should be removed from this list. */
3725 case 'A': case 'B': case 'C': case 'D': case 'E':
3726 case 'F': case 'G': case 'H': case 'J': case 'K':
3727 case 'M': case 'N': case 'P': case 'Q': case 'S':
3728 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3729 break;
3731 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3732 #endif
3733 default:
3734 abort ();
3736 break;
3738 default:
3739 fputc (c, file);
3741 va_end (argptr);
3744 /* Split up a CONST_DOUBLE or integer constant rtx
3745 into two rtx's for single words,
3746 storing in *FIRST the word that comes first in memory in the target
3747 and in *SECOND the other. */
3749 void
3750 split_double (value, first, second)
3751 rtx value;
3752 rtx *first, *second;
3754 if (GET_CODE (value) == CONST_INT)
3756 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3758 /* In this case the CONST_INT holds both target words.
3759 Extract the bits from it into two word-sized pieces.
3760 Sign extend each half to HOST_WIDE_INT. */
3761 unsigned HOST_WIDE_INT low, high;
3762 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3764 /* Set sign_bit to the most significant bit of a word. */
3765 sign_bit = 1;
3766 sign_bit <<= BITS_PER_WORD - 1;
3768 /* Set mask so that all bits of the word are set. We could
3769 have used 1 << BITS_PER_WORD instead of basing the
3770 calculation on sign_bit. However, on machines where
3771 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3772 compiler warning, even though the code would never be
3773 executed. */
3774 mask = sign_bit << 1;
3775 mask--;
3777 /* Set sign_extend as any remaining bits. */
3778 sign_extend = ~mask;
3780 /* Pick the lower word and sign-extend it. */
3781 low = INTVAL (value);
3782 low &= mask;
3783 if (low & sign_bit)
3784 low |= sign_extend;
3786 /* Pick the higher word, shifted to the least significant
3787 bits, and sign-extend it. */
3788 high = INTVAL (value);
3789 high >>= BITS_PER_WORD - 1;
3790 high >>= 1;
3791 high &= mask;
3792 if (high & sign_bit)
3793 high |= sign_extend;
3795 /* Store the words in the target machine order. */
3796 if (WORDS_BIG_ENDIAN)
3798 *first = GEN_INT (high);
3799 *second = GEN_INT (low);
3801 else
3803 *first = GEN_INT (low);
3804 *second = GEN_INT (high);
3807 else
3809 /* The rule for using CONST_INT for a wider mode
3810 is that we regard the value as signed.
3811 So sign-extend it. */
3812 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3813 if (WORDS_BIG_ENDIAN)
3815 *first = high;
3816 *second = value;
3818 else
3820 *first = value;
3821 *second = high;
3825 else if (GET_CODE (value) != CONST_DOUBLE)
3827 if (WORDS_BIG_ENDIAN)
3829 *first = const0_rtx;
3830 *second = value;
3832 else
3834 *first = value;
3835 *second = const0_rtx;
3838 else if (GET_MODE (value) == VOIDmode
3839 /* This is the old way we did CONST_DOUBLE integers. */
3840 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3842 /* In an integer, the words are defined as most and least significant.
3843 So order them by the target's convention. */
3844 if (WORDS_BIG_ENDIAN)
3846 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3847 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3849 else
3851 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3852 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3855 else
3857 #ifdef REAL_ARITHMETIC
3858 REAL_VALUE_TYPE r;
3859 long l[2];
3860 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3862 /* Note, this converts the REAL_VALUE_TYPE to the target's
3863 format, splits up the floating point double and outputs
3864 exactly 32 bits of it into each of l[0] and l[1] --
3865 not necessarily BITS_PER_WORD bits. */
3866 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3868 /* If 32 bits is an entire word for the target, but not for the host,
3869 then sign-extend on the host so that the number will look the same
3870 way on the host that it would on the target. See for instance
3871 simplify_unary_operation. The #if is needed to avoid compiler
3872 warnings. */
3874 #if HOST_BITS_PER_LONG > 32
3875 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3877 if (l[0] & ((long) 1 << 31))
3878 l[0] |= ((long) (-1) << 32);
3879 if (l[1] & ((long) 1 << 31))
3880 l[1] |= ((long) (-1) << 32);
3882 #endif
3884 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3885 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3886 #else
3887 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3888 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3889 && ! flag_pretend_float)
3890 abort ();
3892 if (
3893 #ifdef HOST_WORDS_BIG_ENDIAN
3894 WORDS_BIG_ENDIAN
3895 #else
3896 ! WORDS_BIG_ENDIAN
3897 #endif
3900 /* Host and target agree => no need to swap. */
3901 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3902 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3904 else
3906 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3907 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3909 #endif /* no REAL_ARITHMETIC */
3913 /* Return nonzero if this function has no function calls. */
3916 leaf_function_p ()
3918 rtx insn;
3919 rtx link;
3921 if (profile_flag || profile_block_flag || profile_arc_flag)
3922 return 0;
3924 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3926 if (GET_CODE (insn) == CALL_INSN
3927 && ! SIBLING_CALL_P (insn))
3928 return 0;
3929 if (GET_CODE (insn) == INSN
3930 && GET_CODE (PATTERN (insn)) == SEQUENCE
3931 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3932 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3933 return 0;
3935 for (link = current_function_epilogue_delay_list;
3936 link;
3937 link = XEXP (link, 1))
3939 insn = XEXP (link, 0);
3941 if (GET_CODE (insn) == CALL_INSN
3942 && ! SIBLING_CALL_P (insn))
3943 return 0;
3944 if (GET_CODE (insn) == INSN
3945 && GET_CODE (PATTERN (insn)) == SEQUENCE
3946 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3947 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3948 return 0;
3951 return 1;
3954 /* Return 1 if branch is an forward branch.
3955 Uses insn_shuid array, so it works only in the final pass. May be used by
3956 output templates to customary add branch prediction hints.
3959 final_forward_branch_p (insn)
3960 rtx insn;
3962 int insn_id, label_id;
3963 if (!uid_shuid)
3964 abort ();
3965 insn_id = INSN_SHUID (insn);
3966 label_id = INSN_SHUID (JUMP_LABEL (insn));
3967 /* We've hit some insns that does not have id information available. */
3968 if (!insn_id || !label_id)
3969 abort ();
3970 return insn_id < label_id;
3973 /* On some machines, a function with no call insns
3974 can run faster if it doesn't create its own register window.
3975 When output, the leaf function should use only the "output"
3976 registers. Ordinarily, the function would be compiled to use
3977 the "input" registers to find its arguments; it is a candidate
3978 for leaf treatment if it uses only the "input" registers.
3979 Leaf function treatment means renumbering so the function
3980 uses the "output" registers instead. */
3982 #ifdef LEAF_REGISTERS
3984 /* Return 1 if this function uses only the registers that can be
3985 safely renumbered. */
3988 only_leaf_regs_used ()
3990 int i;
3991 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3994 if ((regs_ever_live[i] || global_regs[i])
3995 && ! permitted_reg_in_leaf_functions[i])
3996 return 0;
3998 if (current_function_uses_pic_offset_table
3999 && pic_offset_table_rtx != 0
4000 && GET_CODE (pic_offset_table_rtx) == REG
4001 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4002 return 0;
4004 return 1;
4007 /* Scan all instructions and renumber all registers into those
4008 available in leaf functions. */
4010 static void
4011 leaf_renumber_regs (first)
4012 rtx first;
4014 rtx insn;
4016 /* Renumber only the actual patterns.
4017 The reg-notes can contain frame pointer refs,
4018 and renumbering them could crash, and should not be needed. */
4019 for (insn = first; insn; insn = NEXT_INSN (insn))
4020 if (INSN_P (insn))
4021 leaf_renumber_regs_insn (PATTERN (insn));
4022 for (insn = current_function_epilogue_delay_list;
4023 insn;
4024 insn = XEXP (insn, 1))
4025 if (INSN_P (XEXP (insn, 0)))
4026 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4029 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4030 available in leaf functions. */
4032 void
4033 leaf_renumber_regs_insn (in_rtx)
4034 register rtx in_rtx;
4036 register int i, j;
4037 register const char *format_ptr;
4039 if (in_rtx == 0)
4040 return;
4042 /* Renumber all input-registers into output-registers.
4043 renumbered_regs would be 1 for an output-register;
4044 they */
4046 if (GET_CODE (in_rtx) == REG)
4048 int newreg;
4050 /* Don't renumber the same reg twice. */
4051 if (in_rtx->used)
4052 return;
4054 newreg = REGNO (in_rtx);
4055 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4056 to reach here as part of a REG_NOTE. */
4057 if (newreg >= FIRST_PSEUDO_REGISTER)
4059 in_rtx->used = 1;
4060 return;
4062 newreg = LEAF_REG_REMAP (newreg);
4063 if (newreg < 0)
4064 abort ();
4065 regs_ever_live[REGNO (in_rtx)] = 0;
4066 regs_ever_live[newreg] = 1;
4067 REGNO (in_rtx) = newreg;
4068 in_rtx->used = 1;
4071 if (INSN_P (in_rtx))
4073 /* Inside a SEQUENCE, we find insns.
4074 Renumber just the patterns of these insns,
4075 just as we do for the top-level insns. */
4076 leaf_renumber_regs_insn (PATTERN (in_rtx));
4077 return;
4080 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4082 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4083 switch (*format_ptr++)
4085 case 'e':
4086 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4087 break;
4089 case 'E':
4090 if (NULL != XVEC (in_rtx, i))
4092 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4093 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4095 break;
4097 case 'S':
4098 case 's':
4099 case '0':
4100 case 'i':
4101 case 'w':
4102 case 'n':
4103 case 'u':
4104 break;
4106 default:
4107 abort ();
4110 #endif