* cselib.c (clear_table): Rename to cselib_clear_table.
[official-gcc.git] / gcc / tree-ssa-dom.c
blob1d4f9b0b1c20d731beb64addcb50af89b394bc4f
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "cfgloop.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "timevar.h"
39 #include "tree-dump.h"
40 #include "tree-flow.h"
41 #include "domwalk.h"
42 #include "real.h"
43 #include "tree-pass.h"
44 #include "tree-ssa-propagate.h"
45 #include "langhooks.h"
47 /* This file implements optimizations on the dominator tree. */
50 /* Structure for recording edge equivalences as well as any pending
51 edge redirections during the dominator optimizer.
53 Computing and storing the edge equivalences instead of creating
54 them on-demand can save significant amounts of time, particularly
55 for pathological cases involving switch statements.
57 These structures live for a single iteration of the dominator
58 optimizer in the edge's AUX field. At the end of an iteration we
59 free each of these structures and update the AUX field to point
60 to any requested redirection target (the code for updating the
61 CFG and SSA graph for edge redirection expects redirection edge
62 targets to be in the AUX field for each edge. */
64 struct edge_info
66 /* If this edge creates a simple equivalence, the LHS and RHS of
67 the equivalence will be stored here. */
68 tree lhs;
69 tree rhs;
71 /* Traversing an edge may also indicate one or more particular conditions
72 are true or false. The number of recorded conditions can vary, but
73 can be determined by the condition's code. So we have an array
74 and its maximum index rather than use a varray. */
75 tree *cond_equivalences;
76 unsigned int max_cond_equivalences;
78 /* If we can thread this edge this field records the new target. */
79 edge redirection_target;
83 /* Hash table with expressions made available during the renaming process.
84 When an assignment of the form X_i = EXPR is found, the statement is
85 stored in this table. If the same expression EXPR is later found on the
86 RHS of another statement, it is replaced with X_i (thus performing
87 global redundancy elimination). Similarly as we pass through conditionals
88 we record the conditional itself as having either a true or false value
89 in this table. */
90 static htab_t avail_exprs;
92 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
93 expressions it enters into the hash table along with a marker entry
94 (null). When we finish processing the block, we pop off entries and
95 remove the expressions from the global hash table until we hit the
96 marker. */
97 static VEC(tree_on_heap) *avail_exprs_stack;
99 /* Stack of trees used to restore the global currdefs to its original
100 state after completing optimization of a block and its dominator children.
102 An SSA_NAME indicates that the current definition of the underlying
103 variable should be set to the given SSA_NAME.
105 A _DECL node indicates that the underlying variable has no current
106 definition.
108 A NULL node is used to mark the last node associated with the
109 current block. */
110 static VEC(tree_on_heap) *block_defs_stack;
112 /* Stack of statements we need to rescan during finalization for newly
113 exposed variables.
115 Statement rescanning must occur after the current block's available
116 expressions are removed from AVAIL_EXPRS. Else we may change the
117 hash code for an expression and be unable to find/remove it from
118 AVAIL_EXPRS. */
119 static VEC(tree_on_heap) *stmts_to_rescan;
121 /* Structure for entries in the expression hash table.
123 This requires more memory for the hash table entries, but allows us
124 to avoid creating silly tree nodes and annotations for conditionals,
125 eliminates 2 global hash tables and two block local varrays.
127 It also allows us to reduce the number of hash table lookups we
128 have to perform in lookup_avail_expr and finally it allows us to
129 significantly reduce the number of calls into the hashing routine
130 itself. */
132 struct expr_hash_elt
134 /* The value (lhs) of this expression. */
135 tree lhs;
137 /* The expression (rhs) we want to record. */
138 tree rhs;
140 /* The annotation if this element corresponds to a statement. */
141 stmt_ann_t ann;
143 /* The hash value for RHS/ann. */
144 hashval_t hash;
147 /* Stack of dest,src pairs that need to be restored during finalization.
149 A NULL entry is used to mark the end of pairs which need to be
150 restored during finalization of this block. */
151 static VEC(tree_on_heap) *const_and_copies_stack;
153 /* Bitmap of SSA_NAMEs known to have a nonzero value, even if we do not
154 know their exact value. */
155 static bitmap nonzero_vars;
157 /* Stack of SSA_NAMEs which need their NONZERO_VARS property cleared
158 when the current block is finalized.
160 A NULL entry is used to mark the end of names needing their
161 entry in NONZERO_VARS cleared during finalization of this block. */
162 static VEC(tree_on_heap) *nonzero_vars_stack;
164 /* Track whether or not we have changed the control flow graph. */
165 static bool cfg_altered;
167 /* Bitmap of blocks that have had EH statements cleaned. We should
168 remove their dead edges eventually. */
169 static bitmap need_eh_cleanup;
171 /* Statistics for dominator optimizations. */
172 struct opt_stats_d
174 long num_stmts;
175 long num_exprs_considered;
176 long num_re;
177 long num_const_prop;
178 long num_copy_prop;
181 static struct opt_stats_d opt_stats;
183 /* Value range propagation record. Each time we encounter a conditional
184 of the form SSA_NAME COND CONST we create a new vrp_element to record
185 how the condition affects the possible values SSA_NAME may have.
187 Each record contains the condition tested (COND), and the range of
188 values the variable may legitimately have if COND is true. Note the
189 range of values may be a smaller range than COND specifies if we have
190 recorded other ranges for this variable. Each record also contains the
191 block in which the range was recorded for invalidation purposes.
193 Note that the current known range is computed lazily. This allows us
194 to avoid the overhead of computing ranges which are never queried.
196 When we encounter a conditional, we look for records which constrain
197 the SSA_NAME used in the condition. In some cases those records allow
198 us to determine the condition's result at compile time. In other cases
199 they may allow us to simplify the condition.
201 We also use value ranges to do things like transform signed div/mod
202 operations into unsigned div/mod or to simplify ABS_EXPRs.
204 Simple experiments have shown these optimizations to not be all that
205 useful on switch statements (much to my surprise). So switch statement
206 optimizations are not performed.
208 Note carefully we do not propagate information through each statement
209 in the block. i.e., if we know variable X has a value defined of
210 [0, 25] and we encounter Y = X + 1, we do not track a value range
211 for Y (which would be [1, 26] if we cared). Similarly we do not
212 constrain values as we encounter narrowing typecasts, etc. */
214 struct vrp_element
216 /* The highest and lowest values the variable in COND may contain when
217 COND is true. Note this may not necessarily be the same values
218 tested by COND if the same variable was used in earlier conditionals.
220 Note this is computed lazily and thus can be NULL indicating that
221 the values have not been computed yet. */
222 tree low;
223 tree high;
225 /* The actual conditional we recorded. This is needed since we compute
226 ranges lazily. */
227 tree cond;
229 /* The basic block where this record was created. We use this to determine
230 when to remove records. */
231 basic_block bb;
234 /* A hash table holding value range records (VRP_ELEMENTs) for a given
235 SSA_NAME. We used to use a varray indexed by SSA_NAME_VERSION, but
236 that gets awful wasteful, particularly since the density objects
237 with useful information is very low. */
238 static htab_t vrp_data;
240 /* An entry in the VRP_DATA hash table. We record the variable and a
241 varray of VRP_ELEMENT records associated with that variable. */
242 struct vrp_hash_elt
244 tree var;
245 varray_type records;
248 /* Array of variables which have their values constrained by operations
249 in this basic block. We use this during finalization to know
250 which variables need their VRP data updated. */
252 /* Stack of SSA_NAMEs which had their values constrained by operations
253 in this basic block. During finalization of this block we use this
254 list to determine which variables need their VRP data updated.
256 A NULL entry marks the end of the SSA_NAMEs associated with this block. */
257 static VEC(tree_on_heap) *vrp_variables_stack;
259 struct eq_expr_value
261 tree src;
262 tree dst;
265 /* Local functions. */
266 static void optimize_stmt (struct dom_walk_data *,
267 basic_block bb,
268 block_stmt_iterator);
269 static tree lookup_avail_expr (tree, bool);
270 static hashval_t vrp_hash (const void *);
271 static int vrp_eq (const void *, const void *);
272 static hashval_t avail_expr_hash (const void *);
273 static hashval_t real_avail_expr_hash (const void *);
274 static int avail_expr_eq (const void *, const void *);
275 static void htab_statistics (FILE *, htab_t);
276 static void record_cond (tree, tree);
277 static void record_const_or_copy (tree, tree);
278 static void record_equality (tree, tree);
279 static tree update_rhs_and_lookup_avail_expr (tree, tree, bool);
280 static tree simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *,
281 tree, int);
282 static tree simplify_cond_and_lookup_avail_expr (tree, stmt_ann_t, int);
283 static tree simplify_switch_and_lookup_avail_expr (tree, int);
284 static tree find_equivalent_equality_comparison (tree);
285 static void record_range (tree, basic_block);
286 static bool extract_range_from_cond (tree, tree *, tree *, int *);
287 static void record_equivalences_from_phis (basic_block);
288 static void record_equivalences_from_incoming_edge (basic_block);
289 static bool eliminate_redundant_computations (struct dom_walk_data *,
290 tree, stmt_ann_t);
291 static void record_equivalences_from_stmt (tree, int, stmt_ann_t);
292 static void thread_across_edge (struct dom_walk_data *, edge);
293 static void dom_opt_finalize_block (struct dom_walk_data *, basic_block);
294 static void dom_opt_initialize_block (struct dom_walk_data *, basic_block);
295 static void propagate_to_outgoing_edges (struct dom_walk_data *, basic_block);
296 static void remove_local_expressions_from_table (void);
297 static void restore_vars_to_original_value (void);
298 static void restore_currdefs_to_original_value (void);
299 static void register_definitions_for_stmt (tree);
300 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
301 static void restore_nonzero_vars_to_original_value (void);
302 static inline bool unsafe_associative_fp_binop (tree);
305 /* Local version of fold that doesn't introduce cruft. */
307 static tree
308 local_fold (tree t)
310 t = fold (t);
312 /* Strip away useless type conversions. Both the NON_LVALUE_EXPR that
313 may have been added by fold, and "useless" type conversions that might
314 now be apparent due to propagation. */
315 STRIP_USELESS_TYPE_CONVERSION (t);
317 return t;
320 /* Allocate an EDGE_INFO for edge E and attach it to E.
321 Return the new EDGE_INFO structure. */
323 static struct edge_info *
324 allocate_edge_info (edge e)
326 struct edge_info *edge_info;
328 edge_info = xcalloc (1, sizeof (struct edge_info));
330 e->aux = edge_info;
331 return edge_info;
334 /* Free all EDGE_INFO structures associated with edges in the CFG.
335 If a particular edge can be threaded, copy the redirection
336 target from the EDGE_INFO structure into the edge's AUX field
337 as required by code to update the CFG and SSA graph for
338 jump threading. */
340 static void
341 free_all_edge_infos (void)
343 basic_block bb;
344 edge_iterator ei;
345 edge e;
347 FOR_EACH_BB (bb)
349 FOR_EACH_EDGE (e, ei, bb->preds)
351 struct edge_info *edge_info = e->aux;
353 if (edge_info)
355 e->aux = edge_info->redirection_target;
356 if (edge_info->cond_equivalences)
357 free (edge_info->cond_equivalences);
358 free (edge_info);
364 /* Jump threading, redundancy elimination and const/copy propagation.
366 This pass may expose new symbols that need to be renamed into SSA. For
367 every new symbol exposed, its corresponding bit will be set in
368 VARS_TO_RENAME. */
370 static void
371 tree_ssa_dominator_optimize (void)
373 struct dom_walk_data walk_data;
374 unsigned int i;
375 struct loops loops_info;
377 memset (&opt_stats, 0, sizeof (opt_stats));
379 for (i = 0; i < num_referenced_vars; i++)
380 var_ann (referenced_var (i))->current_def = NULL;
382 /* Create our hash tables. */
383 avail_exprs = htab_create (1024, real_avail_expr_hash, avail_expr_eq, free);
384 vrp_data = htab_create (ceil_log2 (num_ssa_names), vrp_hash, vrp_eq, free);
385 avail_exprs_stack = VEC_alloc (tree_on_heap, 20);
386 block_defs_stack = VEC_alloc (tree_on_heap, 20);
387 const_and_copies_stack = VEC_alloc (tree_on_heap, 20);
388 nonzero_vars_stack = VEC_alloc (tree_on_heap, 20);
389 vrp_variables_stack = VEC_alloc (tree_on_heap, 20);
390 stmts_to_rescan = VEC_alloc (tree_on_heap, 20);
391 nonzero_vars = BITMAP_ALLOC (NULL);
392 need_eh_cleanup = BITMAP_ALLOC (NULL);
394 /* Setup callbacks for the generic dominator tree walker. */
395 walk_data.walk_stmts_backward = false;
396 walk_data.dom_direction = CDI_DOMINATORS;
397 walk_data.initialize_block_local_data = NULL;
398 walk_data.before_dom_children_before_stmts = dom_opt_initialize_block;
399 walk_data.before_dom_children_walk_stmts = optimize_stmt;
400 walk_data.before_dom_children_after_stmts = propagate_to_outgoing_edges;
401 walk_data.after_dom_children_before_stmts = NULL;
402 walk_data.after_dom_children_walk_stmts = NULL;
403 walk_data.after_dom_children_after_stmts = dom_opt_finalize_block;
404 /* Right now we only attach a dummy COND_EXPR to the global data pointer.
405 When we attach more stuff we'll need to fill this out with a real
406 structure. */
407 walk_data.global_data = NULL;
408 walk_data.block_local_data_size = 0;
409 walk_data.interesting_blocks = NULL;
411 /* Now initialize the dominator walker. */
412 init_walk_dominator_tree (&walk_data);
414 calculate_dominance_info (CDI_DOMINATORS);
416 /* We need to know which edges exit loops so that we can
417 aggressively thread through loop headers to an exit
418 edge. */
419 flow_loops_find (&loops_info);
420 mark_loop_exit_edges (&loops_info);
421 flow_loops_free (&loops_info);
423 /* Clean up the CFG so that any forwarder blocks created by loop
424 canonicalization are removed. */
425 cleanup_tree_cfg ();
427 /* If we prove certain blocks are unreachable, then we want to
428 repeat the dominator optimization process as PHI nodes may
429 have turned into copies which allows better propagation of
430 values. So we repeat until we do not identify any new unreachable
431 blocks. */
434 /* Optimize the dominator tree. */
435 cfg_altered = false;
437 /* We need accurate information regarding back edges in the CFG
438 for jump threading. */
439 mark_dfs_back_edges ();
441 /* Recursively walk the dominator tree optimizing statements. */
442 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
444 /* If we exposed any new variables, go ahead and put them into
445 SSA form now, before we handle jump threading. This simplifies
446 interactions between rewriting of _DECL nodes into SSA form
447 and rewriting SSA_NAME nodes into SSA form after block
448 duplication and CFG manipulation. */
449 update_ssa (TODO_update_ssa);
451 free_all_edge_infos ();
454 block_stmt_iterator bsi;
455 basic_block bb;
456 FOR_EACH_BB (bb)
458 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
460 update_stmt_if_modified (bsi_stmt (bsi));
464 /* Thread jumps, creating duplicate blocks as needed. */
465 cfg_altered |= thread_through_all_blocks ();
467 /* Removal of statements may make some EH edges dead. Purge
468 such edges from the CFG as needed. */
469 if (!bitmap_empty_p (need_eh_cleanup))
471 cfg_altered |= tree_purge_all_dead_eh_edges (need_eh_cleanup);
472 bitmap_zero (need_eh_cleanup);
475 if (cfg_altered)
476 free_dominance_info (CDI_DOMINATORS);
478 cfg_altered |= cleanup_tree_cfg ();
480 if (rediscover_loops_after_threading)
482 /* Rerun basic loop analysis to discover any newly
483 created loops and update the set of exit edges. */
484 rediscover_loops_after_threading = false;
485 flow_loops_find (&loops_info);
486 mark_loop_exit_edges (&loops_info);
487 flow_loops_free (&loops_info);
489 /* Remove any forwarder blocks inserted by loop
490 header canonicalization. */
491 cleanup_tree_cfg ();
494 calculate_dominance_info (CDI_DOMINATORS);
496 rewrite_ssa_into_ssa ();
498 /* Reinitialize the various tables. */
499 bitmap_clear (nonzero_vars);
500 htab_empty (avail_exprs);
501 htab_empty (vrp_data);
503 for (i = 0; i < num_referenced_vars; i++)
504 var_ann (referenced_var (i))->current_def = NULL;
506 /* Finally, remove everything except invariants in SSA_NAME_VALUE.
508 This must be done before we iterate as we might have a
509 reference to an SSA_NAME which was removed by the call to
510 rewrite_ssa_into_ssa.
512 Long term we will be able to let everything in SSA_NAME_VALUE
513 persist. However, for now, we know this is the safe thing to do. */
514 for (i = 0; i < num_ssa_names; i++)
516 tree name = ssa_name (i);
517 tree value;
519 if (!name)
520 continue;
522 value = SSA_NAME_VALUE (name);
523 if (value && !is_gimple_min_invariant (value))
524 SSA_NAME_VALUE (name) = NULL;
527 while (optimize > 1 && cfg_altered);
529 /* Debugging dumps. */
530 if (dump_file && (dump_flags & TDF_STATS))
531 dump_dominator_optimization_stats (dump_file);
533 /* We emptied the hash table earlier, now delete it completely. */
534 htab_delete (avail_exprs);
535 htab_delete (vrp_data);
537 /* It is not necessary to clear CURRDEFS, REDIRECTION_EDGES, VRP_DATA,
538 CONST_AND_COPIES, and NONZERO_VARS as they all get cleared at the bottom
539 of the do-while loop above. */
541 /* And finalize the dominator walker. */
542 fini_walk_dominator_tree (&walk_data);
544 /* Free nonzero_vars. */
545 BITMAP_FREE (nonzero_vars);
546 BITMAP_FREE (need_eh_cleanup);
548 VEC_free (tree_on_heap, block_defs_stack);
549 VEC_free (tree_on_heap, avail_exprs_stack);
550 VEC_free (tree_on_heap, const_and_copies_stack);
551 VEC_free (tree_on_heap, nonzero_vars_stack);
552 VEC_free (tree_on_heap, vrp_variables_stack);
553 VEC_free (tree_on_heap, stmts_to_rescan);
556 static bool
557 gate_dominator (void)
559 return flag_tree_dom != 0;
562 struct tree_opt_pass pass_dominator =
564 "dom", /* name */
565 gate_dominator, /* gate */
566 tree_ssa_dominator_optimize, /* execute */
567 NULL, /* sub */
568 NULL, /* next */
569 0, /* static_pass_number */
570 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
571 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
572 0, /* properties_provided */
573 0, /* properties_destroyed */
574 0, /* todo_flags_start */
575 TODO_dump_func
576 | TODO_update_ssa
577 | TODO_verify_ssa, /* todo_flags_finish */
578 0 /* letter */
582 /* We are exiting BB, see if the target block begins with a conditional
583 jump which has a known value when reached via BB. */
585 static void
586 thread_across_edge (struct dom_walk_data *walk_data, edge e)
588 block_stmt_iterator bsi;
589 tree stmt = NULL;
590 tree phi;
592 /* Each PHI creates a temporary equivalence, record them. */
593 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
595 tree src = PHI_ARG_DEF_FROM_EDGE (phi, e);
596 tree dst = PHI_RESULT (phi);
598 /* If the desired argument is not the same as this PHI's result
599 and it is set by a PHI in this block, then we can not thread
600 through this block. */
601 if (src != dst
602 && TREE_CODE (src) == SSA_NAME
603 && TREE_CODE (SSA_NAME_DEF_STMT (src)) == PHI_NODE
604 && bb_for_stmt (SSA_NAME_DEF_STMT (src)) == e->dest)
605 return;
607 record_const_or_copy (dst, src);
608 register_new_def (dst, &block_defs_stack);
611 for (bsi = bsi_start (e->dest); ! bsi_end_p (bsi); bsi_next (&bsi))
613 tree lhs, cached_lhs;
615 stmt = bsi_stmt (bsi);
617 /* Ignore empty statements and labels. */
618 if (IS_EMPTY_STMT (stmt) || TREE_CODE (stmt) == LABEL_EXPR)
619 continue;
621 /* If this is not a MODIFY_EXPR which sets an SSA_NAME to a new
622 value, then stop our search here. Ideally when we stop a
623 search we stop on a COND_EXPR or SWITCH_EXPR. */
624 if (TREE_CODE (stmt) != MODIFY_EXPR
625 || TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
626 break;
628 /* At this point we have a statement which assigns an RHS to an
629 SSA_VAR on the LHS. We want to prove that the RHS is already
630 available and that its value is held in the current definition
631 of the LHS -- meaning that this assignment is a NOP when
632 reached via edge E. */
633 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME)
634 cached_lhs = TREE_OPERAND (stmt, 1);
635 else
636 cached_lhs = lookup_avail_expr (stmt, false);
638 lhs = TREE_OPERAND (stmt, 0);
640 /* This can happen if we thread around to the start of a loop. */
641 if (lhs == cached_lhs)
642 break;
644 /* If we did not find RHS in the hash table, then try again after
645 temporarily const/copy propagating the operands. */
646 if (!cached_lhs)
648 /* Copy the operands. */
649 stmt_ann_t ann = stmt_ann (stmt);
650 use_optype uses = USE_OPS (ann);
651 vuse_optype vuses = VUSE_OPS (ann);
652 tree *uses_copy = xmalloc (NUM_USES (uses) * sizeof (tree));
653 tree *vuses_copy = xmalloc (NUM_VUSES (vuses) * sizeof (tree));
654 unsigned int i;
656 /* Make a copy of the uses into USES_COPY, then cprop into
657 the use operands. */
658 for (i = 0; i < NUM_USES (uses); i++)
660 tree tmp = NULL;
662 uses_copy[i] = USE_OP (uses, i);
663 if (TREE_CODE (USE_OP (uses, i)) == SSA_NAME)
664 tmp = SSA_NAME_VALUE (USE_OP (uses, i));
665 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
666 SET_USE_OP (uses, i, tmp);
669 /* Similarly for virtual uses. */
670 for (i = 0; i < NUM_VUSES (vuses); i++)
672 tree tmp = NULL;
674 vuses_copy[i] = VUSE_OP (vuses, i);
675 if (TREE_CODE (VUSE_OP (vuses, i)) == SSA_NAME)
676 tmp = SSA_NAME_VALUE (VUSE_OP (vuses, i));
677 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
678 SET_VUSE_OP (vuses, i, tmp);
681 /* Try to lookup the new expression. */
682 cached_lhs = lookup_avail_expr (stmt, false);
684 /* Restore the statement's original uses/defs. */
685 for (i = 0; i < NUM_USES (uses); i++)
686 SET_USE_OP (uses, i, uses_copy[i]);
688 for (i = 0; i < NUM_VUSES (vuses); i++)
689 SET_VUSE_OP (vuses, i, vuses_copy[i]);
691 free (uses_copy);
692 free (vuses_copy);
694 /* If we still did not find the expression in the hash table,
695 then we can not ignore this statement. */
696 if (! cached_lhs)
697 break;
700 /* If the expression in the hash table was not assigned to an
701 SSA_NAME, then we can not ignore this statement. */
702 if (TREE_CODE (cached_lhs) != SSA_NAME)
703 break;
705 /* If we have different underlying variables, then we can not
706 ignore this statement. */
707 if (SSA_NAME_VAR (cached_lhs) != SSA_NAME_VAR (lhs))
708 break;
710 /* If CACHED_LHS does not represent the current value of the underlying
711 variable in CACHED_LHS/LHS, then we can not ignore this statement. */
712 if (var_ann (SSA_NAME_VAR (lhs))->current_def != cached_lhs)
713 break;
715 /* If we got here, then we can ignore this statement and continue
716 walking through the statements in the block looking for a threadable
717 COND_EXPR.
719 We want to record an equivalence lhs = cache_lhs so that if
720 the result of this statement is used later we can copy propagate
721 suitably. */
722 record_const_or_copy (lhs, cached_lhs);
723 register_new_def (lhs, &block_defs_stack);
726 /* If we stopped at a COND_EXPR or SWITCH_EXPR, then see if we know which
727 arm will be taken. */
728 if (stmt
729 && (TREE_CODE (stmt) == COND_EXPR
730 || TREE_CODE (stmt) == SWITCH_EXPR
731 || TREE_CODE (stmt) == GOTO_EXPR))
733 tree cond, cached_lhs;
735 /* Now temporarily cprop the operands and try to find the resulting
736 expression in the hash tables. */
737 if (TREE_CODE (stmt) == COND_EXPR)
738 cond = COND_EXPR_COND (stmt);
739 else if (TREE_CODE (stmt) == GOTO_EXPR)
740 cond = GOTO_DESTINATION (stmt);
741 else
742 cond = SWITCH_COND (stmt);
744 if (COMPARISON_CLASS_P (cond))
746 tree dummy_cond, op0, op1;
747 enum tree_code cond_code;
749 op0 = TREE_OPERAND (cond, 0);
750 op1 = TREE_OPERAND (cond, 1);
751 cond_code = TREE_CODE (cond);
753 /* Get the current value of both operands. */
754 if (TREE_CODE (op0) == SSA_NAME)
756 tree tmp = SSA_NAME_VALUE (op0);
757 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
758 op0 = tmp;
761 if (TREE_CODE (op1) == SSA_NAME)
763 tree tmp = SSA_NAME_VALUE (op1);
764 if (tmp && TREE_CODE (tmp) != VALUE_HANDLE)
765 op1 = tmp;
768 /* Stuff the operator and operands into our dummy conditional
769 expression, creating the dummy conditional if necessary. */
770 dummy_cond = walk_data->global_data;
771 if (! dummy_cond)
773 dummy_cond = build (cond_code, boolean_type_node, op0, op1);
774 dummy_cond = build (COND_EXPR, void_type_node,
775 dummy_cond, NULL, NULL);
776 walk_data->global_data = dummy_cond;
778 else
780 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), cond_code);
781 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op0;
782 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1) = op1;
785 /* If the conditional folds to an invariant, then we are done,
786 otherwise look it up in the hash tables. */
787 cached_lhs = local_fold (COND_EXPR_COND (dummy_cond));
788 if (! is_gimple_min_invariant (cached_lhs))
790 cached_lhs = lookup_avail_expr (dummy_cond, false);
791 if (!cached_lhs || ! is_gimple_min_invariant (cached_lhs))
792 cached_lhs = simplify_cond_and_lookup_avail_expr (dummy_cond,
793 NULL,
794 false);
797 /* We can have conditionals which just test the state of a
798 variable rather than use a relational operator. These are
799 simpler to handle. */
800 else if (TREE_CODE (cond) == SSA_NAME)
802 cached_lhs = cond;
803 cached_lhs = SSA_NAME_VALUE (cached_lhs);
804 if (cached_lhs && ! is_gimple_min_invariant (cached_lhs))
805 cached_lhs = 0;
807 else
808 cached_lhs = lookup_avail_expr (stmt, false);
810 if (cached_lhs)
812 edge taken_edge = find_taken_edge (e->dest, cached_lhs);
813 basic_block dest = (taken_edge ? taken_edge->dest : NULL);
815 if (dest == e->dest)
816 return;
818 /* If we have a known destination for the conditional, then
819 we can perform this optimization, which saves at least one
820 conditional jump each time it applies since we get to
821 bypass the conditional at our original destination. */
822 if (dest)
824 struct edge_info *edge_info;
826 update_bb_profile_for_threading (e->dest, EDGE_FREQUENCY (e),
827 e->count, taken_edge);
828 if (e->aux)
829 edge_info = e->aux;
830 else
831 edge_info = allocate_edge_info (e);
832 edge_info->redirection_target = taken_edge;
833 bb_ann (e->dest)->incoming_edge_threaded = true;
840 /* Initialize local stacks for this optimizer and record equivalences
841 upon entry to BB. Equivalences can come from the edge traversed to
842 reach BB or they may come from PHI nodes at the start of BB. */
844 static void
845 dom_opt_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
846 basic_block bb)
848 if (dump_file && (dump_flags & TDF_DETAILS))
849 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
851 /* Push a marker on the stacks of local information so that we know how
852 far to unwind when we finalize this block. */
853 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
854 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
855 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
856 VEC_safe_push (tree_on_heap, nonzero_vars_stack, NULL_TREE);
857 VEC_safe_push (tree_on_heap, vrp_variables_stack, NULL_TREE);
859 record_equivalences_from_incoming_edge (bb);
861 /* PHI nodes can create equivalences too. */
862 record_equivalences_from_phis (bb);
865 /* Given an expression EXPR (a relational expression or a statement),
866 initialize the hash table element pointed by by ELEMENT. */
868 static void
869 initialize_hash_element (tree expr, tree lhs, struct expr_hash_elt *element)
871 /* Hash table elements may be based on conditional expressions or statements.
873 For the former case, we have no annotation and we want to hash the
874 conditional expression. In the latter case we have an annotation and
875 we want to record the expression the statement evaluates. */
876 if (COMPARISON_CLASS_P (expr) || TREE_CODE (expr) == TRUTH_NOT_EXPR)
878 element->ann = NULL;
879 element->rhs = expr;
881 else if (TREE_CODE (expr) == COND_EXPR)
883 element->ann = stmt_ann (expr);
884 element->rhs = COND_EXPR_COND (expr);
886 else if (TREE_CODE (expr) == SWITCH_EXPR)
888 element->ann = stmt_ann (expr);
889 element->rhs = SWITCH_COND (expr);
891 else if (TREE_CODE (expr) == RETURN_EXPR && TREE_OPERAND (expr, 0))
893 element->ann = stmt_ann (expr);
894 element->rhs = TREE_OPERAND (TREE_OPERAND (expr, 0), 1);
896 else
898 element->ann = stmt_ann (expr);
899 element->rhs = TREE_OPERAND (expr, 1);
902 element->lhs = lhs;
903 element->hash = avail_expr_hash (element);
906 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
907 LIMIT entries left in LOCALs. */
909 static void
910 remove_local_expressions_from_table (void)
912 /* Remove all the expressions made available in this block. */
913 while (VEC_length (tree_on_heap, avail_exprs_stack) > 0)
915 struct expr_hash_elt element;
916 tree expr = VEC_pop (tree_on_heap, avail_exprs_stack);
918 if (expr == NULL_TREE)
919 break;
921 initialize_hash_element (expr, NULL, &element);
922 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
926 /* Use the SSA_NAMES in LOCALS to restore TABLE to its original
927 state, stopping when there are LIMIT entries left in LOCALs. */
929 static void
930 restore_nonzero_vars_to_original_value (void)
932 while (VEC_length (tree_on_heap, nonzero_vars_stack) > 0)
934 tree name = VEC_pop (tree_on_heap, nonzero_vars_stack);
936 if (name == NULL)
937 break;
939 bitmap_clear_bit (nonzero_vars, SSA_NAME_VERSION (name));
943 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
944 CONST_AND_COPIES to its original state, stopping when we hit a
945 NULL marker. */
947 static void
948 restore_vars_to_original_value (void)
950 while (VEC_length (tree_on_heap, const_and_copies_stack) > 0)
952 tree prev_value, dest;
954 dest = VEC_pop (tree_on_heap, const_and_copies_stack);
956 if (dest == NULL)
957 break;
959 prev_value = VEC_pop (tree_on_heap, const_and_copies_stack);
960 SSA_NAME_VALUE (dest) = prev_value;
964 /* Similar to restore_vars_to_original_value, except that it restores
965 CURRDEFS to its original value. */
966 static void
967 restore_currdefs_to_original_value (void)
969 /* Restore CURRDEFS to its original state. */
970 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
972 tree tmp = VEC_pop (tree_on_heap, block_defs_stack);
973 tree saved_def, var;
975 if (tmp == NULL_TREE)
976 break;
978 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
979 definition of its underlying variable. If we recorded anything
980 else, it must have been an _DECL node and its current reaching
981 definition must have been NULL. */
982 if (TREE_CODE (tmp) == SSA_NAME)
984 saved_def = tmp;
985 var = SSA_NAME_VAR (saved_def);
987 else
989 saved_def = NULL;
990 var = tmp;
993 var_ann (var)->current_def = saved_def;
997 /* We have finished processing the dominator children of BB, perform
998 any finalization actions in preparation for leaving this node in
999 the dominator tree. */
1001 static void
1002 dom_opt_finalize_block (struct dom_walk_data *walk_data, basic_block bb)
1004 tree last;
1006 /* If we are at a leaf node in the dominator tree, see if we can thread
1007 the edge from BB through its successor.
1009 Do this before we remove entries from our equivalence tables. */
1010 if (single_succ_p (bb)
1011 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
1012 && (get_immediate_dominator (CDI_DOMINATORS, single_succ (bb)) != bb
1013 || phi_nodes (single_succ (bb))))
1016 thread_across_edge (walk_data, single_succ_edge (bb));
1018 else if ((last = last_stmt (bb))
1019 && TREE_CODE (last) == GOTO_EXPR
1020 && TREE_CODE (TREE_OPERAND (last, 0)) == SSA_NAME)
1022 edge_iterator ei;
1023 edge e;
1025 FOR_EACH_EDGE (e, ei, bb->succs)
1027 thread_across_edge (walk_data, e);
1030 else if ((last = last_stmt (bb))
1031 && TREE_CODE (last) == COND_EXPR
1032 && (COMPARISON_CLASS_P (COND_EXPR_COND (last))
1033 || TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1034 && EDGE_COUNT (bb->succs) == 2
1035 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
1036 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
1038 edge true_edge, false_edge;
1040 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1042 /* If the THEN arm is the end of a dominator tree or has PHI nodes,
1043 then try to thread through its edge. */
1044 if (get_immediate_dominator (CDI_DOMINATORS, true_edge->dest) != bb
1045 || phi_nodes (true_edge->dest))
1047 struct edge_info *edge_info;
1048 unsigned int i;
1050 /* Push a marker onto the available expression stack so that we
1051 unwind any expressions related to the TRUE arm before processing
1052 the false arm below. */
1053 VEC_safe_push (tree_on_heap, avail_exprs_stack, NULL_TREE);
1054 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
1055 VEC_safe_push (tree_on_heap, const_and_copies_stack, NULL_TREE);
1057 edge_info = true_edge->aux;
1059 /* If we have info associated with this edge, record it into
1060 our equivalency tables. */
1061 if (edge_info)
1063 tree *cond_equivalences = edge_info->cond_equivalences;
1064 tree lhs = edge_info->lhs;
1065 tree rhs = edge_info->rhs;
1067 /* If we have a simple NAME = VALUE equivalency record it.
1068 Until the jump threading selection code improves, only
1069 do this if both the name and value are SSA_NAMEs with
1070 the same underlying variable to avoid missing threading
1071 opportunities. */
1072 if (lhs
1073 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME
1074 && TREE_CODE (edge_info->rhs) == SSA_NAME
1075 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs))
1076 record_const_or_copy (lhs, rhs);
1078 /* If we have 0 = COND or 1 = COND equivalences, record them
1079 into our expression hash tables. */
1080 if (cond_equivalences)
1081 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1083 tree expr = cond_equivalences[i];
1084 tree value = cond_equivalences[i + 1];
1086 record_cond (expr, value);
1090 /* Now thread the edge. */
1091 thread_across_edge (walk_data, true_edge);
1093 /* And restore the various tables to their state before
1094 we threaded this edge. */
1095 remove_local_expressions_from_table ();
1096 restore_vars_to_original_value ();
1097 restore_currdefs_to_original_value ();
1100 /* Similarly for the ELSE arm. */
1101 if (get_immediate_dominator (CDI_DOMINATORS, false_edge->dest) != bb
1102 || phi_nodes (false_edge->dest))
1104 struct edge_info *edge_info;
1105 unsigned int i;
1107 edge_info = false_edge->aux;
1109 /* If we have info associated with this edge, record it into
1110 our equivalency tables. */
1111 if (edge_info)
1113 tree *cond_equivalences = edge_info->cond_equivalences;
1114 tree lhs = edge_info->lhs;
1115 tree rhs = edge_info->rhs;
1117 /* If we have a simple NAME = VALUE equivalency record it.
1118 Until the jump threading selection code improves, only
1119 do this if both the name and value are SSA_NAMEs with
1120 the same underlying variable to avoid missing threading
1121 opportunities. */
1122 if (lhs
1123 && TREE_CODE (COND_EXPR_COND (last)) == SSA_NAME)
1124 record_const_or_copy (lhs, rhs);
1126 /* If we have 0 = COND or 1 = COND equivalences, record them
1127 into our expression hash tables. */
1128 if (cond_equivalences)
1129 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1131 tree expr = cond_equivalences[i];
1132 tree value = cond_equivalences[i + 1];
1134 record_cond (expr, value);
1138 thread_across_edge (walk_data, false_edge);
1140 /* No need to remove local expressions from our tables
1141 or restore vars to their original value as that will
1142 be done immediately below. */
1146 remove_local_expressions_from_table ();
1147 restore_nonzero_vars_to_original_value ();
1148 restore_vars_to_original_value ();
1149 restore_currdefs_to_original_value ();
1151 /* Remove VRP records associated with this basic block. They are no
1152 longer valid.
1154 To be efficient, we note which variables have had their values
1155 constrained in this block. So walk over each variable in the
1156 VRP_VARIABLEs array. */
1157 while (VEC_length (tree_on_heap, vrp_variables_stack) > 0)
1159 tree var = VEC_pop (tree_on_heap, vrp_variables_stack);
1160 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
1161 void **slot;
1163 /* Each variable has a stack of value range records. We want to
1164 invalidate those associated with our basic block. So we walk
1165 the array backwards popping off records associated with our
1166 block. Once we hit a record not associated with our block
1167 we are done. */
1168 varray_type var_vrp_records;
1170 if (var == NULL)
1171 break;
1173 vrp_hash_elt.var = var;
1174 vrp_hash_elt.records = NULL;
1176 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
1178 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
1179 var_vrp_records = vrp_hash_elt_p->records;
1181 while (VARRAY_ACTIVE_SIZE (var_vrp_records) > 0)
1183 struct vrp_element *element
1184 = (struct vrp_element *)VARRAY_TOP_GENERIC_PTR (var_vrp_records);
1186 if (element->bb != bb)
1187 break;
1189 VARRAY_POP (var_vrp_records);
1193 /* If we queued any statements to rescan in this block, then
1194 go ahead and rescan them now. */
1195 while (VEC_length (tree_on_heap, stmts_to_rescan) > 0)
1197 tree stmt = VEC_last (tree_on_heap, stmts_to_rescan);
1198 basic_block stmt_bb = bb_for_stmt (stmt);
1200 if (stmt_bb != bb)
1201 break;
1203 VEC_pop (tree_on_heap, stmts_to_rescan);
1204 mark_new_vars_to_rename (stmt);
1208 /* PHI nodes can create equivalences too.
1210 Ignoring any alternatives which are the same as the result, if
1211 all the alternatives are equal, then the PHI node creates an
1212 equivalence.
1214 Additionally, if all the PHI alternatives are known to have a nonzero
1215 value, then the result of this PHI is known to have a nonzero value,
1216 even if we do not know its exact value. */
1218 static void
1219 record_equivalences_from_phis (basic_block bb)
1221 tree phi;
1223 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1225 tree lhs = PHI_RESULT (phi);
1226 tree rhs = NULL;
1227 int i;
1229 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1231 tree t = PHI_ARG_DEF (phi, i);
1233 /* Ignore alternatives which are the same as our LHS. Since
1234 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1235 can simply compare pointers. */
1236 if (lhs == t)
1237 continue;
1239 /* If we have not processed an alternative yet, then set
1240 RHS to this alternative. */
1241 if (rhs == NULL)
1242 rhs = t;
1243 /* If we have processed an alternative (stored in RHS), then
1244 see if it is equal to this one. If it isn't, then stop
1245 the search. */
1246 else if (! operand_equal_for_phi_arg_p (rhs, t))
1247 break;
1250 /* If we had no interesting alternatives, then all the RHS alternatives
1251 must have been the same as LHS. */
1252 if (!rhs)
1253 rhs = lhs;
1255 /* If we managed to iterate through each PHI alternative without
1256 breaking out of the loop, then we have a PHI which may create
1257 a useful equivalence. We do not need to record unwind data for
1258 this, since this is a true assignment and not an equivalence
1259 inferred from a comparison. All uses of this ssa name are dominated
1260 by this assignment, so unwinding just costs time and space. */
1261 if (i == PHI_NUM_ARGS (phi)
1262 && may_propagate_copy (lhs, rhs))
1263 SSA_NAME_VALUE (lhs) = rhs;
1265 /* Now see if we know anything about the nonzero property for the
1266 result of this PHI. */
1267 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1269 if (!PHI_ARG_NONZERO (phi, i))
1270 break;
1273 if (i == PHI_NUM_ARGS (phi))
1274 bitmap_set_bit (nonzero_vars, SSA_NAME_VERSION (PHI_RESULT (phi)));
1276 register_new_def (lhs, &block_defs_stack);
1280 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1281 return that edge. Otherwise return NULL. */
1282 static edge
1283 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1285 edge retval = NULL;
1286 edge e;
1287 edge_iterator ei;
1289 FOR_EACH_EDGE (e, ei, bb->preds)
1291 /* A loop back edge can be identified by the destination of
1292 the edge dominating the source of the edge. */
1293 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1294 continue;
1296 /* If we have already seen a non-loop edge, then we must have
1297 multiple incoming non-loop edges and thus we return NULL. */
1298 if (retval)
1299 return NULL;
1301 /* This is the first non-loop incoming edge we have found. Record
1302 it. */
1303 retval = e;
1306 return retval;
1309 /* Record any equivalences created by the incoming edge to BB. If BB
1310 has more than one incoming edge, then no equivalence is created. */
1312 static void
1313 record_equivalences_from_incoming_edge (basic_block bb)
1315 edge e;
1316 basic_block parent;
1317 struct edge_info *edge_info;
1319 /* If our parent block ended with a control statement, then we may be
1320 able to record some equivalences based on which outgoing edge from
1321 the parent was followed. */
1322 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1324 e = single_incoming_edge_ignoring_loop_edges (bb);
1326 /* If we had a single incoming edge from our parent block, then enter
1327 any data associated with the edge into our tables. */
1328 if (e && e->src == parent)
1330 unsigned int i;
1332 edge_info = e->aux;
1334 if (edge_info)
1336 tree lhs = edge_info->lhs;
1337 tree rhs = edge_info->rhs;
1338 tree *cond_equivalences = edge_info->cond_equivalences;
1340 if (lhs)
1341 record_equality (lhs, rhs);
1343 if (cond_equivalences)
1345 bool recorded_range = false;
1346 for (i = 0; i < edge_info->max_cond_equivalences; i += 2)
1348 tree expr = cond_equivalences[i];
1349 tree value = cond_equivalences[i + 1];
1351 record_cond (expr, value);
1353 /* For the first true equivalence, record range
1354 information. We only do this for the first
1355 true equivalence as it should dominate any
1356 later true equivalences. */
1357 if (! recorded_range
1358 && COMPARISON_CLASS_P (expr)
1359 && value == boolean_true_node
1360 && TREE_CONSTANT (TREE_OPERAND (expr, 1)))
1362 record_range (expr, bb);
1363 recorded_range = true;
1371 /* Dump SSA statistics on FILE. */
1373 void
1374 dump_dominator_optimization_stats (FILE *file)
1376 long n_exprs;
1378 fprintf (file, "Total number of statements: %6ld\n\n",
1379 opt_stats.num_stmts);
1380 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1381 opt_stats.num_exprs_considered);
1383 n_exprs = opt_stats.num_exprs_considered;
1384 if (n_exprs == 0)
1385 n_exprs = 1;
1387 fprintf (file, " Redundant expressions eliminated: %6ld (%.0f%%)\n",
1388 opt_stats.num_re, PERCENT (opt_stats.num_re,
1389 n_exprs));
1390 fprintf (file, " Constants propagated: %6ld\n",
1391 opt_stats.num_const_prop);
1392 fprintf (file, " Copies propagated: %6ld\n",
1393 opt_stats.num_copy_prop);
1395 fprintf (file, "\nHash table statistics:\n");
1397 fprintf (file, " avail_exprs: ");
1398 htab_statistics (file, avail_exprs);
1402 /* Dump SSA statistics on stderr. */
1404 void
1405 debug_dominator_optimization_stats (void)
1407 dump_dominator_optimization_stats (stderr);
1411 /* Dump statistics for the hash table HTAB. */
1413 static void
1414 htab_statistics (FILE *file, htab_t htab)
1416 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1417 (long) htab_size (htab),
1418 (long) htab_elements (htab),
1419 htab_collisions (htab));
1422 /* Record the fact that VAR has a nonzero value, though we may not know
1423 its exact value. Note that if VAR is already known to have a nonzero
1424 value, then we do nothing. */
1426 static void
1427 record_var_is_nonzero (tree var)
1429 int indx = SSA_NAME_VERSION (var);
1431 if (bitmap_bit_p (nonzero_vars, indx))
1432 return;
1434 /* Mark it in the global table. */
1435 bitmap_set_bit (nonzero_vars, indx);
1437 /* Record this SSA_NAME so that we can reset the global table
1438 when we leave this block. */
1439 VEC_safe_push (tree_on_heap, nonzero_vars_stack, var);
1442 /* Enter a statement into the true/false expression hash table indicating
1443 that the condition COND has the value VALUE. */
1445 static void
1446 record_cond (tree cond, tree value)
1448 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
1449 void **slot;
1451 initialize_hash_element (cond, value, element);
1453 slot = htab_find_slot_with_hash (avail_exprs, (void *)element,
1454 element->hash, INSERT);
1455 if (*slot == NULL)
1457 *slot = (void *) element;
1458 VEC_safe_push (tree_on_heap, avail_exprs_stack, cond);
1460 else
1461 free (element);
1464 /* Build a new conditional using NEW_CODE, OP0 and OP1 and store
1465 the new conditional into *p, then store a boolean_true_node
1466 into *(p + 1). */
1468 static void
1469 build_and_record_new_cond (enum tree_code new_code, tree op0, tree op1, tree *p)
1471 *p = build2 (new_code, boolean_type_node, op0, op1);
1472 p++;
1473 *p = boolean_true_node;
1476 /* Record that COND is true and INVERTED is false into the edge information
1477 structure. Also record that any conditions dominated by COND are true
1478 as well.
1480 For example, if a < b is true, then a <= b must also be true. */
1482 static void
1483 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1485 tree op0, op1;
1487 if (!COMPARISON_CLASS_P (cond))
1488 return;
1490 op0 = TREE_OPERAND (cond, 0);
1491 op1 = TREE_OPERAND (cond, 1);
1493 switch (TREE_CODE (cond))
1495 case LT_EXPR:
1496 case GT_EXPR:
1497 edge_info->max_cond_equivalences = 12;
1498 edge_info->cond_equivalences = xmalloc (12 * sizeof (tree));
1499 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1500 ? LE_EXPR : GE_EXPR),
1501 op0, op1, &edge_info->cond_equivalences[4]);
1502 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1503 &edge_info->cond_equivalences[6]);
1504 build_and_record_new_cond (NE_EXPR, op0, op1,
1505 &edge_info->cond_equivalences[8]);
1506 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1507 &edge_info->cond_equivalences[10]);
1508 break;
1510 case GE_EXPR:
1511 case LE_EXPR:
1512 edge_info->max_cond_equivalences = 6;
1513 edge_info->cond_equivalences = xmalloc (6 * sizeof (tree));
1514 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1515 &edge_info->cond_equivalences[4]);
1516 break;
1518 case EQ_EXPR:
1519 edge_info->max_cond_equivalences = 10;
1520 edge_info->cond_equivalences = xmalloc (10 * sizeof (tree));
1521 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1522 &edge_info->cond_equivalences[4]);
1523 build_and_record_new_cond (LE_EXPR, op0, op1,
1524 &edge_info->cond_equivalences[6]);
1525 build_and_record_new_cond (GE_EXPR, op0, op1,
1526 &edge_info->cond_equivalences[8]);
1527 break;
1529 case UNORDERED_EXPR:
1530 edge_info->max_cond_equivalences = 16;
1531 edge_info->cond_equivalences = xmalloc (16 * sizeof (tree));
1532 build_and_record_new_cond (NE_EXPR, op0, op1,
1533 &edge_info->cond_equivalences[4]);
1534 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1535 &edge_info->cond_equivalences[6]);
1536 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1537 &edge_info->cond_equivalences[8]);
1538 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1539 &edge_info->cond_equivalences[10]);
1540 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1541 &edge_info->cond_equivalences[12]);
1542 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1543 &edge_info->cond_equivalences[14]);
1544 break;
1546 case UNLT_EXPR:
1547 case UNGT_EXPR:
1548 edge_info->max_cond_equivalences = 8;
1549 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1550 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1551 ? UNLE_EXPR : UNGE_EXPR),
1552 op0, op1, &edge_info->cond_equivalences[4]);
1553 build_and_record_new_cond (NE_EXPR, op0, op1,
1554 &edge_info->cond_equivalences[6]);
1555 break;
1557 case UNEQ_EXPR:
1558 edge_info->max_cond_equivalences = 8;
1559 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1560 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1561 &edge_info->cond_equivalences[4]);
1562 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1563 &edge_info->cond_equivalences[6]);
1564 break;
1566 case LTGT_EXPR:
1567 edge_info->max_cond_equivalences = 8;
1568 edge_info->cond_equivalences = xmalloc (8 * sizeof (tree));
1569 build_and_record_new_cond (NE_EXPR, op0, op1,
1570 &edge_info->cond_equivalences[4]);
1571 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1572 &edge_info->cond_equivalences[6]);
1573 break;
1575 default:
1576 edge_info->max_cond_equivalences = 4;
1577 edge_info->cond_equivalences = xmalloc (4 * sizeof (tree));
1578 break;
1581 /* Now store the original true and false conditions into the first
1582 two slots. */
1583 edge_info->cond_equivalences[0] = cond;
1584 edge_info->cond_equivalences[1] = boolean_true_node;
1585 edge_info->cond_equivalences[2] = inverted;
1586 edge_info->cond_equivalences[3] = boolean_false_node;
1589 /* A helper function for record_const_or_copy and record_equality.
1590 Do the work of recording the value and undo info. */
1592 static void
1593 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1595 SSA_NAME_VALUE (x) = y;
1597 VEC_safe_push (tree_on_heap, const_and_copies_stack, prev_x);
1598 VEC_safe_push (tree_on_heap, const_and_copies_stack, x);
1602 /* Return the loop depth of the basic block of the defining statement of X.
1603 This number should not be treated as absolutely correct because the loop
1604 information may not be completely up-to-date when dom runs. However, it
1605 will be relatively correct, and as more passes are taught to keep loop info
1606 up to date, the result will become more and more accurate. */
1609 loop_depth_of_name (tree x)
1611 tree defstmt;
1612 basic_block defbb;
1614 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1615 if (TREE_CODE (x) != SSA_NAME)
1616 return 0;
1618 /* Otherwise return the loop depth of the defining statement's bb.
1619 Note that there may not actually be a bb for this statement, if the
1620 ssa_name is live on entry. */
1621 defstmt = SSA_NAME_DEF_STMT (x);
1622 defbb = bb_for_stmt (defstmt);
1623 if (!defbb)
1624 return 0;
1626 return defbb->loop_depth;
1630 /* Record that X is equal to Y in const_and_copies. Record undo
1631 information in the block-local vector. */
1633 static void
1634 record_const_or_copy (tree x, tree y)
1636 tree prev_x = SSA_NAME_VALUE (x);
1638 if (TREE_CODE (y) == SSA_NAME)
1640 tree tmp = SSA_NAME_VALUE (y);
1641 if (tmp)
1642 y = tmp;
1645 record_const_or_copy_1 (x, y, prev_x);
1648 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1649 This constrains the cases in which we may treat this as assignment. */
1651 static void
1652 record_equality (tree x, tree y)
1654 tree prev_x = NULL, prev_y = NULL;
1656 if (TREE_CODE (x) == SSA_NAME)
1657 prev_x = SSA_NAME_VALUE (x);
1658 if (TREE_CODE (y) == SSA_NAME)
1659 prev_y = SSA_NAME_VALUE (y);
1661 /* If one of the previous values is invariant, or invariant in more loops
1662 (by depth), then use that.
1663 Otherwise it doesn't matter which value we choose, just so
1664 long as we canonicalize on one value. */
1665 if (TREE_INVARIANT (y))
1667 else if (TREE_INVARIANT (x) || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1668 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1669 else if (prev_x && TREE_INVARIANT (prev_x))
1670 x = y, y = prev_x, prev_x = prev_y;
1671 else if (prev_y && TREE_CODE (prev_y) != VALUE_HANDLE)
1672 y = prev_y;
1674 /* After the swapping, we must have one SSA_NAME. */
1675 if (TREE_CODE (x) != SSA_NAME)
1676 return;
1678 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1679 variable compared against zero. If we're honoring signed zeros,
1680 then we cannot record this value unless we know that the value is
1681 nonzero. */
1682 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1683 && (TREE_CODE (y) != REAL_CST
1684 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1685 return;
1687 record_const_or_copy_1 (x, y, prev_x);
1690 /* Return true, if it is ok to do folding of an associative expression.
1691 EXP is the tree for the associative expression. */
1693 static inline bool
1694 unsafe_associative_fp_binop (tree exp)
1696 enum tree_code code = TREE_CODE (exp);
1697 return !(!flag_unsafe_math_optimizations
1698 && (code == MULT_EXPR || code == PLUS_EXPR
1699 || code == MINUS_EXPR)
1700 && FLOAT_TYPE_P (TREE_TYPE (exp)));
1703 /* Returns true when STMT is a simple iv increment. It detects the
1704 following situation:
1706 i_1 = phi (..., i_2)
1707 i_2 = i_1 +/- ... */
1709 static bool
1710 simple_iv_increment_p (tree stmt)
1712 tree lhs, rhs, preinc, phi;
1713 unsigned i;
1715 if (TREE_CODE (stmt) != MODIFY_EXPR)
1716 return false;
1718 lhs = TREE_OPERAND (stmt, 0);
1719 if (TREE_CODE (lhs) != SSA_NAME)
1720 return false;
1722 rhs = TREE_OPERAND (stmt, 1);
1724 if (TREE_CODE (rhs) != PLUS_EXPR
1725 && TREE_CODE (rhs) != MINUS_EXPR)
1726 return false;
1728 preinc = TREE_OPERAND (rhs, 0);
1729 if (TREE_CODE (preinc) != SSA_NAME)
1730 return false;
1732 phi = SSA_NAME_DEF_STMT (preinc);
1733 if (TREE_CODE (phi) != PHI_NODE)
1734 return false;
1736 for (i = 0; i < (unsigned) PHI_NUM_ARGS (phi); i++)
1737 if (PHI_ARG_DEF (phi, i) == lhs)
1738 return true;
1740 return false;
1743 /* STMT is a MODIFY_EXPR for which we were unable to find RHS in the
1744 hash tables. Try to simplify the RHS using whatever equivalences
1745 we may have recorded.
1747 If we are able to simplify the RHS, then lookup the simplified form in
1748 the hash table and return the result. Otherwise return NULL. */
1750 static tree
1751 simplify_rhs_and_lookup_avail_expr (struct dom_walk_data *walk_data,
1752 tree stmt, int insert)
1754 tree rhs = TREE_OPERAND (stmt, 1);
1755 enum tree_code rhs_code = TREE_CODE (rhs);
1756 tree result = NULL;
1758 /* If we have lhs = ~x, look and see if we earlier had x = ~y.
1759 In which case we can change this statement to be lhs = y.
1760 Which can then be copy propagated.
1762 Similarly for negation. */
1763 if ((rhs_code == BIT_NOT_EXPR || rhs_code == NEGATE_EXPR)
1764 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1766 /* Get the definition statement for our RHS. */
1767 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1769 /* See if the RHS_DEF_STMT has the same form as our statement. */
1770 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR
1771 && TREE_CODE (TREE_OPERAND (rhs_def_stmt, 1)) == rhs_code)
1773 tree rhs_def_operand;
1775 rhs_def_operand = TREE_OPERAND (TREE_OPERAND (rhs_def_stmt, 1), 0);
1777 /* Verify that RHS_DEF_OPERAND is a suitable SSA variable. */
1778 if (TREE_CODE (rhs_def_operand) == SSA_NAME
1779 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs_def_operand))
1780 result = update_rhs_and_lookup_avail_expr (stmt,
1781 rhs_def_operand,
1782 insert);
1786 /* If we have z = (x OP C1), see if we earlier had x = y OP C2.
1787 If OP is associative, create and fold (y OP C2) OP C1 which
1788 should result in (y OP C3), use that as the RHS for the
1789 assignment. Add minus to this, as we handle it specially below. */
1790 if ((associative_tree_code (rhs_code) || rhs_code == MINUS_EXPR)
1791 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
1792 && is_gimple_min_invariant (TREE_OPERAND (rhs, 1)))
1794 tree rhs_def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (rhs, 0));
1796 /* If the statement defines an induction variable, do not propagate
1797 its value, so that we do not create overlapping life ranges. */
1798 if (simple_iv_increment_p (rhs_def_stmt))
1799 goto dont_fold_assoc;
1801 /* See if the RHS_DEF_STMT has the same form as our statement. */
1802 if (TREE_CODE (rhs_def_stmt) == MODIFY_EXPR)
1804 tree rhs_def_rhs = TREE_OPERAND (rhs_def_stmt, 1);
1805 enum tree_code rhs_def_code = TREE_CODE (rhs_def_rhs);
1807 if ((rhs_code == rhs_def_code && unsafe_associative_fp_binop (rhs))
1808 || (rhs_code == PLUS_EXPR && rhs_def_code == MINUS_EXPR)
1809 || (rhs_code == MINUS_EXPR && rhs_def_code == PLUS_EXPR))
1811 tree def_stmt_op0 = TREE_OPERAND (rhs_def_rhs, 0);
1812 tree def_stmt_op1 = TREE_OPERAND (rhs_def_rhs, 1);
1814 if (TREE_CODE (def_stmt_op0) == SSA_NAME
1815 && ! SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def_stmt_op0)
1816 && is_gimple_min_invariant (def_stmt_op1))
1818 tree outer_const = TREE_OPERAND (rhs, 1);
1819 tree type = TREE_TYPE (TREE_OPERAND (stmt, 0));
1820 tree t;
1822 /* If we care about correct floating point results, then
1823 don't fold x + c1 - c2. Note that we need to take both
1824 the codes and the signs to figure this out. */
1825 if (FLOAT_TYPE_P (type)
1826 && !flag_unsafe_math_optimizations
1827 && (rhs_def_code == PLUS_EXPR
1828 || rhs_def_code == MINUS_EXPR))
1830 bool neg = false;
1832 neg ^= (rhs_code == MINUS_EXPR);
1833 neg ^= (rhs_def_code == MINUS_EXPR);
1834 neg ^= real_isneg (TREE_REAL_CST_PTR (outer_const));
1835 neg ^= real_isneg (TREE_REAL_CST_PTR (def_stmt_op1));
1837 if (neg)
1838 goto dont_fold_assoc;
1841 /* Ho hum. So fold will only operate on the outermost
1842 thingy that we give it, so we have to build the new
1843 expression in two pieces. This requires that we handle
1844 combinations of plus and minus. */
1845 if (rhs_def_code != rhs_code)
1847 if (rhs_def_code == MINUS_EXPR)
1848 t = build (MINUS_EXPR, type, outer_const, def_stmt_op1);
1849 else
1850 t = build (MINUS_EXPR, type, def_stmt_op1, outer_const);
1851 rhs_code = PLUS_EXPR;
1853 else if (rhs_def_code == MINUS_EXPR)
1854 t = build (PLUS_EXPR, type, def_stmt_op1, outer_const);
1855 else
1856 t = build (rhs_def_code, type, def_stmt_op1, outer_const);
1857 t = local_fold (t);
1858 t = build (rhs_code, type, def_stmt_op0, t);
1859 t = local_fold (t);
1861 /* If the result is a suitable looking gimple expression,
1862 then use it instead of the original for STMT. */
1863 if (TREE_CODE (t) == SSA_NAME
1864 || (UNARY_CLASS_P (t)
1865 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME)
1866 || ((BINARY_CLASS_P (t) || COMPARISON_CLASS_P (t))
1867 && TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
1868 && is_gimple_val (TREE_OPERAND (t, 1))))
1869 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1873 dont_fold_assoc:;
1876 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
1877 and BIT_AND_EXPR respectively if the first operand is greater
1878 than zero and the second operand is an exact power of two. */
1879 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
1880 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
1881 && integer_pow2p (TREE_OPERAND (rhs, 1)))
1883 tree val;
1884 tree op = TREE_OPERAND (rhs, 0);
1886 if (TYPE_UNSIGNED (TREE_TYPE (op)))
1888 val = integer_one_node;
1890 else
1892 tree dummy_cond = walk_data->global_data;
1894 if (! dummy_cond)
1896 dummy_cond = build (GT_EXPR, boolean_type_node,
1897 op, integer_zero_node);
1898 dummy_cond = build (COND_EXPR, void_type_node,
1899 dummy_cond, NULL, NULL);
1900 walk_data->global_data = dummy_cond;
1902 else
1904 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GT_EXPR);
1905 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1906 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1907 = integer_zero_node;
1909 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1912 if (val && integer_onep (val))
1914 tree t;
1915 tree op0 = TREE_OPERAND (rhs, 0);
1916 tree op1 = TREE_OPERAND (rhs, 1);
1918 if (rhs_code == TRUNC_DIV_EXPR)
1919 t = build (RSHIFT_EXPR, TREE_TYPE (op0), op0,
1920 build_int_cst (NULL_TREE, tree_log2 (op1)));
1921 else
1922 t = build (BIT_AND_EXPR, TREE_TYPE (op0), op0,
1923 local_fold (build (MINUS_EXPR, TREE_TYPE (op1),
1924 op1, integer_one_node)));
1926 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1930 /* Transform ABS (X) into X or -X as appropriate. */
1931 if (rhs_code == ABS_EXPR
1932 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
1934 tree val;
1935 tree op = TREE_OPERAND (rhs, 0);
1936 tree type = TREE_TYPE (op);
1938 if (TYPE_UNSIGNED (type))
1940 val = integer_zero_node;
1942 else
1944 tree dummy_cond = walk_data->global_data;
1946 if (! dummy_cond)
1948 dummy_cond = build (LE_EXPR, boolean_type_node,
1949 op, integer_zero_node);
1950 dummy_cond = build (COND_EXPR, void_type_node,
1951 dummy_cond, NULL, NULL);
1952 walk_data->global_data = dummy_cond;
1954 else
1956 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), LE_EXPR);
1957 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1958 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1959 = build_int_cst (type, 0);
1961 val = simplify_cond_and_lookup_avail_expr (dummy_cond, NULL, false);
1963 if (!val)
1965 TREE_SET_CODE (COND_EXPR_COND (dummy_cond), GE_EXPR);
1966 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 0) = op;
1967 TREE_OPERAND (COND_EXPR_COND (dummy_cond), 1)
1968 = build_int_cst (type, 0);
1970 val = simplify_cond_and_lookup_avail_expr (dummy_cond,
1971 NULL, false);
1973 if (val)
1975 if (integer_zerop (val))
1976 val = integer_one_node;
1977 else if (integer_onep (val))
1978 val = integer_zero_node;
1983 if (val
1984 && (integer_onep (val) || integer_zerop (val)))
1986 tree t;
1988 if (integer_onep (val))
1989 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
1990 else
1991 t = op;
1993 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
1997 /* Optimize *"foo" into 'f'. This is done here rather than
1998 in fold to avoid problems with stuff like &*"foo". */
1999 if (TREE_CODE (rhs) == INDIRECT_REF || TREE_CODE (rhs) == ARRAY_REF)
2001 tree t = fold_read_from_constant_string (rhs);
2003 if (t)
2004 result = update_rhs_and_lookup_avail_expr (stmt, t, insert);
2007 return result;
2010 /* COND is a condition of the form:
2012 x == const or x != const
2014 Look back to x's defining statement and see if x is defined as
2016 x = (type) y;
2018 If const is unchanged if we convert it to type, then we can build
2019 the equivalent expression:
2022 y == const or y != const
2024 Which may allow further optimizations.
2026 Return the equivalent comparison or NULL if no such equivalent comparison
2027 was found. */
2029 static tree
2030 find_equivalent_equality_comparison (tree cond)
2032 tree op0 = TREE_OPERAND (cond, 0);
2033 tree op1 = TREE_OPERAND (cond, 1);
2034 tree def_stmt = SSA_NAME_DEF_STMT (op0);
2036 /* OP0 might have been a parameter, so first make sure it
2037 was defined by a MODIFY_EXPR. */
2038 if (def_stmt && TREE_CODE (def_stmt) == MODIFY_EXPR)
2040 tree def_rhs = TREE_OPERAND (def_stmt, 1);
2042 /* Now make sure the RHS of the MODIFY_EXPR is a typecast. */
2043 if ((TREE_CODE (def_rhs) == NOP_EXPR
2044 || TREE_CODE (def_rhs) == CONVERT_EXPR)
2045 && TREE_CODE (TREE_OPERAND (def_rhs, 0)) == SSA_NAME)
2047 tree def_rhs_inner = TREE_OPERAND (def_rhs, 0);
2048 tree def_rhs_inner_type = TREE_TYPE (def_rhs_inner);
2049 tree new;
2051 if (TYPE_PRECISION (def_rhs_inner_type)
2052 > TYPE_PRECISION (TREE_TYPE (def_rhs)))
2053 return NULL;
2055 /* What we want to prove is that if we convert OP1 to
2056 the type of the object inside the NOP_EXPR that the
2057 result is still equivalent to SRC.
2059 If that is true, the build and return new equivalent
2060 condition which uses the source of the typecast and the
2061 new constant (which has only changed its type). */
2062 new = build1 (TREE_CODE (def_rhs), def_rhs_inner_type, op1);
2063 new = local_fold (new);
2064 if (is_gimple_val (new) && tree_int_cst_equal (new, op1))
2065 return build (TREE_CODE (cond), TREE_TYPE (cond),
2066 def_rhs_inner, new);
2069 return NULL;
2072 /* STMT is a COND_EXPR for which we could not trivially determine its
2073 result. This routine attempts to find equivalent forms of the
2074 condition which we may be able to optimize better. It also
2075 uses simple value range propagation to optimize conditionals. */
2077 static tree
2078 simplify_cond_and_lookup_avail_expr (tree stmt,
2079 stmt_ann_t ann,
2080 int insert)
2082 tree cond = COND_EXPR_COND (stmt);
2084 if (COMPARISON_CLASS_P (cond))
2086 tree op0 = TREE_OPERAND (cond, 0);
2087 tree op1 = TREE_OPERAND (cond, 1);
2089 if (TREE_CODE (op0) == SSA_NAME && is_gimple_min_invariant (op1))
2091 int limit;
2092 tree low, high, cond_low, cond_high;
2093 int lowequal, highequal, swapped, no_overlap, subset, cond_inverted;
2094 varray_type vrp_records;
2095 struct vrp_element *element;
2096 struct vrp_hash_elt vrp_hash_elt, *vrp_hash_elt_p;
2097 void **slot;
2099 /* First see if we have test of an SSA_NAME against a constant
2100 where the SSA_NAME is defined by an earlier typecast which
2101 is irrelevant when performing tests against the given
2102 constant. */
2103 if (TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2105 tree new_cond = find_equivalent_equality_comparison (cond);
2107 if (new_cond)
2109 /* Update the statement to use the new equivalent
2110 condition. */
2111 COND_EXPR_COND (stmt) = new_cond;
2113 /* If this is not a real stmt, ann will be NULL and we
2114 avoid processing the operands. */
2115 if (ann)
2116 mark_stmt_modified (stmt);
2118 /* Lookup the condition and return its known value if it
2119 exists. */
2120 new_cond = lookup_avail_expr (stmt, insert);
2121 if (new_cond)
2122 return new_cond;
2124 /* The operands have changed, so update op0 and op1. */
2125 op0 = TREE_OPERAND (cond, 0);
2126 op1 = TREE_OPERAND (cond, 1);
2130 /* Consult the value range records for this variable (if they exist)
2131 to see if we can eliminate or simplify this conditional.
2133 Note two tests are necessary to determine no records exist.
2134 First we have to see if the virtual array exists, if it
2135 exists, then we have to check its active size.
2137 Also note the vast majority of conditionals are not testing
2138 a variable which has had its range constrained by an earlier
2139 conditional. So this filter avoids a lot of unnecessary work. */
2140 vrp_hash_elt.var = op0;
2141 vrp_hash_elt.records = NULL;
2142 slot = htab_find_slot (vrp_data, &vrp_hash_elt, NO_INSERT);
2143 if (slot == NULL)
2144 return NULL;
2146 vrp_hash_elt_p = (struct vrp_hash_elt *) *slot;
2147 vrp_records = vrp_hash_elt_p->records;
2148 if (vrp_records == NULL)
2149 return NULL;
2151 limit = VARRAY_ACTIVE_SIZE (vrp_records);
2153 /* If we have no value range records for this variable, or we are
2154 unable to extract a range for this condition, then there is
2155 nothing to do. */
2156 if (limit == 0
2157 || ! extract_range_from_cond (cond, &cond_high,
2158 &cond_low, &cond_inverted))
2159 return NULL;
2161 /* We really want to avoid unnecessary computations of range
2162 info. So all ranges are computed lazily; this avoids a
2163 lot of unnecessary work. i.e., we record the conditional,
2164 but do not process how it constrains the variable's
2165 potential values until we know that processing the condition
2166 could be helpful.
2168 However, we do not want to have to walk a potentially long
2169 list of ranges, nor do we want to compute a variable's
2170 range more than once for a given path.
2172 Luckily, each time we encounter a conditional that can not
2173 be otherwise optimized we will end up here and we will
2174 compute the necessary range information for the variable
2175 used in this condition.
2177 Thus you can conclude that there will never be more than one
2178 conditional associated with a variable which has not been
2179 processed. So we never need to merge more than one new
2180 conditional into the current range.
2182 These properties also help us avoid unnecessary work. */
2183 element
2184 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records, limit - 1);
2186 if (element->high && element->low)
2188 /* The last element has been processed, so there is no range
2189 merging to do, we can simply use the high/low values
2190 recorded in the last element. */
2191 low = element->low;
2192 high = element->high;
2194 else
2196 tree tmp_high, tmp_low;
2197 int dummy;
2199 /* The last element has not been processed. Process it now.
2200 record_range should ensure for cond inverted is not set.
2201 This call can only fail if cond is x < min or x > max,
2202 which fold should have optimized into false.
2203 If that doesn't happen, just pretend all values are
2204 in the range. */
2205 if (! extract_range_from_cond (element->cond, &tmp_high,
2206 &tmp_low, &dummy))
2207 gcc_unreachable ();
2208 else
2209 gcc_assert (dummy == 0);
2211 /* If this is the only element, then no merging is necessary,
2212 the high/low values from extract_range_from_cond are all
2213 we need. */
2214 if (limit == 1)
2216 low = tmp_low;
2217 high = tmp_high;
2219 else
2221 /* Get the high/low value from the previous element. */
2222 struct vrp_element *prev
2223 = (struct vrp_element *)VARRAY_GENERIC_PTR (vrp_records,
2224 limit - 2);
2225 low = prev->low;
2226 high = prev->high;
2228 /* Merge in this element's range with the range from the
2229 previous element.
2231 The low value for the merged range is the maximum of
2232 the previous low value and the low value of this record.
2234 Similarly the high value for the merged range is the
2235 minimum of the previous high value and the high value of
2236 this record. */
2237 low = (low && tree_int_cst_compare (low, tmp_low) == 1
2238 ? low : tmp_low);
2239 high = (high && tree_int_cst_compare (high, tmp_high) == -1
2240 ? high : tmp_high);
2243 /* And record the computed range. */
2244 element->low = low;
2245 element->high = high;
2249 /* After we have constrained this variable's potential values,
2250 we try to determine the result of the given conditional.
2252 To simplify later tests, first determine if the current
2253 low value is the same low value as the conditional.
2254 Similarly for the current high value and the high value
2255 for the conditional. */
2256 lowequal = tree_int_cst_equal (low, cond_low);
2257 highequal = tree_int_cst_equal (high, cond_high);
2259 if (lowequal && highequal)
2260 return (cond_inverted ? boolean_false_node : boolean_true_node);
2262 /* To simplify the overlap/subset tests below we may want
2263 to swap the two ranges so that the larger of the two
2264 ranges occurs "first". */
2265 swapped = 0;
2266 if (tree_int_cst_compare (low, cond_low) == 1
2267 || (lowequal
2268 && tree_int_cst_compare (cond_high, high) == 1))
2270 tree temp;
2272 swapped = 1;
2273 temp = low;
2274 low = cond_low;
2275 cond_low = temp;
2276 temp = high;
2277 high = cond_high;
2278 cond_high = temp;
2281 /* Now determine if there is no overlap in the ranges
2282 or if the second range is a subset of the first range. */
2283 no_overlap = tree_int_cst_lt (high, cond_low);
2284 subset = tree_int_cst_compare (cond_high, high) != 1;
2286 /* If there was no overlap in the ranges, then this conditional
2287 always has a false value (unless we had to invert this
2288 conditional, in which case it always has a true value). */
2289 if (no_overlap)
2290 return (cond_inverted ? boolean_true_node : boolean_false_node);
2292 /* If the current range is a subset of the condition's range,
2293 then this conditional always has a true value (unless we
2294 had to invert this conditional, in which case it always
2295 has a true value). */
2296 if (subset && swapped)
2297 return (cond_inverted ? boolean_false_node : boolean_true_node);
2299 /* We were unable to determine the result of the conditional.
2300 However, we may be able to simplify the conditional. First
2301 merge the ranges in the same manner as range merging above. */
2302 low = tree_int_cst_compare (low, cond_low) == 1 ? low : cond_low;
2303 high = tree_int_cst_compare (high, cond_high) == -1 ? high : cond_high;
2305 /* If the range has converged to a single point, then turn this
2306 into an equality comparison. */
2307 if (TREE_CODE (cond) != EQ_EXPR
2308 && TREE_CODE (cond) != NE_EXPR
2309 && tree_int_cst_equal (low, high))
2311 TREE_SET_CODE (cond, EQ_EXPR);
2312 TREE_OPERAND (cond, 1) = high;
2316 return 0;
2319 /* STMT is a SWITCH_EXPR for which we could not trivially determine its
2320 result. This routine attempts to find equivalent forms of the
2321 condition which we may be able to optimize better. */
2323 static tree
2324 simplify_switch_and_lookup_avail_expr (tree stmt, int insert)
2326 tree cond = SWITCH_COND (stmt);
2327 tree def, to, ti;
2329 /* The optimization that we really care about is removing unnecessary
2330 casts. That will let us do much better in propagating the inferred
2331 constant at the switch target. */
2332 if (TREE_CODE (cond) == SSA_NAME)
2334 def = SSA_NAME_DEF_STMT (cond);
2335 if (TREE_CODE (def) == MODIFY_EXPR)
2337 def = TREE_OPERAND (def, 1);
2338 if (TREE_CODE (def) == NOP_EXPR)
2340 int need_precision;
2341 bool fail;
2343 def = TREE_OPERAND (def, 0);
2345 #ifdef ENABLE_CHECKING
2346 /* ??? Why was Jeff testing this? We are gimple... */
2347 gcc_assert (is_gimple_val (def));
2348 #endif
2350 to = TREE_TYPE (cond);
2351 ti = TREE_TYPE (def);
2353 /* If we have an extension that preserves value, then we
2354 can copy the source value into the switch. */
2356 need_precision = TYPE_PRECISION (ti);
2357 fail = false;
2358 if (TYPE_UNSIGNED (to) && !TYPE_UNSIGNED (ti))
2359 fail = true;
2360 else if (!TYPE_UNSIGNED (to) && TYPE_UNSIGNED (ti))
2361 need_precision += 1;
2362 if (TYPE_PRECISION (to) < need_precision)
2363 fail = true;
2365 if (!fail)
2367 SWITCH_COND (stmt) = def;
2368 mark_stmt_modified (stmt);
2370 return lookup_avail_expr (stmt, insert);
2376 return 0;
2380 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2381 known value for that SSA_NAME (or NULL if no value is known).
2383 NONZERO_VARS is the set SSA_NAMES known to have a nonzero value,
2384 even if we don't know their precise value.
2386 Propagate values from CONST_AND_COPIES and NONZERO_VARS into the PHI
2387 nodes of the successors of BB. */
2389 static void
2390 cprop_into_successor_phis (basic_block bb, bitmap nonzero_vars)
2392 edge e;
2393 edge_iterator ei;
2395 FOR_EACH_EDGE (e, ei, bb->succs)
2397 tree phi;
2398 int indx;
2400 /* If this is an abnormal edge, then we do not want to copy propagate
2401 into the PHI alternative associated with this edge. */
2402 if (e->flags & EDGE_ABNORMAL)
2403 continue;
2405 phi = phi_nodes (e->dest);
2406 if (! phi)
2407 continue;
2409 indx = e->dest_idx;
2410 for ( ; phi; phi = PHI_CHAIN (phi))
2412 tree new;
2413 use_operand_p orig_p;
2414 tree orig;
2416 /* The alternative may be associated with a constant, so verify
2417 it is an SSA_NAME before doing anything with it. */
2418 orig_p = PHI_ARG_DEF_PTR (phi, indx);
2419 orig = USE_FROM_PTR (orig_p);
2420 if (TREE_CODE (orig) != SSA_NAME)
2421 continue;
2423 /* If the alternative is known to have a nonzero value, record
2424 that fact in the PHI node itself for future use. */
2425 if (bitmap_bit_p (nonzero_vars, SSA_NAME_VERSION (orig)))
2426 PHI_ARG_NONZERO (phi, indx) = true;
2428 /* If we have *ORIG_P in our constant/copy table, then replace
2429 ORIG_P with its value in our constant/copy table. */
2430 new = SSA_NAME_VALUE (orig);
2431 if (new
2432 && new != orig
2433 && (TREE_CODE (new) == SSA_NAME
2434 || is_gimple_min_invariant (new))
2435 && may_propagate_copy (orig, new))
2436 propagate_value (orig_p, new);
2441 /* We have finished optimizing BB, record any information implied by
2442 taking a specific outgoing edge from BB. */
2444 static void
2445 record_edge_info (basic_block bb)
2447 block_stmt_iterator bsi = bsi_last (bb);
2448 struct edge_info *edge_info;
2450 if (! bsi_end_p (bsi))
2452 tree stmt = bsi_stmt (bsi);
2454 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
2456 tree cond = SWITCH_COND (stmt);
2458 if (TREE_CODE (cond) == SSA_NAME)
2460 tree labels = SWITCH_LABELS (stmt);
2461 int i, n_labels = TREE_VEC_LENGTH (labels);
2462 tree *info = xcalloc (n_basic_blocks, sizeof (tree));
2463 edge e;
2464 edge_iterator ei;
2466 for (i = 0; i < n_labels; i++)
2468 tree label = TREE_VEC_ELT (labels, i);
2469 basic_block target_bb = label_to_block (CASE_LABEL (label));
2471 if (CASE_HIGH (label)
2472 || !CASE_LOW (label)
2473 || info[target_bb->index])
2474 info[target_bb->index] = error_mark_node;
2475 else
2476 info[target_bb->index] = label;
2479 FOR_EACH_EDGE (e, ei, bb->succs)
2481 basic_block target_bb = e->dest;
2482 tree node = info[target_bb->index];
2484 if (node != NULL && node != error_mark_node)
2486 tree x = fold_convert (TREE_TYPE (cond), CASE_LOW (node));
2487 edge_info = allocate_edge_info (e);
2488 edge_info->lhs = cond;
2489 edge_info->rhs = x;
2492 free (info);
2496 /* A COND_EXPR may create equivalences too. */
2497 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2499 tree cond = COND_EXPR_COND (stmt);
2500 edge true_edge;
2501 edge false_edge;
2503 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2505 /* If the conditional is a single variable 'X', record 'X = 1'
2506 for the true edge and 'X = 0' on the false edge. */
2507 if (SSA_VAR_P (cond))
2509 struct edge_info *edge_info;
2511 edge_info = allocate_edge_info (true_edge);
2512 edge_info->lhs = cond;
2513 edge_info->rhs = constant_boolean_node (1, TREE_TYPE (cond));
2515 edge_info = allocate_edge_info (false_edge);
2516 edge_info->lhs = cond;
2517 edge_info->rhs = constant_boolean_node (0, TREE_TYPE (cond));
2519 /* Equality tests may create one or two equivalences. */
2520 else if (COMPARISON_CLASS_P (cond))
2522 tree op0 = TREE_OPERAND (cond, 0);
2523 tree op1 = TREE_OPERAND (cond, 1);
2525 /* Special case comparing booleans against a constant as we
2526 know the value of OP0 on both arms of the branch. i.e., we
2527 can record an equivalence for OP0 rather than COND. */
2528 if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
2529 && TREE_CODE (op0) == SSA_NAME
2530 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
2531 && is_gimple_min_invariant (op1))
2533 if (TREE_CODE (cond) == EQ_EXPR)
2535 edge_info = allocate_edge_info (true_edge);
2536 edge_info->lhs = op0;
2537 edge_info->rhs = (integer_zerop (op1)
2538 ? boolean_false_node
2539 : boolean_true_node);
2541 edge_info = allocate_edge_info (false_edge);
2542 edge_info->lhs = op0;
2543 edge_info->rhs = (integer_zerop (op1)
2544 ? boolean_true_node
2545 : boolean_false_node);
2547 else
2549 edge_info = allocate_edge_info (true_edge);
2550 edge_info->lhs = op0;
2551 edge_info->rhs = (integer_zerop (op1)
2552 ? boolean_true_node
2553 : boolean_false_node);
2555 edge_info = allocate_edge_info (false_edge);
2556 edge_info->lhs = op0;
2557 edge_info->rhs = (integer_zerop (op1)
2558 ? boolean_false_node
2559 : boolean_true_node);
2563 else if (is_gimple_min_invariant (op0)
2564 && (TREE_CODE (op1) == SSA_NAME
2565 || is_gimple_min_invariant (op1)))
2567 tree inverted = invert_truthvalue (cond);
2568 struct edge_info *edge_info;
2570 edge_info = allocate_edge_info (true_edge);
2571 record_conditions (edge_info, cond, inverted);
2573 if (TREE_CODE (cond) == EQ_EXPR)
2575 edge_info->lhs = op1;
2576 edge_info->rhs = op0;
2579 edge_info = allocate_edge_info (false_edge);
2580 record_conditions (edge_info, inverted, cond);
2582 if (TREE_CODE (cond) == NE_EXPR)
2584 edge_info->lhs = op1;
2585 edge_info->rhs = op0;
2589 else if (TREE_CODE (op0) == SSA_NAME
2590 && (is_gimple_min_invariant (op1)
2591 || TREE_CODE (op1) == SSA_NAME))
2593 tree inverted = invert_truthvalue (cond);
2594 struct edge_info *edge_info;
2596 edge_info = allocate_edge_info (true_edge);
2597 record_conditions (edge_info, cond, inverted);
2599 if (TREE_CODE (cond) == EQ_EXPR)
2601 edge_info->lhs = op0;
2602 edge_info->rhs = op1;
2605 edge_info = allocate_edge_info (false_edge);
2606 record_conditions (edge_info, inverted, cond);
2608 if (TREE_CODE (cond) == NE_EXPR)
2610 edge_info->lhs = op0;
2611 edge_info->rhs = op1;
2616 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
2621 /* Propagate information from BB to its outgoing edges.
2623 This can include equivalency information implied by control statements
2624 at the end of BB and const/copy propagation into PHIs in BB's
2625 successor blocks. */
2627 static void
2628 propagate_to_outgoing_edges (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2629 basic_block bb)
2631 record_edge_info (bb);
2632 cprop_into_successor_phis (bb, nonzero_vars);
2635 /* Search for redundant computations in STMT. If any are found, then
2636 replace them with the variable holding the result of the computation.
2638 If safe, record this expression into the available expression hash
2639 table. */
2641 static bool
2642 eliminate_redundant_computations (struct dom_walk_data *walk_data,
2643 tree stmt, stmt_ann_t ann)
2645 v_may_def_optype v_may_defs = V_MAY_DEF_OPS (ann);
2646 tree *expr_p, def = NULL_TREE;
2647 bool insert = true;
2648 tree cached_lhs;
2649 bool retval = false;
2651 if (TREE_CODE (stmt) == MODIFY_EXPR)
2652 def = TREE_OPERAND (stmt, 0);
2654 /* Certain expressions on the RHS can be optimized away, but can not
2655 themselves be entered into the hash tables. */
2656 if (ann->makes_aliased_stores
2657 || ! def
2658 || TREE_CODE (def) != SSA_NAME
2659 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2660 || NUM_V_MAY_DEFS (v_may_defs) != 0
2661 /* Do not record equivalences for increments of ivs. This would create
2662 overlapping live ranges for a very questionable gain. */
2663 || simple_iv_increment_p (stmt))
2664 insert = false;
2666 /* Check if the expression has been computed before. */
2667 cached_lhs = lookup_avail_expr (stmt, insert);
2669 /* If this is an assignment and the RHS was not in the hash table,
2670 then try to simplify the RHS and lookup the new RHS in the
2671 hash table. */
2672 if (! cached_lhs && TREE_CODE (stmt) == MODIFY_EXPR)
2673 cached_lhs = simplify_rhs_and_lookup_avail_expr (walk_data, stmt, insert);
2674 /* Similarly if this is a COND_EXPR and we did not find its
2675 expression in the hash table, simplify the condition and
2676 try again. */
2677 else if (! cached_lhs && TREE_CODE (stmt) == COND_EXPR)
2678 cached_lhs = simplify_cond_and_lookup_avail_expr (stmt, ann, insert);
2679 /* Similarly for a SWITCH_EXPR. */
2680 else if (!cached_lhs && TREE_CODE (stmt) == SWITCH_EXPR)
2681 cached_lhs = simplify_switch_and_lookup_avail_expr (stmt, insert);
2683 opt_stats.num_exprs_considered++;
2685 /* Get a pointer to the expression we are trying to optimize. */
2686 if (TREE_CODE (stmt) == COND_EXPR)
2687 expr_p = &COND_EXPR_COND (stmt);
2688 else if (TREE_CODE (stmt) == SWITCH_EXPR)
2689 expr_p = &SWITCH_COND (stmt);
2690 else if (TREE_CODE (stmt) == RETURN_EXPR && TREE_OPERAND (stmt, 0))
2691 expr_p = &TREE_OPERAND (TREE_OPERAND (stmt, 0), 1);
2692 else
2693 expr_p = &TREE_OPERAND (stmt, 1);
2695 /* It is safe to ignore types here since we have already done
2696 type checking in the hashing and equality routines. In fact
2697 type checking here merely gets in the way of constant
2698 propagation. Also, make sure that it is safe to propagate
2699 CACHED_LHS into *EXPR_P. */
2700 if (cached_lhs
2701 && (TREE_CODE (cached_lhs) != SSA_NAME
2702 || may_propagate_copy (*expr_p, cached_lhs)))
2704 if (dump_file && (dump_flags & TDF_DETAILS))
2706 fprintf (dump_file, " Replaced redundant expr '");
2707 print_generic_expr (dump_file, *expr_p, dump_flags);
2708 fprintf (dump_file, "' with '");
2709 print_generic_expr (dump_file, cached_lhs, dump_flags);
2710 fprintf (dump_file, "'\n");
2713 opt_stats.num_re++;
2715 #if defined ENABLE_CHECKING
2716 gcc_assert (TREE_CODE (cached_lhs) == SSA_NAME
2717 || is_gimple_min_invariant (cached_lhs));
2718 #endif
2720 if (TREE_CODE (cached_lhs) == ADDR_EXPR
2721 || (POINTER_TYPE_P (TREE_TYPE (*expr_p))
2722 && is_gimple_min_invariant (cached_lhs)))
2723 retval = true;
2725 propagate_tree_value (expr_p, cached_lhs);
2726 mark_stmt_modified (stmt);
2728 return retval;
2731 /* STMT, a MODIFY_EXPR, may create certain equivalences, in either
2732 the available expressions table or the const_and_copies table.
2733 Detect and record those equivalences. */
2735 static void
2736 record_equivalences_from_stmt (tree stmt,
2737 int may_optimize_p,
2738 stmt_ann_t ann)
2740 tree lhs = TREE_OPERAND (stmt, 0);
2741 enum tree_code lhs_code = TREE_CODE (lhs);
2742 int i;
2744 if (lhs_code == SSA_NAME)
2746 tree rhs = TREE_OPERAND (stmt, 1);
2748 /* Strip away any useless type conversions. */
2749 STRIP_USELESS_TYPE_CONVERSION (rhs);
2751 /* If the RHS of the assignment is a constant or another variable that
2752 may be propagated, register it in the CONST_AND_COPIES table. We
2753 do not need to record unwind data for this, since this is a true
2754 assignment and not an equivalence inferred from a comparison. All
2755 uses of this ssa name are dominated by this assignment, so unwinding
2756 just costs time and space. */
2757 if (may_optimize_p
2758 && (TREE_CODE (rhs) == SSA_NAME
2759 || is_gimple_min_invariant (rhs)))
2760 SSA_NAME_VALUE (lhs) = rhs;
2762 if (expr_computes_nonzero (rhs))
2763 record_var_is_nonzero (lhs);
2766 /* Look at both sides for pointer dereferences. If we find one, then
2767 the pointer must be nonnull and we can enter that equivalence into
2768 the hash tables. */
2769 if (flag_delete_null_pointer_checks)
2770 for (i = 0; i < 2; i++)
2772 tree t = TREE_OPERAND (stmt, i);
2774 /* Strip away any COMPONENT_REFs. */
2775 while (TREE_CODE (t) == COMPONENT_REF)
2776 t = TREE_OPERAND (t, 0);
2778 /* Now see if this is a pointer dereference. */
2779 if (INDIRECT_REF_P (t))
2781 tree op = TREE_OPERAND (t, 0);
2783 /* If the pointer is a SSA variable, then enter new
2784 equivalences into the hash table. */
2785 while (TREE_CODE (op) == SSA_NAME)
2787 tree def = SSA_NAME_DEF_STMT (op);
2789 record_var_is_nonzero (op);
2791 /* And walk up the USE-DEF chains noting other SSA_NAMEs
2792 which are known to have a nonzero value. */
2793 if (def
2794 && TREE_CODE (def) == MODIFY_EXPR
2795 && TREE_CODE (TREE_OPERAND (def, 1)) == NOP_EXPR)
2796 op = TREE_OPERAND (TREE_OPERAND (def, 1), 0);
2797 else
2798 break;
2803 /* A memory store, even an aliased store, creates a useful
2804 equivalence. By exchanging the LHS and RHS, creating suitable
2805 vops and recording the result in the available expression table,
2806 we may be able to expose more redundant loads. */
2807 if (!ann->has_volatile_ops
2808 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
2809 || is_gimple_min_invariant (TREE_OPERAND (stmt, 1)))
2810 && !is_gimple_reg (lhs))
2812 tree rhs = TREE_OPERAND (stmt, 1);
2813 tree new;
2815 /* FIXME: If the LHS of the assignment is a bitfield and the RHS
2816 is a constant, we need to adjust the constant to fit into the
2817 type of the LHS. If the LHS is a bitfield and the RHS is not
2818 a constant, then we can not record any equivalences for this
2819 statement since we would need to represent the widening or
2820 narrowing of RHS. This fixes gcc.c-torture/execute/921016-1.c
2821 and should not be necessary if GCC represented bitfields
2822 properly. */
2823 if (lhs_code == COMPONENT_REF
2824 && DECL_BIT_FIELD (TREE_OPERAND (lhs, 1)))
2826 if (TREE_CONSTANT (rhs))
2827 rhs = widen_bitfield (rhs, TREE_OPERAND (lhs, 1), lhs);
2828 else
2829 rhs = NULL;
2831 /* If the value overflowed, then we can not use this equivalence. */
2832 if (rhs && ! is_gimple_min_invariant (rhs))
2833 rhs = NULL;
2836 if (rhs)
2838 /* Build a new statement with the RHS and LHS exchanged. */
2839 new = build (MODIFY_EXPR, TREE_TYPE (stmt), rhs, lhs);
2841 create_ssa_artficial_load_stmt (&(ann->operands), new);
2843 /* Finally enter the statement into the available expression
2844 table. */
2845 lookup_avail_expr (new, true);
2850 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2851 CONST_AND_COPIES. */
2853 static bool
2854 cprop_operand (tree stmt, use_operand_p op_p)
2856 bool may_have_exposed_new_symbols = false;
2857 tree val;
2858 tree op = USE_FROM_PTR (op_p);
2860 /* If the operand has a known constant value or it is known to be a
2861 copy of some other variable, use the value or copy stored in
2862 CONST_AND_COPIES. */
2863 val = SSA_NAME_VALUE (op);
2864 if (val && val != op && TREE_CODE (val) != VALUE_HANDLE)
2866 tree op_type, val_type;
2868 /* Do not change the base variable in the virtual operand
2869 tables. That would make it impossible to reconstruct
2870 the renamed virtual operand if we later modify this
2871 statement. Also only allow the new value to be an SSA_NAME
2872 for propagation into virtual operands. */
2873 if (!is_gimple_reg (op)
2874 && (TREE_CODE (val) != SSA_NAME
2875 || is_gimple_reg (val)
2876 || get_virtual_var (val) != get_virtual_var (op)))
2877 return false;
2879 /* Do not replace hard register operands in asm statements. */
2880 if (TREE_CODE (stmt) == ASM_EXPR
2881 && !may_propagate_copy_into_asm (op))
2882 return false;
2884 /* Get the toplevel type of each operand. */
2885 op_type = TREE_TYPE (op);
2886 val_type = TREE_TYPE (val);
2888 /* While both types are pointers, get the type of the object
2889 pointed to. */
2890 while (POINTER_TYPE_P (op_type) && POINTER_TYPE_P (val_type))
2892 op_type = TREE_TYPE (op_type);
2893 val_type = TREE_TYPE (val_type);
2896 /* Make sure underlying types match before propagating a constant by
2897 converting the constant to the proper type. Note that convert may
2898 return a non-gimple expression, in which case we ignore this
2899 propagation opportunity. */
2900 if (TREE_CODE (val) != SSA_NAME)
2902 if (!lang_hooks.types_compatible_p (op_type, val_type))
2904 val = fold_convert (TREE_TYPE (op), val);
2905 if (!is_gimple_min_invariant (val))
2906 return false;
2910 /* Certain operands are not allowed to be copy propagated due
2911 to their interaction with exception handling and some GCC
2912 extensions. */
2913 else if (!may_propagate_copy (op, val))
2914 return false;
2916 /* Do not propagate copies if the propagated value is at a deeper loop
2917 depth than the propagatee. Otherwise, this may move loop variant
2918 variables outside of their loops and prevent coalescing
2919 opportunities. If the value was loop invariant, it will be hoisted
2920 by LICM and exposed for copy propagation. */
2921 if (loop_depth_of_name (val) > loop_depth_of_name (op))
2922 return false;
2924 /* Dump details. */
2925 if (dump_file && (dump_flags & TDF_DETAILS))
2927 fprintf (dump_file, " Replaced '");
2928 print_generic_expr (dump_file, op, dump_flags);
2929 fprintf (dump_file, "' with %s '",
2930 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2931 print_generic_expr (dump_file, val, dump_flags);
2932 fprintf (dump_file, "'\n");
2935 /* If VAL is an ADDR_EXPR or a constant of pointer type, note
2936 that we may have exposed a new symbol for SSA renaming. */
2937 if (TREE_CODE (val) == ADDR_EXPR
2938 || (POINTER_TYPE_P (TREE_TYPE (op))
2939 && is_gimple_min_invariant (val)))
2940 may_have_exposed_new_symbols = true;
2942 if (TREE_CODE (val) != SSA_NAME)
2943 opt_stats.num_const_prop++;
2944 else
2945 opt_stats.num_copy_prop++;
2947 propagate_value (op_p, val);
2949 /* And note that we modified this statement. This is now
2950 safe, even if we changed virtual operands since we will
2951 rescan the statement and rewrite its operands again. */
2952 mark_stmt_modified (stmt);
2954 return may_have_exposed_new_symbols;
2957 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2958 known value for that SSA_NAME (or NULL if no value is known).
2960 Propagate values from CONST_AND_COPIES into the uses, vuses and
2961 v_may_def_ops of STMT. */
2963 static bool
2964 cprop_into_stmt (tree stmt)
2966 bool may_have_exposed_new_symbols = false;
2967 use_operand_p op_p;
2968 ssa_op_iter iter;
2969 tree rhs;
2971 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_ALL_USES)
2973 if (TREE_CODE (USE_FROM_PTR (op_p)) == SSA_NAME)
2974 may_have_exposed_new_symbols |= cprop_operand (stmt, op_p);
2977 if (may_have_exposed_new_symbols)
2979 rhs = get_rhs (stmt);
2980 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2981 recompute_tree_invarant_for_addr_expr (rhs);
2984 return may_have_exposed_new_symbols;
2988 /* Optimize the statement pointed by iterator SI.
2990 We try to perform some simplistic global redundancy elimination and
2991 constant propagation:
2993 1- To detect global redundancy, we keep track of expressions that have
2994 been computed in this block and its dominators. If we find that the
2995 same expression is computed more than once, we eliminate repeated
2996 computations by using the target of the first one.
2998 2- Constant values and copy assignments. This is used to do very
2999 simplistic constant and copy propagation. When a constant or copy
3000 assignment is found, we map the value on the RHS of the assignment to
3001 the variable in the LHS in the CONST_AND_COPIES table. */
3003 static void
3004 optimize_stmt (struct dom_walk_data *walk_data, basic_block bb,
3005 block_stmt_iterator si)
3007 stmt_ann_t ann;
3008 tree stmt;
3009 bool may_optimize_p;
3010 bool may_have_exposed_new_symbols = false;
3012 stmt = bsi_stmt (si);
3014 update_stmt_if_modified (stmt);
3015 ann = stmt_ann (stmt);
3016 opt_stats.num_stmts++;
3017 may_have_exposed_new_symbols = false;
3019 if (dump_file && (dump_flags & TDF_DETAILS))
3021 fprintf (dump_file, "Optimizing statement ");
3022 print_generic_stmt (dump_file, stmt, TDF_SLIM);
3025 /* Const/copy propagate into USES, VUSES and the RHS of V_MAY_DEFs. */
3026 may_have_exposed_new_symbols = cprop_into_stmt (stmt);
3028 /* If the statement has been modified with constant replacements,
3029 fold its RHS before checking for redundant computations. */
3030 if (ann->modified)
3032 /* Try to fold the statement making sure that STMT is kept
3033 up to date. */
3034 if (fold_stmt (bsi_stmt_ptr (si)))
3036 stmt = bsi_stmt (si);
3037 ann = stmt_ann (stmt);
3039 if (dump_file && (dump_flags & TDF_DETAILS))
3041 fprintf (dump_file, " Folded to: ");
3042 print_generic_stmt (dump_file, stmt, TDF_SLIM);
3046 /* Constant/copy propagation above may change the set of
3047 virtual operands associated with this statement. Folding
3048 may remove the need for some virtual operands.
3050 Indicate we will need to rescan and rewrite the statement. */
3051 may_have_exposed_new_symbols = true;
3054 /* Check for redundant computations. Do this optimization only
3055 for assignments that have no volatile ops and conditionals. */
3056 may_optimize_p = (!ann->has_volatile_ops
3057 && ((TREE_CODE (stmt) == RETURN_EXPR
3058 && TREE_OPERAND (stmt, 0)
3059 && TREE_CODE (TREE_OPERAND (stmt, 0)) == MODIFY_EXPR
3060 && ! (TREE_SIDE_EFFECTS
3061 (TREE_OPERAND (TREE_OPERAND (stmt, 0), 1))))
3062 || (TREE_CODE (stmt) == MODIFY_EXPR
3063 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
3064 || TREE_CODE (stmt) == COND_EXPR
3065 || TREE_CODE (stmt) == SWITCH_EXPR));
3067 if (may_optimize_p)
3068 may_have_exposed_new_symbols
3069 |= eliminate_redundant_computations (walk_data, stmt, ann);
3071 /* Record any additional equivalences created by this statement. */
3072 if (TREE_CODE (stmt) == MODIFY_EXPR)
3073 record_equivalences_from_stmt (stmt,
3074 may_optimize_p,
3075 ann);
3077 register_definitions_for_stmt (stmt);
3079 /* If STMT is a COND_EXPR and it was modified, then we may know
3080 where it goes. If that is the case, then mark the CFG as altered.
3082 This will cause us to later call remove_unreachable_blocks and
3083 cleanup_tree_cfg when it is safe to do so. It is not safe to
3084 clean things up here since removal of edges and such can trigger
3085 the removal of PHI nodes, which in turn can release SSA_NAMEs to
3086 the manager.
3088 That's all fine and good, except that once SSA_NAMEs are released
3089 to the manager, we must not call create_ssa_name until all references
3090 to released SSA_NAMEs have been eliminated.
3092 All references to the deleted SSA_NAMEs can not be eliminated until
3093 we remove unreachable blocks.
3095 We can not remove unreachable blocks until after we have completed
3096 any queued jump threading.
3098 We can not complete any queued jump threads until we have taken
3099 appropriate variables out of SSA form. Taking variables out of
3100 SSA form can call create_ssa_name and thus we lose.
3102 Ultimately I suspect we're going to need to change the interface
3103 into the SSA_NAME manager. */
3105 if (ann->modified)
3107 tree val = NULL;
3109 if (TREE_CODE (stmt) == COND_EXPR)
3110 val = COND_EXPR_COND (stmt);
3111 else if (TREE_CODE (stmt) == SWITCH_EXPR)
3112 val = SWITCH_COND (stmt);
3114 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
3115 cfg_altered = true;
3117 /* If we simplified a statement in such a way as to be shown that it
3118 cannot trap, update the eh information and the cfg to match. */
3119 if (maybe_clean_eh_stmt (stmt))
3121 bitmap_set_bit (need_eh_cleanup, bb->index);
3122 if (dump_file && (dump_flags & TDF_DETAILS))
3123 fprintf (dump_file, " Flagged to clear EH edges.\n");
3127 if (may_have_exposed_new_symbols)
3128 VEC_safe_push (tree_on_heap, stmts_to_rescan, bsi_stmt (si));
3131 /* Replace the RHS of STMT with NEW_RHS. If RHS can be found in the
3132 available expression hashtable, then return the LHS from the hash
3133 table.
3135 If INSERT is true, then we also update the available expression
3136 hash table to account for the changes made to STMT. */
3138 static tree
3139 update_rhs_and_lookup_avail_expr (tree stmt, tree new_rhs, bool insert)
3141 tree cached_lhs = NULL;
3143 /* Remove the old entry from the hash table. */
3144 if (insert)
3146 struct expr_hash_elt element;
3148 initialize_hash_element (stmt, NULL, &element);
3149 htab_remove_elt_with_hash (avail_exprs, &element, element.hash);
3152 /* Now update the RHS of the assignment. */
3153 TREE_OPERAND (stmt, 1) = new_rhs;
3155 /* Now lookup the updated statement in the hash table. */
3156 cached_lhs = lookup_avail_expr (stmt, insert);
3158 /* We have now called lookup_avail_expr twice with two different
3159 versions of this same statement, once in optimize_stmt, once here.
3161 We know the call in optimize_stmt did not find an existing entry
3162 in the hash table, so a new entry was created. At the same time
3163 this statement was pushed onto the AVAIL_EXPRS_STACK vector.
3165 If this call failed to find an existing entry on the hash table,
3166 then the new version of this statement was entered into the
3167 hash table. And this statement was pushed onto BLOCK_AVAIL_EXPR
3168 for the second time. So there are two copies on BLOCK_AVAIL_EXPRs
3170 If this call succeeded, we still have one copy of this statement
3171 on the BLOCK_AVAIL_EXPRs vector.
3173 For both cases, we need to pop the most recent entry off the
3174 BLOCK_AVAIL_EXPRs vector. For the case where we never found this
3175 statement in the hash tables, that will leave precisely one
3176 copy of this statement on BLOCK_AVAIL_EXPRs. For the case where
3177 we found a copy of this statement in the second hash table lookup
3178 we want _no_ copies of this statement in BLOCK_AVAIL_EXPRs. */
3179 if (insert)
3180 VEC_pop (tree_on_heap, avail_exprs_stack);
3182 /* And make sure we record the fact that we modified this
3183 statement. */
3184 mark_stmt_modified (stmt);
3186 return cached_lhs;
3189 /* Search for an existing instance of STMT in the AVAIL_EXPRS table. If
3190 found, return its LHS. Otherwise insert STMT in the table and return
3191 NULL_TREE.
3193 Also, when an expression is first inserted in the AVAIL_EXPRS table, it
3194 is also added to the stack pointed by BLOCK_AVAIL_EXPRS_P, so that they
3195 can be removed when we finish processing this block and its children.
3197 NOTE: This function assumes that STMT is a MODIFY_EXPR node that
3198 contains no CALL_EXPR on its RHS and makes no volatile nor
3199 aliased references. */
3201 static tree
3202 lookup_avail_expr (tree stmt, bool insert)
3204 void **slot;
3205 tree lhs;
3206 tree temp;
3207 struct expr_hash_elt *element = xmalloc (sizeof (struct expr_hash_elt));
3209 lhs = TREE_CODE (stmt) == MODIFY_EXPR ? TREE_OPERAND (stmt, 0) : NULL;
3211 initialize_hash_element (stmt, lhs, element);
3213 /* Don't bother remembering constant assignments and copy operations.
3214 Constants and copy operations are handled by the constant/copy propagator
3215 in optimize_stmt. */
3216 if (TREE_CODE (element->rhs) == SSA_NAME
3217 || is_gimple_min_invariant (element->rhs))
3219 free (element);
3220 return NULL_TREE;
3223 /* If this is an equality test against zero, see if we have recorded a
3224 nonzero value for the variable in question. */
3225 if ((TREE_CODE (element->rhs) == EQ_EXPR
3226 || TREE_CODE (element->rhs) == NE_EXPR)
3227 && TREE_CODE (TREE_OPERAND (element->rhs, 0)) == SSA_NAME
3228 && integer_zerop (TREE_OPERAND (element->rhs, 1)))
3230 int indx = SSA_NAME_VERSION (TREE_OPERAND (element->rhs, 0));
3232 if (bitmap_bit_p (nonzero_vars, indx))
3234 tree t = element->rhs;
3235 free (element);
3237 if (TREE_CODE (t) == EQ_EXPR)
3238 return boolean_false_node;
3239 else
3240 return boolean_true_node;
3244 /* Finally try to find the expression in the main expression hash table. */
3245 slot = htab_find_slot_with_hash (avail_exprs, element, element->hash,
3246 (insert ? INSERT : NO_INSERT));
3247 if (slot == NULL)
3249 free (element);
3250 return NULL_TREE;
3253 if (*slot == NULL)
3255 *slot = (void *) element;
3256 VEC_safe_push (tree_on_heap, avail_exprs_stack,
3257 stmt ? stmt : element->rhs);
3258 return NULL_TREE;
3261 /* Extract the LHS of the assignment so that it can be used as the current
3262 definition of another variable. */
3263 lhs = ((struct expr_hash_elt *)*slot)->lhs;
3265 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
3266 use the value from the const_and_copies table. */
3267 if (TREE_CODE (lhs) == SSA_NAME)
3269 temp = SSA_NAME_VALUE (lhs);
3270 if (temp && TREE_CODE (temp) != VALUE_HANDLE)
3271 lhs = temp;
3274 free (element);
3275 return lhs;
3278 /* Given a condition COND, record into HI_P, LO_P and INVERTED_P the
3279 range of values that result in the conditional having a true value.
3281 Return true if we are successful in extracting a range from COND and
3282 false if we are unsuccessful. */
3284 static bool
3285 extract_range_from_cond (tree cond, tree *hi_p, tree *lo_p, int *inverted_p)
3287 tree op1 = TREE_OPERAND (cond, 1);
3288 tree high, low, type;
3289 int inverted;
3291 type = TREE_TYPE (op1);
3293 /* Experiments have shown that it's rarely, if ever useful to
3294 record ranges for enumerations. Presumably this is due to
3295 the fact that they're rarely used directly. They are typically
3296 cast into an integer type and used that way. */
3297 if (TREE_CODE (type) != INTEGER_TYPE
3298 /* We don't know how to deal with types with variable bounds. */
3299 || TREE_CODE (TYPE_MIN_VALUE (type)) != INTEGER_CST
3300 || TREE_CODE (TYPE_MAX_VALUE (type)) != INTEGER_CST)
3301 return 0;
3303 switch (TREE_CODE (cond))
3305 case EQ_EXPR:
3306 high = low = op1;
3307 inverted = 0;
3308 break;
3310 case NE_EXPR:
3311 high = low = op1;
3312 inverted = 1;
3313 break;
3315 case GE_EXPR:
3316 low = op1;
3317 high = TYPE_MAX_VALUE (type);
3318 inverted = 0;
3319 break;
3321 case GT_EXPR:
3322 high = TYPE_MAX_VALUE (type);
3323 if (!tree_int_cst_lt (op1, high))
3324 return 0;
3325 low = int_const_binop (PLUS_EXPR, op1, integer_one_node, 1);
3326 inverted = 0;
3327 break;
3329 case LE_EXPR:
3330 high = op1;
3331 low = TYPE_MIN_VALUE (type);
3332 inverted = 0;
3333 break;
3335 case LT_EXPR:
3336 low = TYPE_MIN_VALUE (type);
3337 if (!tree_int_cst_lt (low, op1))
3338 return 0;
3339 high = int_const_binop (MINUS_EXPR, op1, integer_one_node, 1);
3340 inverted = 0;
3341 break;
3343 default:
3344 return 0;
3347 *hi_p = high;
3348 *lo_p = low;
3349 *inverted_p = inverted;
3350 return 1;
3353 /* Record a range created by COND for basic block BB. */
3355 static void
3356 record_range (tree cond, basic_block bb)
3358 enum tree_code code = TREE_CODE (cond);
3360 /* We explicitly ignore NE_EXPRs and all the unordered comparisons.
3361 They rarely allow for meaningful range optimizations and significantly
3362 complicate the implementation. */
3363 if ((code == LT_EXPR || code == LE_EXPR || code == GT_EXPR
3364 || code == GE_EXPR || code == EQ_EXPR)
3365 && TREE_CODE (TREE_TYPE (TREE_OPERAND (cond, 1))) == INTEGER_TYPE)
3367 struct vrp_hash_elt *vrp_hash_elt;
3368 struct vrp_element *element;
3369 varray_type *vrp_records_p;
3370 void **slot;
3373 vrp_hash_elt = xmalloc (sizeof (struct vrp_hash_elt));
3374 vrp_hash_elt->var = TREE_OPERAND (cond, 0);
3375 vrp_hash_elt->records = NULL;
3376 slot = htab_find_slot (vrp_data, vrp_hash_elt, INSERT);
3378 if (*slot == NULL)
3379 *slot = (void *) vrp_hash_elt;
3380 else
3381 free (vrp_hash_elt);
3383 vrp_hash_elt = (struct vrp_hash_elt *) *slot;
3384 vrp_records_p = &vrp_hash_elt->records;
3386 element = ggc_alloc (sizeof (struct vrp_element));
3387 element->low = NULL;
3388 element->high = NULL;
3389 element->cond = cond;
3390 element->bb = bb;
3392 if (*vrp_records_p == NULL)
3393 VARRAY_GENERIC_PTR_INIT (*vrp_records_p, 2, "vrp records");
3395 VARRAY_PUSH_GENERIC_PTR (*vrp_records_p, element);
3396 VEC_safe_push (tree_on_heap, vrp_variables_stack, TREE_OPERAND (cond, 0));
3400 /* Hashing and equality functions for VRP_DATA.
3402 Since this hash table is addressed by SSA_NAMEs, we can hash on
3403 their version number and equality can be determined with a
3404 pointer comparison. */
3406 static hashval_t
3407 vrp_hash (const void *p)
3409 tree var = ((struct vrp_hash_elt *)p)->var;
3411 return SSA_NAME_VERSION (var);
3414 static int
3415 vrp_eq (const void *p1, const void *p2)
3417 tree var1 = ((struct vrp_hash_elt *)p1)->var;
3418 tree var2 = ((struct vrp_hash_elt *)p2)->var;
3420 return var1 == var2;
3423 /* Hashing and equality functions for AVAIL_EXPRS. The table stores
3424 MODIFY_EXPR statements. We compute a value number for expressions using
3425 the code of the expression and the SSA numbers of its operands. */
3427 static hashval_t
3428 avail_expr_hash (const void *p)
3430 stmt_ann_t ann = ((struct expr_hash_elt *)p)->ann;
3431 tree rhs = ((struct expr_hash_elt *)p)->rhs;
3432 hashval_t val = 0;
3433 size_t i;
3434 vuse_optype vuses;
3436 /* iterative_hash_expr knows how to deal with any expression and
3437 deals with commutative operators as well, so just use it instead
3438 of duplicating such complexities here. */
3439 val = iterative_hash_expr (rhs, val);
3441 /* If the hash table entry is not associated with a statement, then we
3442 can just hash the expression and not worry about virtual operands
3443 and such. */
3444 if (!ann)
3445 return val;
3447 /* Add the SSA version numbers of every vuse operand. This is important
3448 because compound variables like arrays are not renamed in the
3449 operands. Rather, the rename is done on the virtual variable
3450 representing all the elements of the array. */
3451 vuses = VUSE_OPS (ann);
3452 for (i = 0; i < NUM_VUSES (vuses); i++)
3453 val = iterative_hash_expr (VUSE_OP (vuses, i), val);
3455 return val;
3458 static hashval_t
3459 real_avail_expr_hash (const void *p)
3461 return ((const struct expr_hash_elt *)p)->hash;
3464 static int
3465 avail_expr_eq (const void *p1, const void *p2)
3467 stmt_ann_t ann1 = ((struct expr_hash_elt *)p1)->ann;
3468 tree rhs1 = ((struct expr_hash_elt *)p1)->rhs;
3469 stmt_ann_t ann2 = ((struct expr_hash_elt *)p2)->ann;
3470 tree rhs2 = ((struct expr_hash_elt *)p2)->rhs;
3472 /* If they are the same physical expression, return true. */
3473 if (rhs1 == rhs2 && ann1 == ann2)
3474 return true;
3476 /* If their codes are not equal, then quit now. */
3477 if (TREE_CODE (rhs1) != TREE_CODE (rhs2))
3478 return false;
3480 /* In case of a collision, both RHS have to be identical and have the
3481 same VUSE operands. */
3482 if ((TREE_TYPE (rhs1) == TREE_TYPE (rhs2)
3483 || lang_hooks.types_compatible_p (TREE_TYPE (rhs1), TREE_TYPE (rhs2)))
3484 && operand_equal_p (rhs1, rhs2, OEP_PURE_SAME))
3486 vuse_optype ops1 = NULL;
3487 vuse_optype ops2 = NULL;
3488 size_t num_ops1 = 0;
3489 size_t num_ops2 = 0;
3490 size_t i;
3492 if (ann1)
3494 ops1 = VUSE_OPS (ann1);
3495 num_ops1 = NUM_VUSES (ops1);
3498 if (ann2)
3500 ops2 = VUSE_OPS (ann2);
3501 num_ops2 = NUM_VUSES (ops2);
3504 /* If the number of virtual uses is different, then we consider
3505 them not equal. */
3506 if (num_ops1 != num_ops2)
3507 return false;
3509 for (i = 0; i < num_ops1; i++)
3510 if (VUSE_OP (ops1, i) != VUSE_OP (ops2, i))
3511 return false;
3513 gcc_assert (((struct expr_hash_elt *)p1)->hash
3514 == ((struct expr_hash_elt *)p2)->hash);
3515 return true;
3518 return false;
3521 /* Given STMT and a pointer to the block local definitions BLOCK_DEFS_P,
3522 register register all objects set by this statement into BLOCK_DEFS_P
3523 and CURRDEFS. */
3525 static void
3526 register_definitions_for_stmt (tree stmt)
3528 tree def;
3529 ssa_op_iter iter;
3531 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
3534 /* FIXME: We shouldn't be registering new defs if the variable
3535 doesn't need to be renamed. */
3536 register_new_def (def, &block_defs_stack);