PR 48488 Fix comments
[official-gcc.git] / gcc / expr.c
blob5574b2d1ab98792363fedf3ba9d3c19a17581219
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
64 #ifdef PUSH_ROUNDING
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
72 #endif
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
111 struct store_by_pieces_d
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
204 void
205 init_expr_target (void)
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
230 int regno;
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
248 SET_REGNO (reg, regno);
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
281 enum insn_code ic;
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
287 PUT_MODE (mem, srcmode);
289 if (insn_operand_matches (ic, 1, mem))
290 float_extend_from_mem[mode][srcmode] = true;
295 /* This is run at the start of compiling a function. */
297 void
298 init_expr (void)
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
348 emit_move_insn (to, from);
349 return;
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
361 emit_move_insn (to, from);
362 return;
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
372 if (to_real)
374 rtx value, insns;
375 convert_optab tab;
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
390 /* Try converting directly if the insn is supported. */
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
444 if (to_mode == full_mode)
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
477 /* Now both modes are integers. */
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
555 gcc_assert (subword);
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
561 insns = get_insns ();
562 end_sequence ();
564 emit_insn (insns);
565 return;
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
583 /* Now follow all the conversions between integers
584 no more than a word long. */
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
615 else
617 enum machine_mode intermediate;
618 rtx tmp;
619 int shift_amount;
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = (GET_MODE_BITSIZE (to_mode)
640 - GET_MODE_BITSIZE (from_mode));
641 from = gen_lowpart (to_mode, force_reg (from_mode, from));
642 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
643 to, unsignedp);
644 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
645 to, unsignedp);
646 if (tmp != to)
647 emit_move_insn (to, tmp);
648 return;
652 /* Support special truncate insns for certain modes. */
653 if (convert_optab_handler (trunc_optab, to_mode,
654 from_mode) != CODE_FOR_nothing)
656 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
657 to, from, UNKNOWN);
658 return;
661 /* Handle truncation of volatile memrefs, and so on;
662 the things that couldn't be truncated directly,
663 and for which there was no special instruction.
665 ??? Code above formerly short-circuited this, for most integer
666 mode pairs, with a force_reg in from_mode followed by a recursive
667 call to this routine. Appears always to have been wrong. */
668 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
671 emit_move_insn (to, temp);
672 return;
675 /* Mode combination is not recognized. */
676 gcc_unreachable ();
679 /* Return an rtx for a value that would result
680 from converting X to mode MODE.
681 Both X and MODE may be floating, or both integer.
682 UNSIGNEDP is nonzero if X is an unsigned value.
683 This can be done by referring to a part of X in place
684 or by copying to a new temporary with conversion. */
687 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 return convert_modes (mode, VOIDmode, x, unsignedp);
692 /* Return an rtx for a value that would result
693 from converting X from mode OLDMODE to mode MODE.
694 Both modes may be floating, or both integer.
695 UNSIGNEDP is nonzero if X is an unsigned value.
697 This can be done by referring to a part of X in place
698 or by copying to a new temporary with conversion.
700 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
703 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 rtx temp;
707 /* If FROM is a SUBREG that indicates that we have already done at least
708 the required extension, strip it. */
710 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
711 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
712 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
713 x = gen_lowpart (mode, x);
715 if (GET_MODE (x) != VOIDmode)
716 oldmode = GET_MODE (x);
718 if (mode == oldmode)
719 return x;
721 /* There is one case that we must handle specially: If we are converting
722 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
723 we are to interpret the constant as unsigned, gen_lowpart will do
724 the wrong if the constant appears negative. What we want to do is
725 make the high-order word of the constant zero, not all ones. */
727 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
728 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
729 && CONST_INT_P (x) && INTVAL (x) < 0)
731 double_int val = uhwi_to_double_int (INTVAL (x));
733 /* We need to zero extend VAL. */
734 if (oldmode != VOIDmode)
735 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737 return immed_double_int_const (val, mode);
740 /* We can do this with a gen_lowpart if both desired and current modes
741 are integer, and this is either a constant integer, a register, or a
742 non-volatile MEM. Except for the constant case where MODE is no
743 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745 if ((CONST_INT_P (x)
746 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
747 || (GET_MODE_CLASS (mode) == MODE_INT
748 && GET_MODE_CLASS (oldmode) == MODE_INT
749 && (GET_CODE (x) == CONST_DOUBLE
750 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
751 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
752 && direct_load[(int) mode])
753 || (REG_P (x)
754 && (! HARD_REGISTER_P (x)
755 || HARD_REGNO_MODE_OK (REGNO (x), mode))
756 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
757 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 /* ?? If we don't know OLDMODE, we have to assume here that
760 X does not need sign- or zero-extension. This may not be
761 the case, but it's the best we can do. */
762 if (CONST_INT_P (x) && oldmode != VOIDmode
763 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 HOST_WIDE_INT val = INTVAL (x);
766 int width = GET_MODE_BITSIZE (oldmode);
768 /* We must sign or zero-extend in this case. Start by
769 zero-extending, then sign extend if we need to. */
770 val &= ((HOST_WIDE_INT) 1 << width) - 1;
771 if (! unsignedp
772 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
773 val |= (HOST_WIDE_INT) (-1) << width;
775 return gen_int_mode (val, mode);
778 return gen_lowpart (mode, x);
781 /* Converting from integer constant into mode is always equivalent to an
782 subreg operation. */
783 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
786 return simplify_gen_subreg (mode, x, oldmode, 0);
789 temp = gen_reg_rtx (mode);
790 convert_move (temp, x, unsignedp);
791 return temp;
794 /* Return the largest alignment we can use for doing a move (or store)
795 of MAX_PIECES. ALIGN is the largest alignment we could use. */
797 static unsigned int
798 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
800 enum machine_mode tmode;
802 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
803 if (align >= GET_MODE_ALIGNMENT (tmode))
804 align = GET_MODE_ALIGNMENT (tmode);
805 else
807 enum machine_mode tmode, xmode;
809 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
810 tmode != VOIDmode;
811 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
812 if (GET_MODE_SIZE (tmode) > max_pieces
813 || SLOW_UNALIGNED_ACCESS (tmode, align))
814 break;
816 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
819 return align;
822 /* Return the widest integer mode no wider than SIZE. If no such mode
823 can be found, return VOIDmode. */
825 static enum machine_mode
826 widest_int_mode_for_size (unsigned int size)
828 enum machine_mode tmode, mode = VOIDmode;
830 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
831 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
832 if (GET_MODE_SIZE (tmode) < size)
833 mode = tmode;
835 return mode;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces_d data;
873 enum machine_mode to_addr_mode, from_addr_mode
874 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
875 rtx to_addr, from_addr = XEXP (from, 0);
876 unsigned int max_size = MOVE_MAX_PIECES + 1;
877 enum insn_code icode;
879 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881 data.offset = 0;
882 data.from_addr = from_addr;
883 if (to)
885 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
886 to_addr = XEXP (to, 0);
887 data.to = to;
888 data.autinc_to
889 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
890 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
891 data.reverse
892 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
894 else
896 to_addr_mode = VOIDmode;
897 to_addr = NULL_RTX;
898 data.to = NULL_RTX;
899 data.autinc_to = 1;
900 #ifdef STACK_GROWS_DOWNWARD
901 data.reverse = 1;
902 #else
903 data.reverse = 0;
904 #endif
906 data.to_addr = to_addr;
907 data.from = from;
908 data.autinc_from
909 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
910 || GET_CODE (from_addr) == POST_INC
911 || GET_CODE (from_addr) == POST_DEC);
913 data.explicit_inc_from = 0;
914 data.explicit_inc_to = 0;
915 if (data.reverse) data.offset = len;
916 data.len = len;
918 /* If copying requires more than two move insns,
919 copy addresses to registers (to make displacements shorter)
920 and use post-increment if available. */
921 if (!(data.autinc_from && data.autinc_to)
922 && move_by_pieces_ninsns (len, align, max_size) > 2)
924 /* Find the mode of the largest move...
925 MODE might not be used depending on the definitions of the
926 USE_* macros below. */
927 enum machine_mode mode ATTRIBUTE_UNUSED
928 = widest_int_mode_for_size (max_size);
930 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
932 data.from_addr = copy_to_mode_reg (from_addr_mode,
933 plus_constant (from_addr, len));
934 data.autinc_from = 1;
935 data.explicit_inc_from = -1;
937 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
939 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
940 data.autinc_from = 1;
941 data.explicit_inc_from = 1;
943 if (!data.autinc_from && CONSTANT_P (from_addr))
944 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
945 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
947 data.to_addr = copy_to_mode_reg (to_addr_mode,
948 plus_constant (to_addr, len));
949 data.autinc_to = 1;
950 data.explicit_inc_to = -1;
952 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
955 data.autinc_to = 1;
956 data.explicit_inc_to = 1;
958 if (!data.autinc_to && CONSTANT_P (to_addr))
959 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
962 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
964 /* First move what we can in the largest integer mode, then go to
965 successively smaller modes. */
967 while (max_size > 1)
969 enum machine_mode mode = widest_int_mode_for_size (max_size);
971 if (mode == VOIDmode)
972 break;
974 icode = optab_handler (mov_optab, mode);
975 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
976 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
978 max_size = GET_MODE_SIZE (mode);
981 /* The code above should have handled everything. */
982 gcc_assert (!data.len);
984 if (endp)
986 rtx to1;
988 gcc_assert (!data.reverse);
989 if (data.autinc_to)
991 if (endp == 2)
993 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
994 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
995 else
996 data.to_addr = copy_to_mode_reg (to_addr_mode,
997 plus_constant (data.to_addr,
998 -1));
1000 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1001 data.offset);
1003 else
1005 if (endp == 2)
1006 --data.offset;
1007 to1 = adjust_address (data.to, QImode, data.offset);
1009 return to1;
1011 else
1012 return data.to;
1015 /* Return number of insns required to move L bytes by pieces.
1016 ALIGN (in bits) is maximum alignment we can assume. */
1018 static unsigned HOST_WIDE_INT
1019 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1020 unsigned int max_size)
1022 unsigned HOST_WIDE_INT n_insns = 0;
1024 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1026 while (max_size > 1)
1028 enum machine_mode mode;
1029 enum insn_code icode;
1031 mode = widest_int_mode_for_size (max_size);
1033 if (mode == VOIDmode)
1034 break;
1036 icode = optab_handler (mov_optab, mode);
1037 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1038 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1040 max_size = GET_MODE_SIZE (mode);
1043 gcc_assert (!l);
1044 return n_insns;
1047 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1048 with move instructions for mode MODE. GENFUN is the gen_... function
1049 to make a move insn for that mode. DATA has all the other info. */
1051 static void
1052 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1053 struct move_by_pieces_d *data)
1055 unsigned int size = GET_MODE_SIZE (mode);
1056 rtx to1 = NULL_RTX, from1;
1058 while (data->len >= size)
1060 if (data->reverse)
1061 data->offset -= size;
1063 if (data->to)
1065 if (data->autinc_to)
1066 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1067 data->offset);
1068 else
1069 to1 = adjust_address (data->to, mode, data->offset);
1072 if (data->autinc_from)
1073 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1074 data->offset);
1075 else
1076 from1 = adjust_address (data->from, mode, data->offset);
1078 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1079 emit_insn (gen_add2_insn (data->to_addr,
1080 GEN_INT (-(HOST_WIDE_INT)size)));
1081 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1082 emit_insn (gen_add2_insn (data->from_addr,
1083 GEN_INT (-(HOST_WIDE_INT)size)));
1085 if (data->to)
1086 emit_insn ((*genfun) (to1, from1));
1087 else
1089 #ifdef PUSH_ROUNDING
1090 emit_single_push_insn (mode, from1, NULL);
1091 #else
1092 gcc_unreachable ();
1093 #endif
1096 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1097 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1098 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1099 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1101 if (! data->reverse)
1102 data->offset += size;
1104 data->len -= size;
1108 /* Emit code to move a block Y to a block X. This may be done with
1109 string-move instructions, with multiple scalar move instructions,
1110 or with a library call.
1112 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1113 SIZE is an rtx that says how long they are.
1114 ALIGN is the maximum alignment we can assume they have.
1115 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117 Return the address of the new block, if memcpy is called and returns it,
1118 0 otherwise. */
1121 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1122 unsigned int expected_align, HOST_WIDE_INT expected_size)
1124 bool may_use_call;
1125 rtx retval = 0;
1126 unsigned int align;
1128 gcc_assert (size);
1129 if (CONST_INT_P (size)
1130 && INTVAL (size) == 0)
1131 return 0;
1133 switch (method)
1135 case BLOCK_OP_NORMAL:
1136 case BLOCK_OP_TAILCALL:
1137 may_use_call = true;
1138 break;
1140 case BLOCK_OP_CALL_PARM:
1141 may_use_call = block_move_libcall_safe_for_call_parm ();
1143 /* Make inhibit_defer_pop nonzero around the library call
1144 to force it to pop the arguments right away. */
1145 NO_DEFER_POP;
1146 break;
1148 case BLOCK_OP_NO_LIBCALL:
1149 may_use_call = false;
1150 break;
1152 default:
1153 gcc_unreachable ();
1156 gcc_assert (MEM_P (x) && MEM_P (y));
1157 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1158 gcc_assert (align >= BITS_PER_UNIT);
1160 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1161 block copy is more efficient for other large modes, e.g. DCmode. */
1162 x = adjust_address (x, BLKmode, 0);
1163 y = adjust_address (y, BLKmode, 0);
1165 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1166 can be incorrect is coming from __builtin_memcpy. */
1167 if (CONST_INT_P (size))
1169 x = shallow_copy_rtx (x);
1170 y = shallow_copy_rtx (y);
1171 set_mem_size (x, size);
1172 set_mem_size (y, size);
1175 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1176 move_by_pieces (x, y, INTVAL (size), align, 0);
1177 else if (emit_block_move_via_movmem (x, y, size, align,
1178 expected_align, expected_size))
1180 else if (may_use_call
1181 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1183 retval = emit_block_move_via_libcall (x, y, size,
1184 method == BLOCK_OP_TAILCALL);
1185 else
1186 emit_block_move_via_loop (x, y, size, align);
1188 if (method == BLOCK_OP_CALL_PARM)
1189 OK_DEFER_POP;
1191 return retval;
1195 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1197 return emit_block_move_hints (x, y, size, method, 0, -1);
1200 /* A subroutine of emit_block_move. Returns true if calling the
1201 block move libcall will not clobber any parameters which may have
1202 already been placed on the stack. */
1204 static bool
1205 block_move_libcall_safe_for_call_parm (void)
1207 #if defined (REG_PARM_STACK_SPACE)
1208 tree fn;
1209 #endif
1211 /* If arguments are pushed on the stack, then they're safe. */
1212 if (PUSH_ARGS)
1213 return true;
1215 /* If registers go on the stack anyway, any argument is sure to clobber
1216 an outgoing argument. */
1217 #if defined (REG_PARM_STACK_SPACE)
1218 fn = emit_block_move_libcall_fn (false);
1219 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1220 depend on its argument. */
1221 (void) fn;
1222 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1223 && REG_PARM_STACK_SPACE (fn) != 0)
1224 return false;
1225 #endif
1227 /* If any argument goes in memory, then it might clobber an outgoing
1228 argument. */
1230 CUMULATIVE_ARGS args_so_far;
1231 tree fn, arg;
1233 fn = emit_block_move_libcall_fn (false);
1234 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1236 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1237 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1239 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1240 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1241 NULL_TREE, true);
1242 if (!tmp || !REG_P (tmp))
1243 return false;
1244 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1245 return false;
1246 targetm.calls.function_arg_advance (&args_so_far, mode,
1247 NULL_TREE, true);
1250 return true;
1253 /* A subroutine of emit_block_move. Expand a movmem pattern;
1254 return true if successful. */
1256 static bool
1257 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1258 unsigned int expected_align, HOST_WIDE_INT expected_size)
1260 int save_volatile_ok = volatile_ok;
1261 enum machine_mode mode;
1263 if (expected_align < align)
1264 expected_align = align;
1266 /* Since this is a move insn, we don't care about volatility. */
1267 volatile_ok = 1;
1269 /* Try the most limited insn first, because there's no point
1270 including more than one in the machine description unless
1271 the more limited one has some advantage. */
1273 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1274 mode = GET_MODE_WIDER_MODE (mode))
1276 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1278 if (code != CODE_FOR_nothing
1279 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1280 here because if SIZE is less than the mode mask, as it is
1281 returned by the macro, it will definitely be less than the
1282 actual mode mask. */
1283 && ((CONST_INT_P (size)
1284 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1285 <= (GET_MODE_MASK (mode) >> 1)))
1286 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1288 struct expand_operand ops[6];
1289 unsigned int nops;
1291 /* ??? When called via emit_block_move_for_call, it'd be
1292 nice if there were some way to inform the backend, so
1293 that it doesn't fail the expansion because it thinks
1294 emitting the libcall would be more efficient. */
1295 nops = insn_data[(int) code].n_generator_args;
1296 gcc_assert (nops == 4 || nops == 6);
1298 create_fixed_operand (&ops[0], x);
1299 create_fixed_operand (&ops[1], y);
1300 /* The check above guarantees that this size conversion is valid. */
1301 create_convert_operand_to (&ops[2], size, mode, true);
1302 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1303 if (nops == 6)
1305 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1306 create_integer_operand (&ops[5], expected_size);
1308 if (maybe_expand_insn (code, nops, ops))
1310 volatile_ok = save_volatile_ok;
1311 return true;
1316 volatile_ok = save_volatile_ok;
1317 return false;
1320 /* A subroutine of emit_block_move. Expand a call to memcpy.
1321 Return the return value from memcpy, 0 otherwise. */
1324 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1326 rtx dst_addr, src_addr;
1327 tree call_expr, fn, src_tree, dst_tree, size_tree;
1328 enum machine_mode size_mode;
1329 rtx retval;
1331 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1332 pseudos. We can then place those new pseudos into a VAR_DECL and
1333 use them later. */
1335 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1336 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1338 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1339 src_addr = convert_memory_address (ptr_mode, src_addr);
1341 dst_tree = make_tree (ptr_type_node, dst_addr);
1342 src_tree = make_tree (ptr_type_node, src_addr);
1344 size_mode = TYPE_MODE (sizetype);
1346 size = convert_to_mode (size_mode, size, 1);
1347 size = copy_to_mode_reg (size_mode, size);
1349 /* It is incorrect to use the libcall calling conventions to call
1350 memcpy in this context. This could be a user call to memcpy and
1351 the user may wish to examine the return value from memcpy. For
1352 targets where libcalls and normal calls have different conventions
1353 for returning pointers, we could end up generating incorrect code. */
1355 size_tree = make_tree (sizetype, size);
1357 fn = emit_block_move_libcall_fn (true);
1358 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1359 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1361 retval = expand_normal (call_expr);
1363 return retval;
1366 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1367 for the function we use for block copies. The first time FOR_CALL
1368 is true, we call assemble_external. */
1370 static GTY(()) tree block_move_fn;
1372 void
1373 init_block_move_fn (const char *asmspec)
1375 if (!block_move_fn)
1377 tree args, fn;
1379 fn = get_identifier ("memcpy");
1380 args = build_function_type_list (ptr_type_node, ptr_type_node,
1381 const_ptr_type_node, sizetype,
1382 NULL_TREE);
1384 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1385 DECL_EXTERNAL (fn) = 1;
1386 TREE_PUBLIC (fn) = 1;
1387 DECL_ARTIFICIAL (fn) = 1;
1388 TREE_NOTHROW (fn) = 1;
1389 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1390 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1392 block_move_fn = fn;
1395 if (asmspec)
1396 set_user_assembler_name (block_move_fn, asmspec);
1399 static tree
1400 emit_block_move_libcall_fn (int for_call)
1402 static bool emitted_extern;
1404 if (!block_move_fn)
1405 init_block_move_fn (NULL);
1407 if (for_call && !emitted_extern)
1409 emitted_extern = true;
1410 make_decl_rtl (block_move_fn);
1411 assemble_external (block_move_fn);
1414 return block_move_fn;
1417 /* A subroutine of emit_block_move. Copy the data via an explicit
1418 loop. This is used only when libcalls are forbidden. */
1419 /* ??? It'd be nice to copy in hunks larger than QImode. */
1421 static void
1422 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1423 unsigned int align ATTRIBUTE_UNUSED)
1425 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1426 enum machine_mode x_addr_mode
1427 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1428 enum machine_mode y_addr_mode
1429 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1430 enum machine_mode iter_mode;
1432 iter_mode = GET_MODE (size);
1433 if (iter_mode == VOIDmode)
1434 iter_mode = word_mode;
1436 top_label = gen_label_rtx ();
1437 cmp_label = gen_label_rtx ();
1438 iter = gen_reg_rtx (iter_mode);
1440 emit_move_insn (iter, const0_rtx);
1442 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1443 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1444 do_pending_stack_adjust ();
1446 emit_jump (cmp_label);
1447 emit_label (top_label);
1449 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1450 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1452 if (x_addr_mode != y_addr_mode)
1453 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1454 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1456 x = change_address (x, QImode, x_addr);
1457 y = change_address (y, QImode, y_addr);
1459 emit_move_insn (x, y);
1461 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1462 true, OPTAB_LIB_WIDEN);
1463 if (tmp != iter)
1464 emit_move_insn (iter, tmp);
1466 emit_label (cmp_label);
1468 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1469 true, top_label);
1472 /* Copy all or part of a value X into registers starting at REGNO.
1473 The number of registers to be filled is NREGS. */
1475 void
1476 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1478 int i;
1479 #ifdef HAVE_load_multiple
1480 rtx pat;
1481 rtx last;
1482 #endif
1484 if (nregs == 0)
1485 return;
1487 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1488 x = validize_mem (force_const_mem (mode, x));
1490 /* See if the machine can do this with a load multiple insn. */
1491 #ifdef HAVE_load_multiple
1492 if (HAVE_load_multiple)
1494 last = get_last_insn ();
1495 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1496 GEN_INT (nregs));
1497 if (pat)
1499 emit_insn (pat);
1500 return;
1502 else
1503 delete_insns_since (last);
1505 #endif
1507 for (i = 0; i < nregs; i++)
1508 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1509 operand_subword_force (x, i, mode));
1512 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1513 The number of registers to be filled is NREGS. */
1515 void
1516 move_block_from_reg (int regno, rtx x, int nregs)
1518 int i;
1520 if (nregs == 0)
1521 return;
1523 /* See if the machine can do this with a store multiple insn. */
1524 #ifdef HAVE_store_multiple
1525 if (HAVE_store_multiple)
1527 rtx last = get_last_insn ();
1528 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1529 GEN_INT (nregs));
1530 if (pat)
1532 emit_insn (pat);
1533 return;
1535 else
1536 delete_insns_since (last);
1538 #endif
1540 for (i = 0; i < nregs; i++)
1542 rtx tem = operand_subword (x, i, 1, BLKmode);
1544 gcc_assert (tem);
1546 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1550 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1551 ORIG, where ORIG is a non-consecutive group of registers represented by
1552 a PARALLEL. The clone is identical to the original except in that the
1553 original set of registers is replaced by a new set of pseudo registers.
1554 The new set has the same modes as the original set. */
1557 gen_group_rtx (rtx orig)
1559 int i, length;
1560 rtx *tmps;
1562 gcc_assert (GET_CODE (orig) == PARALLEL);
1564 length = XVECLEN (orig, 0);
1565 tmps = XALLOCAVEC (rtx, length);
1567 /* Skip a NULL entry in first slot. */
1568 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1570 if (i)
1571 tmps[0] = 0;
1573 for (; i < length; i++)
1575 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1576 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1578 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1581 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1584 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1585 except that values are placed in TMPS[i], and must later be moved
1586 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1588 static void
1589 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1591 rtx src;
1592 int start, i;
1593 enum machine_mode m = GET_MODE (orig_src);
1595 gcc_assert (GET_CODE (dst) == PARALLEL);
1597 if (m != VOIDmode
1598 && !SCALAR_INT_MODE_P (m)
1599 && !MEM_P (orig_src)
1600 && GET_CODE (orig_src) != CONCAT)
1602 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1603 if (imode == BLKmode)
1604 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1605 else
1606 src = gen_reg_rtx (imode);
1607 if (imode != BLKmode)
1608 src = gen_lowpart (GET_MODE (orig_src), src);
1609 emit_move_insn (src, orig_src);
1610 /* ...and back again. */
1611 if (imode != BLKmode)
1612 src = gen_lowpart (imode, src);
1613 emit_group_load_1 (tmps, dst, src, type, ssize);
1614 return;
1617 /* Check for a NULL entry, used to indicate that the parameter goes
1618 both on the stack and in registers. */
1619 if (XEXP (XVECEXP (dst, 0, 0), 0))
1620 start = 0;
1621 else
1622 start = 1;
1624 /* Process the pieces. */
1625 for (i = start; i < XVECLEN (dst, 0); i++)
1627 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1628 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1629 unsigned int bytelen = GET_MODE_SIZE (mode);
1630 int shift = 0;
1632 /* Handle trailing fragments that run over the size of the struct. */
1633 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1635 /* Arrange to shift the fragment to where it belongs.
1636 extract_bit_field loads to the lsb of the reg. */
1637 if (
1638 #ifdef BLOCK_REG_PADDING
1639 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1640 == (BYTES_BIG_ENDIAN ? upward : downward)
1641 #else
1642 BYTES_BIG_ENDIAN
1643 #endif
1645 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1646 bytelen = ssize - bytepos;
1647 gcc_assert (bytelen > 0);
1650 /* If we won't be loading directly from memory, protect the real source
1651 from strange tricks we might play; but make sure that the source can
1652 be loaded directly into the destination. */
1653 src = orig_src;
1654 if (!MEM_P (orig_src)
1655 && (!CONSTANT_P (orig_src)
1656 || (GET_MODE (orig_src) != mode
1657 && GET_MODE (orig_src) != VOIDmode)))
1659 if (GET_MODE (orig_src) == VOIDmode)
1660 src = gen_reg_rtx (mode);
1661 else
1662 src = gen_reg_rtx (GET_MODE (orig_src));
1664 emit_move_insn (src, orig_src);
1667 /* Optimize the access just a bit. */
1668 if (MEM_P (src)
1669 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1670 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1671 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1672 && bytelen == GET_MODE_SIZE (mode))
1674 tmps[i] = gen_reg_rtx (mode);
1675 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1677 else if (COMPLEX_MODE_P (mode)
1678 && GET_MODE (src) == mode
1679 && bytelen == GET_MODE_SIZE (mode))
1680 /* Let emit_move_complex do the bulk of the work. */
1681 tmps[i] = src;
1682 else if (GET_CODE (src) == CONCAT)
1684 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1685 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1687 if ((bytepos == 0 && bytelen == slen0)
1688 || (bytepos != 0 && bytepos + bytelen <= slen))
1690 /* The following assumes that the concatenated objects all
1691 have the same size. In this case, a simple calculation
1692 can be used to determine the object and the bit field
1693 to be extracted. */
1694 tmps[i] = XEXP (src, bytepos / slen0);
1695 if (! CONSTANT_P (tmps[i])
1696 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1697 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1698 (bytepos % slen0) * BITS_PER_UNIT,
1699 1, false, NULL_RTX, mode, mode);
1701 else
1703 rtx mem;
1705 gcc_assert (!bytepos);
1706 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1707 emit_move_insn (mem, src);
1708 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1709 0, 1, false, NULL_RTX, mode, mode);
1712 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1713 SIMD register, which is currently broken. While we get GCC
1714 to emit proper RTL for these cases, let's dump to memory. */
1715 else if (VECTOR_MODE_P (GET_MODE (dst))
1716 && REG_P (src))
1718 int slen = GET_MODE_SIZE (GET_MODE (src));
1719 rtx mem;
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1725 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1726 && XVECLEN (dst, 0) > 1)
1727 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1728 else if (CONSTANT_P (src))
1730 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1732 if (len == ssize)
1733 tmps[i] = src;
1734 else
1736 rtx first, second;
1738 gcc_assert (2 * len == ssize);
1739 split_double (src, &first, &second);
1740 if (i)
1741 tmps[i] = second;
1742 else
1743 tmps[i] = first;
1746 else if (REG_P (src) && GET_MODE (src) == mode)
1747 tmps[i] = src;
1748 else
1749 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1750 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1751 mode, mode);
1753 if (shift)
1754 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1755 shift, tmps[i], 0);
1759 /* Emit code to move a block SRC of type TYPE to a block DST,
1760 where DST is non-consecutive registers represented by a PARALLEL.
1761 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1762 if not known. */
1764 void
1765 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1767 rtx *tmps;
1768 int i;
1770 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1771 emit_group_load_1 (tmps, dst, src, type, ssize);
1773 /* Copy the extracted pieces into the proper (probable) hard regs. */
1774 for (i = 0; i < XVECLEN (dst, 0); i++)
1776 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1777 if (d == NULL)
1778 continue;
1779 emit_move_insn (d, tmps[i]);
1783 /* Similar, but load SRC into new pseudos in a format that looks like
1784 PARALLEL. This can later be fed to emit_group_move to get things
1785 in the right place. */
1788 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1790 rtvec vec;
1791 int i;
1793 vec = rtvec_alloc (XVECLEN (parallel, 0));
1794 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1796 /* Convert the vector to look just like the original PARALLEL, except
1797 with the computed values. */
1798 for (i = 0; i < XVECLEN (parallel, 0); i++)
1800 rtx e = XVECEXP (parallel, 0, i);
1801 rtx d = XEXP (e, 0);
1803 if (d)
1805 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1806 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1808 RTVEC_ELT (vec, i) = e;
1811 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1814 /* Emit code to move a block SRC to block DST, where SRC and DST are
1815 non-consecutive groups of registers, each represented by a PARALLEL. */
1817 void
1818 emit_group_move (rtx dst, rtx src)
1820 int i;
1822 gcc_assert (GET_CODE (src) == PARALLEL
1823 && GET_CODE (dst) == PARALLEL
1824 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1826 /* Skip first entry if NULL. */
1827 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1828 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1829 XEXP (XVECEXP (src, 0, i), 0));
1832 /* Move a group of registers represented by a PARALLEL into pseudos. */
1835 emit_group_move_into_temps (rtx src)
1837 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1838 int i;
1840 for (i = 0; i < XVECLEN (src, 0); i++)
1842 rtx e = XVECEXP (src, 0, i);
1843 rtx d = XEXP (e, 0);
1845 if (d)
1846 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1847 RTVEC_ELT (vec, i) = e;
1850 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1853 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1854 where SRC is non-consecutive registers represented by a PARALLEL.
1855 SSIZE represents the total size of block ORIG_DST, or -1 if not
1856 known. */
1858 void
1859 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1861 rtx *tmps, dst;
1862 int start, finish, i;
1863 enum machine_mode m = GET_MODE (orig_dst);
1865 gcc_assert (GET_CODE (src) == PARALLEL);
1867 if (!SCALAR_INT_MODE_P (m)
1868 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1870 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1871 if (imode == BLKmode)
1872 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1873 else
1874 dst = gen_reg_rtx (imode);
1875 emit_group_store (dst, src, type, ssize);
1876 if (imode != BLKmode)
1877 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1878 emit_move_insn (orig_dst, dst);
1879 return;
1882 /* Check for a NULL entry, used to indicate that the parameter goes
1883 both on the stack and in registers. */
1884 if (XEXP (XVECEXP (src, 0, 0), 0))
1885 start = 0;
1886 else
1887 start = 1;
1888 finish = XVECLEN (src, 0);
1890 tmps = XALLOCAVEC (rtx, finish);
1892 /* Copy the (probable) hard regs into pseudos. */
1893 for (i = start; i < finish; i++)
1895 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1896 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1898 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1899 emit_move_insn (tmps[i], reg);
1901 else
1902 tmps[i] = reg;
1905 /* If we won't be storing directly into memory, protect the real destination
1906 from strange tricks we might play. */
1907 dst = orig_dst;
1908 if (GET_CODE (dst) == PARALLEL)
1910 rtx temp;
1912 /* We can get a PARALLEL dst if there is a conditional expression in
1913 a return statement. In that case, the dst and src are the same,
1914 so no action is necessary. */
1915 if (rtx_equal_p (dst, src))
1916 return;
1918 /* It is unclear if we can ever reach here, but we may as well handle
1919 it. Allocate a temporary, and split this into a store/load to/from
1920 the temporary. */
1922 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1923 emit_group_store (temp, src, type, ssize);
1924 emit_group_load (dst, temp, type, ssize);
1925 return;
1927 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1929 enum machine_mode outer = GET_MODE (dst);
1930 enum machine_mode inner;
1931 HOST_WIDE_INT bytepos;
1932 bool done = false;
1933 rtx temp;
1935 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1936 dst = gen_reg_rtx (outer);
1938 /* Make life a bit easier for combine. */
1939 /* If the first element of the vector is the low part
1940 of the destination mode, use a paradoxical subreg to
1941 initialize the destination. */
1942 if (start < finish)
1944 inner = GET_MODE (tmps[start]);
1945 bytepos = subreg_lowpart_offset (inner, outer);
1946 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1948 temp = simplify_gen_subreg (outer, tmps[start],
1949 inner, 0);
1950 if (temp)
1952 emit_move_insn (dst, temp);
1953 done = true;
1954 start++;
1959 /* If the first element wasn't the low part, try the last. */
1960 if (!done
1961 && start < finish - 1)
1963 inner = GET_MODE (tmps[finish - 1]);
1964 bytepos = subreg_lowpart_offset (inner, outer);
1965 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1967 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1968 inner, 0);
1969 if (temp)
1971 emit_move_insn (dst, temp);
1972 done = true;
1973 finish--;
1978 /* Otherwise, simply initialize the result to zero. */
1979 if (!done)
1980 emit_move_insn (dst, CONST0_RTX (outer));
1983 /* Process the pieces. */
1984 for (i = start; i < finish; i++)
1986 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1987 enum machine_mode mode = GET_MODE (tmps[i]);
1988 unsigned int bytelen = GET_MODE_SIZE (mode);
1989 unsigned int adj_bytelen = bytelen;
1990 rtx dest = dst;
1992 /* Handle trailing fragments that run over the size of the struct. */
1993 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1994 adj_bytelen = ssize - bytepos;
1996 if (GET_CODE (dst) == CONCAT)
1998 if (bytepos + adj_bytelen
1999 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2000 dest = XEXP (dst, 0);
2001 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2003 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2004 dest = XEXP (dst, 1);
2006 else
2008 enum machine_mode dest_mode = GET_MODE (dest);
2009 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2011 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2013 if (GET_MODE_ALIGNMENT (dest_mode)
2014 >= GET_MODE_ALIGNMENT (tmp_mode))
2016 dest = assign_stack_temp (dest_mode,
2017 GET_MODE_SIZE (dest_mode),
2019 emit_move_insn (adjust_address (dest,
2020 tmp_mode,
2021 bytepos),
2022 tmps[i]);
2023 dst = dest;
2025 else
2027 dest = assign_stack_temp (tmp_mode,
2028 GET_MODE_SIZE (tmp_mode),
2030 emit_move_insn (dest, tmps[i]);
2031 dst = adjust_address (dest, dest_mode, bytepos);
2033 break;
2037 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2039 /* store_bit_field always takes its value from the lsb.
2040 Move the fragment to the lsb if it's not already there. */
2041 if (
2042 #ifdef BLOCK_REG_PADDING
2043 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2044 == (BYTES_BIG_ENDIAN ? upward : downward)
2045 #else
2046 BYTES_BIG_ENDIAN
2047 #endif
2050 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2051 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2052 shift, tmps[i], 0);
2054 bytelen = adj_bytelen;
2057 /* Optimize the access just a bit. */
2058 if (MEM_P (dest)
2059 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2060 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2061 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2062 && bytelen == GET_MODE_SIZE (mode))
2063 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2064 else
2065 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2066 mode, tmps[i]);
2069 /* Copy from the pseudo into the (probable) hard reg. */
2070 if (orig_dst != dst)
2071 emit_move_insn (orig_dst, dst);
2074 /* Generate code to copy a BLKmode object of TYPE out of a
2075 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2076 is null, a stack temporary is created. TGTBLK is returned.
2078 The purpose of this routine is to handle functions that return
2079 BLKmode structures in registers. Some machines (the PA for example)
2080 want to return all small structures in registers regardless of the
2081 structure's alignment. */
2084 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2086 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2087 rtx src = NULL, dst = NULL;
2088 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2089 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2090 enum machine_mode copy_mode;
2092 if (tgtblk == 0)
2094 tgtblk = assign_temp (build_qualified_type (type,
2095 (TYPE_QUALS (type)
2096 | TYPE_QUAL_CONST)),
2097 0, 1, 1);
2098 preserve_temp_slots (tgtblk);
2101 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2102 into a new pseudo which is a full word. */
2104 if (GET_MODE (srcreg) != BLKmode
2105 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2106 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2108 /* If the structure doesn't take up a whole number of words, see whether
2109 SRCREG is padded on the left or on the right. If it's on the left,
2110 set PADDING_CORRECTION to the number of bits to skip.
2112 In most ABIs, the structure will be returned at the least end of
2113 the register, which translates to right padding on little-endian
2114 targets and left padding on big-endian targets. The opposite
2115 holds if the structure is returned at the most significant
2116 end of the register. */
2117 if (bytes % UNITS_PER_WORD != 0
2118 && (targetm.calls.return_in_msb (type)
2119 ? !BYTES_BIG_ENDIAN
2120 : BYTES_BIG_ENDIAN))
2121 padding_correction
2122 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2124 /* Copy the structure BITSIZE bits at a time. If the target lives in
2125 memory, take care of not reading/writing past its end by selecting
2126 a copy mode suited to BITSIZE. This should always be possible given
2127 how it is computed.
2129 We could probably emit more efficient code for machines which do not use
2130 strict alignment, but it doesn't seem worth the effort at the current
2131 time. */
2133 copy_mode = word_mode;
2134 if (MEM_P (tgtblk))
2136 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2137 if (mem_mode != BLKmode)
2138 copy_mode = mem_mode;
2141 for (bitpos = 0, xbitpos = padding_correction;
2142 bitpos < bytes * BITS_PER_UNIT;
2143 bitpos += bitsize, xbitpos += bitsize)
2145 /* We need a new source operand each time xbitpos is on a
2146 word boundary and when xbitpos == padding_correction
2147 (the first time through). */
2148 if (xbitpos % BITS_PER_WORD == 0
2149 || xbitpos == padding_correction)
2150 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2151 GET_MODE (srcreg));
2153 /* We need a new destination operand each time bitpos is on
2154 a word boundary. */
2155 if (bitpos % BITS_PER_WORD == 0)
2156 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2158 /* Use xbitpos for the source extraction (right justified) and
2159 bitpos for the destination store (left justified). */
2160 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2161 extract_bit_field (src, bitsize,
2162 xbitpos % BITS_PER_WORD, 1, false,
2163 NULL_RTX, copy_mode, copy_mode));
2166 return tgtblk;
2169 /* Add a USE expression for REG to the (possibly empty) list pointed
2170 to by CALL_FUSAGE. REG must denote a hard register. */
2172 void
2173 use_reg (rtx *call_fusage, rtx reg)
2175 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2177 *call_fusage
2178 = gen_rtx_EXPR_LIST (VOIDmode,
2179 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2182 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2183 starting at REGNO. All of these registers must be hard registers. */
2185 void
2186 use_regs (rtx *call_fusage, int regno, int nregs)
2188 int i;
2190 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2192 for (i = 0; i < nregs; i++)
2193 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2196 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2197 PARALLEL REGS. This is for calls that pass values in multiple
2198 non-contiguous locations. The Irix 6 ABI has examples of this. */
2200 void
2201 use_group_regs (rtx *call_fusage, rtx regs)
2203 int i;
2205 for (i = 0; i < XVECLEN (regs, 0); i++)
2207 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2209 /* A NULL entry means the parameter goes both on the stack and in
2210 registers. This can also be a MEM for targets that pass values
2211 partially on the stack and partially in registers. */
2212 if (reg != 0 && REG_P (reg))
2213 use_reg (call_fusage, reg);
2217 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2218 assigment and the code of the expresion on the RHS is CODE. Return
2219 NULL otherwise. */
2221 static gimple
2222 get_def_for_expr (tree name, enum tree_code code)
2224 gimple def_stmt;
2226 if (TREE_CODE (name) != SSA_NAME)
2227 return NULL;
2229 def_stmt = get_gimple_for_ssa_name (name);
2230 if (!def_stmt
2231 || gimple_assign_rhs_code (def_stmt) != code)
2232 return NULL;
2234 return def_stmt;
2238 /* Determine whether the LEN bytes generated by CONSTFUN can be
2239 stored to memory using several move instructions. CONSTFUNDATA is
2240 a pointer which will be passed as argument in every CONSTFUN call.
2241 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2242 a memset operation and false if it's a copy of a constant string.
2243 Return nonzero if a call to store_by_pieces should succeed. */
2246 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2247 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2248 void *constfundata, unsigned int align, bool memsetp)
2250 unsigned HOST_WIDE_INT l;
2251 unsigned int max_size;
2252 HOST_WIDE_INT offset = 0;
2253 enum machine_mode mode;
2254 enum insn_code icode;
2255 int reverse;
2256 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2257 rtx cst ATTRIBUTE_UNUSED;
2259 if (len == 0)
2260 return 1;
2262 if (! (memsetp
2263 ? SET_BY_PIECES_P (len, align)
2264 : STORE_BY_PIECES_P (len, align)))
2265 return 0;
2267 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2269 /* We would first store what we can in the largest integer mode, then go to
2270 successively smaller modes. */
2272 for (reverse = 0;
2273 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2274 reverse++)
2276 l = len;
2277 max_size = STORE_MAX_PIECES + 1;
2278 while (max_size > 1)
2280 mode = widest_int_mode_for_size (max_size);
2282 if (mode == VOIDmode)
2283 break;
2285 icode = optab_handler (mov_optab, mode);
2286 if (icode != CODE_FOR_nothing
2287 && align >= GET_MODE_ALIGNMENT (mode))
2289 unsigned int size = GET_MODE_SIZE (mode);
2291 while (l >= size)
2293 if (reverse)
2294 offset -= size;
2296 cst = (*constfun) (constfundata, offset, mode);
2297 if (!targetm.legitimate_constant_p (mode, cst))
2298 return 0;
2300 if (!reverse)
2301 offset += size;
2303 l -= size;
2307 max_size = GET_MODE_SIZE (mode);
2310 /* The code above should have handled everything. */
2311 gcc_assert (!l);
2314 return 1;
2317 /* Generate several move instructions to store LEN bytes generated by
2318 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2319 pointer which will be passed as argument in every CONSTFUN call.
2320 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2321 a memset operation and false if it's a copy of a constant string.
2322 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2323 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2324 stpcpy. */
2327 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2328 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2329 void *constfundata, unsigned int align, bool memsetp, int endp)
2331 enum machine_mode to_addr_mode
2332 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2333 struct store_by_pieces_d data;
2335 if (len == 0)
2337 gcc_assert (endp != 2);
2338 return to;
2341 gcc_assert (memsetp
2342 ? SET_BY_PIECES_P (len, align)
2343 : STORE_BY_PIECES_P (len, align));
2344 data.constfun = constfun;
2345 data.constfundata = constfundata;
2346 data.len = len;
2347 data.to = to;
2348 store_by_pieces_1 (&data, align);
2349 if (endp)
2351 rtx to1;
2353 gcc_assert (!data.reverse);
2354 if (data.autinc_to)
2356 if (endp == 2)
2358 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2359 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2360 else
2361 data.to_addr = copy_to_mode_reg (to_addr_mode,
2362 plus_constant (data.to_addr,
2363 -1));
2365 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2366 data.offset);
2368 else
2370 if (endp == 2)
2371 --data.offset;
2372 to1 = adjust_address (data.to, QImode, data.offset);
2374 return to1;
2376 else
2377 return data.to;
2380 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2381 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2383 static void
2384 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2386 struct store_by_pieces_d data;
2388 if (len == 0)
2389 return;
2391 data.constfun = clear_by_pieces_1;
2392 data.constfundata = NULL;
2393 data.len = len;
2394 data.to = to;
2395 store_by_pieces_1 (&data, align);
2398 /* Callback routine for clear_by_pieces.
2399 Return const0_rtx unconditionally. */
2401 static rtx
2402 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2403 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2404 enum machine_mode mode ATTRIBUTE_UNUSED)
2406 return const0_rtx;
2409 /* Subroutine of clear_by_pieces and store_by_pieces.
2410 Generate several move instructions to store LEN bytes of block TO. (A MEM
2411 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2413 static void
2414 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2415 unsigned int align ATTRIBUTE_UNUSED)
2417 enum machine_mode to_addr_mode
2418 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2419 rtx to_addr = XEXP (data->to, 0);
2420 unsigned int max_size = STORE_MAX_PIECES + 1;
2421 enum insn_code icode;
2423 data->offset = 0;
2424 data->to_addr = to_addr;
2425 data->autinc_to
2426 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2427 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2429 data->explicit_inc_to = 0;
2430 data->reverse
2431 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2432 if (data->reverse)
2433 data->offset = data->len;
2435 /* If storing requires more than two move insns,
2436 copy addresses to registers (to make displacements shorter)
2437 and use post-increment if available. */
2438 if (!data->autinc_to
2439 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2441 /* Determine the main mode we'll be using.
2442 MODE might not be used depending on the definitions of the
2443 USE_* macros below. */
2444 enum machine_mode mode ATTRIBUTE_UNUSED
2445 = widest_int_mode_for_size (max_size);
2447 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2449 data->to_addr = copy_to_mode_reg (to_addr_mode,
2450 plus_constant (to_addr, data->len));
2451 data->autinc_to = 1;
2452 data->explicit_inc_to = -1;
2455 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2456 && ! data->autinc_to)
2458 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2459 data->autinc_to = 1;
2460 data->explicit_inc_to = 1;
2463 if ( !data->autinc_to && CONSTANT_P (to_addr))
2464 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2467 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2469 /* First store what we can in the largest integer mode, then go to
2470 successively smaller modes. */
2472 while (max_size > 1)
2474 enum machine_mode mode = widest_int_mode_for_size (max_size);
2476 if (mode == VOIDmode)
2477 break;
2479 icode = optab_handler (mov_optab, mode);
2480 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2481 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2483 max_size = GET_MODE_SIZE (mode);
2486 /* The code above should have handled everything. */
2487 gcc_assert (!data->len);
2490 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2491 with move instructions for mode MODE. GENFUN is the gen_... function
2492 to make a move insn for that mode. DATA has all the other info. */
2494 static void
2495 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2496 struct store_by_pieces_d *data)
2498 unsigned int size = GET_MODE_SIZE (mode);
2499 rtx to1, cst;
2501 while (data->len >= size)
2503 if (data->reverse)
2504 data->offset -= size;
2506 if (data->autinc_to)
2507 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2508 data->offset);
2509 else
2510 to1 = adjust_address (data->to, mode, data->offset);
2512 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2513 emit_insn (gen_add2_insn (data->to_addr,
2514 GEN_INT (-(HOST_WIDE_INT) size)));
2516 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2517 emit_insn ((*genfun) (to1, cst));
2519 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2520 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2522 if (! data->reverse)
2523 data->offset += size;
2525 data->len -= size;
2529 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2530 its length in bytes. */
2533 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2534 unsigned int expected_align, HOST_WIDE_INT expected_size)
2536 enum machine_mode mode = GET_MODE (object);
2537 unsigned int align;
2539 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2541 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2542 just move a zero. Otherwise, do this a piece at a time. */
2543 if (mode != BLKmode
2544 && CONST_INT_P (size)
2545 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2547 rtx zero = CONST0_RTX (mode);
2548 if (zero != NULL)
2550 emit_move_insn (object, zero);
2551 return NULL;
2554 if (COMPLEX_MODE_P (mode))
2556 zero = CONST0_RTX (GET_MODE_INNER (mode));
2557 if (zero != NULL)
2559 write_complex_part (object, zero, 0);
2560 write_complex_part (object, zero, 1);
2561 return NULL;
2566 if (size == const0_rtx)
2567 return NULL;
2569 align = MEM_ALIGN (object);
2571 if (CONST_INT_P (size)
2572 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2573 clear_by_pieces (object, INTVAL (size), align);
2574 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2575 expected_align, expected_size))
2577 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2578 return set_storage_via_libcall (object, size, const0_rtx,
2579 method == BLOCK_OP_TAILCALL);
2580 else
2581 gcc_unreachable ();
2583 return NULL;
2587 clear_storage (rtx object, rtx size, enum block_op_methods method)
2589 return clear_storage_hints (object, size, method, 0, -1);
2593 /* A subroutine of clear_storage. Expand a call to memset.
2594 Return the return value of memset, 0 otherwise. */
2597 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2599 tree call_expr, fn, object_tree, size_tree, val_tree;
2600 enum machine_mode size_mode;
2601 rtx retval;
2603 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2604 place those into new pseudos into a VAR_DECL and use them later. */
2606 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2608 size_mode = TYPE_MODE (sizetype);
2609 size = convert_to_mode (size_mode, size, 1);
2610 size = copy_to_mode_reg (size_mode, size);
2612 /* It is incorrect to use the libcall calling conventions to call
2613 memset in this context. This could be a user call to memset and
2614 the user may wish to examine the return value from memset. For
2615 targets where libcalls and normal calls have different conventions
2616 for returning pointers, we could end up generating incorrect code. */
2618 object_tree = make_tree (ptr_type_node, object);
2619 if (!CONST_INT_P (val))
2620 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2621 size_tree = make_tree (sizetype, size);
2622 val_tree = make_tree (integer_type_node, val);
2624 fn = clear_storage_libcall_fn (true);
2625 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2626 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2628 retval = expand_normal (call_expr);
2630 return retval;
2633 /* A subroutine of set_storage_via_libcall. Create the tree node
2634 for the function we use for block clears. The first time FOR_CALL
2635 is true, we call assemble_external. */
2637 tree block_clear_fn;
2639 void
2640 init_block_clear_fn (const char *asmspec)
2642 if (!block_clear_fn)
2644 tree fn, args;
2646 fn = get_identifier ("memset");
2647 args = build_function_type_list (ptr_type_node, ptr_type_node,
2648 integer_type_node, sizetype,
2649 NULL_TREE);
2651 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2652 DECL_EXTERNAL (fn) = 1;
2653 TREE_PUBLIC (fn) = 1;
2654 DECL_ARTIFICIAL (fn) = 1;
2655 TREE_NOTHROW (fn) = 1;
2656 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2657 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2659 block_clear_fn = fn;
2662 if (asmspec)
2663 set_user_assembler_name (block_clear_fn, asmspec);
2666 static tree
2667 clear_storage_libcall_fn (int for_call)
2669 static bool emitted_extern;
2671 if (!block_clear_fn)
2672 init_block_clear_fn (NULL);
2674 if (for_call && !emitted_extern)
2676 emitted_extern = true;
2677 make_decl_rtl (block_clear_fn);
2678 assemble_external (block_clear_fn);
2681 return block_clear_fn;
2684 /* Expand a setmem pattern; return true if successful. */
2686 bool
2687 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2688 unsigned int expected_align, HOST_WIDE_INT expected_size)
2690 /* Try the most limited insn first, because there's no point
2691 including more than one in the machine description unless
2692 the more limited one has some advantage. */
2694 enum machine_mode mode;
2696 if (expected_align < align)
2697 expected_align = align;
2699 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2700 mode = GET_MODE_WIDER_MODE (mode))
2702 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2704 if (code != CODE_FOR_nothing
2705 /* We don't need MODE to be narrower than
2706 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2707 the mode mask, as it is returned by the macro, it will
2708 definitely be less than the actual mode mask. */
2709 && ((CONST_INT_P (size)
2710 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2711 <= (GET_MODE_MASK (mode) >> 1)))
2712 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2714 struct expand_operand ops[6];
2715 unsigned int nops;
2717 nops = insn_data[(int) code].n_generator_args;
2718 gcc_assert (nops == 4 || nops == 6);
2720 create_fixed_operand (&ops[0], object);
2721 /* The check above guarantees that this size conversion is valid. */
2722 create_convert_operand_to (&ops[1], size, mode, true);
2723 create_convert_operand_from (&ops[2], val, byte_mode, true);
2724 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2725 if (nops == 6)
2727 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2728 create_integer_operand (&ops[5], expected_size);
2730 if (maybe_expand_insn (code, nops, ops))
2731 return true;
2735 return false;
2739 /* Write to one of the components of the complex value CPLX. Write VAL to
2740 the real part if IMAG_P is false, and the imaginary part if its true. */
2742 static void
2743 write_complex_part (rtx cplx, rtx val, bool imag_p)
2745 enum machine_mode cmode;
2746 enum machine_mode imode;
2747 unsigned ibitsize;
2749 if (GET_CODE (cplx) == CONCAT)
2751 emit_move_insn (XEXP (cplx, imag_p), val);
2752 return;
2755 cmode = GET_MODE (cplx);
2756 imode = GET_MODE_INNER (cmode);
2757 ibitsize = GET_MODE_BITSIZE (imode);
2759 /* For MEMs simplify_gen_subreg may generate an invalid new address
2760 because, e.g., the original address is considered mode-dependent
2761 by the target, which restricts simplify_subreg from invoking
2762 adjust_address_nv. Instead of preparing fallback support for an
2763 invalid address, we call adjust_address_nv directly. */
2764 if (MEM_P (cplx))
2766 emit_move_insn (adjust_address_nv (cplx, imode,
2767 imag_p ? GET_MODE_SIZE (imode) : 0),
2768 val);
2769 return;
2772 /* If the sub-object is at least word sized, then we know that subregging
2773 will work. This special case is important, since store_bit_field
2774 wants to operate on integer modes, and there's rarely an OImode to
2775 correspond to TCmode. */
2776 if (ibitsize >= BITS_PER_WORD
2777 /* For hard regs we have exact predicates. Assume we can split
2778 the original object if it spans an even number of hard regs.
2779 This special case is important for SCmode on 64-bit platforms
2780 where the natural size of floating-point regs is 32-bit. */
2781 || (REG_P (cplx)
2782 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2783 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2785 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2786 imag_p ? GET_MODE_SIZE (imode) : 0);
2787 if (part)
2789 emit_move_insn (part, val);
2790 return;
2792 else
2793 /* simplify_gen_subreg may fail for sub-word MEMs. */
2794 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2797 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2800 /* Extract one of the components of the complex value CPLX. Extract the
2801 real part if IMAG_P is false, and the imaginary part if it's true. */
2803 static rtx
2804 read_complex_part (rtx cplx, bool imag_p)
2806 enum machine_mode cmode, imode;
2807 unsigned ibitsize;
2809 if (GET_CODE (cplx) == CONCAT)
2810 return XEXP (cplx, imag_p);
2812 cmode = GET_MODE (cplx);
2813 imode = GET_MODE_INNER (cmode);
2814 ibitsize = GET_MODE_BITSIZE (imode);
2816 /* Special case reads from complex constants that got spilled to memory. */
2817 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2819 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2820 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2822 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2823 if (CONSTANT_CLASS_P (part))
2824 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2828 /* For MEMs simplify_gen_subreg may generate an invalid new address
2829 because, e.g., the original address is considered mode-dependent
2830 by the target, which restricts simplify_subreg from invoking
2831 adjust_address_nv. Instead of preparing fallback support for an
2832 invalid address, we call adjust_address_nv directly. */
2833 if (MEM_P (cplx))
2834 return adjust_address_nv (cplx, imode,
2835 imag_p ? GET_MODE_SIZE (imode) : 0);
2837 /* If the sub-object is at least word sized, then we know that subregging
2838 will work. This special case is important, since extract_bit_field
2839 wants to operate on integer modes, and there's rarely an OImode to
2840 correspond to TCmode. */
2841 if (ibitsize >= BITS_PER_WORD
2842 /* For hard regs we have exact predicates. Assume we can split
2843 the original object if it spans an even number of hard regs.
2844 This special case is important for SCmode on 64-bit platforms
2845 where the natural size of floating-point regs is 32-bit. */
2846 || (REG_P (cplx)
2847 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2848 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2850 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2851 imag_p ? GET_MODE_SIZE (imode) : 0);
2852 if (ret)
2853 return ret;
2854 else
2855 /* simplify_gen_subreg may fail for sub-word MEMs. */
2856 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2859 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2860 true, false, NULL_RTX, imode, imode);
2863 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2864 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2865 represented in NEW_MODE. If FORCE is true, this will never happen, as
2866 we'll force-create a SUBREG if needed. */
2868 static rtx
2869 emit_move_change_mode (enum machine_mode new_mode,
2870 enum machine_mode old_mode, rtx x, bool force)
2872 rtx ret;
2874 if (push_operand (x, GET_MODE (x)))
2876 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2877 MEM_COPY_ATTRIBUTES (ret, x);
2879 else if (MEM_P (x))
2881 /* We don't have to worry about changing the address since the
2882 size in bytes is supposed to be the same. */
2883 if (reload_in_progress)
2885 /* Copy the MEM to change the mode and move any
2886 substitutions from the old MEM to the new one. */
2887 ret = adjust_address_nv (x, new_mode, 0);
2888 copy_replacements (x, ret);
2890 else
2891 ret = adjust_address (x, new_mode, 0);
2893 else
2895 /* Note that we do want simplify_subreg's behavior of validating
2896 that the new mode is ok for a hard register. If we were to use
2897 simplify_gen_subreg, we would create the subreg, but would
2898 probably run into the target not being able to implement it. */
2899 /* Except, of course, when FORCE is true, when this is exactly what
2900 we want. Which is needed for CCmodes on some targets. */
2901 if (force)
2902 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2903 else
2904 ret = simplify_subreg (new_mode, x, old_mode, 0);
2907 return ret;
2910 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2911 an integer mode of the same size as MODE. Returns the instruction
2912 emitted, or NULL if such a move could not be generated. */
2914 static rtx
2915 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2917 enum machine_mode imode;
2918 enum insn_code code;
2920 /* There must exist a mode of the exact size we require. */
2921 imode = int_mode_for_mode (mode);
2922 if (imode == BLKmode)
2923 return NULL_RTX;
2925 /* The target must support moves in this mode. */
2926 code = optab_handler (mov_optab, imode);
2927 if (code == CODE_FOR_nothing)
2928 return NULL_RTX;
2930 x = emit_move_change_mode (imode, mode, x, force);
2931 if (x == NULL_RTX)
2932 return NULL_RTX;
2933 y = emit_move_change_mode (imode, mode, y, force);
2934 if (y == NULL_RTX)
2935 return NULL_RTX;
2936 return emit_insn (GEN_FCN (code) (x, y));
2939 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2940 Return an equivalent MEM that does not use an auto-increment. */
2942 static rtx
2943 emit_move_resolve_push (enum machine_mode mode, rtx x)
2945 enum rtx_code code = GET_CODE (XEXP (x, 0));
2946 HOST_WIDE_INT adjust;
2947 rtx temp;
2949 adjust = GET_MODE_SIZE (mode);
2950 #ifdef PUSH_ROUNDING
2951 adjust = PUSH_ROUNDING (adjust);
2952 #endif
2953 if (code == PRE_DEC || code == POST_DEC)
2954 adjust = -adjust;
2955 else if (code == PRE_MODIFY || code == POST_MODIFY)
2957 rtx expr = XEXP (XEXP (x, 0), 1);
2958 HOST_WIDE_INT val;
2960 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2961 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2962 val = INTVAL (XEXP (expr, 1));
2963 if (GET_CODE (expr) == MINUS)
2964 val = -val;
2965 gcc_assert (adjust == val || adjust == -val);
2966 adjust = val;
2969 /* Do not use anti_adjust_stack, since we don't want to update
2970 stack_pointer_delta. */
2971 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2972 GEN_INT (adjust), stack_pointer_rtx,
2973 0, OPTAB_LIB_WIDEN);
2974 if (temp != stack_pointer_rtx)
2975 emit_move_insn (stack_pointer_rtx, temp);
2977 switch (code)
2979 case PRE_INC:
2980 case PRE_DEC:
2981 case PRE_MODIFY:
2982 temp = stack_pointer_rtx;
2983 break;
2984 case POST_INC:
2985 case POST_DEC:
2986 case POST_MODIFY:
2987 temp = plus_constant (stack_pointer_rtx, -adjust);
2988 break;
2989 default:
2990 gcc_unreachable ();
2993 return replace_equiv_address (x, temp);
2996 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2997 X is known to satisfy push_operand, and MODE is known to be complex.
2998 Returns the last instruction emitted. */
3001 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3003 enum machine_mode submode = GET_MODE_INNER (mode);
3004 bool imag_first;
3006 #ifdef PUSH_ROUNDING
3007 unsigned int submodesize = GET_MODE_SIZE (submode);
3009 /* In case we output to the stack, but the size is smaller than the
3010 machine can push exactly, we need to use move instructions. */
3011 if (PUSH_ROUNDING (submodesize) != submodesize)
3013 x = emit_move_resolve_push (mode, x);
3014 return emit_move_insn (x, y);
3016 #endif
3018 /* Note that the real part always precedes the imag part in memory
3019 regardless of machine's endianness. */
3020 switch (GET_CODE (XEXP (x, 0)))
3022 case PRE_DEC:
3023 case POST_DEC:
3024 imag_first = true;
3025 break;
3026 case PRE_INC:
3027 case POST_INC:
3028 imag_first = false;
3029 break;
3030 default:
3031 gcc_unreachable ();
3034 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3035 read_complex_part (y, imag_first));
3036 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3037 read_complex_part (y, !imag_first));
3040 /* A subroutine of emit_move_complex. Perform the move from Y to X
3041 via two moves of the parts. Returns the last instruction emitted. */
3044 emit_move_complex_parts (rtx x, rtx y)
3046 /* Show the output dies here. This is necessary for SUBREGs
3047 of pseudos since we cannot track their lifetimes correctly;
3048 hard regs shouldn't appear here except as return values. */
3049 if (!reload_completed && !reload_in_progress
3050 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3051 emit_clobber (x);
3053 write_complex_part (x, read_complex_part (y, false), false);
3054 write_complex_part (x, read_complex_part (y, true), true);
3056 return get_last_insn ();
3059 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3060 MODE is known to be complex. Returns the last instruction emitted. */
3062 static rtx
3063 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3065 bool try_int;
3067 /* Need to take special care for pushes, to maintain proper ordering
3068 of the data, and possibly extra padding. */
3069 if (push_operand (x, mode))
3070 return emit_move_complex_push (mode, x, y);
3072 /* See if we can coerce the target into moving both values at once. */
3074 /* Move floating point as parts. */
3075 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3076 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3077 try_int = false;
3078 /* Not possible if the values are inherently not adjacent. */
3079 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3080 try_int = false;
3081 /* Is possible if both are registers (or subregs of registers). */
3082 else if (register_operand (x, mode) && register_operand (y, mode))
3083 try_int = true;
3084 /* If one of the operands is a memory, and alignment constraints
3085 are friendly enough, we may be able to do combined memory operations.
3086 We do not attempt this if Y is a constant because that combination is
3087 usually better with the by-parts thing below. */
3088 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3089 && (!STRICT_ALIGNMENT
3090 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3091 try_int = true;
3092 else
3093 try_int = false;
3095 if (try_int)
3097 rtx ret;
3099 /* For memory to memory moves, optimal behavior can be had with the
3100 existing block move logic. */
3101 if (MEM_P (x) && MEM_P (y))
3103 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3104 BLOCK_OP_NO_LIBCALL);
3105 return get_last_insn ();
3108 ret = emit_move_via_integer (mode, x, y, true);
3109 if (ret)
3110 return ret;
3113 return emit_move_complex_parts (x, y);
3116 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3117 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3119 static rtx
3120 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3122 rtx ret;
3124 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3125 if (mode != CCmode)
3127 enum insn_code code = optab_handler (mov_optab, CCmode);
3128 if (code != CODE_FOR_nothing)
3130 x = emit_move_change_mode (CCmode, mode, x, true);
3131 y = emit_move_change_mode (CCmode, mode, y, true);
3132 return emit_insn (GEN_FCN (code) (x, y));
3136 /* Otherwise, find the MODE_INT mode of the same width. */
3137 ret = emit_move_via_integer (mode, x, y, false);
3138 gcc_assert (ret != NULL);
3139 return ret;
3142 /* Return true if word I of OP lies entirely in the
3143 undefined bits of a paradoxical subreg. */
3145 static bool
3146 undefined_operand_subword_p (const_rtx op, int i)
3148 enum machine_mode innermode, innermostmode;
3149 int offset;
3150 if (GET_CODE (op) != SUBREG)
3151 return false;
3152 innermode = GET_MODE (op);
3153 innermostmode = GET_MODE (SUBREG_REG (op));
3154 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3155 /* The SUBREG_BYTE represents offset, as if the value were stored in
3156 memory, except for a paradoxical subreg where we define
3157 SUBREG_BYTE to be 0; undo this exception as in
3158 simplify_subreg. */
3159 if (SUBREG_BYTE (op) == 0
3160 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3162 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3163 if (WORDS_BIG_ENDIAN)
3164 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3165 if (BYTES_BIG_ENDIAN)
3166 offset += difference % UNITS_PER_WORD;
3168 if (offset >= GET_MODE_SIZE (innermostmode)
3169 || offset <= -GET_MODE_SIZE (word_mode))
3170 return true;
3171 return false;
3174 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3175 MODE is any multi-word or full-word mode that lacks a move_insn
3176 pattern. Note that you will get better code if you define such
3177 patterns, even if they must turn into multiple assembler instructions. */
3179 static rtx
3180 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3182 rtx last_insn = 0;
3183 rtx seq, inner;
3184 bool need_clobber;
3185 int i;
3187 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3189 /* If X is a push on the stack, do the push now and replace
3190 X with a reference to the stack pointer. */
3191 if (push_operand (x, mode))
3192 x = emit_move_resolve_push (mode, x);
3194 /* If we are in reload, see if either operand is a MEM whose address
3195 is scheduled for replacement. */
3196 if (reload_in_progress && MEM_P (x)
3197 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3198 x = replace_equiv_address_nv (x, inner);
3199 if (reload_in_progress && MEM_P (y)
3200 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3201 y = replace_equiv_address_nv (y, inner);
3203 start_sequence ();
3205 need_clobber = false;
3206 for (i = 0;
3207 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3208 i++)
3210 rtx xpart = operand_subword (x, i, 1, mode);
3211 rtx ypart;
3213 /* Do not generate code for a move if it would come entirely
3214 from the undefined bits of a paradoxical subreg. */
3215 if (undefined_operand_subword_p (y, i))
3216 continue;
3218 ypart = operand_subword (y, i, 1, mode);
3220 /* If we can't get a part of Y, put Y into memory if it is a
3221 constant. Otherwise, force it into a register. Then we must
3222 be able to get a part of Y. */
3223 if (ypart == 0 && CONSTANT_P (y))
3225 y = use_anchored_address (force_const_mem (mode, y));
3226 ypart = operand_subword (y, i, 1, mode);
3228 else if (ypart == 0)
3229 ypart = operand_subword_force (y, i, mode);
3231 gcc_assert (xpart && ypart);
3233 need_clobber |= (GET_CODE (xpart) == SUBREG);
3235 last_insn = emit_move_insn (xpart, ypart);
3238 seq = get_insns ();
3239 end_sequence ();
3241 /* Show the output dies here. This is necessary for SUBREGs
3242 of pseudos since we cannot track their lifetimes correctly;
3243 hard regs shouldn't appear here except as return values.
3244 We never want to emit such a clobber after reload. */
3245 if (x != y
3246 && ! (reload_in_progress || reload_completed)
3247 && need_clobber != 0)
3248 emit_clobber (x);
3250 emit_insn (seq);
3252 return last_insn;
3255 /* Low level part of emit_move_insn.
3256 Called just like emit_move_insn, but assumes X and Y
3257 are basically valid. */
3260 emit_move_insn_1 (rtx x, rtx y)
3262 enum machine_mode mode = GET_MODE (x);
3263 enum insn_code code;
3265 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3267 code = optab_handler (mov_optab, mode);
3268 if (code != CODE_FOR_nothing)
3269 return emit_insn (GEN_FCN (code) (x, y));
3271 /* Expand complex moves by moving real part and imag part. */
3272 if (COMPLEX_MODE_P (mode))
3273 return emit_move_complex (mode, x, y);
3275 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3276 || ALL_FIXED_POINT_MODE_P (mode))
3278 rtx result = emit_move_via_integer (mode, x, y, true);
3280 /* If we can't find an integer mode, use multi words. */
3281 if (result)
3282 return result;
3283 else
3284 return emit_move_multi_word (mode, x, y);
3287 if (GET_MODE_CLASS (mode) == MODE_CC)
3288 return emit_move_ccmode (mode, x, y);
3290 /* Try using a move pattern for the corresponding integer mode. This is
3291 only safe when simplify_subreg can convert MODE constants into integer
3292 constants. At present, it can only do this reliably if the value
3293 fits within a HOST_WIDE_INT. */
3294 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3296 rtx ret = emit_move_via_integer (mode, x, y, false);
3297 if (ret)
3298 return ret;
3301 return emit_move_multi_word (mode, x, y);
3304 /* Generate code to copy Y into X.
3305 Both Y and X must have the same mode, except that
3306 Y can be a constant with VOIDmode.
3307 This mode cannot be BLKmode; use emit_block_move for that.
3309 Return the last instruction emitted. */
3312 emit_move_insn (rtx x, rtx y)
3314 enum machine_mode mode = GET_MODE (x);
3315 rtx y_cst = NULL_RTX;
3316 rtx last_insn, set;
3318 gcc_assert (mode != BLKmode
3319 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3321 if (CONSTANT_P (y))
3323 if (optimize
3324 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3325 && (last_insn = compress_float_constant (x, y)))
3326 return last_insn;
3328 y_cst = y;
3330 if (!targetm.legitimate_constant_p (mode, y))
3332 y = force_const_mem (mode, y);
3334 /* If the target's cannot_force_const_mem prevented the spill,
3335 assume that the target's move expanders will also take care
3336 of the non-legitimate constant. */
3337 if (!y)
3338 y = y_cst;
3339 else
3340 y = use_anchored_address (y);
3344 /* If X or Y are memory references, verify that their addresses are valid
3345 for the machine. */
3346 if (MEM_P (x)
3347 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3348 MEM_ADDR_SPACE (x))
3349 && ! push_operand (x, GET_MODE (x))))
3350 x = validize_mem (x);
3352 if (MEM_P (y)
3353 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3354 MEM_ADDR_SPACE (y)))
3355 y = validize_mem (y);
3357 gcc_assert (mode != BLKmode);
3359 last_insn = emit_move_insn_1 (x, y);
3361 if (y_cst && REG_P (x)
3362 && (set = single_set (last_insn)) != NULL_RTX
3363 && SET_DEST (set) == x
3364 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3365 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3367 return last_insn;
3370 /* If Y is representable exactly in a narrower mode, and the target can
3371 perform the extension directly from constant or memory, then emit the
3372 move as an extension. */
3374 static rtx
3375 compress_float_constant (rtx x, rtx y)
3377 enum machine_mode dstmode = GET_MODE (x);
3378 enum machine_mode orig_srcmode = GET_MODE (y);
3379 enum machine_mode srcmode;
3380 REAL_VALUE_TYPE r;
3381 int oldcost, newcost;
3382 bool speed = optimize_insn_for_speed_p ();
3384 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3386 if (targetm.legitimate_constant_p (dstmode, y))
3387 oldcost = rtx_cost (y, SET, speed);
3388 else
3389 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3391 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3392 srcmode != orig_srcmode;
3393 srcmode = GET_MODE_WIDER_MODE (srcmode))
3395 enum insn_code ic;
3396 rtx trunc_y, last_insn;
3398 /* Skip if the target can't extend this way. */
3399 ic = can_extend_p (dstmode, srcmode, 0);
3400 if (ic == CODE_FOR_nothing)
3401 continue;
3403 /* Skip if the narrowed value isn't exact. */
3404 if (! exact_real_truncate (srcmode, &r))
3405 continue;
3407 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3409 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3411 /* Skip if the target needs extra instructions to perform
3412 the extension. */
3413 if (!insn_operand_matches (ic, 1, trunc_y))
3414 continue;
3415 /* This is valid, but may not be cheaper than the original. */
3416 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3417 if (oldcost < newcost)
3418 continue;
3420 else if (float_extend_from_mem[dstmode][srcmode])
3422 trunc_y = force_const_mem (srcmode, trunc_y);
3423 /* This is valid, but may not be cheaper than the original. */
3424 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3425 if (oldcost < newcost)
3426 continue;
3427 trunc_y = validize_mem (trunc_y);
3429 else
3430 continue;
3432 /* For CSE's benefit, force the compressed constant pool entry
3433 into a new pseudo. This constant may be used in different modes,
3434 and if not, combine will put things back together for us. */
3435 trunc_y = force_reg (srcmode, trunc_y);
3436 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3437 last_insn = get_last_insn ();
3439 if (REG_P (x))
3440 set_unique_reg_note (last_insn, REG_EQUAL, y);
3442 return last_insn;
3445 return NULL_RTX;
3448 /* Pushing data onto the stack. */
3450 /* Push a block of length SIZE (perhaps variable)
3451 and return an rtx to address the beginning of the block.
3452 The value may be virtual_outgoing_args_rtx.
3454 EXTRA is the number of bytes of padding to push in addition to SIZE.
3455 BELOW nonzero means this padding comes at low addresses;
3456 otherwise, the padding comes at high addresses. */
3459 push_block (rtx size, int extra, int below)
3461 rtx temp;
3463 size = convert_modes (Pmode, ptr_mode, size, 1);
3464 if (CONSTANT_P (size))
3465 anti_adjust_stack (plus_constant (size, extra));
3466 else if (REG_P (size) && extra == 0)
3467 anti_adjust_stack (size);
3468 else
3470 temp = copy_to_mode_reg (Pmode, size);
3471 if (extra != 0)
3472 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3473 temp, 0, OPTAB_LIB_WIDEN);
3474 anti_adjust_stack (temp);
3477 #ifndef STACK_GROWS_DOWNWARD
3478 if (0)
3479 #else
3480 if (1)
3481 #endif
3483 temp = virtual_outgoing_args_rtx;
3484 if (extra != 0 && below)
3485 temp = plus_constant (temp, extra);
3487 else
3489 if (CONST_INT_P (size))
3490 temp = plus_constant (virtual_outgoing_args_rtx,
3491 -INTVAL (size) - (below ? 0 : extra));
3492 else if (extra != 0 && !below)
3493 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3494 negate_rtx (Pmode, plus_constant (size, extra)));
3495 else
3496 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3497 negate_rtx (Pmode, size));
3500 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3503 #ifdef PUSH_ROUNDING
3505 /* Emit single push insn. */
3507 static void
3508 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3510 rtx dest_addr;
3511 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3512 rtx dest;
3513 enum insn_code icode;
3515 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3516 /* If there is push pattern, use it. Otherwise try old way of throwing
3517 MEM representing push operation to move expander. */
3518 icode = optab_handler (push_optab, mode);
3519 if (icode != CODE_FOR_nothing)
3521 struct expand_operand ops[1];
3523 create_input_operand (&ops[0], x, mode);
3524 if (maybe_expand_insn (icode, 1, ops))
3525 return;
3527 if (GET_MODE_SIZE (mode) == rounded_size)
3528 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3529 /* If we are to pad downward, adjust the stack pointer first and
3530 then store X into the stack location using an offset. This is
3531 because emit_move_insn does not know how to pad; it does not have
3532 access to type. */
3533 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3535 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3536 HOST_WIDE_INT offset;
3538 emit_move_insn (stack_pointer_rtx,
3539 expand_binop (Pmode,
3540 #ifdef STACK_GROWS_DOWNWARD
3541 sub_optab,
3542 #else
3543 add_optab,
3544 #endif
3545 stack_pointer_rtx,
3546 GEN_INT (rounded_size),
3547 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3549 offset = (HOST_WIDE_INT) padding_size;
3550 #ifdef STACK_GROWS_DOWNWARD
3551 if (STACK_PUSH_CODE == POST_DEC)
3552 /* We have already decremented the stack pointer, so get the
3553 previous value. */
3554 offset += (HOST_WIDE_INT) rounded_size;
3555 #else
3556 if (STACK_PUSH_CODE == POST_INC)
3557 /* We have already incremented the stack pointer, so get the
3558 previous value. */
3559 offset -= (HOST_WIDE_INT) rounded_size;
3560 #endif
3561 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3563 else
3565 #ifdef STACK_GROWS_DOWNWARD
3566 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3567 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3568 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3569 #else
3570 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3571 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3572 GEN_INT (rounded_size));
3573 #endif
3574 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3577 dest = gen_rtx_MEM (mode, dest_addr);
3579 if (type != 0)
3581 set_mem_attributes (dest, type, 1);
3583 if (flag_optimize_sibling_calls)
3584 /* Function incoming arguments may overlap with sibling call
3585 outgoing arguments and we cannot allow reordering of reads
3586 from function arguments with stores to outgoing arguments
3587 of sibling calls. */
3588 set_mem_alias_set (dest, 0);
3590 emit_move_insn (dest, x);
3592 #endif
3594 /* Generate code to push X onto the stack, assuming it has mode MODE and
3595 type TYPE.
3596 MODE is redundant except when X is a CONST_INT (since they don't
3597 carry mode info).
3598 SIZE is an rtx for the size of data to be copied (in bytes),
3599 needed only if X is BLKmode.
3601 ALIGN (in bits) is maximum alignment we can assume.
3603 If PARTIAL and REG are both nonzero, then copy that many of the first
3604 bytes of X into registers starting with REG, and push the rest of X.
3605 The amount of space pushed is decreased by PARTIAL bytes.
3606 REG must be a hard register in this case.
3607 If REG is zero but PARTIAL is not, take any all others actions for an
3608 argument partially in registers, but do not actually load any
3609 registers.
3611 EXTRA is the amount in bytes of extra space to leave next to this arg.
3612 This is ignored if an argument block has already been allocated.
3614 On a machine that lacks real push insns, ARGS_ADDR is the address of
3615 the bottom of the argument block for this call. We use indexing off there
3616 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3617 argument block has not been preallocated.
3619 ARGS_SO_FAR is the size of args previously pushed for this call.
3621 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3622 for arguments passed in registers. If nonzero, it will be the number
3623 of bytes required. */
3625 void
3626 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3627 unsigned int align, int partial, rtx reg, int extra,
3628 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3629 rtx alignment_pad)
3631 rtx xinner;
3632 enum direction stack_direction
3633 #ifdef STACK_GROWS_DOWNWARD
3634 = downward;
3635 #else
3636 = upward;
3637 #endif
3639 /* Decide where to pad the argument: `downward' for below,
3640 `upward' for above, or `none' for don't pad it.
3641 Default is below for small data on big-endian machines; else above. */
3642 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3644 /* Invert direction if stack is post-decrement.
3645 FIXME: why? */
3646 if (STACK_PUSH_CODE == POST_DEC)
3647 if (where_pad != none)
3648 where_pad = (where_pad == downward ? upward : downward);
3650 xinner = x;
3652 if (mode == BLKmode
3653 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3655 /* Copy a block into the stack, entirely or partially. */
3657 rtx temp;
3658 int used;
3659 int offset;
3660 int skip;
3662 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3663 used = partial - offset;
3665 if (mode != BLKmode)
3667 /* A value is to be stored in an insufficiently aligned
3668 stack slot; copy via a suitably aligned slot if
3669 necessary. */
3670 size = GEN_INT (GET_MODE_SIZE (mode));
3671 if (!MEM_P (xinner))
3673 temp = assign_temp (type, 0, 1, 1);
3674 emit_move_insn (temp, xinner);
3675 xinner = temp;
3679 gcc_assert (size);
3681 /* USED is now the # of bytes we need not copy to the stack
3682 because registers will take care of them. */
3684 if (partial != 0)
3685 xinner = adjust_address (xinner, BLKmode, used);
3687 /* If the partial register-part of the arg counts in its stack size,
3688 skip the part of stack space corresponding to the registers.
3689 Otherwise, start copying to the beginning of the stack space,
3690 by setting SKIP to 0. */
3691 skip = (reg_parm_stack_space == 0) ? 0 : used;
3693 #ifdef PUSH_ROUNDING
3694 /* Do it with several push insns if that doesn't take lots of insns
3695 and if there is no difficulty with push insns that skip bytes
3696 on the stack for alignment purposes. */
3697 if (args_addr == 0
3698 && PUSH_ARGS
3699 && CONST_INT_P (size)
3700 && skip == 0
3701 && MEM_ALIGN (xinner) >= align
3702 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3703 /* Here we avoid the case of a structure whose weak alignment
3704 forces many pushes of a small amount of data,
3705 and such small pushes do rounding that causes trouble. */
3706 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3707 || align >= BIGGEST_ALIGNMENT
3708 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3709 == (align / BITS_PER_UNIT)))
3710 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3712 /* Push padding now if padding above and stack grows down,
3713 or if padding below and stack grows up.
3714 But if space already allocated, this has already been done. */
3715 if (extra && args_addr == 0
3716 && where_pad != none && where_pad != stack_direction)
3717 anti_adjust_stack (GEN_INT (extra));
3719 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3721 else
3722 #endif /* PUSH_ROUNDING */
3724 rtx target;
3726 /* Otherwise make space on the stack and copy the data
3727 to the address of that space. */
3729 /* Deduct words put into registers from the size we must copy. */
3730 if (partial != 0)
3732 if (CONST_INT_P (size))
3733 size = GEN_INT (INTVAL (size) - used);
3734 else
3735 size = expand_binop (GET_MODE (size), sub_optab, size,
3736 GEN_INT (used), NULL_RTX, 0,
3737 OPTAB_LIB_WIDEN);
3740 /* Get the address of the stack space.
3741 In this case, we do not deal with EXTRA separately.
3742 A single stack adjust will do. */
3743 if (! args_addr)
3745 temp = push_block (size, extra, where_pad == downward);
3746 extra = 0;
3748 else if (CONST_INT_P (args_so_far))
3749 temp = memory_address (BLKmode,
3750 plus_constant (args_addr,
3751 skip + INTVAL (args_so_far)));
3752 else
3753 temp = memory_address (BLKmode,
3754 plus_constant (gen_rtx_PLUS (Pmode,
3755 args_addr,
3756 args_so_far),
3757 skip));
3759 if (!ACCUMULATE_OUTGOING_ARGS)
3761 /* If the source is referenced relative to the stack pointer,
3762 copy it to another register to stabilize it. We do not need
3763 to do this if we know that we won't be changing sp. */
3765 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3766 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3767 temp = copy_to_reg (temp);
3770 target = gen_rtx_MEM (BLKmode, temp);
3772 /* We do *not* set_mem_attributes here, because incoming arguments
3773 may overlap with sibling call outgoing arguments and we cannot
3774 allow reordering of reads from function arguments with stores
3775 to outgoing arguments of sibling calls. We do, however, want
3776 to record the alignment of the stack slot. */
3777 /* ALIGN may well be better aligned than TYPE, e.g. due to
3778 PARM_BOUNDARY. Assume the caller isn't lying. */
3779 set_mem_align (target, align);
3781 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3784 else if (partial > 0)
3786 /* Scalar partly in registers. */
3788 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3789 int i;
3790 int not_stack;
3791 /* # bytes of start of argument
3792 that we must make space for but need not store. */
3793 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3794 int args_offset = INTVAL (args_so_far);
3795 int skip;
3797 /* Push padding now if padding above and stack grows down,
3798 or if padding below and stack grows up.
3799 But if space already allocated, this has already been done. */
3800 if (extra && args_addr == 0
3801 && where_pad != none && where_pad != stack_direction)
3802 anti_adjust_stack (GEN_INT (extra));
3804 /* If we make space by pushing it, we might as well push
3805 the real data. Otherwise, we can leave OFFSET nonzero
3806 and leave the space uninitialized. */
3807 if (args_addr == 0)
3808 offset = 0;
3810 /* Now NOT_STACK gets the number of words that we don't need to
3811 allocate on the stack. Convert OFFSET to words too. */
3812 not_stack = (partial - offset) / UNITS_PER_WORD;
3813 offset /= UNITS_PER_WORD;
3815 /* If the partial register-part of the arg counts in its stack size,
3816 skip the part of stack space corresponding to the registers.
3817 Otherwise, start copying to the beginning of the stack space,
3818 by setting SKIP to 0. */
3819 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3821 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
3822 x = validize_mem (force_const_mem (mode, x));
3824 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3825 SUBREGs of such registers are not allowed. */
3826 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3827 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3828 x = copy_to_reg (x);
3830 /* Loop over all the words allocated on the stack for this arg. */
3831 /* We can do it by words, because any scalar bigger than a word
3832 has a size a multiple of a word. */
3833 #ifndef PUSH_ARGS_REVERSED
3834 for (i = not_stack; i < size; i++)
3835 #else
3836 for (i = size - 1; i >= not_stack; i--)
3837 #endif
3838 if (i >= not_stack + offset)
3839 emit_push_insn (operand_subword_force (x, i, mode),
3840 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3841 0, args_addr,
3842 GEN_INT (args_offset + ((i - not_stack + skip)
3843 * UNITS_PER_WORD)),
3844 reg_parm_stack_space, alignment_pad);
3846 else
3848 rtx addr;
3849 rtx dest;
3851 /* Push padding now if padding above and stack grows down,
3852 or if padding below and stack grows up.
3853 But if space already allocated, this has already been done. */
3854 if (extra && args_addr == 0
3855 && where_pad != none && where_pad != stack_direction)
3856 anti_adjust_stack (GEN_INT (extra));
3858 #ifdef PUSH_ROUNDING
3859 if (args_addr == 0 && PUSH_ARGS)
3860 emit_single_push_insn (mode, x, type);
3861 else
3862 #endif
3864 if (CONST_INT_P (args_so_far))
3865 addr
3866 = memory_address (mode,
3867 plus_constant (args_addr,
3868 INTVAL (args_so_far)));
3869 else
3870 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3871 args_so_far));
3872 dest = gen_rtx_MEM (mode, addr);
3874 /* We do *not* set_mem_attributes here, because incoming arguments
3875 may overlap with sibling call outgoing arguments and we cannot
3876 allow reordering of reads from function arguments with stores
3877 to outgoing arguments of sibling calls. We do, however, want
3878 to record the alignment of the stack slot. */
3879 /* ALIGN may well be better aligned than TYPE, e.g. due to
3880 PARM_BOUNDARY. Assume the caller isn't lying. */
3881 set_mem_align (dest, align);
3883 emit_move_insn (dest, x);
3887 /* If part should go in registers, copy that part
3888 into the appropriate registers. Do this now, at the end,
3889 since mem-to-mem copies above may do function calls. */
3890 if (partial > 0 && reg != 0)
3892 /* Handle calls that pass values in multiple non-contiguous locations.
3893 The Irix 6 ABI has examples of this. */
3894 if (GET_CODE (reg) == PARALLEL)
3895 emit_group_load (reg, x, type, -1);
3896 else
3898 gcc_assert (partial % UNITS_PER_WORD == 0);
3899 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3903 if (extra && args_addr == 0 && where_pad == stack_direction)
3904 anti_adjust_stack (GEN_INT (extra));
3906 if (alignment_pad && args_addr == 0)
3907 anti_adjust_stack (alignment_pad);
3910 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3911 operations. */
3913 static rtx
3914 get_subtarget (rtx x)
3916 return (optimize
3917 || x == 0
3918 /* Only registers can be subtargets. */
3919 || !REG_P (x)
3920 /* Don't use hard regs to avoid extending their life. */
3921 || REGNO (x) < FIRST_PSEUDO_REGISTER
3922 ? 0 : x);
3925 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3926 FIELD is a bitfield. Returns true if the optimization was successful,
3927 and there's nothing else to do. */
3929 static bool
3930 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3931 unsigned HOST_WIDE_INT bitpos,
3932 enum machine_mode mode1, rtx str_rtx,
3933 tree to, tree src)
3935 enum machine_mode str_mode = GET_MODE (str_rtx);
3936 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3937 tree op0, op1;
3938 rtx value, result;
3939 optab binop;
3940 gimple srcstmt;
3941 enum tree_code code;
3943 if (mode1 != VOIDmode
3944 || bitsize >= BITS_PER_WORD
3945 || str_bitsize > BITS_PER_WORD
3946 || TREE_SIDE_EFFECTS (to)
3947 || TREE_THIS_VOLATILE (to))
3948 return false;
3950 STRIP_NOPS (src);
3951 if (TREE_CODE (src) != SSA_NAME)
3952 return false;
3953 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3954 return false;
3956 srcstmt = get_gimple_for_ssa_name (src);
3957 if (!srcstmt
3958 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
3959 return false;
3961 code = gimple_assign_rhs_code (srcstmt);
3963 op0 = gimple_assign_rhs1 (srcstmt);
3965 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
3966 to find its initialization. Hopefully the initialization will
3967 be from a bitfield load. */
3968 if (TREE_CODE (op0) == SSA_NAME)
3970 gimple op0stmt = get_gimple_for_ssa_name (op0);
3972 /* We want to eventually have OP0 be the same as TO, which
3973 should be a bitfield. */
3974 if (!op0stmt
3975 || !is_gimple_assign (op0stmt)
3976 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
3977 return false;
3978 op0 = gimple_assign_rhs1 (op0stmt);
3981 op1 = gimple_assign_rhs2 (srcstmt);
3983 if (!operand_equal_p (to, op0, 0))
3984 return false;
3986 if (MEM_P (str_rtx))
3988 unsigned HOST_WIDE_INT offset1;
3990 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3991 str_mode = word_mode;
3992 str_mode = get_best_mode (bitsize, bitpos,
3993 MEM_ALIGN (str_rtx), str_mode, 0);
3994 if (str_mode == VOIDmode)
3995 return false;
3996 str_bitsize = GET_MODE_BITSIZE (str_mode);
3998 offset1 = bitpos;
3999 bitpos %= str_bitsize;
4000 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4001 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4003 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4004 return false;
4006 /* If the bit field covers the whole REG/MEM, store_field
4007 will likely generate better code. */
4008 if (bitsize >= str_bitsize)
4009 return false;
4011 /* We can't handle fields split across multiple entities. */
4012 if (bitpos + bitsize > str_bitsize)
4013 return false;
4015 if (BYTES_BIG_ENDIAN)
4016 bitpos = str_bitsize - bitpos - bitsize;
4018 switch (code)
4020 case PLUS_EXPR:
4021 case MINUS_EXPR:
4022 /* For now, just optimize the case of the topmost bitfield
4023 where we don't need to do any masking and also
4024 1 bit bitfields where xor can be used.
4025 We might win by one instruction for the other bitfields
4026 too if insv/extv instructions aren't used, so that
4027 can be added later. */
4028 if (bitpos + bitsize != str_bitsize
4029 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4030 break;
4032 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4033 value = convert_modes (str_mode,
4034 TYPE_MODE (TREE_TYPE (op1)), value,
4035 TYPE_UNSIGNED (TREE_TYPE (op1)));
4037 /* We may be accessing data outside the field, which means
4038 we can alias adjacent data. */
4039 if (MEM_P (str_rtx))
4041 str_rtx = shallow_copy_rtx (str_rtx);
4042 set_mem_alias_set (str_rtx, 0);
4043 set_mem_expr (str_rtx, 0);
4046 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4047 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4049 value = expand_and (str_mode, value, const1_rtx, NULL);
4050 binop = xor_optab;
4052 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4053 bitpos, NULL_RTX, 1);
4054 result = expand_binop (str_mode, binop, str_rtx,
4055 value, str_rtx, 1, OPTAB_WIDEN);
4056 if (result != str_rtx)
4057 emit_move_insn (str_rtx, result);
4058 return true;
4060 case BIT_IOR_EXPR:
4061 case BIT_XOR_EXPR:
4062 if (TREE_CODE (op1) != INTEGER_CST)
4063 break;
4064 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4065 value = convert_modes (GET_MODE (str_rtx),
4066 TYPE_MODE (TREE_TYPE (op1)), value,
4067 TYPE_UNSIGNED (TREE_TYPE (op1)));
4069 /* We may be accessing data outside the field, which means
4070 we can alias adjacent data. */
4071 if (MEM_P (str_rtx))
4073 str_rtx = shallow_copy_rtx (str_rtx);
4074 set_mem_alias_set (str_rtx, 0);
4075 set_mem_expr (str_rtx, 0);
4078 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4079 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4081 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4082 - 1);
4083 value = expand_and (GET_MODE (str_rtx), value, mask,
4084 NULL_RTX);
4086 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4087 bitpos, NULL_RTX, 1);
4088 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4089 value, str_rtx, 1, OPTAB_WIDEN);
4090 if (result != str_rtx)
4091 emit_move_insn (str_rtx, result);
4092 return true;
4094 default:
4095 break;
4098 return false;
4102 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4103 is true, try generating a nontemporal store. */
4105 void
4106 expand_assignment (tree to, tree from, bool nontemporal)
4108 rtx to_rtx = 0;
4109 rtx result;
4110 enum machine_mode mode;
4111 int align;
4112 enum insn_code icode;
4114 /* Don't crash if the lhs of the assignment was erroneous. */
4115 if (TREE_CODE (to) == ERROR_MARK)
4117 expand_normal (from);
4118 return;
4121 /* Optimize away no-op moves without side-effects. */
4122 if (operand_equal_p (to, from, 0))
4123 return;
4125 mode = TYPE_MODE (TREE_TYPE (to));
4126 if ((TREE_CODE (to) == MEM_REF
4127 || TREE_CODE (to) == TARGET_MEM_REF)
4128 && mode != BLKmode
4129 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4130 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4131 < (signed) GET_MODE_ALIGNMENT (mode))
4132 && ((icode = optab_handler (movmisalign_optab, mode))
4133 != CODE_FOR_nothing))
4135 struct expand_operand ops[2];
4136 enum machine_mode address_mode;
4137 rtx reg, op0, mem;
4139 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4140 reg = force_not_mem (reg);
4142 if (TREE_CODE (to) == MEM_REF)
4144 addr_space_t as
4145 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4146 tree base = TREE_OPERAND (to, 0);
4147 address_mode = targetm.addr_space.address_mode (as);
4148 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4149 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4150 if (!integer_zerop (TREE_OPERAND (to, 1)))
4152 rtx off
4153 = immed_double_int_const (mem_ref_offset (to), address_mode);
4154 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4156 op0 = memory_address_addr_space (mode, op0, as);
4157 mem = gen_rtx_MEM (mode, op0);
4158 set_mem_attributes (mem, to, 0);
4159 set_mem_addr_space (mem, as);
4161 else if (TREE_CODE (to) == TARGET_MEM_REF)
4163 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4164 struct mem_address addr;
4166 get_address_description (to, &addr);
4167 op0 = addr_for_mem_ref (&addr, as, true);
4168 op0 = memory_address_addr_space (mode, op0, as);
4169 mem = gen_rtx_MEM (mode, op0);
4170 set_mem_attributes (mem, to, 0);
4171 set_mem_addr_space (mem, as);
4173 else
4174 gcc_unreachable ();
4175 if (TREE_THIS_VOLATILE (to))
4176 MEM_VOLATILE_P (mem) = 1;
4178 create_fixed_operand (&ops[0], mem);
4179 create_input_operand (&ops[1], reg, mode);
4180 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4181 silently be omitted. */
4182 expand_insn (icode, 2, ops);
4183 return;
4186 /* Assignment of a structure component needs special treatment
4187 if the structure component's rtx is not simply a MEM.
4188 Assignment of an array element at a constant index, and assignment of
4189 an array element in an unaligned packed structure field, has the same
4190 problem. */
4191 if (handled_component_p (to)
4192 /* ??? We only need to handle MEM_REF here if the access is not
4193 a full access of the base object. */
4194 || (TREE_CODE (to) == MEM_REF
4195 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4196 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4198 enum machine_mode mode1;
4199 HOST_WIDE_INT bitsize, bitpos;
4200 tree offset;
4201 int unsignedp;
4202 int volatilep = 0;
4203 tree tem;
4205 push_temp_slots ();
4206 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4207 &unsignedp, &volatilep, true);
4209 /* If we are going to use store_bit_field and extract_bit_field,
4210 make sure to_rtx will be safe for multiple use. */
4212 to_rtx = expand_normal (tem);
4214 /* If the bitfield is volatile, we want to access it in the
4215 field's mode, not the computed mode.
4216 If a MEM has VOIDmode (external with incomplete type),
4217 use BLKmode for it instead. */
4218 if (MEM_P (to_rtx))
4220 if (volatilep && flag_strict_volatile_bitfields > 0)
4221 to_rtx = adjust_address (to_rtx, mode1, 0);
4222 else if (GET_MODE (to_rtx) == VOIDmode)
4223 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4226 if (offset != 0)
4228 enum machine_mode address_mode;
4229 rtx offset_rtx;
4231 if (!MEM_P (to_rtx))
4233 /* We can get constant negative offsets into arrays with broken
4234 user code. Translate this to a trap instead of ICEing. */
4235 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4236 expand_builtin_trap ();
4237 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4240 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4241 address_mode
4242 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4243 if (GET_MODE (offset_rtx) != address_mode)
4244 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4246 /* A constant address in TO_RTX can have VOIDmode, we must not try
4247 to call force_reg for that case. Avoid that case. */
4248 if (MEM_P (to_rtx)
4249 && GET_MODE (to_rtx) == BLKmode
4250 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4251 && bitsize > 0
4252 && (bitpos % bitsize) == 0
4253 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4254 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4256 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4257 bitpos = 0;
4260 to_rtx = offset_address (to_rtx, offset_rtx,
4261 highest_pow2_factor_for_target (to,
4262 offset));
4265 /* No action is needed if the target is not a memory and the field
4266 lies completely outside that target. This can occur if the source
4267 code contains an out-of-bounds access to a small array. */
4268 if (!MEM_P (to_rtx)
4269 && GET_MODE (to_rtx) != BLKmode
4270 && (unsigned HOST_WIDE_INT) bitpos
4271 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4273 expand_normal (from);
4274 result = NULL;
4276 /* Handle expand_expr of a complex value returning a CONCAT. */
4277 else if (GET_CODE (to_rtx) == CONCAT)
4279 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4280 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4281 && bitpos == 0
4282 && bitsize == mode_bitsize)
4283 result = store_expr (from, to_rtx, false, nontemporal);
4284 else if (bitsize == mode_bitsize / 2
4285 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4286 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4287 nontemporal);
4288 else if (bitpos + bitsize <= mode_bitsize / 2)
4289 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4290 mode1, from, TREE_TYPE (tem),
4291 get_alias_set (to), nontemporal);
4292 else if (bitpos >= mode_bitsize / 2)
4293 result = store_field (XEXP (to_rtx, 1), bitsize,
4294 bitpos - mode_bitsize / 2, mode1, from,
4295 TREE_TYPE (tem), get_alias_set (to),
4296 nontemporal);
4297 else if (bitpos == 0 && bitsize == mode_bitsize)
4299 rtx from_rtx;
4300 result = expand_normal (from);
4301 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4302 TYPE_MODE (TREE_TYPE (from)), 0);
4303 emit_move_insn (XEXP (to_rtx, 0),
4304 read_complex_part (from_rtx, false));
4305 emit_move_insn (XEXP (to_rtx, 1),
4306 read_complex_part (from_rtx, true));
4308 else
4310 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4311 GET_MODE_SIZE (GET_MODE (to_rtx)),
4313 write_complex_part (temp, XEXP (to_rtx, 0), false);
4314 write_complex_part (temp, XEXP (to_rtx, 1), true);
4315 result = store_field (temp, bitsize, bitpos, mode1, from,
4316 TREE_TYPE (tem), get_alias_set (to),
4317 nontemporal);
4318 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4319 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4322 else
4324 if (MEM_P (to_rtx))
4326 /* If the field is at offset zero, we could have been given the
4327 DECL_RTX of the parent struct. Don't munge it. */
4328 to_rtx = shallow_copy_rtx (to_rtx);
4330 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4332 /* Deal with volatile and readonly fields. The former is only
4333 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4334 if (volatilep)
4335 MEM_VOLATILE_P (to_rtx) = 1;
4336 if (component_uses_parent_alias_set (to))
4337 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4340 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4341 to_rtx, to, from))
4342 result = NULL;
4343 else
4344 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4345 TREE_TYPE (tem), get_alias_set (to),
4346 nontemporal);
4349 if (result)
4350 preserve_temp_slots (result);
4351 free_temp_slots ();
4352 pop_temp_slots ();
4353 return;
4356 /* If the rhs is a function call and its value is not an aggregate,
4357 call the function before we start to compute the lhs.
4358 This is needed for correct code for cases such as
4359 val = setjmp (buf) on machines where reference to val
4360 requires loading up part of an address in a separate insn.
4362 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4363 since it might be a promoted variable where the zero- or sign- extension
4364 needs to be done. Handling this in the normal way is safe because no
4365 computation is done before the call. The same is true for SSA names. */
4366 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4367 && COMPLETE_TYPE_P (TREE_TYPE (from))
4368 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4369 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4370 && REG_P (DECL_RTL (to)))
4371 || TREE_CODE (to) == SSA_NAME))
4373 rtx value;
4375 push_temp_slots ();
4376 value = expand_normal (from);
4377 if (to_rtx == 0)
4378 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4380 /* Handle calls that return values in multiple non-contiguous locations.
4381 The Irix 6 ABI has examples of this. */
4382 if (GET_CODE (to_rtx) == PARALLEL)
4383 emit_group_load (to_rtx, value, TREE_TYPE (from),
4384 int_size_in_bytes (TREE_TYPE (from)));
4385 else if (GET_MODE (to_rtx) == BLKmode)
4386 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4387 else
4389 if (POINTER_TYPE_P (TREE_TYPE (to)))
4390 value = convert_memory_address_addr_space
4391 (GET_MODE (to_rtx), value,
4392 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4394 emit_move_insn (to_rtx, value);
4396 preserve_temp_slots (to_rtx);
4397 free_temp_slots ();
4398 pop_temp_slots ();
4399 return;
4402 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4403 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4405 if (to_rtx == 0)
4406 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4408 /* Don't move directly into a return register. */
4409 if (TREE_CODE (to) == RESULT_DECL
4410 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4412 rtx temp;
4414 push_temp_slots ();
4415 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4417 if (GET_CODE (to_rtx) == PARALLEL)
4418 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4419 int_size_in_bytes (TREE_TYPE (from)));
4420 else
4421 emit_move_insn (to_rtx, temp);
4423 preserve_temp_slots (to_rtx);
4424 free_temp_slots ();
4425 pop_temp_slots ();
4426 return;
4429 /* In case we are returning the contents of an object which overlaps
4430 the place the value is being stored, use a safe function when copying
4431 a value through a pointer into a structure value return block. */
4432 if (TREE_CODE (to) == RESULT_DECL
4433 && TREE_CODE (from) == INDIRECT_REF
4434 && ADDR_SPACE_GENERIC_P
4435 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4436 && refs_may_alias_p (to, from)
4437 && cfun->returns_struct
4438 && !cfun->returns_pcc_struct)
4440 rtx from_rtx, size;
4442 push_temp_slots ();
4443 size = expr_size (from);
4444 from_rtx = expand_normal (from);
4446 emit_library_call (memmove_libfunc, LCT_NORMAL,
4447 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4448 XEXP (from_rtx, 0), Pmode,
4449 convert_to_mode (TYPE_MODE (sizetype),
4450 size, TYPE_UNSIGNED (sizetype)),
4451 TYPE_MODE (sizetype));
4453 preserve_temp_slots (to_rtx);
4454 free_temp_slots ();
4455 pop_temp_slots ();
4456 return;
4459 /* Compute FROM and store the value in the rtx we got. */
4461 push_temp_slots ();
4462 result = store_expr (from, to_rtx, 0, nontemporal);
4463 preserve_temp_slots (result);
4464 free_temp_slots ();
4465 pop_temp_slots ();
4466 return;
4469 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4470 succeeded, false otherwise. */
4472 bool
4473 emit_storent_insn (rtx to, rtx from)
4475 struct expand_operand ops[2];
4476 enum machine_mode mode = GET_MODE (to);
4477 enum insn_code code = optab_handler (storent_optab, mode);
4479 if (code == CODE_FOR_nothing)
4480 return false;
4482 create_fixed_operand (&ops[0], to);
4483 create_input_operand (&ops[1], from, mode);
4484 return maybe_expand_insn (code, 2, ops);
4487 /* Generate code for computing expression EXP,
4488 and storing the value into TARGET.
4490 If the mode is BLKmode then we may return TARGET itself.
4491 It turns out that in BLKmode it doesn't cause a problem.
4492 because C has no operators that could combine two different
4493 assignments into the same BLKmode object with different values
4494 with no sequence point. Will other languages need this to
4495 be more thorough?
4497 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4498 stack, and block moves may need to be treated specially.
4500 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4503 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4505 rtx temp;
4506 rtx alt_rtl = NULL_RTX;
4507 location_t loc = EXPR_LOCATION (exp);
4509 if (VOID_TYPE_P (TREE_TYPE (exp)))
4511 /* C++ can generate ?: expressions with a throw expression in one
4512 branch and an rvalue in the other. Here, we resolve attempts to
4513 store the throw expression's nonexistent result. */
4514 gcc_assert (!call_param_p);
4515 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4516 return NULL_RTX;
4518 if (TREE_CODE (exp) == COMPOUND_EXPR)
4520 /* Perform first part of compound expression, then assign from second
4521 part. */
4522 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4523 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4524 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4525 nontemporal);
4527 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4529 /* For conditional expression, get safe form of the target. Then
4530 test the condition, doing the appropriate assignment on either
4531 side. This avoids the creation of unnecessary temporaries.
4532 For non-BLKmode, it is more efficient not to do this. */
4534 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4536 do_pending_stack_adjust ();
4537 NO_DEFER_POP;
4538 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4539 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4540 nontemporal);
4541 emit_jump_insn (gen_jump (lab2));
4542 emit_barrier ();
4543 emit_label (lab1);
4544 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4545 nontemporal);
4546 emit_label (lab2);
4547 OK_DEFER_POP;
4549 return NULL_RTX;
4551 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4552 /* If this is a scalar in a register that is stored in a wider mode
4553 than the declared mode, compute the result into its declared mode
4554 and then convert to the wider mode. Our value is the computed
4555 expression. */
4557 rtx inner_target = 0;
4559 /* We can do the conversion inside EXP, which will often result
4560 in some optimizations. Do the conversion in two steps: first
4561 change the signedness, if needed, then the extend. But don't
4562 do this if the type of EXP is a subtype of something else
4563 since then the conversion might involve more than just
4564 converting modes. */
4565 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4566 && TREE_TYPE (TREE_TYPE (exp)) == 0
4567 && GET_MODE_PRECISION (GET_MODE (target))
4568 == TYPE_PRECISION (TREE_TYPE (exp)))
4570 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4571 != SUBREG_PROMOTED_UNSIGNED_P (target))
4573 /* Some types, e.g. Fortran's logical*4, won't have a signed
4574 version, so use the mode instead. */
4575 tree ntype
4576 = (signed_or_unsigned_type_for
4577 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4578 if (ntype == NULL)
4579 ntype = lang_hooks.types.type_for_mode
4580 (TYPE_MODE (TREE_TYPE (exp)),
4581 SUBREG_PROMOTED_UNSIGNED_P (target));
4583 exp = fold_convert_loc (loc, ntype, exp);
4586 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4587 (GET_MODE (SUBREG_REG (target)),
4588 SUBREG_PROMOTED_UNSIGNED_P (target)),
4589 exp);
4591 inner_target = SUBREG_REG (target);
4594 temp = expand_expr (exp, inner_target, VOIDmode,
4595 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4597 /* If TEMP is a VOIDmode constant, use convert_modes to make
4598 sure that we properly convert it. */
4599 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4601 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4602 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4603 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4604 GET_MODE (target), temp,
4605 SUBREG_PROMOTED_UNSIGNED_P (target));
4608 convert_move (SUBREG_REG (target), temp,
4609 SUBREG_PROMOTED_UNSIGNED_P (target));
4611 return NULL_RTX;
4613 else if ((TREE_CODE (exp) == STRING_CST
4614 || (TREE_CODE (exp) == MEM_REF
4615 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4616 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4617 == STRING_CST
4618 && integer_zerop (TREE_OPERAND (exp, 1))))
4619 && !nontemporal && !call_param_p
4620 && MEM_P (target))
4622 /* Optimize initialization of an array with a STRING_CST. */
4623 HOST_WIDE_INT exp_len, str_copy_len;
4624 rtx dest_mem;
4625 tree str = TREE_CODE (exp) == STRING_CST
4626 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4628 exp_len = int_expr_size (exp);
4629 if (exp_len <= 0)
4630 goto normal_expr;
4632 if (TREE_STRING_LENGTH (str) <= 0)
4633 goto normal_expr;
4635 str_copy_len = strlen (TREE_STRING_POINTER (str));
4636 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4637 goto normal_expr;
4639 str_copy_len = TREE_STRING_LENGTH (str);
4640 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4641 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4643 str_copy_len += STORE_MAX_PIECES - 1;
4644 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4646 str_copy_len = MIN (str_copy_len, exp_len);
4647 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4648 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4649 MEM_ALIGN (target), false))
4650 goto normal_expr;
4652 dest_mem = target;
4654 dest_mem = store_by_pieces (dest_mem,
4655 str_copy_len, builtin_strncpy_read_str,
4656 CONST_CAST (char *,
4657 TREE_STRING_POINTER (str)),
4658 MEM_ALIGN (target), false,
4659 exp_len > str_copy_len ? 1 : 0);
4660 if (exp_len > str_copy_len)
4661 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4662 GEN_INT (exp_len - str_copy_len),
4663 BLOCK_OP_NORMAL);
4664 return NULL_RTX;
4666 else
4668 rtx tmp_target;
4670 normal_expr:
4671 /* If we want to use a nontemporal store, force the value to
4672 register first. */
4673 tmp_target = nontemporal ? NULL_RTX : target;
4674 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4675 (call_param_p
4676 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4677 &alt_rtl);
4680 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4681 the same as that of TARGET, adjust the constant. This is needed, for
4682 example, in case it is a CONST_DOUBLE and we want only a word-sized
4683 value. */
4684 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4685 && TREE_CODE (exp) != ERROR_MARK
4686 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4687 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4688 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4690 /* If value was not generated in the target, store it there.
4691 Convert the value to TARGET's type first if necessary and emit the
4692 pending incrementations that have been queued when expanding EXP.
4693 Note that we cannot emit the whole queue blindly because this will
4694 effectively disable the POST_INC optimization later.
4696 If TEMP and TARGET compare equal according to rtx_equal_p, but
4697 one or both of them are volatile memory refs, we have to distinguish
4698 two cases:
4699 - expand_expr has used TARGET. In this case, we must not generate
4700 another copy. This can be detected by TARGET being equal according
4701 to == .
4702 - expand_expr has not used TARGET - that means that the source just
4703 happens to have the same RTX form. Since temp will have been created
4704 by expand_expr, it will compare unequal according to == .
4705 We must generate a copy in this case, to reach the correct number
4706 of volatile memory references. */
4708 if ((! rtx_equal_p (temp, target)
4709 || (temp != target && (side_effects_p (temp)
4710 || side_effects_p (target))))
4711 && TREE_CODE (exp) != ERROR_MARK
4712 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4713 but TARGET is not valid memory reference, TEMP will differ
4714 from TARGET although it is really the same location. */
4715 && !(alt_rtl
4716 && rtx_equal_p (alt_rtl, target)
4717 && !side_effects_p (alt_rtl)
4718 && !side_effects_p (target))
4719 /* If there's nothing to copy, don't bother. Don't call
4720 expr_size unless necessary, because some front-ends (C++)
4721 expr_size-hook must not be given objects that are not
4722 supposed to be bit-copied or bit-initialized. */
4723 && expr_size (exp) != const0_rtx)
4725 if (GET_MODE (temp) != GET_MODE (target)
4726 && GET_MODE (temp) != VOIDmode)
4728 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4729 if (GET_MODE (target) == BLKmode
4730 && GET_MODE (temp) == BLKmode)
4731 emit_block_move (target, temp, expr_size (exp),
4732 (call_param_p
4733 ? BLOCK_OP_CALL_PARM
4734 : BLOCK_OP_NORMAL));
4735 else if (GET_MODE (target) == BLKmode)
4736 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4737 0, GET_MODE (temp), temp);
4738 else
4739 convert_move (target, temp, unsignedp);
4742 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4744 /* Handle copying a string constant into an array. The string
4745 constant may be shorter than the array. So copy just the string's
4746 actual length, and clear the rest. First get the size of the data
4747 type of the string, which is actually the size of the target. */
4748 rtx size = expr_size (exp);
4750 if (CONST_INT_P (size)
4751 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4752 emit_block_move (target, temp, size,
4753 (call_param_p
4754 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4755 else
4757 enum machine_mode pointer_mode
4758 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4759 enum machine_mode address_mode
4760 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4762 /* Compute the size of the data to copy from the string. */
4763 tree copy_size
4764 = size_binop_loc (loc, MIN_EXPR,
4765 make_tree (sizetype, size),
4766 size_int (TREE_STRING_LENGTH (exp)));
4767 rtx copy_size_rtx
4768 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4769 (call_param_p
4770 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4771 rtx label = 0;
4773 /* Copy that much. */
4774 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4775 TYPE_UNSIGNED (sizetype));
4776 emit_block_move (target, temp, copy_size_rtx,
4777 (call_param_p
4778 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4780 /* Figure out how much is left in TARGET that we have to clear.
4781 Do all calculations in pointer_mode. */
4782 if (CONST_INT_P (copy_size_rtx))
4784 size = plus_constant (size, -INTVAL (copy_size_rtx));
4785 target = adjust_address (target, BLKmode,
4786 INTVAL (copy_size_rtx));
4788 else
4790 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4791 copy_size_rtx, NULL_RTX, 0,
4792 OPTAB_LIB_WIDEN);
4794 if (GET_MODE (copy_size_rtx) != address_mode)
4795 copy_size_rtx = convert_to_mode (address_mode,
4796 copy_size_rtx,
4797 TYPE_UNSIGNED (sizetype));
4799 target = offset_address (target, copy_size_rtx,
4800 highest_pow2_factor (copy_size));
4801 label = gen_label_rtx ();
4802 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4803 GET_MODE (size), 0, label);
4806 if (size != const0_rtx)
4807 clear_storage (target, size, BLOCK_OP_NORMAL);
4809 if (label)
4810 emit_label (label);
4813 /* Handle calls that return values in multiple non-contiguous locations.
4814 The Irix 6 ABI has examples of this. */
4815 else if (GET_CODE (target) == PARALLEL)
4816 emit_group_load (target, temp, TREE_TYPE (exp),
4817 int_size_in_bytes (TREE_TYPE (exp)));
4818 else if (GET_MODE (temp) == BLKmode)
4819 emit_block_move (target, temp, expr_size (exp),
4820 (call_param_p
4821 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4822 else if (nontemporal
4823 && emit_storent_insn (target, temp))
4824 /* If we managed to emit a nontemporal store, there is nothing else to
4825 do. */
4827 else
4829 temp = force_operand (temp, target);
4830 if (temp != target)
4831 emit_move_insn (target, temp);
4835 return NULL_RTX;
4838 /* Helper for categorize_ctor_elements. Identical interface. */
4840 static bool
4841 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4842 HOST_WIDE_INT *p_elt_count,
4843 bool *p_must_clear)
4845 unsigned HOST_WIDE_INT idx;
4846 HOST_WIDE_INT nz_elts, elt_count;
4847 tree value, purpose;
4849 /* Whether CTOR is a valid constant initializer, in accordance with what
4850 initializer_constant_valid_p does. If inferred from the constructor
4851 elements, true until proven otherwise. */
4852 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4853 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4855 nz_elts = 0;
4856 elt_count = 0;
4858 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4860 HOST_WIDE_INT mult = 1;
4862 if (TREE_CODE (purpose) == RANGE_EXPR)
4864 tree lo_index = TREE_OPERAND (purpose, 0);
4865 tree hi_index = TREE_OPERAND (purpose, 1);
4867 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4868 mult = (tree_low_cst (hi_index, 1)
4869 - tree_low_cst (lo_index, 1) + 1);
4872 switch (TREE_CODE (value))
4874 case CONSTRUCTOR:
4876 HOST_WIDE_INT nz = 0, ic = 0;
4878 bool const_elt_p
4879 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4881 nz_elts += mult * nz;
4882 elt_count += mult * ic;
4884 if (const_from_elts_p && const_p)
4885 const_p = const_elt_p;
4887 break;
4889 case INTEGER_CST:
4890 case REAL_CST:
4891 case FIXED_CST:
4892 if (!initializer_zerop (value))
4893 nz_elts += mult;
4894 elt_count += mult;
4895 break;
4897 case STRING_CST:
4898 nz_elts += mult * TREE_STRING_LENGTH (value);
4899 elt_count += mult * TREE_STRING_LENGTH (value);
4900 break;
4902 case COMPLEX_CST:
4903 if (!initializer_zerop (TREE_REALPART (value)))
4904 nz_elts += mult;
4905 if (!initializer_zerop (TREE_IMAGPART (value)))
4906 nz_elts += mult;
4907 elt_count += mult;
4908 break;
4910 case VECTOR_CST:
4912 tree v;
4913 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4915 if (!initializer_zerop (TREE_VALUE (v)))
4916 nz_elts += mult;
4917 elt_count += mult;
4920 break;
4922 default:
4924 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4925 if (tc < 1)
4926 tc = 1;
4927 nz_elts += mult * tc;
4928 elt_count += mult * tc;
4930 if (const_from_elts_p && const_p)
4931 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4932 != NULL_TREE;
4934 break;
4938 if (!*p_must_clear
4939 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4940 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4942 tree init_sub_type;
4943 bool clear_this = true;
4945 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4947 /* We don't expect more than one element of the union to be
4948 initialized. Not sure what we should do otherwise... */
4949 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4950 == 1);
4952 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4953 CONSTRUCTOR_ELTS (ctor),
4954 0)->value);
4956 /* ??? We could look at each element of the union, and find the
4957 largest element. Which would avoid comparing the size of the
4958 initialized element against any tail padding in the union.
4959 Doesn't seem worth the effort... */
4960 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4961 TYPE_SIZE (init_sub_type)) == 1)
4963 /* And now we have to find out if the element itself is fully
4964 constructed. E.g. for union { struct { int a, b; } s; } u
4965 = { .s = { .a = 1 } }. */
4966 if (elt_count == count_type_elements (init_sub_type, false))
4967 clear_this = false;
4971 *p_must_clear = clear_this;
4974 *p_nz_elts += nz_elts;
4975 *p_elt_count += elt_count;
4977 return const_p;
4980 /* Examine CTOR to discover:
4981 * how many scalar fields are set to nonzero values,
4982 and place it in *P_NZ_ELTS;
4983 * how many scalar fields in total are in CTOR,
4984 and place it in *P_ELT_COUNT.
4985 * if a type is a union, and the initializer from the constructor
4986 is not the largest element in the union, then set *p_must_clear.
4988 Return whether or not CTOR is a valid static constant initializer, the same
4989 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4991 bool
4992 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4993 HOST_WIDE_INT *p_elt_count,
4994 bool *p_must_clear)
4996 *p_nz_elts = 0;
4997 *p_elt_count = 0;
4998 *p_must_clear = false;
5000 return
5001 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5004 /* Count the number of scalars in TYPE. Return -1 on overflow or
5005 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5006 array member at the end of the structure. */
5008 HOST_WIDE_INT
5009 count_type_elements (const_tree type, bool allow_flexarr)
5011 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5012 switch (TREE_CODE (type))
5014 case ARRAY_TYPE:
5016 tree telts = array_type_nelts (type);
5017 if (telts && host_integerp (telts, 1))
5019 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5020 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5021 if (n == 0)
5022 return 0;
5023 else if (max / n > m)
5024 return n * m;
5026 return -1;
5029 case RECORD_TYPE:
5031 HOST_WIDE_INT n = 0, t;
5032 tree f;
5034 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5035 if (TREE_CODE (f) == FIELD_DECL)
5037 t = count_type_elements (TREE_TYPE (f), false);
5038 if (t < 0)
5040 /* Check for structures with flexible array member. */
5041 tree tf = TREE_TYPE (f);
5042 if (allow_flexarr
5043 && DECL_CHAIN (f) == NULL
5044 && TREE_CODE (tf) == ARRAY_TYPE
5045 && TYPE_DOMAIN (tf)
5046 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5047 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5048 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5049 && int_size_in_bytes (type) >= 0)
5050 break;
5052 return -1;
5054 n += t;
5057 return n;
5060 case UNION_TYPE:
5061 case QUAL_UNION_TYPE:
5062 return -1;
5064 case COMPLEX_TYPE:
5065 return 2;
5067 case VECTOR_TYPE:
5068 return TYPE_VECTOR_SUBPARTS (type);
5070 case INTEGER_TYPE:
5071 case REAL_TYPE:
5072 case FIXED_POINT_TYPE:
5073 case ENUMERAL_TYPE:
5074 case BOOLEAN_TYPE:
5075 case POINTER_TYPE:
5076 case OFFSET_TYPE:
5077 case REFERENCE_TYPE:
5078 return 1;
5080 case ERROR_MARK:
5081 return 0;
5083 case VOID_TYPE:
5084 case METHOD_TYPE:
5085 case FUNCTION_TYPE:
5086 case LANG_TYPE:
5087 default:
5088 gcc_unreachable ();
5092 /* Return 1 if EXP contains mostly (3/4) zeros. */
5094 static int
5095 mostly_zeros_p (const_tree exp)
5097 if (TREE_CODE (exp) == CONSTRUCTOR)
5100 HOST_WIDE_INT nz_elts, count, elts;
5101 bool must_clear;
5103 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5104 if (must_clear)
5105 return 1;
5107 elts = count_type_elements (TREE_TYPE (exp), false);
5109 return nz_elts < elts / 4;
5112 return initializer_zerop (exp);
5115 /* Return 1 if EXP contains all zeros. */
5117 static int
5118 all_zeros_p (const_tree exp)
5120 if (TREE_CODE (exp) == CONSTRUCTOR)
5123 HOST_WIDE_INT nz_elts, count;
5124 bool must_clear;
5126 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5127 return nz_elts == 0;
5130 return initializer_zerop (exp);
5133 /* Helper function for store_constructor.
5134 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5135 TYPE is the type of the CONSTRUCTOR, not the element type.
5136 CLEARED is as for store_constructor.
5137 ALIAS_SET is the alias set to use for any stores.
5139 This provides a recursive shortcut back to store_constructor when it isn't
5140 necessary to go through store_field. This is so that we can pass through
5141 the cleared field to let store_constructor know that we may not have to
5142 clear a substructure if the outer structure has already been cleared. */
5144 static void
5145 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5146 HOST_WIDE_INT bitpos, enum machine_mode mode,
5147 tree exp, tree type, int cleared,
5148 alias_set_type alias_set)
5150 if (TREE_CODE (exp) == CONSTRUCTOR
5151 /* We can only call store_constructor recursively if the size and
5152 bit position are on a byte boundary. */
5153 && bitpos % BITS_PER_UNIT == 0
5154 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5155 /* If we have a nonzero bitpos for a register target, then we just
5156 let store_field do the bitfield handling. This is unlikely to
5157 generate unnecessary clear instructions anyways. */
5158 && (bitpos == 0 || MEM_P (target)))
5160 if (MEM_P (target))
5161 target
5162 = adjust_address (target,
5163 GET_MODE (target) == BLKmode
5164 || 0 != (bitpos
5165 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5166 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5169 /* Update the alias set, if required. */
5170 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5171 && MEM_ALIAS_SET (target) != 0)
5173 target = copy_rtx (target);
5174 set_mem_alias_set (target, alias_set);
5177 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5179 else
5180 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5183 /* Store the value of constructor EXP into the rtx TARGET.
5184 TARGET is either a REG or a MEM; we know it cannot conflict, since
5185 safe_from_p has been called.
5186 CLEARED is true if TARGET is known to have been zero'd.
5187 SIZE is the number of bytes of TARGET we are allowed to modify: this
5188 may not be the same as the size of EXP if we are assigning to a field
5189 which has been packed to exclude padding bits. */
5191 static void
5192 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5194 tree type = TREE_TYPE (exp);
5195 #ifdef WORD_REGISTER_OPERATIONS
5196 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5197 #endif
5199 switch (TREE_CODE (type))
5201 case RECORD_TYPE:
5202 case UNION_TYPE:
5203 case QUAL_UNION_TYPE:
5205 unsigned HOST_WIDE_INT idx;
5206 tree field, value;
5208 /* If size is zero or the target is already cleared, do nothing. */
5209 if (size == 0 || cleared)
5210 cleared = 1;
5211 /* We either clear the aggregate or indicate the value is dead. */
5212 else if ((TREE_CODE (type) == UNION_TYPE
5213 || TREE_CODE (type) == QUAL_UNION_TYPE)
5214 && ! CONSTRUCTOR_ELTS (exp))
5215 /* If the constructor is empty, clear the union. */
5217 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5218 cleared = 1;
5221 /* If we are building a static constructor into a register,
5222 set the initial value as zero so we can fold the value into
5223 a constant. But if more than one register is involved,
5224 this probably loses. */
5225 else if (REG_P (target) && TREE_STATIC (exp)
5226 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5228 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5229 cleared = 1;
5232 /* If the constructor has fewer fields than the structure or
5233 if we are initializing the structure to mostly zeros, clear
5234 the whole structure first. Don't do this if TARGET is a
5235 register whose mode size isn't equal to SIZE since
5236 clear_storage can't handle this case. */
5237 else if (size > 0
5238 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5239 != fields_length (type))
5240 || mostly_zeros_p (exp))
5241 && (!REG_P (target)
5242 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5243 == size)))
5245 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5246 cleared = 1;
5249 if (REG_P (target) && !cleared)
5250 emit_clobber (target);
5252 /* Store each element of the constructor into the
5253 corresponding field of TARGET. */
5254 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5256 enum machine_mode mode;
5257 HOST_WIDE_INT bitsize;
5258 HOST_WIDE_INT bitpos = 0;
5259 tree offset;
5260 rtx to_rtx = target;
5262 /* Just ignore missing fields. We cleared the whole
5263 structure, above, if any fields are missing. */
5264 if (field == 0)
5265 continue;
5267 if (cleared && initializer_zerop (value))
5268 continue;
5270 if (host_integerp (DECL_SIZE (field), 1))
5271 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5272 else
5273 bitsize = -1;
5275 mode = DECL_MODE (field);
5276 if (DECL_BIT_FIELD (field))
5277 mode = VOIDmode;
5279 offset = DECL_FIELD_OFFSET (field);
5280 if (host_integerp (offset, 0)
5281 && host_integerp (bit_position (field), 0))
5283 bitpos = int_bit_position (field);
5284 offset = 0;
5286 else
5287 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5289 if (offset)
5291 enum machine_mode address_mode;
5292 rtx offset_rtx;
5294 offset
5295 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5296 make_tree (TREE_TYPE (exp),
5297 target));
5299 offset_rtx = expand_normal (offset);
5300 gcc_assert (MEM_P (to_rtx));
5302 address_mode
5303 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5304 if (GET_MODE (offset_rtx) != address_mode)
5305 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5307 to_rtx = offset_address (to_rtx, offset_rtx,
5308 highest_pow2_factor (offset));
5311 #ifdef WORD_REGISTER_OPERATIONS
5312 /* If this initializes a field that is smaller than a
5313 word, at the start of a word, try to widen it to a full
5314 word. This special case allows us to output C++ member
5315 function initializations in a form that the optimizers
5316 can understand. */
5317 if (REG_P (target)
5318 && bitsize < BITS_PER_WORD
5319 && bitpos % BITS_PER_WORD == 0
5320 && GET_MODE_CLASS (mode) == MODE_INT
5321 && TREE_CODE (value) == INTEGER_CST
5322 && exp_size >= 0
5323 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5325 tree type = TREE_TYPE (value);
5327 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5329 type = lang_hooks.types.type_for_size
5330 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5331 value = fold_convert (type, value);
5334 if (BYTES_BIG_ENDIAN)
5335 value
5336 = fold_build2 (LSHIFT_EXPR, type, value,
5337 build_int_cst (type,
5338 BITS_PER_WORD - bitsize));
5339 bitsize = BITS_PER_WORD;
5340 mode = word_mode;
5342 #endif
5344 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5345 && DECL_NONADDRESSABLE_P (field))
5347 to_rtx = copy_rtx (to_rtx);
5348 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5351 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5352 value, type, cleared,
5353 get_alias_set (TREE_TYPE (field)));
5355 break;
5357 case ARRAY_TYPE:
5359 tree value, index;
5360 unsigned HOST_WIDE_INT i;
5361 int need_to_clear;
5362 tree domain;
5363 tree elttype = TREE_TYPE (type);
5364 int const_bounds_p;
5365 HOST_WIDE_INT minelt = 0;
5366 HOST_WIDE_INT maxelt = 0;
5368 domain = TYPE_DOMAIN (type);
5369 const_bounds_p = (TYPE_MIN_VALUE (domain)
5370 && TYPE_MAX_VALUE (domain)
5371 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5372 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5374 /* If we have constant bounds for the range of the type, get them. */
5375 if (const_bounds_p)
5377 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5378 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5381 /* If the constructor has fewer elements than the array, clear
5382 the whole array first. Similarly if this is static
5383 constructor of a non-BLKmode object. */
5384 if (cleared)
5385 need_to_clear = 0;
5386 else if (REG_P (target) && TREE_STATIC (exp))
5387 need_to_clear = 1;
5388 else
5390 unsigned HOST_WIDE_INT idx;
5391 tree index, value;
5392 HOST_WIDE_INT count = 0, zero_count = 0;
5393 need_to_clear = ! const_bounds_p;
5395 /* This loop is a more accurate version of the loop in
5396 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5397 is also needed to check for missing elements. */
5398 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5400 HOST_WIDE_INT this_node_count;
5402 if (need_to_clear)
5403 break;
5405 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5407 tree lo_index = TREE_OPERAND (index, 0);
5408 tree hi_index = TREE_OPERAND (index, 1);
5410 if (! host_integerp (lo_index, 1)
5411 || ! host_integerp (hi_index, 1))
5413 need_to_clear = 1;
5414 break;
5417 this_node_count = (tree_low_cst (hi_index, 1)
5418 - tree_low_cst (lo_index, 1) + 1);
5420 else
5421 this_node_count = 1;
5423 count += this_node_count;
5424 if (mostly_zeros_p (value))
5425 zero_count += this_node_count;
5428 /* Clear the entire array first if there are any missing
5429 elements, or if the incidence of zero elements is >=
5430 75%. */
5431 if (! need_to_clear
5432 && (count < maxelt - minelt + 1
5433 || 4 * zero_count >= 3 * count))
5434 need_to_clear = 1;
5437 if (need_to_clear && size > 0)
5439 if (REG_P (target))
5440 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5441 else
5442 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5443 cleared = 1;
5446 if (!cleared && REG_P (target))
5447 /* Inform later passes that the old value is dead. */
5448 emit_clobber (target);
5450 /* Store each element of the constructor into the
5451 corresponding element of TARGET, determined by counting the
5452 elements. */
5453 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5455 enum machine_mode mode;
5456 HOST_WIDE_INT bitsize;
5457 HOST_WIDE_INT bitpos;
5458 rtx xtarget = target;
5460 if (cleared && initializer_zerop (value))
5461 continue;
5463 mode = TYPE_MODE (elttype);
5464 if (mode == BLKmode)
5465 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5466 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5467 : -1);
5468 else
5469 bitsize = GET_MODE_BITSIZE (mode);
5471 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5473 tree lo_index = TREE_OPERAND (index, 0);
5474 tree hi_index = TREE_OPERAND (index, 1);
5475 rtx index_r, pos_rtx;
5476 HOST_WIDE_INT lo, hi, count;
5477 tree position;
5479 /* If the range is constant and "small", unroll the loop. */
5480 if (const_bounds_p
5481 && host_integerp (lo_index, 0)
5482 && host_integerp (hi_index, 0)
5483 && (lo = tree_low_cst (lo_index, 0),
5484 hi = tree_low_cst (hi_index, 0),
5485 count = hi - lo + 1,
5486 (!MEM_P (target)
5487 || count <= 2
5488 || (host_integerp (TYPE_SIZE (elttype), 1)
5489 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5490 <= 40 * 8)))))
5492 lo -= minelt; hi -= minelt;
5493 for (; lo <= hi; lo++)
5495 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5497 if (MEM_P (target)
5498 && !MEM_KEEP_ALIAS_SET_P (target)
5499 && TREE_CODE (type) == ARRAY_TYPE
5500 && TYPE_NONALIASED_COMPONENT (type))
5502 target = copy_rtx (target);
5503 MEM_KEEP_ALIAS_SET_P (target) = 1;
5506 store_constructor_field
5507 (target, bitsize, bitpos, mode, value, type, cleared,
5508 get_alias_set (elttype));
5511 else
5513 rtx loop_start = gen_label_rtx ();
5514 rtx loop_end = gen_label_rtx ();
5515 tree exit_cond;
5517 expand_normal (hi_index);
5519 index = build_decl (EXPR_LOCATION (exp),
5520 VAR_DECL, NULL_TREE, domain);
5521 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5522 SET_DECL_RTL (index, index_r);
5523 store_expr (lo_index, index_r, 0, false);
5525 /* Build the head of the loop. */
5526 do_pending_stack_adjust ();
5527 emit_label (loop_start);
5529 /* Assign value to element index. */
5530 position =
5531 fold_convert (ssizetype,
5532 fold_build2 (MINUS_EXPR,
5533 TREE_TYPE (index),
5534 index,
5535 TYPE_MIN_VALUE (domain)));
5537 position =
5538 size_binop (MULT_EXPR, position,
5539 fold_convert (ssizetype,
5540 TYPE_SIZE_UNIT (elttype)));
5542 pos_rtx = expand_normal (position);
5543 xtarget = offset_address (target, pos_rtx,
5544 highest_pow2_factor (position));
5545 xtarget = adjust_address (xtarget, mode, 0);
5546 if (TREE_CODE (value) == CONSTRUCTOR)
5547 store_constructor (value, xtarget, cleared,
5548 bitsize / BITS_PER_UNIT);
5549 else
5550 store_expr (value, xtarget, 0, false);
5552 /* Generate a conditional jump to exit the loop. */
5553 exit_cond = build2 (LT_EXPR, integer_type_node,
5554 index, hi_index);
5555 jumpif (exit_cond, loop_end, -1);
5557 /* Update the loop counter, and jump to the head of
5558 the loop. */
5559 expand_assignment (index,
5560 build2 (PLUS_EXPR, TREE_TYPE (index),
5561 index, integer_one_node),
5562 false);
5564 emit_jump (loop_start);
5566 /* Build the end of the loop. */
5567 emit_label (loop_end);
5570 else if ((index != 0 && ! host_integerp (index, 0))
5571 || ! host_integerp (TYPE_SIZE (elttype), 1))
5573 tree position;
5575 if (index == 0)
5576 index = ssize_int (1);
5578 if (minelt)
5579 index = fold_convert (ssizetype,
5580 fold_build2 (MINUS_EXPR,
5581 TREE_TYPE (index),
5582 index,
5583 TYPE_MIN_VALUE (domain)));
5585 position =
5586 size_binop (MULT_EXPR, index,
5587 fold_convert (ssizetype,
5588 TYPE_SIZE_UNIT (elttype)));
5589 xtarget = offset_address (target,
5590 expand_normal (position),
5591 highest_pow2_factor (position));
5592 xtarget = adjust_address (xtarget, mode, 0);
5593 store_expr (value, xtarget, 0, false);
5595 else
5597 if (index != 0)
5598 bitpos = ((tree_low_cst (index, 0) - minelt)
5599 * tree_low_cst (TYPE_SIZE (elttype), 1));
5600 else
5601 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5603 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5604 && TREE_CODE (type) == ARRAY_TYPE
5605 && TYPE_NONALIASED_COMPONENT (type))
5607 target = copy_rtx (target);
5608 MEM_KEEP_ALIAS_SET_P (target) = 1;
5610 store_constructor_field (target, bitsize, bitpos, mode, value,
5611 type, cleared, get_alias_set (elttype));
5614 break;
5617 case VECTOR_TYPE:
5619 unsigned HOST_WIDE_INT idx;
5620 constructor_elt *ce;
5621 int i;
5622 int need_to_clear;
5623 int icode = 0;
5624 tree elttype = TREE_TYPE (type);
5625 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5626 enum machine_mode eltmode = TYPE_MODE (elttype);
5627 HOST_WIDE_INT bitsize;
5628 HOST_WIDE_INT bitpos;
5629 rtvec vector = NULL;
5630 unsigned n_elts;
5631 alias_set_type alias;
5633 gcc_assert (eltmode != BLKmode);
5635 n_elts = TYPE_VECTOR_SUBPARTS (type);
5636 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5638 enum machine_mode mode = GET_MODE (target);
5640 icode = (int) optab_handler (vec_init_optab, mode);
5641 if (icode != CODE_FOR_nothing)
5643 unsigned int i;
5645 vector = rtvec_alloc (n_elts);
5646 for (i = 0; i < n_elts; i++)
5647 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5651 /* If the constructor has fewer elements than the vector,
5652 clear the whole array first. Similarly if this is static
5653 constructor of a non-BLKmode object. */
5654 if (cleared)
5655 need_to_clear = 0;
5656 else if (REG_P (target) && TREE_STATIC (exp))
5657 need_to_clear = 1;
5658 else
5660 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5661 tree value;
5663 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5665 int n_elts_here = tree_low_cst
5666 (int_const_binop (TRUNC_DIV_EXPR,
5667 TYPE_SIZE (TREE_TYPE (value)),
5668 TYPE_SIZE (elttype), 0), 1);
5670 count += n_elts_here;
5671 if (mostly_zeros_p (value))
5672 zero_count += n_elts_here;
5675 /* Clear the entire vector first if there are any missing elements,
5676 or if the incidence of zero elements is >= 75%. */
5677 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5680 if (need_to_clear && size > 0 && !vector)
5682 if (REG_P (target))
5683 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5684 else
5685 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5686 cleared = 1;
5689 /* Inform later passes that the old value is dead. */
5690 if (!cleared && !vector && REG_P (target))
5691 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5693 if (MEM_P (target))
5694 alias = MEM_ALIAS_SET (target);
5695 else
5696 alias = get_alias_set (elttype);
5698 /* Store each element of the constructor into the corresponding
5699 element of TARGET, determined by counting the elements. */
5700 for (idx = 0, i = 0;
5701 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5702 idx++, i += bitsize / elt_size)
5704 HOST_WIDE_INT eltpos;
5705 tree value = ce->value;
5707 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5708 if (cleared && initializer_zerop (value))
5709 continue;
5711 if (ce->index)
5712 eltpos = tree_low_cst (ce->index, 1);
5713 else
5714 eltpos = i;
5716 if (vector)
5718 /* Vector CONSTRUCTORs should only be built from smaller
5719 vectors in the case of BLKmode vectors. */
5720 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5721 RTVEC_ELT (vector, eltpos)
5722 = expand_normal (value);
5724 else
5726 enum machine_mode value_mode =
5727 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5728 ? TYPE_MODE (TREE_TYPE (value))
5729 : eltmode;
5730 bitpos = eltpos * elt_size;
5731 store_constructor_field (target, bitsize, bitpos,
5732 value_mode, value, type,
5733 cleared, alias);
5737 if (vector)
5738 emit_insn (GEN_FCN (icode)
5739 (target,
5740 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5741 break;
5744 default:
5745 gcc_unreachable ();
5749 /* Store the value of EXP (an expression tree)
5750 into a subfield of TARGET which has mode MODE and occupies
5751 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5752 If MODE is VOIDmode, it means that we are storing into a bit-field.
5754 Always return const0_rtx unless we have something particular to
5755 return.
5757 TYPE is the type of the underlying object,
5759 ALIAS_SET is the alias set for the destination. This value will
5760 (in general) be different from that for TARGET, since TARGET is a
5761 reference to the containing structure.
5763 If NONTEMPORAL is true, try generating a nontemporal store. */
5765 static rtx
5766 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5767 enum machine_mode mode, tree exp, tree type,
5768 alias_set_type alias_set, bool nontemporal)
5770 if (TREE_CODE (exp) == ERROR_MARK)
5771 return const0_rtx;
5773 /* If we have nothing to store, do nothing unless the expression has
5774 side-effects. */
5775 if (bitsize == 0)
5776 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5778 /* If we are storing into an unaligned field of an aligned union that is
5779 in a register, we may have the mode of TARGET being an integer mode but
5780 MODE == BLKmode. In that case, get an aligned object whose size and
5781 alignment are the same as TARGET and store TARGET into it (we can avoid
5782 the store if the field being stored is the entire width of TARGET). Then
5783 call ourselves recursively to store the field into a BLKmode version of
5784 that object. Finally, load from the object into TARGET. This is not
5785 very efficient in general, but should only be slightly more expensive
5786 than the otherwise-required unaligned accesses. Perhaps this can be
5787 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5788 twice, once with emit_move_insn and once via store_field. */
5790 if (mode == BLKmode
5791 && (REG_P (target) || GET_CODE (target) == SUBREG))
5793 rtx object = assign_temp (type, 0, 1, 1);
5794 rtx blk_object = adjust_address (object, BLKmode, 0);
5796 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5797 emit_move_insn (object, target);
5799 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5800 nontemporal);
5802 emit_move_insn (target, object);
5804 /* We want to return the BLKmode version of the data. */
5805 return blk_object;
5808 if (GET_CODE (target) == CONCAT)
5810 /* We're storing into a struct containing a single __complex. */
5812 gcc_assert (!bitpos);
5813 return store_expr (exp, target, 0, nontemporal);
5816 /* If the structure is in a register or if the component
5817 is a bit field, we cannot use addressing to access it.
5818 Use bit-field techniques or SUBREG to store in it. */
5820 if (mode == VOIDmode
5821 || (mode != BLKmode && ! direct_store[(int) mode]
5822 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5823 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5824 || REG_P (target)
5825 || GET_CODE (target) == SUBREG
5826 /* If the field isn't aligned enough to store as an ordinary memref,
5827 store it as a bit field. */
5828 || (mode != BLKmode
5829 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5830 || bitpos % GET_MODE_ALIGNMENT (mode))
5831 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5832 || (bitpos % BITS_PER_UNIT != 0)))
5833 /* If the RHS and field are a constant size and the size of the
5834 RHS isn't the same size as the bitfield, we must use bitfield
5835 operations. */
5836 || (bitsize >= 0
5837 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5838 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5839 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5840 decl we must use bitfield operations. */
5841 || (bitsize >= 0
5842 && TREE_CODE (exp) == MEM_REF
5843 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5844 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5845 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5846 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5848 rtx temp;
5849 gimple nop_def;
5851 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5852 implies a mask operation. If the precision is the same size as
5853 the field we're storing into, that mask is redundant. This is
5854 particularly common with bit field assignments generated by the
5855 C front end. */
5856 nop_def = get_def_for_expr (exp, NOP_EXPR);
5857 if (nop_def)
5859 tree type = TREE_TYPE (exp);
5860 if (INTEGRAL_TYPE_P (type)
5861 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5862 && bitsize == TYPE_PRECISION (type))
5864 tree op = gimple_assign_rhs1 (nop_def);
5865 type = TREE_TYPE (op);
5866 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5867 exp = op;
5871 temp = expand_normal (exp);
5873 /* If BITSIZE is narrower than the size of the type of EXP
5874 we will be narrowing TEMP. Normally, what's wanted are the
5875 low-order bits. However, if EXP's type is a record and this is
5876 big-endian machine, we want the upper BITSIZE bits. */
5877 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5878 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5879 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5880 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5881 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
5882 NULL_RTX, 1);
5884 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5885 MODE. */
5886 if (mode != VOIDmode && mode != BLKmode
5887 && mode != TYPE_MODE (TREE_TYPE (exp)))
5888 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5890 /* If the modes of TEMP and TARGET are both BLKmode, both
5891 must be in memory and BITPOS must be aligned on a byte
5892 boundary. If so, we simply do a block copy. Likewise
5893 for a BLKmode-like TARGET. */
5894 if (GET_MODE (temp) == BLKmode
5895 && (GET_MODE (target) == BLKmode
5896 || (MEM_P (target)
5897 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5898 && (bitpos % BITS_PER_UNIT) == 0
5899 && (bitsize % BITS_PER_UNIT) == 0)))
5901 gcc_assert (MEM_P (target) && MEM_P (temp)
5902 && (bitpos % BITS_PER_UNIT) == 0);
5904 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5905 emit_block_move (target, temp,
5906 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5907 / BITS_PER_UNIT),
5908 BLOCK_OP_NORMAL);
5910 return const0_rtx;
5913 /* Store the value in the bitfield. */
5914 store_bit_field (target, bitsize, bitpos, mode, temp);
5916 return const0_rtx;
5918 else
5920 /* Now build a reference to just the desired component. */
5921 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5923 if (to_rtx == target)
5924 to_rtx = copy_rtx (to_rtx);
5926 if (!MEM_SCALAR_P (to_rtx))
5927 MEM_IN_STRUCT_P (to_rtx) = 1;
5928 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5929 set_mem_alias_set (to_rtx, alias_set);
5931 return store_expr (exp, to_rtx, 0, nontemporal);
5935 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5936 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5937 codes and find the ultimate containing object, which we return.
5939 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5940 bit position, and *PUNSIGNEDP to the signedness of the field.
5941 If the position of the field is variable, we store a tree
5942 giving the variable offset (in units) in *POFFSET.
5943 This offset is in addition to the bit position.
5944 If the position is not variable, we store 0 in *POFFSET.
5946 If any of the extraction expressions is volatile,
5947 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5949 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5950 Otherwise, it is a mode that can be used to access the field.
5952 If the field describes a variable-sized object, *PMODE is set to
5953 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5954 this case, but the address of the object can be found.
5956 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5957 look through nodes that serve as markers of a greater alignment than
5958 the one that can be deduced from the expression. These nodes make it
5959 possible for front-ends to prevent temporaries from being created by
5960 the middle-end on alignment considerations. For that purpose, the
5961 normal operating mode at high-level is to always pass FALSE so that
5962 the ultimate containing object is really returned; moreover, the
5963 associated predicate handled_component_p will always return TRUE
5964 on these nodes, thus indicating that they are essentially handled
5965 by get_inner_reference. TRUE should only be passed when the caller
5966 is scanning the expression in order to build another representation
5967 and specifically knows how to handle these nodes; as such, this is
5968 the normal operating mode in the RTL expanders. */
5970 tree
5971 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5972 HOST_WIDE_INT *pbitpos, tree *poffset,
5973 enum machine_mode *pmode, int *punsignedp,
5974 int *pvolatilep, bool keep_aligning)
5976 tree size_tree = 0;
5977 enum machine_mode mode = VOIDmode;
5978 bool blkmode_bitfield = false;
5979 tree offset = size_zero_node;
5980 double_int bit_offset = double_int_zero;
5982 /* First get the mode, signedness, and size. We do this from just the
5983 outermost expression. */
5984 *pbitsize = -1;
5985 if (TREE_CODE (exp) == COMPONENT_REF)
5987 tree field = TREE_OPERAND (exp, 1);
5988 size_tree = DECL_SIZE (field);
5989 if (!DECL_BIT_FIELD (field))
5990 mode = DECL_MODE (field);
5991 else if (DECL_MODE (field) == BLKmode)
5992 blkmode_bitfield = true;
5993 else if (TREE_THIS_VOLATILE (exp)
5994 && flag_strict_volatile_bitfields > 0)
5995 /* Volatile bitfields should be accessed in the mode of the
5996 field's type, not the mode computed based on the bit
5997 size. */
5998 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6000 *punsignedp = DECL_UNSIGNED (field);
6002 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6004 size_tree = TREE_OPERAND (exp, 1);
6005 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6006 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6008 /* For vector types, with the correct size of access, use the mode of
6009 inner type. */
6010 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6011 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6012 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6013 mode = TYPE_MODE (TREE_TYPE (exp));
6015 else
6017 mode = TYPE_MODE (TREE_TYPE (exp));
6018 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6020 if (mode == BLKmode)
6021 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6022 else
6023 *pbitsize = GET_MODE_BITSIZE (mode);
6026 if (size_tree != 0)
6028 if (! host_integerp (size_tree, 1))
6029 mode = BLKmode, *pbitsize = -1;
6030 else
6031 *pbitsize = tree_low_cst (size_tree, 1);
6034 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6035 and find the ultimate containing object. */
6036 while (1)
6038 switch (TREE_CODE (exp))
6040 case BIT_FIELD_REF:
6041 bit_offset
6042 = double_int_add (bit_offset,
6043 tree_to_double_int (TREE_OPERAND (exp, 2)));
6044 break;
6046 case COMPONENT_REF:
6048 tree field = TREE_OPERAND (exp, 1);
6049 tree this_offset = component_ref_field_offset (exp);
6051 /* If this field hasn't been filled in yet, don't go past it.
6052 This should only happen when folding expressions made during
6053 type construction. */
6054 if (this_offset == 0)
6055 break;
6057 offset = size_binop (PLUS_EXPR, offset, this_offset);
6058 bit_offset = double_int_add (bit_offset,
6059 tree_to_double_int
6060 (DECL_FIELD_BIT_OFFSET (field)));
6062 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6064 break;
6066 case ARRAY_REF:
6067 case ARRAY_RANGE_REF:
6069 tree index = TREE_OPERAND (exp, 1);
6070 tree low_bound = array_ref_low_bound (exp);
6071 tree unit_size = array_ref_element_size (exp);
6073 /* We assume all arrays have sizes that are a multiple of a byte.
6074 First subtract the lower bound, if any, in the type of the
6075 index, then convert to sizetype and multiply by the size of
6076 the array element. */
6077 if (! integer_zerop (low_bound))
6078 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6079 index, low_bound);
6081 offset = size_binop (PLUS_EXPR, offset,
6082 size_binop (MULT_EXPR,
6083 fold_convert (sizetype, index),
6084 unit_size));
6086 break;
6088 case REALPART_EXPR:
6089 break;
6091 case IMAGPART_EXPR:
6092 bit_offset = double_int_add (bit_offset,
6093 uhwi_to_double_int (*pbitsize));
6094 break;
6096 case VIEW_CONVERT_EXPR:
6097 if (keep_aligning && STRICT_ALIGNMENT
6098 && (TYPE_ALIGN (TREE_TYPE (exp))
6099 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6100 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6101 < BIGGEST_ALIGNMENT)
6102 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6103 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6104 goto done;
6105 break;
6107 case MEM_REF:
6108 /* Hand back the decl for MEM[&decl, off]. */
6109 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6111 tree off = TREE_OPERAND (exp, 1);
6112 if (!integer_zerop (off))
6114 double_int boff, coff = mem_ref_offset (exp);
6115 boff = double_int_lshift (coff,
6116 BITS_PER_UNIT == 8
6117 ? 3 : exact_log2 (BITS_PER_UNIT),
6118 HOST_BITS_PER_DOUBLE_INT, true);
6119 bit_offset = double_int_add (bit_offset, boff);
6121 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6123 goto done;
6125 default:
6126 goto done;
6129 /* If any reference in the chain is volatile, the effect is volatile. */
6130 if (TREE_THIS_VOLATILE (exp))
6131 *pvolatilep = 1;
6133 exp = TREE_OPERAND (exp, 0);
6135 done:
6137 /* If OFFSET is constant, see if we can return the whole thing as a
6138 constant bit position. Make sure to handle overflow during
6139 this conversion. */
6140 if (host_integerp (offset, 0))
6142 double_int tem = double_int_lshift (tree_to_double_int (offset),
6143 BITS_PER_UNIT == 8
6144 ? 3 : exact_log2 (BITS_PER_UNIT),
6145 HOST_BITS_PER_DOUBLE_INT, true);
6146 tem = double_int_add (tem, bit_offset);
6147 if (double_int_fits_in_shwi_p (tem))
6149 *pbitpos = double_int_to_shwi (tem);
6150 *poffset = offset = NULL_TREE;
6154 /* Otherwise, split it up. */
6155 if (offset)
6157 *pbitpos = double_int_to_shwi (bit_offset);
6158 *poffset = offset;
6161 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6162 if (mode == VOIDmode
6163 && blkmode_bitfield
6164 && (*pbitpos % BITS_PER_UNIT) == 0
6165 && (*pbitsize % BITS_PER_UNIT) == 0)
6166 *pmode = BLKmode;
6167 else
6168 *pmode = mode;
6170 return exp;
6173 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6174 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6175 EXP is marked as PACKED. */
6177 bool
6178 contains_packed_reference (const_tree exp)
6180 bool packed_p = false;
6182 while (1)
6184 switch (TREE_CODE (exp))
6186 case COMPONENT_REF:
6188 tree field = TREE_OPERAND (exp, 1);
6189 packed_p = DECL_PACKED (field)
6190 || TYPE_PACKED (TREE_TYPE (field))
6191 || TYPE_PACKED (TREE_TYPE (exp));
6192 if (packed_p)
6193 goto done;
6195 break;
6197 case BIT_FIELD_REF:
6198 case ARRAY_REF:
6199 case ARRAY_RANGE_REF:
6200 case REALPART_EXPR:
6201 case IMAGPART_EXPR:
6202 case VIEW_CONVERT_EXPR:
6203 break;
6205 default:
6206 goto done;
6208 exp = TREE_OPERAND (exp, 0);
6210 done:
6211 return packed_p;
6214 /* Return a tree of sizetype representing the size, in bytes, of the element
6215 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6217 tree
6218 array_ref_element_size (tree exp)
6220 tree aligned_size = TREE_OPERAND (exp, 3);
6221 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6222 location_t loc = EXPR_LOCATION (exp);
6224 /* If a size was specified in the ARRAY_REF, it's the size measured
6225 in alignment units of the element type. So multiply by that value. */
6226 if (aligned_size)
6228 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6229 sizetype from another type of the same width and signedness. */
6230 if (TREE_TYPE (aligned_size) != sizetype)
6231 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6232 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6233 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6236 /* Otherwise, take the size from that of the element type. Substitute
6237 any PLACEHOLDER_EXPR that we have. */
6238 else
6239 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6242 /* Return a tree representing the lower bound of the array mentioned in
6243 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6245 tree
6246 array_ref_low_bound (tree exp)
6248 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6250 /* If a lower bound is specified in EXP, use it. */
6251 if (TREE_OPERAND (exp, 2))
6252 return TREE_OPERAND (exp, 2);
6254 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6255 substituting for a PLACEHOLDER_EXPR as needed. */
6256 if (domain_type && TYPE_MIN_VALUE (domain_type))
6257 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6259 /* Otherwise, return a zero of the appropriate type. */
6260 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6263 /* Return a tree representing the upper bound of the array mentioned in
6264 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6266 tree
6267 array_ref_up_bound (tree exp)
6269 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6271 /* If there is a domain type and it has an upper bound, use it, substituting
6272 for a PLACEHOLDER_EXPR as needed. */
6273 if (domain_type && TYPE_MAX_VALUE (domain_type))
6274 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6276 /* Otherwise fail. */
6277 return NULL_TREE;
6280 /* Return a tree representing the offset, in bytes, of the field referenced
6281 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6283 tree
6284 component_ref_field_offset (tree exp)
6286 tree aligned_offset = TREE_OPERAND (exp, 2);
6287 tree field = TREE_OPERAND (exp, 1);
6288 location_t loc = EXPR_LOCATION (exp);
6290 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6291 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6292 value. */
6293 if (aligned_offset)
6295 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6296 sizetype from another type of the same width and signedness. */
6297 if (TREE_TYPE (aligned_offset) != sizetype)
6298 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6299 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6300 size_int (DECL_OFFSET_ALIGN (field)
6301 / BITS_PER_UNIT));
6304 /* Otherwise, take the offset from that of the field. Substitute
6305 any PLACEHOLDER_EXPR that we have. */
6306 else
6307 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6310 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6312 static unsigned HOST_WIDE_INT
6313 target_align (const_tree target)
6315 /* We might have a chain of nested references with intermediate misaligning
6316 bitfields components, so need to recurse to find out. */
6318 unsigned HOST_WIDE_INT this_align, outer_align;
6320 switch (TREE_CODE (target))
6322 case BIT_FIELD_REF:
6323 return 1;
6325 case COMPONENT_REF:
6326 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6327 outer_align = target_align (TREE_OPERAND (target, 0));
6328 return MIN (this_align, outer_align);
6330 case ARRAY_REF:
6331 case ARRAY_RANGE_REF:
6332 this_align = TYPE_ALIGN (TREE_TYPE (target));
6333 outer_align = target_align (TREE_OPERAND (target, 0));
6334 return MIN (this_align, outer_align);
6336 CASE_CONVERT:
6337 case NON_LVALUE_EXPR:
6338 case VIEW_CONVERT_EXPR:
6339 this_align = TYPE_ALIGN (TREE_TYPE (target));
6340 outer_align = target_align (TREE_OPERAND (target, 0));
6341 return MAX (this_align, outer_align);
6343 default:
6344 return TYPE_ALIGN (TREE_TYPE (target));
6349 /* Given an rtx VALUE that may contain additions and multiplications, return
6350 an equivalent value that just refers to a register, memory, or constant.
6351 This is done by generating instructions to perform the arithmetic and
6352 returning a pseudo-register containing the value.
6354 The returned value may be a REG, SUBREG, MEM or constant. */
6357 force_operand (rtx value, rtx target)
6359 rtx op1, op2;
6360 /* Use subtarget as the target for operand 0 of a binary operation. */
6361 rtx subtarget = get_subtarget (target);
6362 enum rtx_code code = GET_CODE (value);
6364 /* Check for subreg applied to an expression produced by loop optimizer. */
6365 if (code == SUBREG
6366 && !REG_P (SUBREG_REG (value))
6367 && !MEM_P (SUBREG_REG (value)))
6369 value
6370 = simplify_gen_subreg (GET_MODE (value),
6371 force_reg (GET_MODE (SUBREG_REG (value)),
6372 force_operand (SUBREG_REG (value),
6373 NULL_RTX)),
6374 GET_MODE (SUBREG_REG (value)),
6375 SUBREG_BYTE (value));
6376 code = GET_CODE (value);
6379 /* Check for a PIC address load. */
6380 if ((code == PLUS || code == MINUS)
6381 && XEXP (value, 0) == pic_offset_table_rtx
6382 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6383 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6384 || GET_CODE (XEXP (value, 1)) == CONST))
6386 if (!subtarget)
6387 subtarget = gen_reg_rtx (GET_MODE (value));
6388 emit_move_insn (subtarget, value);
6389 return subtarget;
6392 if (ARITHMETIC_P (value))
6394 op2 = XEXP (value, 1);
6395 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6396 subtarget = 0;
6397 if (code == MINUS && CONST_INT_P (op2))
6399 code = PLUS;
6400 op2 = negate_rtx (GET_MODE (value), op2);
6403 /* Check for an addition with OP2 a constant integer and our first
6404 operand a PLUS of a virtual register and something else. In that
6405 case, we want to emit the sum of the virtual register and the
6406 constant first and then add the other value. This allows virtual
6407 register instantiation to simply modify the constant rather than
6408 creating another one around this addition. */
6409 if (code == PLUS && CONST_INT_P (op2)
6410 && GET_CODE (XEXP (value, 0)) == PLUS
6411 && REG_P (XEXP (XEXP (value, 0), 0))
6412 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6413 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6415 rtx temp = expand_simple_binop (GET_MODE (value), code,
6416 XEXP (XEXP (value, 0), 0), op2,
6417 subtarget, 0, OPTAB_LIB_WIDEN);
6418 return expand_simple_binop (GET_MODE (value), code, temp,
6419 force_operand (XEXP (XEXP (value,
6420 0), 1), 0),
6421 target, 0, OPTAB_LIB_WIDEN);
6424 op1 = force_operand (XEXP (value, 0), subtarget);
6425 op2 = force_operand (op2, NULL_RTX);
6426 switch (code)
6428 case MULT:
6429 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6430 case DIV:
6431 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6432 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6433 target, 1, OPTAB_LIB_WIDEN);
6434 else
6435 return expand_divmod (0,
6436 FLOAT_MODE_P (GET_MODE (value))
6437 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6438 GET_MODE (value), op1, op2, target, 0);
6439 case MOD:
6440 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6441 target, 0);
6442 case UDIV:
6443 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6444 target, 1);
6445 case UMOD:
6446 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6447 target, 1);
6448 case ASHIFTRT:
6449 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6450 target, 0, OPTAB_LIB_WIDEN);
6451 default:
6452 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6453 target, 1, OPTAB_LIB_WIDEN);
6456 if (UNARY_P (value))
6458 if (!target)
6459 target = gen_reg_rtx (GET_MODE (value));
6460 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6461 switch (code)
6463 case ZERO_EXTEND:
6464 case SIGN_EXTEND:
6465 case TRUNCATE:
6466 case FLOAT_EXTEND:
6467 case FLOAT_TRUNCATE:
6468 convert_move (target, op1, code == ZERO_EXTEND);
6469 return target;
6471 case FIX:
6472 case UNSIGNED_FIX:
6473 expand_fix (target, op1, code == UNSIGNED_FIX);
6474 return target;
6476 case FLOAT:
6477 case UNSIGNED_FLOAT:
6478 expand_float (target, op1, code == UNSIGNED_FLOAT);
6479 return target;
6481 default:
6482 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6486 #ifdef INSN_SCHEDULING
6487 /* On machines that have insn scheduling, we want all memory reference to be
6488 explicit, so we need to deal with such paradoxical SUBREGs. */
6489 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6490 && (GET_MODE_SIZE (GET_MODE (value))
6491 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6492 value
6493 = simplify_gen_subreg (GET_MODE (value),
6494 force_reg (GET_MODE (SUBREG_REG (value)),
6495 force_operand (SUBREG_REG (value),
6496 NULL_RTX)),
6497 GET_MODE (SUBREG_REG (value)),
6498 SUBREG_BYTE (value));
6499 #endif
6501 return value;
6504 /* Subroutine of expand_expr: return nonzero iff there is no way that
6505 EXP can reference X, which is being modified. TOP_P is nonzero if this
6506 call is going to be used to determine whether we need a temporary
6507 for EXP, as opposed to a recursive call to this function.
6509 It is always safe for this routine to return zero since it merely
6510 searches for optimization opportunities. */
6513 safe_from_p (const_rtx x, tree exp, int top_p)
6515 rtx exp_rtl = 0;
6516 int i, nops;
6518 if (x == 0
6519 /* If EXP has varying size, we MUST use a target since we currently
6520 have no way of allocating temporaries of variable size
6521 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6522 So we assume here that something at a higher level has prevented a
6523 clash. This is somewhat bogus, but the best we can do. Only
6524 do this when X is BLKmode and when we are at the top level. */
6525 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6526 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6527 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6528 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6529 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6530 != INTEGER_CST)
6531 && GET_MODE (x) == BLKmode)
6532 /* If X is in the outgoing argument area, it is always safe. */
6533 || (MEM_P (x)
6534 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6535 || (GET_CODE (XEXP (x, 0)) == PLUS
6536 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6537 return 1;
6539 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6540 find the underlying pseudo. */
6541 if (GET_CODE (x) == SUBREG)
6543 x = SUBREG_REG (x);
6544 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6545 return 0;
6548 /* Now look at our tree code and possibly recurse. */
6549 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6551 case tcc_declaration:
6552 exp_rtl = DECL_RTL_IF_SET (exp);
6553 break;
6555 case tcc_constant:
6556 return 1;
6558 case tcc_exceptional:
6559 if (TREE_CODE (exp) == TREE_LIST)
6561 while (1)
6563 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6564 return 0;
6565 exp = TREE_CHAIN (exp);
6566 if (!exp)
6567 return 1;
6568 if (TREE_CODE (exp) != TREE_LIST)
6569 return safe_from_p (x, exp, 0);
6572 else if (TREE_CODE (exp) == CONSTRUCTOR)
6574 constructor_elt *ce;
6575 unsigned HOST_WIDE_INT idx;
6577 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6578 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6579 || !safe_from_p (x, ce->value, 0))
6580 return 0;
6581 return 1;
6583 else if (TREE_CODE (exp) == ERROR_MARK)
6584 return 1; /* An already-visited SAVE_EXPR? */
6585 else
6586 return 0;
6588 case tcc_statement:
6589 /* The only case we look at here is the DECL_INITIAL inside a
6590 DECL_EXPR. */
6591 return (TREE_CODE (exp) != DECL_EXPR
6592 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6593 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6594 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6596 case tcc_binary:
6597 case tcc_comparison:
6598 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6599 return 0;
6600 /* Fall through. */
6602 case tcc_unary:
6603 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6605 case tcc_expression:
6606 case tcc_reference:
6607 case tcc_vl_exp:
6608 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6609 the expression. If it is set, we conflict iff we are that rtx or
6610 both are in memory. Otherwise, we check all operands of the
6611 expression recursively. */
6613 switch (TREE_CODE (exp))
6615 case ADDR_EXPR:
6616 /* If the operand is static or we are static, we can't conflict.
6617 Likewise if we don't conflict with the operand at all. */
6618 if (staticp (TREE_OPERAND (exp, 0))
6619 || TREE_STATIC (exp)
6620 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6621 return 1;
6623 /* Otherwise, the only way this can conflict is if we are taking
6624 the address of a DECL a that address if part of X, which is
6625 very rare. */
6626 exp = TREE_OPERAND (exp, 0);
6627 if (DECL_P (exp))
6629 if (!DECL_RTL_SET_P (exp)
6630 || !MEM_P (DECL_RTL (exp)))
6631 return 0;
6632 else
6633 exp_rtl = XEXP (DECL_RTL (exp), 0);
6635 break;
6637 case MEM_REF:
6638 if (MEM_P (x)
6639 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6640 get_alias_set (exp)))
6641 return 0;
6642 break;
6644 case CALL_EXPR:
6645 /* Assume that the call will clobber all hard registers and
6646 all of memory. */
6647 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6648 || MEM_P (x))
6649 return 0;
6650 break;
6652 case WITH_CLEANUP_EXPR:
6653 case CLEANUP_POINT_EXPR:
6654 /* Lowered by gimplify.c. */
6655 gcc_unreachable ();
6657 case SAVE_EXPR:
6658 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6660 default:
6661 break;
6664 /* If we have an rtx, we do not need to scan our operands. */
6665 if (exp_rtl)
6666 break;
6668 nops = TREE_OPERAND_LENGTH (exp);
6669 for (i = 0; i < nops; i++)
6670 if (TREE_OPERAND (exp, i) != 0
6671 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6672 return 0;
6674 break;
6676 case tcc_type:
6677 /* Should never get a type here. */
6678 gcc_unreachable ();
6681 /* If we have an rtl, find any enclosed object. Then see if we conflict
6682 with it. */
6683 if (exp_rtl)
6685 if (GET_CODE (exp_rtl) == SUBREG)
6687 exp_rtl = SUBREG_REG (exp_rtl);
6688 if (REG_P (exp_rtl)
6689 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6690 return 0;
6693 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6694 are memory and they conflict. */
6695 return ! (rtx_equal_p (x, exp_rtl)
6696 || (MEM_P (x) && MEM_P (exp_rtl)
6697 && true_dependence (exp_rtl, VOIDmode, x,
6698 rtx_addr_varies_p)));
6701 /* If we reach here, it is safe. */
6702 return 1;
6706 /* Return the highest power of two that EXP is known to be a multiple of.
6707 This is used in updating alignment of MEMs in array references. */
6709 unsigned HOST_WIDE_INT
6710 highest_pow2_factor (const_tree exp)
6712 unsigned HOST_WIDE_INT c0, c1;
6714 switch (TREE_CODE (exp))
6716 case INTEGER_CST:
6717 /* We can find the lowest bit that's a one. If the low
6718 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6719 We need to handle this case since we can find it in a COND_EXPR,
6720 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6721 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6722 later ICE. */
6723 if (TREE_OVERFLOW (exp))
6724 return BIGGEST_ALIGNMENT;
6725 else
6727 /* Note: tree_low_cst is intentionally not used here,
6728 we don't care about the upper bits. */
6729 c0 = TREE_INT_CST_LOW (exp);
6730 c0 &= -c0;
6731 return c0 ? c0 : BIGGEST_ALIGNMENT;
6733 break;
6735 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6736 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6737 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6738 return MIN (c0, c1);
6740 case MULT_EXPR:
6741 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6742 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6743 return c0 * c1;
6745 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6746 case CEIL_DIV_EXPR:
6747 if (integer_pow2p (TREE_OPERAND (exp, 1))
6748 && host_integerp (TREE_OPERAND (exp, 1), 1))
6750 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6751 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6752 return MAX (1, c0 / c1);
6754 break;
6756 case BIT_AND_EXPR:
6757 /* The highest power of two of a bit-and expression is the maximum of
6758 that of its operands. We typically get here for a complex LHS and
6759 a constant negative power of two on the RHS to force an explicit
6760 alignment, so don't bother looking at the LHS. */
6761 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6763 CASE_CONVERT:
6764 case SAVE_EXPR:
6765 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6767 case COMPOUND_EXPR:
6768 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6770 case COND_EXPR:
6771 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6772 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6773 return MIN (c0, c1);
6775 default:
6776 break;
6779 return 1;
6782 /* Similar, except that the alignment requirements of TARGET are
6783 taken into account. Assume it is at least as aligned as its
6784 type, unless it is a COMPONENT_REF in which case the layout of
6785 the structure gives the alignment. */
6787 static unsigned HOST_WIDE_INT
6788 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6790 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6791 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6793 return MAX (factor, talign);
6796 /* Subroutine of expand_expr. Expand the two operands of a binary
6797 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6798 The value may be stored in TARGET if TARGET is nonzero. The
6799 MODIFIER argument is as documented by expand_expr. */
6801 static void
6802 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6803 enum expand_modifier modifier)
6805 if (! safe_from_p (target, exp1, 1))
6806 target = 0;
6807 if (operand_equal_p (exp0, exp1, 0))
6809 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6810 *op1 = copy_rtx (*op0);
6812 else
6814 /* If we need to preserve evaluation order, copy exp0 into its own
6815 temporary variable so that it can't be clobbered by exp1. */
6816 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6817 exp0 = save_expr (exp0);
6818 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6819 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6824 /* Return a MEM that contains constant EXP. DEFER is as for
6825 output_constant_def and MODIFIER is as for expand_expr. */
6827 static rtx
6828 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6830 rtx mem;
6832 mem = output_constant_def (exp, defer);
6833 if (modifier != EXPAND_INITIALIZER)
6834 mem = use_anchored_address (mem);
6835 return mem;
6838 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6839 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6841 static rtx
6842 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6843 enum expand_modifier modifier, addr_space_t as)
6845 rtx result, subtarget;
6846 tree inner, offset;
6847 HOST_WIDE_INT bitsize, bitpos;
6848 int volatilep, unsignedp;
6849 enum machine_mode mode1;
6851 /* If we are taking the address of a constant and are at the top level,
6852 we have to use output_constant_def since we can't call force_const_mem
6853 at top level. */
6854 /* ??? This should be considered a front-end bug. We should not be
6855 generating ADDR_EXPR of something that isn't an LVALUE. The only
6856 exception here is STRING_CST. */
6857 if (CONSTANT_CLASS_P (exp))
6858 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6860 /* Everything must be something allowed by is_gimple_addressable. */
6861 switch (TREE_CODE (exp))
6863 case INDIRECT_REF:
6864 /* This case will happen via recursion for &a->b. */
6865 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6867 case MEM_REF:
6869 tree tem = TREE_OPERAND (exp, 0);
6870 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6871 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6872 tem,
6873 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6874 return expand_expr (tem, target, tmode, modifier);
6877 case CONST_DECL:
6878 /* Expand the initializer like constants above. */
6879 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6881 case REALPART_EXPR:
6882 /* The real part of the complex number is always first, therefore
6883 the address is the same as the address of the parent object. */
6884 offset = 0;
6885 bitpos = 0;
6886 inner = TREE_OPERAND (exp, 0);
6887 break;
6889 case IMAGPART_EXPR:
6890 /* The imaginary part of the complex number is always second.
6891 The expression is therefore always offset by the size of the
6892 scalar type. */
6893 offset = 0;
6894 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6895 inner = TREE_OPERAND (exp, 0);
6896 break;
6898 default:
6899 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6900 expand_expr, as that can have various side effects; LABEL_DECLs for
6901 example, may not have their DECL_RTL set yet. Expand the rtl of
6902 CONSTRUCTORs too, which should yield a memory reference for the
6903 constructor's contents. Assume language specific tree nodes can
6904 be expanded in some interesting way. */
6905 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6906 if (DECL_P (exp)
6907 || TREE_CODE (exp) == CONSTRUCTOR
6908 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6910 result = expand_expr (exp, target, tmode,
6911 modifier == EXPAND_INITIALIZER
6912 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6914 /* If the DECL isn't in memory, then the DECL wasn't properly
6915 marked TREE_ADDRESSABLE, which will be either a front-end
6916 or a tree optimizer bug. */
6917 gcc_assert (MEM_P (result));
6918 result = XEXP (result, 0);
6920 /* ??? Is this needed anymore? */
6921 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6923 assemble_external (exp);
6924 TREE_USED (exp) = 1;
6927 if (modifier != EXPAND_INITIALIZER
6928 && modifier != EXPAND_CONST_ADDRESS)
6929 result = force_operand (result, target);
6930 return result;
6933 /* Pass FALSE as the last argument to get_inner_reference although
6934 we are expanding to RTL. The rationale is that we know how to
6935 handle "aligning nodes" here: we can just bypass them because
6936 they won't change the final object whose address will be returned
6937 (they actually exist only for that purpose). */
6938 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6939 &mode1, &unsignedp, &volatilep, false);
6940 break;
6943 /* We must have made progress. */
6944 gcc_assert (inner != exp);
6946 subtarget = offset || bitpos ? NULL_RTX : target;
6947 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6948 inner alignment, force the inner to be sufficiently aligned. */
6949 if (CONSTANT_CLASS_P (inner)
6950 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6952 inner = copy_node (inner);
6953 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6954 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6955 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6957 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6959 if (offset)
6961 rtx tmp;
6963 if (modifier != EXPAND_NORMAL)
6964 result = force_operand (result, NULL);
6965 tmp = expand_expr (offset, NULL_RTX, tmode,
6966 modifier == EXPAND_INITIALIZER
6967 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6969 result = convert_memory_address_addr_space (tmode, result, as);
6970 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6972 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6973 result = simplify_gen_binary (PLUS, tmode, result, tmp);
6974 else
6976 subtarget = bitpos ? NULL_RTX : target;
6977 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6978 1, OPTAB_LIB_WIDEN);
6982 if (bitpos)
6984 /* Someone beforehand should have rejected taking the address
6985 of such an object. */
6986 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6988 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6989 if (modifier < EXPAND_SUM)
6990 result = force_operand (result, target);
6993 return result;
6996 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6997 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6999 static rtx
7000 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7001 enum expand_modifier modifier)
7003 addr_space_t as = ADDR_SPACE_GENERIC;
7004 enum machine_mode address_mode = Pmode;
7005 enum machine_mode pointer_mode = ptr_mode;
7006 enum machine_mode rmode;
7007 rtx result;
7009 /* Target mode of VOIDmode says "whatever's natural". */
7010 if (tmode == VOIDmode)
7011 tmode = TYPE_MODE (TREE_TYPE (exp));
7013 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7015 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7016 address_mode = targetm.addr_space.address_mode (as);
7017 pointer_mode = targetm.addr_space.pointer_mode (as);
7020 /* We can get called with some Weird Things if the user does silliness
7021 like "(short) &a". In that case, convert_memory_address won't do
7022 the right thing, so ignore the given target mode. */
7023 if (tmode != address_mode && tmode != pointer_mode)
7024 tmode = address_mode;
7026 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7027 tmode, modifier, as);
7029 /* Despite expand_expr claims concerning ignoring TMODE when not
7030 strictly convenient, stuff breaks if we don't honor it. Note
7031 that combined with the above, we only do this for pointer modes. */
7032 rmode = GET_MODE (result);
7033 if (rmode == VOIDmode)
7034 rmode = tmode;
7035 if (rmode != tmode)
7036 result = convert_memory_address_addr_space (tmode, result, as);
7038 return result;
7041 /* Generate code for computing CONSTRUCTOR EXP.
7042 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7043 is TRUE, instead of creating a temporary variable in memory
7044 NULL is returned and the caller needs to handle it differently. */
7046 static rtx
7047 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7048 bool avoid_temp_mem)
7050 tree type = TREE_TYPE (exp);
7051 enum machine_mode mode = TYPE_MODE (type);
7053 /* Try to avoid creating a temporary at all. This is possible
7054 if all of the initializer is zero.
7055 FIXME: try to handle all [0..255] initializers we can handle
7056 with memset. */
7057 if (TREE_STATIC (exp)
7058 && !TREE_ADDRESSABLE (exp)
7059 && target != 0 && mode == BLKmode
7060 && all_zeros_p (exp))
7062 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7063 return target;
7066 /* All elts simple constants => refer to a constant in memory. But
7067 if this is a non-BLKmode mode, let it store a field at a time
7068 since that should make a CONST_INT or CONST_DOUBLE when we
7069 fold. Likewise, if we have a target we can use, it is best to
7070 store directly into the target unless the type is large enough
7071 that memcpy will be used. If we are making an initializer and
7072 all operands are constant, put it in memory as well.
7074 FIXME: Avoid trying to fill vector constructors piece-meal.
7075 Output them with output_constant_def below unless we're sure
7076 they're zeros. This should go away when vector initializers
7077 are treated like VECTOR_CST instead of arrays. */
7078 if ((TREE_STATIC (exp)
7079 && ((mode == BLKmode
7080 && ! (target != 0 && safe_from_p (target, exp, 1)))
7081 || TREE_ADDRESSABLE (exp)
7082 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7083 && (! MOVE_BY_PIECES_P
7084 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7085 TYPE_ALIGN (type)))
7086 && ! mostly_zeros_p (exp))))
7087 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7088 && TREE_CONSTANT (exp)))
7090 rtx constructor;
7092 if (avoid_temp_mem)
7093 return NULL_RTX;
7095 constructor = expand_expr_constant (exp, 1, modifier);
7097 if (modifier != EXPAND_CONST_ADDRESS
7098 && modifier != EXPAND_INITIALIZER
7099 && modifier != EXPAND_SUM)
7100 constructor = validize_mem (constructor);
7102 return constructor;
7105 /* Handle calls that pass values in multiple non-contiguous
7106 locations. The Irix 6 ABI has examples of this. */
7107 if (target == 0 || ! safe_from_p (target, exp, 1)
7108 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7110 if (avoid_temp_mem)
7111 return NULL_RTX;
7113 target
7114 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7115 | (TREE_READONLY (exp)
7116 * TYPE_QUAL_CONST))),
7117 0, TREE_ADDRESSABLE (exp), 1);
7120 store_constructor (exp, target, 0, int_expr_size (exp));
7121 return target;
7125 /* expand_expr: generate code for computing expression EXP.
7126 An rtx for the computed value is returned. The value is never null.
7127 In the case of a void EXP, const0_rtx is returned.
7129 The value may be stored in TARGET if TARGET is nonzero.
7130 TARGET is just a suggestion; callers must assume that
7131 the rtx returned may not be the same as TARGET.
7133 If TARGET is CONST0_RTX, it means that the value will be ignored.
7135 If TMODE is not VOIDmode, it suggests generating the
7136 result in mode TMODE. But this is done only when convenient.
7137 Otherwise, TMODE is ignored and the value generated in its natural mode.
7138 TMODE is just a suggestion; callers must assume that
7139 the rtx returned may not have mode TMODE.
7141 Note that TARGET may have neither TMODE nor MODE. In that case, it
7142 probably will not be used.
7144 If MODIFIER is EXPAND_SUM then when EXP is an addition
7145 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7146 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7147 products as above, or REG or MEM, or constant.
7148 Ordinarily in such cases we would output mul or add instructions
7149 and then return a pseudo reg containing the sum.
7151 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7152 it also marks a label as absolutely required (it can't be dead).
7153 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7154 This is used for outputting expressions used in initializers.
7156 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7157 with a constant address even if that address is not normally legitimate.
7158 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7160 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7161 a call parameter. Such targets require special care as we haven't yet
7162 marked TARGET so that it's safe from being trashed by libcalls. We
7163 don't want to use TARGET for anything but the final result;
7164 Intermediate values must go elsewhere. Additionally, calls to
7165 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7167 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7168 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7169 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7170 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7171 recursively. */
7174 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7175 enum expand_modifier modifier, rtx *alt_rtl)
7177 rtx ret;
7179 /* Handle ERROR_MARK before anybody tries to access its type. */
7180 if (TREE_CODE (exp) == ERROR_MARK
7181 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7183 ret = CONST0_RTX (tmode);
7184 return ret ? ret : const0_rtx;
7187 /* If this is an expression of some kind and it has an associated line
7188 number, then emit the line number before expanding the expression.
7190 We need to save and restore the file and line information so that
7191 errors discovered during expansion are emitted with the right
7192 information. It would be better of the diagnostic routines
7193 used the file/line information embedded in the tree nodes rather
7194 than globals. */
7195 if (cfun && EXPR_HAS_LOCATION (exp))
7197 location_t saved_location = input_location;
7198 location_t saved_curr_loc = get_curr_insn_source_location ();
7199 tree saved_block = get_curr_insn_block ();
7200 input_location = EXPR_LOCATION (exp);
7201 set_curr_insn_source_location (input_location);
7203 /* Record where the insns produced belong. */
7204 set_curr_insn_block (TREE_BLOCK (exp));
7206 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7208 input_location = saved_location;
7209 set_curr_insn_block (saved_block);
7210 set_curr_insn_source_location (saved_curr_loc);
7212 else
7214 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7217 return ret;
7221 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7222 enum expand_modifier modifier)
7224 rtx op0, op1, op2, temp;
7225 tree type;
7226 int unsignedp;
7227 enum machine_mode mode;
7228 enum tree_code code = ops->code;
7229 optab this_optab;
7230 rtx subtarget, original_target;
7231 int ignore;
7232 bool reduce_bit_field;
7233 location_t loc = ops->location;
7234 tree treeop0, treeop1, treeop2;
7235 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7236 ? reduce_to_bit_field_precision ((expr), \
7237 target, \
7238 type) \
7239 : (expr))
7241 type = ops->type;
7242 mode = TYPE_MODE (type);
7243 unsignedp = TYPE_UNSIGNED (type);
7245 treeop0 = ops->op0;
7246 treeop1 = ops->op1;
7247 treeop2 = ops->op2;
7249 /* We should be called only on simple (binary or unary) expressions,
7250 exactly those that are valid in gimple expressions that aren't
7251 GIMPLE_SINGLE_RHS (or invalid). */
7252 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7253 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7254 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7256 ignore = (target == const0_rtx
7257 || ((CONVERT_EXPR_CODE_P (code)
7258 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7259 && TREE_CODE (type) == VOID_TYPE));
7261 /* We should be called only if we need the result. */
7262 gcc_assert (!ignore);
7264 /* An operation in what may be a bit-field type needs the
7265 result to be reduced to the precision of the bit-field type,
7266 which is narrower than that of the type's mode. */
7267 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7268 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7270 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7271 target = 0;
7273 /* Use subtarget as the target for operand 0 of a binary operation. */
7274 subtarget = get_subtarget (target);
7275 original_target = target;
7277 switch (code)
7279 case NON_LVALUE_EXPR:
7280 case PAREN_EXPR:
7281 CASE_CONVERT:
7282 if (treeop0 == error_mark_node)
7283 return const0_rtx;
7285 if (TREE_CODE (type) == UNION_TYPE)
7287 tree valtype = TREE_TYPE (treeop0);
7289 /* If both input and output are BLKmode, this conversion isn't doing
7290 anything except possibly changing memory attribute. */
7291 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7293 rtx result = expand_expr (treeop0, target, tmode,
7294 modifier);
7296 result = copy_rtx (result);
7297 set_mem_attributes (result, type, 0);
7298 return result;
7301 if (target == 0)
7303 if (TYPE_MODE (type) != BLKmode)
7304 target = gen_reg_rtx (TYPE_MODE (type));
7305 else
7306 target = assign_temp (type, 0, 1, 1);
7309 if (MEM_P (target))
7310 /* Store data into beginning of memory target. */
7311 store_expr (treeop0,
7312 adjust_address (target, TYPE_MODE (valtype), 0),
7313 modifier == EXPAND_STACK_PARM,
7314 false);
7316 else
7318 gcc_assert (REG_P (target));
7320 /* Store this field into a union of the proper type. */
7321 store_field (target,
7322 MIN ((int_size_in_bytes (TREE_TYPE
7323 (treeop0))
7324 * BITS_PER_UNIT),
7325 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7326 0, TYPE_MODE (valtype), treeop0,
7327 type, 0, false);
7330 /* Return the entire union. */
7331 return target;
7334 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7336 op0 = expand_expr (treeop0, target, VOIDmode,
7337 modifier);
7339 /* If the signedness of the conversion differs and OP0 is
7340 a promoted SUBREG, clear that indication since we now
7341 have to do the proper extension. */
7342 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7343 && GET_CODE (op0) == SUBREG)
7344 SUBREG_PROMOTED_VAR_P (op0) = 0;
7346 return REDUCE_BIT_FIELD (op0);
7349 op0 = expand_expr (treeop0, NULL_RTX, mode,
7350 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7351 if (GET_MODE (op0) == mode)
7354 /* If OP0 is a constant, just convert it into the proper mode. */
7355 else if (CONSTANT_P (op0))
7357 tree inner_type = TREE_TYPE (treeop0);
7358 enum machine_mode inner_mode = GET_MODE (op0);
7360 if (inner_mode == VOIDmode)
7361 inner_mode = TYPE_MODE (inner_type);
7363 if (modifier == EXPAND_INITIALIZER)
7364 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7365 subreg_lowpart_offset (mode,
7366 inner_mode));
7367 else
7368 op0= convert_modes (mode, inner_mode, op0,
7369 TYPE_UNSIGNED (inner_type));
7372 else if (modifier == EXPAND_INITIALIZER)
7373 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7375 else if (target == 0)
7376 op0 = convert_to_mode (mode, op0,
7377 TYPE_UNSIGNED (TREE_TYPE
7378 (treeop0)));
7379 else
7381 convert_move (target, op0,
7382 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7383 op0 = target;
7386 return REDUCE_BIT_FIELD (op0);
7388 case ADDR_SPACE_CONVERT_EXPR:
7390 tree treeop0_type = TREE_TYPE (treeop0);
7391 addr_space_t as_to;
7392 addr_space_t as_from;
7394 gcc_assert (POINTER_TYPE_P (type));
7395 gcc_assert (POINTER_TYPE_P (treeop0_type));
7397 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7398 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7400 /* Conversions between pointers to the same address space should
7401 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7402 gcc_assert (as_to != as_from);
7404 /* Ask target code to handle conversion between pointers
7405 to overlapping address spaces. */
7406 if (targetm.addr_space.subset_p (as_to, as_from)
7407 || targetm.addr_space.subset_p (as_from, as_to))
7409 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7410 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7411 gcc_assert (op0);
7412 return op0;
7415 /* For disjoint address spaces, converting anything but
7416 a null pointer invokes undefined behaviour. We simply
7417 always return a null pointer here. */
7418 return CONST0_RTX (mode);
7421 case POINTER_PLUS_EXPR:
7422 /* Even though the sizetype mode and the pointer's mode can be different
7423 expand is able to handle this correctly and get the correct result out
7424 of the PLUS_EXPR code. */
7425 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7426 if sizetype precision is smaller than pointer precision. */
7427 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7428 treeop1 = fold_convert_loc (loc, type,
7429 fold_convert_loc (loc, ssizetype,
7430 treeop1));
7431 case PLUS_EXPR:
7432 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7433 something else, make sure we add the register to the constant and
7434 then to the other thing. This case can occur during strength
7435 reduction and doing it this way will produce better code if the
7436 frame pointer or argument pointer is eliminated.
7438 fold-const.c will ensure that the constant is always in the inner
7439 PLUS_EXPR, so the only case we need to do anything about is if
7440 sp, ap, or fp is our second argument, in which case we must swap
7441 the innermost first argument and our second argument. */
7443 if (TREE_CODE (treeop0) == PLUS_EXPR
7444 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7445 && TREE_CODE (treeop1) == VAR_DECL
7446 && (DECL_RTL (treeop1) == frame_pointer_rtx
7447 || DECL_RTL (treeop1) == stack_pointer_rtx
7448 || DECL_RTL (treeop1) == arg_pointer_rtx))
7450 tree t = treeop1;
7452 treeop1 = TREE_OPERAND (treeop0, 0);
7453 TREE_OPERAND (treeop0, 0) = t;
7456 /* If the result is to be ptr_mode and we are adding an integer to
7457 something, we might be forming a constant. So try to use
7458 plus_constant. If it produces a sum and we can't accept it,
7459 use force_operand. This allows P = &ARR[const] to generate
7460 efficient code on machines where a SYMBOL_REF is not a valid
7461 address.
7463 If this is an EXPAND_SUM call, always return the sum. */
7464 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7465 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7467 if (modifier == EXPAND_STACK_PARM)
7468 target = 0;
7469 if (TREE_CODE (treeop0) == INTEGER_CST
7470 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7471 && TREE_CONSTANT (treeop1))
7473 rtx constant_part;
7475 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7476 EXPAND_SUM);
7477 /* Use immed_double_const to ensure that the constant is
7478 truncated according to the mode of OP1, then sign extended
7479 to a HOST_WIDE_INT. Using the constant directly can result
7480 in non-canonical RTL in a 64x32 cross compile. */
7481 constant_part
7482 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7483 (HOST_WIDE_INT) 0,
7484 TYPE_MODE (TREE_TYPE (treeop1)));
7485 op1 = plus_constant (op1, INTVAL (constant_part));
7486 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7487 op1 = force_operand (op1, target);
7488 return REDUCE_BIT_FIELD (op1);
7491 else if (TREE_CODE (treeop1) == INTEGER_CST
7492 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7493 && TREE_CONSTANT (treeop0))
7495 rtx constant_part;
7497 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7498 (modifier == EXPAND_INITIALIZER
7499 ? EXPAND_INITIALIZER : EXPAND_SUM));
7500 if (! CONSTANT_P (op0))
7502 op1 = expand_expr (treeop1, NULL_RTX,
7503 VOIDmode, modifier);
7504 /* Return a PLUS if modifier says it's OK. */
7505 if (modifier == EXPAND_SUM
7506 || modifier == EXPAND_INITIALIZER)
7507 return simplify_gen_binary (PLUS, mode, op0, op1);
7508 goto binop2;
7510 /* Use immed_double_const to ensure that the constant is
7511 truncated according to the mode of OP1, then sign extended
7512 to a HOST_WIDE_INT. Using the constant directly can result
7513 in non-canonical RTL in a 64x32 cross compile. */
7514 constant_part
7515 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7516 (HOST_WIDE_INT) 0,
7517 TYPE_MODE (TREE_TYPE (treeop0)));
7518 op0 = plus_constant (op0, INTVAL (constant_part));
7519 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7520 op0 = force_operand (op0, target);
7521 return REDUCE_BIT_FIELD (op0);
7525 /* Use TER to expand pointer addition of a negated value
7526 as pointer subtraction. */
7527 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7528 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7529 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7530 && TREE_CODE (treeop1) == SSA_NAME
7531 && TYPE_MODE (TREE_TYPE (treeop0))
7532 == TYPE_MODE (TREE_TYPE (treeop1)))
7534 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7535 if (def)
7537 treeop1 = gimple_assign_rhs1 (def);
7538 code = MINUS_EXPR;
7539 goto do_minus;
7543 /* No sense saving up arithmetic to be done
7544 if it's all in the wrong mode to form part of an address.
7545 And force_operand won't know whether to sign-extend or
7546 zero-extend. */
7547 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7548 || mode != ptr_mode)
7550 expand_operands (treeop0, treeop1,
7551 subtarget, &op0, &op1, EXPAND_NORMAL);
7552 if (op0 == const0_rtx)
7553 return op1;
7554 if (op1 == const0_rtx)
7555 return op0;
7556 goto binop2;
7559 expand_operands (treeop0, treeop1,
7560 subtarget, &op0, &op1, modifier);
7561 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7563 case MINUS_EXPR:
7564 do_minus:
7565 /* For initializers, we are allowed to return a MINUS of two
7566 symbolic constants. Here we handle all cases when both operands
7567 are constant. */
7568 /* Handle difference of two symbolic constants,
7569 for the sake of an initializer. */
7570 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7571 && really_constant_p (treeop0)
7572 && really_constant_p (treeop1))
7574 expand_operands (treeop0, treeop1,
7575 NULL_RTX, &op0, &op1, modifier);
7577 /* If the last operand is a CONST_INT, use plus_constant of
7578 the negated constant. Else make the MINUS. */
7579 if (CONST_INT_P (op1))
7580 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7581 else
7582 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7585 /* No sense saving up arithmetic to be done
7586 if it's all in the wrong mode to form part of an address.
7587 And force_operand won't know whether to sign-extend or
7588 zero-extend. */
7589 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7590 || mode != ptr_mode)
7591 goto binop;
7593 expand_operands (treeop0, treeop1,
7594 subtarget, &op0, &op1, modifier);
7596 /* Convert A - const to A + (-const). */
7597 if (CONST_INT_P (op1))
7599 op1 = negate_rtx (mode, op1);
7600 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7603 goto binop2;
7605 case WIDEN_MULT_PLUS_EXPR:
7606 case WIDEN_MULT_MINUS_EXPR:
7607 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7608 op2 = expand_normal (treeop2);
7609 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7610 target, unsignedp);
7611 return target;
7613 case WIDEN_MULT_EXPR:
7614 /* If first operand is constant, swap them.
7615 Thus the following special case checks need only
7616 check the second operand. */
7617 if (TREE_CODE (treeop0) == INTEGER_CST)
7619 tree t1 = treeop0;
7620 treeop0 = treeop1;
7621 treeop1 = t1;
7624 /* First, check if we have a multiplication of one signed and one
7625 unsigned operand. */
7626 if (TREE_CODE (treeop1) != INTEGER_CST
7627 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7628 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7630 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7631 this_optab = usmul_widen_optab;
7632 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7634 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7636 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7637 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7638 EXPAND_NORMAL);
7639 else
7640 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
7641 EXPAND_NORMAL);
7642 goto binop3;
7646 /* Check for a multiplication with matching signedness. */
7647 else if ((TREE_CODE (treeop1) == INTEGER_CST
7648 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7649 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7650 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7652 tree op0type = TREE_TYPE (treeop0);
7653 enum machine_mode innermode = TYPE_MODE (op0type);
7654 bool zextend_p = TYPE_UNSIGNED (op0type);
7655 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7656 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7658 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7659 && TREE_CODE (treeop0) != INTEGER_CST)
7661 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7663 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7664 EXPAND_NORMAL);
7665 temp = expand_widening_mult (mode, op0, op1, target,
7666 unsignedp, this_optab);
7667 return REDUCE_BIT_FIELD (temp);
7669 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7670 && innermode == word_mode)
7672 rtx htem, hipart;
7673 op0 = expand_normal (treeop0);
7674 if (TREE_CODE (treeop1) == INTEGER_CST)
7675 op1 = convert_modes (innermode, mode,
7676 expand_normal (treeop1), unsignedp);
7677 else
7678 op1 = expand_normal (treeop1);
7679 temp = expand_binop (mode, other_optab, op0, op1, target,
7680 unsignedp, OPTAB_LIB_WIDEN);
7681 hipart = gen_highpart (innermode, temp);
7682 htem = expand_mult_highpart_adjust (innermode, hipart,
7683 op0, op1, hipart,
7684 zextend_p);
7685 if (htem != hipart)
7686 emit_move_insn (hipart, htem);
7687 return REDUCE_BIT_FIELD (temp);
7691 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7692 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7693 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7694 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7696 case FMA_EXPR:
7698 optab opt = fma_optab;
7699 gimple def0, def2;
7701 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
7702 call. */
7703 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
7705 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
7706 tree call_expr;
7708 gcc_assert (fn != NULL_TREE);
7709 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
7710 return expand_builtin (call_expr, target, subtarget, mode, false);
7713 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7714 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7716 op0 = op2 = NULL;
7718 if (def0 && def2
7719 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7721 opt = fnms_optab;
7722 op0 = expand_normal (gimple_assign_rhs1 (def0));
7723 op2 = expand_normal (gimple_assign_rhs1 (def2));
7725 else if (def0
7726 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7728 opt = fnma_optab;
7729 op0 = expand_normal (gimple_assign_rhs1 (def0));
7731 else if (def2
7732 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7734 opt = fms_optab;
7735 op2 = expand_normal (gimple_assign_rhs1 (def2));
7738 if (op0 == NULL)
7739 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7740 if (op2 == NULL)
7741 op2 = expand_normal (treeop2);
7742 op1 = expand_normal (treeop1);
7744 return expand_ternary_op (TYPE_MODE (type), opt,
7745 op0, op1, op2, target, 0);
7748 case MULT_EXPR:
7749 /* If this is a fixed-point operation, then we cannot use the code
7750 below because "expand_mult" doesn't support sat/no-sat fixed-point
7751 multiplications. */
7752 if (ALL_FIXED_POINT_MODE_P (mode))
7753 goto binop;
7755 /* If first operand is constant, swap them.
7756 Thus the following special case checks need only
7757 check the second operand. */
7758 if (TREE_CODE (treeop0) == INTEGER_CST)
7760 tree t1 = treeop0;
7761 treeop0 = treeop1;
7762 treeop1 = t1;
7765 /* Attempt to return something suitable for generating an
7766 indexed address, for machines that support that. */
7768 if (modifier == EXPAND_SUM && mode == ptr_mode
7769 && host_integerp (treeop1, 0))
7771 tree exp1 = treeop1;
7773 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7774 EXPAND_SUM);
7776 if (!REG_P (op0))
7777 op0 = force_operand (op0, NULL_RTX);
7778 if (!REG_P (op0))
7779 op0 = copy_to_mode_reg (mode, op0);
7781 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7782 gen_int_mode (tree_low_cst (exp1, 0),
7783 TYPE_MODE (TREE_TYPE (exp1)))));
7786 if (modifier == EXPAND_STACK_PARM)
7787 target = 0;
7789 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7790 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7792 case TRUNC_DIV_EXPR:
7793 case FLOOR_DIV_EXPR:
7794 case CEIL_DIV_EXPR:
7795 case ROUND_DIV_EXPR:
7796 case EXACT_DIV_EXPR:
7797 /* If this is a fixed-point operation, then we cannot use the code
7798 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7799 divisions. */
7800 if (ALL_FIXED_POINT_MODE_P (mode))
7801 goto binop;
7803 if (modifier == EXPAND_STACK_PARM)
7804 target = 0;
7805 /* Possible optimization: compute the dividend with EXPAND_SUM
7806 then if the divisor is constant can optimize the case
7807 where some terms of the dividend have coeffs divisible by it. */
7808 expand_operands (treeop0, treeop1,
7809 subtarget, &op0, &op1, EXPAND_NORMAL);
7810 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7812 case RDIV_EXPR:
7813 goto binop;
7815 case TRUNC_MOD_EXPR:
7816 case FLOOR_MOD_EXPR:
7817 case CEIL_MOD_EXPR:
7818 case ROUND_MOD_EXPR:
7819 if (modifier == EXPAND_STACK_PARM)
7820 target = 0;
7821 expand_operands (treeop0, treeop1,
7822 subtarget, &op0, &op1, EXPAND_NORMAL);
7823 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7825 case FIXED_CONVERT_EXPR:
7826 op0 = expand_normal (treeop0);
7827 if (target == 0 || modifier == EXPAND_STACK_PARM)
7828 target = gen_reg_rtx (mode);
7830 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7831 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7832 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7833 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7834 else
7835 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7836 return target;
7838 case FIX_TRUNC_EXPR:
7839 op0 = expand_normal (treeop0);
7840 if (target == 0 || modifier == EXPAND_STACK_PARM)
7841 target = gen_reg_rtx (mode);
7842 expand_fix (target, op0, unsignedp);
7843 return target;
7845 case FLOAT_EXPR:
7846 op0 = expand_normal (treeop0);
7847 if (target == 0 || modifier == EXPAND_STACK_PARM)
7848 target = gen_reg_rtx (mode);
7849 /* expand_float can't figure out what to do if FROM has VOIDmode.
7850 So give it the correct mode. With -O, cse will optimize this. */
7851 if (GET_MODE (op0) == VOIDmode)
7852 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7853 op0);
7854 expand_float (target, op0,
7855 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7856 return target;
7858 case NEGATE_EXPR:
7859 op0 = expand_expr (treeop0, subtarget,
7860 VOIDmode, EXPAND_NORMAL);
7861 if (modifier == EXPAND_STACK_PARM)
7862 target = 0;
7863 temp = expand_unop (mode,
7864 optab_for_tree_code (NEGATE_EXPR, type,
7865 optab_default),
7866 op0, target, 0);
7867 gcc_assert (temp);
7868 return REDUCE_BIT_FIELD (temp);
7870 case ABS_EXPR:
7871 op0 = expand_expr (treeop0, subtarget,
7872 VOIDmode, EXPAND_NORMAL);
7873 if (modifier == EXPAND_STACK_PARM)
7874 target = 0;
7876 /* ABS_EXPR is not valid for complex arguments. */
7877 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7878 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7880 /* Unsigned abs is simply the operand. Testing here means we don't
7881 risk generating incorrect code below. */
7882 if (TYPE_UNSIGNED (type))
7883 return op0;
7885 return expand_abs (mode, op0, target, unsignedp,
7886 safe_from_p (target, treeop0, 1));
7888 case MAX_EXPR:
7889 case MIN_EXPR:
7890 target = original_target;
7891 if (target == 0
7892 || modifier == EXPAND_STACK_PARM
7893 || (MEM_P (target) && MEM_VOLATILE_P (target))
7894 || GET_MODE (target) != mode
7895 || (REG_P (target)
7896 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7897 target = gen_reg_rtx (mode);
7898 expand_operands (treeop0, treeop1,
7899 target, &op0, &op1, EXPAND_NORMAL);
7901 /* First try to do it with a special MIN or MAX instruction.
7902 If that does not win, use a conditional jump to select the proper
7903 value. */
7904 this_optab = optab_for_tree_code (code, type, optab_default);
7905 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7906 OPTAB_WIDEN);
7907 if (temp != 0)
7908 return temp;
7910 /* At this point, a MEM target is no longer useful; we will get better
7911 code without it. */
7913 if (! REG_P (target))
7914 target = gen_reg_rtx (mode);
7916 /* If op1 was placed in target, swap op0 and op1. */
7917 if (target != op0 && target == op1)
7919 temp = op0;
7920 op0 = op1;
7921 op1 = temp;
7924 /* We generate better code and avoid problems with op1 mentioning
7925 target by forcing op1 into a pseudo if it isn't a constant. */
7926 if (! CONSTANT_P (op1))
7927 op1 = force_reg (mode, op1);
7930 enum rtx_code comparison_code;
7931 rtx cmpop1 = op1;
7933 if (code == MAX_EXPR)
7934 comparison_code = unsignedp ? GEU : GE;
7935 else
7936 comparison_code = unsignedp ? LEU : LE;
7938 /* Canonicalize to comparisons against 0. */
7939 if (op1 == const1_rtx)
7941 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7942 or (a != 0 ? a : 1) for unsigned.
7943 For MIN we are safe converting (a <= 1 ? a : 1)
7944 into (a <= 0 ? a : 1) */
7945 cmpop1 = const0_rtx;
7946 if (code == MAX_EXPR)
7947 comparison_code = unsignedp ? NE : GT;
7949 if (op1 == constm1_rtx && !unsignedp)
7951 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7952 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7953 cmpop1 = const0_rtx;
7954 if (code == MIN_EXPR)
7955 comparison_code = LT;
7957 #ifdef HAVE_conditional_move
7958 /* Use a conditional move if possible. */
7959 if (can_conditionally_move_p (mode))
7961 rtx insn;
7963 /* ??? Same problem as in expmed.c: emit_conditional_move
7964 forces a stack adjustment via compare_from_rtx, and we
7965 lose the stack adjustment if the sequence we are about
7966 to create is discarded. */
7967 do_pending_stack_adjust ();
7969 start_sequence ();
7971 /* Try to emit the conditional move. */
7972 insn = emit_conditional_move (target, comparison_code,
7973 op0, cmpop1, mode,
7974 op0, op1, mode,
7975 unsignedp);
7977 /* If we could do the conditional move, emit the sequence,
7978 and return. */
7979 if (insn)
7981 rtx seq = get_insns ();
7982 end_sequence ();
7983 emit_insn (seq);
7984 return target;
7987 /* Otherwise discard the sequence and fall back to code with
7988 branches. */
7989 end_sequence ();
7991 #endif
7992 if (target != op0)
7993 emit_move_insn (target, op0);
7995 temp = gen_label_rtx ();
7996 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7997 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7998 -1);
8000 emit_move_insn (target, op1);
8001 emit_label (temp);
8002 return target;
8004 case BIT_NOT_EXPR:
8005 op0 = expand_expr (treeop0, subtarget,
8006 VOIDmode, EXPAND_NORMAL);
8007 if (modifier == EXPAND_STACK_PARM)
8008 target = 0;
8009 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8010 gcc_assert (temp);
8011 return temp;
8013 /* ??? Can optimize bitwise operations with one arg constant.
8014 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8015 and (a bitwise1 b) bitwise2 b (etc)
8016 but that is probably not worth while. */
8018 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8019 boolean values when we want in all cases to compute both of them. In
8020 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8021 as actual zero-or-1 values and then bitwise anding. In cases where
8022 there cannot be any side effects, better code would be made by
8023 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8024 how to recognize those cases. */
8026 case TRUTH_AND_EXPR:
8027 code = BIT_AND_EXPR;
8028 case BIT_AND_EXPR:
8029 goto binop;
8031 case TRUTH_OR_EXPR:
8032 code = BIT_IOR_EXPR;
8033 case BIT_IOR_EXPR:
8034 goto binop;
8036 case TRUTH_XOR_EXPR:
8037 code = BIT_XOR_EXPR;
8038 case BIT_XOR_EXPR:
8039 goto binop;
8041 case LROTATE_EXPR:
8042 case RROTATE_EXPR:
8043 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8044 || (GET_MODE_PRECISION (TYPE_MODE (type))
8045 == TYPE_PRECISION (type)));
8046 /* fall through */
8048 case LSHIFT_EXPR:
8049 case RSHIFT_EXPR:
8050 /* If this is a fixed-point operation, then we cannot use the code
8051 below because "expand_shift" doesn't support sat/no-sat fixed-point
8052 shifts. */
8053 if (ALL_FIXED_POINT_MODE_P (mode))
8054 goto binop;
8056 if (! safe_from_p (subtarget, treeop1, 1))
8057 subtarget = 0;
8058 if (modifier == EXPAND_STACK_PARM)
8059 target = 0;
8060 op0 = expand_expr (treeop0, subtarget,
8061 VOIDmode, EXPAND_NORMAL);
8062 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8063 unsignedp);
8064 if (code == LSHIFT_EXPR)
8065 temp = REDUCE_BIT_FIELD (temp);
8066 return temp;
8068 /* Could determine the answer when only additive constants differ. Also,
8069 the addition of one can be handled by changing the condition. */
8070 case LT_EXPR:
8071 case LE_EXPR:
8072 case GT_EXPR:
8073 case GE_EXPR:
8074 case EQ_EXPR:
8075 case NE_EXPR:
8076 case UNORDERED_EXPR:
8077 case ORDERED_EXPR:
8078 case UNLT_EXPR:
8079 case UNLE_EXPR:
8080 case UNGT_EXPR:
8081 case UNGE_EXPR:
8082 case UNEQ_EXPR:
8083 case LTGT_EXPR:
8084 temp = do_store_flag (ops,
8085 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8086 tmode != VOIDmode ? tmode : mode);
8087 if (temp)
8088 return temp;
8090 /* Use a compare and a jump for BLKmode comparisons, or for function
8091 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8093 if ((target == 0
8094 || modifier == EXPAND_STACK_PARM
8095 || ! safe_from_p (target, treeop0, 1)
8096 || ! safe_from_p (target, treeop1, 1)
8097 /* Make sure we don't have a hard reg (such as function's return
8098 value) live across basic blocks, if not optimizing. */
8099 || (!optimize && REG_P (target)
8100 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8101 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8103 emit_move_insn (target, const0_rtx);
8105 op1 = gen_label_rtx ();
8106 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8108 emit_move_insn (target, const1_rtx);
8110 emit_label (op1);
8111 return target;
8113 case TRUTH_NOT_EXPR:
8114 if (modifier == EXPAND_STACK_PARM)
8115 target = 0;
8116 op0 = expand_expr (treeop0, target,
8117 VOIDmode, EXPAND_NORMAL);
8118 /* The parser is careful to generate TRUTH_NOT_EXPR
8119 only with operands that are always zero or one. */
8120 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8121 target, 1, OPTAB_LIB_WIDEN);
8122 gcc_assert (temp);
8123 return temp;
8125 case COMPLEX_EXPR:
8126 /* Get the rtx code of the operands. */
8127 op0 = expand_normal (treeop0);
8128 op1 = expand_normal (treeop1);
8130 if (!target)
8131 target = gen_reg_rtx (TYPE_MODE (type));
8133 /* Move the real (op0) and imaginary (op1) parts to their location. */
8134 write_complex_part (target, op0, false);
8135 write_complex_part (target, op1, true);
8137 return target;
8139 case WIDEN_SUM_EXPR:
8141 tree oprnd0 = treeop0;
8142 tree oprnd1 = treeop1;
8144 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8145 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8146 target, unsignedp);
8147 return target;
8150 case REDUC_MAX_EXPR:
8151 case REDUC_MIN_EXPR:
8152 case REDUC_PLUS_EXPR:
8154 op0 = expand_normal (treeop0);
8155 this_optab = optab_for_tree_code (code, type, optab_default);
8156 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8157 gcc_assert (temp);
8158 return temp;
8161 case VEC_EXTRACT_EVEN_EXPR:
8162 case VEC_EXTRACT_ODD_EXPR:
8164 expand_operands (treeop0, treeop1,
8165 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8166 this_optab = optab_for_tree_code (code, type, optab_default);
8167 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8168 OPTAB_WIDEN);
8169 gcc_assert (temp);
8170 return temp;
8173 case VEC_INTERLEAVE_HIGH_EXPR:
8174 case VEC_INTERLEAVE_LOW_EXPR:
8176 expand_operands (treeop0, treeop1,
8177 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8178 this_optab = optab_for_tree_code (code, type, optab_default);
8179 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8180 OPTAB_WIDEN);
8181 gcc_assert (temp);
8182 return temp;
8185 case VEC_LSHIFT_EXPR:
8186 case VEC_RSHIFT_EXPR:
8188 target = expand_vec_shift_expr (ops, target);
8189 return target;
8192 case VEC_UNPACK_HI_EXPR:
8193 case VEC_UNPACK_LO_EXPR:
8195 op0 = expand_normal (treeop0);
8196 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8197 target, unsignedp);
8198 gcc_assert (temp);
8199 return temp;
8202 case VEC_UNPACK_FLOAT_HI_EXPR:
8203 case VEC_UNPACK_FLOAT_LO_EXPR:
8205 op0 = expand_normal (treeop0);
8206 /* The signedness is determined from input operand. */
8207 temp = expand_widen_pattern_expr
8208 (ops, op0, NULL_RTX, NULL_RTX,
8209 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8211 gcc_assert (temp);
8212 return temp;
8215 case VEC_WIDEN_MULT_HI_EXPR:
8216 case VEC_WIDEN_MULT_LO_EXPR:
8218 tree oprnd0 = treeop0;
8219 tree oprnd1 = treeop1;
8221 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8222 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8223 target, unsignedp);
8224 gcc_assert (target);
8225 return target;
8228 case VEC_PACK_TRUNC_EXPR:
8229 case VEC_PACK_SAT_EXPR:
8230 case VEC_PACK_FIX_TRUNC_EXPR:
8231 mode = TYPE_MODE (TREE_TYPE (treeop0));
8232 goto binop;
8234 case DOT_PROD_EXPR:
8236 tree oprnd0 = treeop0;
8237 tree oprnd1 = treeop1;
8238 tree oprnd2 = treeop2;
8239 rtx op2;
8241 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8242 op2 = expand_normal (oprnd2);
8243 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8244 target, unsignedp);
8245 return target;
8248 case REALIGN_LOAD_EXPR:
8250 tree oprnd0 = treeop0;
8251 tree oprnd1 = treeop1;
8252 tree oprnd2 = treeop2;
8253 rtx op2;
8255 this_optab = optab_for_tree_code (code, type, optab_default);
8256 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8257 op2 = expand_normal (oprnd2);
8258 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8259 target, unsignedp);
8260 gcc_assert (temp);
8261 return temp;
8264 default:
8265 gcc_unreachable ();
8268 /* Here to do an ordinary binary operator. */
8269 binop:
8270 expand_operands (treeop0, treeop1,
8271 subtarget, &op0, &op1, EXPAND_NORMAL);
8272 binop2:
8273 this_optab = optab_for_tree_code (code, type, optab_default);
8274 binop3:
8275 if (modifier == EXPAND_STACK_PARM)
8276 target = 0;
8277 temp = expand_binop (mode, this_optab, op0, op1, target,
8278 unsignedp, OPTAB_LIB_WIDEN);
8279 gcc_assert (temp);
8280 return REDUCE_BIT_FIELD (temp);
8282 #undef REDUCE_BIT_FIELD
8285 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8286 enum expand_modifier modifier, rtx *alt_rtl)
8288 rtx op0, op1, temp, decl_rtl;
8289 tree type;
8290 int unsignedp;
8291 enum machine_mode mode;
8292 enum tree_code code = TREE_CODE (exp);
8293 rtx subtarget, original_target;
8294 int ignore;
8295 tree context;
8296 bool reduce_bit_field;
8297 location_t loc = EXPR_LOCATION (exp);
8298 struct separate_ops ops;
8299 tree treeop0, treeop1, treeop2;
8300 tree ssa_name = NULL_TREE;
8301 gimple g;
8303 type = TREE_TYPE (exp);
8304 mode = TYPE_MODE (type);
8305 unsignedp = TYPE_UNSIGNED (type);
8307 treeop0 = treeop1 = treeop2 = NULL_TREE;
8308 if (!VL_EXP_CLASS_P (exp))
8309 switch (TREE_CODE_LENGTH (code))
8311 default:
8312 case 3: treeop2 = TREE_OPERAND (exp, 2);
8313 case 2: treeop1 = TREE_OPERAND (exp, 1);
8314 case 1: treeop0 = TREE_OPERAND (exp, 0);
8315 case 0: break;
8317 ops.code = code;
8318 ops.type = type;
8319 ops.op0 = treeop0;
8320 ops.op1 = treeop1;
8321 ops.op2 = treeop2;
8322 ops.location = loc;
8324 ignore = (target == const0_rtx
8325 || ((CONVERT_EXPR_CODE_P (code)
8326 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8327 && TREE_CODE (type) == VOID_TYPE));
8329 /* An operation in what may be a bit-field type needs the
8330 result to be reduced to the precision of the bit-field type,
8331 which is narrower than that of the type's mode. */
8332 reduce_bit_field = (!ignore
8333 && TREE_CODE (type) == INTEGER_TYPE
8334 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8336 /* If we are going to ignore this result, we need only do something
8337 if there is a side-effect somewhere in the expression. If there
8338 is, short-circuit the most common cases here. Note that we must
8339 not call expand_expr with anything but const0_rtx in case this
8340 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8342 if (ignore)
8344 if (! TREE_SIDE_EFFECTS (exp))
8345 return const0_rtx;
8347 /* Ensure we reference a volatile object even if value is ignored, but
8348 don't do this if all we are doing is taking its address. */
8349 if (TREE_THIS_VOLATILE (exp)
8350 && TREE_CODE (exp) != FUNCTION_DECL
8351 && mode != VOIDmode && mode != BLKmode
8352 && modifier != EXPAND_CONST_ADDRESS)
8354 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8355 if (MEM_P (temp))
8356 copy_to_reg (temp);
8357 return const0_rtx;
8360 if (TREE_CODE_CLASS (code) == tcc_unary
8361 || code == COMPONENT_REF || code == INDIRECT_REF)
8362 return expand_expr (treeop0, const0_rtx, VOIDmode,
8363 modifier);
8365 else if (TREE_CODE_CLASS (code) == tcc_binary
8366 || TREE_CODE_CLASS (code) == tcc_comparison
8367 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8369 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8370 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8371 return const0_rtx;
8373 else if (code == BIT_FIELD_REF)
8375 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8376 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8377 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8378 return const0_rtx;
8381 target = 0;
8384 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8385 target = 0;
8387 /* Use subtarget as the target for operand 0 of a binary operation. */
8388 subtarget = get_subtarget (target);
8389 original_target = target;
8391 switch (code)
8393 case LABEL_DECL:
8395 tree function = decl_function_context (exp);
8397 temp = label_rtx (exp);
8398 temp = gen_rtx_LABEL_REF (Pmode, temp);
8400 if (function != current_function_decl
8401 && function != 0)
8402 LABEL_REF_NONLOCAL_P (temp) = 1;
8404 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8405 return temp;
8408 case SSA_NAME:
8409 /* ??? ivopts calls expander, without any preparation from
8410 out-of-ssa. So fake instructions as if this was an access to the
8411 base variable. This unnecessarily allocates a pseudo, see how we can
8412 reuse it, if partition base vars have it set already. */
8413 if (!currently_expanding_to_rtl)
8414 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8415 NULL);
8417 g = get_gimple_for_ssa_name (exp);
8418 /* For EXPAND_INITIALIZER try harder to get something simpler. */
8419 if (g == NULL
8420 && modifier == EXPAND_INITIALIZER
8421 && !SSA_NAME_IS_DEFAULT_DEF (exp)
8422 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
8423 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
8424 g = SSA_NAME_DEF_STMT (exp);
8425 if (g)
8426 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8427 modifier, NULL);
8429 ssa_name = exp;
8430 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8431 exp = SSA_NAME_VAR (ssa_name);
8432 goto expand_decl_rtl;
8434 case PARM_DECL:
8435 case VAR_DECL:
8436 /* If a static var's type was incomplete when the decl was written,
8437 but the type is complete now, lay out the decl now. */
8438 if (DECL_SIZE (exp) == 0
8439 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8440 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8441 layout_decl (exp, 0);
8443 /* ... fall through ... */
8445 case FUNCTION_DECL:
8446 case RESULT_DECL:
8447 decl_rtl = DECL_RTL (exp);
8448 expand_decl_rtl:
8449 gcc_assert (decl_rtl);
8450 decl_rtl = copy_rtx (decl_rtl);
8451 /* Record writes to register variables. */
8452 if (modifier == EXPAND_WRITE
8453 && REG_P (decl_rtl)
8454 && HARD_REGISTER_P (decl_rtl))
8455 add_to_hard_reg_set (&crtl->asm_clobbers,
8456 GET_MODE (decl_rtl), REGNO (decl_rtl));
8458 /* Ensure variable marked as used even if it doesn't go through
8459 a parser. If it hasn't be used yet, write out an external
8460 definition. */
8461 if (! TREE_USED (exp))
8463 assemble_external (exp);
8464 TREE_USED (exp) = 1;
8467 /* Show we haven't gotten RTL for this yet. */
8468 temp = 0;
8470 /* Variables inherited from containing functions should have
8471 been lowered by this point. */
8472 context = decl_function_context (exp);
8473 gcc_assert (!context
8474 || context == current_function_decl
8475 || TREE_STATIC (exp)
8476 || DECL_EXTERNAL (exp)
8477 /* ??? C++ creates functions that are not TREE_STATIC. */
8478 || TREE_CODE (exp) == FUNCTION_DECL);
8480 /* This is the case of an array whose size is to be determined
8481 from its initializer, while the initializer is still being parsed.
8482 See expand_decl. */
8484 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8485 temp = validize_mem (decl_rtl);
8487 /* If DECL_RTL is memory, we are in the normal case and the
8488 address is not valid, get the address into a register. */
8490 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8492 if (alt_rtl)
8493 *alt_rtl = decl_rtl;
8494 decl_rtl = use_anchored_address (decl_rtl);
8495 if (modifier != EXPAND_CONST_ADDRESS
8496 && modifier != EXPAND_SUM
8497 && !memory_address_addr_space_p (DECL_MODE (exp),
8498 XEXP (decl_rtl, 0),
8499 MEM_ADDR_SPACE (decl_rtl)))
8500 temp = replace_equiv_address (decl_rtl,
8501 copy_rtx (XEXP (decl_rtl, 0)));
8504 /* If we got something, return it. But first, set the alignment
8505 if the address is a register. */
8506 if (temp != 0)
8508 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8509 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8511 return temp;
8514 /* If the mode of DECL_RTL does not match that of the decl, it
8515 must be a promoted value. We return a SUBREG of the wanted mode,
8516 but mark it so that we know that it was already extended. */
8517 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8519 enum machine_mode pmode;
8521 /* Get the signedness to be used for this variable. Ensure we get
8522 the same mode we got when the variable was declared. */
8523 if (code == SSA_NAME
8524 && (g = SSA_NAME_DEF_STMT (ssa_name))
8525 && gimple_code (g) == GIMPLE_CALL)
8527 gcc_assert (!gimple_call_internal_p (g));
8528 pmode = promote_function_mode (type, mode, &unsignedp,
8529 gimple_call_fntype (g),
8532 else
8533 pmode = promote_decl_mode (exp, &unsignedp);
8534 gcc_assert (GET_MODE (decl_rtl) == pmode);
8536 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8537 SUBREG_PROMOTED_VAR_P (temp) = 1;
8538 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8539 return temp;
8542 return decl_rtl;
8544 case INTEGER_CST:
8545 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8546 TREE_INT_CST_HIGH (exp), mode);
8548 return temp;
8550 case VECTOR_CST:
8552 tree tmp = NULL_TREE;
8553 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8554 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8555 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8556 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8557 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8558 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8559 return const_vector_from_tree (exp);
8560 if (GET_MODE_CLASS (mode) == MODE_INT)
8562 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8563 if (type_for_mode)
8564 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8566 if (!tmp)
8567 tmp = build_constructor_from_list (type,
8568 TREE_VECTOR_CST_ELTS (exp));
8569 return expand_expr (tmp, ignore ? const0_rtx : target,
8570 tmode, modifier);
8573 case CONST_DECL:
8574 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8576 case REAL_CST:
8577 /* If optimized, generate immediate CONST_DOUBLE
8578 which will be turned into memory by reload if necessary.
8580 We used to force a register so that loop.c could see it. But
8581 this does not allow gen_* patterns to perform optimizations with
8582 the constants. It also produces two insns in cases like "x = 1.0;".
8583 On most machines, floating-point constants are not permitted in
8584 many insns, so we'd end up copying it to a register in any case.
8586 Now, we do the copying in expand_binop, if appropriate. */
8587 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8588 TYPE_MODE (TREE_TYPE (exp)));
8590 case FIXED_CST:
8591 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8592 TYPE_MODE (TREE_TYPE (exp)));
8594 case COMPLEX_CST:
8595 /* Handle evaluating a complex constant in a CONCAT target. */
8596 if (original_target && GET_CODE (original_target) == CONCAT)
8598 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8599 rtx rtarg, itarg;
8601 rtarg = XEXP (original_target, 0);
8602 itarg = XEXP (original_target, 1);
8604 /* Move the real and imaginary parts separately. */
8605 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8606 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8608 if (op0 != rtarg)
8609 emit_move_insn (rtarg, op0);
8610 if (op1 != itarg)
8611 emit_move_insn (itarg, op1);
8613 return original_target;
8616 /* ... fall through ... */
8618 case STRING_CST:
8619 temp = expand_expr_constant (exp, 1, modifier);
8621 /* temp contains a constant address.
8622 On RISC machines where a constant address isn't valid,
8623 make some insns to get that address into a register. */
8624 if (modifier != EXPAND_CONST_ADDRESS
8625 && modifier != EXPAND_INITIALIZER
8626 && modifier != EXPAND_SUM
8627 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8628 MEM_ADDR_SPACE (temp)))
8629 return replace_equiv_address (temp,
8630 copy_rtx (XEXP (temp, 0)));
8631 return temp;
8633 case SAVE_EXPR:
8635 tree val = treeop0;
8636 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8638 if (!SAVE_EXPR_RESOLVED_P (exp))
8640 /* We can indeed still hit this case, typically via builtin
8641 expanders calling save_expr immediately before expanding
8642 something. Assume this means that we only have to deal
8643 with non-BLKmode values. */
8644 gcc_assert (GET_MODE (ret) != BLKmode);
8646 val = build_decl (EXPR_LOCATION (exp),
8647 VAR_DECL, NULL, TREE_TYPE (exp));
8648 DECL_ARTIFICIAL (val) = 1;
8649 DECL_IGNORED_P (val) = 1;
8650 treeop0 = val;
8651 TREE_OPERAND (exp, 0) = treeop0;
8652 SAVE_EXPR_RESOLVED_P (exp) = 1;
8654 if (!CONSTANT_P (ret))
8655 ret = copy_to_reg (ret);
8656 SET_DECL_RTL (val, ret);
8659 return ret;
8663 case CONSTRUCTOR:
8664 /* If we don't need the result, just ensure we evaluate any
8665 subexpressions. */
8666 if (ignore)
8668 unsigned HOST_WIDE_INT idx;
8669 tree value;
8671 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8672 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8674 return const0_rtx;
8677 return expand_constructor (exp, target, modifier, false);
8679 case TARGET_MEM_REF:
8681 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8682 struct mem_address addr;
8683 int icode, align;
8685 get_address_description (exp, &addr);
8686 op0 = addr_for_mem_ref (&addr, as, true);
8687 op0 = memory_address_addr_space (mode, op0, as);
8688 temp = gen_rtx_MEM (mode, op0);
8689 set_mem_attributes (temp, exp, 0);
8690 set_mem_addr_space (temp, as);
8691 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8692 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8693 if (mode != BLKmode
8694 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8695 /* If the target does not have special handling for unaligned
8696 loads of mode then it can use regular moves for them. */
8697 && ((icode = optab_handler (movmisalign_optab, mode))
8698 != CODE_FOR_nothing))
8700 rtx reg, insn;
8702 /* We've already validated the memory, and we're creating a
8703 new pseudo destination. The predicates really can't fail. */
8704 reg = gen_reg_rtx (mode);
8706 /* Nor can the insn generator. */
8707 insn = GEN_FCN (icode) (reg, temp);
8708 gcc_assert (insn != NULL_RTX);
8709 emit_insn (insn);
8711 return reg;
8713 return temp;
8716 case MEM_REF:
8718 addr_space_t as
8719 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8720 enum machine_mode address_mode;
8721 tree base = TREE_OPERAND (exp, 0);
8722 gimple def_stmt;
8723 int icode, align;
8724 /* Handle expansion of non-aliased memory with non-BLKmode. That
8725 might end up in a register. */
8726 if (TREE_CODE (base) == ADDR_EXPR)
8728 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8729 tree bit_offset;
8730 base = TREE_OPERAND (base, 0);
8731 if (!DECL_P (base))
8733 HOST_WIDE_INT off;
8734 base = get_addr_base_and_unit_offset (base, &off);
8735 gcc_assert (base);
8736 offset += off;
8738 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8739 decl we must use bitfield operations. */
8740 if (DECL_P (base)
8741 && !TREE_ADDRESSABLE (base)
8742 && DECL_MODE (base) != BLKmode
8743 && DECL_RTL_SET_P (base)
8744 && !MEM_P (DECL_RTL (base)))
8746 tree bftype;
8747 if (offset == 0
8748 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8749 && (GET_MODE_BITSIZE (DECL_MODE (base))
8750 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8751 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8752 TREE_TYPE (exp), base),
8753 target, tmode, modifier);
8754 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8755 bftype = TREE_TYPE (base);
8756 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8757 bftype = TREE_TYPE (exp);
8758 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8759 base,
8760 TYPE_SIZE (TREE_TYPE (exp)),
8761 bit_offset),
8762 target, tmode, modifier);
8765 address_mode = targetm.addr_space.address_mode (as);
8766 base = TREE_OPERAND (exp, 0);
8767 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8769 tree mask = gimple_assign_rhs2 (def_stmt);
8770 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8771 gimple_assign_rhs1 (def_stmt), mask);
8772 TREE_OPERAND (exp, 0) = base;
8774 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8775 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8776 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8777 op0 = memory_address_addr_space (address_mode, op0, as);
8778 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8780 rtx off
8781 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8782 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8784 op0 = memory_address_addr_space (mode, op0, as);
8785 temp = gen_rtx_MEM (mode, op0);
8786 set_mem_attributes (temp, exp, 0);
8787 set_mem_addr_space (temp, as);
8788 if (TREE_THIS_VOLATILE (exp))
8789 MEM_VOLATILE_P (temp) = 1;
8790 if (mode != BLKmode
8791 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8792 /* If the target does not have special handling for unaligned
8793 loads of mode then it can use regular moves for them. */
8794 && ((icode = optab_handler (movmisalign_optab, mode))
8795 != CODE_FOR_nothing))
8797 rtx reg, insn;
8799 /* We've already validated the memory, and we're creating a
8800 new pseudo destination. The predicates really can't fail. */
8801 reg = gen_reg_rtx (mode);
8803 /* Nor can the insn generator. */
8804 insn = GEN_FCN (icode) (reg, temp);
8805 emit_insn (insn);
8807 return reg;
8809 return temp;
8812 case ARRAY_REF:
8815 tree array = treeop0;
8816 tree index = treeop1;
8818 /* Fold an expression like: "foo"[2].
8819 This is not done in fold so it won't happen inside &.
8820 Don't fold if this is for wide characters since it's too
8821 difficult to do correctly and this is a very rare case. */
8823 if (modifier != EXPAND_CONST_ADDRESS
8824 && modifier != EXPAND_INITIALIZER
8825 && modifier != EXPAND_MEMORY)
8827 tree t = fold_read_from_constant_string (exp);
8829 if (t)
8830 return expand_expr (t, target, tmode, modifier);
8833 /* If this is a constant index into a constant array,
8834 just get the value from the array. Handle both the cases when
8835 we have an explicit constructor and when our operand is a variable
8836 that was declared const. */
8838 if (modifier != EXPAND_CONST_ADDRESS
8839 && modifier != EXPAND_INITIALIZER
8840 && modifier != EXPAND_MEMORY
8841 && TREE_CODE (array) == CONSTRUCTOR
8842 && ! TREE_SIDE_EFFECTS (array)
8843 && TREE_CODE (index) == INTEGER_CST)
8845 unsigned HOST_WIDE_INT ix;
8846 tree field, value;
8848 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8849 field, value)
8850 if (tree_int_cst_equal (field, index))
8852 if (!TREE_SIDE_EFFECTS (value))
8853 return expand_expr (fold (value), target, tmode, modifier);
8854 break;
8858 else if (optimize >= 1
8859 && modifier != EXPAND_CONST_ADDRESS
8860 && modifier != EXPAND_INITIALIZER
8861 && modifier != EXPAND_MEMORY
8862 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8863 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8864 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8865 && const_value_known_p (array))
8867 if (TREE_CODE (index) == INTEGER_CST)
8869 tree init = DECL_INITIAL (array);
8871 if (TREE_CODE (init) == CONSTRUCTOR)
8873 unsigned HOST_WIDE_INT ix;
8874 tree field, value;
8876 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8877 field, value)
8878 if (tree_int_cst_equal (field, index))
8880 if (TREE_SIDE_EFFECTS (value))
8881 break;
8883 if (TREE_CODE (value) == CONSTRUCTOR)
8885 /* If VALUE is a CONSTRUCTOR, this
8886 optimization is only useful if
8887 this doesn't store the CONSTRUCTOR
8888 into memory. If it does, it is more
8889 efficient to just load the data from
8890 the array directly. */
8891 rtx ret = expand_constructor (value, target,
8892 modifier, true);
8893 if (ret == NULL_RTX)
8894 break;
8897 return expand_expr (fold (value), target, tmode,
8898 modifier);
8901 else if(TREE_CODE (init) == STRING_CST)
8903 tree index1 = index;
8904 tree low_bound = array_ref_low_bound (exp);
8905 index1 = fold_convert_loc (loc, sizetype,
8906 treeop1);
8908 /* Optimize the special-case of a zero lower bound.
8910 We convert the low_bound to sizetype to avoid some problems
8911 with constant folding. (E.g. suppose the lower bound is 1,
8912 and its mode is QI. Without the conversion,l (ARRAY
8913 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8914 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8916 if (! integer_zerop (low_bound))
8917 index1 = size_diffop_loc (loc, index1,
8918 fold_convert_loc (loc, sizetype,
8919 low_bound));
8921 if (0 > compare_tree_int (index1,
8922 TREE_STRING_LENGTH (init)))
8924 tree type = TREE_TYPE (TREE_TYPE (init));
8925 enum machine_mode mode = TYPE_MODE (type);
8927 if (GET_MODE_CLASS (mode) == MODE_INT
8928 && GET_MODE_SIZE (mode) == 1)
8929 return gen_int_mode (TREE_STRING_POINTER (init)
8930 [TREE_INT_CST_LOW (index1)],
8931 mode);
8937 goto normal_inner_ref;
8939 case COMPONENT_REF:
8940 /* If the operand is a CONSTRUCTOR, we can just extract the
8941 appropriate field if it is present. */
8942 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8944 unsigned HOST_WIDE_INT idx;
8945 tree field, value;
8947 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8948 idx, field, value)
8949 if (field == treeop1
8950 /* We can normally use the value of the field in the
8951 CONSTRUCTOR. However, if this is a bitfield in
8952 an integral mode that we can fit in a HOST_WIDE_INT,
8953 we must mask only the number of bits in the bitfield,
8954 since this is done implicitly by the constructor. If
8955 the bitfield does not meet either of those conditions,
8956 we can't do this optimization. */
8957 && (! DECL_BIT_FIELD (field)
8958 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8959 && (GET_MODE_BITSIZE (DECL_MODE (field))
8960 <= HOST_BITS_PER_WIDE_INT))))
8962 if (DECL_BIT_FIELD (field)
8963 && modifier == EXPAND_STACK_PARM)
8964 target = 0;
8965 op0 = expand_expr (value, target, tmode, modifier);
8966 if (DECL_BIT_FIELD (field))
8968 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8969 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8971 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8973 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8974 op0 = expand_and (imode, op0, op1, target);
8976 else
8978 int count = GET_MODE_BITSIZE (imode) - bitsize;
8980 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8981 target, 0);
8982 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8983 target, 0);
8987 return op0;
8990 goto normal_inner_ref;
8992 case BIT_FIELD_REF:
8993 case ARRAY_RANGE_REF:
8994 normal_inner_ref:
8996 enum machine_mode mode1, mode2;
8997 HOST_WIDE_INT bitsize, bitpos;
8998 tree offset;
8999 int volatilep = 0, must_force_mem;
9000 bool packedp = false;
9001 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
9002 &mode1, &unsignedp, &volatilep, true);
9003 rtx orig_op0, memloc;
9005 /* If we got back the original object, something is wrong. Perhaps
9006 we are evaluating an expression too early. In any event, don't
9007 infinitely recurse. */
9008 gcc_assert (tem != exp);
9010 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
9011 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
9012 && DECL_PACKED (TREE_OPERAND (exp, 1))))
9013 packedp = true;
9015 /* If TEM's type is a union of variable size, pass TARGET to the inner
9016 computation, since it will need a temporary and TARGET is known
9017 to have to do. This occurs in unchecked conversion in Ada. */
9018 orig_op0 = op0
9019 = expand_expr (tem,
9020 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9021 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9022 != INTEGER_CST)
9023 && modifier != EXPAND_STACK_PARM
9024 ? target : NULL_RTX),
9025 VOIDmode,
9026 (modifier == EXPAND_INITIALIZER
9027 || modifier == EXPAND_CONST_ADDRESS
9028 || modifier == EXPAND_STACK_PARM)
9029 ? modifier : EXPAND_NORMAL);
9032 /* If the bitfield is volatile, we want to access it in the
9033 field's mode, not the computed mode.
9034 If a MEM has VOIDmode (external with incomplete type),
9035 use BLKmode for it instead. */
9036 if (MEM_P (op0))
9038 if (volatilep && flag_strict_volatile_bitfields > 0)
9039 op0 = adjust_address (op0, mode1, 0);
9040 else if (GET_MODE (op0) == VOIDmode)
9041 op0 = adjust_address (op0, BLKmode, 0);
9044 mode2
9045 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9047 /* If we have either an offset, a BLKmode result, or a reference
9048 outside the underlying object, we must force it to memory.
9049 Such a case can occur in Ada if we have unchecked conversion
9050 of an expression from a scalar type to an aggregate type or
9051 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9052 passed a partially uninitialized object or a view-conversion
9053 to a larger size. */
9054 must_force_mem = (offset
9055 || mode1 == BLKmode
9056 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9058 /* Handle CONCAT first. */
9059 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9061 if (bitpos == 0
9062 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9063 return op0;
9064 if (bitpos == 0
9065 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9066 && bitsize)
9068 op0 = XEXP (op0, 0);
9069 mode2 = GET_MODE (op0);
9071 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9072 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9073 && bitpos
9074 && bitsize)
9076 op0 = XEXP (op0, 1);
9077 bitpos = 0;
9078 mode2 = GET_MODE (op0);
9080 else
9081 /* Otherwise force into memory. */
9082 must_force_mem = 1;
9085 /* If this is a constant, put it in a register if it is a legitimate
9086 constant and we don't need a memory reference. */
9087 if (CONSTANT_P (op0)
9088 && mode2 != BLKmode
9089 && targetm.legitimate_constant_p (mode2, op0)
9090 && !must_force_mem)
9091 op0 = force_reg (mode2, op0);
9093 /* Otherwise, if this is a constant, try to force it to the constant
9094 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9095 is a legitimate constant. */
9096 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9097 op0 = validize_mem (memloc);
9099 /* Otherwise, if this is a constant or the object is not in memory
9100 and need be, put it there. */
9101 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9103 tree nt = build_qualified_type (TREE_TYPE (tem),
9104 (TYPE_QUALS (TREE_TYPE (tem))
9105 | TYPE_QUAL_CONST));
9106 memloc = assign_temp (nt, 1, 1, 1);
9107 emit_move_insn (memloc, op0);
9108 op0 = memloc;
9111 if (offset)
9113 enum machine_mode address_mode;
9114 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9115 EXPAND_SUM);
9117 gcc_assert (MEM_P (op0));
9119 address_mode
9120 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9121 if (GET_MODE (offset_rtx) != address_mode)
9122 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9124 if (GET_MODE (op0) == BLKmode
9125 /* A constant address in OP0 can have VOIDmode, we must
9126 not try to call force_reg in that case. */
9127 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9128 && bitsize != 0
9129 && (bitpos % bitsize) == 0
9130 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9131 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9133 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9134 bitpos = 0;
9137 op0 = offset_address (op0, offset_rtx,
9138 highest_pow2_factor (offset));
9141 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9142 record its alignment as BIGGEST_ALIGNMENT. */
9143 if (MEM_P (op0) && bitpos == 0 && offset != 0
9144 && is_aligning_offset (offset, tem))
9145 set_mem_align (op0, BIGGEST_ALIGNMENT);
9147 /* Don't forget about volatility even if this is a bitfield. */
9148 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9150 if (op0 == orig_op0)
9151 op0 = copy_rtx (op0);
9153 MEM_VOLATILE_P (op0) = 1;
9156 /* In cases where an aligned union has an unaligned object
9157 as a field, we might be extracting a BLKmode value from
9158 an integer-mode (e.g., SImode) object. Handle this case
9159 by doing the extract into an object as wide as the field
9160 (which we know to be the width of a basic mode), then
9161 storing into memory, and changing the mode to BLKmode. */
9162 if (mode1 == VOIDmode
9163 || REG_P (op0) || GET_CODE (op0) == SUBREG
9164 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9165 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9166 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9167 && modifier != EXPAND_CONST_ADDRESS
9168 && modifier != EXPAND_INITIALIZER)
9169 /* If the field is volatile, we always want an aligned
9170 access. Only do this if the access is not already naturally
9171 aligned, otherwise "normal" (non-bitfield) volatile fields
9172 become non-addressable. */
9173 || (volatilep && flag_strict_volatile_bitfields > 0
9174 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
9175 /* If the field isn't aligned enough to fetch as a memref,
9176 fetch it as a bit field. */
9177 || (mode1 != BLKmode
9178 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9179 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9180 || (MEM_P (op0)
9181 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9182 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9183 && ((modifier == EXPAND_CONST_ADDRESS
9184 || modifier == EXPAND_INITIALIZER)
9185 ? STRICT_ALIGNMENT
9186 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9187 || (bitpos % BITS_PER_UNIT != 0)))
9188 /* If the type and the field are a constant size and the
9189 size of the type isn't the same size as the bitfield,
9190 we must use bitfield operations. */
9191 || (bitsize >= 0
9192 && TYPE_SIZE (TREE_TYPE (exp))
9193 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9194 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9195 bitsize)))
9197 enum machine_mode ext_mode = mode;
9199 if (ext_mode == BLKmode
9200 && ! (target != 0 && MEM_P (op0)
9201 && MEM_P (target)
9202 && bitpos % BITS_PER_UNIT == 0))
9203 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9205 if (ext_mode == BLKmode)
9207 if (target == 0)
9208 target = assign_temp (type, 0, 1, 1);
9210 if (bitsize == 0)
9211 return target;
9213 /* In this case, BITPOS must start at a byte boundary and
9214 TARGET, if specified, must be a MEM. */
9215 gcc_assert (MEM_P (op0)
9216 && (!target || MEM_P (target))
9217 && !(bitpos % BITS_PER_UNIT));
9219 emit_block_move (target,
9220 adjust_address (op0, VOIDmode,
9221 bitpos / BITS_PER_UNIT),
9222 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9223 / BITS_PER_UNIT),
9224 (modifier == EXPAND_STACK_PARM
9225 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9227 return target;
9230 op0 = validize_mem (op0);
9232 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9233 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9235 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9236 (modifier == EXPAND_STACK_PARM
9237 ? NULL_RTX : target),
9238 ext_mode, ext_mode);
9240 /* If the result is a record type and BITSIZE is narrower than
9241 the mode of OP0, an integral mode, and this is a big endian
9242 machine, we must put the field into the high-order bits. */
9243 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9244 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9245 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9246 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9247 GET_MODE_BITSIZE (GET_MODE (op0))
9248 - bitsize, op0, 1);
9250 /* If the result type is BLKmode, store the data into a temporary
9251 of the appropriate type, but with the mode corresponding to the
9252 mode for the data we have (op0's mode). It's tempting to make
9253 this a constant type, since we know it's only being stored once,
9254 but that can cause problems if we are taking the address of this
9255 COMPONENT_REF because the MEM of any reference via that address
9256 will have flags corresponding to the type, which will not
9257 necessarily be constant. */
9258 if (mode == BLKmode)
9260 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9261 rtx new_rtx;
9263 /* If the reference doesn't use the alias set of its type,
9264 we cannot create the temporary using that type. */
9265 if (component_uses_parent_alias_set (exp))
9267 new_rtx = assign_stack_local (ext_mode, size, 0);
9268 set_mem_alias_set (new_rtx, get_alias_set (exp));
9270 else
9271 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9273 emit_move_insn (new_rtx, op0);
9274 op0 = copy_rtx (new_rtx);
9275 PUT_MODE (op0, BLKmode);
9276 set_mem_attributes (op0, exp, 1);
9279 return op0;
9282 /* If the result is BLKmode, use that to access the object
9283 now as well. */
9284 if (mode == BLKmode)
9285 mode1 = BLKmode;
9287 /* Get a reference to just this component. */
9288 if (modifier == EXPAND_CONST_ADDRESS
9289 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9290 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9291 else
9292 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9294 if (op0 == orig_op0)
9295 op0 = copy_rtx (op0);
9297 set_mem_attributes (op0, exp, 0);
9298 if (REG_P (XEXP (op0, 0)))
9299 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9301 MEM_VOLATILE_P (op0) |= volatilep;
9302 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9303 || modifier == EXPAND_CONST_ADDRESS
9304 || modifier == EXPAND_INITIALIZER)
9305 return op0;
9306 else if (target == 0)
9307 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9309 convert_move (target, op0, unsignedp);
9310 return target;
9313 case OBJ_TYPE_REF:
9314 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9316 case CALL_EXPR:
9317 /* All valid uses of __builtin_va_arg_pack () are removed during
9318 inlining. */
9319 if (CALL_EXPR_VA_ARG_PACK (exp))
9320 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9322 tree fndecl = get_callee_fndecl (exp), attr;
9324 if (fndecl
9325 && (attr = lookup_attribute ("error",
9326 DECL_ATTRIBUTES (fndecl))) != NULL)
9327 error ("%Kcall to %qs declared with attribute error: %s",
9328 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9329 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9330 if (fndecl
9331 && (attr = lookup_attribute ("warning",
9332 DECL_ATTRIBUTES (fndecl))) != NULL)
9333 warning_at (tree_nonartificial_location (exp),
9334 0, "%Kcall to %qs declared with attribute warning: %s",
9335 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9336 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9338 /* Check for a built-in function. */
9339 if (fndecl && DECL_BUILT_IN (fndecl))
9341 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9342 return expand_builtin (exp, target, subtarget, tmode, ignore);
9345 return expand_call (exp, target, ignore);
9347 case VIEW_CONVERT_EXPR:
9348 op0 = NULL_RTX;
9350 /* If we are converting to BLKmode, try to avoid an intermediate
9351 temporary by fetching an inner memory reference. */
9352 if (mode == BLKmode
9353 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9354 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9355 && handled_component_p (treeop0))
9357 enum machine_mode mode1;
9358 HOST_WIDE_INT bitsize, bitpos;
9359 tree offset;
9360 int unsignedp;
9361 int volatilep = 0;
9362 tree tem
9363 = get_inner_reference (treeop0, &bitsize, &bitpos,
9364 &offset, &mode1, &unsignedp, &volatilep,
9365 true);
9366 rtx orig_op0;
9368 /* ??? We should work harder and deal with non-zero offsets. */
9369 if (!offset
9370 && (bitpos % BITS_PER_UNIT) == 0
9371 && bitsize >= 0
9372 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9374 /* See the normal_inner_ref case for the rationale. */
9375 orig_op0
9376 = expand_expr (tem,
9377 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9378 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9379 != INTEGER_CST)
9380 && modifier != EXPAND_STACK_PARM
9381 ? target : NULL_RTX),
9382 VOIDmode,
9383 (modifier == EXPAND_INITIALIZER
9384 || modifier == EXPAND_CONST_ADDRESS
9385 || modifier == EXPAND_STACK_PARM)
9386 ? modifier : EXPAND_NORMAL);
9388 if (MEM_P (orig_op0))
9390 op0 = orig_op0;
9392 /* Get a reference to just this component. */
9393 if (modifier == EXPAND_CONST_ADDRESS
9394 || modifier == EXPAND_SUM
9395 || modifier == EXPAND_INITIALIZER)
9396 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9397 else
9398 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9400 if (op0 == orig_op0)
9401 op0 = copy_rtx (op0);
9403 set_mem_attributes (op0, treeop0, 0);
9404 if (REG_P (XEXP (op0, 0)))
9405 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9407 MEM_VOLATILE_P (op0) |= volatilep;
9412 if (!op0)
9413 op0 = expand_expr (treeop0,
9414 NULL_RTX, VOIDmode, modifier);
9416 /* If the input and output modes are both the same, we are done. */
9417 if (mode == GET_MODE (op0))
9419 /* If neither mode is BLKmode, and both modes are the same size
9420 then we can use gen_lowpart. */
9421 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9422 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9423 && !COMPLEX_MODE_P (GET_MODE (op0)))
9425 if (GET_CODE (op0) == SUBREG)
9426 op0 = force_reg (GET_MODE (op0), op0);
9427 temp = gen_lowpart_common (mode, op0);
9428 if (temp)
9429 op0 = temp;
9430 else
9432 if (!REG_P (op0) && !MEM_P (op0))
9433 op0 = force_reg (GET_MODE (op0), op0);
9434 op0 = gen_lowpart (mode, op0);
9437 /* If both types are integral, convert from one mode to the other. */
9438 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9439 op0 = convert_modes (mode, GET_MODE (op0), op0,
9440 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9441 /* As a last resort, spill op0 to memory, and reload it in a
9442 different mode. */
9443 else if (!MEM_P (op0))
9445 /* If the operand is not a MEM, force it into memory. Since we
9446 are going to be changing the mode of the MEM, don't call
9447 force_const_mem for constants because we don't allow pool
9448 constants to change mode. */
9449 tree inner_type = TREE_TYPE (treeop0);
9451 gcc_assert (!TREE_ADDRESSABLE (exp));
9453 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9454 target
9455 = assign_stack_temp_for_type
9456 (TYPE_MODE (inner_type),
9457 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9459 emit_move_insn (target, op0);
9460 op0 = target;
9463 /* At this point, OP0 is in the correct mode. If the output type is
9464 such that the operand is known to be aligned, indicate that it is.
9465 Otherwise, we need only be concerned about alignment for non-BLKmode
9466 results. */
9467 if (MEM_P (op0))
9469 op0 = copy_rtx (op0);
9471 if (TYPE_ALIGN_OK (type))
9472 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9473 else if (STRICT_ALIGNMENT
9474 && mode != BLKmode
9475 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9477 tree inner_type = TREE_TYPE (treeop0);
9478 HOST_WIDE_INT temp_size
9479 = MAX (int_size_in_bytes (inner_type),
9480 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9481 rtx new_rtx
9482 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9483 rtx new_with_op0_mode
9484 = adjust_address (new_rtx, GET_MODE (op0), 0);
9486 gcc_assert (!TREE_ADDRESSABLE (exp));
9488 if (GET_MODE (op0) == BLKmode)
9489 emit_block_move (new_with_op0_mode, op0,
9490 GEN_INT (GET_MODE_SIZE (mode)),
9491 (modifier == EXPAND_STACK_PARM
9492 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9493 else
9494 emit_move_insn (new_with_op0_mode, op0);
9496 op0 = new_rtx;
9499 op0 = adjust_address (op0, mode, 0);
9502 return op0;
9504 /* Use a compare and a jump for BLKmode comparisons, or for function
9505 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9507 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9508 are occassionally created by folding during expansion. */
9509 case TRUTH_ANDIF_EXPR:
9510 case TRUTH_ORIF_EXPR:
9511 if (! ignore
9512 && (target == 0
9513 || modifier == EXPAND_STACK_PARM
9514 || ! safe_from_p (target, treeop0, 1)
9515 || ! safe_from_p (target, treeop1, 1)
9516 /* Make sure we don't have a hard reg (such as function's return
9517 value) live across basic blocks, if not optimizing. */
9518 || (!optimize && REG_P (target)
9519 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9520 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9522 if (target)
9523 emit_move_insn (target, const0_rtx);
9525 op1 = gen_label_rtx ();
9526 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9528 if (target)
9529 emit_move_insn (target, const1_rtx);
9531 emit_label (op1);
9532 return ignore ? const0_rtx : target;
9534 case STATEMENT_LIST:
9536 tree_stmt_iterator iter;
9538 gcc_assert (ignore);
9540 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9541 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9543 return const0_rtx;
9545 case COND_EXPR:
9546 /* A COND_EXPR with its type being VOID_TYPE represents a
9547 conditional jump and is handled in
9548 expand_gimple_cond_expr. */
9549 gcc_assert (!VOID_TYPE_P (type));
9551 /* Note that COND_EXPRs whose type is a structure or union
9552 are required to be constructed to contain assignments of
9553 a temporary variable, so that we can evaluate them here
9554 for side effect only. If type is void, we must do likewise. */
9556 gcc_assert (!TREE_ADDRESSABLE (type)
9557 && !ignore
9558 && TREE_TYPE (treeop1) != void_type_node
9559 && TREE_TYPE (treeop2) != void_type_node);
9561 /* If we are not to produce a result, we have no target. Otherwise,
9562 if a target was specified use it; it will not be used as an
9563 intermediate target unless it is safe. If no target, use a
9564 temporary. */
9566 if (modifier != EXPAND_STACK_PARM
9567 && original_target
9568 && safe_from_p (original_target, treeop0, 1)
9569 && GET_MODE (original_target) == mode
9570 #ifdef HAVE_conditional_move
9571 && (! can_conditionally_move_p (mode)
9572 || REG_P (original_target))
9573 #endif
9574 && !MEM_P (original_target))
9575 temp = original_target;
9576 else
9577 temp = assign_temp (type, 0, 0, 1);
9579 do_pending_stack_adjust ();
9580 NO_DEFER_POP;
9581 op0 = gen_label_rtx ();
9582 op1 = gen_label_rtx ();
9583 jumpifnot (treeop0, op0, -1);
9584 store_expr (treeop1, temp,
9585 modifier == EXPAND_STACK_PARM,
9586 false);
9588 emit_jump_insn (gen_jump (op1));
9589 emit_barrier ();
9590 emit_label (op0);
9591 store_expr (treeop2, temp,
9592 modifier == EXPAND_STACK_PARM,
9593 false);
9595 emit_label (op1);
9596 OK_DEFER_POP;
9597 return temp;
9599 case VEC_COND_EXPR:
9600 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9601 return target;
9603 case MODIFY_EXPR:
9605 tree lhs = treeop0;
9606 tree rhs = treeop1;
9607 gcc_assert (ignore);
9609 /* Check for |= or &= of a bitfield of size one into another bitfield
9610 of size 1. In this case, (unless we need the result of the
9611 assignment) we can do this more efficiently with a
9612 test followed by an assignment, if necessary.
9614 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9615 things change so we do, this code should be enhanced to
9616 support it. */
9617 if (TREE_CODE (lhs) == COMPONENT_REF
9618 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9619 || TREE_CODE (rhs) == BIT_AND_EXPR)
9620 && TREE_OPERAND (rhs, 0) == lhs
9621 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9622 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9623 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9625 rtx label = gen_label_rtx ();
9626 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9627 do_jump (TREE_OPERAND (rhs, 1),
9628 value ? label : 0,
9629 value ? 0 : label, -1);
9630 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9631 MOVE_NONTEMPORAL (exp));
9632 do_pending_stack_adjust ();
9633 emit_label (label);
9634 return const0_rtx;
9637 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9638 return const0_rtx;
9641 case ADDR_EXPR:
9642 return expand_expr_addr_expr (exp, target, tmode, modifier);
9644 case REALPART_EXPR:
9645 op0 = expand_normal (treeop0);
9646 return read_complex_part (op0, false);
9648 case IMAGPART_EXPR:
9649 op0 = expand_normal (treeop0);
9650 return read_complex_part (op0, true);
9652 case RETURN_EXPR:
9653 case LABEL_EXPR:
9654 case GOTO_EXPR:
9655 case SWITCH_EXPR:
9656 case ASM_EXPR:
9657 /* Expanded in cfgexpand.c. */
9658 gcc_unreachable ();
9660 case TRY_CATCH_EXPR:
9661 case CATCH_EXPR:
9662 case EH_FILTER_EXPR:
9663 case TRY_FINALLY_EXPR:
9664 /* Lowered by tree-eh.c. */
9665 gcc_unreachable ();
9667 case WITH_CLEANUP_EXPR:
9668 case CLEANUP_POINT_EXPR:
9669 case TARGET_EXPR:
9670 case CASE_LABEL_EXPR:
9671 case VA_ARG_EXPR:
9672 case BIND_EXPR:
9673 case INIT_EXPR:
9674 case CONJ_EXPR:
9675 case COMPOUND_EXPR:
9676 case PREINCREMENT_EXPR:
9677 case PREDECREMENT_EXPR:
9678 case POSTINCREMENT_EXPR:
9679 case POSTDECREMENT_EXPR:
9680 case LOOP_EXPR:
9681 case EXIT_EXPR:
9682 /* Lowered by gimplify.c. */
9683 gcc_unreachable ();
9685 case FDESC_EXPR:
9686 /* Function descriptors are not valid except for as
9687 initialization constants, and should not be expanded. */
9688 gcc_unreachable ();
9690 case WITH_SIZE_EXPR:
9691 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9692 have pulled out the size to use in whatever context it needed. */
9693 return expand_expr_real (treeop0, original_target, tmode,
9694 modifier, alt_rtl);
9696 case COMPOUND_LITERAL_EXPR:
9698 /* Initialize the anonymous variable declared in the compound
9699 literal, then return the variable. */
9700 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9702 /* Create RTL for this variable. */
9703 if (!DECL_RTL_SET_P (decl))
9705 if (DECL_HARD_REGISTER (decl))
9706 /* The user specified an assembler name for this variable.
9707 Set that up now. */
9708 rest_of_decl_compilation (decl, 0, 0);
9709 else
9710 expand_decl (decl);
9713 return expand_expr_real (decl, original_target, tmode,
9714 modifier, alt_rtl);
9717 default:
9718 return expand_expr_real_2 (&ops, target, tmode, modifier);
9722 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9723 signedness of TYPE), possibly returning the result in TARGET. */
9724 static rtx
9725 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9727 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9728 if (target && GET_MODE (target) != GET_MODE (exp))
9729 target = 0;
9730 /* For constant values, reduce using build_int_cst_type. */
9731 if (CONST_INT_P (exp))
9733 HOST_WIDE_INT value = INTVAL (exp);
9734 tree t = build_int_cst_type (type, value);
9735 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9737 else if (TYPE_UNSIGNED (type))
9739 rtx mask = immed_double_int_const (double_int_mask (prec),
9740 GET_MODE (exp));
9741 return expand_and (GET_MODE (exp), exp, mask, target);
9743 else
9745 int count = GET_MODE_BITSIZE (GET_MODE (exp)) - prec;
9746 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
9747 exp, count, target, 0);
9748 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
9749 exp, count, target, 0);
9753 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9754 when applied to the address of EXP produces an address known to be
9755 aligned more than BIGGEST_ALIGNMENT. */
9757 static int
9758 is_aligning_offset (const_tree offset, const_tree exp)
9760 /* Strip off any conversions. */
9761 while (CONVERT_EXPR_P (offset))
9762 offset = TREE_OPERAND (offset, 0);
9764 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9765 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9766 if (TREE_CODE (offset) != BIT_AND_EXPR
9767 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9768 || compare_tree_int (TREE_OPERAND (offset, 1),
9769 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9770 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9771 return 0;
9773 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9774 It must be NEGATE_EXPR. Then strip any more conversions. */
9775 offset = TREE_OPERAND (offset, 0);
9776 while (CONVERT_EXPR_P (offset))
9777 offset = TREE_OPERAND (offset, 0);
9779 if (TREE_CODE (offset) != NEGATE_EXPR)
9780 return 0;
9782 offset = TREE_OPERAND (offset, 0);
9783 while (CONVERT_EXPR_P (offset))
9784 offset = TREE_OPERAND (offset, 0);
9786 /* This must now be the address of EXP. */
9787 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9790 /* Return the tree node if an ARG corresponds to a string constant or zero
9791 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9792 in bytes within the string that ARG is accessing. The type of the
9793 offset will be `sizetype'. */
9795 tree
9796 string_constant (tree arg, tree *ptr_offset)
9798 tree array, offset, lower_bound;
9799 STRIP_NOPS (arg);
9801 if (TREE_CODE (arg) == ADDR_EXPR)
9803 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9805 *ptr_offset = size_zero_node;
9806 return TREE_OPERAND (arg, 0);
9808 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9810 array = TREE_OPERAND (arg, 0);
9811 offset = size_zero_node;
9813 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9815 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9816 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9817 if (TREE_CODE (array) != STRING_CST
9818 && TREE_CODE (array) != VAR_DECL)
9819 return 0;
9821 /* Check if the array has a nonzero lower bound. */
9822 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9823 if (!integer_zerop (lower_bound))
9825 /* If the offset and base aren't both constants, return 0. */
9826 if (TREE_CODE (lower_bound) != INTEGER_CST)
9827 return 0;
9828 if (TREE_CODE (offset) != INTEGER_CST)
9829 return 0;
9830 /* Adjust offset by the lower bound. */
9831 offset = size_diffop (fold_convert (sizetype, offset),
9832 fold_convert (sizetype, lower_bound));
9835 else
9836 return 0;
9838 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9840 tree arg0 = TREE_OPERAND (arg, 0);
9841 tree arg1 = TREE_OPERAND (arg, 1);
9843 STRIP_NOPS (arg0);
9844 STRIP_NOPS (arg1);
9846 if (TREE_CODE (arg0) == ADDR_EXPR
9847 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9848 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9850 array = TREE_OPERAND (arg0, 0);
9851 offset = arg1;
9853 else if (TREE_CODE (arg1) == ADDR_EXPR
9854 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9855 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9857 array = TREE_OPERAND (arg1, 0);
9858 offset = arg0;
9860 else
9861 return 0;
9863 else
9864 return 0;
9866 if (TREE_CODE (array) == STRING_CST)
9868 *ptr_offset = fold_convert (sizetype, offset);
9869 return array;
9871 else if (TREE_CODE (array) == VAR_DECL
9872 || TREE_CODE (array) == CONST_DECL)
9874 int length;
9876 /* Variables initialized to string literals can be handled too. */
9877 if (!const_value_known_p (array)
9878 || !DECL_INITIAL (array)
9879 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9880 return 0;
9882 /* Avoid const char foo[4] = "abcde"; */
9883 if (DECL_SIZE_UNIT (array) == NULL_TREE
9884 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9885 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9886 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9887 return 0;
9889 /* If variable is bigger than the string literal, OFFSET must be constant
9890 and inside of the bounds of the string literal. */
9891 offset = fold_convert (sizetype, offset);
9892 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9893 && (! host_integerp (offset, 1)
9894 || compare_tree_int (offset, length) >= 0))
9895 return 0;
9897 *ptr_offset = offset;
9898 return DECL_INITIAL (array);
9901 return 0;
9904 /* Generate code to calculate OPS, and exploded expression
9905 using a store-flag instruction and return an rtx for the result.
9906 OPS reflects a comparison.
9908 If TARGET is nonzero, store the result there if convenient.
9910 Return zero if there is no suitable set-flag instruction
9911 available on this machine.
9913 Once expand_expr has been called on the arguments of the comparison,
9914 we are committed to doing the store flag, since it is not safe to
9915 re-evaluate the expression. We emit the store-flag insn by calling
9916 emit_store_flag, but only expand the arguments if we have a reason
9917 to believe that emit_store_flag will be successful. If we think that
9918 it will, but it isn't, we have to simulate the store-flag with a
9919 set/jump/set sequence. */
9921 static rtx
9922 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9924 enum rtx_code code;
9925 tree arg0, arg1, type;
9926 tree tem;
9927 enum machine_mode operand_mode;
9928 int unsignedp;
9929 rtx op0, op1;
9930 rtx subtarget = target;
9931 location_t loc = ops->location;
9933 arg0 = ops->op0;
9934 arg1 = ops->op1;
9936 /* Don't crash if the comparison was erroneous. */
9937 if (arg0 == error_mark_node || arg1 == error_mark_node)
9938 return const0_rtx;
9940 type = TREE_TYPE (arg0);
9941 operand_mode = TYPE_MODE (type);
9942 unsignedp = TYPE_UNSIGNED (type);
9944 /* We won't bother with BLKmode store-flag operations because it would mean
9945 passing a lot of information to emit_store_flag. */
9946 if (operand_mode == BLKmode)
9947 return 0;
9949 /* We won't bother with store-flag operations involving function pointers
9950 when function pointers must be canonicalized before comparisons. */
9951 #ifdef HAVE_canonicalize_funcptr_for_compare
9952 if (HAVE_canonicalize_funcptr_for_compare
9953 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9954 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9955 == FUNCTION_TYPE))
9956 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9957 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9958 == FUNCTION_TYPE))))
9959 return 0;
9960 #endif
9962 STRIP_NOPS (arg0);
9963 STRIP_NOPS (arg1);
9965 /* Get the rtx comparison code to use. We know that EXP is a comparison
9966 operation of some type. Some comparisons against 1 and -1 can be
9967 converted to comparisons with zero. Do so here so that the tests
9968 below will be aware that we have a comparison with zero. These
9969 tests will not catch constants in the first operand, but constants
9970 are rarely passed as the first operand. */
9972 switch (ops->code)
9974 case EQ_EXPR:
9975 code = EQ;
9976 break;
9977 case NE_EXPR:
9978 code = NE;
9979 break;
9980 case LT_EXPR:
9981 if (integer_onep (arg1))
9982 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9983 else
9984 code = unsignedp ? LTU : LT;
9985 break;
9986 case LE_EXPR:
9987 if (! unsignedp && integer_all_onesp (arg1))
9988 arg1 = integer_zero_node, code = LT;
9989 else
9990 code = unsignedp ? LEU : LE;
9991 break;
9992 case GT_EXPR:
9993 if (! unsignedp && integer_all_onesp (arg1))
9994 arg1 = integer_zero_node, code = GE;
9995 else
9996 code = unsignedp ? GTU : GT;
9997 break;
9998 case GE_EXPR:
9999 if (integer_onep (arg1))
10000 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10001 else
10002 code = unsignedp ? GEU : GE;
10003 break;
10005 case UNORDERED_EXPR:
10006 code = UNORDERED;
10007 break;
10008 case ORDERED_EXPR:
10009 code = ORDERED;
10010 break;
10011 case UNLT_EXPR:
10012 code = UNLT;
10013 break;
10014 case UNLE_EXPR:
10015 code = UNLE;
10016 break;
10017 case UNGT_EXPR:
10018 code = UNGT;
10019 break;
10020 case UNGE_EXPR:
10021 code = UNGE;
10022 break;
10023 case UNEQ_EXPR:
10024 code = UNEQ;
10025 break;
10026 case LTGT_EXPR:
10027 code = LTGT;
10028 break;
10030 default:
10031 gcc_unreachable ();
10034 /* Put a constant second. */
10035 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10036 || TREE_CODE (arg0) == FIXED_CST)
10038 tem = arg0; arg0 = arg1; arg1 = tem;
10039 code = swap_condition (code);
10042 /* If this is an equality or inequality test of a single bit, we can
10043 do this by shifting the bit being tested to the low-order bit and
10044 masking the result with the constant 1. If the condition was EQ,
10045 we xor it with 1. This does not require an scc insn and is faster
10046 than an scc insn even if we have it.
10048 The code to make this transformation was moved into fold_single_bit_test,
10049 so we just call into the folder and expand its result. */
10051 if ((code == NE || code == EQ)
10052 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10053 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10055 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10056 return expand_expr (fold_single_bit_test (loc,
10057 code == NE ? NE_EXPR : EQ_EXPR,
10058 arg0, arg1, type),
10059 target, VOIDmode, EXPAND_NORMAL);
10062 if (! get_subtarget (target)
10063 || GET_MODE (subtarget) != operand_mode)
10064 subtarget = 0;
10066 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10068 if (target == 0)
10069 target = gen_reg_rtx (mode);
10071 /* Try a cstore if possible. */
10072 return emit_store_flag_force (target, code, op0, op1,
10073 operand_mode, unsignedp, 1);
10077 /* Stubs in case we haven't got a casesi insn. */
10078 #ifndef HAVE_casesi
10079 # define HAVE_casesi 0
10080 # define gen_casesi(a, b, c, d, e) (0)
10081 # define CODE_FOR_casesi CODE_FOR_nothing
10082 #endif
10084 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10085 0 otherwise (i.e. if there is no casesi instruction). */
10087 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10088 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10089 rtx fallback_label ATTRIBUTE_UNUSED)
10091 struct expand_operand ops[5];
10092 enum machine_mode index_mode = SImode;
10093 int index_bits = GET_MODE_BITSIZE (index_mode);
10094 rtx op1, op2, index;
10096 if (! HAVE_casesi)
10097 return 0;
10099 /* Convert the index to SImode. */
10100 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10102 enum machine_mode omode = TYPE_MODE (index_type);
10103 rtx rangertx = expand_normal (range);
10105 /* We must handle the endpoints in the original mode. */
10106 index_expr = build2 (MINUS_EXPR, index_type,
10107 index_expr, minval);
10108 minval = integer_zero_node;
10109 index = expand_normal (index_expr);
10110 if (default_label)
10111 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10112 omode, 1, default_label);
10113 /* Now we can safely truncate. */
10114 index = convert_to_mode (index_mode, index, 0);
10116 else
10118 if (TYPE_MODE (index_type) != index_mode)
10120 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10121 index_expr = fold_convert (index_type, index_expr);
10124 index = expand_normal (index_expr);
10127 do_pending_stack_adjust ();
10129 op1 = expand_normal (minval);
10130 op2 = expand_normal (range);
10132 create_input_operand (&ops[0], index, index_mode);
10133 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10134 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10135 create_fixed_operand (&ops[3], table_label);
10136 create_fixed_operand (&ops[4], (default_label
10137 ? default_label
10138 : fallback_label));
10139 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10140 return 1;
10143 /* Attempt to generate a tablejump instruction; same concept. */
10144 #ifndef HAVE_tablejump
10145 #define HAVE_tablejump 0
10146 #define gen_tablejump(x, y) (0)
10147 #endif
10149 /* Subroutine of the next function.
10151 INDEX is the value being switched on, with the lowest value
10152 in the table already subtracted.
10153 MODE is its expected mode (needed if INDEX is constant).
10154 RANGE is the length of the jump table.
10155 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10157 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10158 index value is out of range. */
10160 static void
10161 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10162 rtx default_label)
10164 rtx temp, vector;
10166 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10167 cfun->cfg->max_jumptable_ents = INTVAL (range);
10169 /* Do an unsigned comparison (in the proper mode) between the index
10170 expression and the value which represents the length of the range.
10171 Since we just finished subtracting the lower bound of the range
10172 from the index expression, this comparison allows us to simultaneously
10173 check that the original index expression value is both greater than
10174 or equal to the minimum value of the range and less than or equal to
10175 the maximum value of the range. */
10177 if (default_label)
10178 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10179 default_label);
10181 /* If index is in range, it must fit in Pmode.
10182 Convert to Pmode so we can index with it. */
10183 if (mode != Pmode)
10184 index = convert_to_mode (Pmode, index, 1);
10186 /* Don't let a MEM slip through, because then INDEX that comes
10187 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10188 and break_out_memory_refs will go to work on it and mess it up. */
10189 #ifdef PIC_CASE_VECTOR_ADDRESS
10190 if (flag_pic && !REG_P (index))
10191 index = copy_to_mode_reg (Pmode, index);
10192 #endif
10194 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10195 GET_MODE_SIZE, because this indicates how large insns are. The other
10196 uses should all be Pmode, because they are addresses. This code
10197 could fail if addresses and insns are not the same size. */
10198 index = gen_rtx_PLUS (Pmode,
10199 gen_rtx_MULT (Pmode, index,
10200 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10201 gen_rtx_LABEL_REF (Pmode, table_label));
10202 #ifdef PIC_CASE_VECTOR_ADDRESS
10203 if (flag_pic)
10204 index = PIC_CASE_VECTOR_ADDRESS (index);
10205 else
10206 #endif
10207 index = memory_address (CASE_VECTOR_MODE, index);
10208 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10209 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10210 convert_move (temp, vector, 0);
10212 emit_jump_insn (gen_tablejump (temp, table_label));
10214 /* If we are generating PIC code or if the table is PC-relative, the
10215 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10216 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10217 emit_barrier ();
10221 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10222 rtx table_label, rtx default_label)
10224 rtx index;
10226 if (! HAVE_tablejump)
10227 return 0;
10229 index_expr = fold_build2 (MINUS_EXPR, index_type,
10230 fold_convert (index_type, index_expr),
10231 fold_convert (index_type, minval));
10232 index = expand_normal (index_expr);
10233 do_pending_stack_adjust ();
10235 do_tablejump (index, TYPE_MODE (index_type),
10236 convert_modes (TYPE_MODE (index_type),
10237 TYPE_MODE (TREE_TYPE (range)),
10238 expand_normal (range),
10239 TYPE_UNSIGNED (TREE_TYPE (range))),
10240 table_label, default_label);
10241 return 1;
10244 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10245 static rtx
10246 const_vector_from_tree (tree exp)
10248 rtvec v;
10249 int units, i;
10250 tree link, elt;
10251 enum machine_mode inner, mode;
10253 mode = TYPE_MODE (TREE_TYPE (exp));
10255 if (initializer_zerop (exp))
10256 return CONST0_RTX (mode);
10258 units = GET_MODE_NUNITS (mode);
10259 inner = GET_MODE_INNER (mode);
10261 v = rtvec_alloc (units);
10263 link = TREE_VECTOR_CST_ELTS (exp);
10264 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10266 elt = TREE_VALUE (link);
10268 if (TREE_CODE (elt) == REAL_CST)
10269 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10270 inner);
10271 else if (TREE_CODE (elt) == FIXED_CST)
10272 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10273 inner);
10274 else
10275 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10276 inner);
10279 /* Initialize remaining elements to 0. */
10280 for (; i < units; ++i)
10281 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10283 return gen_rtx_CONST_VECTOR (mode, v);
10286 /* Build a decl for a personality function given a language prefix. */
10288 tree
10289 build_personality_function (const char *lang)
10291 const char *unwind_and_version;
10292 tree decl, type;
10293 char *name;
10295 switch (targetm.except_unwind_info (&global_options))
10297 case UI_NONE:
10298 return NULL;
10299 case UI_SJLJ:
10300 unwind_and_version = "_sj0";
10301 break;
10302 case UI_DWARF2:
10303 case UI_TARGET:
10304 unwind_and_version = "_v0";
10305 break;
10306 default:
10307 gcc_unreachable ();
10310 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10312 type = build_function_type_list (integer_type_node, integer_type_node,
10313 long_long_unsigned_type_node,
10314 ptr_type_node, ptr_type_node, NULL_TREE);
10315 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10316 get_identifier (name), type);
10317 DECL_ARTIFICIAL (decl) = 1;
10318 DECL_EXTERNAL (decl) = 1;
10319 TREE_PUBLIC (decl) = 1;
10321 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10322 are the flags assigned by targetm.encode_section_info. */
10323 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10325 return decl;
10328 /* Extracts the personality function of DECL and returns the corresponding
10329 libfunc. */
10332 get_personality_function (tree decl)
10334 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10335 enum eh_personality_kind pk;
10337 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10338 if (pk == eh_personality_none)
10339 return NULL;
10341 if (!personality
10342 && pk == eh_personality_any)
10343 personality = lang_hooks.eh_personality ();
10345 if (pk == eh_personality_lang)
10346 gcc_assert (personality != NULL_TREE);
10348 return XEXP (DECL_RTL (personality), 0);
10351 #include "gt-expr.h"