Add hppa-openbsd target
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobca055265a7c9a5b0e116ec91ee06b549aadd997c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- --
10 -- Copyright (C) 1992-2002, Free Software Foundation, Inc. --
11 -- --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
21 -- MA 02111-1307, USA. --
22 -- --
23 -- GNAT was originally developed by the GNAT team at New York University. --
24 -- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
25 -- --
26 ------------------------------------------------------------------------------
28 with Atree; use Atree;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Expander; use Expander;
35 with Exp_Ch7; use Exp_Ch7;
36 with Freeze; use Freeze;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Output; use Output;
44 with Rtsfind; use Rtsfind;
45 with Sem; use Sem;
46 with Sem_Cat; use Sem_Cat;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch4; use Sem_Ch4;
49 with Sem_Ch5; use Sem_Ch5;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Ch12; use Sem_Ch12;
52 with Sem_Disp; use Sem_Disp;
53 with Sem_Dist; use Sem_Dist;
54 with Sem_Elim; use Sem_Elim;
55 with Sem_Eval; use Sem_Eval;
56 with Sem_Mech; use Sem_Mech;
57 with Sem_Prag; use Sem_Prag;
58 with Sem_Res; use Sem_Res;
59 with Sem_Util; use Sem_Util;
60 with Sem_Type; use Sem_Type;
61 with Sem_Warn; use Sem_Warn;
62 with Sinput; use Sinput;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.CN; use Sinfo.CN;
66 with Snames; use Snames;
67 with Stringt; use Stringt;
68 with Style;
69 with Stylesw; use Stylesw;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
72 with Urealp; use Urealp;
73 with Validsw; use Validsw;
75 package body Sem_Ch6 is
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
82 -- Analyze a generic subprogram body
84 function Build_Body_To_Inline
85 (N : Node_Id;
86 Subp : Entity_Id;
87 Orig_Body : Node_Id)
88 return Boolean;
89 -- If a subprogram has pragma Inline and inlining is active, use generic
90 -- machinery to build an unexpanded body for the subprogram. This body is
91 -- subsequenty used for inline expansions at call sites. If subprogram can
92 -- be inlined (depending on size and nature of local declarations) this
93 -- function returns true. Otherwise subprogram body is treated normally.
95 type Conformance_Type is
96 (Type_Conformant, Mode_Conformant, Subtype_Conformant, Fully_Conformant);
97 -- Conformance type used for following call, meaning matches the
98 -- RM definitions of the corresponding terms.
100 procedure Check_Conformance
101 (New_Id : Entity_Id;
102 Old_Id : Entity_Id;
103 Ctype : Conformance_Type;
104 Errmsg : Boolean;
105 Conforms : out Boolean;
106 Err_Loc : Node_Id := Empty;
107 Get_Inst : Boolean := False);
108 -- Given two entities, this procedure checks that the profiles associated
109 -- with these entities meet the conformance criterion given by the third
110 -- parameter. If they conform, Conforms is set True and control returns
111 -- to the caller. If they do not conform, Conforms is set to False, and
112 -- in addition, if Errmsg is True on the call, proper messages are output
113 -- to complain about the conformance failure. If Err_Loc is non_Empty
114 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
115 -- error messages are placed on the appropriate part of the construct
116 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
117 -- against a formal access-to-subprogram type so Get_Instance_Of must
118 -- be called.
120 procedure Check_Subprogram_Order (N : Node_Id);
121 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
122 -- the alpha ordering rule for N if this ordering requirement applicable.
124 function Is_Non_Overriding_Operation
125 (Prev_E : Entity_Id;
126 New_E : Entity_Id)
127 return Boolean;
128 -- Enforce the rule given in 12.3(18): a private operation in an instance
129 -- overrides an inherited operation only if the corresponding operation
130 -- was overriding in the generic. This can happen for primitive operations
131 -- of types derived (in the generic unit) from formal private or formal
132 -- derived types.
134 procedure Check_Returns
135 (HSS : Node_Id;
136 Mode : Character;
137 Err : out Boolean);
138 -- Called to check for missing return statements in a function body,
139 -- or for returns present in a procedure body which has No_Return set.
140 -- L is the handled statement sequence for the subprogram body. This
141 -- procedure checks all flow paths to make sure they either have a
142 -- return (Mode = 'F') or do not have a return (Mode = 'P'). The flag
143 -- Err is set if there are any control paths not explicitly terminated
144 -- by a return in the function case, and is True otherwise.
146 function Conforming_Types
147 (T1 : Entity_Id;
148 T2 : Entity_Id;
149 Ctype : Conformance_Type;
150 Get_Inst : Boolean := False)
151 return Boolean;
152 -- Check that two formal parameter types conform, checking both
153 -- for equality of base types, and where required statically
154 -- matching subtypes, depending on the setting of Ctype.
156 procedure Enter_Overloaded_Entity (S : Entity_Id);
157 -- This procedure makes S, a new overloaded entity, into the first
158 -- visible entity with that name.
160 procedure Install_Entity (E : Entity_Id);
161 -- Make single entity visible. Used for generic formals as well.
163 procedure Install_Formals (Id : Entity_Id);
164 -- On entry to a subprogram body, make the formals visible. Note
165 -- that simply placing the subprogram on the scope stack is not
166 -- sufficient: the formals must become the current entities for
167 -- their names.
169 procedure Make_Inequality_Operator (S : Entity_Id);
170 -- Create the declaration for an inequality operator that is implicitly
171 -- created by a user-defined equality operator that yields a boolean.
173 procedure May_Need_Actuals (Fun : Entity_Id);
174 -- Flag functions that can be called without parameters, i.e. those that
175 -- have no parameters, or those for which defaults exist for all parameters
177 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
178 -- Formal_Id is an formal parameter entity. This procedure deals with
179 -- setting the proper validity status for this entity, which depends
180 -- on the kind of parameter and the validity checking mode.
182 ---------------------------------------------
183 -- Analyze_Abstract_Subprogram_Declaration --
184 ---------------------------------------------
186 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
187 Designator : constant Entity_Id := Analyze_Spec (Specification (N));
188 Scop : constant Entity_Id := Current_Scope;
190 begin
191 Generate_Definition (Designator);
192 Set_Is_Abstract (Designator);
193 New_Overloaded_Entity (Designator);
194 Check_Delayed_Subprogram (Designator);
196 Set_Is_Pure (Designator,
197 Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
198 Set_Is_Remote_Call_Interface (
199 Designator, Is_Remote_Call_Interface (Scop));
200 Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
202 if Ekind (Scope (Designator)) = E_Protected_Type then
203 Error_Msg_N
204 ("abstract subprogram not allowed in protected type", N);
205 end if;
206 end Analyze_Abstract_Subprogram_Declaration;
208 ----------------------------
209 -- Analyze_Function_Call --
210 ----------------------------
212 procedure Analyze_Function_Call (N : Node_Id) is
213 P : constant Node_Id := Name (N);
214 L : constant List_Id := Parameter_Associations (N);
215 Actual : Node_Id;
217 begin
218 Analyze (P);
220 -- If error analyzing name, then set Any_Type as result type and return
222 if Etype (P) = Any_Type then
223 Set_Etype (N, Any_Type);
224 return;
225 end if;
227 -- Otherwise analyze the parameters
229 if Present (L) then
230 Actual := First (L);
232 while Present (Actual) loop
233 Analyze (Actual);
234 Check_Parameterless_Call (Actual);
235 Next (Actual);
236 end loop;
237 end if;
239 Analyze_Call (N);
241 end Analyze_Function_Call;
243 -------------------------------------
244 -- Analyze_Generic_Subprogram_Body --
245 -------------------------------------
247 procedure Analyze_Generic_Subprogram_Body
248 (N : Node_Id;
249 Gen_Id : Entity_Id)
251 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
252 Spec : Node_Id;
253 Kind : constant Entity_Kind := Ekind (Gen_Id);
254 Nam : Entity_Id;
255 New_N : Node_Id;
257 begin
258 -- Copy body and disable expansion while analyzing the generic
259 -- For a stub, do not copy the stub (which would load the proper body),
260 -- this will be done when the proper body is analyzed.
262 if Nkind (N) /= N_Subprogram_Body_Stub then
263 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
264 Rewrite (N, New_N);
265 Start_Generic;
266 end if;
268 Spec := Specification (N);
270 -- Within the body of the generic, the subprogram is callable, and
271 -- behaves like the corresponding non-generic unit.
273 Nam := Defining_Entity (Spec);
275 if Kind = E_Generic_Procedure
276 and then Nkind (Spec) /= N_Procedure_Specification
277 then
278 Error_Msg_N ("invalid body for generic procedure ", Nam);
279 return;
281 elsif Kind = E_Generic_Function
282 and then Nkind (Spec) /= N_Function_Specification
283 then
284 Error_Msg_N ("invalid body for generic function ", Nam);
285 return;
286 end if;
288 Set_Corresponding_Body (Gen_Decl, Nam);
290 if Has_Completion (Gen_Id)
291 and then Nkind (Parent (N)) /= N_Subunit
292 then
293 Error_Msg_N ("duplicate generic body", N);
294 return;
295 else
296 Set_Has_Completion (Gen_Id);
297 end if;
299 if Nkind (N) = N_Subprogram_Body_Stub then
300 Set_Ekind (Defining_Entity (Specification (N)), Kind);
301 else
302 Set_Corresponding_Spec (N, Gen_Id);
303 end if;
305 if Nkind (Parent (N)) = N_Compilation_Unit then
306 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
307 end if;
309 -- Make generic parameters immediately visible in the body. They are
310 -- needed to process the formals declarations. Then make the formals
311 -- visible in a separate step.
313 New_Scope (Gen_Id);
315 declare
316 E : Entity_Id;
317 First_Ent : Entity_Id;
319 begin
320 First_Ent := First_Entity (Gen_Id);
322 E := First_Ent;
323 while Present (E) and then not Is_Formal (E) loop
324 Install_Entity (E);
325 Next_Entity (E);
326 end loop;
328 Set_Use (Generic_Formal_Declarations (Gen_Decl));
330 -- Now generic formals are visible, and the specification can be
331 -- analyzed, for subsequent conformance check.
333 Nam := Analyze_Spec (Spec);
335 if Nkind (N) = N_Subprogram_Body_Stub then
337 -- Nothing to do if no body to process
339 Set_Ekind (Nam, Kind);
340 End_Scope;
341 return;
342 end if;
344 if Present (E) then
346 -- E is the first formal parameter, which must be the first
347 -- entity in the subprogram body.
349 Set_First_Entity (Gen_Id, E);
351 -- Now make formal parameters visible
353 while Present (E) loop
354 Install_Entity (E);
355 Next_Formal (E);
356 end loop;
357 end if;
359 -- Visible generic entity is callable within its own body.
361 Set_Ekind (Gen_Id, Ekind (Nam));
362 Set_Convention (Nam, Convention (Gen_Id));
363 Set_Scope (Nam, Scope (Gen_Id));
364 Check_Fully_Conformant (Nam, Gen_Id, Nam);
366 -- If this is a compilation unit, it must be made visible
367 -- explicitly, because the compilation of the declaration,
368 -- unlike other library unit declarations, does not. If it
369 -- is not a unit, the following is redundant but harmless.
371 Set_Is_Immediately_Visible (Gen_Id);
373 Set_Actual_Subtypes (N, Current_Scope);
374 Analyze_Declarations (Declarations (N));
375 Check_Completion;
376 Analyze (Handled_Statement_Sequence (N));
378 Save_Global_References (Original_Node (N));
380 -- Prior to exiting the scope, include generic formals again
381 -- (if any are present) in the set of local entities.
383 if Present (First_Ent) then
384 Set_First_Entity (Gen_Id, First_Ent);
385 end if;
387 end;
389 End_Scope;
390 Check_Subprogram_Order (N);
392 -- Outside of its body, unit is generic again.
394 Set_Ekind (Gen_Id, Kind);
395 Set_Ekind (Nam, E_Subprogram_Body);
396 Generate_Reference (Gen_Id, Nam, 'b');
397 Style.Check_Identifier (Nam, Gen_Id);
398 End_Generic;
400 end Analyze_Generic_Subprogram_Body;
402 -----------------------------
403 -- Analyze_Operator_Symbol --
404 -----------------------------
406 -- An operator symbol such as "+" or "and" may appear in context where
407 -- the literal denotes an entity name, such as "+"(x, y) or in a
408 -- context when it is just a string, as in (conjunction = "or"). In
409 -- these cases the parser generates this node, and the semantics does
410 -- the disambiguation. Other such case are actuals in an instantiation,
411 -- the generic unit in an instantiation, and pragma arguments.
413 procedure Analyze_Operator_Symbol (N : Node_Id) is
414 Par : constant Node_Id := Parent (N);
416 begin
417 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
418 or else Nkind (Par) = N_Function_Instantiation
419 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
420 or else (Nkind (Par) = N_Pragma_Argument_Association
421 and then not Is_Pragma_String_Literal (Par))
422 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
423 or else (Nkind (Par) = N_Attribute_Reference
424 and then Attribute_Name (Par) /= Name_Value)
425 then
426 Find_Direct_Name (N);
428 else
429 Change_Operator_Symbol_To_String_Literal (N);
430 Analyze (N);
431 end if;
432 end Analyze_Operator_Symbol;
434 -----------------------------------
435 -- Analyze_Parameter_Association --
436 -----------------------------------
438 procedure Analyze_Parameter_Association (N : Node_Id) is
439 begin
440 Analyze (Explicit_Actual_Parameter (N));
441 end Analyze_Parameter_Association;
443 ----------------------------
444 -- Analyze_Procedure_Call --
445 ----------------------------
447 procedure Analyze_Procedure_Call (N : Node_Id) is
448 Loc : constant Source_Ptr := Sloc (N);
449 P : constant Node_Id := Name (N);
450 Actuals : constant List_Id := Parameter_Associations (N);
451 Actual : Node_Id;
452 New_N : Node_Id;
454 procedure Analyze_Call_And_Resolve;
455 -- Do Analyze and Resolve calls for procedure call
457 procedure Analyze_Call_And_Resolve is
458 begin
459 if Nkind (N) = N_Procedure_Call_Statement then
460 Analyze_Call (N);
461 Resolve (N, Standard_Void_Type);
462 else
463 Analyze (N);
464 end if;
465 end Analyze_Call_And_Resolve;
467 -- Start of processing for Analyze_Procedure_Call
469 begin
470 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
471 -- a procedure call or an entry call. The prefix may denote an access
472 -- to subprogram type, in which case an implicit dereference applies.
473 -- If the prefix is an indexed component (without implicit defererence)
474 -- then the construct denotes a call to a member of an entire family.
475 -- If the prefix is a simple name, it may still denote a call to a
476 -- parameterless member of an entry family. Resolution of these various
477 -- interpretations is delicate.
479 Analyze (P);
481 -- If error analyzing prefix, then set Any_Type as result and return
483 if Etype (P) = Any_Type then
484 Set_Etype (N, Any_Type);
485 return;
486 end if;
488 -- Otherwise analyze the parameters
490 if Present (Actuals) then
491 Actual := First (Actuals);
493 while Present (Actual) loop
494 Analyze (Actual);
495 Check_Parameterless_Call (Actual);
496 Next (Actual);
497 end loop;
498 end if;
500 -- Special processing for Elab_Spec and Elab_Body calls
502 if Nkind (P) = N_Attribute_Reference
503 and then (Attribute_Name (P) = Name_Elab_Spec
504 or else Attribute_Name (P) = Name_Elab_Body)
505 then
506 if Present (Actuals) then
507 Error_Msg_N
508 ("no parameters allowed for this call", First (Actuals));
509 return;
510 end if;
512 Set_Etype (N, Standard_Void_Type);
513 Set_Analyzed (N);
515 elsif Is_Entity_Name (P)
516 and then Is_Record_Type (Etype (Entity (P)))
517 and then Remote_AST_I_Dereference (P)
518 then
519 return;
521 elsif Is_Entity_Name (P)
522 and then Ekind (Entity (P)) /= E_Entry_Family
523 then
524 if Is_Access_Type (Etype (P))
525 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
526 and then No (Actuals)
527 and then Comes_From_Source (N)
528 then
529 Error_Msg_N ("missing explicit dereference in call", N);
530 end if;
532 Analyze_Call_And_Resolve;
534 -- If the prefix is the simple name of an entry family, this is
535 -- a parameterless call from within the task body itself.
537 elsif Is_Entity_Name (P)
538 and then Nkind (P) = N_Identifier
539 and then Ekind (Entity (P)) = E_Entry_Family
540 and then Present (Actuals)
541 and then No (Next (First (Actuals)))
542 then
543 -- Can be call to parameterless entry family. What appears to be
544 -- the sole argument is in fact the entry index. Rewrite prefix
545 -- of node accordingly. Source representation is unchanged by this
546 -- transformation.
548 New_N :=
549 Make_Indexed_Component (Loc,
550 Prefix =>
551 Make_Selected_Component (Loc,
552 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
553 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
554 Expressions => Actuals);
555 Set_Name (N, New_N);
556 Set_Etype (New_N, Standard_Void_Type);
557 Set_Parameter_Associations (N, No_List);
558 Analyze_Call_And_Resolve;
560 elsif Nkind (P) = N_Explicit_Dereference then
561 if Ekind (Etype (P)) = E_Subprogram_Type then
562 Analyze_Call_And_Resolve;
563 else
564 Error_Msg_N ("expect access to procedure in call", P);
565 end if;
567 -- The name can be a selected component or an indexed component
568 -- that yields an access to subprogram. Such a prefix is legal if
569 -- the call has parameter associations.
571 elsif Is_Access_Type (Etype (P))
572 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
573 then
574 if Present (Actuals) then
575 Analyze_Call_And_Resolve;
576 else
577 Error_Msg_N ("missing explicit dereference in call ", N);
578 end if;
580 -- If not an access to subprogram, then the prefix must resolve to
581 -- the name of an entry, entry family, or protected operation.
583 -- For the case of a simple entry call, P is a selected component
584 -- where the prefix is the task and the selector name is the entry.
585 -- A call to a protected procedure will have the same syntax. If
586 -- the protected object contains overloaded operations, the entity
587 -- may appear as a function, the context will select the operation
588 -- whose type is Void.
590 elsif Nkind (P) = N_Selected_Component
591 and then (Ekind (Entity (Selector_Name (P))) = E_Entry
592 or else
593 Ekind (Entity (Selector_Name (P))) = E_Procedure
594 or else
595 Ekind (Entity (Selector_Name (P))) = E_Function)
596 then
597 Analyze_Call_And_Resolve;
599 elsif Nkind (P) = N_Selected_Component
600 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
601 and then Present (Actuals)
602 and then No (Next (First (Actuals)))
603 then
604 -- Can be call to parameterless entry family. What appears to be
605 -- the sole argument is in fact the entry index. Rewrite prefix
606 -- of node accordingly. Source representation is unchanged by this
607 -- transformation.
609 New_N :=
610 Make_Indexed_Component (Loc,
611 Prefix => New_Copy (P),
612 Expressions => Actuals);
613 Set_Name (N, New_N);
614 Set_Etype (New_N, Standard_Void_Type);
615 Set_Parameter_Associations (N, No_List);
616 Analyze_Call_And_Resolve;
618 -- For the case of a reference to an element of an entry family, P is
619 -- an indexed component whose prefix is a selected component (task and
620 -- entry family), and whose index is the entry family index.
622 elsif Nkind (P) = N_Indexed_Component
623 and then Nkind (Prefix (P)) = N_Selected_Component
624 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
625 then
626 Analyze_Call_And_Resolve;
628 -- If the prefix is the name of an entry family, it is a call from
629 -- within the task body itself.
631 elsif Nkind (P) = N_Indexed_Component
632 and then Nkind (Prefix (P)) = N_Identifier
633 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
634 then
635 New_N :=
636 Make_Selected_Component (Loc,
637 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
638 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
639 Rewrite (Prefix (P), New_N);
640 Analyze (P);
641 Analyze_Call_And_Resolve;
643 -- Anything else is an error.
645 else
646 Error_Msg_N ("Invalid procedure or entry call", N);
647 end if;
648 end Analyze_Procedure_Call;
650 ------------------------------
651 -- Analyze_Return_Statement --
652 ------------------------------
654 procedure Analyze_Return_Statement (N : Node_Id) is
655 Loc : constant Source_Ptr := Sloc (N);
656 Expr : Node_Id;
657 Scope_Id : Entity_Id;
658 Kind : Entity_Kind;
659 R_Type : Entity_Id;
661 begin
662 -- Find subprogram or accept statement enclosing the return statement
664 Scope_Id := Empty;
665 for J in reverse 0 .. Scope_Stack.Last loop
666 Scope_Id := Scope_Stack.Table (J).Entity;
667 exit when Ekind (Scope_Id) /= E_Block and then
668 Ekind (Scope_Id) /= E_Loop;
669 end loop;
671 pragma Assert (Present (Scope_Id));
673 Kind := Ekind (Scope_Id);
674 Expr := Expression (N);
676 if Kind /= E_Function
677 and then Kind /= E_Generic_Function
678 and then Kind /= E_Procedure
679 and then Kind /= E_Generic_Procedure
680 and then Kind /= E_Entry
681 and then Kind /= E_Entry_Family
682 then
683 Error_Msg_N ("illegal context for return statement", N);
685 elsif Present (Expr) then
686 if Kind = E_Function or else Kind = E_Generic_Function then
687 Set_Return_Present (Scope_Id);
688 R_Type := Etype (Scope_Id);
689 Set_Return_Type (N, R_Type);
690 Analyze_And_Resolve (Expr, R_Type);
692 if (Is_Class_Wide_Type (Etype (Expr))
693 or else Is_Dynamically_Tagged (Expr))
694 and then not Is_Class_Wide_Type (R_Type)
695 then
696 Error_Msg_N
697 ("dynamically tagged expression not allowed!", Expr);
698 end if;
700 Apply_Constraint_Check (Expr, R_Type);
702 -- ??? A real run-time accessibility check is needed
703 -- in cases involving dereferences of access parameters.
704 -- For now we just check the static cases.
706 if Is_Return_By_Reference_Type (Etype (Scope_Id))
707 and then Object_Access_Level (Expr)
708 > Subprogram_Access_Level (Scope_Id)
709 then
710 Rewrite (N,
711 Make_Raise_Program_Error (Loc,
712 Reason => PE_Accessibility_Check_Failed));
713 Analyze (N);
715 Error_Msg_N
716 ("cannot return a local value by reference?", N);
717 Error_Msg_NE
718 ("& will be raised at run time?!",
719 N, Standard_Program_Error);
720 end if;
722 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
723 Error_Msg_N ("procedure cannot return value (use function)", N);
725 else
726 Error_Msg_N ("accept statement cannot return value", N);
727 end if;
729 -- No expression present
731 else
732 if Kind = E_Function or Kind = E_Generic_Function then
733 Error_Msg_N ("missing expression in return from function", N);
734 end if;
736 if (Ekind (Scope_Id) = E_Procedure
737 or else Ekind (Scope_Id) = E_Generic_Procedure)
738 and then No_Return (Scope_Id)
739 then
740 Error_Msg_N
741 ("RETURN statement not allowed (No_Return)", N);
742 end if;
743 end if;
745 Check_Unreachable_Code (N);
746 end Analyze_Return_Statement;
748 ------------------
749 -- Analyze_Spec --
750 ------------------
752 function Analyze_Spec (N : Node_Id) return Entity_Id is
753 Designator : constant Entity_Id := Defining_Entity (N);
754 Formals : constant List_Id := Parameter_Specifications (N);
755 Typ : Entity_Id;
757 begin
758 Generate_Definition (Designator);
760 if Nkind (N) = N_Function_Specification then
761 Set_Ekind (Designator, E_Function);
762 Set_Mechanism (Designator, Default_Mechanism);
764 if Subtype_Mark (N) /= Error then
765 Find_Type (Subtype_Mark (N));
766 Typ := Entity (Subtype_Mark (N));
767 Set_Etype (Designator, Typ);
769 if (Ekind (Typ) = E_Incomplete_Type
770 or else (Is_Class_Wide_Type (Typ)
771 and then
772 Ekind (Root_Type (Typ)) = E_Incomplete_Type))
773 then
774 Error_Msg_N
775 ("invalid use of incomplete type", Subtype_Mark (N));
776 end if;
778 else
779 Set_Etype (Designator, Any_Type);
780 end if;
782 else
783 Set_Ekind (Designator, E_Procedure);
784 Set_Etype (Designator, Standard_Void_Type);
785 end if;
787 if Present (Formals) then
788 Set_Scope (Designator, Current_Scope);
789 New_Scope (Designator);
790 Process_Formals (Formals, N);
791 End_Scope;
792 end if;
794 if Nkind (N) = N_Function_Specification then
795 if Nkind (Designator) = N_Defining_Operator_Symbol then
796 Valid_Operator_Definition (Designator);
797 end if;
799 May_Need_Actuals (Designator);
801 if Is_Abstract (Etype (Designator))
802 and then Nkind (Parent (N)) /= N_Abstract_Subprogram_Declaration
803 then
804 Error_Msg_N
805 ("function that returns abstract type must be abstract", N);
806 end if;
807 end if;
809 return Designator;
810 end Analyze_Spec;
812 -----------------------------
813 -- Analyze_Subprogram_Body --
814 -----------------------------
816 -- This procedure is called for regular subprogram bodies, generic bodies,
817 -- and for subprogram stubs of both kinds. In the case of stubs, only the
818 -- specification matters, and is used to create a proper declaration for
819 -- the subprogram, or to perform conformance checks.
821 procedure Analyze_Subprogram_Body (N : Node_Id) is
822 Loc : constant Source_Ptr := Sloc (N);
823 Body_Spec : constant Node_Id := Specification (N);
824 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
825 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
827 HSS : Node_Id;
828 Spec_Id : Entity_Id;
829 Spec_Decl : Node_Id := Empty;
830 Last_Formal : Entity_Id := Empty;
831 Conformant : Boolean;
832 Missing_Ret : Boolean;
833 Body_Deleted : Boolean := False;
834 P_Ent : Entity_Id;
836 begin
837 if Debug_Flag_C then
838 Write_Str ("==== Compiling subprogram body ");
839 Write_Name (Chars (Body_Id));
840 Write_Str (" from ");
841 Write_Location (Loc);
842 Write_Eol;
843 end if;
845 Trace_Scope (N, Body_Id, " Analyze subprogram");
847 -- Generic subprograms are handled separately. They always have
848 -- a generic specification. Determine whether current scope has
849 -- a previous declaration.
851 -- If the subprogram body is defined within an instance of the
852 -- same name, the instance appears as a package renaming, and
853 -- will be hidden within the subprogram.
855 if Present (Prev_Id)
856 and then not Is_Overloadable (Prev_Id)
857 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
858 or else Comes_From_Source (Prev_Id))
859 then
860 if Ekind (Prev_Id) = E_Generic_Procedure
861 or else Ekind (Prev_Id) = E_Generic_Function
862 then
863 Spec_Id := Prev_Id;
864 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
865 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
867 Analyze_Generic_Subprogram_Body (N, Spec_Id);
868 return;
870 else
871 -- Previous entity conflicts with subprogram name.
872 -- Attempting to enter name will post error.
874 Enter_Name (Body_Id);
875 return;
876 end if;
878 -- Non-generic case, find the subprogram declaration, if one was
879 -- seen, or enter new overloaded entity in the current scope.
880 -- If the current_entity is the body_id itself, the unit is being
881 -- analyzed as part of the context of one of its subunits. No need
882 -- to redo the analysis.
884 elsif Prev_Id = Body_Id
885 and then Has_Completion (Body_Id)
886 then
887 return;
889 else
890 Body_Id := Analyze_Spec (Body_Spec);
892 if Nkind (N) = N_Subprogram_Body_Stub
893 or else No (Corresponding_Spec (N))
894 then
895 Spec_Id := Find_Corresponding_Spec (N);
897 -- If this is a duplicate body, no point in analyzing it
899 if Error_Posted (N) then
900 return;
901 end if;
903 -- A subprogram body should cause freezing of its own
904 -- declaration, but if there was no previous explicit
905 -- declaration, then the subprogram will get frozen too
906 -- late (there may be code within the body that depends
907 -- on the subprogram having been frozen, such as uses of
908 -- extra formals), so we force it to be frozen here.
909 -- Same holds if the body and the spec are compilation units.
911 if No (Spec_Id) then
912 Freeze_Before (N, Body_Id);
914 elsif Nkind (Parent (N)) = N_Compilation_Unit then
915 Freeze_Before (N, Spec_Id);
916 end if;
917 else
918 Spec_Id := Corresponding_Spec (N);
919 end if;
920 end if;
922 -- Do not inline any subprogram that contains nested subprograms,
923 -- since the backend inlining circuit seems to generate uninitialized
924 -- references in this case. We know this happens in the case of front
925 -- end ZCX support, but it also appears it can happen in other cases
926 -- as well. The backend often rejects attempts to inline in the case
927 -- of nested procedures anyway, so little if anything is lost by this.
929 -- Do not do this test if errors have been detected, because in some
930 -- error cases, this code blows up, and we don't need it anyway if
931 -- there have been errors, since we won't get to the linker anyway.
933 if Serious_Errors_Detected = 0 then
934 P_Ent := Body_Id;
935 loop
936 P_Ent := Scope (P_Ent);
937 exit when No (P_Ent) or else P_Ent = Standard_Standard;
939 if Is_Subprogram (P_Ent) and then Is_Inlined (P_Ent) then
940 Set_Is_Inlined (P_Ent, False);
942 if Comes_From_Source (P_Ent)
943 and then Ineffective_Inline_Warnings
944 and then Has_Pragma_Inline (P_Ent)
945 then
946 Error_Msg_NE
947 ("?pragma Inline for & ignored (has nested subprogram)",
948 Get_Rep_Pragma (P_Ent, Name_Inline), P_Ent);
949 end if;
950 end if;
951 end loop;
952 end if;
954 -- Case of fully private operation in the body of the protected type.
955 -- We must create a declaration for the subprogram, in order to attach
956 -- the protected subprogram that will be used in internal calls.
958 if No (Spec_Id)
959 and then Comes_From_Source (N)
960 and then Is_Protected_Type (Current_Scope)
961 then
962 declare
963 Decl : Node_Id;
964 Plist : List_Id;
965 Formal : Entity_Id;
966 New_Spec : Node_Id;
968 begin
969 Formal := First_Formal (Body_Id);
971 -- The protected operation always has at least one formal,
972 -- namely the object itself, but it is only placed in the
973 -- parameter list if expansion is enabled.
975 if Present (Formal)
976 or else Expander_Active
977 then
978 Plist := New_List;
980 else
981 Plist := No_List;
982 end if;
984 while Present (Formal) loop
985 Append
986 (Make_Parameter_Specification (Loc,
987 Defining_Identifier =>
988 Make_Defining_Identifier (Sloc (Formal),
989 Chars => Chars (Formal)),
990 In_Present => In_Present (Parent (Formal)),
991 Out_Present => Out_Present (Parent (Formal)),
992 Parameter_Type =>
993 New_Reference_To (Etype (Formal), Loc),
994 Expression =>
995 New_Copy_Tree (Expression (Parent (Formal)))),
996 Plist);
998 Next_Formal (Formal);
999 end loop;
1001 if Nkind (Body_Spec) = N_Procedure_Specification then
1002 New_Spec :=
1003 Make_Procedure_Specification (Loc,
1004 Defining_Unit_Name =>
1005 Make_Defining_Identifier (Sloc (Body_Id),
1006 Chars => Chars (Body_Id)),
1007 Parameter_Specifications => Plist);
1008 else
1009 New_Spec :=
1010 Make_Function_Specification (Loc,
1011 Defining_Unit_Name =>
1012 Make_Defining_Identifier (Sloc (Body_Id),
1013 Chars => Chars (Body_Id)),
1014 Parameter_Specifications => Plist,
1015 Subtype_Mark => New_Occurrence_Of (Etype (Body_Id), Loc));
1016 end if;
1018 Decl :=
1019 Make_Subprogram_Declaration (Loc,
1020 Specification => New_Spec);
1021 Insert_Before (N, Decl);
1022 Analyze (Decl);
1023 Spec_Id := Defining_Unit_Name (New_Spec);
1024 Set_Has_Completion (Spec_Id);
1025 Set_Convention (Spec_Id, Convention_Protected);
1026 end;
1028 elsif Present (Spec_Id) then
1029 Spec_Decl := Unit_Declaration_Node (Spec_Id);
1030 end if;
1032 -- Place subprogram on scope stack, and make formals visible. If there
1033 -- is a spec, the visible entity remains that of the spec.
1035 if Present (Spec_Id) then
1036 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
1037 Style.Check_Identifier (Body_Id, Spec_Id);
1039 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
1040 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
1042 if Is_Abstract (Spec_Id) then
1043 Error_Msg_N ("an abstract subprogram cannot have a body", N);
1044 return;
1045 else
1046 Set_Convention (Body_Id, Convention (Spec_Id));
1047 Set_Has_Completion (Spec_Id);
1049 if Is_Protected_Type (Scope (Spec_Id)) then
1050 Set_Privals_Chain (Spec_Id, New_Elmt_List);
1051 end if;
1053 -- If this is a body generated for a renaming, do not check for
1054 -- full conformance. The check is redundant, because the spec of
1055 -- the body is a copy of the spec in the renaming declaration,
1056 -- and the test can lead to spurious errors on nested defaults.
1058 if Present (Spec_Decl)
1059 and then Nkind (Original_Node (Spec_Decl)) =
1060 N_Subprogram_Renaming_Declaration
1061 and then not Comes_From_Source (N)
1062 then
1063 Conformant := True;
1064 else
1065 Check_Conformance
1066 (Body_Id, Spec_Id,
1067 Fully_Conformant, True, Conformant, Body_Id);
1068 end if;
1070 -- If the body is not fully conformant, we have to decide if we
1071 -- should analyze it or not. If it has a really messed up profile
1072 -- then we probably should not analyze it, since we will get too
1073 -- many bogus messages.
1075 -- Our decision is to go ahead in the non-fully conformant case
1076 -- only if it is at least mode conformant with the spec. Note
1077 -- that the call to Check_Fully_Conformant has issued the proper
1078 -- error messages to complain about the lack of conformance.
1080 if not Conformant
1081 and then not Mode_Conformant (Body_Id, Spec_Id)
1082 then
1083 return;
1084 end if;
1085 end if;
1087 -- Generate references from body formals to spec formals
1088 -- and also set the Spec_Entity fields for all formals. We
1089 -- do not set this reference count as a reference for the
1090 -- purposes of identifying unreferenced formals however.
1092 if Spec_Id /= Body_Id then
1093 declare
1094 Fs : Entity_Id;
1095 Fb : Entity_Id;
1097 begin
1098 Fs := First_Formal (Spec_Id);
1099 Fb := First_Formal (Body_Id);
1100 while Present (Fs) loop
1101 Generate_Reference (Fs, Fb, 'b');
1102 Style.Check_Identifier (Fb, Fs);
1103 Set_Spec_Entity (Fb, Fs);
1104 Set_Referenced (Fs, False);
1105 Next_Formal (Fs);
1106 Next_Formal (Fb);
1107 end loop;
1108 end;
1109 end if;
1111 if Nkind (N) /= N_Subprogram_Body_Stub then
1112 Set_Corresponding_Spec (N, Spec_Id);
1113 Install_Formals (Spec_Id);
1114 Last_Formal := Last_Entity (Spec_Id);
1115 New_Scope (Spec_Id);
1117 -- Make sure that the subprogram is immediately visible. For
1118 -- child units that have no separate spec this is indispensable.
1119 -- Otherwise it is safe albeit redundant.
1121 Set_Is_Immediately_Visible (Spec_Id);
1122 end if;
1124 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
1125 Set_Ekind (Body_Id, E_Subprogram_Body);
1126 Set_Scope (Body_Id, Scope (Spec_Id));
1128 -- Case of subprogram body with no previous spec
1130 else
1131 if Style_Check
1132 and then Comes_From_Source (Body_Id)
1133 and then not Suppress_Style_Checks (Body_Id)
1134 and then not In_Instance
1135 then
1136 Style.Body_With_No_Spec (N);
1137 end if;
1139 New_Overloaded_Entity (Body_Id);
1141 if Nkind (N) /= N_Subprogram_Body_Stub then
1142 Set_Acts_As_Spec (N);
1143 Generate_Definition (Body_Id);
1144 Install_Formals (Body_Id);
1145 New_Scope (Body_Id);
1146 end if;
1147 end if;
1149 -- If this is the proper body of a stub, we must verify that the stub
1150 -- conforms to the body, and to the previous spec if one was present.
1151 -- we know already that the body conforms to that spec. This test is
1152 -- only required for subprograms that come from source.
1154 if Nkind (Parent (N)) = N_Subunit
1155 and then Comes_From_Source (N)
1156 and then not Error_Posted (Body_Id)
1157 then
1158 declare
1159 Conformant : Boolean := False;
1160 Old_Id : Entity_Id :=
1161 Defining_Entity
1162 (Specification (Corresponding_Stub (Parent (N))));
1164 begin
1165 if No (Spec_Id) then
1166 Check_Fully_Conformant (Body_Id, Old_Id);
1168 else
1169 Check_Conformance
1170 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
1172 if not Conformant then
1174 -- The stub was taken to be a new declaration. Indicate
1175 -- that it lacks a body.
1177 Set_Has_Completion (Old_Id, False);
1178 end if;
1179 end if;
1180 end;
1181 end if;
1183 Set_Has_Completion (Body_Id);
1184 Check_Eliminated (Body_Id);
1186 if Nkind (N) = N_Subprogram_Body_Stub then
1187 return;
1189 elsif Present (Spec_Id)
1190 and then Expander_Active
1191 and then (Is_Always_Inlined (Spec_Id)
1192 or else (Has_Pragma_Inline (Spec_Id)
1193 and then
1194 (Front_End_Inlining or else No_Run_Time)))
1195 then
1196 if Build_Body_To_Inline (N, Spec_Id, Copy_Separate_Tree (N)) then
1197 null;
1198 end if;
1199 end if;
1201 -- Now we can go on to analyze the body
1203 HSS := Handled_Statement_Sequence (N);
1204 Set_Actual_Subtypes (N, Current_Scope);
1205 Analyze_Declarations (Declarations (N));
1206 Check_Completion;
1207 Analyze (HSS);
1208 Process_End_Label (HSS, 't', Current_Scope);
1209 End_Scope;
1210 Check_Subprogram_Order (N);
1212 -- If we have a separate spec, then the analysis of the declarations
1213 -- caused the entities in the body to be chained to the spec id, but
1214 -- we want them chained to the body id. Only the formal parameters
1215 -- end up chained to the spec id in this case.
1217 if Present (Spec_Id) then
1219 -- If a parent unit is categorized, the context of a subunit
1220 -- must conform to the categorization. Conversely, if a child
1221 -- unit is categorized, the parents themselves must conform.
1223 if Nkind (Parent (N)) = N_Subunit then
1224 Validate_Categorization_Dependency (N, Spec_Id);
1226 elsif Is_Child_Unit (Spec_Id) then
1227 Validate_Categorization_Dependency
1228 (Unit_Declaration_Node (Spec_Id), Spec_Id);
1229 end if;
1231 if Present (Last_Formal) then
1232 Set_Next_Entity
1233 (Last_Entity (Body_Id), Next_Entity (Last_Formal));
1234 Set_Next_Entity (Last_Formal, Empty);
1235 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1236 Set_Last_Entity (Spec_Id, Last_Formal);
1238 else
1239 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
1240 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
1241 Set_First_Entity (Spec_Id, Empty);
1242 Set_Last_Entity (Spec_Id, Empty);
1243 end if;
1244 end if;
1246 -- If function, check return statements
1248 if Nkind (Body_Spec) = N_Function_Specification then
1249 declare
1250 Id : Entity_Id;
1252 begin
1253 if Present (Spec_Id) then
1254 Id := Spec_Id;
1255 else
1256 Id := Body_Id;
1257 end if;
1259 if Return_Present (Id) then
1260 Check_Returns (HSS, 'F', Missing_Ret);
1262 if Missing_Ret then
1263 Set_Has_Missing_Return (Id);
1264 end if;
1266 elsif not Is_Machine_Code_Subprogram (Id)
1267 and then not Body_Deleted
1268 then
1269 Error_Msg_N ("missing RETURN statement in function body", N);
1270 end if;
1271 end;
1273 -- If procedure with No_Return, check returns
1275 elsif Nkind (Body_Spec) = N_Procedure_Specification
1276 and then Present (Spec_Id)
1277 and then No_Return (Spec_Id)
1278 then
1279 Check_Returns (HSS, 'P', Missing_Ret);
1280 end if;
1282 -- Don't worry about checking for variables that are never modified
1283 -- if the first statement of the body is a raise statement, since
1284 -- we assume this is some kind of stub. We ignore a label generated
1285 -- by the exception stuff for the purpose of this test.
1287 declare
1288 Stm : Node_Id := First (Statements (HSS));
1290 begin
1291 if Nkind (Stm) = N_Label then
1292 Next (Stm);
1293 end if;
1295 if Nkind (Original_Node (Stm)) = N_Raise_Statement then
1296 return;
1297 end if;
1298 end;
1300 -- Check for variables that are never modified
1302 declare
1303 E1, E2 : Entity_Id;
1305 begin
1306 -- If there is a separate spec, then transfer Not_Source_Assigned
1307 -- flags from out parameters to the corresponding entities in the
1308 -- body. The reason we do that is we want to post error flags on
1309 -- the body entities, not the spec entities.
1311 if Present (Spec_Id) then
1312 E1 := First_Entity (Spec_Id);
1314 while Present (E1) loop
1315 if Ekind (E1) = E_Out_Parameter then
1316 E2 := First_Entity (Body_Id);
1318 loop
1319 -- If no matching body entity, then we already had
1320 -- a detected error of some kind, so just forget
1321 -- about worrying about these warnings.
1323 if No (E2) then
1324 return;
1325 end if;
1327 exit when Chars (E1) = Chars (E2);
1328 Next_Entity (E2);
1329 end loop;
1331 Set_Not_Source_Assigned (E2, Not_Source_Assigned (E1));
1332 end if;
1334 Next_Entity (E1);
1335 end loop;
1336 end if;
1338 -- Check references in body unless it was deleted. Note that the
1339 -- check of Body_Deleted here is not just for efficiency, it is
1340 -- necessary to avoid junk warnings on formal parameters.
1342 if not Body_Deleted then
1343 Check_References (Body_Id);
1344 end if;
1345 end;
1346 end Analyze_Subprogram_Body;
1348 ------------------------------------
1349 -- Analyze_Subprogram_Declaration --
1350 ------------------------------------
1352 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
1353 Designator : constant Entity_Id := Analyze_Spec (Specification (N));
1354 Scop : constant Entity_Id := Current_Scope;
1356 -- Start of processing for Analyze_Subprogram_Declaration
1358 begin
1359 Generate_Definition (Designator);
1361 -- Check for RCI unit subprogram declarations against in-lined
1362 -- subprograms and subprograms having access parameter or limited
1363 -- parameter without Read and Write (RM E.2.3(12-13)).
1365 Validate_RCI_Subprogram_Declaration (N);
1367 Trace_Scope
1369 Defining_Entity (N),
1370 " Analyze subprogram spec. ");
1372 if Debug_Flag_C then
1373 Write_Str ("==== Compiling subprogram spec ");
1374 Write_Name (Chars (Designator));
1375 Write_Str (" from ");
1376 Write_Location (Sloc (N));
1377 Write_Eol;
1378 end if;
1380 New_Overloaded_Entity (Designator);
1381 Check_Delayed_Subprogram (Designator);
1382 Set_Suppress_Elaboration_Checks
1383 (Designator, Elaboration_Checks_Suppressed (Designator));
1385 if Scop /= Standard_Standard
1386 and then not Is_Child_Unit (Designator)
1387 then
1388 Set_Is_Pure (Designator,
1389 Is_Pure (Scop) and then Is_Library_Level_Entity (Designator));
1390 Set_Is_Remote_Call_Interface (
1391 Designator, Is_Remote_Call_Interface (Scop));
1392 Set_Is_Remote_Types (Designator, Is_Remote_Types (Scop));
1394 else
1395 -- For a compilation unit, check for library-unit pragmas.
1397 New_Scope (Designator);
1398 Set_Categorization_From_Pragmas (N);
1399 Validate_Categorization_Dependency (N, Designator);
1400 Pop_Scope;
1401 end if;
1403 -- For a compilation unit, set body required. This flag will only be
1404 -- reset if a valid Import or Interface pragma is processed later on.
1406 if Nkind (Parent (N)) = N_Compilation_Unit then
1407 Set_Body_Required (Parent (N), True);
1408 end if;
1410 Check_Eliminated (Designator);
1411 end Analyze_Subprogram_Declaration;
1413 --------------------------
1414 -- Build_Body_To_Inline --
1415 --------------------------
1417 function Build_Body_To_Inline
1418 (N : Node_Id;
1419 Subp : Entity_Id;
1420 Orig_Body : Node_Id) return Boolean
1422 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
1423 Original_Body : Node_Id;
1424 Body_To_Analyze : Node_Id;
1425 Max_Size : constant := 10;
1426 Stat_Count : Integer := 0;
1428 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
1429 -- Check for declarations that make inlining not worthwhile.
1431 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
1432 -- Check for statements that make inlining not worthwhile: any
1433 -- tasking statement, nested at any level. Keep track of total
1434 -- number of elementary statements, as a measure of acceptable size.
1436 function Has_Pending_Instantiation return Boolean;
1437 -- If some enclosing body contains instantiations that appear before
1438 -- the corresponding generic body, the enclosing body has a freeze node
1439 -- so that it can be elaborated after the generic itself. This might
1440 -- conflict with subsequent inlinings, so that it is unsafe to try to
1441 -- inline in such a case.
1443 -------------------
1444 -- Cannot_Inline --
1445 -------------------
1447 procedure Cannot_Inline (Msg : String; N : Node_Id);
1448 -- If subprogram has pragma Inline_Always, it is an error if
1449 -- it cannot be inlined. Otherwise, emit a warning.
1451 procedure Cannot_Inline (Msg : String; N : Node_Id) is
1452 begin
1453 if Is_Always_Inlined (Subp) then
1454 Error_Msg_NE (Msg (1 .. Msg'Length - 1), N, Subp);
1456 elsif Ineffective_Inline_Warnings then
1457 Error_Msg_NE (Msg, N, Subp);
1458 end if;
1459 end Cannot_Inline;
1461 ------------------------------
1462 -- Has_Excluded_Declaration --
1463 ------------------------------
1465 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
1466 D : Node_Id;
1468 begin
1469 D := First (Decls);
1471 while Present (D) loop
1472 if Nkind (D) = N_Function_Instantiation
1473 or else Nkind (D) = N_Protected_Type_Declaration
1474 or else Nkind (D) = N_Package_Declaration
1475 or else Nkind (D) = N_Package_Instantiation
1476 or else Nkind (D) = N_Subprogram_Body
1477 or else Nkind (D) = N_Procedure_Instantiation
1478 or else Nkind (D) = N_Task_Type_Declaration
1479 then
1480 Cannot_Inline
1481 ("\declaration prevents front-end inlining of&?", D);
1482 return True;
1483 end if;
1485 Next (D);
1486 end loop;
1488 return False;
1490 end Has_Excluded_Declaration;
1492 ----------------------------
1493 -- Has_Excluded_Statement --
1494 ----------------------------
1496 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
1497 S : Node_Id;
1498 E : Node_Id;
1500 begin
1501 S := First (Stats);
1503 while Present (S) loop
1504 Stat_Count := Stat_Count + 1;
1506 if Nkind (S) = N_Abort_Statement
1507 or else Nkind (S) = N_Asynchronous_Select
1508 or else Nkind (S) = N_Conditional_Entry_Call
1509 or else Nkind (S) = N_Delay_Relative_Statement
1510 or else Nkind (S) = N_Delay_Until_Statement
1511 or else Nkind (S) = N_Selective_Accept
1512 or else Nkind (S) = N_Timed_Entry_Call
1513 then
1514 Cannot_Inline
1515 ("\statement prevents front-end inlining of&?", S);
1516 return True;
1518 elsif Nkind (S) = N_Block_Statement then
1519 if Present (Declarations (S))
1520 and then Has_Excluded_Declaration (Declarations (S))
1521 then
1522 return True;
1524 elsif Present (Handled_Statement_Sequence (S))
1525 and then
1526 (Present
1527 (Exception_Handlers (Handled_Statement_Sequence (S)))
1528 or else
1529 Has_Excluded_Statement
1530 (Statements (Handled_Statement_Sequence (S))))
1531 then
1532 return True;
1533 end if;
1535 elsif Nkind (S) = N_Case_Statement then
1536 E := First (Alternatives (S));
1538 while Present (E) loop
1539 if Has_Excluded_Statement (Statements (E)) then
1540 return True;
1541 end if;
1543 Next (E);
1544 end loop;
1546 elsif Nkind (S) = N_If_Statement then
1547 if Has_Excluded_Statement (Then_Statements (S)) then
1548 return True;
1549 end if;
1551 if Present (Elsif_Parts (S)) then
1552 E := First (Elsif_Parts (S));
1554 while Present (E) loop
1555 if Has_Excluded_Statement (Then_Statements (E)) then
1556 return True;
1557 end if;
1558 Next (E);
1559 end loop;
1560 end if;
1562 if Present (Else_Statements (S))
1563 and then Has_Excluded_Statement (Else_Statements (S))
1564 then
1565 return True;
1566 end if;
1568 elsif Nkind (S) = N_Loop_Statement
1569 and then Has_Excluded_Statement (Statements (S))
1570 then
1571 return True;
1572 end if;
1574 Next (S);
1575 end loop;
1577 return False;
1578 end Has_Excluded_Statement;
1580 -------------------------------
1581 -- Has_Pending_Instantiation --
1582 -------------------------------
1584 function Has_Pending_Instantiation return Boolean is
1585 S : Entity_Id := Current_Scope;
1587 begin
1588 while Present (S) loop
1589 if Is_Compilation_Unit (S)
1590 or else Is_Child_Unit (S)
1591 then
1592 return False;
1593 elsif Ekind (S) = E_Package
1594 and then Has_Forward_Instantiation (S)
1595 then
1596 return True;
1597 end if;
1599 S := Scope (S);
1600 end loop;
1602 return False;
1603 end Has_Pending_Instantiation;
1605 -- Start of processing for Build_Body_To_Inline
1607 begin
1608 if Nkind (Decl) = N_Subprogram_Declaration
1609 and then Present (Body_To_Inline (Decl))
1610 then
1611 return True; -- Done already.
1613 -- Functions that return unconstrained composite types will require
1614 -- secondary stack handling, and cannot currently be inlined.
1616 elsif Ekind (Subp) = E_Function
1617 and then not Is_Scalar_Type (Etype (Subp))
1618 and then not Is_Access_Type (Etype (Subp))
1619 and then not Is_Constrained (Etype (Subp))
1620 then
1621 Cannot_Inline
1622 ("unconstrained return type prevents front-end inlining of&?", N);
1623 return False;
1624 end if;
1626 -- We need to capture references to the formals in order to substitute
1627 -- the actuals at the point of inlining, i.e. instantiation. To treat
1628 -- the formals as globals to the body to inline, we nest it within
1629 -- a dummy parameterless subprogram, declared within the real one.
1631 Original_Body := Orig_Body;
1633 -- Within an instance, the current tree is already the result of
1634 -- a generic copy, and not what we need for subsequent inlining.
1635 -- We create the required body by doing an instantiating copy, to
1636 -- obtain the proper partially analyzed tree.
1638 if In_Instance then
1639 if No (Generic_Parent (Specification (N))) then
1640 return False;
1642 elsif Is_Child_Unit (Scope (Current_Scope)) then
1643 return False;
1645 elsif Scope (Current_Scope) = Cunit_Entity (Main_Unit) then
1647 -- compiling an instantiation. There is no point in generating
1648 -- bodies to inline, because they will not be used.
1650 return False;
1652 else
1653 Body_To_Analyze :=
1654 Copy_Generic_Node
1655 (Generic_Parent (Specification (N)), Empty,
1656 Instantiating => True);
1657 end if;
1658 else
1659 Body_To_Analyze :=
1660 Copy_Generic_Node (Original_Body, Empty,
1661 Instantiating => False);
1662 end if;
1664 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1665 Set_Defining_Unit_Name (Specification (Original_Body),
1666 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('S')));
1667 Set_Corresponding_Spec (Original_Body, Empty);
1669 if Ekind (Subp) = E_Function then
1670 Set_Subtype_Mark (Specification (Original_Body),
1671 New_Occurrence_Of (Etype (Subp), Sloc (N)));
1672 end if;
1674 if Present (Declarations (Orig_Body))
1675 and then Has_Excluded_Declaration (Declarations (Orig_Body))
1676 then
1677 return False;
1678 end if;
1680 if Present (Handled_Statement_Sequence (N)) then
1682 (Present (Exception_Handlers (Handled_Statement_Sequence (N))))
1683 then
1684 Cannot_Inline ("handler prevents front-end inlining of&?",
1685 First (Exception_Handlers (Handled_Statement_Sequence (N))));
1686 return False;
1687 elsif
1688 Has_Excluded_Statement
1689 (Statements (Handled_Statement_Sequence (N)))
1690 then
1691 return False;
1692 end if;
1693 end if;
1695 -- We do not inline a subprogram that is too large, unless it is
1696 -- marked Inline_Always. This pragma does not suppress the other
1697 -- checks on inlining (forbidden declarations, handlers, etc).
1699 if Stat_Count > Max_Size
1700 and then not Is_Always_Inlined (Subp)
1701 then
1702 Cannot_Inline ("body is too large for front-end inlining of&?", N);
1703 return False;
1704 end if;
1706 if Has_Pending_Instantiation then
1707 Cannot_Inline
1708 ("cannot inline& because of forward instance within enclosing body",
1710 return False;
1711 end if;
1713 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1715 -- Set return type of function, which is also global and does not need
1716 -- to be resolved.
1718 if Ekind (Subp) = E_Function then
1719 Set_Subtype_Mark (Specification (Body_To_Analyze),
1720 New_Occurrence_Of (Etype (Subp), Sloc (N)));
1721 end if;
1723 if No (Declarations (N)) then
1724 Set_Declarations (N, New_List (Body_To_Analyze));
1725 else
1726 Append (Body_To_Analyze, Declarations (N));
1727 end if;
1729 Expander_Mode_Save_And_Set (False);
1731 Analyze (Body_To_Analyze);
1732 New_Scope (Defining_Entity (Body_To_Analyze));
1733 Save_Global_References (Original_Body);
1734 End_Scope;
1735 Remove (Body_To_Analyze);
1737 Expander_Mode_Restore;
1738 Set_Body_To_Inline (Decl, Original_Body);
1739 Set_Is_Inlined (Subp);
1740 return True;
1742 end Build_Body_To_Inline;
1744 -----------------------
1745 -- Check_Conformance --
1746 -----------------------
1748 procedure Check_Conformance
1749 (New_Id : Entity_Id;
1750 Old_Id : Entity_Id;
1751 Ctype : Conformance_Type;
1752 Errmsg : Boolean;
1753 Conforms : out Boolean;
1754 Err_Loc : Node_Id := Empty;
1755 Get_Inst : Boolean := False)
1757 Old_Type : constant Entity_Id := Etype (Old_Id);
1758 New_Type : constant Entity_Id := Etype (New_Id);
1759 Old_Formal : Entity_Id;
1760 New_Formal : Entity_Id;
1762 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
1763 -- Post error message for conformance error on given node.
1764 -- Two messages are output. The first points to the previous
1765 -- declaration with a general "no conformance" message.
1766 -- The second is the detailed reason, supplied as Msg. The
1767 -- parameter N provide information for a possible & insertion
1768 -- in the message, and also provides the location for posting
1769 -- the message in the absence of a specified Err_Loc location.
1771 -----------------------
1772 -- Conformance_Error --
1773 -----------------------
1775 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
1776 Enode : Node_Id;
1778 begin
1779 Conforms := False;
1781 if Errmsg then
1782 if No (Err_Loc) then
1783 Enode := N;
1784 else
1785 Enode := Err_Loc;
1786 end if;
1788 Error_Msg_Sloc := Sloc (Old_Id);
1790 case Ctype is
1791 when Type_Conformant =>
1792 Error_Msg_N
1793 ("not type conformant with declaration#!", Enode);
1795 when Mode_Conformant =>
1796 Error_Msg_N
1797 ("not mode conformant with declaration#!", Enode);
1799 when Subtype_Conformant =>
1800 Error_Msg_N
1801 ("not subtype conformant with declaration#!", Enode);
1803 when Fully_Conformant =>
1804 Error_Msg_N
1805 ("not fully conformant with declaration#!", Enode);
1806 end case;
1808 Error_Msg_NE (Msg, Enode, N);
1809 end if;
1810 end Conformance_Error;
1812 -- Start of processing for Check_Conformance
1814 begin
1815 Conforms := True;
1817 -- We need a special case for operators, since they don't
1818 -- appear explicitly.
1820 if Ctype = Type_Conformant then
1821 if Ekind (New_Id) = E_Operator
1822 and then Operator_Matches_Spec (New_Id, Old_Id)
1823 then
1824 return;
1825 end if;
1826 end if;
1828 -- If both are functions/operators, check return types conform
1830 if Old_Type /= Standard_Void_Type
1831 and then New_Type /= Standard_Void_Type
1832 then
1833 if not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
1834 Conformance_Error ("return type does not match!", New_Id);
1835 return;
1836 end if;
1838 -- If either is a function/operator and the other isn't, error
1840 elsif Old_Type /= Standard_Void_Type
1841 or else New_Type /= Standard_Void_Type
1842 then
1843 Conformance_Error ("functions can only match functions!", New_Id);
1844 return;
1845 end if;
1847 -- In subtype conformant case, conventions must match (RM 6.3.1(16))
1848 -- If this is a renaming as body, refine error message to indicate that
1849 -- the conflict is with the original declaration. If the entity is not
1850 -- frozen, the conventions don't have to match, the one of the renamed
1851 -- entity is inherited.
1853 if Ctype >= Subtype_Conformant then
1855 if Convention (Old_Id) /= Convention (New_Id) then
1857 if not Is_Frozen (New_Id) then
1858 null;
1860 elsif Present (Err_Loc)
1861 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
1862 and then Present (Corresponding_Spec (Err_Loc))
1863 then
1864 Error_Msg_Name_1 := Chars (New_Id);
1865 Error_Msg_Name_2 :=
1866 Name_Ada + Convention_Id'Pos (Convention (New_Id));
1868 Conformance_Error ("prior declaration for% has convention %!");
1870 else
1871 Conformance_Error ("calling conventions do not match!");
1872 end if;
1874 return;
1876 elsif Is_Formal_Subprogram (Old_Id)
1877 or else Is_Formal_Subprogram (New_Id)
1878 then
1879 Conformance_Error ("formal subprograms not allowed!");
1880 return;
1881 end if;
1882 end if;
1884 -- Deal with parameters
1886 -- Note: we use the entity information, rather than going directly
1887 -- to the specification in the tree. This is not only simpler, but
1888 -- absolutely necessary for some cases of conformance tests between
1889 -- operators, where the declaration tree simply does not exist!
1891 Old_Formal := First_Formal (Old_Id);
1892 New_Formal := First_Formal (New_Id);
1894 while Present (Old_Formal) and then Present (New_Formal) loop
1896 -- Types must always match. In the visible part of an instance,
1897 -- usual overloading rules for dispatching operations apply, and
1898 -- we check base types (not the actual subtypes).
1900 if In_Instance_Visible_Part
1901 and then Is_Dispatching_Operation (New_Id)
1902 then
1903 if not Conforming_Types
1904 (Base_Type (Etype (Old_Formal)),
1905 Base_Type (Etype (New_Formal)), Ctype, Get_Inst)
1906 then
1907 Conformance_Error ("type of & does not match!", New_Formal);
1908 return;
1909 end if;
1911 elsif not Conforming_Types
1912 (Etype (Old_Formal), Etype (New_Formal), Ctype, Get_Inst)
1913 then
1914 Conformance_Error ("type of & does not match!", New_Formal);
1915 return;
1916 end if;
1918 -- For mode conformance, mode must match
1920 if Ctype >= Mode_Conformant
1921 and then Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal)
1922 then
1923 Conformance_Error ("mode of & does not match!", New_Formal);
1924 return;
1925 end if;
1927 -- Full conformance checks
1929 if Ctype = Fully_Conformant then
1931 -- Names must match
1933 if Chars (Old_Formal) /= Chars (New_Formal) then
1934 Conformance_Error ("name & does not match!", New_Formal);
1935 return;
1937 -- And default expressions for in parameters
1939 elsif Parameter_Mode (Old_Formal) = E_In_Parameter then
1940 declare
1941 NewD : constant Boolean :=
1942 Present (Default_Value (New_Formal));
1943 OldD : constant Boolean :=
1944 Present (Default_Value (Old_Formal));
1945 begin
1946 if NewD or OldD then
1948 -- The old default value has been analyzed and expanded,
1949 -- because the current full declaration will have frozen
1950 -- everything before. The new default values have not
1951 -- been expanded, so expand now to check conformance.
1953 if NewD then
1954 New_Scope (New_Id);
1955 Analyze_Default_Expression
1956 (Default_Value (New_Formal), Etype (New_Formal));
1957 End_Scope;
1958 end if;
1960 if not (NewD and OldD)
1961 or else not Fully_Conformant_Expressions
1962 (Default_Value (Old_Formal),
1963 Default_Value (New_Formal))
1964 then
1965 Conformance_Error
1966 ("default expression for & does not match!",
1967 New_Formal);
1968 return;
1969 end if;
1970 end if;
1971 end;
1972 end if;
1973 end if;
1975 -- A couple of special checks for Ada 83 mode. These checks are
1976 -- skipped if either entity is an operator in package Standard.
1977 -- or if either old or new instance is not from the source program.
1979 if Ada_83
1980 and then Sloc (Old_Id) > Standard_Location
1981 and then Sloc (New_Id) > Standard_Location
1982 and then Comes_From_Source (Old_Id)
1983 and then Comes_From_Source (New_Id)
1984 then
1985 declare
1986 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
1987 New_Param : constant Node_Id := Declaration_Node (New_Formal);
1989 begin
1990 -- Explicit IN must be present or absent in both cases. This
1991 -- test is required only in the full conformance case.
1993 if In_Present (Old_Param) /= In_Present (New_Param)
1994 and then Ctype = Fully_Conformant
1995 then
1996 Conformance_Error
1997 ("(Ada 83) IN must appear in both declarations",
1998 New_Formal);
1999 return;
2000 end if;
2002 -- Grouping (use of comma in param lists) must be the same
2003 -- This is where we catch a misconformance like:
2005 -- A,B : Integer
2006 -- A : Integer; B : Integer
2008 -- which are represented identically in the tree except
2009 -- for the setting of the flags More_Ids and Prev_Ids.
2011 if More_Ids (Old_Param) /= More_Ids (New_Param)
2012 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
2013 then
2014 Conformance_Error
2015 ("grouping of & does not match!", New_Formal);
2016 return;
2017 end if;
2018 end;
2019 end if;
2021 Next_Formal (Old_Formal);
2022 Next_Formal (New_Formal);
2023 end loop;
2025 if Present (Old_Formal) then
2026 Conformance_Error ("too few parameters!");
2027 return;
2029 elsif Present (New_Formal) then
2030 Conformance_Error ("too many parameters!", New_Formal);
2031 return;
2032 end if;
2034 end Check_Conformance;
2036 ------------------------------
2037 -- Check_Delayed_Subprogram --
2038 ------------------------------
2040 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
2041 F : Entity_Id;
2043 procedure Possible_Freeze (T : Entity_Id);
2044 -- T is the type of either a formal parameter or of the return type.
2045 -- If T is not yet frozen and needs a delayed freeze, then the
2046 -- subprogram itself must be delayed.
2048 procedure Possible_Freeze (T : Entity_Id) is
2049 begin
2050 if Has_Delayed_Freeze (T)
2051 and then not Is_Frozen (T)
2052 then
2053 Set_Has_Delayed_Freeze (Designator);
2055 elsif Is_Access_Type (T)
2056 and then Has_Delayed_Freeze (Designated_Type (T))
2057 and then not Is_Frozen (Designated_Type (T))
2058 then
2059 Set_Has_Delayed_Freeze (Designator);
2060 end if;
2061 end Possible_Freeze;
2063 -- Start of processing for Check_Delayed_Subprogram
2065 begin
2066 -- Never need to freeze abstract subprogram
2068 if Is_Abstract (Designator) then
2069 null;
2070 else
2071 -- Need delayed freeze if return type itself needs a delayed
2072 -- freeze and is not yet frozen.
2074 Possible_Freeze (Etype (Designator));
2075 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
2077 -- Need delayed freeze if any of the formal types themselves need
2078 -- a delayed freeze and are not yet frozen.
2080 F := First_Formal (Designator);
2081 while Present (F) loop
2082 Possible_Freeze (Etype (F));
2083 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
2084 Next_Formal (F);
2085 end loop;
2086 end if;
2088 -- Mark functions that return by reference. Note that it cannot be
2089 -- done for delayed_freeze subprograms because the underlying
2090 -- returned type may not be known yet (for private types)
2092 if not Has_Delayed_Freeze (Designator)
2093 and then Expander_Active
2094 then
2095 declare
2096 Typ : constant Entity_Id := Etype (Designator);
2097 Utyp : constant Entity_Id := Underlying_Type (Typ);
2099 begin
2100 if Is_Return_By_Reference_Type (Typ) then
2101 Set_Returns_By_Ref (Designator);
2103 elsif Present (Utyp) and then Controlled_Type (Utyp) then
2104 Set_Returns_By_Ref (Designator);
2105 end if;
2106 end;
2107 end if;
2108 end Check_Delayed_Subprogram;
2110 ------------------------------------
2111 -- Check_Discriminant_Conformance --
2112 ------------------------------------
2114 procedure Check_Discriminant_Conformance
2115 (N : Node_Id;
2116 Prev : Entity_Id;
2117 Prev_Loc : Node_Id)
2119 Old_Discr : Entity_Id := First_Discriminant (Prev);
2120 New_Discr : Node_Id := First (Discriminant_Specifications (N));
2121 New_Discr_Id : Entity_Id;
2122 New_Discr_Type : Entity_Id;
2124 procedure Conformance_Error (Msg : String; N : Node_Id);
2125 -- Post error message for conformance error on given node.
2126 -- Two messages are output. The first points to the previous
2127 -- declaration with a general "no conformance" message.
2128 -- The second is the detailed reason, supplied as Msg. The
2129 -- parameter N provide information for a possible & insertion
2130 -- in the message.
2132 -----------------------
2133 -- Conformance_Error --
2134 -----------------------
2136 procedure Conformance_Error (Msg : String; N : Node_Id) is
2137 begin
2138 Error_Msg_Sloc := Sloc (Prev_Loc);
2139 Error_Msg_N ("not fully conformant with declaration#!", N);
2140 Error_Msg_NE (Msg, N, N);
2141 end Conformance_Error;
2143 -- Start of processing for Check_Discriminant_Conformance
2145 begin
2146 while Present (Old_Discr) and then Present (New_Discr) loop
2148 New_Discr_Id := Defining_Identifier (New_Discr);
2150 -- The subtype mark of the discriminant on the full type
2151 -- has not been analyzed so we do it here. For an access
2152 -- discriminant a new type is created.
2154 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
2155 New_Discr_Type :=
2156 Access_Definition (N, Discriminant_Type (New_Discr));
2158 else
2159 Analyze (Discriminant_Type (New_Discr));
2160 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
2161 end if;
2163 if not Conforming_Types
2164 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
2165 then
2166 Conformance_Error ("type of & does not match!", New_Discr_Id);
2167 return;
2168 end if;
2170 -- Names must match
2172 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
2173 Conformance_Error ("name & does not match!", New_Discr_Id);
2174 return;
2175 end if;
2177 -- Default expressions must match
2179 declare
2180 NewD : constant Boolean :=
2181 Present (Expression (New_Discr));
2182 OldD : constant Boolean :=
2183 Present (Expression (Parent (Old_Discr)));
2185 begin
2186 if NewD or OldD then
2188 -- The old default value has been analyzed and expanded,
2189 -- because the current full declaration will have frozen
2190 -- everything before. The new default values have not
2191 -- been expanded, so expand now to check conformance.
2193 if NewD then
2194 Analyze_Default_Expression
2195 (Expression (New_Discr), New_Discr_Type);
2196 end if;
2198 if not (NewD and OldD)
2199 or else not Fully_Conformant_Expressions
2200 (Expression (Parent (Old_Discr)),
2201 Expression (New_Discr))
2203 then
2204 Conformance_Error
2205 ("default expression for & does not match!",
2206 New_Discr_Id);
2207 return;
2208 end if;
2209 end if;
2210 end;
2212 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
2214 if Ada_83 then
2215 declare
2216 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
2218 begin
2219 -- Grouping (use of comma in param lists) must be the same
2220 -- This is where we catch a misconformance like:
2222 -- A,B : Integer
2223 -- A : Integer; B : Integer
2225 -- which are represented identically in the tree except
2226 -- for the setting of the flags More_Ids and Prev_Ids.
2228 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
2229 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
2230 then
2231 Conformance_Error
2232 ("grouping of & does not match!", New_Discr_Id);
2233 return;
2234 end if;
2235 end;
2236 end if;
2238 Next_Discriminant (Old_Discr);
2239 Next (New_Discr);
2240 end loop;
2242 if Present (Old_Discr) then
2243 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
2244 return;
2246 elsif Present (New_Discr) then
2247 Conformance_Error
2248 ("too many discriminants!", Defining_Identifier (New_Discr));
2249 return;
2250 end if;
2251 end Check_Discriminant_Conformance;
2253 ----------------------------
2254 -- Check_Fully_Conformant --
2255 ----------------------------
2257 procedure Check_Fully_Conformant
2258 (New_Id : Entity_Id;
2259 Old_Id : Entity_Id;
2260 Err_Loc : Node_Id := Empty)
2262 Result : Boolean;
2264 begin
2265 Check_Conformance
2266 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
2267 end Check_Fully_Conformant;
2269 ---------------------------
2270 -- Check_Mode_Conformant --
2271 ---------------------------
2273 procedure Check_Mode_Conformant
2274 (New_Id : Entity_Id;
2275 Old_Id : Entity_Id;
2276 Err_Loc : Node_Id := Empty;
2277 Get_Inst : Boolean := False)
2279 Result : Boolean;
2281 begin
2282 Check_Conformance
2283 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
2284 end Check_Mode_Conformant;
2286 -------------------
2287 -- Check_Returns --
2288 -------------------
2290 procedure Check_Returns
2291 (HSS : Node_Id;
2292 Mode : Character;
2293 Err : out Boolean)
2295 Handler : Node_Id;
2297 procedure Check_Statement_Sequence (L : List_Id);
2298 -- Internal recursive procedure to check a list of statements for proper
2299 -- termination by a return statement (or a transfer of control or a
2300 -- compound statement that is itself internally properly terminated).
2302 ------------------------------
2303 -- Check_Statement_Sequence --
2304 ------------------------------
2306 procedure Check_Statement_Sequence (L : List_Id) is
2307 Last_Stm : Node_Id;
2308 Kind : Node_Kind;
2310 Raise_Exception_Call : Boolean;
2311 -- Set True if statement sequence terminated by Raise_Exception call
2312 -- or a Reraise_Occurrence call.
2314 begin
2315 Raise_Exception_Call := False;
2317 -- Get last real statement
2319 Last_Stm := Last (L);
2321 -- Don't count pragmas
2323 while Nkind (Last_Stm) = N_Pragma
2325 -- Don't count call to SS_Release (can happen after Raise_Exception)
2327 or else
2328 (Nkind (Last_Stm) = N_Procedure_Call_Statement
2329 and then
2330 Nkind (Name (Last_Stm)) = N_Identifier
2331 and then
2332 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
2334 -- Don't count exception junk
2336 or else
2337 ((Nkind (Last_Stm) = N_Goto_Statement
2338 or else Nkind (Last_Stm) = N_Label
2339 or else Nkind (Last_Stm) = N_Object_Declaration)
2340 and then Exception_Junk (Last_Stm))
2341 loop
2342 Prev (Last_Stm);
2343 end loop;
2345 -- Here we have the "real" last statement
2347 Kind := Nkind (Last_Stm);
2349 -- Transfer of control, OK. Note that in the No_Return procedure
2350 -- case, we already diagnosed any explicit return statements, so
2351 -- we can treat them as OK in this context.
2353 if Is_Transfer (Last_Stm) then
2354 return;
2356 -- Check cases of explicit non-indirect procedure calls
2358 elsif Kind = N_Procedure_Call_Statement
2359 and then Is_Entity_Name (Name (Last_Stm))
2360 then
2361 -- Check call to Raise_Exception procedure which is treated
2362 -- specially, as is a call to Reraise_Occurrence.
2364 -- We suppress the warning in these cases since it is likely that
2365 -- the programmer really does not expect to deal with the case
2366 -- of Null_Occurrence, and thus would find a warning about a
2367 -- missing return curious, and raising Program_Error does not
2368 -- seem such a bad behavior if this does occur.
2370 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
2371 or else
2372 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
2373 then
2374 Raise_Exception_Call := True;
2376 -- For Raise_Exception call, test first argument, if it is
2377 -- an attribute reference for a 'Identity call, then we know
2378 -- that the call cannot possibly return.
2380 declare
2381 Arg : constant Node_Id :=
2382 Original_Node (First_Actual (Last_Stm));
2384 begin
2385 if Nkind (Arg) = N_Attribute_Reference
2386 and then Attribute_Name (Arg) = Name_Identity
2387 then
2388 return;
2389 end if;
2390 end;
2391 end if;
2393 -- If statement, need to look inside if there is an else and check
2394 -- each constituent statement sequence for proper termination.
2396 elsif Kind = N_If_Statement
2397 and then Present (Else_Statements (Last_Stm))
2398 then
2399 Check_Statement_Sequence (Then_Statements (Last_Stm));
2400 Check_Statement_Sequence (Else_Statements (Last_Stm));
2402 if Present (Elsif_Parts (Last_Stm)) then
2403 declare
2404 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
2406 begin
2407 while Present (Elsif_Part) loop
2408 Check_Statement_Sequence (Then_Statements (Elsif_Part));
2409 Next (Elsif_Part);
2410 end loop;
2411 end;
2412 end if;
2414 return;
2416 -- Case statement, check each case for proper termination
2418 elsif Kind = N_Case_Statement then
2419 declare
2420 Case_Alt : Node_Id;
2422 begin
2423 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
2424 while Present (Case_Alt) loop
2425 Check_Statement_Sequence (Statements (Case_Alt));
2426 Next_Non_Pragma (Case_Alt);
2427 end loop;
2428 end;
2430 return;
2432 -- Block statement, check its handled sequence of statements
2434 elsif Kind = N_Block_Statement then
2435 declare
2436 Err1 : Boolean;
2438 begin
2439 Check_Returns
2440 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
2442 if Err1 then
2443 Err := True;
2444 end if;
2446 return;
2447 end;
2449 -- Loop statement. If there is an iteration scheme, we can definitely
2450 -- fall out of the loop. Similarly if there is an exit statement, we
2451 -- can fall out. In either case we need a following return.
2453 elsif Kind = N_Loop_Statement then
2454 if Present (Iteration_Scheme (Last_Stm))
2455 or else Has_Exit (Entity (Identifier (Last_Stm)))
2456 then
2457 null;
2459 -- A loop with no exit statement or iteration scheme if either
2460 -- an inifite loop, or it has some other exit (raise/return).
2461 -- In either case, no warning is required.
2463 else
2464 return;
2465 end if;
2467 -- Timed entry call, check entry call and delay alternatives
2469 -- Note: in expanded code, the timed entry call has been converted
2470 -- to a set of expanded statements on which the check will work
2471 -- correctly in any case.
2473 elsif Kind = N_Timed_Entry_Call then
2474 declare
2475 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2476 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
2478 begin
2479 -- If statement sequence of entry call alternative is missing,
2480 -- then we can definitely fall through, and we post the error
2481 -- message on the entry call alternative itself.
2483 if No (Statements (ECA)) then
2484 Last_Stm := ECA;
2486 -- If statement sequence of delay alternative is missing, then
2487 -- we can definitely fall through, and we post the error
2488 -- message on the delay alternative itself.
2490 -- Note: if both ECA and DCA are missing the return, then we
2491 -- post only one message, should be enough to fix the bugs.
2492 -- If not we will get a message next time on the DCA when the
2493 -- ECA is fixed!
2495 elsif No (Statements (DCA)) then
2496 Last_Stm := DCA;
2498 -- Else check both statement sequences
2500 else
2501 Check_Statement_Sequence (Statements (ECA));
2502 Check_Statement_Sequence (Statements (DCA));
2503 return;
2504 end if;
2505 end;
2507 -- Conditional entry call, check entry call and else part
2509 -- Note: in expanded code, the conditional entry call has been
2510 -- converted to a set of expanded statements on which the check
2511 -- will work correctly in any case.
2513 elsif Kind = N_Conditional_Entry_Call then
2514 declare
2515 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
2517 begin
2518 -- If statement sequence of entry call alternative is missing,
2519 -- then we can definitely fall through, and we post the error
2520 -- message on the entry call alternative itself.
2522 if No (Statements (ECA)) then
2523 Last_Stm := ECA;
2525 -- Else check statement sequence and else part
2527 else
2528 Check_Statement_Sequence (Statements (ECA));
2529 Check_Statement_Sequence (Else_Statements (Last_Stm));
2530 return;
2531 end if;
2532 end;
2533 end if;
2535 -- If we fall through, issue appropriate message
2537 if Mode = 'F' then
2539 if not Raise_Exception_Call then
2540 Error_Msg_N
2541 ("?RETURN statement missing following this statement!",
2542 Last_Stm);
2543 Error_Msg_N
2544 ("\?Program_Error may be raised at run time",
2545 Last_Stm);
2546 end if;
2548 -- Note: we set Err even though we have not issued a warning
2549 -- because we still have a case of a missing return. This is
2550 -- an extremely marginal case, probably will never be noticed
2551 -- but we might as well get it right.
2553 Err := True;
2555 else
2556 Error_Msg_N
2557 ("implied return after this statement not allowed (No_Return)",
2558 Last_Stm);
2559 end if;
2560 end Check_Statement_Sequence;
2562 -- Start of processing for Check_Returns
2564 begin
2565 Err := False;
2566 Check_Statement_Sequence (Statements (HSS));
2568 if Present (Exception_Handlers (HSS)) then
2569 Handler := First_Non_Pragma (Exception_Handlers (HSS));
2570 while Present (Handler) loop
2571 Check_Statement_Sequence (Statements (Handler));
2572 Next_Non_Pragma (Handler);
2573 end loop;
2574 end if;
2575 end Check_Returns;
2577 ----------------------------
2578 -- Check_Subprogram_Order --
2579 ----------------------------
2581 procedure Check_Subprogram_Order (N : Node_Id) is
2583 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
2584 -- This is used to check if S1 > S2 in the sense required by this
2585 -- test, for example nameab < namec, but name2 < name10.
2587 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
2588 L1, L2 : Positive;
2589 N1, N2 : Natural;
2591 begin
2592 -- Remove trailing numeric parts
2594 L1 := S1'Last;
2595 while S1 (L1) in '0' .. '9' loop
2596 L1 := L1 - 1;
2597 end loop;
2599 L2 := S2'Last;
2600 while S2 (L2) in '0' .. '9' loop
2601 L2 := L2 - 1;
2602 end loop;
2604 -- If non-numeric parts non-equal, that's decisive
2606 if S1 (S1'First .. L1) < S2 (S2'First .. L2) then
2607 return False;
2609 elsif S1 (S1'First .. L1) > S2 (S2'First .. L2) then
2610 return True;
2612 -- If non-numeric parts equal, compare suffixed numeric parts. Note
2613 -- that a missing suffix is treated as numeric zero in this test.
2615 else
2616 N1 := 0;
2617 while L1 < S1'Last loop
2618 L1 := L1 + 1;
2619 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
2620 end loop;
2622 N2 := 0;
2623 while L2 < S2'Last loop
2624 L2 := L2 + 1;
2625 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
2626 end loop;
2628 return N1 > N2;
2629 end if;
2630 end Subprogram_Name_Greater;
2632 -- Start of processing for Check_Subprogram_Order
2634 begin
2635 -- Check body in alpha order if this is option
2637 if Style_Check_Subprogram_Order
2638 and then Nkind (N) = N_Subprogram_Body
2639 and then Comes_From_Source (N)
2640 and then In_Extended_Main_Source_Unit (N)
2641 then
2642 declare
2643 LSN : String_Ptr
2644 renames Scope_Stack.Table
2645 (Scope_Stack.Last).Last_Subprogram_Name;
2647 Body_Id : constant Entity_Id :=
2648 Defining_Entity (Specification (N));
2650 begin
2651 Get_Decoded_Name_String (Chars (Body_Id));
2653 if LSN /= null then
2654 if Subprogram_Name_Greater
2655 (LSN.all, Name_Buffer (1 .. Name_Len))
2656 then
2657 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
2658 end if;
2660 Free (LSN);
2661 end if;
2663 LSN := new String'(Name_Buffer (1 .. Name_Len));
2664 end;
2665 end if;
2666 end Check_Subprogram_Order;
2668 ------------------------------
2669 -- Check_Subtype_Conformant --
2670 ------------------------------
2672 procedure Check_Subtype_Conformant
2673 (New_Id : Entity_Id;
2674 Old_Id : Entity_Id;
2675 Err_Loc : Node_Id := Empty)
2677 Result : Boolean;
2679 begin
2680 Check_Conformance
2681 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc);
2682 end Check_Subtype_Conformant;
2684 ---------------------------
2685 -- Check_Type_Conformant --
2686 ---------------------------
2688 procedure Check_Type_Conformant
2689 (New_Id : Entity_Id;
2690 Old_Id : Entity_Id;
2691 Err_Loc : Node_Id := Empty)
2693 Result : Boolean;
2695 begin
2696 Check_Conformance
2697 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
2698 end Check_Type_Conformant;
2700 ----------------------
2701 -- Conforming_Types --
2702 ----------------------
2704 function Conforming_Types
2705 (T1 : Entity_Id;
2706 T2 : Entity_Id;
2707 Ctype : Conformance_Type;
2708 Get_Inst : Boolean := False)
2709 return Boolean
2711 Type_1 : Entity_Id := T1;
2712 Type_2 : Entity_Id := T2;
2714 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
2715 -- If neither T1 nor T2 are generic actual types, or if they are
2716 -- in different scopes (e.g. parent and child instances), then verify
2717 -- that the base types are equal. Otherwise T1 and T2 must be
2718 -- on the same subtype chain. The whole purpose of this procedure
2719 -- is to prevent spurious ambiguities in an instantiation that may
2720 -- arise if two distinct generic types are instantiated with the
2721 -- same actual.
2723 ----------------------
2724 -- Base_Types_Match --
2725 ----------------------
2727 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
2728 begin
2729 if T1 = T2 then
2730 return True;
2732 elsif Base_Type (T1) = Base_Type (T2) then
2734 -- The following is too permissive. A more precise test must
2735 -- check that the generic actual is an ancestor subtype of the
2736 -- other ???.
2738 return not Is_Generic_Actual_Type (T1)
2739 or else not Is_Generic_Actual_Type (T2)
2740 or else Scope (T1) /= Scope (T2);
2742 else
2743 return False;
2744 end if;
2745 end Base_Types_Match;
2747 begin
2748 -- The context is an instance association for a formal
2749 -- access-to-subprogram type; the formal parameter types
2750 -- require mapping because they may denote other formal
2751 -- parameters of the generic unit.
2753 if Get_Inst then
2754 Type_1 := Get_Instance_Of (T1);
2755 Type_2 := Get_Instance_Of (T2);
2756 end if;
2758 -- First see if base types match
2760 if Base_Types_Match (Type_1, Type_2) then
2761 return Ctype <= Mode_Conformant
2762 or else Subtypes_Statically_Match (Type_1, Type_2);
2764 elsif Is_Incomplete_Or_Private_Type (Type_1)
2765 and then Present (Full_View (Type_1))
2766 and then Base_Types_Match (Full_View (Type_1), Type_2)
2767 then
2768 return Ctype <= Mode_Conformant
2769 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
2771 elsif Ekind (Type_2) = E_Incomplete_Type
2772 and then Present (Full_View (Type_2))
2773 and then Base_Types_Match (Type_1, Full_View (Type_2))
2774 then
2775 return Ctype <= Mode_Conformant
2776 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
2777 end if;
2779 -- Test anonymous access type case. For this case, static subtype
2780 -- matching is required for mode conformance (RM 6.3.1(15))
2782 if Ekind (Type_1) = E_Anonymous_Access_Type
2783 and then Ekind (Type_2) = E_Anonymous_Access_Type
2784 then
2785 declare
2786 Desig_1 : Entity_Id;
2787 Desig_2 : Entity_Id;
2789 begin
2790 Desig_1 := Directly_Designated_Type (Type_1);
2792 -- An access parameter can designate an incomplete type.
2794 if Ekind (Desig_1) = E_Incomplete_Type
2795 and then Present (Full_View (Desig_1))
2796 then
2797 Desig_1 := Full_View (Desig_1);
2798 end if;
2800 Desig_2 := Directly_Designated_Type (Type_2);
2802 if Ekind (Desig_2) = E_Incomplete_Type
2803 and then Present (Full_View (Desig_2))
2804 then
2805 Desig_2 := Full_View (Desig_2);
2806 end if;
2808 -- The context is an instance association for a formal
2809 -- access-to-subprogram type; formal access parameter
2810 -- designated types require mapping because they may
2811 -- denote other formal parameters of the generic unit.
2813 if Get_Inst then
2814 Desig_1 := Get_Instance_Of (Desig_1);
2815 Desig_2 := Get_Instance_Of (Desig_2);
2816 end if;
2818 -- It is possible for a Class_Wide_Type to be introduced for
2819 -- an incomplete type, in which case there is a separate class_
2820 -- wide type for the full view. The types conform if their
2821 -- Etypes conform, i.e. one may be the full view of the other.
2822 -- This can only happen in the context of an access parameter,
2823 -- other uses of an incomplete Class_Wide_Type are illegal.
2825 if Ekind (Desig_1) = E_Class_Wide_Type
2826 and then Ekind (Desig_2) = E_Class_Wide_Type
2827 then
2828 return
2829 Conforming_Types (Etype (Desig_1), Etype (Desig_2), Ctype);
2830 else
2831 return Base_Type (Desig_1) = Base_Type (Desig_2)
2832 and then (Ctype = Type_Conformant
2833 or else
2834 Subtypes_Statically_Match (Desig_1, Desig_2));
2835 end if;
2836 end;
2838 -- Otherwise definitely no match
2840 else
2841 return False;
2842 end if;
2844 end Conforming_Types;
2846 --------------------------
2847 -- Create_Extra_Formals --
2848 --------------------------
2850 procedure Create_Extra_Formals (E : Entity_Id) is
2851 Formal : Entity_Id;
2852 Last_Formal : Entity_Id;
2853 Last_Extra : Entity_Id;
2854 Formal_Type : Entity_Id;
2855 P_Formal : Entity_Id := Empty;
2857 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id;
2858 -- Add an extra formal, associated with the current Formal. The
2859 -- extra formal is added to the list of extra formals, and also
2860 -- returned as the result. These formals are always of mode IN.
2862 function Add_Extra_Formal (Typ : Entity_Id) return Entity_Id is
2863 EF : constant Entity_Id :=
2864 Make_Defining_Identifier (Sloc (Formal),
2865 Chars => New_External_Name (Chars (Formal), 'F'));
2867 begin
2868 -- We never generate extra formals if expansion is not active
2869 -- because we don't need them unless we are generating code.
2871 if not Expander_Active then
2872 return Empty;
2873 end if;
2875 -- A little optimization. Never generate an extra formal for
2876 -- the _init operand of an initialization procedure, since it
2877 -- could never be used.
2879 if Chars (Formal) = Name_uInit then
2880 return Empty;
2881 end if;
2883 Set_Ekind (EF, E_In_Parameter);
2884 Set_Actual_Subtype (EF, Typ);
2885 Set_Etype (EF, Typ);
2886 Set_Scope (EF, Scope (Formal));
2887 Set_Mechanism (EF, Default_Mechanism);
2888 Set_Formal_Validity (EF);
2890 Set_Extra_Formal (Last_Extra, EF);
2891 Last_Extra := EF;
2892 return EF;
2893 end Add_Extra_Formal;
2895 -- Start of processing for Create_Extra_Formals
2897 begin
2898 -- If this is a derived subprogram then the subtypes of the
2899 -- parent subprogram's formal parameters will be used to
2900 -- to determine the need for extra formals.
2902 if Is_Overloadable (E) and then Present (Alias (E)) then
2903 P_Formal := First_Formal (Alias (E));
2904 end if;
2906 Last_Extra := Empty;
2907 Formal := First_Formal (E);
2908 while Present (Formal) loop
2909 Last_Extra := Formal;
2910 Next_Formal (Formal);
2911 end loop;
2913 -- If Extra_formals where already created, don't do it again
2914 -- This situation may arise for subprogram types created as part
2915 -- of dispatching calls (see Expand_Dispatch_Call)
2917 if Present (Last_Extra) and then
2918 Present (Extra_Formal (Last_Extra))
2919 then
2920 return;
2921 end if;
2923 Formal := First_Formal (E);
2925 while Present (Formal) loop
2927 -- Create extra formal for supporting the attribute 'Constrained.
2928 -- The case of a private type view without discriminants also
2929 -- requires the extra formal if the underlying type has defaulted
2930 -- discriminants.
2932 if Ekind (Formal) /= E_In_Parameter then
2933 if Present (P_Formal) then
2934 Formal_Type := Etype (P_Formal);
2935 else
2936 Formal_Type := Etype (Formal);
2937 end if;
2939 if not Has_Discriminants (Formal_Type)
2940 and then Ekind (Formal_Type) in Private_Kind
2941 and then Present (Underlying_Type (Formal_Type))
2942 then
2943 Formal_Type := Underlying_Type (Formal_Type);
2944 end if;
2946 if Has_Discriminants (Formal_Type)
2947 and then
2948 ((not Is_Constrained (Formal_Type)
2949 and then not Is_Indefinite_Subtype (Formal_Type))
2950 or else Present (Extra_Formal (Formal)))
2951 then
2952 Set_Extra_Constrained
2953 (Formal, Add_Extra_Formal (Standard_Boolean));
2954 end if;
2955 end if;
2957 -- Create extra formal for supporting accessibility checking
2959 -- This is suppressed if we specifically suppress accessibility
2960 -- checks for either the subprogram, or the package in which it
2961 -- resides. However, we do not suppress it simply if the scope
2962 -- has accessibility checks suppressed, since this could cause
2963 -- trouble when clients are compiled with a different suppression
2964 -- setting. The explicit checks are safe from this point of view.
2966 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
2967 and then not
2968 (Suppress_Accessibility_Checks (E)
2969 or else
2970 Suppress_Accessibility_Checks (Scope (E)))
2971 and then
2972 (not Present (P_Formal)
2973 or else Present (Extra_Accessibility (P_Formal)))
2974 then
2975 -- Temporary kludge: for now we avoid creating the extra
2976 -- formal for access parameters of protected operations
2977 -- because of problem with the case of internal protected
2978 -- calls. ???
2980 if Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Definition
2981 and then Nkind (Parent (Parent (Parent (E)))) /= N_Protected_Body
2982 then
2983 Set_Extra_Accessibility
2984 (Formal, Add_Extra_Formal (Standard_Natural));
2985 end if;
2986 end if;
2988 if Present (P_Formal) then
2989 Next_Formal (P_Formal);
2990 end if;
2992 Last_Formal := Formal;
2993 Next_Formal (Formal);
2994 end loop;
2995 end Create_Extra_Formals;
2997 -----------------------------
2998 -- Enter_Overloaded_Entity --
2999 -----------------------------
3001 procedure Enter_Overloaded_Entity (S : Entity_Id) is
3002 E : Entity_Id := Current_Entity_In_Scope (S);
3003 C_E : Entity_Id := Current_Entity (S);
3005 begin
3006 if Present (E) then
3007 Set_Has_Homonym (E);
3008 Set_Has_Homonym (S);
3009 end if;
3011 Set_Is_Immediately_Visible (S);
3012 Set_Scope (S, Current_Scope);
3014 -- Chain new entity if front of homonym in current scope, so that
3015 -- homonyms are contiguous.
3017 if Present (E)
3018 and then E /= C_E
3019 then
3020 while Homonym (C_E) /= E loop
3021 C_E := Homonym (C_E);
3022 end loop;
3024 Set_Homonym (C_E, S);
3026 else
3027 E := C_E;
3028 Set_Current_Entity (S);
3029 end if;
3031 Set_Homonym (S, E);
3033 Append_Entity (S, Current_Scope);
3034 Set_Public_Status (S);
3036 if Debug_Flag_E then
3037 Write_Str ("New overloaded entity chain: ");
3038 Write_Name (Chars (S));
3039 E := S;
3041 while Present (E) loop
3042 Write_Str (" "); Write_Int (Int (E));
3043 E := Homonym (E);
3044 end loop;
3046 Write_Eol;
3047 end if;
3049 -- Generate warning for hiding
3051 if Warn_On_Hiding
3052 and then Comes_From_Source (S)
3053 and then In_Extended_Main_Source_Unit (S)
3054 then
3055 E := S;
3056 loop
3057 E := Homonym (E);
3058 exit when No (E);
3060 -- Warn unless genuine overloading
3062 if (not Is_Overloadable (E))
3063 or else Subtype_Conformant (E, S)
3064 then
3065 Error_Msg_Sloc := Sloc (E);
3066 Error_Msg_N ("declaration of & hides one#?", S);
3067 end if;
3068 end loop;
3069 end if;
3070 end Enter_Overloaded_Entity;
3072 -----------------------------
3073 -- Find_Corresponding_Spec --
3074 -----------------------------
3076 function Find_Corresponding_Spec (N : Node_Id) return Entity_Id is
3077 Spec : constant Node_Id := Specification (N);
3078 Designator : constant Entity_Id := Defining_Entity (Spec);
3080 E : Entity_Id;
3082 begin
3083 E := Current_Entity (Designator);
3085 while Present (E) loop
3087 -- We are looking for a matching spec. It must have the same scope,
3088 -- and the same name, and either be type conformant, or be the case
3089 -- of a library procedure spec and its body (which belong to one
3090 -- another regardless of whether they are type conformant or not).
3092 if Scope (E) = Current_Scope then
3093 if (Current_Scope = Standard_Standard
3094 or else (Ekind (E) = Ekind (Designator)
3095 and then
3096 Type_Conformant (E, Designator)))
3097 then
3098 -- Within an instantiation, we know that spec and body are
3099 -- subtype conformant, because they were subtype conformant
3100 -- in the generic. We choose the subtype-conformant entity
3101 -- here as well, to resolve spurious ambiguities in the
3102 -- instance that were not present in the generic (i.e. when
3103 -- two different types are given the same actual). If we are
3104 -- looking for a spec to match a body, full conformance is
3105 -- expected.
3107 if In_Instance then
3108 Set_Convention (Designator, Convention (E));
3110 if Nkind (N) = N_Subprogram_Body
3111 and then Present (Homonym (E))
3112 and then not Fully_Conformant (E, Designator)
3113 then
3114 goto Next_Entity;
3116 elsif not Subtype_Conformant (E, Designator) then
3117 goto Next_Entity;
3118 end if;
3119 end if;
3121 if not Has_Completion (E) then
3123 if Nkind (N) /= N_Subprogram_Body_Stub then
3124 Set_Corresponding_Spec (N, E);
3125 end if;
3127 Set_Has_Completion (E);
3128 return E;
3130 elsif Nkind (Parent (N)) = N_Subunit then
3132 -- If this is the proper body of a subunit, the completion
3133 -- flag is set when analyzing the stub.
3135 return E;
3137 -- If body already exists, this is an error unless the
3138 -- previous declaration is the implicit declaration of
3139 -- a derived subprogram, or this is a spurious overloading
3140 -- in an instance.
3142 elsif No (Alias (E))
3143 and then not Is_Intrinsic_Subprogram (E)
3144 and then not In_Instance
3145 then
3146 Error_Msg_Sloc := Sloc (E);
3147 if Is_Imported (E) then
3148 Error_Msg_NE
3149 ("body not allowed for imported subprogram & declared#",
3150 N, E);
3151 else
3152 Error_Msg_NE ("duplicate body for & declared#", N, E);
3153 end if;
3154 end if;
3156 elsif Is_Child_Unit (E)
3157 and then
3158 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
3159 and then
3160 Nkind (Parent (Unit_Declaration_Node (Designator)))
3161 = N_Compilation_Unit
3162 then
3164 -- Child units cannot be overloaded, so a conformance mismatch
3165 -- between body and a previous spec is an error.
3167 Error_Msg_N
3168 ("body of child unit does not match previous declaration", N);
3169 end if;
3170 end if;
3172 <<Next_Entity>>
3173 E := Homonym (E);
3174 end loop;
3176 -- On exit, we know that no previous declaration of subprogram exists
3178 return Empty;
3179 end Find_Corresponding_Spec;
3181 ----------------------
3182 -- Fully_Conformant --
3183 ----------------------
3185 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3186 Result : Boolean;
3188 begin
3189 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
3190 return Result;
3191 end Fully_Conformant;
3193 ----------------------------------
3194 -- Fully_Conformant_Expressions --
3195 ----------------------------------
3197 function Fully_Conformant_Expressions
3198 (Given_E1 : Node_Id;
3199 Given_E2 : Node_Id)
3200 return Boolean
3202 E1 : constant Node_Id := Original_Node (Given_E1);
3203 E2 : constant Node_Id := Original_Node (Given_E2);
3204 -- We always test conformance on original nodes, since it is possible
3205 -- for analysis and/or expansion to make things look as though they
3206 -- conform when they do not, e.g. by converting 1+2 into 3.
3208 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
3209 renames Fully_Conformant_Expressions;
3211 function FCL (L1, L2 : List_Id) return Boolean;
3212 -- Compare elements of two lists for conformance. Elements have to
3213 -- be conformant, and actuals inserted as default parameters do not
3214 -- match explicit actuals with the same value.
3216 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
3217 -- Compare an operator node with a function call.
3219 ---------
3220 -- FCL --
3221 ---------
3223 function FCL (L1, L2 : List_Id) return Boolean is
3224 N1, N2 : Node_Id;
3226 begin
3227 if L1 = No_List then
3228 N1 := Empty;
3229 else
3230 N1 := First (L1);
3231 end if;
3233 if L2 = No_List then
3234 N2 := Empty;
3235 else
3236 N2 := First (L2);
3237 end if;
3239 -- Compare two lists, skipping rewrite insertions (we want to
3240 -- compare the original trees, not the expanded versions!)
3242 loop
3243 if Is_Rewrite_Insertion (N1) then
3244 Next (N1);
3245 elsif Is_Rewrite_Insertion (N2) then
3246 Next (N2);
3247 elsif No (N1) then
3248 return No (N2);
3249 elsif No (N2) then
3250 return False;
3251 elsif not FCE (N1, N2) then
3252 return False;
3253 else
3254 Next (N1);
3255 Next (N2);
3256 end if;
3257 end loop;
3258 end FCL;
3260 ---------
3261 -- FCO --
3262 ---------
3264 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
3265 Actuals : constant List_Id := Parameter_Associations (Call_Node);
3266 Act : Node_Id;
3268 begin
3269 if No (Actuals)
3270 or else Entity (Op_Node) /= Entity (Name (Call_Node))
3271 then
3272 return False;
3274 else
3275 Act := First (Actuals);
3277 if Nkind (Op_Node) in N_Binary_Op then
3279 if not FCE (Left_Opnd (Op_Node), Act) then
3280 return False;
3281 end if;
3283 Next (Act);
3284 end if;
3286 return Present (Act)
3287 and then FCE (Right_Opnd (Op_Node), Act)
3288 and then No (Next (Act));
3289 end if;
3290 end FCO;
3292 -- Start of processing for Fully_Conformant_Expressions
3294 begin
3295 -- Non-conformant if paren count does not match. Note: if some idiot
3296 -- complains that we don't do this right for more than 3 levels of
3297 -- parentheses, they will be treated with the respect they deserve :-)
3299 if Paren_Count (E1) /= Paren_Count (E2) then
3300 return False;
3302 -- If same entities are referenced, then they are conformant
3303 -- even if they have different forms (RM 8.3.1(19-20)).
3305 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
3306 if Present (Entity (E1)) then
3307 return Entity (E1) = Entity (E2)
3308 or else (Chars (Entity (E1)) = Chars (Entity (E2))
3309 and then Ekind (Entity (E1)) = E_Discriminant
3310 and then Ekind (Entity (E2)) = E_In_Parameter);
3312 elsif Nkind (E1) = N_Expanded_Name
3313 and then Nkind (E2) = N_Expanded_Name
3314 and then Nkind (Selector_Name (E1)) = N_Character_Literal
3315 and then Nkind (Selector_Name (E2)) = N_Character_Literal
3316 then
3317 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
3319 else
3320 -- Identifiers in component associations don't always have
3321 -- entities, but their names must conform.
3323 return Nkind (E1) = N_Identifier
3324 and then Nkind (E2) = N_Identifier
3325 and then Chars (E1) = Chars (E2);
3326 end if;
3328 elsif Nkind (E1) = N_Character_Literal
3329 and then Nkind (E2) = N_Expanded_Name
3330 then
3331 return Nkind (Selector_Name (E2)) = N_Character_Literal
3332 and then Chars (E1) = Chars (Selector_Name (E2));
3334 elsif Nkind (E2) = N_Character_Literal
3335 and then Nkind (E1) = N_Expanded_Name
3336 then
3337 return Nkind (Selector_Name (E1)) = N_Character_Literal
3338 and then Chars (E2) = Chars (Selector_Name (E1));
3340 elsif Nkind (E1) in N_Op
3341 and then Nkind (E2) = N_Function_Call
3342 then
3343 return FCO (E1, E2);
3345 elsif Nkind (E2) in N_Op
3346 and then Nkind (E1) = N_Function_Call
3347 then
3348 return FCO (E2, E1);
3350 -- Otherwise we must have the same syntactic entity
3352 elsif Nkind (E1) /= Nkind (E2) then
3353 return False;
3355 -- At this point, we specialize by node type
3357 else
3358 case Nkind (E1) is
3360 when N_Aggregate =>
3361 return
3362 FCL (Expressions (E1), Expressions (E2))
3363 and then FCL (Component_Associations (E1),
3364 Component_Associations (E2));
3366 when N_Allocator =>
3367 if Nkind (Expression (E1)) = N_Qualified_Expression
3368 or else
3369 Nkind (Expression (E2)) = N_Qualified_Expression
3370 then
3371 return FCE (Expression (E1), Expression (E2));
3373 -- Check that the subtype marks and any constraints
3374 -- are conformant
3376 else
3377 declare
3378 Indic1 : constant Node_Id := Expression (E1);
3379 Indic2 : constant Node_Id := Expression (E2);
3380 Elt1 : Node_Id;
3381 Elt2 : Node_Id;
3383 begin
3384 if Nkind (Indic1) /= N_Subtype_Indication then
3385 return
3386 Nkind (Indic2) /= N_Subtype_Indication
3387 and then Entity (Indic1) = Entity (Indic2);
3389 elsif Nkind (Indic2) /= N_Subtype_Indication then
3390 return
3391 Nkind (Indic1) /= N_Subtype_Indication
3392 and then Entity (Indic1) = Entity (Indic2);
3394 else
3395 if Entity (Subtype_Mark (Indic1)) /=
3396 Entity (Subtype_Mark (Indic2))
3397 then
3398 return False;
3399 end if;
3401 Elt1 := First (Constraints (Constraint (Indic1)));
3402 Elt2 := First (Constraints (Constraint (Indic2)));
3404 while Present (Elt1) and then Present (Elt2) loop
3405 if not FCE (Elt1, Elt2) then
3406 return False;
3407 end if;
3409 Next (Elt1);
3410 Next (Elt2);
3411 end loop;
3413 return True;
3414 end if;
3415 end;
3416 end if;
3418 when N_Attribute_Reference =>
3419 return
3420 Attribute_Name (E1) = Attribute_Name (E2)
3421 and then FCL (Expressions (E1), Expressions (E2));
3423 when N_Binary_Op =>
3424 return
3425 Entity (E1) = Entity (E2)
3426 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
3427 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3429 when N_And_Then | N_Or_Else | N_In | N_Not_In =>
3430 return
3431 FCE (Left_Opnd (E1), Left_Opnd (E2))
3432 and then
3433 FCE (Right_Opnd (E1), Right_Opnd (E2));
3435 when N_Character_Literal =>
3436 return
3437 Char_Literal_Value (E1) = Char_Literal_Value (E2);
3439 when N_Component_Association =>
3440 return
3441 FCL (Choices (E1), Choices (E2))
3442 and then FCE (Expression (E1), Expression (E2));
3444 when N_Conditional_Expression =>
3445 return
3446 FCL (Expressions (E1), Expressions (E2));
3448 when N_Explicit_Dereference =>
3449 return
3450 FCE (Prefix (E1), Prefix (E2));
3452 when N_Extension_Aggregate =>
3453 return
3454 FCL (Expressions (E1), Expressions (E2))
3455 and then Null_Record_Present (E1) =
3456 Null_Record_Present (E2)
3457 and then FCL (Component_Associations (E1),
3458 Component_Associations (E2));
3460 when N_Function_Call =>
3461 return
3462 FCE (Name (E1), Name (E2))
3463 and then FCL (Parameter_Associations (E1),
3464 Parameter_Associations (E2));
3466 when N_Indexed_Component =>
3467 return
3468 FCE (Prefix (E1), Prefix (E2))
3469 and then FCL (Expressions (E1), Expressions (E2));
3471 when N_Integer_Literal =>
3472 return (Intval (E1) = Intval (E2));
3474 when N_Null =>
3475 return True;
3477 when N_Operator_Symbol =>
3478 return
3479 Chars (E1) = Chars (E2);
3481 when N_Others_Choice =>
3482 return True;
3484 when N_Parameter_Association =>
3485 return
3487 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
3488 and then FCE (Explicit_Actual_Parameter (E1),
3489 Explicit_Actual_Parameter (E2));
3491 when N_Qualified_Expression =>
3492 return
3493 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3494 and then FCE (Expression (E1), Expression (E2));
3496 when N_Range =>
3497 return
3498 FCE (Low_Bound (E1), Low_Bound (E2))
3499 and then FCE (High_Bound (E1), High_Bound (E2));
3501 when N_Real_Literal =>
3502 return (Realval (E1) = Realval (E2));
3504 when N_Selected_Component =>
3505 return
3506 FCE (Prefix (E1), Prefix (E2))
3507 and then FCE (Selector_Name (E1), Selector_Name (E2));
3509 when N_Slice =>
3510 return
3511 FCE (Prefix (E1), Prefix (E2))
3512 and then FCE (Discrete_Range (E1), Discrete_Range (E2));
3514 when N_String_Literal =>
3515 declare
3516 S1 : constant String_Id := Strval (E1);
3517 S2 : constant String_Id := Strval (E2);
3518 L1 : constant Nat := String_Length (S1);
3519 L2 : constant Nat := String_Length (S2);
3521 begin
3522 if L1 /= L2 then
3523 return False;
3525 else
3526 for J in 1 .. L1 loop
3527 if Get_String_Char (S1, J) /=
3528 Get_String_Char (S2, J)
3529 then
3530 return False;
3531 end if;
3532 end loop;
3534 return True;
3535 end if;
3536 end;
3538 when N_Type_Conversion =>
3539 return
3540 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3541 and then FCE (Expression (E1), Expression (E2));
3543 when N_Unary_Op =>
3544 return
3545 Entity (E1) = Entity (E2)
3546 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
3548 when N_Unchecked_Type_Conversion =>
3549 return
3550 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
3551 and then FCE (Expression (E1), Expression (E2));
3553 -- All other node types cannot appear in this context. Strictly
3554 -- we should raise a fatal internal error. Instead we just ignore
3555 -- the nodes. This means that if anyone makes a mistake in the
3556 -- expander and mucks an expression tree irretrievably, the
3557 -- result will be a failure to detect a (probably very obscure)
3558 -- case of non-conformance, which is better than bombing on some
3559 -- case where two expressions do in fact conform.
3561 when others =>
3562 return True;
3564 end case;
3565 end if;
3566 end Fully_Conformant_Expressions;
3568 --------------------
3569 -- Install_Entity --
3570 --------------------
3572 procedure Install_Entity (E : Entity_Id) is
3573 Prev : constant Entity_Id := Current_Entity (E);
3575 begin
3576 Set_Is_Immediately_Visible (E);
3577 Set_Current_Entity (E);
3578 Set_Homonym (E, Prev);
3579 end Install_Entity;
3581 ---------------------
3582 -- Install_Formals --
3583 ---------------------
3585 procedure Install_Formals (Id : Entity_Id) is
3586 F : Entity_Id;
3588 begin
3589 F := First_Formal (Id);
3591 while Present (F) loop
3592 Install_Entity (F);
3593 Next_Formal (F);
3594 end loop;
3595 end Install_Formals;
3597 ---------------------------------
3598 -- Is_Non_Overriding_Operation --
3599 ---------------------------------
3601 function Is_Non_Overriding_Operation
3602 (Prev_E : Entity_Id;
3603 New_E : Entity_Id)
3604 return Boolean
3606 Formal : Entity_Id;
3607 F_Typ : Entity_Id;
3608 G_Typ : Entity_Id := Empty;
3610 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
3611 -- If F_Type is a derived type associated with a generic actual
3612 -- subtype, then return its Generic_Parent_Type attribute, else
3613 -- return Empty.
3615 function Types_Correspond
3616 (P_Type : Entity_Id;
3617 N_Type : Entity_Id)
3618 return Boolean;
3619 -- Returns true if and only if the types (or designated types
3620 -- in the case of anonymous access types) are the same or N_Type
3621 -- is derived directly or indirectly from P_Type.
3623 -----------------------------
3624 -- Get_Generic_Parent_Type --
3625 -----------------------------
3627 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
3628 G_Typ : Entity_Id;
3629 Indic : Node_Id;
3631 begin
3632 if Is_Derived_Type (F_Typ)
3633 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
3634 then
3635 -- The tree must be traversed to determine the parent
3636 -- subtype in the generic unit, which unfortunately isn't
3637 -- always available via semantic attributes. ???
3638 -- (Note: The use of Original_Node is needed for cases
3639 -- where a full derived type has been rewritten.)
3641 Indic := Subtype_Indication
3642 (Type_Definition (Original_Node (Parent (F_Typ))));
3644 if Nkind (Indic) = N_Subtype_Indication then
3645 G_Typ := Entity (Subtype_Mark (Indic));
3646 else
3647 G_Typ := Entity (Indic);
3648 end if;
3650 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
3651 and then Present (Generic_Parent_Type (Parent (G_Typ)))
3652 then
3653 return Generic_Parent_Type (Parent (G_Typ));
3654 end if;
3655 end if;
3657 return Empty;
3658 end Get_Generic_Parent_Type;
3660 ----------------------
3661 -- Types_Correspond --
3662 ----------------------
3664 function Types_Correspond
3665 (P_Type : Entity_Id;
3666 N_Type : Entity_Id)
3667 return Boolean
3669 Prev_Type : Entity_Id := Base_Type (P_Type);
3670 New_Type : Entity_Id := Base_Type (N_Type);
3672 begin
3673 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
3674 Prev_Type := Designated_Type (Prev_Type);
3675 end if;
3677 if Ekind (New_Type) = E_Anonymous_Access_Type then
3678 New_Type := Designated_Type (New_Type);
3679 end if;
3681 if Prev_Type = New_Type then
3682 return True;
3684 elsif not Is_Class_Wide_Type (New_Type) then
3685 while Etype (New_Type) /= New_Type loop
3686 New_Type := Etype (New_Type);
3687 if New_Type = Prev_Type then
3688 return True;
3689 end if;
3690 end loop;
3691 end if;
3692 return False;
3693 end Types_Correspond;
3695 -- Start of processing for Is_Non_Overriding_Operation
3697 begin
3698 -- In the case where both operations are implicit derived
3699 -- subprograms then neither overrides the other. This can
3700 -- only occur in certain obscure cases (e.g., derivation
3701 -- from homographs created in a generic instantiation).
3703 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
3704 return True;
3706 elsif Ekind (Current_Scope) = E_Package
3707 and then Is_Generic_Instance (Current_Scope)
3708 and then In_Private_Part (Current_Scope)
3709 and then Comes_From_Source (New_E)
3710 then
3711 -- We examine the formals and result subtype of the inherited
3712 -- operation, to determine whether their type is derived from
3713 -- (the instance of) a generic type.
3715 Formal := First_Formal (Prev_E);
3717 while Present (Formal) loop
3718 F_Typ := Base_Type (Etype (Formal));
3720 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3721 F_Typ := Designated_Type (F_Typ);
3722 end if;
3724 G_Typ := Get_Generic_Parent_Type (F_Typ);
3726 Next_Formal (Formal);
3727 end loop;
3729 if not Present (G_Typ) and then Ekind (Prev_E) = E_Function then
3730 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
3731 end if;
3733 if No (G_Typ) then
3734 return False;
3735 end if;
3737 -- If the generic type is a private type, then the original
3738 -- operation was not overriding in the generic, because there was
3739 -- no primitive operation to override.
3741 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
3742 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
3743 N_Formal_Private_Type_Definition
3744 then
3745 return True;
3747 -- The generic parent type is the ancestor of a formal derived
3748 -- type declaration. We need to check whether it has a primitive
3749 -- operation that should be overridden by New_E in the generic.
3751 else
3752 declare
3753 P_Formal : Entity_Id;
3754 N_Formal : Entity_Id;
3755 P_Typ : Entity_Id;
3756 N_Typ : Entity_Id;
3757 P_Prim : Entity_Id;
3758 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
3760 begin
3761 while Present (Prim_Elt) loop
3762 P_Prim := Node (Prim_Elt);
3763 if Chars (P_Prim) = Chars (New_E)
3764 and then Ekind (P_Prim) = Ekind (New_E)
3765 then
3766 P_Formal := First_Formal (P_Prim);
3767 N_Formal := First_Formal (New_E);
3768 while Present (P_Formal) and then Present (N_Formal) loop
3769 P_Typ := Etype (P_Formal);
3770 N_Typ := Etype (N_Formal);
3772 if not Types_Correspond (P_Typ, N_Typ) then
3773 exit;
3774 end if;
3776 Next_Entity (P_Formal);
3777 Next_Entity (N_Formal);
3778 end loop;
3780 -- Found a matching primitive operation belonging to
3781 -- the formal ancestor type, so the new subprogram
3782 -- is overriding.
3784 if not Present (P_Formal)
3785 and then not Present (N_Formal)
3786 and then (Ekind (New_E) /= E_Function
3787 or else
3788 Types_Correspond
3789 (Etype (P_Prim), Etype (New_E)))
3790 then
3791 return False;
3792 end if;
3793 end if;
3795 Next_Elmt (Prim_Elt);
3796 end loop;
3798 -- If no match found, then the new subprogram does
3799 -- not override in the generic (nor in the instance).
3801 return True;
3802 end;
3803 end if;
3804 else
3805 return False;
3806 end if;
3807 end Is_Non_Overriding_Operation;
3809 ------------------------------
3810 -- Make_Inequality_Operator --
3811 ------------------------------
3813 -- S is the defining identifier of an equality operator. We build a
3814 -- subprogram declaration with the right signature. This operation is
3815 -- intrinsic, because it is always expanded as the negation of the
3816 -- call to the equality function.
3818 procedure Make_Inequality_Operator (S : Entity_Id) is
3819 Loc : constant Source_Ptr := Sloc (S);
3820 Decl : Node_Id;
3821 Formals : List_Id;
3822 Op_Name : Entity_Id;
3824 A : Entity_Id;
3825 B : Entity_Id;
3827 begin
3828 -- Check that equality was properly defined.
3830 if No (Next_Formal (First_Formal (S))) then
3831 return;
3832 end if;
3834 A := Make_Defining_Identifier (Loc, Chars (First_Formal (S)));
3835 B := Make_Defining_Identifier (Loc,
3836 Chars (Next_Formal (First_Formal (S))));
3838 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
3840 Formals := New_List (
3841 Make_Parameter_Specification (Loc,
3842 Defining_Identifier => A,
3843 Parameter_Type =>
3844 New_Reference_To (Etype (First_Formal (S)), Loc)),
3846 Make_Parameter_Specification (Loc,
3847 Defining_Identifier => B,
3848 Parameter_Type =>
3849 New_Reference_To (Etype (Next_Formal (First_Formal (S))), Loc)));
3851 Decl :=
3852 Make_Subprogram_Declaration (Loc,
3853 Specification =>
3854 Make_Function_Specification (Loc,
3855 Defining_Unit_Name => Op_Name,
3856 Parameter_Specifications => Formals,
3857 Subtype_Mark => New_Reference_To (Standard_Boolean, Loc)));
3859 -- Insert inequality right after equality if it is explicit or after
3860 -- the derived type when implicit. These entities are created only
3861 -- for visibility purposes, and eventually replaced in the course of
3862 -- expansion, so they do not need to be attached to the tree and seen
3863 -- by the back-end. Keeping them internal also avoids spurious freezing
3864 -- problems. The parent field is set simply to make analysis safe.
3866 if No (Alias (S)) then
3867 Set_Parent (Decl, Parent (Unit_Declaration_Node (S)));
3868 else
3869 Set_Parent (Decl, Parent (Parent (Etype (First_Formal (S)))));
3870 end if;
3872 Mark_Rewrite_Insertion (Decl);
3873 Set_Is_Intrinsic_Subprogram (Op_Name);
3874 Analyze (Decl);
3875 Set_Has_Completion (Op_Name);
3876 Set_Corresponding_Equality (Op_Name, S);
3877 Set_Is_Abstract (Op_Name, Is_Abstract (S));
3879 end Make_Inequality_Operator;
3881 ----------------------
3882 -- May_Need_Actuals --
3883 ----------------------
3885 procedure May_Need_Actuals (Fun : Entity_Id) is
3886 F : Entity_Id;
3887 B : Boolean;
3889 begin
3890 F := First_Formal (Fun);
3891 B := True;
3893 while Present (F) loop
3894 if No (Default_Value (F)) then
3895 B := False;
3896 exit;
3897 end if;
3899 Next_Formal (F);
3900 end loop;
3902 Set_Needs_No_Actuals (Fun, B);
3903 end May_Need_Actuals;
3905 ---------------------
3906 -- Mode_Conformant --
3907 ---------------------
3909 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
3910 Result : Boolean;
3912 begin
3913 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
3914 return Result;
3915 end Mode_Conformant;
3917 ---------------------------
3918 -- New_Overloaded_Entity --
3919 ---------------------------
3921 procedure New_Overloaded_Entity
3922 (S : Entity_Id;
3923 Derived_Type : Entity_Id := Empty)
3925 E : Entity_Id := Current_Entity_In_Scope (S);
3926 Prev_Vis : Entity_Id := Empty;
3928 function Is_Private_Declaration (E : Entity_Id) return Boolean;
3929 -- Check that E is declared in the private part of the current package,
3930 -- or in the package body, where it may hide a previous declaration.
3931 -- We can' use In_Private_Part by itself because this flag is also
3932 -- set when freezing entities, so we must examine the place of the
3933 -- declaration in the tree, and recognize wrapper packages as well.
3935 procedure Maybe_Primitive_Operation (Overriding : Boolean := False);
3936 -- If the subprogram being analyzed is a primitive operation of
3937 -- the type of one of its formals, set the corresponding flag.
3939 ----------------------------
3940 -- Is_Private_Declaration --
3941 ----------------------------
3943 function Is_Private_Declaration (E : Entity_Id) return Boolean is
3944 Priv_Decls : List_Id;
3945 Decl : constant Node_Id := Unit_Declaration_Node (E);
3947 begin
3948 if Is_Package (Current_Scope)
3949 and then In_Private_Part (Current_Scope)
3950 then
3951 Priv_Decls :=
3952 Private_Declarations (
3953 Specification (Unit_Declaration_Node (Current_Scope)));
3955 return In_Package_Body (Current_Scope)
3956 or else List_Containing (Decl) = Priv_Decls
3957 or else (Nkind (Parent (Decl)) = N_Package_Specification
3958 and then not Is_Compilation_Unit (
3959 Defining_Entity (Parent (Decl)))
3960 and then List_Containing (Parent (Parent (Decl)))
3961 = Priv_Decls);
3962 else
3963 return False;
3964 end if;
3965 end Is_Private_Declaration;
3967 -------------------------------
3968 -- Maybe_Primitive_Operation --
3969 -------------------------------
3971 procedure Maybe_Primitive_Operation (Overriding : Boolean := False) is
3972 Formal : Entity_Id;
3973 F_Typ : Entity_Id;
3974 B_Typ : Entity_Id;
3976 function Visible_Part_Type (T : Entity_Id) return Boolean;
3977 -- Returns true if T is declared in the visible part of
3978 -- the current package scope; otherwise returns false.
3979 -- Assumes that T is declared in a package.
3981 procedure Check_Private_Overriding (T : Entity_Id);
3982 -- Checks that if a primitive abstract subprogram of a visible
3983 -- abstract type is declared in a private part, then it must
3984 -- override an abstract subprogram declared in the visible part.
3985 -- Also checks that if a primitive function with a controlling
3986 -- result is declared in a private part, then it must override
3987 -- a function declared in the visible part.
3989 ------------------------------
3990 -- Check_Private_Overriding --
3991 ------------------------------
3993 procedure Check_Private_Overriding (T : Entity_Id) is
3994 begin
3995 if Ekind (Current_Scope) = E_Package
3996 and then In_Private_Part (Current_Scope)
3997 and then Visible_Part_Type (T)
3998 and then not In_Instance
3999 then
4000 if Is_Abstract (T)
4001 and then Is_Abstract (S)
4002 and then (not Overriding or else not Is_Abstract (E))
4003 then
4004 Error_Msg_N ("abstract subprograms must be visible "
4005 & "('R'M 3.9.3(10))!", S);
4007 elsif Ekind (S) = E_Function
4008 and then Is_Tagged_Type (T)
4009 and then T = Base_Type (Etype (S))
4010 and then not Overriding
4011 then
4012 Error_Msg_N
4013 ("private function with tagged result must"
4014 & " override visible-part function", S);
4015 Error_Msg_N
4016 ("\move subprogram to the visible part"
4017 & " ('R'M 3.9.3(10))", S);
4018 end if;
4019 end if;
4020 end Check_Private_Overriding;
4022 -----------------------
4023 -- Visible_Part_Type --
4024 -----------------------
4026 function Visible_Part_Type (T : Entity_Id) return Boolean is
4027 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
4028 N : Node_Id;
4030 begin
4031 -- If the entity is a private type, then it must be
4032 -- declared in a visible part.
4034 if Ekind (T) in Private_Kind then
4035 return True;
4036 end if;
4038 -- Otherwise, we traverse the visible part looking for its
4039 -- corresponding declaration. We cannot use the declaration
4040 -- node directly because in the private part the entity of a
4041 -- private type is the one in the full view, which does not
4042 -- indicate that it is the completion of something visible.
4044 N := First (Visible_Declarations (Specification (P)));
4045 while Present (N) loop
4046 if Nkind (N) = N_Full_Type_Declaration
4047 and then Present (Defining_Identifier (N))
4048 and then T = Defining_Identifier (N)
4049 then
4050 return True;
4052 elsif (Nkind (N) = N_Private_Type_Declaration
4053 or else
4054 Nkind (N) = N_Private_Extension_Declaration)
4055 and then Present (Defining_Identifier (N))
4056 and then T = Full_View (Defining_Identifier (N))
4057 then
4058 return True;
4059 end if;
4061 Next (N);
4062 end loop;
4064 return False;
4065 end Visible_Part_Type;
4067 -- Start of processing for Maybe_Primitive_Operation
4069 begin
4070 if not Comes_From_Source (S) then
4071 null;
4073 elsif (Ekind (Current_Scope) = E_Package
4074 and then not In_Package_Body (Current_Scope))
4075 or else Overriding
4076 then
4077 -- For function, check return type
4079 if Ekind (S) = E_Function then
4080 B_Typ := Base_Type (Etype (S));
4082 if Scope (B_Typ) = Current_Scope then
4083 Set_Has_Primitive_Operations (B_Typ);
4084 Check_Private_Overriding (B_Typ);
4085 end if;
4086 end if;
4088 -- For all subprograms, check formals
4090 Formal := First_Formal (S);
4091 while Present (Formal) loop
4092 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
4093 F_Typ := Designated_Type (Etype (Formal));
4094 else
4095 F_Typ := Etype (Formal);
4096 end if;
4098 B_Typ := Base_Type (F_Typ);
4100 if Scope (B_Typ) = Current_Scope then
4101 Set_Has_Primitive_Operations (B_Typ);
4102 Check_Private_Overriding (B_Typ);
4103 end if;
4105 Next_Formal (Formal);
4106 end loop;
4107 end if;
4108 end Maybe_Primitive_Operation;
4110 -- Start of processing for New_Overloaded_Entity
4112 begin
4113 if No (E) then
4114 Enter_Overloaded_Entity (S);
4115 Check_Dispatching_Operation (S, Empty);
4116 Maybe_Primitive_Operation;
4118 elsif not Is_Overloadable (E) then
4120 -- Check for spurious conflict produced by a subprogram that has the
4121 -- same name as that of the enclosing generic package. The conflict
4122 -- occurs within an instance, between the subprogram and the renaming
4123 -- declaration for the package. After the subprogram, the package
4124 -- renaming declaration becomes hidden.
4126 if Ekind (E) = E_Package
4127 and then Present (Renamed_Object (E))
4128 and then Renamed_Object (E) = Current_Scope
4129 and then Nkind (Parent (Renamed_Object (E))) =
4130 N_Package_Specification
4131 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
4132 then
4133 Set_Is_Hidden (E);
4134 Set_Is_Immediately_Visible (E, False);
4135 Enter_Overloaded_Entity (S);
4136 Set_Homonym (S, Homonym (E));
4137 Check_Dispatching_Operation (S, Empty);
4139 -- If the subprogram is implicit it is hidden by the previous
4140 -- declaration. However if it is dispatching, it must appear in
4141 -- the dispatch table anyway, because it can be dispatched to
4142 -- even if it cannot be called directly.
4144 elsif Present (Alias (S))
4145 and then not Comes_From_Source (S)
4146 then
4147 Set_Scope (S, Current_Scope);
4149 if Is_Dispatching_Operation (Alias (S)) then
4150 Check_Dispatching_Operation (S, Empty);
4151 end if;
4153 return;
4155 else
4156 Error_Msg_Sloc := Sloc (E);
4157 Error_Msg_N ("& conflicts with declaration#", S);
4159 -- Useful additional warning.
4161 if Is_Generic_Unit (E) then
4162 Error_Msg_N ("\previous generic unit cannot be overloaded", S);
4163 end if;
4165 return;
4166 end if;
4168 else
4169 -- E exists and is overloadable. Determine whether S is the body
4170 -- of E, a new overloaded entity with a different signature, or
4171 -- an error altogether.
4173 while Present (E) loop
4174 if Scope (E) /= Current_Scope then
4175 null;
4177 elsif Type_Conformant (E, S) then
4179 -- If the old and new entities have the same profile and
4180 -- one is not the body of the other, then this is an error,
4181 -- unless one of them is implicitly declared.
4183 -- There are some cases when both can be implicit, for example
4184 -- when both a literal and a function that overrides it are
4185 -- inherited in a derivation, or when an inhertited operation
4186 -- of a tagged full type overrides the ineherited operation of
4187 -- a private extension. Ada 83 had a special rule for the
4188 -- the literal case. In Ada95, the later implicit operation
4189 -- hides the former, and the literal is always the former.
4190 -- In the odd case where both are derived operations declared
4191 -- at the same point, both operations should be declared,
4192 -- and in that case we bypass the following test and proceed
4193 -- to the next part (this can only occur for certain obscure
4194 -- cases involving homographs in instances and can't occur for
4195 -- dispatching operations ???). Note that the following
4196 -- condition is less than clear. For example, it's not at
4197 -- all clear why there's a test for E_Entry here. ???
4199 if Present (Alias (S))
4200 and then (No (Alias (E))
4201 or else Comes_From_Source (E)
4202 or else Is_Dispatching_Operation (E))
4203 and then
4204 (Ekind (E) = E_Entry
4205 or else Ekind (E) /= E_Enumeration_Literal)
4206 then
4207 -- When an derived operation is overloaded it may be due
4208 -- to the fact that the full view of a private extension
4209 -- re-inherits. It has to be dealt with.
4211 if Is_Package (Current_Scope)
4212 and then In_Private_Part (Current_Scope)
4213 then
4214 Check_Operation_From_Private_View (S, E);
4215 end if;
4217 -- In any case the implicit operation remains hidden by
4218 -- the existing declaration.
4220 return;
4222 -- Within an instance, the renaming declarations for
4223 -- actual subprograms may become ambiguous, but they do
4224 -- not hide each other.
4226 elsif Ekind (E) /= E_Entry
4227 and then not Comes_From_Source (E)
4228 and then not Is_Generic_Instance (E)
4229 and then (Present (Alias (E))
4230 or else Is_Intrinsic_Subprogram (E))
4231 and then (not In_Instance
4232 or else No (Parent (E))
4233 or else Nkind (Unit_Declaration_Node (E)) /=
4234 N_Subprogram_Renaming_Declaration)
4235 then
4236 -- A subprogram child unit is not allowed to override
4237 -- an inherited subprogram (10.1.1(20)).
4239 if Is_Child_Unit (S) then
4240 Error_Msg_N
4241 ("child unit overrides inherited subprogram in parent",
4243 return;
4244 end if;
4246 if Is_Non_Overriding_Operation (E, S) then
4247 Enter_Overloaded_Entity (S);
4248 if not Present (Derived_Type)
4249 or else Is_Tagged_Type (Derived_Type)
4250 then
4251 Check_Dispatching_Operation (S, Empty);
4252 end if;
4254 return;
4255 end if;
4257 -- E is a derived operation or an internal operator which
4258 -- is being overridden. Remove E from further visibility.
4259 -- Furthermore, if E is a dispatching operation, it must be
4260 -- replaced in the list of primitive operations of its type
4261 -- (see Override_Dispatching_Operation).
4263 declare
4264 Prev : Entity_Id;
4266 begin
4267 Prev := First_Entity (Current_Scope);
4269 while Present (Prev)
4270 and then Next_Entity (Prev) /= E
4271 loop
4272 Next_Entity (Prev);
4273 end loop;
4275 -- It is possible for E to be in the current scope and
4276 -- yet not in the entity chain. This can only occur in a
4277 -- generic context where E is an implicit concatenation
4278 -- in the formal part, because in a generic body the
4279 -- entity chain starts with the formals.
4281 pragma Assert
4282 (Present (Prev) or else Chars (E) = Name_Op_Concat);
4284 -- E must be removed both from the entity_list of the
4285 -- current scope, and from the visibility chain
4287 if Debug_Flag_E then
4288 Write_Str ("Override implicit operation ");
4289 Write_Int (Int (E));
4290 Write_Eol;
4291 end if;
4293 -- If E is a predefined concatenation, it stands for four
4294 -- different operations. As a result, a single explicit
4295 -- declaration does not hide it. In a possible ambiguous
4296 -- situation, Disambiguate chooses the user-defined op,
4297 -- so it is correct to retain the previous internal one.
4299 if Chars (E) /= Name_Op_Concat
4300 or else Ekind (E) /= E_Operator
4301 then
4302 -- For nondispatching derived operations that are
4303 -- overridden by a subprogram declared in the private
4304 -- part of a package, we retain the derived subprogram
4305 -- but mark it as not immediately visible. If the
4306 -- derived operation was declared in the visible part
4307 -- then this ensures that it will still be visible
4308 -- outside the package with the proper signature
4309 -- (calls from outside must also be directed to this
4310 -- version rather than the overriding one, unlike the
4311 -- dispatching case). Calls from inside the package
4312 -- will still resolve to the overriding subprogram
4313 -- since the derived one is marked as not visible
4314 -- within the package.
4316 -- If the private operation is dispatching, we achieve
4317 -- the overriding by keeping the implicit operation
4318 -- but setting its alias to be the overring one. In
4319 -- this fashion the proper body is executed in all
4320 -- cases, but the original signature is used outside
4321 -- of the package.
4323 -- If the overriding is not in the private part, we
4324 -- remove the implicit operation altogether.
4326 if Is_Private_Declaration (S) then
4328 if not Is_Dispatching_Operation (E) then
4329 Set_Is_Immediately_Visible (E, False);
4330 else
4332 -- work done in Override_Dispatching_Operation.
4334 null;
4335 end if;
4336 else
4338 -- Find predecessor of E in Homonym chain.
4340 if E = Current_Entity (E) then
4341 Prev_Vis := Empty;
4342 else
4343 Prev_Vis := Current_Entity (E);
4344 while Homonym (Prev_Vis) /= E loop
4345 Prev_Vis := Homonym (Prev_Vis);
4346 end loop;
4347 end if;
4349 if Prev_Vis /= Empty then
4351 -- Skip E in the visibility chain
4353 Set_Homonym (Prev_Vis, Homonym (E));
4355 else
4356 Set_Name_Entity_Id (Chars (E), Homonym (E));
4357 end if;
4359 Set_Next_Entity (Prev, Next_Entity (E));
4361 if No (Next_Entity (Prev)) then
4362 Set_Last_Entity (Current_Scope, Prev);
4363 end if;
4365 end if;
4366 end if;
4368 Enter_Overloaded_Entity (S);
4370 if Is_Dispatching_Operation (E) then
4371 -- An overriding dispatching subprogram inherits
4372 -- the convention of the overridden subprogram
4373 -- (by AI-117).
4375 Set_Convention (S, Convention (E));
4377 Check_Dispatching_Operation (S, E);
4378 else
4379 Check_Dispatching_Operation (S, Empty);
4380 end if;
4382 Maybe_Primitive_Operation (Overriding => True);
4383 goto Check_Inequality;
4384 end;
4386 -- Apparent redeclarations in instances can occur when two
4387 -- formal types get the same actual type. The subprograms in
4388 -- in the instance are legal, even if not callable from the
4389 -- outside. Calls from within are disambiguated elsewhere.
4390 -- For dispatching operations in the visible part, the usual
4391 -- rules apply, and operations with the same profile are not
4392 -- legal (B830001).
4394 elsif (In_Instance_Visible_Part
4395 and then not Is_Dispatching_Operation (E))
4396 or else In_Instance_Not_Visible
4397 then
4398 null;
4400 -- Here we have a real error (identical profile)
4402 else
4403 Error_Msg_Sloc := Sloc (E);
4405 -- Avoid cascaded errors if the entity appears in
4406 -- subsequent calls.
4408 Set_Scope (S, Current_Scope);
4410 Error_Msg_N ("& conflicts with declaration#", S);
4412 if Is_Generic_Instance (S)
4413 and then not Has_Completion (E)
4414 then
4415 Error_Msg_N
4416 ("\instantiation cannot provide body for it", S);
4417 end if;
4419 return;
4420 end if;
4422 else
4423 null;
4424 end if;
4426 Prev_Vis := E;
4427 E := Homonym (E);
4428 end loop;
4430 -- On exit, we know that S is a new entity
4432 Enter_Overloaded_Entity (S);
4433 Maybe_Primitive_Operation;
4435 -- If S is a derived operation for an untagged type then
4436 -- by definition it's not a dispatching operation (even
4437 -- if the parent operation was dispatching), so we don't
4438 -- call Check_Dispatching_Operation in that case.
4440 if not Present (Derived_Type)
4441 or else Is_Tagged_Type (Derived_Type)
4442 then
4443 Check_Dispatching_Operation (S, Empty);
4444 end if;
4445 end if;
4447 -- If this is a user-defined equality operator that is not
4448 -- a derived subprogram, create the corresponding inequality.
4449 -- If the operation is dispatching, the expansion is done
4450 -- elsewhere, and we do not create an explicit inequality
4451 -- operation.
4453 <<Check_Inequality>>
4454 if Chars (S) = Name_Op_Eq
4455 and then Etype (S) = Standard_Boolean
4456 and then Present (Parent (S))
4457 and then not Is_Dispatching_Operation (S)
4458 then
4459 Make_Inequality_Operator (S);
4460 end if;
4462 end New_Overloaded_Entity;
4464 ---------------------
4465 -- Process_Formals --
4466 ---------------------
4468 procedure Process_Formals
4469 (T : List_Id;
4470 Related_Nod : Node_Id)
4472 Param_Spec : Node_Id;
4473 Formal : Entity_Id;
4474 Formal_Type : Entity_Id;
4475 Default : Node_Id;
4476 Ptype : Entity_Id;
4478 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
4479 -- Check whether the default has a class-wide type. After analysis
4480 -- the default has the type of the formal, so we must also check
4481 -- explicitly for an access attribute.
4483 ---------------------------
4484 -- Is_Class_Wide_Default --
4485 ---------------------------
4487 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
4488 begin
4489 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
4490 or else (Nkind (D) = N_Attribute_Reference
4491 and then Attribute_Name (D) = Name_Access
4492 and then Is_Class_Wide_Type (Etype (Prefix (D))));
4493 end Is_Class_Wide_Default;
4495 -- Start of processing for Process_Formals
4497 begin
4498 -- In order to prevent premature use of the formals in the same formal
4499 -- part, the Ekind is left undefined until all default expressions are
4500 -- analyzed. The Ekind is established in a separate loop at the end.
4502 Param_Spec := First (T);
4504 while Present (Param_Spec) loop
4506 Formal := Defining_Identifier (Param_Spec);
4507 Enter_Name (Formal);
4509 -- Case of ordinary parameters
4511 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4512 Find_Type (Parameter_Type (Param_Spec));
4513 Ptype := Parameter_Type (Param_Spec);
4515 if Ptype = Error then
4516 goto Continue;
4517 end if;
4519 Formal_Type := Entity (Ptype);
4521 if Ekind (Formal_Type) = E_Incomplete_Type
4522 or else (Is_Class_Wide_Type (Formal_Type)
4523 and then Ekind (Root_Type (Formal_Type)) =
4524 E_Incomplete_Type)
4525 then
4526 if Nkind (Parent (T)) /= N_Access_Function_Definition
4527 and then Nkind (Parent (T)) /= N_Access_Procedure_Definition
4528 then
4529 Error_Msg_N ("invalid use of incomplete type", Param_Spec);
4530 end if;
4532 elsif Ekind (Formal_Type) = E_Void then
4533 Error_Msg_NE ("premature use of&",
4534 Parameter_Type (Param_Spec), Formal_Type);
4535 end if;
4537 -- An access formal type
4539 else
4540 Formal_Type :=
4541 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
4542 end if;
4544 Set_Etype (Formal, Formal_Type);
4546 Default := Expression (Param_Spec);
4548 if Present (Default) then
4549 if Out_Present (Param_Spec) then
4550 Error_Msg_N
4551 ("default initialization only allowed for IN parameters",
4552 Param_Spec);
4553 end if;
4555 -- Do the special preanalysis of the expression (see section on
4556 -- "Handling of Default Expressions" in the spec of package Sem).
4558 Analyze_Default_Expression (Default, Formal_Type);
4560 -- Check that the designated type of an access parameter's
4561 -- default is not a class-wide type unless the parameter's
4562 -- designated type is also class-wide.
4564 if Ekind (Formal_Type) = E_Anonymous_Access_Type
4565 and then Is_Class_Wide_Default (Default)
4566 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
4567 then
4568 Error_Msg_N
4569 ("access to class-wide expression not allowed here", Default);
4570 end if;
4571 end if;
4573 <<Continue>>
4574 Next (Param_Spec);
4575 end loop;
4577 -- Now set the kind (mode) of each formal
4579 Param_Spec := First (T);
4581 while Present (Param_Spec) loop
4582 Formal := Defining_Identifier (Param_Spec);
4583 Set_Formal_Mode (Formal);
4585 if Ekind (Formal) = E_In_Parameter then
4586 Set_Default_Value (Formal, Expression (Param_Spec));
4588 if Present (Expression (Param_Spec)) then
4589 Default := Expression (Param_Spec);
4591 if Is_Scalar_Type (Etype (Default)) then
4592 if Nkind
4593 (Parameter_Type (Param_Spec)) /= N_Access_Definition
4594 then
4595 Formal_Type := Entity (Parameter_Type (Param_Spec));
4597 else
4598 Formal_Type := Access_Definition
4599 (Related_Nod, Parameter_Type (Param_Spec));
4600 end if;
4602 Apply_Scalar_Range_Check (Default, Formal_Type);
4603 end if;
4605 end if;
4606 end if;
4608 Next (Param_Spec);
4609 end loop;
4611 end Process_Formals;
4613 -------------------------
4614 -- Set_Actual_Subtypes --
4615 -------------------------
4617 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
4618 Loc : constant Source_Ptr := Sloc (N);
4619 Decl : Node_Id;
4620 Formal : Entity_Id;
4621 T : Entity_Id;
4622 First_Stmt : Node_Id := Empty;
4623 AS_Needed : Boolean;
4625 begin
4626 Formal := First_Formal (Subp);
4627 while Present (Formal) loop
4628 T := Etype (Formal);
4630 -- We never need an actual subtype for a constrained formal.
4632 if Is_Constrained (T) then
4633 AS_Needed := False;
4635 -- If we have unknown discriminants, then we do not need an
4636 -- actual subtype, or more accurately we cannot figure it out!
4637 -- Note that all class-wide types have unknown discriminants.
4639 elsif Has_Unknown_Discriminants (T) then
4640 AS_Needed := False;
4642 -- At this stage we have an unconstrained type that may need
4643 -- an actual subtype. For sure the actual subtype is needed
4644 -- if we have an unconstrained array type.
4646 elsif Is_Array_Type (T) then
4647 AS_Needed := True;
4649 -- The only other case which needs an actual subtype is an
4650 -- unconstrained record type which is an IN parameter (we
4651 -- cannot generate actual subtypes for the OUT or IN OUT case,
4652 -- since an assignment can change the discriminant values.
4653 -- However we exclude the case of initialization procedures,
4654 -- since discriminants are handled very specially in this context,
4655 -- see the section entitled "Handling of Discriminants" in Einfo.
4656 -- We also exclude the case of Discrim_SO_Functions (functions
4657 -- used in front end layout mode for size/offset values), since
4658 -- in such functions only discriminants are referenced, and not
4659 -- only are such subtypes not needed, but they cannot always
4660 -- be generated, because of order of elaboration issues.
4662 elsif Is_Record_Type (T)
4663 and then Ekind (Formal) = E_In_Parameter
4664 and then Chars (Formal) /= Name_uInit
4665 and then not Is_Discrim_SO_Function (Subp)
4666 then
4667 AS_Needed := True;
4669 -- All other cases do not need an actual subtype
4671 else
4672 AS_Needed := False;
4673 end if;
4675 -- Generate actual subtypes for unconstrained arrays and
4676 -- unconstrained discriminated records.
4678 if AS_Needed then
4679 Decl := Build_Actual_Subtype (T, Formal);
4681 if Nkind (N) = N_Accept_Statement then
4682 if Present (Handled_Statement_Sequence (N)) then
4683 First_Stmt :=
4684 First (Statements (Handled_Statement_Sequence (N)));
4685 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
4686 Mark_Rewrite_Insertion (Decl);
4687 else
4688 -- If the accept statement has no body, there will be
4689 -- no reference to the actuals, so no need to compute
4690 -- actual subtypes.
4692 return;
4693 end if;
4695 else
4696 Prepend (Decl, Declarations (N));
4697 Mark_Rewrite_Insertion (Decl);
4698 end if;
4700 Analyze (Decl);
4702 -- We need to freeze manually the generated type when it is
4703 -- inserted anywhere else than in a declarative part.
4705 if Present (First_Stmt) then
4706 Insert_List_Before_And_Analyze (First_Stmt,
4707 Freeze_Entity (Defining_Identifier (Decl), Loc));
4708 end if;
4710 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
4711 end if;
4713 Next_Formal (Formal);
4714 end loop;
4715 end Set_Actual_Subtypes;
4717 ---------------------
4718 -- Set_Formal_Mode --
4719 ---------------------
4721 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
4722 Spec : constant Node_Id := Parent (Formal_Id);
4724 begin
4725 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
4726 -- since we ensure that corresponding actuals are always valid at the
4727 -- point of the call.
4729 if Out_Present (Spec) then
4731 if Ekind (Scope (Formal_Id)) = E_Function
4732 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
4733 then
4734 Error_Msg_N ("functions can only have IN parameters", Spec);
4735 Set_Ekind (Formal_Id, E_In_Parameter);
4737 elsif In_Present (Spec) then
4738 Set_Ekind (Formal_Id, E_In_Out_Parameter);
4740 else
4741 Set_Ekind (Formal_Id, E_Out_Parameter);
4742 Set_Not_Source_Assigned (Formal_Id);
4743 end if;
4745 else
4746 Set_Ekind (Formal_Id, E_In_Parameter);
4747 end if;
4749 Set_Mechanism (Formal_Id, Default_Mechanism);
4750 Set_Formal_Validity (Formal_Id);
4751 end Set_Formal_Mode;
4753 -------------------------
4754 -- Set_Formal_Validity --
4755 -------------------------
4757 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
4758 begin
4759 -- If in full validity checking mode, then we can assume that
4760 -- an IN or IN OUT parameter is valid (see Exp_Ch5.Expand_Call)
4762 if not Validity_Checks_On then
4763 return;
4765 elsif Ekind (Formal_Id) = E_In_Parameter
4766 and then Validity_Check_In_Params
4767 then
4768 Set_Is_Known_Valid (Formal_Id, True);
4770 elsif Ekind (Formal_Id) = E_In_Out_Parameter
4771 and then Validity_Check_In_Out_Params
4772 then
4773 Set_Is_Known_Valid (Formal_Id, True);
4774 end if;
4775 end Set_Formal_Validity;
4777 ------------------------
4778 -- Subtype_Conformant --
4779 ------------------------
4781 function Subtype_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4782 Result : Boolean;
4784 begin
4785 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result);
4786 return Result;
4787 end Subtype_Conformant;
4789 ---------------------
4790 -- Type_Conformant --
4791 ---------------------
4793 function Type_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
4794 Result : Boolean;
4796 begin
4797 Check_Conformance (New_Id, Old_Id, Type_Conformant, False, Result);
4798 return Result;
4799 end Type_Conformant;
4801 -------------------------------
4802 -- Valid_Operator_Definition --
4803 -------------------------------
4805 procedure Valid_Operator_Definition (Designator : Entity_Id) is
4806 N : Integer := 0;
4807 F : Entity_Id;
4808 Id : constant Name_Id := Chars (Designator);
4809 N_OK : Boolean;
4811 begin
4812 F := First_Formal (Designator);
4814 while Present (F) loop
4815 N := N + 1;
4817 if Present (Default_Value (F)) then
4818 Error_Msg_N
4819 ("default values not allowed for operator parameters",
4820 Parent (F));
4821 end if;
4823 Next_Formal (F);
4824 end loop;
4826 -- Verify that user-defined operators have proper number of arguments
4827 -- First case of operators which can only be unary
4829 if Id = Name_Op_Not
4830 or else Id = Name_Op_Abs
4831 then
4832 N_OK := (N = 1);
4834 -- Case of operators which can be unary or binary
4836 elsif Id = Name_Op_Add
4837 or Id = Name_Op_Subtract
4838 then
4839 N_OK := (N in 1 .. 2);
4841 -- All other operators can only be binary
4843 else
4844 N_OK := (N = 2);
4845 end if;
4847 if not N_OK then
4848 Error_Msg_N
4849 ("incorrect number of arguments for operator", Designator);
4850 end if;
4852 if Id = Name_Op_Ne
4853 and then Base_Type (Etype (Designator)) = Standard_Boolean
4854 and then not Is_Intrinsic_Subprogram (Designator)
4855 then
4856 Error_Msg_N
4857 ("explicit definition of inequality not allowed", Designator);
4858 end if;
4859 end Valid_Operator_Definition;
4861 end Sem_Ch6;